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Abstract: 

Tuberculosis is an infectious disease that still causes a huge disease burden worldwide, and the 

treatment of multi-drug resistant tuberculosis is particularly difficult. The object of thesis is to  

show that tuberculosis drug susceptibility can be identified using metabolome-wide association 

study techniques. We collected plasma samples from drug-sensitive and multi-drug resistant 

tuberculosis patients in Georgia, and performed high throughput mass spectrometry to identify 

possible metabolites. We then built statistical models to identify metabolites significantly 

correlated with drug susceptibility. In addition, we highlighted the different behaviors of  those 

significant metabolites by visualizing them on heatmaps. Some possible pathways identified 

through the significant metabolites are also presented.  
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Chapter I  Introduction 

 

Tuberculosis 

Tuberculosis is an infectious disease primarily affecting the lungs. Caused most commonly 

by the bacteria Mycobacterium tuberculosis, tuberculosis may induce such symptoms as chronic 

cough, bloody sputum, fever, and weight loss. Most people infected by the bacteria undergo a 

latent phase and do not show any symptoms; only 10% of latent infection cases develop into 

active cases. Although tuberculosis has been recorded in human history since ancient times, the 

global disease burden of tuberculosis still remains high. 8.6 million cases of tuberculosis are 

estimated to have occurred in 2012 worldwide, including 940,000 estimated deaths (Zumla, et al., 

2013).  

An especially alarming issue that severely impedes the treatment of tuberculosis is the 

occurrence of multidrug-resistant tuberculosis. The issue arose after early 20
th

 century, when the 

disease began to be treated with antibiotics. If the patients are treated with only one anti-

tuberculosis drug, the tuberculosis bacteria strains will be under selection pressure, and that 

could result in some strains evolving into drug-resistant mutants. The situation is even more 

complicated by the fact that many tuberculosis patients also have impaired immune system due 

to AIDS. Over 310,000 cases of multidrug-resistant tuberculosis have been observed worldwide 

in 2011, with the highest per capita incidence rate in Sub-Saharan Africa, where the incidence 

rate of AIDS is also the highest (Zumla, et al., 2013). Multidrug-resistant tuberculosis is best 

prevented by using more than one anti-tuberculosis drug, and not adding another anti-

tuberculosis drug to a patient not responding to another; although in the developing countries, the 

above measures are not always practical. Drug-resistant tuberculosis cases are usually confirmed 



by culturing the tuberculosis strains from the patients’ sputum, followed by assessing the strain 

growth under presence of anti-tuberculosis drugs (Frediani, et al., 2014, Schaaf, et al., 2003). 

This process usually takes some time to complete, and a delay in the diagnosis of the drug-

resistant strain may prevent the patient from switching to second-line drugs earlier.  

Annual tuberculosis incidence rate in Georgia, a former Soviet republic, exceeds 100 cases 

per 100,000. The World Health Organization has hence declared Georgia as a country with high 

disease burden for tuberculosis. Tuberculosis patients in this country are usually of lower social 

class and often suffer from malnutrition. A pilot study (Frediani, et al., 2013) has previously 

been conducted in this country to assess the effects of macronutrients on tuberculosis treatment. 

The behavior of metabolites, including those in the glutamate metabolism pathway, has been 

identified to be significantly different between drug-resistant and drug-sensitive tuberculosis 

patients. Vitamin D3 has been identified as a macronutrient that may potentially affect treatment; 

the intake of Vitamin D3 is thus controlled in this study.  

 

Metabolomics 

Metabolomics is the systematic study of metabolites and their interactions. A metabolic 

profile of a patient’s bodily fluids can give a snapshot of the biochemical reactions going on in 

the body. The patient plasma sample can be analyzed using untargeted high throughput mass 

spectrometry, a technique that will identify numerous metabolites in the sample (Frediani, et al., 

2014; Jones, et al., 2012). The relative concentrations of metabolites, identified through careful 

biostatistics and bioinformatics analysis, could indicate the activation status of diseases-related 

biological pathways. However, the identification of metabolites (i.e. metabolite annotation) is not 

a trivial task; the mass spectrometry experiment only reports the mass/charge (m/z) ratio, 



retention time and intensity of an ionized molecule in chromatography, and there could be 

multiple molecules that share these characteristics. In addition, given the numerous ways the 

metabolites interact in the human body, the identification of pathways from these metabolites 

also require considerable effort (Li, et al., 2013).  

 

In this thesis I present a regression method to identify metabolites associated with multiple-

drug-resistant tuberculosis using high throughput metabolomics analysis of plasma samples. The 

study also finds pathways through these identified metabolites.  

