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Abstract

Characterization of Chaotic Motion in a Rotating

Drum

By

James E. Davidheiser

Numerous studies in the past have demonstrated the potential for geometrically sim-

ple fluid systems to produce complicated dynamical behavior. In particular, small

collections of non-Brownian particles moving within viscous fluids can follow chaotic

trajectories. In this work, we study a rotating drum filled with pure glycerol and

three large, heavy particles.

In studying these rotating drum systems, we have found a rich and varied phase

space, made up of several previously unseen behaviors. With varying rotation rate,

the particles can undergo straightforward cascading periodic behavior, and grouped

periodic cascades we have labeled as doublet and triplet states. Furthermore, we find

two regimes of qualitatively distinct chaotic behavior, with one type biased to either

side of the drum, and the other lacking bias.

The rotating drum experiment serves as a simple model system to demonstrate

chaotic behavior in fluid dynamical systems. The existence of such model systems

gives a baseline to which other systems can be compared and better understood,

and our use of robust, easily implemented measurements serves as a straightforward

comparison point which can be applied to various other chaotic fluid systems.
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Chapter 1

Introduction

1.1 Motivation

In the study of classical Newtonian chaotic systems, there are certain fundamental

example systems which have been heavily studied and which are used as examples to

which other systems can be compared. Simple experiments such as a billiard ball on

a stadium-shaped table [1] or a forced pendulum [2] are easily constructed laboratory

experiments which can be studied in depth to better understand the fundamental

properties of low dimensional chaotic behavior in these classical systems.

Fluid dynamics, while significantly complicated by the continuum nature of its

governing equations, also contains such fundamental experiments. Much as the sim-

ple gravitational three-body problem [3] can serve as a useful tool to study low di-

mensional chaos resulting from Newton’s equations, the fluid three-body problem

can serve the same purpose for understanding chaos resulting from the Navier-Stokes

equations.

There are a host of these geometrically simple fluids experiments which can yield

interesting results and give us insight into the character of chaotic fluid dynamical

systems, but we focus specifically on the question of groups of particles sedimenting

under the influence of gravity. When these groups of particles are large (N � 1), we
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see bulk sedimentation effects, including various interesting swirls and vortices [4].

However, when N is small, interesting effects are still seen, with the potential for

small numbers of particles interacting through the fluid to exhibit chaotic behavior.

Due to experimental considerations which will be discussed in this Chapter, we

limit our study to the motion of small collections of particles moving within a rotat-

ing drum filled with viscous fluid. Figure 1.1 shows a cartoon picture of the type of

experiment on which we will focus, where we use three large, non-Brownian beads.

When the drum rotates, these beads undergo a periodic cascade in the vertical di-

rection. Due to the viscous nature of the fluid, the beads feel long-range interactions

due to the fluid. At certain rotation rates, they can also wander erratically in the

horizontal direction, with seemingly random-like trajectories. We will focus our dis-

cussion on the relation between the fluid interactions and bead trajectories, and also

provide both qualitative and quantitative measurements to describe the nature of the

particles’ horizontal motion.

Figure 1.1: We study a rotating drum filled with viscous fluid and three beads. These
beads are dragged upwards by the front wall of the drum until gravity pulls them
away from the wall and they fall through the fluid. This periodic cascading in the
vertical direction can often lead to interesting horizontal motion.

This system serves as an analogue for simple sedimentation experiments, with

the constraint that the rotation of the drum forces the three beads to remain close

together, continually interacting. By doing so, we ensure that the behavior of the

beads has the potential to remain persistent, allowing us to study it over a long

period of time and describe the motion of a single state in great detail.
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By understanding the chaotic motions of a small collection of beads interacting

through a fluid flow, we contribute to a base of knowledge about these simple model

fluid systems, which can serve as examples against which other, more complicated

behavior is compared, just as in the classical Newtonian examples.

1.2 The Stokeslet Model

The complex behaviors present in systems involving fluid dynamics provide a rich

variety of interesting physical systems to study. The non-linearity of the Navier-

Stokes equation is responsible for both the mathematical difficulty of fluid dynamics

and the complexity and variety of fluid dynamical phenomena [5]. There are many

approaches that can be taken to study fluid interactions, both experimentally and

theoretically. One such approach is to deal with particles moving within fluid. For

particles that are large and heavy enough, the fluid will influence the motion of the

particles, but the particles will have enough inertia that they don’t exactly follow the

fluid flow. This can allow us to study the particle motion while somewhat abstracting

away the exact details of the fluid dynamics. In this case, the fluid can be treated as

a source of long-range interaction between the particles.

As an example of this approach, we consider the Stokeslet model, which uses

the approximation given in the Stokes equations, reasonable when fluid inertia is

unimportant compared to viscosity [6]:

~∇ · ~u = 0, (1.1)

−~∇p + µ∆~u + ~f = 0, (1.2)

where µ is the dynamic viscosity, ~u = ~u(~r) is the fluid velocity field, p = p(~r) is

the pressure field, and ~f = ~f(~r) is the local force field. Equation 1.1 tells us the

fluid is incompressible, while Eqn. 1.2 is the Navier-Stokes equation with inertial

3



terms neglected, so only the viscous terms contribute. The model then approximates

the velocity field due to a single particle of radius a moving with velocity ~v0 in an

unbounded fluid as

~u(~r) = av0
~U(~r), r > a, (1.3)

~U(~r) =

(

~e

r
+

(~e · ~r)~r
r3

)

, (1.4)

where ~e is a unit vector in the direction of the particle velocity ~v. If we consider parti-

cles moving under the influence of gravity, such as those during the falling portion of

our drum experiment, the steady-state sedimentation velocity of an isolated particle,

v0 = Fg/(6πµa) can be used in place of v0 in the above equations.

Since the Stokes equations are linear, this method allows one to approximate

the velocity of a given particle as a superposition of the velocity fields of the other

particles, such that

~̇ri = ~v0 + av0

∑

j 6=i

~U(~ri − ~rj). (1.5)

This model demonstrates how it is possible to simplify the nonlinear Navier-Stokes

equations into a more manageable representation where each particle is treated as act-

ing under the influence of potentials resulting from the motion of the other particles.

While our experiment takes place within a regime where both viscosity and inertia

are important, invalidating the simplifications of the Stokeslet model, conceptually

similar ideas will be used throughout this Chapter to look at groups of particles inter-

acting via some long-range fluid effects, while mostly disregarding the exact details

of the fluid behavior.
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1.3 Chaotic Motion

In Sec. 1.1, we alluded to random-like movement of particles. By random-like, we

specifically mean deterministic chaos, hereafter referred to as simply chaos. A deter-

ministic chaotic system is one that, while deterministic in nature (that is, a set of

initial conditions has only a single possible outcome), appears random in behavior [7].

There are two main properties which describe chaotic dynamical systems: exponential

sensitivity to initial conditions, and topological mixing.

Exponential sensitivity to initial conditions is one of the most commonly ref-

erenced characteristics of chaotic behavior, conceptualized by the popular idea of

the “butterfly effect”, first popularized by E. Lorenz at the December 1972 meet-

ing of the American Association for the Advancement of Sciences in his talk titled

“”Predictability- Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado

in Texas? [8]”. This example proposes that, due to the extreme sensitivity to ini-

tial conditions in the equations which govern weather, a flap of a butterfly’s wings

could change initial conditions enough to drastically alter the outcome of the system.

In more technical terms, a small perturbation in the initial conditions of a dynami-

cal system, advanced forward in time, can produce an exponential divergence of the

trajectory of that system in the phase space comprised of all relevant variables in

the system. This exponential divergence with slightly different initial conditions is a

hallmark of chaotic behavior.

Topological mixing describes mixing in which, if you select any two regions of phase

space, and follow them forward in time, they will eventually overlap. While this is

a more difficult behavior to quantify directly, its more fundamental meaning serves

as inspiration for much of the analysis to be done in Ch. 4. On a qualitative level,

topological mixing describes how a system explores phase space - a chaotic system

will tend to explore phase space more thoroughly than a periodic one, regardless of

its initial conditions. Due to the lack of delicate control over initial conditions in our
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own experiments, this concept will drive our analysis of the rotating drum system.

To support our claim that the behavior seen in our system is chaotic in nature, we

will explore several analogous works which demonstrate chaotic behavior in simple

particle-fluid systems. In addition to those explored in the next several sections,

various other experiments and simulations have shown that particles interacting with

fluids can behave chaotically. Shin and Maxey found that non-spherical particles

settling in a fluid flow field exhibited chaotic motion [9]. In a similar vein, Anil

Kumar et al. demonstrated chaotic dynamics in the behavior of spheroids in a simple

flow with periodic external forcing [10]. Aref and Balachandar demonstrated that

stirring particles in a fluid can also produce chaotic results [11]. Indeed, many studies

have illustrated chaotic behavior in a variety of situations, including effects such as

fluid flow field, external forcing, Brownian diffusion, and hydrodynamic interactions

[12]. In this Chapter, we will look at a subset of chaotic behaviors, those involving

particles sedimenting under the influence of a constant external force (i.e. gravity).

1.4 Chaos in Pure Sedimentation

In early sedimentation experiments [13], it was demonstrated that the interaction

between non-Brownian particles sedimenting in liquid can be chaotic. Specifically, if

three particles were released close to each other, it was seen that two of the particles

would pair up and travel together, while the third particle would move on its own

unique trajectory. The remarkable result, however, was that this pairing was sensitive

to initial conditions. If the starting positions of the three particles (labeled 1, 2, and

3) were at a given configuration, particles 1 and 2 might pair up. Changing this

configuration slightly, however, might cause particles 1 and 3 to pair.

This work was further analyzed computationally by Jánosi et al [14] for the

Stokeslet theoretical model described in Sec. 1.2. Two example trajectories, illus-
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Figure 1.2: Example trajectories for particles starting at z=0 with x positions (a)
(-3.9050,-1.0,1.0) and (b) (-3.9048, -1.0, 1.0) are plotted. Sedimentation occurs in the
positive z direction for this simulation. Note that the particle left behind and the
escape time are very different, despite the closeness of the original positions in phase
space. This suggests exponential sensitivity to initial conditions. Image taken from
Ref. [14].

trating sensitivity to initial conditions, are shown in Fig. 1.2. Due to the simplicity

of this model and the power of modern computers, it was possible to sample millions

of initial starting configurations. An example of the results is given in Fig. 1.3. In

this figure, the results of simulations with various starting configurations are shown.

The positions of two of the particles are held fixed, with the x and z positions of the

third (test) particle varied, and the particles allowed to sediment in the z direction.

Color on the graph indicate which of the three particles was left behind: red regions

indicate that particle 1 was left behind, yellow particle 2, and blue regions indicate

that the test particle was left behind. There is a rich fractal structure to this image,
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the details of which are beyond the scope of this Dissertation, but the complex struc-

ture of the initial condition space gives a clear indication of chaotic behavior, serving

as a concrete example of a simple chaotic system consisting of particles sedimenting

within fluid.

Figure 1.3: Here we see a section of initial configuration space of the test particle.
Particles 1 and 2 always start from the same positions, while the axes show the
starting position of the test particle. Eventually, two of the three particles will pair
up, and leave the third particle behind. Colors indicate which particle was left behind.
Red, particle 1; yellow, particle 2; blue, test particle. Note the self-similar, complex
structure of this configuration space. Image taken from Ref. [14].

