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Abstract

On Pisier type problems
By Marcelo Sales

A subset A ⊆ Z of integers is free if for every two distinct subsets B,B′ ⊆ A we
have ∑

b∈B

b ̸=
∑
b′∈B′

b′.

Pisier asked if for every subset A ⊆ Z of integers the following two statement are
equivalent:

(i) A is a union of finitely many free sets.

(ii) There exists ε > 0 such that every finite subset B ⊆ A contains a free subset
C ⊆ B with |C| ⩾ ε|B|.

In a more general framework, the Pisier question can be seen as the problem of
determining if statements (i) and (ii) are equivalent for subsets of a given structure
with prescribed property. We study the problem for several structures including Bh-
sets, arithmetic progressions, independent sets in hypergraphs and configurations in
the euclidean space.
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iv

Notation

We use standard graph-theoretic notation throughout. We denote the vertex set

and edge set of a graph or a hypergraph G by V (G) and G (or E(G)), respectively.

We will denote by e(G) = |E(G)| the number of edges in G. For v ∈ G, we denote

by NG(v) the neighbourhood of v and by degG(v) = |NG(v)| its degree in G. For a

subset X ⊆ V (G) we denote the induced subgraph of G on this subset by G[X]. A

k-graph or k-uniform hypergraph is a hypergraph with all edges of size k.

We use standard set-theoretic notation throughout as well. For a natural number

N we set [N ] = {1, . . . , N}. Given a set X and a nonnegative integer k, we write

X(k) = {e ⊆ X : |e| = k} for the set of all k-subsets of X. Unless stated otherwise,

the elements of a set X will be always indexed in increasing order. That is, if we

write X = {x1, . . . , xk}, then we mean that x1 < . . . < xk.

For functions f = f(n) and g = g(n), we write f = O(g) to mean that there is a

constant C > 0 such that |f | ⩽ C|g|; f = Ω(g) to mean that there is a constant c > 0

such that |f | ⩾ c|g|; f = Θ(g) to mean that f = O(g) and f = Ω(g); and f = o(g)

to mean that f/g → 0 as n→ ∞.
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Chapter 1

Introduction

This dissertation consider the relation between Ramsey statements and density state-

ments in various combinatorial problems. Ramsey theory refers to a large body of

deep results in mathematics whose underlying philosophy is captured succinctly by

the statement that “Every large system contains a large well-organized subsystem”.

This is an area in which a great variety of techniques from many branches of mathe-

matics are used and whose results are important not only to combinatorics but also

to logic, analysis, number theory, and geometry. A well known example of a Ramsey

statement is the following celebrated result by Ramsey [39].

Theorem 1.0.1 ([39]). For any integers n, k, r ⩾ 1, there exists integer N with the

property that for any r-coloring of [N ](k) there exists a set X ⊆ [N ] of size n such

that X(k) is monochromatic.

The least number N satisfying the property of Theorem 1.0.1 is denoted by

R(k)(n, r). In a more general way, a Ramsey statement usually can be described

as a statement that no matter how we color a certain structure with finitely many

colors, there exists a color class with a prescribed property.

On the other hand, density statements are more closely related to the area of

extremal combinatorics. Extremal combinatorics studies how large (or small) an
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object that lies in a particular discrete mathematical system and satisfies a certain

condition can be. A classical example is Mantel’s theorem which states that every

triangle free graph on n vertices has at most n2/4 edges. This is indeed a density

statement and can be rewritten as follows:

For every ε > 0, there exist n0 such that any (1/2 + ε)-proportion of the edges of

Kn contains a triangle for n ⩾ n0.

This statement can be considered as the density analogue of the Ramsey statement

on Theorem 1.0.1 for n = 3. An interesting, perhaps natural question, is whether

there is a relation between these two statements. The next question introduced by

Pisier is the main motivation of this thesis.

In 1983 Pisier [37] formulated the following problem in the context of harmonic

analysis. A set of integers X = {xi}i∈I ⊆ Z is called free if for any two distinct finite

sets of indices J, J ′ ⊆ I we have

∑
j∈J

xj ̸=
∑
j′∈J ′

xj′ . (1.1)

Pisier was interested in a condition that guarantees that a set X is a union of a

finite family of free sets. In this context, he asked if the following two statements are

equivalent for every set X ⊆ Z:

(i) X is the union of finitely many free sets.

(ii) There exists ε > 0 such that every finite subset Y ⊆ X contains a free subset

Z ⊆ Y with |Z| ⩾ ε|Y |.

In a combinatorial sense, statement (i) can be written as the negation of a Ramsey

statement:

¬ (i) Any finite coloring of X contains a monochromatic set that is not free.

Similarly, statement (ii) can be interpreted as the negation of a density statement:
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¬ (ii) For every ε > 0, there exists a finite subset Y ⊆ X such that any Z ⊆ Y with

|Z| ⩾ ε|Y | is not free.

Hence, Pisier intrinsically asks if the Ramsey statement and the density statement

for the property of not being a free set are equivalent. Clearly, by the pigeonhole

principle, statement (i) implies statement (ii), i.e., the density statement implies the

Ramsey one. However, the converse implication is still a open problem. For more

about the history and related problems see [11, 14, 4]. In this thesis we will use

this question as a general framework and study whether these two statements are

equivalent for several properties in combinatorics.

1.1 Arithmetic progressions and Bh-sets

Given an integer k ⩾ 1, an arithmetic progression of length k (or APk) is a set of

integers of the form

{a, a+ d, . . . , a+ (k − 1)d}

for integers a ∈ Z and d > 0. The theorem of van der Waerden is one of the earliest

results in Ramsey theory. It asserts that every finite coloring of the integers yields

a monochromatic arithmetic progression of any length. More precisely, for positive

integers k and r we say that a set of integers X ⊆ N has the van der Waerden property

vdW(k, r) if any r-coloring of X contains a monochromatic APk. With this notation,

van der Waerden’s theorem can be stated as follows:

Theorem 1.1.1 ([47]). For integers k ⩾ 3 and r ⩾ 2, there exists an integer W :=

W (k, r) such that for any N ⩾ W the set of integers [N ] has the property vdW(k, r).

Answering a long standing conjecture of Erdős and Turán [13], Szemerédi proved

the following celebrated result.



4

Theorem 1.1.2 ([45]). For an integer k ⩾ 3 and δ ∈ (0, 1], there exists an integer

N0 := N0(k, δ) such that for N ⩾ N0 the following holds. Every subset A ⊆ [N ] with

|A| ⩾ δN contains an arithmetic progression of length k.

Basically, Szemerédi theorem states that any positive proportion of N contains

an arithmetic progression of length k. Theorem 1.1.2 stimulated a lot of research

and today several proofs, using tools of a variety of areas of mathematics, are known

[21, 20, 22, 23, 33, 43, 46].

Similarly as with the van der Waerden property vdW(k, r), one can define a

property related to Theorem 1.1.2. For an integer k ⩾ 3 and δ > 0, we say that

a finite set of integers X ⊆ N has the Szemerédi property Sz(k, δ) if any subset

Y ⊆ X of size |Y | ⩾ δ|X| contains an APk. With this notation, Theorem 1.1.2 states

that [N ] has the property Sz(k, δ) for N ⩾ N0.

A simple argument shows that the property Sz(k, δ) implies property vdW(k, r) for

δ ⩾ 1/r. That is, Szemerédi theorem implies van der Waerden’s theorem. Motivated

by the problem of Pisier the following question was considered in [11, 3]:

Question 1.1.3. Is it true that for any k ⩾ 3, there is δ > 0 and set of integers X

such that

(i) X has property vdW(k, r) for every r ⩾ 1,

(ii) Every finite Y ⊆ X fails to have property Sz(k, δ)?

A negative answer to Question 1.1.3 would imply that properties vdW(k, r) and

Sz(k, δ) are equivalent. This would in particular provide a surprising new proof of

Szemerédi theorem by van der Waerden’s theorem. For this reason, the authors in

[11] conjectured that Question 1.1.3 has a positive answer. In this thesis, we confirm

their conjecture.

Theorem 1.1.4. For every k ⩾ 3 and 0 < µ < k−1
k

there is a set of integers

X := X(k, µ) ⊆ N such that
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(i) For every r ⩾ 1, any r-coloring of X contains a monochromatic APk,

(ii) Every finite subset Y ⊆ X contains a subset Z ⊆ Y , |Z| ⩾ µ|Y | with no APk.

We note that Theorem 1.1.4 does not hold for µ > k−1
k
. Indeed, any set X ⊆ N

satisfying condition (i) must contain an APk. By taking Y ⊆ X to be an APk, we

have that |Y | = k. Therefore, the only Z ⊆ Y with |Z| ⩾ µ|Y | is Y itself. Hence, Y

fails to have property Sz(k, µ).

A similar result can be obtained for Bh-sets as well. For h ⩾ 1, we say that a set

of integers X = {xi}i∈I is a Bh-set if

∑
j∈J

xj ̸=
∑
j′∈J ′

xj′

for J ̸= J ′, |J | = |J ′| = h, i.e., if all the h-sums of X are distinct.

Note that a B2-set is also called a Sidon set. The density statement and conse-

quently the Ramsey statement were proved by Erdős and Turán [12], who showed

that for every ε > 0, there exists N0 := N0(ε) such that for every N ⩾ N0 any

ε-proportion of [N ] contains {a, b, c, d} such that a+ b = c+ d (They actually proved

a much stronger bound on ε). Motivated by the Pisier problem, Alon and Erdős [1]

asked if the following two statements for Bh-sets are equivalent:

(1) X is the union of finitely many Bh-sets.

(2) There exists ε > 0 such that every finite subset Y ⊆ X contains a Bh subset

Z ⊆ Y with |Z| ⩾ ε|Y |.

As in the original Pisier problem, the implication (1) ⇒ (2) holds. So it remains

to determine whether the implication (2) ⇒ (1) is true. The next result shows that

it is not the case.

Theorem 1.1.5. For every h ⩾ 1 there exists ε > 0 and a set of positive integers X

with the following two properties:
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(i) X is not a union of finitely many Bh-sets.

(ii) Every finite subset Y ⊆ X contains a Bh-set Z with |Z| ⩾ ε|Y | elements.

1.2 Euclidean configurations

We will find it convenient to present our discussion in the framework of R∞, by which

we understand a subspace of ℓ2 consisting of infinite sequences of real numbers with

finite support, i.e., all but finitely many entries are zero and with R∞ equipped by

the usual euclidean metric. In other words, we can view R∞ as the infinite union

R∞ =
⋃∞

d=1Rd, where we understand that the copies of Rd are being included in one

another.

For two configurations of points A,B ⊆ R∞ we will write

A→ (B)r

to denote the fact that any r-coloring of A yields a monochromatic copy of B. By a

(congruent) copy of B, we mean a subconfiguration B′ ⊆ A that is isometric to B,

i.e., that exists a bijective map φ : B → B′ such that

||b1 − b2|| = ||φ(b1)− φ(b2)||

for every b1, b2 ∈ B. Given two configurations A,B we say that B is contained in

A, and denote B ⊆ A, if there exists a copy A′ of A such that B ⊆ A′ (in the set

theoretical sense).

A finite configuration S is said to be Ramsey if R∞ → (S)r for every integer

r ⩾ 1. The concept was introduced in [10] by Erdős, Graham, Montgomery, Roth-

schild, Spencer and Strauss, who proved that the vertex set of every brick (rectangular

parallelepiped) of arbitrary finite dimension is Ramsey. The list of Ramsey configu-
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rations was extended by a few more configurations in [15, 18, 28, 29]. On the other

hand, the authors of [10] also proved that any Ramsey set is spherical, i.e., all points

of S lie on some finite dimensional sphere. They asked if the opposite implication is

also true: If any spherical set is Ramsey. In [26] Ron Graham offered $1000 dollars

for deciding if this implication holds as well. Based on the evidence coming from

known Ramsey configurations Leader, Russel and Walters [30] proposed an alterna-

tive conjecture. Calling a finite set transitive if its symmetry group is transitive, i.e.,

if all points play the same role, their conjecture states that Ramsey sets are precisely

the transitive sets together with their subsets.

While the progress on these conjectures was very small, some alternative concepts

were considered in [24, 25, 32, 15, 19, 5]. In this thesis we will introduce another

concept based on Pisier’s problem. A d-dimensional simplex S is a configuration

consisting of d + 1 affinely independent points in R∞. In [15] it was proved that all

simplices are Ramsey. One interesting feature of their proof is that they actually

show the following stronger statement.

Theorem 1.2.1 ([15]). Let S ⊆ R∞ be a d-dimensional simplex and 0 < µ < 1 a real

number. Then there exists finite configuration Y ⊆ R∞ such that any subconfiguration

Z ⊆ Y of size |Z| ⩾ µ|Y | contains a copy of S.

In other words, Theorem 1.2.1 not only finds a configuration Y such that Y →

(S)r, but also with the extra property that any subset of positive density contains

a copy of S. One of the goals of this part of the thesis is to show an alternative

construction of the fact that simplices are Ramsey where our set Y does not have the

density property. The following definition is central for our exposition.

Definition 1.2.2. A finite configuration X ⊆ R∞ is called P-Ramsey if there exists

a configuration Y ⊆ R∞ and a real number µ > 0 such that the following holds:

(i) Y → (X)r holds for every integer r ⩾ 1.
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(ii) Every finite subconfiguration Y ′ ⊆ Y contains a configuration Z ⊆ Y ′ with

|Z| ⩾ µ|Y ′| such that Z is X-free

Note that statement (ii) of the P-Ramsey definition is in contrast with the density

statement introduced in Theorem 1.2.1, since it says that every finite subconfiguration

contains a large set without a copy of X.

Clearly, if X is P-Ramsey, then X is Ramsey. However, the converse is not so

clear. In this thesis, we start the study of P-Ramsey configurations by showing the

following two results.

Theorem 1.2.3. All simplices are P-Ramsey.

We say that a configuration B ⊆ R∞ is a d-dimensional brick if there exists

positive real numbers a1, . . . , ad ∈ R such that B is congruent to the set

{(x1, . . . , xd) : xi = 0 or xi = ai, 1 ⩽ i ⩽ d} .

Theorem 1.2.4. All bricks are P-Ramsey.