 

  



Chapter II  Material and Methods 

Data Collection 

The metabolite data was collected in a double blind, randomized, controlled trial. 23 multi-

drug resistant pulmonary tuberculosis patients were recruited from the Georgia National Center 

for Tuberculosis and Lung Diseases (NCTBLD) and an affiliated outpatient TB clinic in Tbilisi, 

Georgia. Each patient is then matched by two drug-sensitive tuberculosis patients (by sex and 

age ± 15 years) in a case-control manner. One of the matched patients had to be later dropped 

due to the fact that his tuberculosis cleared at baseline, resulting in a total of 23 multi-drug 

resistant patients and 45 matched controls. Each patient is then randomly assigned to the Vitamin 

D3 (cholecalciferol; 1.4. million IU given in divided doses over 16 weeks) or identical placebo 

group. The descriptive statistics of patient demographics information is summarized in table 1.  

Each patient has their peripheral blood samples taken at 4 time points: week 0 (baseline), 

week 4, week 8 and week 16. Each blood sample is then centrifuged, and plasma is isolated from 

the samples. The plasma samples are then frozen to -80 °C  and delivered to Emory University, 

where they are analyzed, in triplicate, with high-resolution liquid chromatography – mass 

spectrometry (LC-MS), using anion exchange and C18 chromatography (Higgins Analytical, 

Targa, Mountain View, CA, USA, 2.1×10 cm) combined with the Thermo Orbitrap-Velos 

(Thermo Fisher, San Diego, CA) mass spectrometer. The mass spectrometry analysis is set to 

capture all ions with m/z ratios between 85 and 850.  

 

Data Pre-processing 

The data was pre-processed using xMSAnalyzer (Uppal, et al., 2013) in combination with 

apLCMS (Yu and Jones, 2014; Yu, et al., 2009). The metabolite concentrations were each 



measured in triplicates. I computed the average concentration for each feature, which is 

computed by averaging the non-zero concentration readings; if all three readings are zero then an 

average of zero is recorded. This average concentration is the combined metabolite data we used 

for subsequent analysis. Also, metabolites with excessive (more than 20%) zeros in the averaged 

readings are removed; 5,715 metabolic features were selected in this way for downstream 

analysis.  

 

Statistical Analysis 

Identifying significant metabolites with cross-sectional analysis  

Metabolome-wide association study (MWAS) was used to select significant metabolic 

features distinguishing multi-drug resistant and drug sensitive patients. We fitted one logistic 

regression model for each metabolite, and the general modeling formula is as follows: 

�������� = log 
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Where � is the probability of being a multi-drug resistant tuberculosis patient,  �� is the level 

of the i
th

 metabolite, and the ��′  are other confounding predictors. The log intensity was used 

lieu of raw metabolite intensity values to address potential scaling and homoscedasticity issues; 

the add one part is to address the situation where the intensity is zero.  

Other variables are also accounted for in our analysis. As samples analyzed in different 

batches of the mass spectrometry process may be subjected to different systematic errors, in our 

analysis, batch effect was added in linearly as a confounder. We also accounted for other 

demographic confounders such as vitamin D level in plasma, history of diabetes, income level, 

body mass index, sex age, and whether the patient was randomized to the vitamin D or placebo 

group. 



Raw p-values were used to determine which features were considered significant, using 0.05 

as the cutoff threshold. 

 

Identifying significant metabolites using differences between metabolite concentrations 

We also attempted to identify significant metabolites using changes in metabolite 

concentration. This would potentially make the identified metabolites more pronounced, as we 

are essentially encouraging picking metabolites whose concentrations have changed the most. 

The modeling statement is as follows:  

�������� = �� +	������!��,#� + 1$ − ���!��,#� + 1$� +� ����
�

���
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Where � is the probability of being a multi-drug resistant tuberculosis patient,  ��,#� and ��,#� 

are the levels of the i
th

 metabolite at time point 1 and 0, respectively, and the ��′  are other 

confounding predictors, same as the ones used in cross-sectional analysis. Models were fitted 

using metabolite levels at week 4 and baseline, and again using metabolite levels at week 8 and 

baseline.  

The metabolites identified from the analyses above are then put through Mummichog (Li, et 

al., 2013) for metabolite annotation and pathway analysis.  

All analysis was carried out using R version 3.1.1, Anaconda version 2.1.0, Python version 

2.7.8, and Mummichog version 0.10.3. 

  



Chapter III Results and Discussion 

Metabolites Identified 

The analysis identified 246, 216, and 229 metabolites as significantly different between 

multi-drug resistant and drug-sensitive tuberculosis patients, using baseline, week 4, and week 8 

samples, respectively. These identified metabolites do not overlap heavily (12 overlaps between 

baseline and week 4 samples; 7 overlaps between week 4 and week 8 samples; no metabolite is 

identified in all three groups).  