In many ways, this simple system illustrates the purest picture of sedimentation

dynamics and how chaos can arise in these situations. However, the Stokeslet model

used for the simulations is only valid in the limit where viscosity completely domi-

nates behavior, and fluid inertia has no effect. The relative contributions of these two

forces can be defined as the Reynolds number, Re = UL/ν, where U is a character-

istic velocity, ν is the kinematic viscosity, and L is a characteristic length. Re � 1

corresponds with an inertia-dominated flow, while flows with Re � 1 are dominated
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by viscosity. As most computational models use approximations only valid within

certain ranges of Reynolds numbers, we will explore chaotic behavior with an exper-

imental study, rather than a simulation, so that parameters can be varied smoothly

between different regimes.

The execution of the Jánosi experiment in a laboratory setting poses many ob-

stacles. The most obvious of these is the fact that it’s impractical to sample millions

of initial configurations in the lab. Therefore, we would have much trouble show-

ing a rich set of initial conditions as illustrated in Fig. 1.3. Furthermore, as seen in

Fig. 1.2, the chaotic mixing occurs during some finite time, after which straight line

trajectories set in, and therefore the chaotic behavior is transient, meaning limited in

time. The fact that there there is no phase space in which the particle trajectories

are bounded tells us that there are no periodic orbits, and thus the characterization

of the route to chaos would be more difficult. If we could instead find a system where

the motion is bounded, and the system settles into a specific subset of phase space, we

could study the properties of that bounded phase space, known as an attractor [15],

using a rich set of existing tools. Perhaps the most appealing feature of an attractor

is that, for many initial conditions, even lying outside the attractor, the long-term

behavior of the system will be to settle into the attractor and remain trapped there.

From an experimental standpoint, this means we can study the features of the chaotic

behavior of the system without the requirement of extremely precise control of initial

conditions. Instead, we can focus our efforts on controlling the parameters of the

system to look for an onset of chaotic behavior when these parameters are varied.
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1.5 Orbits and Bounded Behavior in Sedimenta-

tion

As we saw, a fundamental experimental difficulty of the pure sedimentation problem

is that the motion is unbounded. However, Aidun and Ding [16] illustrated, again

computationally, that it is possible to construct a sedimentation experiment in which

bounded periodic orbits, and a transition to bounded chaos with varied parameters,

can be found.

In their simulation, Aidun and Ding considered two dimensional sedimentation of

circular cylinders in a narrow channel. In this case, the width of the channel was only

four times the diameter of the cylinders, so that wall effects were very important.

Perhaps the most vital characteristic of this experiment, however, is the fact that

the wall effects constrain the particles in a way that wall interactions allow chaotic

behavior to occur with only two particles. Thus, there is no concern that pairing will

allow a particle to be left behind, resulting in transient behavior. In order to probe

the dependence of chaotic behavior on Reynolds number, Aidun and Ding varied the

magnitude of the external gravitational force, which in turn varied the velocity U of

the particles and the Reynolds number Re = UL/ν

Because the chaotic behavior for this system is not transient, it is possible to

construct a phase space which illustrates the dynamics of the system with a minimum

of variables. This phase space was defined by the distance between each particle and

the side wall, y1/d and y2/d. At low Reynolds numbers, the system shows a periodic

trajectory, with an example phase space shown in Fig. 1.4a. As the Reynolds number

is increased, the dynamics transition into a more complex period two orbit as shown

in Fig. 1.4b. At even higher Reynolds number, they find chaotic behavior as shown

in Fig. 1.4c.

This simulation gives us evidence that the trajectory of a sedimenting system
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(a) Period One (b) Period Two

(c) Chaos

Figure 1.4: This plot contains trajectories of circular cylinders in phase space il-
lustrating a transition from periodic behavior to chaos. At low Reynolds number,
the particles oscillate periodically in phase space (a). As Re is increased, the sys-
tem undergoes a period doubling, so that the particles now oscillate with period two
(b). This increase in complexity eventually leads to a chaotic state at high enough
Reynolds number. (c). Image taken from Ref. [16].
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can be bounded in phase space and produce chaotic behavior. However, it is again

an impractical experimental setup for the lab. In the simulation, the sedimentation

occurs in an infinite-height channel, which is obviously impossible to replicate phys-

ically. Furthermore, Aidun and Ding controlled the Reynolds number by holding

the viscosity and density ratio fixed and varying the external (gravitational) force.

While convenient from a computational standpoint, such unphysical techniques are

impractical in a laboratory setting.

1.6 The Rotating Drum

If we now consider three dimensional beads moving through a fluid at moderate

Reynolds number, they can interact through long-range fluid interactions brought

about by their fluid wakes [17]. The numerical studies carried out in Ref. [17] showed

that the wakes of two identical spherical particles held side-by-side can interact in

such a way as to cause an effective force between those two particles. Specifically,

when the two particles are close enough together, the effective force is a repulsion

between the two particles. As they move apart, this force diminishes until it crosses

zero and becomes an attractive force, with a peak in this attractive force at a distance

of ∼ 5 particle diameters d, and a decreasing force as distance increases beyond ∼ 5d,

with force essentially equal to zero around ∼ 20d.

Mullin, et al. [18] demonstrated a physical experiment that illustrates how these

wake interactions can cause chaotic particle motion within a fluid. They studied a

hollow cylinder, filled with glycerine, oriented horizontally, and rotated at various an-

gular speeds ω. When one or two beads were placed within this container, fixed-point,

periodic, or solid-body behavior was found, depending on the particle Reynolds num-

ber, defined Rep = ωrcrb/ν, where rc and rb are the radii of the cylinder and ball, and

ν is the kinematic viscosity of the glycerol. No chaotic behavior was observed when
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there were only one or two beads. When three beads were placed within the con-

tainer, however, low dimensional chaos, in addition to the aforementioned behaviors,

was observed over well-defined ranges of Re.

(a) (b) (c)

Figure 1.5: There are three regimes of possible behavior for a single bead in a rotating
drum. At low rotation rate, the bead rotates in a fixed position on the wall of the
drum. At higher rotation rates, this bead cascades in the y-z plane. At significantly
high rotation rates, the bead is fixed in position on the drum wall by centrifugal force.
Image taken from Ref. [18]

For two beads, at a low rotation rate, the system illustrated a steady state behav-

ior, where the beads stayed at a stationary position and rotated with the cylinder,

as shown in Fig. 1.5a. As ω was increased, the system moved into a time-dependent

cascading regime, where each bead is dragged up along the side of the cylinder, until

it falls away from the wall and lands further down, before being dragged up again

(Fig. 1.5b). In this regime, the two beads were in a stable anti-phase configuration

- when one bead was at the top of the cascade cycle, the other was at the bottom,

and vice versa. At high enough ω, the beads rotate along with the cylinder, firmly

planted to the wall, in a solid-body regime (Fig. 1.5c). These various regimes are

demarcated by certain rotation rates ω, and thus by certain values of the Reynolds

number Re.

For the three bead case, there is again fixed-point behavior, where the beads were

completely independent of each other, at Re < 1.21. At 1.21 < Re < 2.12, the beads

illustrated cascading behavior in the y − z plane with the x positions fixed. It was

noted that the outer beads were again stably out of phase with each other, and the

middle bead was at an intermediate position between the two. At Re = 2.12 there
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was a reversible transition to a chaotic regime where the particles started to wander

erratically in the horizontal (x) direction while still cascading in the y − z plane. A

typical sample of a 400-second time series of the x position of the three beads is shown

in Fig. 1.6. At Re = 4.53, there was a transition to solid body motion.

Figure 1.6: Mullin plotted x component time series for the positions of the three
beads. The smallest gaps between the series are the same as the bead diameter and
thus represent the closest approach of the beads. [18]

In this work, Mullin demonstrated a simple, tabletop experiment where chaotic

behavior occurs in a geometry which shares several parallels with simple sedimentation

experiments. The motion is completely bounded in phase space by the presence of the

drum walls, forcing the particles to remain within a range in which there is potential

for them to interact with one another, neatly avoiding the experimental difficulties

discussed previously in this Chapter. This experiment serves as the inspiration for our

own study. We find that the rotating drum is a useful investigative tool, which allows

us to study a persistent chaotic state. This chaotic state is stable over long timescales,

allowing the collection of large amounts of data. The rest of this dissertation will focus

on our own efforts to understand and study the three-particle rotating drum problem

in greater detail than was discussed by Mullin. We will demonstrate several new

behaviors, and provide a description of a rich and interesting phase space, along with

quantitative measurements of the properties of trajectories.
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Chapter 2

Theory

2.1 Motivation

This Chapter will focus on the theory of viscous fluid within a rotating drum. The

motivation for this discussion is to provide evidence that the interesting behavior we

observe is due not to the rotation of the drum directly, but rather to the fluid motion

that occurs as a result of the beads’ motion relative to the bulk flow of the fluid. The

theory discussed in this Chapter is borrowed heavily from Ref. [19], which in turn

draws from several introductory texts [20, 21, 22, 5].

2.2 Equations of Motion

Written in a rotating frame of reference with rotation ~ω, the Navier-Stokes equation

is given by

D~u

Dt
= −1

ρ
~∇p + ν∇2~u − 2~ω × ~u − ~ω × (~ω × ~r), (2.1)

where ~u(~r, t) is the velocity field of a fluid of density ρ with kinematic viscosity η.

D~u/Dt is the advective term, and it is equal to the sum of terms due to pressure p,

dissipation due to viscosity ν, Coriolis and centripetal forces. In cylindrical coordi-
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nates, with ~ω = ωẑ, the centripetal term can be written as the gradient of a scalar,

−~ω×(~ω×~r) = (1/2)~∇(~ω×~r)2 = (1/2)~∇(ω2r2), and thus combined with the pressure

term to give

D~u

Dt
= −1

ρ
~∇[p − (1/2)ρω2r2] + ν∇2~u − 2~ω × ~u, (2.2)

or if we define an effective pressure p′ = p − (1/2)ρω2r2,

D~u

Dt
= −1

ρ
~∇p′ + ν∇2~u − 2~ω × ~u. (2.3)

We can nondimensionalize Eqn. 2.3 using a characteristic length L, velocity U ,

time L/U , and pressure P , such that u∗ = u/U , p∗ = p′/P , t∗ = Ut/L, and ~∇ = ~∇/L,

to give

U

ωL

D~u∗

Dt∗
= − P

ρULω
~∇∗p∗ +

ν

ωL2
∇∗2~u∗ − 2ẑ × ~u∗. (2.4)

Dropping the asterisks, we further define the nondimensional Rossby number Ro ≡

U/(ωL) and the nondimensional Ekman number Ek ≡ ν/(ωL2), and rewrite the

Navier-Stokes equation:

Ro
D~u

Dt
= −Ro

(

P

ρU2

)

~∇p + Ek∇2~u − 2ẑ × ~u. (2.5)

Here the Rossby number gives the relative importance of advection compared to

the Coriolis force, and the Ekman number tells us the ratio of viscous dissipation to

Coriolis force. The two together help characterize the behavior of rotating flows.

2.3 Drum Spin-Up

If we consider a drum filled with glycerine, such as that in Sec. 1.6, initially stationary

in the lab frame, which is very quickly accelerated to a constant rotation rate ω, the
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viscous fluid within that drum will not accelerate instantaneously.

In the rotating frame, initially the fluid will appear to be rotating in the opposite

direction from ~ω, with a maximum velocity U = ωrc. Here, the Rossby number can

be defined:

Ro =
U

ωrc
=

ωrc

ωrc
= 1. (2.6)

In cases of Rossby number of O(1), the spin-up time of fluid within a drum is

determined by the Ekman pumping time τE [23].