1.3 Organization

This thesis is organized as follows. In Chapter 2 we study variants of the Pisier

problem for independent sets in hypergraphs. This variants will be important later

in the proofs of Theorems 1.1.4, 1.2.3 and 1.2.4. Chapter 3 is devoted to the proof

of the Pisier type problem for Bh-sets. The proof is based on a finitary set version

of the problem (see Theorem 3.1.1). Moreover, we also prove in this section a partial

one sided version of Pisier original problem (see Theorem 3.2.1). In Chapter 4 we

prove Theorem 1.1.4 regarding arithmetic progressions. The proof is based on the

partite construction by Rödl and Nesetril. Finally, Chapter 5 is devoted to the Pisier
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type problems of Euclidean configurations and in particular contains the proofs of

Theorems 1.2.4 and 1.2.3.



10

Chapter 2

Independent sets on hypergraphs

In this chapter we consider the Pisier type problem for k-uniform hypergraphs. View-

ing our sets as vertex sets from a hypergraph and replacing the notion of being free

by being an independent set of vertices leads to the following question. For what

values of µ is there a k-graph H with the properties:

(1) The chromatic number χ(H) is infinite,

(2) Every finite subset Y ⊆ V (H) contains an independent set Z ⊆ Y with |Z| ⩾

µ|Y | vertices?

That is, for what values of µ does the converse implication of the Pisier problem fail?

We say that a hypergraph H satisfying statement (2) has the µ-property. By taking

Y as the vertex set of an edge, one can clearly note that there is no nontrivial H

satisfying the µ-property for µ > k−1
k
. On the other hand we will show that such

hypergraphs exist for each µ < k−1
k
.

The content of this chapter was obtained in joint work with Nešeťril, Reiher and

Rödl and contains fragments of the manuscript of the following papers [36, 40, 42].
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2.1 µ-fractional property

In this section we will prove a slightly stronger version of the problem described above.

Definition 2.1.1. We say that a weight vector w = (w(i))i∈I is stochastical if w(i) ∈

[0, 1] for every i ∈ I and
∑

i∈I w(i) = 1. Let H be a k-graph. For given µ > 0, we say

that H has the µ-fractional property if for every finite subset Y ⊆ V (H) and every

stochastic weight vector w = (w(y))y∈Y , there exists an independent set Z ⊆ Y with

∑
z∈Z

w(z) ⩾ µ
∑
y∈Y

w(y) = µ.

By taking w(y) = 1
|Y | for every y ∈ Y , one can see that the µ-fractional property

implies the µ-property. The next theorem shows the existence of k-graphs H with

the µ-fractional property and infinite chromatic number. In particular, this answers

the problem introduced in the beginning of the chapter.

Theorem 2.1.2. For every µ < k−1
k
, there exists an infinite k-graph H with the

following two properties:

(i) The chromatic number χ(H) is infinite.

(ii) H has the µ-fractional property.

The proof of Theorem 2.1.2 is a corollary of the following finitary form of the

statement. For integers k,N and µ ⩽ k−1
k
, set ε = k−1

k
− µ and ℓ =

⌈
2(k−1)2

εk

⌉
. Let

H := H(k,N, µ) be the k-graph with vertex set V (H) = [N ](ℓ) and edge set described

as follows: A k-tuple {x1, . . . , xk} ∈ V (H)(k) is an edge if and only if there exists a

set A = {a1, . . . , ak+ℓ−1} ∈ [N ](k+ℓ−1) such that

xi = {ai, . . . , ai+ℓ−1},

for 1 ⩽ i ⩽ k. That is, H is the shift k-graph on the ℓ-tuples of [N ].
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Theorem 2.1.3. For every r ⩾ 2, k ⩾ 3 and µ < k−1
k
, there exists an integer

N0 := N0(r, k, µ) such that the k-graph H := H(k,N, µ) satisfies the following for

N ⩾ N0:

(i) χ(H) > r.

(ii) H has the µ-fractional property.

We start by proving the infinite version.

Proof of Theorem 2.1.2. For every integer r ⩾ 1, let Nr := N0(r, k, µ) be the integer

obtained by Theorem 2.1.3. Take H as the disjoint union of H(k,Nr, µ) for r ⩾ 1.

Clearly, the k-graph H satisfies statements (i) and (ii) of Theorem 2.1.2

Now, we provide a proof of the finite version.

Proof of Theorem 2.1.3. Set ε = k−1
k

−µ and ℓ =
⌈
2(k−1)2

εk

⌉
. Let N0(r, k, µ) = R(ℓ)(k+

ℓ− 1, r). We claim that H := H(k,N, µ) satisfies the statement of Theorem 2.1.3 for

N ⩾ N0.

Statement (i) follows from Ramsey theorem (Theorem 1.0.1).. Indeed, for any

r-coloring of [N ](ℓ), there exists a set X ⊆ [N ] of size k + ℓ − 1 such that X(ℓ) is

monochromatic. In particular, this implies that H has an edge with all its vertices

monochromatic. Hence, χ(H) > r.

In order to address statement (ii), let Y ⊆ V (H) = [N ](ℓ) be a subset of vertices

and w = (w(y))y∈Y a stochastic weight vector. We will show by induction on the

cardinality of Y that there is an independent set Z ⊆ Y with
∑

z∈Z w(z) > k−1
k

−

ε. For |Y | = k, the statement follows immediately from the fact that there exists

independent set Z ⊆ Y of size |Y | − 1 with

∑
z∈Z

w(z) ⩾
|Y | − 1

|Y |
>
k − 1

k
− ε.
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Assume now that |Y | > k. For an integer c ∈ [N ], we define

S(c) = {y ∈ Y : c ∈ y}

to be the set of vertices of Y that contain c. Similarly, let

S ′(c) =
{
y = {b1, . . . , bℓ} : c ∈ {bk, . . . , bℓ−(k−1)}

}
as the set of vertices of Y such that c is neither one of the first or last k− 1 elements

of Y .

We claim that H[S(c)] is a k-partite k-graph for every c ∈ [N ]. To see that

consider the partition S(c) = V0 ∪ . . . ∪ Vk−1 where

Vj = {y = {b1, . . . , bℓ} ∈ S(c) : c = bi and i ≡ j (mod k)}

for 0 ⩽ j ⩽ k−1. That is, Vj are the vertices of S(c) where c is in a position congruent

to j (mod k). Note that if e = {y1, . . . , yk} is an edge in H[S(c)], then |e ∩ Vj| = 1

for every 0 ⩽ i ⩽ k − 1. Hence, H[S(c)] is k-partite.

By double counting the weights over all the pairs (c, y) where y = {b1, . . . , bℓ} and

c ∈ {bk, . . . , bℓ−(k−1)}, we obtain that

∑
c∈[N ]

∑
y∈S′(c)

w(y) = (ℓ− 2(k − 1))
∑
y∈Y

w(y) = ℓ− 2(k − 1). (2.1)

Similarly, by double counting the weights over all the pairs (c, y) with c ∈ Y , we have

∑
c∈[N ]

∑
y∈S(c)

w(y) = ℓ
∑
y∈Y

w(y) = ℓ. (2.2)
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Hence, comparing (2.1) and (2.2) yields that there exists c0 ∈ [N ] such that

∑
y∈S′(c0)

w(y) ⩾
ℓ− 2(k − 1)

ℓ

∑
y∈S(c0)

w(y). (2.3)

Since S ′(c0) ⊆ S(c0) we have that H[S ′(c0)] is a k-partite graph and consequently

by inequality (2.3) we have that there exists independent set I1 ⊆ S ′(c0) satisfying

∑
y∈I1

w(y) ⩾
k − 1

k

∑
y∈S′(c0)

w(y) ⩾
k − 1

k

(
ℓ− 2(k − 1)

ℓ

) ∑
y∈S(c0)

w(y)

⩾

(
k − 1

k
− ε

) ∑
y∈S(c0)

w(y). (2.4)

Furthermore, applying the inductive assumption to the set Y −S(c0) with stochastic

weight vector w′ = (w(z))z∈Y−S(c0) given by w′(z) = w(z)/(
∑

y∈Y−S(c0)
w(y)) gives

us an independent set I2 ⊆ Y − S(c0) with

∑
y∈I2

w(y) ⩾

(
k − 1

k
− ε

) ∑
y∈Y−S(c0)

w(y). (2.5)

We claim that if e ∈ H is such that e ∩ S ′(c0) ̸= ∅, then e ⊆ S(c0). Indeed, let

e = {y1, . . . , yk} ∈ H with

yi = {ai, . . . , ai+ℓ−1}

for 1 ⩽ i ⩽ k.

If e ∩ S ′(c0) ̸= ∅, then there exists a vertex yj = {aj, . . . , aj+ℓ−1} such that

c0 ∈ {aj+k, . . . , aj+ℓ−k}. However, because 1 ⩽ i ⩽ k, we have i < j+ k < j+ ℓ− k <

i+ ℓ− 1 and consequently c0 ∈ {aj+k, . . . , aj+ℓ−k} ⊆ yi for every 1 ⩽ i ⩽ k and hence

e ⊆ S(c0).

Since I2 ⊆ Y − S(c0), we obtain that there is no edge intersecting both I1 and I2.
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This implies that I1 ∪ I2 is and independent set and by inequalities (2.4) and (2.5)

we have that

∑
y∈I1∪I2

w(y) ⩾
k − 1

k
− ε.

2.2 A version for simple graphs

We observe that for k ⩾ 3, the shift k-graph H(k,N, µ) contains pairs of edges

intersecting in more than one vertex, i.e., the hypergraph H(k,N, µ) is not simple.

However, for the purposes of Chapter 4 we will need a simple hypergraph with the

properties of Theorem 2.1.3.

Such a graph can be obtained by a standard application of the probabilistic method

combined with Theorem 2.1.3 and the following observation:

Claim 2.2.1. Let H be a k-graph with the µ-fractional property. If H̃ ⊆ H is a

subgraph, then H̃ has the µ-fractional property. That is, the µ-fractional property is

hereditary.

Proof. We may assume that V (H̃) = V (H) by adding some isolated vertices. Let

Y ⊆ V (H) be a finite subset of vertices andw = (w(y))y∈Y a stochastic weight vector.

Since H has the µ-fractional property, there exists an independent set Z ⊆ Y in H

such that
∑

z∈Z w(z) ⩾ µ. The proof now follows because Z is also an independent

set in H̃.

Next we will show the following strengthening of Theorem 2.1.3.

Theorem 2.2.2. For every r ⩾ 2, k ⩾ 3 and µ < k−1
k

there exists an integer

M :=M(r, k, µ) and a simple k-graph G ⊆ H(k,M, µ) satisfying the properties:
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(i) χ(G) > r.

(ii) G has the µ-fractional property.

Proof. Let N0 := N0(r, k, µ) be the integer obtained by Theorem 2.1.3 and let M be

a sufficiently large integer such that

M ⩾ N
3(k+ℓ−1)
0 . (2.6)

Consider the random subgraph Hp ⊆ H(k,M, µ) obtained by selecting each edge

of H(k,M, µ) independently at random with probability p = M3/2−k. Note that the

k-graph H(k,M, µ) has
(
M
ℓ

)
vertices and

(
M

k+ℓ−1

)
edges. Moreover, because each edge

is intersected by at most Mk−2 edges in at least two vertices, the number of pairs

intersecting in at least two vertices can be bounded by

(
M

k + ℓ− 1

)(
k

2

)
Mk−2 ⩽M2k+ℓ−3. (2.7)

Since the number of edges of Hp follows a binomial distribution, by the Chernoff

bounds

|E(Hp)| = (1 + o(1))p

(
M

k + ℓ− 1

)
= Θ(M ℓ+1/2) (2.8)

holds with probability 1− o(1).

Moreover, if Xp is the random variable counting the number of pairs of edges

intersecting in at least two vertices, then by (2.7) we have

E(Xp) ⩽ p2M2k+ℓ−3 =M ℓ.
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Hence, by Markov’s inequality,

P(Xp > 2M ℓ) ⩽
1

2
. (2.9)

Note that each subset A ⊆ [M ] of size N0 induces a subgraph isomorphic to

H(k,N0, µ). By Theorem 2.1.3 any r-coloring of the vertices of H(k,N0, µ) contains

a monochromatic edge. Since there are
(
M
N0

)
subsets of size N0 in [M ] and every

edge is contained in at most
(
M−(k+ℓ−1)
N0−(k+ℓ−1)

)
of those induced graphs, we obtain that any

r-coloring of H(k,M, µ) contains at least

(
M
N0

)(
M−(k+ℓ−1)
N0−(k+ℓ−1)

) = (1 + o(1))

(
M

N0

)k+ℓ−1

(2.10)

monochromatic edges.

Given an r-coloring φ : V (H(k,M, µ)) → [r], let Yφ be the random variable

counting the number of monochromatic edges in Hp. Note that Yp follows a binomial

distribution. Relations (2.6) and (2.10) give us that

E(Yφ) ⩾ (1 + o(1))p

(
M

N0

)k+ℓ−1

= (1 + o(1))
M ℓ+1/2

Nk+ℓ−1
0

⩾ (1 + o(1))M ℓ+1/6.

Therefore, by the Chernoff bounds

P
(
Yφ ⩽

1

2
M ℓ+1/6

)
⩽ e−cMℓ+1/6

for some constant c > 0.

Let E be the event that Yφ ⩾ 1
2
M ℓ+1/6 for every r-coloring φ. A union bound

argument gives that

P(¬E) ⩽ r(
M
ℓ )e−cMℓ+1/6

= o(1). (2.11)
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Combining (2.8), (2.9) and (2.11) yields that

P(E ∧ {Xp ⩽ 2M ℓ} ∧ {|E(Hp)| = Θ(M ℓ+1/2)}) ⩾ 1

2
− o(1).

Therefore, with positive probability, the k-graph H satisfies the event E and has

at most 2M ℓ ≪ 1
2
M ℓ+1/6 pairs of edges intersecting in at least two vertices. Let

G ⊆ Hp be the hypergraph obtained from Hp by deleting all edges in those pairs.

The resulting hypergraph G is simple and yet any r-coloring of [M ]ℓ yields at least

1
2
M ℓ+1/6 − 2M ℓ > 0 monochromatic edges. Thus, χ(G) > r, which proves property

(i). Property (ii) follows from Claim 2.2.1 applied to G and H(k,M, µ).