The analysis using concentration differences between week 4 and baseline samples yielded 

249 significant metabolites, while the analysis using concentration differences between week 8 

and baseline samples yielded 281 significant metabolites. Again, the two sets of significant 

metabolites do not heavily overlap (only 12); nor do they overlap heavily with metabolites 

identified through cross-sectional analysis (varying between 9 and 19).  

The lack of overlapping metabolites may indicate that the use of m/z ratios alone in 

identifying metabolites is inadequate, and further analysis should be conducted using more 

advanced metabolite annotation techniques. However, it is possible that lack of overlap is due to 

underlying metabolic changes as a function of tuberculosis drug resistance. 

We then produced Manhattan plots for each of the datasets (Figure 1). We observed apparent 

clustering of significant metabolites at a retention time between 200 and 400 seconds. One of the 

most significant metabolites in the Manhattan plots, 1-Pyrroline-2-carboxylate (m/z 114.054; 

retention time 251), has been linked to Mycobacterium tuberculosis as a respiration intermediary 

metabolite (Yang 2006). We also plotted heatmaps (Figure 2) with hierarchical clustering on the 

metabolites, showing that the identified metabolites have significant differences between the 

drug resistant and drug sensitive patient groups.  



 

Metabolite Annotation and Pathway Analysis 

The pathway analysis revealed several significant pathways that were altered in subjects with 

multi-drug resistance tuberculosis at different time points. These included Fatty Acid 

Metabolism (identified in 4 datasets), Glutamate metabolism (3 datasets), Pyrimidine metabolism 

(3 datasets) and Tryptophan metabolism (3 datasets). The characteristics of these pathway 

findings are summarized in Table 2. After further investigation into the top pathways, we found 

some interesting links to tuberculosis disease.  There were several m/z matches within the 

leukotriene system; we found a m/z match to 5(S)-HPETE, LTB4 and 6-trans LTB4 to be lower 

in multi-drug resistant vs. drug-sensitive patients and 10,11 dihydro-12, oxo-LTB4 and 6E-12 

epi-LTB4 to be upregulated. This could suggest the multi-drug resistant subjects may have 

suppressed immune systems and poor initiation of cell mediated immunity. (Tobin 2012) 

Furthermore, excess LXA4 and LTB4 can promote extracellular bacterial growth. (Tobin 2013) 

Metabolites related to glutamate metabolism were all increased in multi-drug resistant 

tuberculosis patients, indicating that tuberculosis drug susceptibility may alter glutamate 

metabolism. Metabolites related to retinol metabolism were higher in MDR-TB subjects. The 

theory behind these trials is related to vitamin A’s antioxidant and anti-inflammatory properties 

(Wheelwright 2014).  

 

Constraints and future directions 

This study has certain constraints. Due to the difficulty in recruiting patients, this study has a 

relatively small sample size, which could limit the power of statistical testing. In fact, no 

metabolites were found to be significant using false discovery rates, which could be potentially 



attributed to the small sample size. Also, not all patients have blood samples taken at all intervals; 

several patients only had metabolite measurements at baseline, and this may impede analyses 

using concentration differences. Some of the patient demographics data is also missing. Future 

work should be focused on getting a larger cohort of patients and thus enabling a more 

statistically rigorous interpretation of the metabolomics results.  

 

  



Chapter IV Conclusion 

This study shows that tuberculosis drug susceptibility can be identified using metabolome-

wide association study techniques from high throughput metabolite profiling of plasma, and 

presents metabolites correlated with drug susceptibility. This study also identifies several 

metabolic pathways that are differently regulated between the two groups, but given the small 

sample size, more mechanistic studies of these pathways are needed.  

  



Appendix 

Tables 

  All patients 

(n=68) 

Drug resistant 

(n=23) 

Drug sensitive 

(n=45) 

Age (yr) 34 (10.81) 34 (9.44) 34 (11.56) 

Sex       

Male 37 (54.41) 13 (56.52) 24 (53.33)  

Female 29 (42.65) 10 (43.48) 19 (42.22) 

Unknown 2 (2.94) 0 (0) 2(4.44) 

Income (1000 lari ≈ 

600USD) 

      

<1000 lari 27 (39.71) 5 (21.74) 22 (48.89) 

1000-5000 lari 28 (41.18) 14 (60.87) 14 (31.11) 

5001-10,000 lari 11 (16.18) 4 (17.39) 7 (15.56) 

Unknown 2 (2.94) 0 (0) 2 (4.44) 

BMI (kg/m
2
) 20.53 (3.69) 20.26 (2.54) 20.67 (4.19) 

Baseline Vitamin D (ng/mL) 14.13 (7.73) 13.43 (6.82) 14.51 (8.23) 

Diabetes       

Yes 4 (5.88) 1 (4.35) 3 (4.67) 

No 62 (91.17) 22 (95.65) 40 (88.89) 

Unknown 2 (2.94) 0 (0) 2(4.44) 

Table 1: summary of patient demographics, grouped by drug susceptibility. For continuous 

variables, the mean is followed by standard deviation in parenthesis; for categorical variables, 

the count is followed by percentage in parenthesis.   