2.3.1 Ekman Pumping

If we consider the Ekman number for the fluid within the drum,

Ek =
ν

ωL2
=

ν

ωrc
2
∼ 0.02 − 0.05, (2.7)

we note that, in the bulk of the fluid, during spin-up, Coriolis forces play a far more

important role than viscous forces. This role takes the form of Ekman pumping at

the end caps of the cylinder, providing damping which drives the rotating flow.

If we consider flow very near the cylinder end caps, the no-slip boundary condition

requires that the fluid be motionless within the rotating reference frame. Thus, there

must be some transitional layer over which the fluid transitions from its bulk flow

to what is happening at the end caps. If we call the length scale of this layer δE,

we can define an Ekman number based on this length scale. Over the length of this

layer, viscous dissipation must be able to take the fluid from the bulk velocity to the

boundary velocity, meaning Ek ∼ 1. Thus, we can write the typical thickness of the

Ekman layer as

δE ∼
√

ν/(ω). (2.8)
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This Ekman boundary layer has an additional effect on the flow within the cylin-

der. The layer will draw fluid from high-pressure regions (those rotating in the oppo-

site direction from the drum), and inject it into low-pressure regions. If there are two

Ekman layers, one at each end of the cylinder, separated by a distance h0, this cyclic

pumping causes an overall damping effect ~u(t) ∼ ~uoe
−t/τE where τE is the Ekman

time:

τE =
h0√
νω

. (2.9)

This damping effect will tend to damp out any motion within the rotating frame,

bringing fluid that was at rest in the lab up to the rotation rate of the cylinder.

For our experiment, with ω ∼ 5 − 13 rad/s, δE ∼ 1.0 − 1.8 cm. With a calculated

h0 ∼ lc−2δE, we find that for our typical rotation rates, τE ∼ 2.4−3.7 s. This implies

that the behavior seen in our measurements, lasting several hours in duration, is not

dependent on effects from the initial spin-up of the drum fluid.

2.4 Fluid Effects Due to Beads Moving Within the

Drum

If we now consider the introduction of beads into the drum, observed at a time t � τe,

we consider the effect their motion will have on perturbations about the solid-body

fluid motion stabilised after the spin-up time τE. When we are within the cascade

regime, the beads will repeatedly cascade in the y − z plane, being dragged up the

front wall of the cylinder, then falling away from it and falling through the cylinder,

as illustrated in Fig. 2.1

We recorded approximate values for vup and vdown for many values of ω and plotted

v vs ωrc in Fig. 2.2. The solid line drawn at v = ωrc shows an upper limit to the
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Figure 2.1: Looking in along the rotational axis of the drum, the beads will be dragged
upwards along the cylinder wall with a velocity vup and then fall through the fluid at
a velocity vdown.

cascade velocity in the lab frame. As these beads are cascading within the lab frame,

their maximum velocity in the rotation frame would be if they fall along the radial

direction r̂, so the maximum velocity in the rotating frame is equal to the maximum

velocity in the lab frame. Thus, we can define U = ωrc, and our Rossby number for

the fluid motion resulting from the motion of the beads within the rotating reference

frame is again equal to unity. This implies that we can treat the system overall as

beads sedimenting within a fluid, and neglect Coriolis forces in their behavior. The

lack of Coriolis influence tells us that the motion of the beads is driven not by the

rotation of the drum, but by the long-range fluid interactions caused by the bead

motions within the drum.

Since our Rossby number is the same as in the spin-up case, there will still be an

Ekman damping effect, which serves to damp out fluid flow which is different from

the bulk flow in the drum. However, this damping effect has little influence on the

interesting particle motion in the horizontal direction. In Sec 4.4, we will show that

typical times for the collisions between particles are of order τcol ∼ 100s, two orders

of magnitude removed from the Ekman time τE ∼ 1s. Similarly, the particle turnover

time, that is the time for a single cascade to occur, is of order 1s.

However, despite the fact that the Ekman time is shorter than the the time scale

of the interactions we study, Ekman pumping has an important influence on the
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Figure 2.2: Cascade velocities vup and vdown are plotted versus ωrc for a variety of
rotation rates. The solid line represents v = ωrc, showing that ωrc is an upper bound
for the cascade velocities.

system’s behavior. In Sec. 2.3.1, we calculated the typical thickness of the Ekman

layer δE ∼ 1−1.8 cm. This pumping layer provides an effective boundary layer which

the beads don’t cross, and which repels the beads if they begin to intrude. This can

be observed in experiments, where the particles are seen to never approach within

less than a centimeter or so of the end caps.

2.5 Particle-Particle Interactions

In order to better understand the source of the particle-particle interactions, we con-

sider the particles’ effects on fluid flow, in the form of wakes which radiate horizontally

within the drum. In either reference frame, the velocity of the bead, vb ∼ ωrc is de-

termined by the rotation rate of the cylinder. Since we have determined that the

particle motion is not heavily influenced by the drum rotation, we consider the parti-

cle Reynolds number Re = UL/ν, which determines the contribution of fluid inertial

effects relative to viscous drag. For a cascading bead of diameter 2rb, the Reynolds

number is:

20



Re =
ωrcrb

ν
∼ 5 − 15. (2.10)

This corresponds to a laminar flow where both viscosity and fluid inertia play

a role in the fluid flow. In order to quantify whether viscous forces play a role in

the horizontal motions of the beads, we consider the typical viscous damping time

τν ∼ L2/ν. For interactions of particles across the length ld = 25 cm of the drum,

τν ∼ 80 s, on the same order as the particle interaction time τcol ∼ 100 s.

If we consider the ratio of inertial forces for the particles compared to the fluid,

we can typify the relative contributions by comparing the density ratio ρb/ρf ∼ 6.2,

which implies that fluid inertia will have less influence upon the bead trajectories

than the Reynolds number might otherwise imply. Due to their large inertia relative

to the fluid, the beads will not tend to follow fluid streamlines exactly, but rather

interact via drag.

2.6 Gravitational Force

To this point, we have limited our discussion to motion within the rotating drum

without directly mentioning the influence due to gravity. The presence of gravity can

be seen indirectly through the use of the cascade velocity U , which is a result of the

force of gravity on the beads. However, in order to study its effect more directly, we

define the Galilei number, which is the ratio of gravitational to viscous forces. With

the force due to gravity defined as Fg = (4/3)πr3
b∆ρg, and the viscous drag defined

as the Stokes drag Fν = 6πνrbU , we can define the Galilei number [24]

Ga =
Fg

Fν
=

2r2
b∆ρg

9νU
∼ 1.3 − 3.9 (2.11)

With Ga = 3.9 for ω = 5 rad/s and Ga = 1.3 for ω = 15 rad/s. This shows

21



that the influence due to gravity is always comparable to that due to viscous drag,

which is not surprising, as most motion within the rotating frame of reference is due

to the gravity-driven cascade. At lower rotation rates, the force due to gravity is

proportionally large, meaning the cascade will have a smaller amplitude, as observed,

while at higher rotation rates, the forces due to gravity and viscous drag are equal in

magnitude, leading to large amplitude cascades.

2.7 Summary

In the prior discussion, we defined the Rossby and Ekman numbers, which describe

the contributions of advection and viscous dissipation, respectively, compared to the

Coriolis force. Considering the spin-up of the drum, Ro ∼ 1 and Ek ∼ 0.02 − 0.05,

implying that Coriolis and inertial forces dominate the initial spin-up behavior. How-

ever, the time scale of this spin up is very short, on the order of a few seconds, im-

plying that the initial spin-up has little influence on the long-term behavior of the

system. Furthermore, once we introduce beads into the system, we find that the ro-

tational effects have little influence on the interesting behavior of the system, which

is dominated by viscous forces on a timescale two orders of magnitude larger than

the timescales of rotational forces. We summarize the experimental parameters used

in this experiment in Table 2.1, and their resultant dimensionless numbers and time

lc 25 cm Length of cylinder
rc 5.71 cm Radius of cylinder
rb 0.795 cm Radius of bead
ω 5 − 13 rad/s Rotation rate of cylinder
T 24.7 ± 0.1◦C Temperature
ρf 1.26 g/cm3 Fluid density
ρb 7.65 g/cm3 Bead density
ν 7.69 St (cm2/s) Kinematic viscosity ν = µ/ρ
µ 968 cP Dynamic viscosity

Table 2.1: Summary of important variables in the rotating drum experiment
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and length scales in Table 2.2.

Ro U

ωL
≤ rc

2L
1

Ek ν

ωL2
0.02 − 0.05

Reb
UL

ν
= ωrcrb

ν
5 − 15

τE
h0√
νω

2.4 − 3.6 s

δE

√

ν/(ω) 1.0 − 1.8 cm

τcol (measured) ∼ 100s

τcascade (measured) ∼ 1 s

τν L2/ν 80 s

Table 2.2: Summary of dimensionless numbers in the rotating drum experiment
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Chapter 3

Instrumentation and Methods

3.1 Experimental Apparatus

3.1.1 The Drum

Figure 3.1: The drum, shown looking in from a side view, is placed on a stand which
allows it to rotate about the horizontal axis.

The experimental apparatus consists of a 25 cm long horizontally oriented sealed

drum, with an inner diameter of 11.43 cm, as shown in Fig. 3.1. The main body of

the drum is constructed from a section of acrylic glass pipe with a wall thickness of

∼ 1 cm. To each end of this drum, waterproof threaded aluminum caps are fitted.
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Each cap has an shaft attached via an adjustable mounting, so that the shaft can be

carefully centered within the cap. These shafts attach to a stand via two bearings,

which allow the drum to rotate freely about the horizontal axis. The base of the drum

stand contains four adjustment screws for leveling the apparatus.

On one of the drum shafts, a pulley is mounted, and connected via a belt to a

Dayton 1/2 HP 3-phase A/C motor driven by a Fuji AF-300 controller. This allows

the drum to be rotated on its axis at a variable rotation rate ω over a range from

∼ 5 − 13 rad/s. Due to the belt drive connection, the actual motor rotation rate

is potentially different from that displayed on the control box, so the rotation rate

of the drum is measured independently using a Pasco PS-2120 rotary motion sensor

connected to a computer. Stability measurements taken over a four-hour period show

the rotation rate to be stable to within 1%. As all experiments are started from rest,

we also measure the time for the drum to spin up to within 1% of its final velocity,

and find typical spin-up times to be on the order of tens of seconds.

The apparatus, in its current form, has two limitations on rotation rate. At

rotation rates much below ∼ 5 rad/s, the motor begins to “stutter”, without the

smooth, constant rotation rates needed for the experiment. This could be corrected by

choosing appropriate pulley ratios, but as will be shown in Sec. 4.2, little interesting

behavior occurs at these low speeds. Similarly, there is an upper limit on the rotation

rate, but this limitation is due to the physical construction of the device. The bearings

used are non-lubricated and begin to heat up significantly at higher rotation rates.

However, these high rotation rates are again regimes where little interesting behavior

occurs.

The drum is filled with 99.5% pure glycerol from Sigma-Aldrich, and three 440c

stainless steel ball bearings from Winstead Precision Ball Company with a diameter

of 1.59 cm, density ρb = 7.65×103 kg/m3, and weight of 16.1 grams. When immersed

in glycerol (ρf = 1.26 × 103 kg/m2), the beads have an apparent buoyant weight of
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13.4 grams each.