2.3 Independent sets of shift graphs

Note that the proof of Theorem 2.1.3 uses the fact that ℓ ≫ k. For some of the

applications in Chapter 5 we will require a version of our Theorem for shift graphs

on the pairs of [N ].

The shift graph Sh(2,N) is the graph with vertex set V (Sh(2,N)) = N(2), i.e., the

pairs of natural numbers, and edge set

E(Sh(2,N)) = {{{x, y}, {y, z}} : x < y < z} .

Claim 2.3.1. The shift graph Sh(2,N) has the 1
4
-fractional property.

Proof. Let X ⊆ N(2) be a finite subset of vertices of Sh(2,N) and let w : X → [0, 1]

be a stochastic weight vector. Consider a random coloring c : N → {0, 1}, where each

integer n is colored independently with probability

P(c(n) = 0) =
1

2
.
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Let X0,1 be the random set defined by

X0,1 = {{x, y} ∈ X : x < y and c(x) = 0, c(y) = 1} .

That is, X0,1 are the ordered pairs of X such that the first integer is of color 0 and the

last one of color 1. One can see that X0,1 is an independent set in Sh(2,N). Moreover,

by letting

Z0,1 =
∑

x∈X0,1

w(x).

we have that

E(Z0,1) =
∑

{x,y}∈X

P
(
{c(x) = 0} ∧ {c(y) = 1}

)
w({x, y}) =

∑
{x,y}∈X

1

4
w({x, y}) = 1

4
.

Thus, by the first moment, with positive probability there is a coloring c such that

X0,1 is an independent set satisfying the statement of the claim.

We remark that the constant µ = 1/4 in Claim 2.3.1 is the best possible. This

was proved in a joint paper with Arman and Rödl [2].
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Chapter 3

Pisier type problem for Bh-sets

The content of this chapter was obtained in joint work with Nešeťril and Rödl and is

based on [36].

3.1 A local version of the Pisier problems for sets

In this section we introduce a version of the Pisier problem for finite sets that will be

useful in the proof of Theorem 1.1.5. Let A = {Ai}i∈I be a system of finite sets on

the ground set X. We say that A is h-independent if for any indices J, J ′ ⊆ I with

|J | = |J ′| = h,

⊎
j∈J

Aj ̸=
⊎
j′∈J ′

Aj′ ,

where
⊎

stands for the multiset union operation, i.e., every element is counted ac-

cording to its multiplicity in the operation. For instance, {1, 2}⊎{2, 3} = {1, 2, 2, 3}.

One can see h-independent sets as the analogue of Bh-sets in the context of sets

equipped with the multiset union operation.

In this context, statements (1) and (2) of the Pisier problem can be rewritten as

(1) A is the union of finitely many h-independent set systems.
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(2) There exists ε > 0 such that every finite set system A′ ⊆ A contains a h-

independent subset A′′ with |A′′| ⩾ ε|A′| elements.

The next result shows that statement (2) does not imply statement (1) and conse-

quently these statements are not equivalent.

Theorem 3.1.1. For every h ⩾ 1, there exists ε > 0 and a set system A on the

ground set N with the following two properties:

(i) A is not the union of finitely many h-independent sets.

(ii) Every finite subsystem A′ ⊆ A contains an h-independent set A′′ ⊆ A′ with

|A′′| ⩾ ε|A′| elements.

To prove Theorem 3.1.1 we will use the following result from [35]. A partial Steiner

(k, ℓ)-system G is a k-uniform hypergraph (shortly k-graph) with the property that

every ℓ-element subset of the vertex set of G is in at most one edge. For this problem

all Steiner systems will be ordered, i.e., the vertex set of the graph has a linear order.

We will say that F is a subgraph of G if there is an order preserving injective mapping

φ : V (F ) → V (G) which is a homomorphism. Let S<(k, ℓ) be the class of all ordered

partial Steiner (k, ℓ)-systems. The next result shows that the class of ordered partial

Steiner systems have the Ramsey property.

Theorem 3.1.2 ([35], Theorem 6.2). The class S<(k, ℓ) of all ordered partial Steiner

(k, ℓ)-systems has the edge Ramsey property, i.e., for every F ∈ S<(k, ℓ) and for any

integer r there exists G ∈ S<(k, ℓ) with the property that any r-coloring of the edges

of G yields a monochromatic copy of F .

Proof of Theorem 3.1.1. Let k be an even number and G a k-uniform graph with

vertex set V (G) ⊆ N. On a set N× [k/2] we will construct a set system AG as follows:

For an edge e = {x1, . . . , xk}, with x1 < . . . < xk, define the set Ae ⊆ N× [k/2] given
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by

Ae =

k/2⋃
i=1

[x2i−1, x2i)× {i},

where [a, b) × {i} = {(a, i), (a + 1, i), . . . , (b − 1, i)} denotes the interval of integers

between a and b, with b not included, in the i-th copy of N. With this in mind, we

define the set system AG on the ground set N× [k/2] as

AG = {Ae : e ∈ G}.

N

N
N
N

e

Ae

x1 x2 x3 x4 x5 x6

Figure 3.1: An edge e and its corresponding set Ae

We say that a graph G is h-independent if the associated set system AG is h-

independent, i.e., if there is no subgraph F = {f1, . . . , f2g} ⊆ G such that

g⊎
r=1

Afr =

2g⊎
s=g+1

Afs

for 1 ⩽ g ⩽ h. The following lemma shows that every non h-independent finite

ordered k-partite k-graph has at least two edges with large intersection.

Lemma 3.1.3. Let k > h be integers with k even. Let H be a finite k-partite k-graph

with vertex set V satisfying the following properties:

(i) H is not h-independent.
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(ii) There exists partition V = V1∪. . .∪Vk such that for every edge e = {x1, . . . , xk} ∈

H with x1 < . . . < xk, we have xi ∈ Vi.

Then there exist distinct edges e, f ∈ H such that |e ∩ f | ⩾ k/h.

Proof. Since H is not h-independent, there exists subgraph F = {f1, . . . , f2g} ⊆ H

such that

g⊎
r=1

Afr =

2g⊎
s=g+1

Afs (3.1)

for some 1 ⩽ g ⩽ h. Let F ′ = {f1, . . . , fg} and F ′′ = {fg+1, . . . , f2g}. We claim that

for every x ∈ V , we have degF ′(x) = degF ′′(x).

For (a, i) ∈ N× [k/2] and subgraph E ⊆ H, let

µE(a, i) = |{e ∈ E : (a, i) ∈ Ae}|,

i.e., µE(a, i) is the multiplicity of (a, i) in
⊎

e∈E Ae. The relation (3.1) gives us that

µF ′(a, i) = µF ′′(a, i) (3.2)

for every (a, i) ∈ N× [k/2].

Fix i ∈ [k/2]. We will prove that degF ′(x) = degF ′′(x) for every x ∈ V2i−1 ∪ V2i.

Let x be the minimal integer in V2i−1 ∪ V2i such that the statement is false. Suppose

that x ∈ V2i−1. Let A ⊆ V2i−1, B ⊆ V2i be defined as

A = {a ∈ V2i−1 : a < x},

B = {b ∈ V2i : b < x}.

That is, A and B are the subsets of V2i−1 and V2i with elements smaller than x. If

e = {x1, . . . , xk} ∈ E is an edge such that (x, i) ∈ Ae, then x ∈ [x2i−1, x2i). This
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implies that x2i−1 ∈ A ∪ {x} and x2i /∈ B. Hence,

µE(x, i) =
∑

a∈A,y/∈B

degE({a, y}) + degE(x) =
∑
a∈A

degE(a)−
∑
b∈B

degE(b) + degE(x).

(3.3)

By the minimality of x, we have that degF ′(y) = degF ′′(y) for all y ∈ A∪B. Therefore,

(3.2) and (3.3) gives us that degF ′(x) = degF ′′(x), which is a contradiction. If x ∈ V2i,

then one can show similarly that

µE(x, i) =
∑
a∈A

degE(a)−
∑
b∈B

degE(b)− degE(x)

and the result follows in the same way, which concludes the proof of the claim.

To finish the proof of Lemma 3.1.3 note that by the claim,

∑
f ′∈F ′,f ′′∈F ′′

|f ′ ∩ f ′′| =
k∑

i=1

∑
x∈Vi

degF ′(x) ˙degF ′′(x)

=
k∑

i=1

∑
x∈Vi

deg2F ′(x) ⩾
k∑

i=1

g = kg.

Hence, by averaging, there exist e ∈ F ′ and f ∈ F ′′ such that

|e ∩ f | ⩾ kg

g2
=
k

g
⩾
k

h
.

The next lemma shows that for ℓ ⩽ k/h there exists a partial Steiner (k, ℓ)-system

violating the h-independence condition.

Lemma 3.1.4. For h ⩾ 2, there exists an even integer k and a partial Steiner (k, ℓ)-
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system F = {f1, . . . , f2h} with ℓ ⩽ k/h such that

h⊎
r=1

Afr =
2h⊎

s=h+1

Afs .

Proof. We will construct a k-graph F satisfying the statement for k = 2(h!)2 and

2h(h!)2 vertices. The construction depends on the parity and size of h.

Case 1: h = 2t ⩾ 4.

Let Sh be the set of permutations σ : [h] → [h]. Write Sh = {σ1, . . . , σh!}.

For a pair (i, j) ∈ [h!]2, let Fij = C
(1)
ij ∪ . . . ∪ C

(t)
ij be a labeled 2-graph consisting

of h/2 = t four cycles. For each 1 ⩽ q ⩽ t, we label the C
(q)
ij as follows: Let

V (C
(q)
ij ) = {x1, x2, x3, x4} with x1 < x2 < x3 < x4 and label the edges of the cycle as

in Figure 3.2.

x1 x2

x3 x4

σi(2q − 1)
σi(2q)

σj(2q − 1) + h
σj(2q) + h

Figure 3.2: A four cycle C
(q)
ij

We order the vertices of all C
(q)
ij such that maxV (C

(q)
ij ) < minV (C

(q′)
i′j′ ) if and only

if (i, j, q) <lex (i′, j′, q′) in the lexicographical ordering. This in particular gives us a

total ordering of
⋃

1⩽i,j⩽h! V (Fij). For a fixed Fij, each one of its 4t = 2h edges is

labeled by precisely one of the labels from [2h]. Set Fij = {f 1
ij, . . . , f

2h
ij }, where f s

ij is

the edge of Fij labeled with s.

We finally define the k-graph F as the graph with vertex set V (F ) =
⋃

1⩽i,j,⩽h! V (Fij),

where the ordering of V (F ) respects the total ordering of V (Fij) described above, and
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edge set given by

F =

{
fs :=

⋃
1⩽i,j,⩽h!

f s
ij : 1 ⩽ s ⩽ 2h

}

That is, the graph F consists of 2h edges of size k = 2(h!)2 where the edge fs of F is

the union of all the pairs labeled with s.

We claim that F is a partial Steiner (k, ℓ)-system with ℓ = h(h − 2)!h! + 1 ⩽

2(h− 1)!h! = k/h for h > 2. Let fr and fs be two edges of F such that 1 ⩽ r, s ⩽ h.

Then fr and fs only intersects in the cycles C
(q)
ij such that

{σi(2q − 1), σi(2q)} = {r, s} (3.4)

For each 1 ⩽ q ⩽ t, there are 2(h − 2)! choices of σi satisfying (3.4). Consequently

there are 2t(h − 2)!h! choices of q and σi, σj ∈ Sh such that fr and fs intersects in

C
(q)
ij . Since fr and fs intersects in at most one vertex for each C

(q)
ij we obtain that

|fr ∩ fs| = 2t(h− 2)!h! = h(h− 2)!h!.

A similar computation shows that for 1 ⩽ r ⩽ h and h+ 1 ⩽ s ⩽ 2h

|fr ∩ fs| = h((h− 1)!)2,

and for h+ 1 ⩽ r, s,⩽ 2h

|fr ∩ fs| = h(h− 2)!h!.

Since h(h − 2)!h! > h((h − 1)!)2 for h ⩾ 2, we obtain that F is a partial Steiner

(k, ℓ)-system for ℓ = h(h− 2)!h! + 1.

It remains to show that
⊎h

r=1Afr =
⊎2h

s=h+1Afs . Since k/2 = (h!)2, there exists an
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order preserving bijection φ : [h!]2 → [k/2], where [h!]2 is ordered lexicographically.

Note that

Afr ∩ (N× {φ(i, j)}) =
[
minV (f r

ij),max(V (f r
ij)
)
× {φ(i, j)}

for every 1 ⩽ r ⩽ 2h. Therefore,

h⊎
r=1

Afr =
⋃

1⩽i,j⩽h!

h⊎
r=1

[
minV (f r

ij),max(V (f r
ij)
)
× {φ(i, j)}

=
⋃

1⩽i,j⩽h!

t⋃
q=1

[
minV (C

(q)
ij ),max(V (C

(q)
ij )
)
× {φ(i, j)}

=
⋃

1⩽i,j⩽h!

2h⊎
s=h+1

[
minV (f s

ij),max(V (f s
ij)
)
× {φ(i, j)} =

h⊎
s=1

Afs

since the pairs f r
ij and f

s
ij for 1 ⩽ r ⩽ h and h+ 1 ⩽ s ⩽ 2h cover precisely once the

entire interval of each cycle C
(q)
ij from 1 ⩽ q ⩽ t.

C
(1)
ij C

(2)
ij C

(t)
ij

. . .
Fij :

Figure 3.3: The pairs f r
ij for 1 ⩽ r ⩽ h

Case 2: h = 2t+ 1 ⩾ 3

The constructions is very similar to the previous case. For a pair (i, j) ∈ [h!]2,

let Fij =
⋃t+1

q=1C
(q)
ij be a labeled multigraph consisting of t four cycles and a 2-cycle

C
(t+1)
ij . For each 1 ⩽ q ⩽ t, we label the four cycle C

(q)
ij exactly as in Case 1 (see

Figure 3.2). We define C
(t+1)
ij as the multigraph with two vertices and two edges

labeled as in Figure 3.4.

