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Abstract 

 

Applying Weighted Random Forest Algorithm on Metabolic Pathways Selection 

 

By Yi Xiao 

 

Background: Functional analysis using high-resolution liquid chromatography−mass 

spectrometry (LC−MS) data involves data analysis based on metabolic pathways or the genome-

scale metabolic network. It is critical in feature selection and interpretation of metabolomics data. 

One of the main challenges is the lack of the feature identity in the LC−MS data. When matching 

mass-to-charge ratio (m/z) values of the features to theoretical values, some features can be 

matched to multiple known metabolites. When multiple matching occurs, usually only one of the 

matches can be true. Current network/pathway analysis methods ignore the uncertainty in 

metabolite identification, which could lead to some pathways that are not related to disease 

outcome being selected by including erroneously matched features.  

 

Methods: We explored three potential methods based on Random Forest to address the multi-

match issue. All the three approaches attempt to down-weight the contribution of multi-matched 

features to the pathway. (1) Weighted tree approach 1: lowering the tree weight if percent of 

multi-matched features used in the tree is high; (2) weighted tree approach 2: compute tree 

weight based on both feature importance score and the features’ multi-match status; (3) weighted 

sampling approach: apply multi-match status of each feature in variable-importance Random 

Forest, which samples features at each node based on a prior probability.  

 

Results: By conducting a series of simulation studies, we found that (1) using weighted tree 

approach 1, the differentiation between true/false pathways is not significantly different from 

unweighted random forest; (2) using weighted tree approach 2, the weighted random forest show 

significant lower MSE, but still doesn’t out-perform unweighted Random Forest in pathway 

selection; (3) the weighted sampling approach works best on distinguishing between pathway 

with multi-match true features and pathway with no multi-match true features.  

 

Conclusion: the random forest prediction accuracy is not sensitive to the change of tree weight 

based on feature information. The weighted sampling approach works better. We decided to use 

multi-match information and importance score to adjust sampling probability. We expect to see 

the false pathways with more multi-match features to have lower prediction accuracy than the 

true pathways in which only part of true features are multi-match.  
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1. Introduction 

 

1.1 Development of statistical methods for Gene Set Analysis and its application in 

metabolomics 

Given the rapid increase in gene expression, genome-wide association, and 

proteomics/metabolomics studies, a wide range of analytical tools have been developed to 

determine the property of a feature set’s relevant to phenotypes of interest. Most of the methods 

were first developed for gene sets [1]. Owing to the complexity of gene-gene interaction, early 

methods focused more on identifying individual relevant genes functioning on phenotypes of 

interest [2]. However, evaluation of the genes set as a functional unit was importance because 

considering the pathways as a whole can offer easy functional interpretations and help guide the 

selection of genes.  

In common approaches, genes are first ranked according to the evidence for differential 

expression. The top rank genes list is compared to predefined gene sets representing different 

pathways, thus determining which sets are overrepresented [3].  

To determine gene set importance, a gene set statistic is defined to represent its significance in 

relation to the phenotype. Two types of null hypothesis are defined based on questions of interest. 

Q1: Does the average gene in the gene set show the same pattern of association to the phenotype 

as the rest of the gene sets? Q2: Does the gene set contain any gene related to phenotype [4]? 

Because significant gene sets should be distinguished from equally sized randomly chosen gene 

lists, shuffling genes was used to find the background distribution to address Q1. For Q2, 

shuffling phenotypes was used because the focus is testing association with specific phenotypes 

compared to randomly selected phenotype [5]. 
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In the common situation, Q2 is more favored than Q1 because it preserves relationship of genes 

in a gene set, thus addressing correlation to phenotype as a whole.  The current commonly used 

gene-set level statistics include 𝜒2-test, mean test, median test and Wilcoxon rank sum test (WKS 

test). Moreover, significance measurement is based on the validity of analytical background 

distribution. Multiple testing correction also needs to be completed at the end of the process. 

Almost all the test statistics above ignore the correlation between genes within a gene set. 

However, gene regulation on downstream genes plays a crucial role in phenotype change owing 

to the complexity of pathway topology structure [2]. This correlation violates the independent 

assumption required by many statistical models.  

In untargeted LC-MS metabolomics data, one of the main challenges is the lack of the feature 

identity. Features are matched by mass-to-charge ratio (m/z) values to theoretical values of 

known metabolites. Some features can be matched to multiple known metabolites. When multiple 

matching occurs, usually only one of the matches can be true. The multi-match between features 

and the complex correlation between features is a unique challenge when trying to apply gene set 

analysis methodology to metabolomics data [6]. 

 

1.2 Random forest application and advancement 

 

Random forest is a tree-based ensemble learning method widely applied in ‘large p, small n’ 

problems, which account for high-dimension data with features interaction like genomic and 

metabolomic data [7]. To explore the genomic marker associated with phenotypes, variable 

selection or pathway ranking should be performed on high-dimensional correlated genomic data 

among which feature interaction effect is hard to pre-specify. Accordingly, random forest excels 

in performance because of the flexibility of the tree structure to capture interactions and construct 
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complex response surface. Random forest also has a number of adjustable parameters which 

make the construction of the random forest easily controllable. In addition, it is easy to obtain 

cross-validation results with out-of-bag samples [8]. 

Given the training data, random forest is built on many different trees, which makes aggregation 

effective. the difference between the trees relies on two crucial factors: first is best split at each 

node is chosen from random subsets of predictors; the second is each tree is built on a bootstrap 

sample, leaving approximately one-third of the observations as out-of-bag data which then can be 

used for the estimation of accuracy. On the progress of random forest construction, much 

information is yield to interpret data. 