3.1.2 Temperature Control

Figure 3.2: The drum is immersed in water, which is temperature controlled via a
copper heat exchanger connected to a recirculating digital temperature control bath.
The tank is built from acrylic glass, open on top, with the two end caps held on with
screws and sealed with an o-ring and silicone paste.

It is well-known that the viscosity of glycerol is strongly dependent on tempera-

ture [25]. Thus, in order to maintain constant viscosity, it is necessary to control the

temperature of the fluid within the drum. To do so, we immerse the drum in a tank of

water, shown in Fig. 3.2, in which a copper heat exchanger has been placed. We con-

nect this heat exchanger to a Thermo NESLAB RTE-7 digital refrigerated/heated

bath, which is maintained at 25◦ C in all experiments. The rotation of the drum

provides sufficient mixing to allow the water within the tank to be maintained at

24.7±0.1◦ C, as measured by a digital thermometer, independently for each experi-

ment. This results in a measured kinematic viscosity ν = 7.69 Stokes.

26



3.1.3 Imaging

In order to study the behavior of the particles as the drum is rotated, we need to

track their motion. To do so, we use a Pixelink PL-B741F 1.3 megapixel firewire

monochromatic camera connected to a personal computer running Windows XP. At-

tached to the camera is an Edmund Optics NT56-788 megapixel lens with a fixed

focal length of 16 mm.

Under normal ambient lighting, there is significant motion blur associated with the

fast-moving particles. To minimize this, a Monarch Instruments Nova-Strobe DAX is

used to light the particles from behind, with an opaque screen surrounding the entire

apparatus to block ambient light. The strobe is attached to a foil reflector box with a

bead-blasted acrylic glass window, which serves as a diffuser to provide uniform light

distribution. To ensure that the firing of the strobe is synchronized with the shutter

of the camera, a General Purpose Output interface on the camera is programmed to

output a current sink pulse each time the shutter on the camera opens. The circuit

shown in Fig. 3.3 is used to convert that output pulse to a TTL-level signal, which

can be input into the strobe’s external trigger port. This provides the needed lighting

conditions for crisp, clear images with no motion blur.

The experiments conducted last for up to six hours, significantly longer than

the included OEM software for the camera is able to record. Due to this, it was

necessary to write a custom video capture package, which can capture the raw camera

data, convert it into image data in memory, and stream those images directly to a

compressed video file. The completed software package is discussed in more detail in

Appendix A.
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Figure 3.3: Circuit to connect camera General Purpose Output to strobe trigger
input. The Pixelink GPO is an open collector current sink interface, which acts as
either an an open circuit (no connection to anything) or a short circuit to ground.
This current sink is connected through a pull-up resistor to a 5 V source, in parallel
with a NOT gate. When the GPO is off, no current can flow through it, and current
will instead flow to node 1, meaning node 1 is on. When the GPO is switched on,
all the current flows through the GPO to ground, and node 1 is now off. Since node
1 is connected to a NOT gate, off at node 1 corresponds to on at node 2, and vice
versa. Thus, when the GPO sink is turned off, there will be no current output from
the circuit, and when the GPO is switched on, there will be a 5 V voltage output
at node 2. This corresponds to a rising-edge TTL signal, which can be fed directly
into the Nova-Strobe trigger input, such that every time the GPO is switched on, the
strobe will fire [26]. Figure taken from Pixelink product documentation [27].
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3.2 Particle Tracking Software

3.2.1 Algorithm

In order to analytically study the behavior of the particles moving within the rotating

drum, we developed a Matlab-based tracking algorithm. Matlab was chosen due to

an existing rich set of tools already developed for the platform which greatly simplify

testing new algorithms and data analysis methods.

This algorithm is simple to execute from a programming standpoint, as it takes

advantage of very fast built-in functions in the Matlab environment. In total, over

five million frames of video are analyzed, so it is vital to use as efficient an algorithm

as possible, so that data can be analyzed in a reasonable amount of time and used

as a guide to determine what data still needs to be collected. The following method

was chosen after comparing several different algorithms, as the heavy use of built-in

functions gave the fastest run times of the tested algorithms.

The algorithm requires the backlighting of the particles, so they appear as dark

objects on a bright background. Due to the highly reflective surface of the stainless

steel ball bearings, reflections would prove problematic for image analysis if there

were any ambient light apart from the backlighting.

There are four main steps in the algorithm:

1. Load frame

A frame is loaded from the compressed .avi video file and stored in Matlab as

a matrix of greyscale pixel values (a bitmap). This original image is shown in

Fig. 3.4a.

2. Convert to binary

The Matlab im2bw() command is applied to the bitmap with a given threshold,

so that all pixels with an intensity below this threshold value will be set to an
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intensity of 0, while all above will be set to an intensity of 1, producing a binary

bitmap. The result of this operation is shown in Fig. 3.4b.

3. Area Detection

The binary image is inverted, so that all dark areas become light, and vice versa.

This makes it so that the beads are shown as light objects on a dark background.

This inverted image is fed into bwareaopen(image,P) , which is an efficient,

highly optimized Matlab command which morphologically opens a binary image.

That is, it removes all continuous regions of light pixels (“objects”) with fewer

than P pixels.

This command removes imperfections in the image, such as dark areas near

the edges of the cell, air bubbles, and smudges on the surface, which might

otherwise give false positives. The result of this operation, shown in Fig. 3.4c,

demonstrates the removal of the imaging artifacts seen in Fig. 3.4b.

4. Labeling of objects

bwlabel(image) is a Matlab command which labels the continuous regions

within the image. It returns an N × N matrix L the same size as the binary

image, with all background pixels having a value of 0, all pixels within the first

object a value of 1, all those within the second a value of 2, and so on.

5. Location of objects

The labeled matrix L contains separate labeled regions corresponding to each

of the beads within the drum. In order to locate the centers of the beads, the

command regionprops(L,‘centroid’) is used. This is another Matlab image

analysis tool, which measures various properties of labeled image regions. In

this case, it computes the centroid of the labeled region, which identifies the

center of mass of each particle. The centers of mass are returned as a standard

Matlab structure containing x and y coordinates in pixels for each bead, which
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are plotted on the original image Fig. 3.4d for illustration purposes.

Original Image

(a) Original back-lit image of beads in
drum

Image after conversion to binary

(b) Image after binary thresholding

Image after bwareaopen

(c) Image after application of
bwareaopen()

Tracked points

(d) Tracked positions plotted on top of
original image

Figure 3.4: The four primary steps in the image analysis algorithm were carried out
in Matlab. The original greyscale image shows dark beads on a bright background.
The image is converted to binary (step b) with a set threshold, then a filter is applied
to remove background smudges and imperfections (c). Finally, the centers of the
individual objects are located, and their positions plotted over the original image for
verification.

3.2.2 Notes and limitations

It should be noted that there are numerous other algorithms available which carry

out particle tracking on collections of particles. However, many of these algorithms

are geared toward microscopy, which generally involves objects that are only a few

pixels across. In this experiment, beads are ∼ 102 pixels across, and many microscopy-

focused algorithms tend to slow down significantly as the size of the objects increases.

Also, when a particle is ∼ 101 pixels across, sub-pixel accuracy is far more important

for obtaining particle positions as accurately as possible. For the rotating drum, noise

in particle positions, described in the next paragraph, is larger than a single pixel,
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and so negates the usefulness of such calculations for sub-pixel measurements. Due

to all of these considerations, the chosen algorithm was better suited for analysis of

particle trajectories.

The system contains inherent distortion noise due to the multiple optical interfaces

within the apparatus. Light coming from around the beads within the glycerol (index

of refraction i = 1.47) must pass through the curved front surface of the acrylic drum

(i = 1.49) into water (i = 1.33), through another layer of acrylic, and then into air

(i = 1). Passing between these interfaces, most notably the curved drum surface,

causes refraction which distorts the positions of the particles as seen by the camera.

Due to the proximity of the camera to the front of the cell, this effect is exaggerated

when the beads are near the end caps of the drum, and minimized when the beads are

near the center. This noise is periodic in nature, and corresponds to the cascading

of the beads within the drum. When beads are being dragged up along the front

drum wall, there is little distortion. However, when the beads fall away from the

wall in the cascade motion, their positions are distorted more. At worst case, the

distortion gives an uncertainty of ±0.1rb. Note that here we see an additional benefit

of the temperature control bath. If we were to remove the bath, the interface would

be acrylic/air at the drum surface, with a larger difference in i and thus a greater

distortion effect.

While this uncertainty sounds somewhat high at first glance, our analysis is in-

tentionally focused on techniques in which exact particle positions are unimportant.

Furthermore, during experiments in which the beads move in the horizontal direction,

they vary in position by several particle diameters, so the noise is small in compar-

ison. In most of our analysis, time is more important than exact particle position,

and the noise occurs at a high frequency (dictated by drum rotation rate) that is not

comparable to the timescales of interesting behavior within the system.

From a technical standpoint, this algorithm has one significant flaw. bwlabel
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defines objects based on their connectivity, not their shape. Therefore, if two beads

are touching, when back-lit they will look like one continuous blob, and be detected as

a single object, rather than a pair of beads. In hindsight, it would have been preferable

to account for this consideration in the algorithm, but for the sake of programming

simplicity at the time, the code simply discards those frames of video where fewer

than three beads were detected. As the beads are constantly moving and colliding,

beads rarely stay in contact for more than a few frames, and so interpolation was

used to fill in the “missing” frames where the beads overlapped.

Since the algorithm is unable to identify the beads when they are touching, it is

also unable to track the beads when they cross over one another. If two beads collide,

depending on the type of the collision and the positions of the the individual beads,

they can potentially cross over one another, swapping places. This does not show up

in the particle tracking, as there is no way to identify individual beads when they are

back-lit with no features to differentiate them from one another. Again, however, since

our analysis techniques focus on characterizing collisions and the distances between

particles, the exact definition of which particle is which becomes less important.
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Chapter 4

Results and Analysis

4.1 Data Collection

In order to study the behavior of the particles at different rotation rates, we recorded

a total of ∼ 5.75 million frames of video, at 5 frames per second, corresponding to

approximately 320 hours of video recorded. The lengths of individual experiments

ranged from tens of minutes up to six hours, depending on the needs of that given

experiment.

For each experiment, we first initialized the particle positions by setting the drum

rotation rate ω to that of a known chaotic state, and stopping the drum when the three

beads were distributed equidistant from one another, with approximately 3.5 particle

diameters spacing between the beads,. The exact rotation rate was not important,

as it was simply used as a tool to position the particles. Once the drum was stopped

and enough time allowed to elapse for any fluid motion to cease, we first started the

rotation of the motor, and immediately began recording video. Videos were streamed

directly to the PC hard drive into a compressed Xvid MPEG-4 AVI file. Video files

were then analyzed using the Matlab software discussed in Sec. 3.2.1.
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4.2 Phase Diagram

4.2.1 Description of the Five Phases

We found five distinct types of behavior within the cascade regime described in

Sec. 1.6. With the axes defined as drawn in Fig 4.1, at the lowest rotation rates,

the three beads simply cascade in the y − z plane with no significant motion in the

horizontal (x) direction. Figure 4.2 shows a typical example of this periodic trajec-

tory, at a rotation ω = 5.31 rad/s.

Figure 4.1: The axes are defined such that x represents the horizontal direction, y is
the vertical, and z is the depth away from the front edge of the drum. Note that,
with the current apparatus, there is no way to measure z directly.