As in Case 1, we label the vertices of C
(q)
ij such that maxV (C

(q)
ij ) < minV (C

(q′)
i′j′ ) if

and only if (i, j, q) <lex (i
′, j′, q′). Moreover, Fij is a multigraph with 2h edges labeled
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σi(2t+ 1)

σj(2t+ 1) + h

Figure 3.4: The 2-cycle C
(t+1)
ij

in an one-to-one correspondence with [2h]. Write Fij = {f 1
ij, . . . , f

2h
ij }, where f s

ij is

the edge of Fij with label s.

We define F as the k-graph with vertex set V (F ) =
⋃

1⩽i,j⩽h! V (Fij) and edges

F =

{
fs :=

⋃
1⩽i,j⩽h!

f s
ij : 1 ⩽ s ⩽ 2h

}
.

A similar argument as in Case 1 shows that
⊎h

r=1Afr =
⊎2h

s=h+1Afs . Furthermore,

a careful analysis shows that

|fr ∩ fs| = (h− 1)!h!

for 1 ⩽ r, s ⩽ h or h+ 1 ⩽ r, s ⩽ 2h and

|fr ∩ fs| = (h+ 1)((h− 1)!)2.

Thus, F is a partial Steiner (k, ℓ)-system with ℓ = (h+1)((h−1)!)2+1 ⩽ 2(h−1)!h! =

k/h for h > 1.

Case 3: h = 2.

Let F = {f1, f2, f3, f4} be the 8-uniform hypergraph on 16 vertices described in

Figure 3.5, where, for each 1 ⩽ s ⩽ 4, the edge fs is the union of all the pairs labeled

with s. Let the vertices of F be ordered from left to right exactly as shown in Figure

3.5.
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1
2

3
4

1
2

4
3

2

3

1

4

2

4

1

3

Figure 3.5: The graph F for h = 2

Following a similar argument as in Case 1, one can show that Af1⊎Af2 = Af3⊎Af4 .

Moreover, one can also check that |fi ∩ fj| ⩾ 3 for every 1 ⩽ i < j ⩽ 4. Hence, F is

a partial Steiner (k, ℓ)-system with ℓ = 4 = 8/2 = k/h.

Since there is a bijection between N × [k/2] and N, to prove Theorem 3.1.1 we

just need to show that there exists ε > 0 and a k-graph G such that AG satisfies

properties (i) and (ii) of the statement, i.e., a k-graph G such that

(i) Any finite coloring of G contains a monochromatic subgraph F that is not

h-independent.

(ii) Every finite subgraph G′ ⊆ G contains an h-independent subgraph G′′ ⊆ G′

with e(G′′) ⩾ εe(G′).

Let F be the partial Steiner (k, ℓ)-system obtained by Lemma 3.1.4. Given an

integer r, by Theorem 3.1.2, there exists a partial Steiner (k, ℓ)-system Gr such that

any r-coloring of the edges of Gr contains a monochromatic copy of F . Let G =⋃∞
r=1Gr be the union of disjoint copies of Gr for r ⩾ 1. Order the vertex set of

G such that V (G) ⊆ N and maxV (Gr) < minV (Gs) for r < s. We claim that G

satisfies properties (i) and (ii).

For r ⩾ 1, consider an arbitrary r-coloring c : G → [r] of the edges of G. In

particular, c|Gr is an r-coloring of Gr ⊆ G and by Theorem 3.1.2, there exists a

monochromatic copy of F . By Lemma 3.1.4, the graph F is not h-independent,

which proves statement (i).

For statement (ii), let G′ ⊆ G be a finite subgraph of G. We are going to show

that there exists a subgraph H ⊆ G′ with e(H) ⩾ e(G′)/kk such that the vertex set of
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H can be partitioned into V (H) = V1∪ . . .∪Vk satisfying the following: for every edge

e = {x1, . . . , xk} ∈ H with x1 < . . . < xk, we have xi ∈ Vi. Indeed, consider a random

partition V (G′) = V1 ∪ . . .∪ Vk such that every x is chosen to be in Vi independently

with probability 1/k. Thus, if e = {x1, . . . , xk} ∈ G′, then P
(∧k

i=1{xi ∈ Vi}
)
= 1/kk.

Let H be the graph consisting of all the transversal edges e = {x1, . . . , xk} ∈ G

with xi ∈ Vi for 1 ⩽ i ⩽ k. Then

E(e(H)) =
∑

{x1,...,xk}∈G

P

(
k∧

i=1

{xi ∈ Vi}

)
=
e(G′)

kk
,

which by Markov inequality implies that with positive probability one can obtain H

with e(H) ⩾ e(G′)/kk. We claim that such H is h-independent. Suppose to the

contrary that is not. Then by Lemma 3.1.3, there exists edges e, f ∈ H such that

|e ∩ f | ⩾ k/h. However, by Lemma 3.1.4, the graph H ⊆ G is a partial Steiner

(k, ℓ)-system with ℓ ⩽ k/h, which is a contradiction. Therefore, statement (ii) holds

by taking ε = 1/kk and G′′ = H.

3.2 Proof of Theorem 1.1.5

In this section we prove Theorem 1.1.5 and also make partial progress on the original

Pisier problem by answering in the negative a one sided version of the problem.

Proof of Theorem 1.1.5. Let A = {Ai}i∈I be the set system on the ground set N

obtained by Theorem 3.1.1. Let X = {xi}i∈I ⊆ N be the set of integers defined by

xi =
∑
j∈Ai

(h+ 1)j.

Then for two set of indices J, J ′ ⊆ I of size h, we have
∑

j∈J xj =
∑

j′∈J ′ xj′ if and

only if
⊎

j∈J Aj =
⊎

j′∈J ′ Aj′ . This implies that a subset X ′ = {xi′}i′∈I′ ⊆ X is a Bh-

set if and only if the correspondent subfamily A′ = {Ai′}i′∈I′ ⊆ A is h-independent.
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Hence, X satisfies statements (i) and (ii) of Theorem 1.1.5.

For an integer h ⩾ 1, we say that a set X is h-free if equation (1.1) holds for any

distinct subset of indices J, J ′ ⊆ I with |J | ⩽ h (the size of J ′ may be arbitrary). We

are going to prove the following:

Theorem 3.2.1. For every h ⩾ 1 there exists ε > 0 and a set of positive integers X

with the following two properties:

(i) X is not a union of finitely many h-free sets.

(ii) Every finite subset Y ⊆ X contains an h-free set Z with |Z| ⩾ ε|Y | elements.

Proof. Let A = {ai}i∈I ⊆ N be the set of integers and ε > 0 the constant obtained

from Theorem 1.1.5 satisfying statements (i) and (ii). Since A cannot be written as

a finite union of Bh-sets, by a standard compactness argument ([6], Theorem 1) one

can obtain for every r ⩾ 1 a finite set Ar ⊆ A satisfying the following two properties:

(i) Ar is not an union of at most r Bh-sets.

(ii) Every subset B ⊆ Ar contains a Bh-set C ⊆ B with |C| ⩾ ε|B|.

We construct a sequence of finite sets {Wj}∞j=0 satisfying the following: Let Xr =⋃r
j=0Wj.

(i) Xr is not a union of at most r h-free sets.

(ii) Every subset Y ⊆ Xr contains an h-free set Z ⊆ Y with |Z| ⩾ ε|Y |.

Theorem 3.2.1 follows by taking X =
⋃∞

j=0Wj.

Let W0 = {0}. Suppose that we already constructed W0, . . . ,Wr−1 and Xr−1 =⋃r−1
j=0Wj satisfies statements (i) and (ii). We choose nr and mr to satisfy

nr >
∑

x∈Xr−1

x and mr > nr

(
1 +

∑
a∈Ar

a

)
. (3.5)
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Define Wr = {nra + mr : a ∈ Ar} and Xr =
⋃r

j=0Wj = Wr ∪ Xr−1. It remains to

prove that Xr satsifies properties (i) and (ii).

Property (i) follows by the fact that an ℓ-coloring of Xr, for ℓ ⩽ r, is in particular

an ℓ-coloring of Wr. Since there is a bijective linear map from Ar to Wr, we obtain

that the ℓ-coloring in Wr corresponds to an ℓ-coloring in Ar. By construction, this

coloring must contain a monochromatic equation

∑
b∈B

b =
∑
b′∈B′

b

for B,B′ ⊆ Ar with |B| = |B′| = h. Then the equation

∑
b∈B

(nrb+mr) =
∑
b′∈B′

(nrb
′ +mr)

is monochromatic in Wr, which implies that one of the colors classes is not h-free.

In order to prove Property (ii), consider an arbitray subset Y ⊆ Xr. Write

Y = Y ′ ∪ Y ′′, where Y ′ = Y ∩Xr−1 and Y ′′ = Y ∩Wr. By our induction hypothesis,

there exists h-free set Z ′ ⊆ Y ′ with |Z ′| ⩾ ε|Y ′|. Let f : Ar → Wr be the bijective

linear map given by f(a) = nra +mr. By property (ii) of Ar, there exists a Bh-set

C ⊆ f−1(Y ′′) ⊆ Ar with |C| ⩾ ε|f−1(Y ′′)| = ε|Y ′′|. Take Z ′′ = f(C). We claim that

Z = Z ′ ∪ Z ′′ is h-free.

Suppose that
∑

p∈P p =
∑

q∈Q q for some P,Q ⊆ Z. We want to show that

|P |, |Q| > h. Let P = P ′ ∪ P ′′ and Q = Q′ ∪ Q′′ be partitions of the sets such that

P ′ = P ∩Z ′, P ′′ = P ∩Z ′′, Q′ = Q∩Z ′ and Q′′ = Q∩Z ′′. A computation shows that

∣∣∣∣∣∑
p∈P ′′

p−
∑
q∈Q′′

q

∣∣∣∣∣ =
∣∣∣∣∣∣
∑

a∈f−1(P ′′)

(nra+mr)−
∑

b∈f−1(Q′′)

(nrb+mr)

∣∣∣∣∣∣
=

∣∣∣∣∣∣(|P ′′| − |Q′′|)mr + nr

 ∑
a∈f−1(P ′′)

a−
∑

b∈f−1(Q′′)

b

∣∣∣∣∣∣ (3.6)
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Suppose that |P ′′| ≠ |Q′′|, then our choice of nr and mr in (3.5) and equation (3.6)

gives us that

∣∣∣∣∣∑
p∈P ′′

p−
∑
q∈Q′′

q

∣∣∣∣∣ ⩾ mr −

∣∣∣∣∣∣nr

 ∑
a∈f−1(P ′′)

a−
∑

b∈f−1(Q′′)

b

∣∣∣∣∣∣ ⩾ mr − nr

(∑
a∈Ar

a

)
> nr.

Hence, by (3.5) and the fact that P ′, Q′ ⊆ Xr−1,

0 =

∣∣∣∣∣∑
p∈P

p−
∑
q∈Q

q

∣∣∣∣∣ ⩾
∣∣∣∣∣∑
p∈P ′′

p−
∑
q∈Q′′

q

∣∣∣∣∣−
∣∣∣∣∣∑
p∈P ′

p−
∑
q∈Q′

q

∣∣∣∣∣ > nr −
∑
x∈Xr

x > 0,

which is a contradiction. Therefore, |P ′′| = |Q′′|. We also claim that
∑

a∈f−1(P ′′) a =∑
b∈f−1(Q′′) b. Indeed, suppose to the contrary that

∑
a∈f−1(P ′′) a ̸=

∑
b∈f−1(Q′′) b.

Then, by (3.5) and (3.6) we have

∣∣∣∣∣∑
p∈P ′′

p−
∑
q∈Q′′

q

∣∣∣∣∣ =
∣∣∣∣∣∣nr

 ∑
a∈f−1(P ′′)

a−
∑

b∈f−1(Q′′)

b

∣∣∣∣∣∣ ⩾ nr

and we reach a contradiction similarly as in the proof of |P ′′| = |Q′′|. To finish the

proof, note that C = f−1(Z ′′) is a Bh-set. Hence, |P ′′| = |Q′′| > h and consquently

Z is h-free
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Chapter 4

Pisier type problems for arithmetic

progressions

The content of this chapter was obtained in joint work with Christian Reiher and

Vojtech Rödl and is based on [40].

4.1 A modification of Hales–Jewett theorem

We will now describe a modifictation of the Hales–Jewett theorem that is going to be

used in the proof of Theorem 1.1.4. Given an alphabet A = {a1, . . . , aq}, we say that

an n-tuple u = (u(1), . . . ,u(n)) ∈ An is a word of length n in the combinatorial cube

An. A collection of q words L = {u1, . . . ,uq} of length n with ui = (ui(1), . . . ,ui(n))

is a combinatorial line if there exists a partition [n] = ML ∪ FL with ML ̸= ∅ and a

sequence {bs}s∈FL
of elements of A such that

ui(s) =


ai, if s ∈ML,

bs, if s ∈ FL,
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for 1 ⩽ i ⩽ q and 1 ⩽ s ⩽ n. We will usually refer toML as the moving indices of the

combinatorial line L, since for each word in L they correspond to a different letter of

the alphabet. The set FL is the fixed indices of L, because they are constant in every

word of the combinatorial line.

Hales and Jewett [27] proved the following celebrated Ramsey result about com-

binatorial lines.

Theorem 4.1.1 ([27]). Given integers q, r ⩾ 1, there exists an integer N0 := N0(q, r)

such that the following holds for N ⩾ N0. For any alphabet A of size q and any r-

coloring of the combinatorial cube AN , there exists a monochromatic combinatorial

line L ⊆ AN .

Let L(AN) be the set of all combinatorial lines of AN . One can view L(AN) as

the q-uniform hypergraph with vertex set AN and combinatorial lines as edges. With

this interpretation, Theorem 4.1.1 says that χ(L(AN)) > r for any N ⩾ N0(q, r).

Given a hypergraphH, a cycle of length ℓ inH consists of ℓ distinct edges e1, . . . , eℓ

and ℓ distinct vertices x1, . . . , xℓ such that xi ∈ ei ∩ ei+1 for 1 ⩽ i ⩽ ℓ, where the

indices are taken modulo ℓ. The girth g(H) of a hypergraph H is the length of the

shortest cycle in H. A famous result by Erdős, Hajnal and Lovász [8, 9, 31] states that

for any integers k, g, r, there exists a k-graph H with chromatic number χ(H) > r

and girth g(H) > g. We will use the following similar variation for the Hales–Jewett

theorem established in [41].

Theorem 4.1.2 ([41]). Let q, r, g be positive integers and A an alphabet of size q.