 

Dataset Pathways 

Significant Metabolites 

/Total Metabolites 

Adjuste

d p-

value 

Baseline 

Leukotriene metabolism 5 / 40 0.04494 

Glutamate metabolism 2 / 8 0.05194 

Vitamin A (retinol) metabolism 4 / 32 0.06481 

Drug metabolism - cytochrome P450 4 / 33 0.07314 

Pyrimidine metabolism 3 / 25 0.11963 

Week 4 

Saturated fatty acids beta-oxidation 4 / 26 0.00181 

Fatty acid activation 4 / 29 0.00215 

Histidine metabolism 3 / 17 0.00261 

Urea cycle/amino group metabolism 4 / 38 0.00389 

Fatty Acid Metabolism 3 / 23 0.00461 

Beta-Alanine metabolism 2 / 11 0.00879 

Tryptophan metabolism 4 / 50 0.00922 



Fatty acid oxidation 2 / 14 0.01375 

Methionine and cysteine metabolism 3 / 35 0.01414 

Lysine metabolism 2 / 24 0.04383 

Pyrimidine metabolism 2 / 25 0.04811 

Week 8 

Nitrogen metabolism 2 / 3 0.00335 

Vitamin B6 (pyridoxine) metabolism 2 / 4 0.00528 

Glycosphingolipid biosynthesis - 

globoseries 2 / 4 0.00528 

Keratan sulfate degradation 2 / 4 0.00528 

De novo fatty acid biosynthesis 6 / 40 0.0058 

Glycosphingolipid metabolism 4 / 23 0.00757 

Fatty Acid Metabolism 4 / 23 0.00757 

N-Glycan Degradation 2 / 5 0.008 

Pyrimidine metabolism 4 / 25 0.01077 

Glycosphingolipid biosynthesis - 

ganglioseries 2 / 6 0.01167 

Xenobiotics metabolism 6 / 47 0.01443 

Phosphatidylinositol phosphate 

metabolism 3 / 18 0.01936 

Tryptophan metabolism 6 / 50 0.02106 

Glutamate metabolism 2 / 8 0.0226 

Polyunsaturated fatty acid biosynthesis 2 / 8 0.0226 

Aminosugars metabolism 3 / 19 0.02364 

N-Glycan biosynthesis 2 / 9 0.03014 

Vitamin B9 (folate) metabolism 2 / 10 0.03921 

Sialic acid metabolism 3 / 22 0.04104 

Tyrosine metabolism 7 / 68 0.04711 

Butanoate metabolism 3 / 23 0.04854 

Omega-6 fatty acid metabolism 2 / 11 0.04989 

Week_4 - 

Baseline 

Drug metabolism - cytochrome P450 7 / 33 0.00092 

Glutamate metabolism 3 / 8 0.00145 

Glycosphingolipid metabolism 4 / 23 0.00468 

Fatty Acid Metabolism 4 / 23 0.00468 

Methionine and cysteine metabolism 5 / 35 0.00652 

Vitamin B3 (nicotinate and nicotinamide) 

metabolism 3 / 16 0.00738 

Histidine metabolism 3 / 17 0.00893 

Urea cycle/amino group metabolism 5 / 38 0.00958 

Tryptophan metabolism 6 / 50 0.01158 

Vitamin B9 (folate) metabolism 2 / 10 0.0203 

Beta-Alanine metabolism 2 / 11 0.02531 

Selenoamino acid metabolism 2 / 13 0.03746 



Alanine and Aspartate Metabolism 2 / 13 0.03746 

Saturated fatty acids beta-oxidation 3 / 26 0.03768 

Purine metabolism 3 / 28 0.04849 

Week_8 - 

Baseline 

Vitamin H (biotin) metabolism 2 / 3 0.00606 

Aminosugars metabolism 4 / 19 0.01241 

Fatty Acid Metabolism 4 / 23 0.02905 

Lysine metabolism 4 / 24 0.03532 

Polyunsaturated fatty acid biosynthesis 2 / 8 0.04917 

Table 2: pathways associated with MDR. 
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Figure 1: Manhattan plots for all 5 datasets 
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Figure 2: Heatmap for all 5 datasets. The red/yellow bar on top of the heatmaps indicates patient 

drug sensitivity, with red for drug sensitive and yellow for multi-drug resistant.   
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