As rotation rate is increased beyond this initial simple periodic regime, there are

several possible types of trajectories, depending on rotation rate. The two simplest

of these are also periodic, but to differentiate their unique behaviors we have labeled

them as doublet (Fig. 4.3) and triplet (Fig. 4.4) states.
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Figure 4.2: Horizontal positions of the three particles are plotted versus time in
minutes. Positions are normalized by the diameter of the beads, and the limits of
the position axis correspond to the end caps of the drum. Here we see a typical
periodic trajectory, where the only variation of the horizontal particle positions is
due to experimental noise. We call this periodic because, in the vertical direction,
the particles are cascading in a periodic fashion determined by the rotation rate of
the drum. These simple periodic behaviors only occur at very low rotation rates.
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Figure 4.3: At ω = 7.14 rad/s, the three beads form a typical doublet state. Very
quickly after the rotation of the drum is started, two of the three beads come together
and form a pair, which is stable in time. These beads will cascade in line with one
another with no apparent interaction with the third bead. The determination of which
two beads come together is seemingly random, implying sensitivity to the exact initial
conditions. Due to the lack of ability to control initial positions with any precision,
it is difficult to test this, but a pair is always formed at this rotation rate ω.

In the doublet state, two of the beads will lock together so that they are cascading

in one another’s wakes. The determination of which two beads will tend to pair up is a

result of initial conditions, and not a systematic trend in the experimental apparatus.

Simply stopping and restarting the drum at the same rotation rate can sometimes

switch which two beads will form a pair.

In the triplet state, all three beads come together and cascade in line with one

another, in a similar fashion to the doublet state. The three beads can be stacked

on top of each other, touching, or they can be spaced out within the drum, following

each others’ wakes without touching. Both the doublet and triplet states are stable
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Figure 4.4: In the triplet state, all three beads come together and cascade in line with
one another. This is a stable configuration.
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configurations and have been tested to remain locked for periods exceeding twenty-

four hours in duration.

At certain rotation rates, the beads will wander chaotically in the x direction.

For chaotic trajectories with a low enough ω, there will be a bias to one side of the

drum or the other. This biased chaotic trajectory is illustrated by a typical example

as shown in Fig. 4.5. Two of the three beads will tend to repeatedly collide with

one another, while the third bead will remain segregated at the far end of the drum.

This third bead still experiences long range forces from the other two beads, and can

be seen to move in phase with the collisions of the other two. The determination of

which two beads will tend to pair up is again seemingly a result of initial conditions,

analogous to the doublet state.
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Figure 4.5: The biased chaotic state is the first of two types of chaotic behavior seen
in the experiment. In this case, the center bead will favor collisions with one of the
outer beads exclusively. Much like the doublet state, the choice of which outer bead
to favor is seemingly dependent on initial conditions.
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For higher ω chaotic states, the beads explore a more rich set of interactions, in-

cluding pair collisions (left-middle and right-middle) as well as triplet-type collisions

where all three beads come together. Figure 4.6 shows a typical example of this be-

havior, which we call the fully chaotic state. In pair collisions, beads can be either

in phase or out of phase with one another. In phase collisions are more direct, with

the beads immediately colliding and moving away, while out of phase collisions often

involve the beads cascading over one another several times before colliding. Triplet-

type collisions generally involve two beads cascading over one another while a third

bead approaches and collides with them.

Already, with the description of these states, we have observed some previously

unseen behavior. Specifically, the doublet and triplet states have not been described

in previous drum rotation work [18]. The doublet state can be thought of as an

analogous state to the long-term behavior seen in the Jánosi simulations [13], where

two beads pair up and leave the third behind, but there is no similar analogue for the

triplet state. Furthermore, the distinction between biased and full chaotic states has

not been previously described.

4.2.2 Phase Diagram

In order to probe the dependence of the particles’ behavior on rotation rate, we

recorded sixty-eight videos at rotation rates ranging from 5.1 to 12.3 radians per

second. An analysis of these videos allowed us to map out a phase diagram as shown

in Fig. 4.7.

This phase diagram has several interesting regimes, denoted by various color blocks

in the phase diagram. Gray blocks represent regimes where there is some overlap of

behavior, or transitions between two regimes. The width of these transition blocks is

due to uncertainty both due to the measurements themselves, and also to the discrete,
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Figure 4.6: The fully chaotic state of the system is a state in which there is no apparent
bias toward either of the outer beads, and all three beads interact chaotically with a
variety of different collision types. Collisions of two particles sometimes involve two
beads that are in-phase in the cascade motion, so the beads have similar y values,
leading to a direct collision in the x direction. Alternatively, two-particle collisions
can involve beads that are out of phase, such that the particles cascade on top of one
another in a motion similar to the doublet phase for a few rotations before colliding
and splitting apart Three-particle collisions usually involve two beads in a doublet-like
configuration coming close to the third bead, either in-phase or out of phase.
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digital motor control circuit, which limits the resolution of ω. Symbols below these

blocks indicate individual measurements. Labeled points above the blocks indicate

measurements which were used for example plots elsewhere in this Dissertation.

With increasing rotation rate ω, the system undergoes a phase transition from

periodic to biased chaotic behavior, which is then followed by a long doublet regime.

After this doublet regime, we find a small window of triplet behavior around ω ∼ 7.8

rad/s.

At rotation rates slightly beyond this triplet window (ω ∼ 7.9 − 8.4), we find

a curious mixed regime, where it is difficult to describe the exact behaviors found.

Within this range of rotation rates, some measurements appear to indicate a chaotic

behavior, while others imply triplet behavior. Perhaps more remarkably, separate

measurements at the same rotation rate can give conflicting results, with some indi-

cating triplet and others chaotic behavior. A possible explanation for this result is

presented in Sec. 4.2.3.

Beyond the triplet phase lies a regime of reliably chaotic behavior, split by a small

window of repeatable triplet behavior in the middle. This chaotic regime is followed

by a longer window of triplet behavior for ω ∼ 9.5− 10.4, with a single measurement

within this regime indicating a chaotic trajectory. This could again be a result of

long transients as discussed in Sec 4.2.3.

For rotation rates higher than those at which we find triplet behavior, we find

reliable doublet trajectories, until, for high enough rotation rates, we transition into

solid-body rotation as described by Mullin [18]. This regime is not represented in our

measurements due to limitations in the apparatus discussed in Sec. 3.1.1.

This phase diagram illustrates a rich landscape of interesting regimes of particle

behavior with a new level of detail. Specifically, previous work identified only one

simple, contiguous block of chaotic behavior [18], while we have identified multiple

windows of periodic behavior embedded within large chaotic regimes, as well as pre-
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Figure 4.7: The system exhibits a variety of behaviors at various rotation rates. At
the lowest and highest rates, predictable steady-state behavior occurs, but at inter-
mediate rotation rates, a mix of both chaotic and steady-state behaviors can be found.

Labeled points at the top of the graph show where the various example fig-
ures within this paper are located on the phase diagram.
(a) Fig. 4.2 (d) Fig. 4.3 (e) Fig. 4.4 (c) Fig. 4.5 (f) Figs. 4.6, 4.10
(g) Figs. 4.12, 4.13, 4.14 (a,b,h,i,j,k) Fig. 4.15
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viously unidentified periodic behaviors. Furthermore, the distinction between two

different types of chaotic behavior illustrates the depth and complexity of the system.

4.2.3 Transients and Motor Stability

There are two inter-related caveats to be considered when discussing the phase di-

agram in Fig 4.7. The first of these is the issue of transient behavior. In a given

experiment, after the drum begins rotating, the system takes some time to settle

into its long-term behavior. For example, in Fig. 4.4, the particles move back and

forth across the drum, colliding several times before finally coming together to form

the triplet state at T ∼ 12 min. In this case, the time is small compared to typical

experimental durations (T ∼ 300 min). However, in other experiments, such as that

shown in Fig. 4.8, transient behavior can persist for longer periods of time. Here,

the trajectory is seemingly chaotic for ∼ 120 min before settling into a stable triplet

configuration.
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Figure 4.8: In this experiment, the particle follows a seemingly chaotic trajectory for
∼ 120 min, but then settles into a stable triplet state.

In order to further explore the impact of these long transient trajectories, we

examine each trajectory by eye, and manually determine an approximate transient

duration. Figure 4.9 shows this transient duration plotted versus the rotation rate of
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the drum. The symbols in the graph represent the type of trajectory found after the

transient behavior has died out.
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Figure 4.9: After the motor is started, it typically takes some amount of time for
the system to settle into its long-term behavior. The approximate time taken for the
initial transient behavior to die out is obtained by eye and plotted versus rotation
rate. Symbols represent the long-term phase of each trajectory, after its transients
have died out.

We note that the bulk of trajectories seem to have relatively short transient times,

with transients rarely exceeding sixty minutes in duration, or roughly one sixth the

duration of a typical measurement. However, there are also trajectories which contain

much longer transient durations, with most of these long-duration transient trajec-

tories clustered around the transitions between different phases. We consider two

possible explanations for this behavior.

In Sec. 3.1.1, we noted that drum rotation rates are stable to within ∼ 1%. If we

consider the transition around ω = 8 rad/s, we see that, for a given trajectory, ω could

vary from 7.92 to 8.08 rad/s, significantly blurring the transition region. We propose

that a possible source for the presense of these long transient behaviors is drift in

rotation rate of the drum motor. If we imagine small windows of triplet behavior

within a chaotic regime, a drum rotation rate which starts within the chaotic regime
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could drift into the triplet regime, leading to a trajectory which eventually “finds”

the triplet state. As already discussed, the triplet state is very robust and stable,

and thus once a trajectory finds this state, it would be very difficult to break out of

it, even if the rotation rate did wander. The fact that long transients tend to cluster

around the transitions between regimes lends some credibility to this hypothesis.

This issue of motor drift also has the potential to obscure some detail in the phase

diagram. The motor control has finite resolution in available rotation rates, and so

there may be small windows of behavior which we are unable to locate. Similarly,

even if we did sample these windows, motor drift could take the rotation rate out of

a window if it existed within a very narrow range of rotation rates.

A second possibility is that the trajectories simply have some varying transient

period, and our samples are only able to capture those whose transients lie within the

time frame of our experiment. Triplet states, in particular, are very stable, and once

a given trajectory manages to find one of those states, it is unlikely to escape. Thus,

there is potential for many chaotic states to be triplet states in reality. However,

some rotation rates never find even triplet-like behavior in their collisions, so those

states would be likely remain persistently chaotic. In order to test this, it would be

necessary to re-design the apparatus in order to increase the stability of the rotation

rate to rule out drift. This would be a worthwhile endeavour, and deserves further

attention in the future.

4.3 Qualitative Fluid Behavior

In order to qualitatively describe the fluid flow within the drum, we added a small

quantity of Kalliroscope rheological fluid to the glycerol within the drum. Kalliroscope

is a water-based suspension of microscopic crystalline platelets. When placed within

a moving fluid, the platelets tend to align such that their long axis is parallel to the
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plane of shear. Thus, the platelets will reflect different amounts of ambient light

depending on the local flow of the fluid. This allows us to visualize the flow behavior

in each of the states, as described below.

4.3.1 Periodic Regime

Within the periodic regime, the three beads each has a well defined wake, which is

bounded on each side by swirling, vortex-like behavior rotating about an axis that

extends in the radial direction. At the mid points between each pair of particles,

there are well defined shear planes which span the entire height of the drum. These

shear planes are continuous sheets in the y − z plane in which all of the Kalliroscope

is aligned in the same direction, corresponding to a region where there is a strongly

sheared boundary between two distinct flows.