Then there exists a integer N := N(q, r, g) and a subgraph H ⊆ L(AN) such that

χ(H) > r and g(H) > g.

In other words, Theorem 4.1.2 says that there exists a subset of combinatorial

lines such that the hypergraph formed by them has high chromatic number and high
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girth. For simplicity, in the remaining of the paper, we will denote the graph obtained

by Theorem 4.1.2 as Lg(A
N) instead of H.

4.2 The partite construction

Our proof of Theorem 1.1.4 will be based on a variant of the partite amalgamation

construction (see [34, 16]). Partite amalgamation is a construction which allows us

to alter one Ramsey type statement into another one. We will use Theorem 2.1.3 and

4.1.2 to prove the following finite form of Theorem 1.1.4.

Theorem 4.2.1. For every k ⩾ 3, r ⩾ 1 and 0 < µ < k−1
k

there is a finite set of

integers X := X(k, r, µ) ⊆ N satisfying the two following properties:

(i) Every r-coloring of X contains a monochromatic APk.

(ii) Every Y ⊆ X contains an APk-free subset Z ⊆ Y with |Z| ⩾ µ|Y |.

Before proving Theorem 4.2.1, which occupies the remainder of this chapter, we

show that Theorem 1.1.4 follows as a corollary of Theorem 4.2.1.

Proof of Theorem 1.1.4. For every r ⩾ 1, let Xr := X(k, r, µ) be the set obtained by

Theorem 4.2.1 with parameters k, r and µ. Let {xr}r⩾1 be a sequence of integers and

{Wr}r⩾1 be a sequence of sets Wr ⊆ N defined as follows: For r = 1, set x1 = 0 and

W1 = X1. For r > 1, let

xr = 2(maxWr−1 +maxXr)

and Wr = Xr + xr = {x+ xr : x ∈ Xr}. It is easy to check that maxWr < minWr+1

for every r ⩾ 1. Set

X =
⋃
r⩾1

Wr.
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We claim that X satisfies the properties of Theorem 1.1.4.

Property (i) follows from the fact that Wr is a linear transformation of Xr and

consequently preserves APk. This in particular implies that any r-coloring of Wr

contains a monochromatic APk. Hence, because X =
⋃

r⩾1Wr, we obtain that any

r-coloring of X contains a monochromatic APk for r ⩾ 1.

To check property (ii), first note that if A ⊆ X is an APk, then A ⊆ Wr for some

r ⩾ 1. This is due to our choice of the quickly increasing sequence {xr}r⩾1. Let

Y ⊆ X be a finite subset. Then there exists an integer t such that Y ⊆
⋃t

r=1Wr.

Write Yr = Wr ∩ Y ⊆ Wr. Since Wr is a linear transformation of Xr, by Theorem

4.2.1 there exists an APk free set Zr ⊆ Yr with |Zr| ⩾ µ|Yr| for 1 ⩽ r ⩽ t. Set

Z =
⋃t

r=1 Zr. We claim that Z ⊆ Y is APk-free with |Z| ⩾ µ|Y |.

Suppose that A ⊆ Z is an APk. Since A ⊆ X, there exists integer r ⩾ 1 such that

A ⊆ Wr. Hence, A ⊆ Zr = Z ∩Wr, which contradicts the fact that Zr is APk-free.

Finally,

|Z| =
t∑

r=1

|Zr| ⩾
t∑

r=1

µ|Yr| = µ|Y |.

4.2.1 Construction of X(k, r, µ)

We devote the rest of the section for the construction of the sets X(k, r, µ). Given

k ⩾ 3, r ⩾ 1 and 0 < µ < k−1
k
, let G be the simple k-graph obtained by Theorem

2.2.2 such that:

(i) χ(G) > r.

(ii) G has the µ-fractional property.

Suppose that V (G) = [n] and m = |E(G)|.
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Our plan is to construct the set X(k, r, µ) by partite construction. This will be

done inductively, by successively constructing the set of integers P0, P1 . . . , Pn. We

start with a set P0 satisfying property (ii) of Theorem 4.2.1. For 1 ⩽ i ⩽ n, the set

Pi will be constructed by amalgamating several copies of Pi−1. The amalgamation

will be done by using the modified version of Hales–Jewett given in Theorem 4.1.2

and in such a way that the new set Pi still satisfies property (ii), while it has new

Ramsey properties. Finally, we set X(k, r, µ) = Pn, which will have both properties

(i) and (ii) of Theorem 4.2.1. Now we go into more details.

Construction of P0

We start with the description of P0. Let E(G) = {e1, . . . , em} be an ordering of the

edges of G, where ej = {x1j, . . . , xkj} for 1 ⩽ j ⩽ m. For 1 ⩽ i ⩽ k and 1 ⩽ j ⩽ m,

set

aij = i(2k)j.

We construct for every vertex t ∈ [n], the set of integers

P0,t = {aij : xij = t}.

That is, P0,t is the set of integers corresponding to the vertex t, where for each edge

containing t we have a unique integer aij depending on the edge ej and the position

of t in ej. Clearly, P0,t is a set of size degG(t). Finally, we set

P0 =
n⋃

t=1

P0,t = {aij : 1 ⩽ i ⩽ k, 1 ⩽ j ⩽ m}.

Note by construction that for every 1 ⩽ j ⩽ m, the set {aij}ki=1 is an arithmetic

progression. Moreover, these are the only arithmetic progressions of length k in P0.
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Indeed, let D = {d1, . . . , dk} be an APk in P0, where ds = is(2k)
js for 1 ⩽ s ⩽ k.

Since ds + ds+2 = 2ds+1 for 1 ⩽ s ⩽ k − 2, we obtain that is(2k)
js + is+2(2k)

js+2 =

2is+1(2k)
js+1 . This implies that js = js+1 = js+2. Hence, D = {i(2k)j}ki=1 = {aij}ki=1

for some 1 ⩽ j ⩽ m.

Graphically, the set of integers P0 can be seen as in Figure 4.1. On the vertical

projection we have our k-graph G with labeled edges {e1, . . . , em}. For each edge ej

we have a corresponding APk given by the set {aij}ki=1. The sets P0,t corresponds to

the horizontal dashed line in the picture. We usually refer to those as musical lines.

Furthermore, if we think of P0 as a k-graph with P0 as the vertex set and edges being

arithmetic progressions of length k, then P0 is a matching.

P0,1

P0,2

P0,3

P0,4

P0,5

P0,6

P0,7

P0,8

e1

e2

e3

G P0

Figure 4.1: A visual representation of P0

Construction of Pi

Next we will describe how to form Pi for i ⩾ 1. Suppose that we already constructed

the set of integers Pi−1 =
⋃n

t=1 Pi−1,t, where Pi−1,t is the musical line of Pi−1 for the

vertex t ∈ [n].

Consider the alphabet A = Pi−1,i of size q = |Pi−1,i|. By Theorem 4.1.2, there

exists an integer N := N(q, r, 3) and a set of combinatorial lines L3 := L3(A
N) =
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L3(P
N
i−1,i) such that L3 has girth greater than 3 and chromatic number greater than

r. We will construct Pi from an auxiliary set of vectors Vi ⊆ PN
i−1.

For a fixed combinatorial line L ∈ L3, let FL and ML be the set of fixed and

moving indices of L and let {bs}s∈FL
be the elements of Pi−1,i corresponding to the

fixed indices. For a ∈ Pi−1, we define the N -dimensional vector va,L ∈ PN
i−1 by

va,L(s) =


bs, if s ∈ FL

a, if s ∈ML

(4.1)

For t ∈ [n], let

Vi,t(L) = {va,L : a ∈ Pi−1,t} ⊆ PN
i−1. (4.2)

Note in particular that by (4.1),

Vi,i(L) = L (4.3)

That is, the set of vectors Vi,i(L) is just the combinatorial line L in the Hales–Jewett

cube PN
i−1,i itself. Let

Vi(L) =
⋃
t∈[n]

Vi,t(L). (4.4)

In order to define Pi, we first consider the family of vectors Vi =
⋃n

t=1 Vi,t, where

Vi,t =
⋃

L∈L3

Vi,t(L) (4.5)

for t ∈ [n] and set T = 2maxPi−1. Now consider the linear mapping ψ : PN
i−1 → N
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given by

ψ(a1, . . . , aN) =
N∑
j=1

ajT
j (4.6)

Finally, define

Pi = ψ(Vi) = {ψ(u) : u ∈ Vi}.

Similarly, we can define Pi(L) = ψ(Vi(L)) and Pi,t = ψ(Vi,t) for t ∈ [n] and L ∈ L3.

Before we proceed, we would like to make the connection between the construction

of Pi and the partite construction a little bit more transparent. We say that two sets

of integers X and Y are equivalent (or X is a copy of Y ), and write X ∼= Y , if there

exists a bijection φ : X → Y and α, β ∈ R such that φ(x) = αx+ β for x ∈ X.

Since φ is a bijective linear mapping, the arithmetic progressions of X are pre-

served under the mapping φ. Therefore, if X has the properties vdW(k, r) or Sz(k, δ),

then Y also has the property vdW(k, r) or Sz(k, δ) as well, justifying the notation

X ∼= Y .

The concept is interesting for us because of the following. Given a combinatorial

line L ∈ L3, we claim that Pi(L) ∼= Pi−1. In view of (4.1), (4.2) and (4.4) we have

that

Vi(L) =
n⋃

t=1

{va,L : a ∈ Pi−1,t}

and hence by (4.6)

Pi(L) = ψ(Vi(L)) = {ψ(va,L) : a ∈ Pi−1} =

{∑
s∈ML

aT s +
∑
s∈FL

bsT
s : a ∈ Pi−1

}

= {αa+ β : a ∈ Pi−1} ∼= Pi−1
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where α =
∑

s∈ML
T s and β =

∑
s∈FL

bsT
s are constants not depending on a ∈ Pi−1.

In particular, this claim implies that Pi =
⋃

L∈L3
Pi(L) is a union of |L3| copies of

Pi−1. A similar computation also shows that Pi,i(L) = ψ(Vi,i(L)) = ψ(L) ∼= Pi−1,i.

Moreover, given two combinatorial lines L,L′ ∈ L3, we have by (4.1), (4.2), (4.3) and

(4.4) that

Vi(L) ∩ Vi(L′) = Vi,i(L) ∩ Vi,i(L′) = L ∩ L′ (4.7)

and consequently Pi(L) and Pi(L
′) only intersect at Pi,i.

Thus, one can interpret the construction of Pi as follows. First, we construct the

musical line Pi,i by creating a Ramsey system {Pi,i(L)}L∈L3 with the property that

any r-coloring of Pi,i contains a monochromatic Pi,i(L) ∼= Pi−1,i. Second, for each

combinatorial line L ∈ L3 we construct a disjoint copy of Pi−1 with musical line Pi−1,i

being precisely Pi,i(L). The union of all those copies is exactly Pi.

Pi−1,i Pi,i

Pi−1

Pi,i(L) ∼= Pi−1,i

Pi(L) ∼= Pi−1

Pi

Figure 4.2: A visual representation of the construction of Pi

4.3 A property of the construction

Before we prove that our set of integers X(k, r, µ) satisfies the statement of Theorem

4.2.1, we will show the following structural property of the construction in Section

4.2. For 0 ⩽ i ⩽ n, let π : Pi → [n] be the projection map defined by π(a) = t if and
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only if a ∈ Pi,t. That is, the map π identifies in which musical line the integer a is

located.

Lemma 4.3.1. Let P0, . . . , Pn be the sets of integers constructed in Section 4.2 and

let G be the simple k-graph obtained by Theorem 2.2.2 used in the construction. Then

the following holds:

(a) For 1 ⩽ i ⩽ n, if A ⊆ Pi is an APk, then A ⊆ Pi(L) for some combinatorial

line L ∈ L3 ⊆ PN
i−1,i.

(b) For 0 ⩽ i ⩽ n, if A ⊆ Pi is a non-trivial APk, i.e., not all the elements are

equal, then π(A) ∈ E(G).

(c) For 0 ⩽ i ⩽ n, if A,B ⊆ Pi are APk, then |A ∩B| ⩽ 1.

Proof. We proceed by induction on i. For i = 0, statements (b) and (c) as it can

be seen in Figure 4.1. Now suppose that 1 ⩽ i ⩽ n. We want to prove that Pi has

properties (a), (b) and (c).

Note that property (a) implies properties (b) and (c). Indeed, if A ⊆ Pi is an APk,

then by property (a) we have that A ⊆ Pi(L) ∼= Pi−1 for some L ∈ L3. Hence, by

induction hypothesis π(A) ∈ E(G), which proves property (b). Similarly, if A,B ⊆ Pi

are APk, then by property (a) we obtain that A ⊆ Pi(L) and B ⊆ Pi(L
′) for L,L′ ∈

L3. If L = L′, then A,B ⊆ Pi(L) ∼= Pi−1 and by the induction hypothesis we have

|A ∩ B| ⩽ 1. Otherwise, A ∩ B ⊆ Pi(L) ∩ Pi(L
′). Since combinatorial lines intersect

in at most one point, we have by (4.7) that

|A ∩B| ⩽ |Pi(L) ∩ Pi(L
′)| = |Vi(L) ∩ Vi(L′)| = |L ∩ L′| ⩽ 1,

which proves property (c).

Thus, it remains to show that Pi satisfies property (a). To simplify the argument,

instead of working with the set of integers Pi, we are going to prove the statement for



44

the set of vectors Vi introduced in Section 4.2. Our choice of bijective linear mapping

ψ : Vi → Pi gives that an arithmetic progression A = {a1, . . . , ak} ⊆ Pi corresponds

to a set of vectors U = {u1, . . . ,uk} ⊆ Vi such that U is an APk in every coordinate.

That is, if uj = (uj(1), . . . ,uj(N)) with uj(s) ∈ Pi−1, then the set {uj(s)}kj=1 is a

(not necessarily non-trivial) APk for every 1 ⩽ s ⩽ N .

Therefore, property (a) is equivalent to showing that if U = {u1, . . . ,uk} is a

collection of vectors that is an APk in every coordinate, then U ⊆ Vi(L) for some

L ∈ L3. Suppose that uj ∈ Vi(Lj) for 1 ⩽ j ⩽ k and L1, . . . , Lk ∈ L3. Our goal is

to prove that L1 = . . . = Lk. For each combinatorial line Lj, let FLj
and MLj

be its

fixed and moving indices.

By the definition of Vi(Lj) (see (4.1) and (4.4)), for each uj = (uj(1), . . . ,uj(N)) ∈

Vi(Lj), there exists cj ∈ Pi−1 such that uj(s) = cj for every s ∈ MLj
. That is,

uj = vcj ,Lj
, where vcj ,Lj

is the vector defined in (4.1). Since uj(s) ∈ Pi−1,i for

s ∈ FLj
, we obtain that the coordinates of uj belong to the set of integers Pi−1,i∪{cj}

for 1 ⩽ j ⩽ k (note that is possible that cj ∈ Pi−1,i). Therefore, the coordinate values

of the entire set of vectors U belong to Pi−1,i ∪ {c1, . . . , ck}.

We claim that for k ⩾ 4 there exists at most one non-trivial APk in Pi−1,i ∪

{c1, . . . , ck}. This comes from the fact that if A is a non-trivial APk in Pi−1,i ∪

{c1, . . . , ck} ⊆ Pi−1, then by property (b) of the induction hypothesis we have that

π(A) ∈ E(G). In particular, this implies that |π(A)| = k and consequently |A ∩

{c1, . . . , ck}| ⩾ k−1. Now if there were another non-trivial arithmetic progressions B

in Pi−1,i ∪ {c1, . . . , ck}, then by the same argument |B ∩ {c1, . . . , ck}| ⩾ k− 1. Hence,

|A∩B| ⩾ k− 2 > 1, which contradicts property (c) of our induction hypothesis since

A,B ⊆ Pi−1.

We remark that the claim made in the previous paragraph does not hold for

k = 3. Unfortunately, in this case we can have more than one non-trivial APk in the

set Pi−1,i∪{c1, . . . , ck} and a special treatment will be required for this case. We split
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the proof now according to the number of non-trivial arithmetic progressions in the

set Pi−1,i ∪ {c1, . . . , ck}.

Case 1: The set Pi−1,i ∪ {c1, . . . , ck} has only trivial arithmetic progressions of length

k.

By our assumption on U , the set {uj(s)}kj=1 is an APk in Pi−1,i ∪ {c1, . . . , ck} for

1 ⩽ s ⩽ N . Since there is no non-trivial APk in Pi−1,i ∪ {c1, . . . , ck}, we obtain that

u1(s) = . . . = uk(s) ∈ Pi−1,i. Hence, u1 = . . . = uk, which implies that U consists of

a single element and consequently there exists L ∈ L3 such that U ⊆ Vi(L).

Case 2: The set Pi−1,i ∪ {c1, . . . , ck} has exactly one non-trivial APk.

Let A be the non-trivial APk. By property (b) of the induction hypothesis, we have

that |π(A)| = k. This in particular, implies that |A∩ Pi−1,i| ⩽ 1 and consequently at

least k − 1 values of {c1, . . . , ck} are not in Pi−1,i. Suppose without loss of generality

that c1, . . . , ck−1 /∈ Pi−1,i and A = {c1, . . . , ck−1, a}, where a ∈ Pi−1,i ∪ {ck}.

We claim that ML1 = . . . = MLk−1
. Let s ∈ ML1 . Since {uj(s)}kj=1 is an APk

and u1(s) = c1, we obtain that either {uj(s)}kj=1 is a trivial arithmetic progression

with uj(s) = c1 for 1 ⩽ j ⩽ k or {uj(s)} = A = {c1, . . . , ck−1, a}. Note that

A = {c1, . . . , ck−1, a} is a non-trivial APk and consequently c1, . . . , ck−1, a are all

distinct integers. Hence, from the fact that uj(s) ∈ Pi−1,i ∪ {cj} we obtain that

uj(s) ̸= c1 for 2 ⩽ j ⩽ k − 1. This implies that

uj(s) =


cj, if 1 ⩽ j ⩽ k − 1,

a, if j = k.

(4.8)

Thus, for 1 ⩽ j ⩽ k − 1, we have that s ∈ MLj
, which yields that ML1 ⊆ MLj

for

2 ⩽ j ⩽ k − 1. By repeating the argument for s ∈ MLj
for 2 ⩽ j ⩽ k − 1, we obtain

that ML1 = . . . =MLk−1
.

Since FLj
= [N ]\MLj

, the last paragraph also implies that FL1 = . . . = FLk−1
= F .
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For 1 ⩽ j ⩽ k − 1, let {b(j)s }s∈FLj
be the sequence of integers in Pi−1,i corresponding

to the fixed indices of Lj. Let s ∈ F . By definition,

uj(s) = b(j)s

for 1 ⩽ j ⩽ k − 1. The set {uj(s)}kj=1 is an APk with at least k − 1 terms belonging

to Pi−1,i. Hence, it is a trivial APk. This implies that

uj(s) = b(1)s (4.9)

for every s ∈ F and 1 ⩽ j ⩽ k. Therefore, by (4.8), (4.9) and the definition of (4.1)

we have that

uj =


vcj ,L1 , if 1 ⩽ j ⩽ k − 1,

va,L1 , if j = k

and consequently U = {u1, . . . ,uk} ⊆ Vi(L1).

Case 3: k = 3 and Pi−1,i ∪ {c1, c2, c3} has at least two non-trivial arithmetic progres-

sions.

We will prove that there is no such vector set U in this case. We first show that

Pi−1,i∪{c1, c2, c3} has exactly two non-trivial arithmetic progressions of length 3. By

property (b) if A ⊆ Pi−1,i∪{c1, c2, c3} is an AP3, then π(A) ∈ E(G) and consequently

it must contain at least two elements of {c1, c2, c3}.

Suppose that A = {c1, c2, c3}. By property (c), if B ⊆ Pi−1,i ∪ {c1, c2, c3} is

another non-trivial AP3, then |A ∩ B| ⩽ 1. This implies that B must contain at

least two elements of Pi−1,i. Hence, π(B) /∈ E(G), which contradicts property (c) of

Pi−1. Therefore, |A∩{c1, c2, c3}| = 2 and by Property (c), there must be at most three

distinct non-trivial arithmetic progression in Pi−1,i. Suppose by contradiction that we
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have three non-trivial arithmetic progressions and let A = {c1, c2, x}, B = {c1, c3, y}

and C = {c2, c3, z} be them, where x, y, z ∈ Pi−1,i. In this case π(c1), π(c2), π(c3)

and π(x) = π(y) = π(z) = i are all distinct vertices of [n]. However, this implies that

|π(A) ∩ π(B)| = 2, which contradicts property (b), since G is a simple 3-graph.

Next assume without loss of generality that A = {c1, c2, x} and B = {c1, c3, y}

are the only two non-trivial AP3’s in Pi−1,i ∪ {c1, c2, c3}, where c1, c2, c3 /∈ Pi−1,i

and x, y ∈ Pi−1,i. Also suppose by contradiction that there exists a set of vectors

U = {u1,u2,u3} ⊆ Vi that is an AP3 in every coordinate of [N ].

Claim 4.3.2. ML2 ∩ML3 = ∅ and ML1 =ML2 ∪ML3

Proof. Let s ∈ ML1 . Then u1(s) = c1. We claim that both u2(s) and u3(s) are

different from c1. Indeed if u2(s) = c1 /∈ Pi−1,i, then necessarily s ∈ ML2 and hence

c1 = c2 = u2(s). This however contradicts that A = {c1, c2, x} is a non-trivial AP3.

Consequently we infer that u2(s) ̸= c1 and similarly (now using B = {c1, c3, y}) we

observe that u3(s) ̸= c1. Since {u1(s),u2(s),u3(s)} is an AP3, u1(s) = c1, u2(s) ̸= c1

and u3(s) ̸= c1, we obtain that either

u2(s) = c2, u3(s) = x or u2(s) = y, u3(s) = c3. (4.10)

This implies that either s ∈ML2 or s ∈ML3 and consequently ML1 ⊆ML2 ∪ML3 .

Now suppose that s ∈ ML2 . By the same argument, {u1(s),u2(s),u3(s)} is a

non-trivial AP3 with u2(s) = c2. Hence,

u1(s) = c1 and u3(s) = x

and therefore s ∈ML1 and s /∈ML3 . This implies that ML2 ⊆ML1 and ML2 ∩ML3 =

∅. Analogously, we have that ML3 ⊆ML1 and then ML1 =ML2 ∪ML3 .

Claim 4.3.2 gives us a partition of the set of indices [N ] = FL1 ∪ ML2 ∪ ML3
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and a neat description of the set of vectors U = {u1,u2,u3} and combinatorial lines

L1, L2, L3 ∈ L3. Let {b(1)s }s∈FL1
be the sequence of integers in Pi−1,i corresponding

to the fixed indices FL1 of L1. Then L2 has fixed indices FL2 = FL1 ∪ ML3 and

corresponding sequence {b(2)s }s∈FL2
of integers in Pi−1,i given by

b(2)s =


b
(1)
s , if s ∈ FL1 ,

y, if s ∈ML3 .

This is because if for some s ∈ FL1 the relation b
(2)
s ̸= b

(1)
s holds, then for such s the

set {u1(s),u2(s),u3(s)} ⊆ Pi−1,i would form a non-trivial AP3 contradicting property

(b) of the induction hypothesis. Similarly in view of (4.10) and the fact that the only

AP3 in Pi−1 ∪ {c1, c2, c3} containing c1 and c3 is B = {c1, c3, y} we infer that b
(2)
s = y

for s ∈ML3 .

Similarly, we conclude that the line L3 has fixed indices FL3 = FL1 ∪ML2 and

corresponding sequence {b(3)s }s∈FL3
given by

b(3)s =


b
(1)
s , if s ∈ FL1 ,

x, if s ∈ML2 .
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Moreover, we have that

u1(s) = vc1,L1(s) =


b
(1)
s , if s ∈ FL1 ,

c1, if s ∈ML2 ∪ML3 ;

u2(s) = vc2,L2(s) =


b
(1)
s , if s ∈ FL1 ,

c2, if s ∈ML2 ,

y, if s ∈ML3 ;

u3(s) = vc3,L3(s) =


b
(1)
s , if s ∈ FL1 ,

x, if s ∈ML2 ,

c3, if s ∈ML3 .

Now note that vx,L1 = vx,L3 , vy,L1 = vy,L2 and vx,L2 = vy,L3 . Since vx,L1 ,vy,L1 ∈

L1; vx,L2 ,vy,L2 ∈ L2 and vx,L3 ,vy,L3 ∈ L3, we have that L1 ∩L3 ̸= ∅, L1 ∩L2 ̸= ∅ and

L2∩L3 ̸= ∅, respectively. Hence, {L1, L2, L3} forms a 3-cycle on L3, which contradicts

the fact that g(L3) > 3.

4.4 Proof of Theorem 4.2.1

We are now ready to prove that the set of integers X(k, r, µ) = Pn satisfies statements

(i) and (ii) of Theorem 4.2.1. First, we will show that our set satisfies the van der

Waerden property.

Proposition 4.4.1. Any r-coloring of X(k, r, µ) contains a monochromatic APk.

Proposition 4.4.1 will be established by the following standard backwards induc-

tion on the partite construction.

Claim 4.4.2. Let P0, . . . , Pn be the set of integers constructed in Section 4.2 and G be

the simple k-graph on n vertices obtained by Theorem 2.2.2 used in the construction.
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Then the following holds for 0 ⩽ i ⩽ n. Every r-coloring of Pn contains a copy of Pi

such that Pi,t is monochromatic for i+ 1 ⩽ t ⩽ n.

Proof. We will proceed by backwards induction on 0 ⩽ i ⩽ n. The statement is

vacuously true for i = n. Suppose that we proved Claim 4.4.2 for i. Now we want to

verify the claim for i− 1. By the induction hypothesis, any r-coloring of Pn contains

a copy of Pi such that Pi,t is monochromatic for i + 1 ⩽ t ⩽ n. Recall that by our

construction

Pi =
⋃

L∈L3

Pi(L),

where each Pi(L) is a copy of Pi−1. Restricting to the i-th musical line, we have that

Pi,i =
⋃

L∈L3

Pi,i(L),

where each Pi,i(L) corresponds by a bijective linear map to the set of vectors Vi,i(L) =

L and therefore Pi,i corresponds to Vi,i = L3. By Theorem 4.1.2, for any r-coloring of

L3, there exists a monochromatic line L ∈ L3. Hence, for any r-coloring of Pi,i, there

exists a combinatorial line L ∈ L3 such that Pi,i(L) is monochromatic. Take Pi(L) as

our copy of Pi−1. By the induction hypothesis we have that Pi−1,t is monochromatic

for i+ 1 ⩽ t ⩽ n, while Pi−1,i is monochromatic since it is equal to Pi,i(L).

Proof of Proposition 4.4.1. By Claim 4.4.2, for any r-coloring of X(k, r, µ) there ex-

ists a copy of P0 such that P0,t is monochromatic for 1 ⩽ t ⩽ n. Define the r-coloring

c : [n] → [r] on the vertices of the auxiliary graph G by letting c(t) be the color of the

monochromatic set P0,t. By Theorem 2.2.2, the k-graph G satisfies χ(G) > r. Hence,

there exists a monochromatic edge e ∈ E(G) with respect to the coloring c. Due to

the construction of P0 (see Figure 4.1), there exists an arithmetic progression A ⊆ P0

such that π(A) = e. Therefore, A is a monochromatic APk with the same color as
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e.

Now we verify that any finite subset of X(k, r, µ) does not have the Szemerédi

property.

Proposition 4.4.3. For every Y ⊆ X(k, r, µ), there exists an APk-free subset of

integer Z ⊆ Y of size |Z| ⩾ µ|Y |.

Proof. Let Y ⊆ X(k, r, µ) = Pn. Consider the partition Y =
⋃n

i=1 Yi, where Yi =

{y ∈ Y : π(y) = i} = Y ∩Pn,i. We define the stochastic weight vector w : [n] → [0, 1]

on the vertices of G by

w(i) =
|Yi|
|Y |

.

Clearly, the vector w is stochastic since

∑
i∈[n]

w(i) =
∑
i∈[n]

|Yi|
|Y |

= 1.

By Theorem 2.2.2, there exists an independent set I ⊆ [n] in G such that

∑
i∈I

w(i) ⩾ µ.