4.3.2 Doublet Regime

In the doublet regime, the two beads which are paired up form a wake which keeps

them aligned with one another. This wake is bounded on each side by vortex-like

regions where there is swirling fluid flow. The single bead, well-separated near the far

end of the drum, also has a well defined wake, but there is significantly less vortex-like

behavior in the fluid. At an intermediate point between the single bead and the pair

of beads, there is a well defined shear plane that spans the entire height of the drum,

and oscillates slightly in position in phase with the cascade of the single bead.

4.3.3 Triplet Regime

In the triplet regime, there is one strong wake in which all three beads cascade. There

is a large amount of vortex-like swirling that bounds this wake and likely leads to the

observed stability of the triplet state.
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4.3.4 Biased Chaotic Regime

The flow within the biased chaotic regime appears similar to that within the periodic

regime, except when the beads collide. As the beads approach a collision, their

wakes overlap and partially merge. At the same time, as the beads are approaching

one another, the shear band that separates them oscillates with greater and greater

amplitude, until it breaks up as they approach. After a collision, when the beads are

moving apart, the fluid to the outside undergoes a strong vortex-like swirling until

the beads are well separated.

4.3.5 Fully Chaotic Regime

Within the fully chaotic regime, the beads’ wakes are often less well defined and more

difficult to identify, with large regions of complicated fluid flow. However, when the

beads are well separated, their wakes are evident, with the wakes becoming mixed

and obscured as the beads approach one another. The well defined shear planes seen

separating the beads in previous cases are not evident in the fully chaotic regime.

4.4 Fourier Analysis

A visual inspection of representative chaotic trajectories seems to indicate a typical

time between collisions of the particles. For example, if we look more closely at

Fig. 4.6, many of the collisions between particles occur roughly 1-2 minutes apart. In

order to study this in more detail, we applied a discrete Fourier transform to each of

the trajectories, as given in Eqn. 4.1.

X(k) =

N
∑

j=1

x(j)ω
(j−1)(k−1)
N , (4.1)

where ωN = e(−2πi)/N .
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In order to find the most prevalent frequencies for a given trajectory, we plot the

spectral density Φ(f) = X(f)X∗(f) as a function of frequency f (cycles per minute).

We do this for each of the three particles within a given experiment, as shown in

Fig. 4.10, on both semi-log and linear plots. On these example plots, all three particles

show a large peak at a frequency of approximately 0.8 cycles per minute. This agrees

well with visual inspection of the trajectories, where typical times between collisions

are on the order of 1 − 1.5 seconds. Thus, the largest peak in the Fourier spectrum

serves as a measure of the dominant period of the particle collisions. We find that, for

a given rotation rate, these spectra are often, but not always reproducible. However,

similar rotation rates will often have similar spectra. This leads us to conclude that

the occasional lack of reproducibility could be attributed to motor drift as discussed

in Sec. 4.2.3. This also makes it difficult to draw conclusions from the smaller peaks

in the Fourier spectra, as they are less reproducible than the main peaks.

In Fig. 4.11 we calculate these three spectra for every experiment, and plot the

frequency corresponding to the maximum spectral density for each rotation rate. For

biased chaotic trajectories, we swap x1 and x3 as necessary to ensure that x1 is always

the trajectory of the bead which is interacting with the center bead. Figure 4.11 gives

a basic understanding of how the dominant period of the trajectories changes with

rotation rate.

For the doublet regime, we surprisingly see some measurements with periodic

motion in the horizontal direction. This corresponds to doublet behavior where the

two beads are cascading slightly off-center from one another, so that they oscillate

back and forth in the horizontal direction.

For the biased chaotic regime, there seems to be little variation in the periodicity

for various rotation rates, at least in the x1 and x2 measurements, which indicate the

two beads which are interacting. Any periodic behavior that would be seen in x3

would tend to be smaller in amplitude, due to its isolation, and thus there is more
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Figure 4.10: Spectral density is plotted versus frequency for each of the three beads
in an example chaotic time series. In the left column, frequency is plotted on a log
scale, while the right column frequency scale is linear. Particle (a) corresponds to
the blue trajectory, (b) to green, and (c) to red. Notice that the largest peak in each
case occurs at a frequency of approximately 0.8 cycles per minute, corresponding to a
period of 1.25 minutes between collisions. This is in agreement with visual inspection
of the trajectories.
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Figure 4.11: The frequency corresponding to the largest spectral density value is
plotted versus rotation rate for the trajectory of each of the three beads. Note that
the graphs for the outer beads have similar shapes, however in those situations where
there is a bias, x1 always represents the biased side, while x3 is the isolated particle.
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scatter in the x3 measurements.

Within the full chaotic regime, the peak frequencies are far more scattered. The

least scattered of the three measurements is that of the center bead, x1, with a large

number of points implying a linear relation between frequency and rotation rate,

with negative slope. The few outliers which deviate from this linear behavior may

represent transient chaotic trajectories which were unable to reach their final periodic

state within the time frame of the measurement.

Triplet and many doublet trajectories tend to have their peaks at f = 0, corre-

sponding to a trajectory lacking periodic behavior in the x direction, as expected for

these non-chaotic motions. The underlying periodic cascade in the y − z plane, due

to drum rotation, will not show up in this x plot.

This Fourier analysis provides a measurable quantity which serves as an indicator

of periodic behavior within various regimes. Non-chaotic regimes, for the most part,

show a lack of periodic motion in the horizontal direction, while still exhibiting the

periodic cascade in the y− z plane exhibited by all cascade regimes. Chaotic regimes

demonstrate two types of behavior, a constant dominant frequency for biased chaotic

trajectories, and a dominant frequency that decreases linearly with rotation rate for

chaotic regimes. Outliers within the chaotic regime may serve as an indicator of

potentially transient chaotic behavior with duration longer than our measurement

time.

4.5 Reduced Dimensionality Analysis

4.5.1 Reduced Dimensionality

To this point, all analysis has focused on the horizontal (x) direction trajectories,

and neglected cascading in the y − z plane. In order to further simplify the number

of variables used in the data analysis, we sought a reduced dimensionality set of
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variables which still contains the interesting behavior of the system. We note that,

once trajectories have settled into their long-term behaviors, and the transients have

died out, the center of mass of the system is nearly constant over time, as shown for

an example trajectory in Fig. 4.12.
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Figure 4.12: The position of the center of mass, xcom = (x1 + x2 + x3)/3, is plotted
versus time for a typical chaotic trajectory. Note that the position of the center of
mass is nearly constant with time.

This implies that the absolute positions of the particles are not needed to capture

the interesting behavior of the system, and we can use a reduced dimensionality to

study the behavior. Specifically we use the distances of each outer bead from the

center bead:

x21 = x2 − x1 (4.2)

x31 = x3 − x2 (4.3)

with the order chosen in this way so that the results will always be positive. Fig-

ure 4.13 shows a sample of the same trajectory with this reduced dimensionality data
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set plotted versus time.
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(a) Original three particle trajectories
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(b) Reduced dimensionality trajectories

Figure 4.13: The original particle trajectories (a) can be simplified to give a reduced
dimensionality phase space (b). The simplified trajectories, including only x21 and
x32, still capture all of the interesting collision behavior of the system.

4.5.2 2-D Histograms

An interesting question is posed by the consideration of which configurations the

system spends the most time in. In other words, is most of the time spent with the
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three beads spread evenly apart, or is more time spent with some combination of

the beads close together? To study this, we plot a two dimensional histogram of the

configurations, which gives us a way to visualize the relative amount of time each

particle spends in various regions of phase space.

In each experiment, we visually inspect the data set and remove any obvious initial

transient behavior manually before analysis. So, for example, the analysis of a triple

data set only includes the time after the three beads have paired up.

Figure 4.14 shows an example of one of these histograms, again for the same

experiment used previously in this Section. Notice that the darkest red region is in

the area around x21 ∼ 5− 6 and x32 ∼ 5− 6, corresponding to a configuration where

the three beads are spread far apart, and spaced roughly equidistantly. There are

also small clusters at x21 ∼ 7.5 and x32 ∼ 0, and its mirror x21 ∼ 0 and x32 ∼ 7.5,

which correspond to configurations where two beads are close together, and the third

bead is far away. Finally, there is another faint cluster at x21 ∼ 0 and x32 ∼ 0,

corresponding to a state where all three beads are grouped together. The faintness

of this cluster implies that very little time is spent in this configuration.

If we look at these histograms for trajectories at various rotation rates, we can

visualize how different phases of the system explore phase space. Figure 4.15a shows

the histogram for a periodic trajectory, with the three beads spaced roughly equidis-

tantly. The slight amount of smearing corresponds to a faint periodic oscillation in

the x direction. In Fig. 4.15b, the histogram for the doublet state shows two beads

clustered close together in phase space, with the third separated by some distance.

Similarly, Fig 4.15c shows all three beads clustered together. Figure. 4.15d shows

a biased chaotic trajectory, where the beads spend some time in the same region

of phase space as the periodic state, but also wander chaotically in the x direction,

smearing the histogram in the direction of the bias. In Fig. 4.15e we see a more

complicated chaotic trajectory, with a variety of interactions represented. The beads
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Figure 4.14: A typical two dimensional histogram for a chaotic trajectory. The axes
represent the distances between the pairs of particles, normalized by the particle
diameter, and color represents the number of points that were counted in each bin.
Red indicates that the system spent a significant amount of time in that configuration,
while blue indicates that the system spent little time there. This trajectory has a
calculated entropy S = 6.33.
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(a) Periodic (S = 1.06) (b) Doublet (S = 0.68)

(c) Triplet (S = 0.68) (d) Biased Chaotic (S = 3.52)

(e) Chaotic (S = 6.82) (f) Chaotic (S = 6.49)

Figure 4.15: Histograms for each phase of behavior clearly illustrate the amount of
phase space they explore. Histograms for periodic trajectories (a) show the three
beads spaced evenly apart, and never wandering from a small region of phase space.
Histograms for doublet (b) trajectories show two beads with nearly the same x po-
sition, and the third separated by a large distance, while those for triplet states (c)
show all three beads with little or no spacing between them. Biased chaotic tra-
jectories include the same region of phase space as a periodic trajectory, with an
additional “smearing” which shows two of the beads coming closer together as they
wander chaotically in the x direction. Chaotic trajectories (e,f) show more compli-
cated behavior, with more of phase space explored by the system.
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explore the phase space around triplet and doublet states, as well those seen in pe-

riodic trajectories, and another intermediate configuration where the three beads are

closer together than in the periodic trajectory, but not clustered like in the triplet

state. This is in contrast to Fig. 4.15f, where the beads spend the bulk of their time

well-separated, as in the periodic state, with occasional collisions. The fact that these

states occur at rotation rates which are very similar (ω = 9.25, 9.36 rad/s) illustrates

how sensitive the experiment can be to rotation rate.

These histograms give us a powerful way to visualize the way in which a given

experiment explores phase space as discussed in Sec. 1.3. Periodic behaviors tend to

explore very few of the possible configurations of particles, leading to mostly blue

histograms with a small dark red region representing the small region of phase space

occupied by the trajectory. Chaotic trajectories, on the other hand, explore more of

phase space, and this is borne out in the histograms, with biased chaotic trajectories

exploring fewer configurations than the more thoroughly mixing full chaotic state.

Completely abstracting away the exact details of the particle motion, these diagrams

of phase space exploration indicate particle behavior at a glance.