Let Z =
⋃

i∈I Yi. Thus,

|Z| =
∑
i∈I

|Yi| = |Y |
∑
i∈I

w(i) ⩾ µ|Y |.

Moreover, if A ⊆ Z is an APk, then by property (b) of Lemma 4.3.1 the projection

π(A) is an edge of G. However, π(A) ⊆ I, which contradicts the independence of I.

Hence, Z is APk-free.
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Chapter 5

Euclidean configurations

The content of this chapter was obtained in joint work with Vojtech Rödl and is based

on [42].

5.1 Segments are P-Ramsey

We prove in this section that segments are P-Ramsey. In fact, we will prove a stronger

statement. Recall that a weight vector w : X → [0, 1] is stochastical if
∑

x∈X w(x) =

1.

Lemma 5.1.1. Let A be a segment of length a and γ > 0 be a real number. Then

there exists a countable configuration YA ⊆ R∞ satisfying the following:

(i) The set of squares of all distances of points in YA is

{
a2,

a2

1 + γ + γ2
,
(1 + γ2)a2

1 + γ + γ2
,

γ2a2

1 + γ + γ2

}

(ii) YA → (C)r holds for every r ⩾ 1 and finite configuration C ⊆ YA.

(iii) For every finite subconfiguration Y ′ ⊆ YA and stochastic weight vector w : Y ′ →

[0, 1], there exists a configuration Z ⊆ Y ′ with no segments of lenght a such that
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∑
z∈Z w(z) ⩾ 1

4
.

(iv) YA does not contain an equilateral triangle of sides of lenght a.

Proof. Let {ei}∞i=1 be the standard basis of R∞. We construct a configuration YA =

{ye}e∈N(2) ⊆ R∞ by associating to each pair e = {i, j} ∈ N(2), i < j, the point

ye = βei − βγej,

where β = a√
2(1+γ+γ2)

. We claim that the configuration YA satisfies properties (i),

(ii), (iii) and (iv) of Lemma 5.1.1.

Property (i) comes from the fact that given two pairs e = {i, j}, e′ = {i′, j′} ∈ N(2)

the square of the distance between ye and ye′ can assume the following values

||ye − ye′ ||2 =



2β2γ2, if i = i′

2β2, if j = j′

2β2(1 + γ + γ2), if i = j′ or i′ = j

2β2(1 + γ2), if {i, j} ∩ {i′, j′} = ∅

By plugging β = a√
2(1+γ+γ2)

we obtain the set of distances of the statement. Moreover,

another important consequence of the computation is that ||ye − ye′|| = a if and only

if e ∼ e′ in Sh(2,N).

In order to prove (ii), consider a finite configuration C ⊆ YA. Naturally C can be

written as C = {ye}e∈E for some E ⊆ N(2). Since E is finite, there exists an integer

n such that E ⊆ [n](2). An r-coloring of YA corresponds to an r-coloring of N(2). By

Ramsey theorem (Theorem 1.0.1) there exists a set W ⊆ N of size n such that W (2)

is monochromatic. Hence, this configuration C ′ = {ye}e∈W (2) is monochromatic. This

implies property (i), since C ′ contains a copy of C.

To check property (iii), let Y ′ ⊆ YA be a finite subconfiguration of YA. By our
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construction, this corresponds to a finite set X ⊆ V (Sh(2,N)). Let w′ : X → [0, 1] be

the stochastic weight vector given byw′(x) = w(y), where y ∈ Y ′ is the corresponding

point to x ∈ X. Claim 2.3.1 applied to the vector w′ gives us an independent set

I ⊆ X in Sh(2,N) such that
∑

i∈I w
′(i) ⩾ 1

4
. This corresponds to a subconfiguration

Z ⊆ Y ′ with no segments of length a and such that

∑
z∈Z

w(z) ⩾
1

4
.

Finally, property (iv) follows from the fact that an equilateral triangle of sides of

length a corresponds to a triangle in Sh(2,N) and Sh(2,N) is triangle free.

5.2 Robust configurations

One of the main techniques developed in [10] to prove that a configuration is Ramsey

is the product theorem

Theorem 5.2.1 ([10], Theorem 20). Let A and B be finite configurations which are

Ramsey and X, Y ⊆ R∞ be such that X → (A)r and Y → (B)r for every r ⩾ 1.

Then X × Y → (C)r for C ⊆ A×B for every r ⩾ 1.

Unfortunately, it is not clear if a similar statement holds for P-Ramsey configura-

tions. The goal of this section is to develop a partial version of the product theorem

that will enable us to prove Theorems 1.2.3 and 1.2.4.

Definition 5.2.2. We say that a countable configuration Y is robust if for every

finite configuration C with C ⊆ Y we have that Y → (C)r for every r ⩾ 1.

Note for instance, that by property (i) of Lemma 5.1.1 we have the following.

Corollary 5.2.3. Let YA be the configuration obtained by Lemma 5.1.1. Then YA is

a robust configuration.
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The following is our main result in the section. Recall that by B ⊆ A we under-

stand that there exists a copy A′ of A such that B ⊆ A.

Theorem 5.2.4. Let B be a brick and Y be a robust configuration. If F ⊆ B × Y

and F ̸⊆ Y , then F is P-Ramsey.

Theorem 5.2.4 is a consequence of the following lemma.

Lemma 5.2.5. Let Y be a robust configuration, A be a segment and F a finite

configuration with |F | > 1. Then the following holds:

(a) If F ⊆ A× Y and F ̸⊆ Y , then F is P-Ramsey.

(b) If F ̸⊆ A× Y , then there exists a robust configuration Ỹ such that A× Y ⊆ Ỹ

and F ̸⊆ Ỹ .

Proof. Let a be the length of the segment A, also let DY be the set of all distances

in Y and let DF be the set of all distances in F . Consider the field extension L =

Q(a,DY , DF ) of Q, where Q(a,DY , DF ) is the minimal field containing a, DY , DF

and Q. Since DY ∪DF ∪{a} is countable, we have that L is a countable extension of

Q and consequently L ̸= R. Let γ ∈ R be a transcedental number over L, i.e.,

there is no polynomial p ∈ L[x] such that p(γ) = 0 (5.1)

Let YA be the configuration obtained by Lemma 5.1.1 with parameters a and γ.

By property (iii) the set of all square distances is given by

{
a2,

a2

1 + γ + γ2
,
(1 + γ2)a2

1 + γ + γ2
,

γ2a2

1 + γ + γ2

}

Note that while a2 ∈ L, due to the fact that γ is transcedental, the other three

distances are not in L. Indeed, to illustrate, assume for example that a2

1+γ+γ2 ∈ L.
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Then there exists b ∈ L such that

a2

1 + γ + γ2
= b.

This implies that γ is a root of the polynomial p ∈ L[x] given by p(x) = bx2+bx+b−a2,

which contradicts the assumption that γ is transcedental over L.

Before we address statements (a) and (b) of Lemma 5.2.5, we will prove the fol-

lowing claim. Let πA : YA × Y → YA and πY : YA × Y → Y be the projection maps

of YA × Y on YA and Y , respectively.

Claim 5.2.6. Let F ⊆ YA × Y . Then either F ⊆ Y or πA(F ) is a copy of A.

Proof. If πA(F ) is a single point, then F ⊆ Y and there is nothing to do. Thus, we

may assume that |πA(F )| ⩾ 2. Let p, q be two points of F such that p′ = πA(p)

and q′ = πA(q) are distinct. We claim that ||p′ − q′|| = a. Let p′′ = πY (p) and

q′′ = πY (q). Since all distances from points of F and Y are in L, we have that

||p− q||2, ||p′′ − q′′||2 ∈ L. Thus, by Pythagoras theorem we have

||p′ − q′||2 = ||p− q||2 − ||p′′ − q′′||2 ∈ L. (5.2)

On the other hand, by Lemma 5.1.1 we have that

||p′ − q′||2 ∈
{
a2,

a2

1 + γ + γ2
,
(1 + γ2)a2

1 + γ + γ2
,

γ2a2

1 + γ + γ2

}
.

Due to our choice of γ, the value a2 is the only one of the four values in the field L.

Hence, due to (5.2) we have ||p′ − q′|| = a.

Suppose that |πA(F )| ⩾ 3. Then by the previous paragraph, there is an equilateral

triangle of sides of length a in YA, which contradicts property (iv) of Lemma 5.1.1.

Therefore, πA(F ) is a segment of length a.
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Now we prove statement (a) of Lemma 5.2.5. Let F be a finite configuration,

|F | > 1, such that F ⊆ A×Y and F ̸⊆ Y for a segment A and a robust configuration

Y . By Corollary 5.2.3, the configuration YA is robust, where YA is defined with

parameters a and γ satisfying (5.1). We claim that YA × Y testifies that F is P-

Ramsey.

To check property (i) of Definition 1.2.2 we note that since F ⊆ A × Y , then

there exists a finite configuration C such that F ⊆ A×C. Because Y is robust, then

Y → (C)r for every r ⩾ 1. Lemma 5.1.1 gives us that YA → (A)r for every r ⩾ 1.

Thus, by Theorem 5.2.1, we have that YA × Y → (F )r for every r ⩾ 1.

In order to prove property (ii) of Definition 1.2.2, let V ⊆ YA × Y be a finite

subconfiguration. Since V is finite, there exists a finite subconfiguration X ⊆ YA

such that V ⊆ X × Y . We partition V into V =
⋃

x∈X Vx where Vx = π−1
A (x) are the

elements of V that projects to the point x on YA. Let w : X → [0, 1] be the stochastic

weight vector defined by

w(x) =
|Vx|
|V |

.

By property (ii) of Lemma 5.1.1, there exists a subconfiguration Z ⊆ X with no

segments of length a such that

∑
z∈Z

w(z) ⩾
1

4
. (5.3)

Consider the configuration U =
⋃

z∈Z Vz. We claim that U does not contain a copy

of F . Suppose to the contrary that F ⊆ U . Since F ̸⊆ Y , then by Claim 5.2.6

the projection πA(U) contains a segment of length a. However, πA(U) = Z, which
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contains no segment of length a, yielding a contradiction. Moreover, by (5.3)

|U | =
∑
z∈Z

|Vz| =
∑
z∈Z

|V |w(z) ⩾
1

4
|V |,

which proves property (ii) of Definition 1.2.2 with µ = 1
4
. Hence, F is P-Ramsey.

Now we prove statement (b) of Lemma 5.2.5. Suppose that F ̸⊆ A×Y . We claim

that Ỹ = YA×Y is a robust configuration such that F ̸⊆ YA×Y . We first show that

Ỹ is robust. If C ⊆ Ỹ is a finite configuration, then there exist finite configurations

WA ⊆ YA and W ⊆ Y such that C ⊆ WA ×W . Since YA and Y are robust, we have

that YA → (WA)r and Y → (W )r for every r ⩾ 1. By Theorem 5.2.1, we obtain that

Ỹ = YA × Y → (C)r, which proves that Ỹ is robust.

Assume by contradiction that F ⊆ YA × Y . Then by Claim 5.2.6, we either have

that F ⊆ Y or πA(F ) is a copy of A. In both cases, we have that F ⊆ A× Y , which

contradicts the hypothesis.

We are now able to prove Theorem 5.2.4.

Proof of Theorem 5.2.4. Let B be a d-dimensional brick and let Y be a given robust

configuration. We will write B = A1 × . . . × Ad where Ai is a segment. By the

hypothesis of Theorem 5.2.4 we are also given F satisfying F ⊆ B×Y and F ̸⊆ Y . Our

goal is to prove that F is P-Ramsey. For that we will repeteadly apply Lemma 5.2.5.

We will construct a sequence Y0, . . . , Yℓ of robust configurations with the property

that F ̸⊆ Yi, for 0 ⩽ i ⩽ ℓ, as follows. Let Y0 = Y . Suppose that we already

constructed Y0, . . . , Yi. If F ⊆ Ai+1 × Yi, then we stop the process and set ℓ = i.

Otherwise, by statement (b) of Lemma 5.2.5, there exists a robust configuration Ỹ

such that Ai+1 × Yi ⊆ Ỹ and F ̸⊆ Ỹ . Set Yi+1 = Ỹ . A simple induction shows that

for every 1 ⩽ i ⩽ ℓ

A1 × . . .× Ai × Y ⊆ Yi.
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Since F ⊆ B × Y = A1 × . . . × Ad × Y , the process terminates before the d-th step

of the construction, i.e., ℓ < d. This implies that F ⊆ Aℓ+1 × Yℓ and F ̸⊆ Yℓ and by

statement (a) of Lemma 5.2.5, we have that F is P-Ramsey.

A corollary of Theorem 5.2.4 is that bricks are P-Ramsey. In fact, we prove the

slighter stronger statement that in particular implies Theorem 1.2.4.

Corollary 5.2.7. Let B be a brick and F ⊆ B be a subconfiguration with |F | > 1.

Then F is P-Ramsey.

Proof. Suppose that B is d-dimensional brick and write B = A1× . . .×Ad, where Ai

is a segment of length ai and a1 ⩾ . . . ⩾ ad. Let γ > 0 be an arbitrary real number

and let YAd
be the configuration obtained by Lemma 5.1.1 with parameters γ and

ad. Suppose that F ⊆ YAd
. By the minimality of the segment Ad, we have that the

minimum distance between two points in F is at least ad. Moreover, by property (iii)

of Lemma 5.1.1, the diameter of YAd
is exactly ad. Hence, any two points of F have

distance ad. If |F | ⩾ 3, then YAd
contains an equilateral triangle of sides ad. This

contradicts property (iv) of Lemma 5.1.1. Thus, F is a copy of the segment Ad and

in this case F is P-Ramsey by property (ii) and (iii) of Lemma 5.1.1.

Now suppose that F ̸⊆ YAd
. Since Ad ⊆ YAd

, then F ⊆ A1× . . .×Ad ⊆ A1× . . .×

Ad−1 × YAd
. Therefore, F satisfies the hypothesis of Theorem 5.2.4 and we obtain

that F is P-Ramsey.

5.3 Simplices are P-Ramsey

In this section we prove Theorem 1.2.3. The proof follows the ideas from [15, 32].

First, we will introduce the terminology and auxiliary results from those papers. The

main idea will be to prove that any simplex S can be embedded in a product B × Y ,

where B is a brick and Y is a robust configuration.
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To address the robust configuration consider the following definition. Let {ei}i⩾1

be the standard basis of R∞. Given an integer k, a vector c = (c1, . . . , ck) ∈ Rk and

a k-tuple J = (j1, . . . , jk) ∈ N(k), we define the point spread(c, J) ∈ R∞ as

spread(c, J) =
k∑

ℓ=1

cℓejℓ

Given a subset of integers A ⊆ N, one can then define the configuration Spread(c, A)

as

Spread(c, A) = {spread(c, J) : J ∈ A(k)}.

The reason why spread configurations are interesting for us is twofold. One is that

those configurations approximate simplices very well. The second is that it fits well

in the context of P-Ramseyeness (see Claim 5.3.3 below) The next result was proven

in [32]. Given real number ρ > 0, we denote by Sρ(R∞) the sphere of radius ρ in R∞.

For a linear subspace Z ⊆ R∞, let Sρ(Z) = Sρ(R∞) ∩ Z.

Proposition 5.3.1 ([32]). For every δ > 0 and every integer m, there exist an

integer n, k, a k-dimensional vector c = (c1, . . . , ck) ∈ R∞ with ||c|| = ρ and an

m-dimensional subspace Z ⊆ R∞ such that the following holds. For every z ∈ Z,

there is a point y ∈ Spread(c, [n]) such that ||z − y|| < δ.

Since any d-dimensional simplex can be embedded in any d-dimensional vector

space, we obtain the following corollary from Proposition 5.3.1.

Corollary 5.3.2. For δ < ρ/2 and a d-dimensional simplex S = {y0, . . . , yd} of cir-

cumradius ρ(S) = ρ, there exist integers n, k, a k-dimensional vector c = (c1, . . . , ck) ∈

Rk with ||c|| = ρ and a d-dimensional simplex S ′ = {z0, . . . , zd} ⊆ Spread(c, [n]) such

that ||yi − zi|| < δ for 0 ⩽ i ⩽ d.

The second reason is that Spread configurations are robust.



61

Claim 5.3.3. Spread(c,N) is robust.

Proof. Let X ⊆ Spread(c,N) be a finite configuration. Then there exist N and

J = {J1, . . . , Jt} ⊆ [N ](k) such that X = {spread(c, J) : J ∈ J }. Note that there

exists a bijective map φ from Spread(c,N) to N(k) given by φ(spread(c, J)) = J .

Thus, for any finite coloring of Spread(c,N) there is a corresponding coloring of N(k).

By Ramsey’s theorem, there exists A ⊆ N of size N such that A(k) is monochromatic.

Therefore, the configuration Spread(c, A) is monochromatic. The result follows now

since X ⊆ Spread(c, A).

Another important result for our proof is the next characterization of configu-

rations of points in an Euclidean space. Let M = (mij)0⩽i,j⩽d be a symmetric real

matrix with zero entries on the main diagonal. We say that the matrix M is of

negative type if

∑
0⩽i<j⩽d

mijλiλj ⩽ 0 (5.4)

holds for all choices of λ0, . . . , λd with λ0 + . . .+ λd = 0 and λ20 + . . .+ λ2d = 1.

Theorem 5.3.4 ([44]). A finite configuration X = {x0, . . . , xd} with distances dij =

||xi − xj|| can be embedded in the Euclidean space Rd if and only if the matrix M =

(mij)0⩽i,j⩽d given by mij = d2ij is of negative type. Moreover, X is a d-dimensional

simplex if and only if the inequality in (5.4) is strict for all choices of λ0, . . . , λd.

As a consequence of Theorem 5.3.4, we can show that all almost regular simplices

are realizable.

Corollary 5.3.5. Let d be an integer and β, ε > 0 be real numbers such that ε < β
64d2

.

For any symmetric matrix of distances D = {dij}0⩽i,j⩽d satisfying

β − ε ⩽ dij ⩽ β + ε, (5.5)
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there exists a d-dimensional simplex S = {x0, . . . , xd} such that ||xi − xj|| = dij for

every 0 ⩽ i < j ⩽ d.

Proof. Let M = (mij)0⩽i,j⩽d be the symmetric matrix with zero entries in the main

diagonal given by mij = d2ij for i ̸= j. For real numbers λ0, . . . , λd satisfying λ0 +

. . .+ λd = 0 and λ20 + . . .+ λ2d = 1 we have that

0 =

(
d∑

i=0

λi

)2

= 1 + 2
∑

0⩽i<j⩽d

λiλj.

Hence,

∑
0⩽i<j⩽d

λiλj = −1

2
. (5.6)

Thus, by (5.5) and (5.6) we have

∣∣∣∣∣
∣∣∣∣∣ ∑
0⩽i<j⩽d

mijλiλj +
β2

2

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣ ∑
0⩽i<j⩽d

(mij − β2)λiλj

∣∣∣∣∣
∣∣∣∣∣ ⩽ ∑

0⩽i<j⩽d

||mij − β2||

⩽ (d+ 1)2(2εβ + ε2) <
β2

4
.

This implies that
∑

0⩽i<j⩽dmijλiλj < −β2

4
and M is strictly of negative type. There-

fore, by Theorem 5.3.4 there exists a simplex S = {x0, . . . , xd} with ||xi − xj|| = dij

for 0 ⩽ i < j ⩽ d.

Finally, the last auxiliary result shows that any almost regular simplex can be

embedded in a brick.

Theorem 5.3.6 ([15, 32]). For every β, d > 0, there exists a real number η := η(β, d)

such that the following holds. For any simplex S = {w0, . . . , wd} satisfying

β − η ⩽ ||wi − wj|| ⩽ β + η
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for 0 ⩽ i < j ⩽ d, there exists a
(
d+1
2

)
-dimensional brick B with S ⊆ B.

We are now ready to prove Theorem 1.2.3.

Proof of Theorem 1.2.3. To prove that a simplex is P-Ramsey we will apply again

Theorem 5.2.4, now combined with ideas from [15, 32]. We find it convenient to

divide the proof in the next four steps.

Step 1: For a simplex S = {x0, . . . , xd} with circumradius ρ(S) = ρ, we will find a

simplex S1 = {y0, . . . , yd} a small positive real number β such that

||yi − yj||2 = ||xi − xj||2 − β

for all 0 ⩽ i ̸= j ⩽ d. This implies that the circumradius ρ(S1) = ρ′ < ρ.

Let M = (mij)0⩽i,j⩽d be the matrix given by mij = ||xi − xj||2. Since S is a

simplex, by Theorem 5.3.4 there exists γ > 0 such that

∑
0⩽i<j⩽d

mijλiλj ⩽ −γ

for all choices of λ0, . . . , λd with λ0 + . . .+ λd = 0 and λ20 + . . .+ λ2d = 1. Set β = γ
8d2

and let M ′ = (m′
ij)0⩽i,j⩽d be the matrix defined by m′

ij = mij − β for i ̸= j and zero

entries in the main diagonal. Since β(d+ 1)2 ⩽ 4βd2 < γ/2, then

∑
0⩽i<j⩽d

m′
ijλiλj ⩽ −β

∑
0⩽i<j⩽d

λiλj − γ ⩽ β(d+ 1)2 − γ < −γ
2
< 0.

Consequently, M ′ is strictly negative, which implies that there exists a simplex S1 =

{y0, . . . , yd} such that

||yi − yj||2 = m′
ij = ||xi − xj||2 − β (5.7)
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for 0 ⩽ i < j ⩽ d.

Step 2: For δ ≪ β, we find a k-dimensional vector c = (c1, . . . , ck) ∈ Rk and

S2 = {z0, . . . , zd} ⊆ Spread(c, [n]) with ||zi − yi|| < δ for 0 ⩽ i ⩽ d. Moreover,

||zi − zj||2 = ||xi − xj||2 − β ± ε

where ε := ε(β, d) → 0 as δ → 0.

Let η := η(β, d) > 0 be the positive real number given by Theorem 5.3.6, let

ε < min{β/64d2, η} and let δ := δ(η, ρ) be sufficiently small. By Corollary 5.3.2,

there exist integers n, k, a k-dimensional vector c = (c1, . . . , ck) ∈ Rk with ||c|| = ρ′

and a simplex S2 = {z0, . . . , zd} ⊆ Spread(c, [n]) such that ||yi−zi|| < δ for 0 ⩽ i ⩽ d.

Thus, the triangle inequality gives us that

||yi − yj|| − 2δ < ||zi − zj|| < ||yi − yj||+ 2δ. (5.8)

Hence, by combining (5.7) and (5.8)

||xi − xj||2 − β + 4δ2 − 4δ||yi − yj|| < ||zi − zj||2 < ||xi − xj||2 − β + 4δ2 + 4δ||yi − yj||.

Since ||yi − yj|| < 2ρ′ and 4δ2 + 8δρ′ < ε for sufficiently small δ, we have that

||xi − xj||2 − β − ε < ||zi − zj||2 < ||xi − xj||2 − β + ε.

Step 3: We find an “almost” regular simplex S3 = {w0, . . . , wd} satisfying

||wi − wj||2 = ||xi − xj||2 − ||zi − zj||2 = β ± ε

for all 0 ⩽ i ̸= j ⩽ d. Furthermore, there exists a brick B such that S3 ⊆ B.
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This is an easy consequence of our preliminary results. By our choice of ε, Corol-

lary 5.3.5 guarantees that there exists a simplex S3 = {w0, . . . , wd} such that

||wi − wj||2 = ||xi − xj||2 − ||zi − zj||2.

Moreover, by Theorem 5.3.6, there exists a
(
d+1
2

)
-dimensional brick B such that W ⊆

B.

Step 4: We construct a simplex F ∼= S such that F ⊆ B × Spread(c, [n]) and

F ̸⊆ Spread(c, [n]) and apply Theorem 5.2.4.

Let F = {f0, . . . , fd} be the simplex defined by

fi = wi ∗ zi,

where the symbol ∗ stands for the usual concatenation, i.e., if a = (a1, . . . , ar) and

b = (b1, . . . , bs), then a ∗ b = (a1, . . . , ar, b1, . . . , bs). Hence,

||fi − fj||2 = ||wi − wj||2 + ||zi − zj||2 = ||xi − xj||2

for every 0 ⩽ i, j ⩽ d. Thus, the configuration F is a copy of S. Furthermore, by the

construction of F we have that

F ⊆ W × Z ⊆ B × Spread(c,N),

where B is a
(
d+1
2

)
-dimensional brick and Spread(c,N) is a robust configuration (Claim

5.3.3). Since ρ(Spread(c,N)) = ρ′ < ρ = ρ(F ), we obtain that F ̸⊆ Spread(c,N) and

by Theorem 5.2.4 the configuration F ∼= S is P-Ramsey.
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Chapter 6

Concluding remarks

6.1 Pisier type problems for linear system of equa-

tions

Note that an arithmetic progression of length k can be written as a system of homo-

geneous linear equations

xi − 2xi+1 + xi+2 = 0 (6.1)

for 1 ⩽ i ⩽ k − 2. A solution x = {xi}ki=1 to this system in N is an APk. In this

case, the van der Waerden theorem can be seen as the Ramsey statement that any

r-coloring of N contains a solution to the linear system given in (6.1). Similarly,

Szemerédi theorem is the density statement that any subset X ⊆ N with positive

density contains a solution to the system in (6.1). Such concepts can be extended to

any system of linear equations on the integers.

Given a matrix A ∈ Zm×n with integer coefficients, the system of homogeneous

linear equations Ax = 0 is called partition regular if for any finite coloring of N, there

exists a monochromatic solution x = {xi}ni=1 to the system. Examples of partition
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regular systems include the system x1 + x2 = x3 (Schur’s theorem) and arithmetic

progressions (van der Waerden’s theorem). A full characterization of the systems A

that are partition regular was proven by Rado [38, 7].

A similar concept was introduced in [17]. A linear system Ax = 0 is density

regular if any subset X ⊆ N of positive density contains a non-trivial solution of the

system. One can observe that density regular systems are partition regular. However,

the opposite is not true, For instance, the equation x1 + x2 = x3 is partition regular,

but the odd numbers do not contain any solution of it.

It would be interesting to study for which systems of linear equations there exists

a version of Theorem 1.1.4.

Question 6.1.1. Given a system of linear equations Ax = 0 with A ∈ Zm×n are there

integer set X ⊆ N and real number ε > 0 such that

(i) Any finite coloring of X contains a monochromatic solution of Ax = 0,

(ii) For every finite Y ⊆ X, there exists a set Z ⊆ Y with |Z| ⩾ ε|Y | such that Z

does not contain any non-trivial solution to Ax = 0?

We conjecture that such statements should be true for both partition regular and

density regular systems.

6.2 Euclidean considerations

The list of known Ramsey configurations is quite limited. Apart from simplices and

bricks, the most significant result is due to Kř́ıž [28] who proved that regular polygons

are Ramsey. Unfortunately, our method of robust configurations does not apply here.

This leaves us with the following question:

Question 6.2.1. Are regular polygons P-Ramsey?
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Differently from Theorem 1.2.1, the proof in [28] does not provide a density result

for regular polygons. Another interesting question would be to determine if such a

result exists.

Question 6.2.2. Let F be a regular polygon. For every µ > 0, is there a configuration

Y := Y (F, µ) such that any set Z ⊆ Y of size |Z| ⩾ µ|Y | contains a copy of F?

Lastly, another direction of research would be to obtain sharp bounds for the real

number µ in the P-Ramsey definition. It is not hard to show that for a configuration

X with k points we cannot take µ > k−1
k
. However, our proofs of Theorem 1.2.3 and

1.2.4 only give µ = 1
4
. It would be interesting to close the gap for simplices.

Question 6.2.3. Let S be a d-dimensional simplex. What is the largest value of

µ > 0 such that there exists a configuration Y satisfying properties (i) and (ii) of

Definition 1.2.2?
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crete mathematics, volume 26 of Algorithms Combin., pages 613–627. Springer,

Berlin, 2006. doi: 10.1007/3-540-33700-8\ 30. URL https://doi.org/10.

1007/3-540-33700-8_30.

[4] Jean Bourgain. Sidon sets and Riesz products. Ann. Inst. Fourier (Grenoble),

35(1):137–148, 1985. ISSN 0373-0956. URL http://www.numdam.org/item?id=

AIF_1985__35_1_137_0.
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