4.5.3 Entropy

To quantitatively study the extent to which a given trajectory explores phase space,

we define a configurational entropy based on these histograms. If we first normalize

a given histogram so that the sum of all bin values is equal to unity, the histogram

will represent a probability distribution P with matrix elements Pij. We then define

the entropy

S = −k
∑

ij

PijlogPij , with k ≡ 1. (4.4)

This entropy value is calculated for each individual trajectory and plotted versus

rotation rate in Fig. 4.16. Note that, for typical chaotic rotation rates, the entropies
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tend to be higher, while for periodic, doublet, and triplet states, entropies are lower,

as expected. Furthermore, the full chaotic states have larger entropies than biased

chaotic trajectories.

We explore two possible methods to quantify the error in these entropy measure-

ments. The first is the propagation of statistical error in the number of counts in

each bin. Thus, the error in the probability of a given bin is ∆Pij =
√

Nij/N , where

N is the total number of counts, and Nij is the number of counts in the i, jth bin.

If we propagate the error in each probability measurement, we find that the error in

entropy is:

∆S =

√

∑

ij

([1 + logPij]∆Pij)2 (4.5)

The second method to quantify error in entropy measurements is to split each

trajectory into two halves, and calculate the entropies S1 and S2 for each half inde-

pendently. Then the error can by defined as:

∆S = |S1 − S2| (4.6)

Of these two, the second method is consistently an order of magnitude greater than

the first, so we chose to use the two halves error estimation technique to quantify our

error, as shown in Fig. 4.16.

At the lowest rotation rates, where behavior is periodic, entropy is small, as ex-

pected, as the particles explore very little of phase space. As this periodic regime

transitions into the biased chaotic regime, there is a sudden jump in entropy, demon-

strating the sharp transition from periodic behavior to behavior in which particles

begin to wander in the horizontal direction. Within the biased chaotic regime, en-

tropy decreases with increasing rotation rate until it transitions into a doublet regime.

At that transition, there is another sharp jump, this time to low entropy. This en-

tropy increases slightly with rotation rate within the doublet regime until the jump

59



5 6 7 8 9 10 11 12 13
−1

0

1

2

3

4

5

6

7

8

ω (rad/s)

E
nt

ro
py

 

 
Periodic
Biased Chaotic
Chaotic
Doublet
Triplet

Figure 4.16: This figure shows the entropy for each rotation rate, calculated from the
2-D histograms.

to the large entropies of the full chaotic behavior, with a mix of low-entropy triplet

behavior within the large block of chaotic behavior. Finally, there is another jump to

low-entropy behavior within the large ω triplet and then doublet regimes.

Much as the histograms provide a visual indication of the degree to which a

trajectory explores phase space, these entropy values provide a qualitative measure of

that exploration. Low entropy periodic, triplet, and doublet regimes do not explore

phase space much, as expected. Chaotic behaviors, on the other hand, have large

entropies, corresponding to strong mixing and indicative of chaotic behavior. Despite

the large variations in entropy when transitioning from one regime to another, within

each block of chaotic behavior, the entropies vary little by comparison, indicating that

the amount of phase space explored by chaotic behaviors does not vary much with

rotation rate within each chaotic regime. For the biased chaotic regime, the amount

of phase space explored decreased with increasing rotation rate until the particles are

able to lock into a doublet state, indicating an evolution of the biased chaotic states

with increasing ω. The full chaotic regime, by contrast, has more scattered entropy,

with no obvious trend with ω. This, along with the scattering of triplet states within
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the chaotic regime, implies that behavior within this regime is more complicated than

a simple linear ω dependence as we saw within the biased chaotic regime.

4.5.4 Bin Sizes

To this point, we have neglected the influence of the size of bins on the entropy

measurements. If we consider a single bin which spans the entire configuration space,

P = 1, and S = 1log1 = 0. At the other extreme, if the size of the bins tends toward

zero, the number of counts in any one bin will be either 0 or 1, so if the total number

of counts is N , the probability of any one bin being occupied will be either P = 0 or

P = 1/N , resulting in an entropy S = −log(1/N) = log(N).

In between these two extremes, calculated entropy values will vary with the bin

size. For example, in Fig. 4.17 we see that the entropies for each rotation rate are

shifted for histograms consisting of 1802 bins compared to those calculated for 602

bins. The trends in entropy behavior, however, remain the same for both examples.
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Figure 4.17: This figure shows the entropy for each rotation rate, calculated from the
2-D histograms, with histograms consisting of two different bin sizes, corresponding
to a total of 1802 or 602 bins.

Studying these variations in entropy values, we attempted multiple scaling tech-
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niques to try to identify a preferable bin size, and were unable to do so. We chose to

divide each axis into 60 divisions, giving a total of 602 bins. This value was chosen

by looking at graphs of entropy versus bin size rate for several example trajectories,

and noting that the trend in entropies within the regime around 402−802 bins looked

well-behaved and linear. You could certainly illustrate the same trends with other

choices for bin size, but consistently using 602 bins allows us to compare our entropies

between various trajectories and identify trends.

4.6 Variation of Parameters

In this work, we have studied the behavior of the rotating drum as the rotation rate

is varied over a wide range. There are many other parameters which could change

the behavior of the system. Below we discuss conjectures for how slight perturbations

of several parameters might affect the behavior, although these conjectures have not

been confirmed by experiments.

Viscosity Decrease

With a decrease in the viscosity, we would expect the strength of the interactions

between the particles to weaken. This decrease in the strength of interactions would

tend to make the periodic regime span a larger range of rotation rates, as the cascade

amplitude would need to be larger for the beads to begin interacting. At the large ro-

tation rate regime, we would not expect the transition toward solid body behavior to

move, as the influence of centrifugal force compared to gravity would not change. At

moderate rotation rates, we would expect the chaotic regime to shrink, and doublet

regimes to expand, as the lower interaction strength would make it more difficult for

the beads to be drawn back together once they separated into a doublet-like config-

uration. We would expect the peak frequency values to be shifted in the direction of
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larger frequencies, as the lower viscosity would correspond to faster-moving particles.

Entropy values would tend to decrease slightly, as the strength of the interactions,

which drive the exploration of phase space, would weaken.

Length Scale Decrease

If we imagine scaling all lengths within the cylinder downward slightly, the bead

radius, drum radius, and drum length would all decrease. In this case, both the

characteristic velocity U = ωrc and the characteristic length scale rb would decrease,

leading to a smaller Reynolds number Re = UL/ν. This would effectively be equiv-

alent to an increase in viscosity, with all trends being the opposite of what is seen if

viscosity is decreased.

Decrease in Gravitational Force

If the external gravitational force on the beads is decreased, we expect similar results

to the viscosity decrease. Decreasing the strength with which the beads are pulled

through the fluid would would decrease the strength of their interactions, leading to

the same trend as in the viscosity decrease, with one exception. Since the strength

of gravitational force is decreased, but centrifugal force remains the same, we would

expect the transition to solid body rotation to be shifted to the left, to lower ω. As

we already discussed, the decrease in interaction strength would shift the transition

away from periodic motion to the right, to larger ω. These two effects combined

would tend to make the middle region of the phase diagram narrower.

63



Chapter 5

Summary and Outlook

5.1 Summary

In the measurements and analysis performed in this Dissertation, we have demon-

strated a geometrically simple system containing three particles moving within a

fluid-filled rotating drum which yields a rich and varied set of behaviors. The phase

diagram for this system showed five types of behavior. The first is a periodic regime

where the beads simply cascade in the y − z plane. The second is a previously un-

reported biased chaotic regime where two of the beads wander chaotically in the

horizontal x direction and collide with one another. The third is a doublet regime,

where two beads pair up and cascade on top of one another while leaving the third

bead behind. There is also is a mixed chaotic regime spanning a wide range of rotation

rates, where the beads wander chaotically in the horizontal direction, with all three

beads interacting and mixing. Within this mixed regime, there are small windows of

rotation rates which result in triplet behavior, where all three beads will line up and

cascade on top of one another. Finally, we find a regime where triplet behavior is the

only type of trajectory seen.

In order to both qualitatively and quantitatively study these various behaviors,

we looked at two main analysis techniques, neither of which have been applied to this
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geometry before. The first of these was Fourier analysis, which allowed us to identify

the dominant frequency within the horizontal motion of a particle. For the most part,

periodic, doublet, and triplet trajectories showed no dominant frequency, as expected,

due to their lack of motion in the x direction. However, a few doublet states were

found to exist where the two cascading beads were not directly in line with one

another, and thus oscillated periodically in the horizontal direction. Biased chaotic

trajectories showed a well defined dominant frequency, corresponding to the typical

collision time of the particles. This frequency value was approximately constant, with

a value around 0.6 cycles per minute. Pure chaotic trajectories also showed a well

defined typical collision frequency, but their values decreased linearly with increasing

rotation rate.

The second analysis technique involved abstracting away the exact particle posi-

tions to study the nature of the collisions. A two-dimensional phase space, consisting

of the distances between pairs of particles, was constructed and used to create his-

tograms. These histograms provided a visual representation of the degree to which

each trajectory explores phase space, with periodic, doublet, and triplet states ex-

ploring very little phase space, while biased chaotic and full chaotic states explored

much more of phase space, corresponding to an increase in topological mixing.

By defining an entropy value based on these histograms, we were able to qualita-

tively measure the extent to which a given trajectory explored phase space, and plot

that value versus rotation rate. At transition points between different regimes, there

was a sharp jump in entropy values, while within a given regime entropies varied

smoothly, if they varied at all. The biased chaotic state showed a decreasing entropy

with increasing rotation rate, as it explored less and less of phase space while moving

closer to being locked into the stable doublet state. The doublet state, on the other

hand, had entropy which increased with increasing rate, indicating that it explored

more of phase space as it moved toward the jump to full chaotic behavior. The en-
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tropy of the fully chaotic regime did not vary with rotation rate, indicating that, for

a variety of rotation rates, the fully chaotic state explored similar amounts of phase

space. This indicates an overall behavior for the fully chaotic state which does not

depend on rotation rate within that chaotic regime.

The combination of all of these analysis techniques allowed us to explore a wide

variety of interesting behaviors more fully than has been done before. We identified

several new types of particle trajectories which had not previously been discussed in

the literature, and discovered windows of periodic behavior within a regime which was

originally described as a simple chaotic block. Our application of a variety of analysis

techniques allowed us to describe these various regimes analytically and provide a

measure which can be used to compare these measurements to future work. None

of these techniques had been previously applied to experiments in this geometry,

and indeed this is the first thorough quantitative analysis of chaotic three-particle

dynamics in a rotating drum.

By characterizing the various states that occur within this simple geometry, we

have laid a foundation upon which studies of chaos in fluid systems can be based.

The rotating drum serves as an ideal model system to which others can be compared.

In many ways, this system provides one of the simplest physical fluid dynamical

systems in which chaotic behavior can be observed. As a fluid analogue to the clas-

sical three-body problem, the drum experiment is of fundamental importance to the

understanding of chaos in fluids.

Furthermore, the analysis techniques used in this Dissertation are robust and

straightforward to implement, making them a natural starting point for discussing

chaotic systems. In addition to the raw numbers, which can be compared outright, the

entropy measurements show how behavior varies as we move, with varying rotation

rate, between different regimes. Entropy can serve as a predictor of a transition

into a regime of distinct behavior, as increasing entropy signaled an approach toward
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sharp jumps into states which explored phase space more, and decreasing entropy

signaled approaches toward phase transitions into simpler states where phase space

was explored less thoroughly. Exploitation of these trends in entropy can serve as a

less obvious way of predicting trends, and tuning experiments to seek out interesting

or useful regimes.

5.2 Outlook

While we have described a number of new behaviors, and studied the chaotic rotating

drum experiment in a depth to which it had not previously been probed, this exper-

iment holds vast potential for future exploration. While we have shown the depth

of behavior accessible by simply tuning the rotation rate of the drum, we have not

probed the dependence on fluid properties such as Reynolds number. Varying the

fluid viscosity, fluid/particle density ratio, or any of a host of other experimental pa-

rameters could tell us more about how the fluid dynamics directly affects the chaotic

behavior. The question of transient behavior alone deserves significant attention and

exploration - we have shown chaotic states that are persistent over many hours, but

their behavior in even longer term is as yet unknown. A detailed study, focusing on

the approach of final states, and not simply the final states themselves, could reveal

even more depth than we have identified. Carrying out these studies of transients

would involve some refinements to the experimental apparatus to remove sources of

drift, and revisions of the particle tracking algorithm.

Another interesting question is that of dependence on initial conditions. Due to

the way the particles were positioned within the drum, it was difficult to control

their exact starting positions. A switch to ferromagnetic beads would allow us to use

magnets to position the beads wherever we wanted and study how their trajectories

evolve. While this still has experimental issues with the lack of accuracy in positioning

67



the particles and measuring their starting positions, we could gain significant insight

into the formation of biased states such as the doublet and biased chaotic states.

Furthermore, we have described how the three-particle system in a rotating drum

can demonstrate a rich set of behaviors. Preliminary experiments have demonstrated

that the phase diagram of the system can be significantly altered by changes to various

parameters. For example, using a longer drum, so that its aspect ratio is larger, and

the space available for the beads to explore is greater, results in behavior that almost

always settles into the doublet or triplet state, with chaotic states difficult to locate.

Similarly, using water in place of pure glycerol results in states which show little

chaotic behavior. An ideal direction to take this research would be to vary the fluid

properties and look at how various quantities vary not just with rotation rate, but

with Reynolds number in general. The fluid viscosity, for example, could be varied

over at least an order of magnitude simply by varying the temperature of the heat

control bath, as the viscosity of glycerol is highly dependent on temperature. This

variation of the fluid dynamical properties would allow us to probe how the chaotic

behavior varies not simply with the change of rotation rate, and thus energy supplied

to the system, but with the nature of the fluid/particle interactions themselves.

In addition to the interesting new results demonstrated in this Dissertation, the

rotating three-body problem holds vast potential for future exploration. Already it

serves as a good model system to understand the basics origins of chaotic behavior

in fluid systems, and further fleshing out the phase diagram could provide an even

more detailed picture of how fluids and particles can interact to produce complicated

behavior out of simple geometries.
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Appendix A

Video Capture Software

Stream-Pixelink is a rudimentary video streaming capture application which supports

the proprietary PixeLINK firewire video camera format, as well as allowing use of

the PixeLINK programmable General Purpose Outputs and various other extended

features not covered in the IEEE1394 specifications for firewire cameras. In order to

use the software, you must install the Pixelink OEM video capture application, as

well as the custom written Stream-Pixelink package.

A.1 Software Installation

The software packages used for video capture are installed on the computer TIFFANY

in the Weeks lab. If you are using that machine, you can skip software installation and

go straight to Sec. A.2. If you need to install the software on any other computers,

see the following two Sections.

A.1.1 Pixelink Software

• Download PixeLINK Capture OEM from

http://www.pixelink.com/support software drivers.asp

• Run the downloaded install application to install the PixeLINK drivers and
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OEM camera capture application.

A.1.2 Installing Stream-Pixelink

• Go to http://www.physics.emory.edu/∼weeks/lab/davidheiser/ and down-

load stream-pixelink-binary.zip.

• Extract the contents of the compressed archive to a convenient location. On the

computer TIFFANY in the Weeks lab, the contents are saved in C:\Program

Files\Stream-Pixelink\.

• Register the bmptoavi package. In order to use this software, the bmptoavi

package must be registered with the system. Double click on the batch file reg.bat

in the Stream-Pixelink folder to register the package. If it ever necessary to

unregister it, unreg.bat can be run.

The source code for Stream-Pixelink is also available at the same URL. Compila-

tion of this source code requires the PixeLINK Software Development Kit (available

for purchase at http://www.pixelink.com and stored in C:\james on TIFFANY).

and Microsoft Visual Studio 2008. The PixeLINK SDK is installed on TIFFANY

under C:\Program Files\PixeLINK\.

To compile the code, open the Visual Studio solution Stream-Pixelink.sln in Visual

Studio and select Build → Build Solution.

Note that many options are hard coded into the program, and thus the code

must be recompiled to change those options. The most significant of these is the

recording frame rate. By default, the code records video at five frames per second,

and the code must be recompiled to change this option. This default value was chosen

because 5fps is a number we know from experience can be streamed with little or no

dropped frames on the computer TIFFANY. Most important options are defined

within stream-pixelink.cpp.
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A.2 Setting up the PixeLINK IEEE1394 Camera

Most of the camera options are set up within the PixeLINK Capture OEM software.

By default, the software may load the “basic” view, shown in Fig A.1a. If so, first

switch to the “advanced” view by clicking View → Advanced Mode

(a) “basic” view (b) “advanced” view

Figure A.1: Pixelink Capture OEM defaults to a simple interface. Many of the options
we need to access are only available in the “advanced” mode.

The advanced mode of the PixeLINK Capture OEM software is organized with a

number of tabs along the top of the window. Three of these are of interest to us -

Basic Controls, Region of Interest, and External Control.
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Figure A.2: The Basic Controls tab contains typical camera settings such as Bright-
ness and Exposure Time

A.2.1 Basic Controls Tab

The basic controls tab contains typical camera control options. The Exposure Time,

Saturation, Brightness, Gain, and Frame Rate can all be adjusted here. Note, how-

ever, that the frame rate will be reset by Stream-Pixelink.
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Figure A.3: The ROI tab contains controls for the camera Region of Interest

A.2.2 Region of Interest Tab

The Region of Interest tab contains settings to control the recorded ROI for the

camera. Limiting the ROI allows us to save storage space and streaming bandwidth

by only recording the region of the image which is important for our experiment.

Since the aspect ratio of the drum is different from the typical 4:3 ratio of the CCD

sensor in the camera, it is useful to set a region of interest which matches the aspect

ratio of the experiment. Here the pixel format of the video stream can also be set

- MONO16 seems to work best with the compression algorithms used in Stream-

Pixelink. Furthermore, this tab allows the video to be flipped or rotated, if needed.
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Figure A.4: The External Control tab sets options for camera input and output

A.2.3 External Control Tab

The External Control tab contains controls for the camera’s input trigger and Gen-

eral Purpose Output. The GPO is used to control the Nova-Strobe as described in

Sec. 3.1.3. In order to have the strobe fire with each frame of the video, the following

options should be set:

GPO Number: 1 (check box checked to turn the GPO on)

Mode: Strobe

Polarity: Positive

Delay: 0 seconds

Duration: 1e005 seconds.

After enabling the appropriate options, press the Update GPO button to update

these options to the camera. Note that all options will be lost if the camera loses

power. This includes unplugging the camera from the PC, or turning off the PC.
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A.3 Running Stream-Pixelink

The code can be run in two ways. By double clicking on the program Stream-

Pixelink.exe in Explorer, you can run the code with the default number of frames

(5fps∗3600s/h∗6h, a six hour long movie). If you want to define your own number of

frames, Stream-Pixelink must be run from a DOS command prompt.

Open a DOS command prompt by clicking START → Run and typing in cmd,

then pressing OK.

Navigate to the directory where Stream-Pixelink is stored. If Stream-Pixelink is

stored in C:\Program Files\Stream-Pixelink\, type

cd C:\Program Files\Stream-Pixelink\

The structure of the command to run Stream-Pixelink is simply

Stream-Pixelink [number of frames]

So to capture a movie with 100 frames, you would type

Stream-Pixelink 100

at the DOS command prompt and press enter.

On launch, Stream-Pixelink will first pop up a prompt asking for a location and

filename. Be sure to include .avi at the end of your filename, as the program does

not add this extension by default.

After this command prompt, Stream-Pixelink will ask for the compression settings

to use in creating the video file, as seen in Fig. A.3. In our testing, we found that the

Xvid algorithm performed well for streaming data directly to disk without dropping

many frames. Once you select a compression and press OK, Stream-Pixelink will

begin capturing video.
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Figure A.5: Stream-Pixelink pops up a dialog to select the compression algorithm to
be used. In our testing, the Xvid algorithm, with default settings, performed well.

Note that Stream-Pixelink is not a multi-threaded application. What this means

is that the application can only do one thing at once. Thus, if you move the windows

around while Stream-Pixelink is capturing video, the acquisition of frames will halt

while you move the windows. This will lead to dropped frames. Do not move any

windows around while Stream-Pixelink is capturing data.

While Stream-Pixelink is running, there will be a text window showing warnings if

any frames are dropped. There will also be a cancel dialog. Clicking Cancel within

this dialog will interrupt the video acquisition, finalize the video file, and exit the

program. If the cancel button is not pressed, Stream-Pixelink will automatically exit

when acquisition of the prescribed number of frames is completed.
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Appendix B

Video Tracking Software

TrackMovieSeq is a Matlab package which reads video file from any windows-readable

format and analyzes the contents. This allows significant storage space savings, as

data to be analyzed can be stored as a compressed movie file and read frame-by-frame

for analysis

B.1 Software Installation

The Matlab packages used for video analysis are installed on the computer TIFFANY

in the Weeks lab under C:\james\trackmovie. If you need to install the files on any

other computers, go to http://www.physics.emory.edu/∼weeks/lab/davidheiser/

and download trackmovie.zip. Extract the contents to a convenient location.

B.2 TrackFramebeta.m

outpeaks = TrackFrameBeta(foo,debug) is a package to carry out particle

tracking on a single RGB bitmapped image. foo is the input image to be tracked, and

debug is an optional flag to produce debugging images. debug= 1 will produce sev-

eral plots showing the various stages of the tracking algorithm, while debug= 2 will
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produce a single image, with tracked points overlaid on the original image. Tracked

points are returned as a struct comprised of two column vectors. outpeaks.x con-

tains x values, and outpeaks.y contains y values.

Trackframebeta has many hard-coded options which are optimized for the partic-

ular rotating drum experiment discussed in this Dissertation. Specifically, it has a

check to ensure that three particles are found, and it has tolerances set to correspond

with the lighting used in this experiment. If different lighting or numbers of particles

are used, these options will need to be modified.

B.3 TrackMovieSeq.m

TrackMovieSeq(filename,frames,debug) is the package to evaluate entire movies.

This package uses processFrame-track.m to analyze individual frames from the

video stream, extracting each frame as an uncompressed bitmap, passing it to Track-

FrameBeta, and saving the results. After execution, the program automatically

saves all variables to a timestamped .mat file named after the original video. The

main important variables, X and Y,are 3-column vectors of positions for each particle.

filename is the name of the file to be analyzed. frames gives a selection of

frames within the movie to be analyzed, so, for example

TrackMovieSeq(test.avi,[1000:2000]) would analyze frames 1000 through 2000

in the file test.avi.

debug is again an optional debug parameter, to be passed to TrackFrame-

Beta, with the same possible values.
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