Importance of a variable is defined as Gini index reduction for the variable summed over each 

tree, then divided by the number of trees. Likewise, permutation importance is also frequently 

used for a variable, which randomly permutes the given variable in OOB data and calculates the 

marginal decrease in accuracy. The larger the marginal decrease, the more predictive the variable. 

In addition, proximity is a measure of similarity between samples under unsupervised learning 

situation. This can be used for clustering and missing data imputation[9].  

 

1.3 Weighted random forest  

 

Equal weights for both variables and trees are not all appropriate in situations with some variable 

surpass others in predictive power. This especially true in genomics and metabolomics 

applications, where the majority of variables are irrelevant to the phenotype. A variety of 

weighting methods have been proposed to increase the accuracy of Random Forest. For example, 

when classes of response variable are not balanced, RF classifier tends to bias toward the majority 

class. Weights assigned to each class are applied to node splitting standard and solve the issue of 
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imbalance. In addition, weighted random sampling to choose candidate variables at each node is 

also considered as an efficient approach to boost the overall predictive power. As importantly, 

weight-adjusted voting for ensembles which use iterative weights for sample and trees are a 

practical extension. Moreover, weight incorporating tree accuracy and variable importance has 

also been introduced. These all serve as stimulation for our study [10].  

 

1.4 Applying Random Forest in pathway analysis 

 

Pathway analysis can be conducted using predictive models. The predictive power of a pathway 

on the phenotype can be seen as a reflection of how strongly the pathway is associated with the 

phenotype. This approach, although not as statistical rigorous as some other pathway analysis 

methods, allows maximum flexibility in terms of allowing nonlinear and complex relations 

between features and the phenotype to be considered, which is especially suitable for 

metabolomics data, where dynamic regulations are abundant.  

In this study, we employ Random Forest for pathway analysis, and attempt to incorporate feature 

multi-matching information into the building of the forest. The goal is to differentiate truly 

predictive pathways from those that appear predictive only because some erroneously annotated 

features. If a pathway is truly associated with the phenotype, we expect multiple features 

annotated to the pathway contribute to the prediction using Random Forest, and down-weighting 

those multi-matched features will have a limited impact on the predictive power of the pathway 

overall. On the other hand, if a pathway is not truly associated with the phenotype, and some 

multiple-matched features make it apparently predictive, then down-weighting multi-matched 

features will substantially reduce the predictive power. We explore three different approaches to 

construct weighted Random Forest, and test whether they can achieve our goal.  
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2. Method 
 

2.1 Weighted random forest   

 

Random forest is one kind of ensemble learning, which build a prediction model by combining a 

collection of weak learners. In this case, the task can be broken down into two: develop base 

learners from training data, combine them into a predictor model [11]. In traditional random 

forest algorithm, each tree draws a different bootstrapped sample of N subjects and select m 

variable at random, pick the best split point (variable), and then split the node into two daughter 

nodes. These steps are repeated at each node to form a tree. Then prediction is based on the 

average fit on each tree (regression), or by taking the majority votes from all trees [10].  

However, in our situation, not all variables should contribute equally on the prediction for 

response variable. Accounting for that, the weights based on variables used should be applied on 

each tree.  For the multiple match relationship between LC-MS features and disease-related 

pathway, what we aim to do is lower the weight of trees that contain multiple matched features. 

Hopefully, it will decrease the accuracy of falsely related pathways mostly due to multi-matching, 

and keep truly related pathway as they have highly predictive uniquely matched features. Figure 1 

shows the overall workflow.  
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Figure 1, overall workflow. From the random forest, we extract two pieces of detailed 

information. Each tree is comprised of multiple features, and one feature can be used on multiple 

nodes. We extract usage of features in each tree in the upper-right table. We generate tree weight 

using the table based on the multi-matching status of the features in each tree. We then extract 

prediction of each sample from each tree in the lower-left table, and combine tree weight and tree 

prediction to compute the weighted prediction for each sample.  

 

2.2 Choice of weight  

 

Assuming a data consists of p predictor variables, a binary response variable coded as 0 or 1, 

collected on N subjects.  
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For each tree  𝑗 = 1,… , 𝑛𝑡𝑟𝑒𝑒, 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑠 𝑤𝑗  

𝑛𝑚𝑢𝑙𝑡𝑖: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑡𝑜 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 𝑜𝑛𝑒 𝑝𝑎𝑡ℎ𝑤𝑎𝑦 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒  

𝑛𝑡𝑜𝑡𝑎𝑙: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 

𝑤𝑗 = (1 −
𝑛𝑚𝑢𝑙𝑡𝑖
𝑛𝑡𝑜𝑡𝑎𝑙

)4 

For each subject 𝑖 = 1, … ,𝑁, 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑠 𝑣𝑖 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑂𝐵𝐵 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  𝑣𝑖𝑗   

𝑣𝑖 =
∑ 𝑤𝑗𝑣𝑖𝑗𝐼(𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 𝑖𝑠 𝑂𝑂𝐵 𝑖𝑛 𝑡𝑟𝑒𝑒 𝑗)
𝑛𝑡𝑟𝑒𝑒
𝑗=1

∑ 𝑤𝑗 𝐼(𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 𝑖𝑠 𝑂𝑂𝐵 𝑖𝑛 𝑡𝑟𝑒𝑒 𝑗)
𝑛𝑡𝑟𝑒𝑒
𝑗=1

, 

𝑦̂𝑖 = 𝐼(𝑣𝑖 > 0.5), 

Where I() is the identity function, which takes value 1 when the statement in the parenthesis is 

true, and 0 otherwise. 

 

2.3 Simulation study  

 

2.3.1 Feature level simulations 

 

In order to compare the performance of weighted random forest (wRF) to traditional RF, we 

conducted a simulation study. We simulated dataset that consists of 2000 metabolic features and 

1000 subjects (500 cases and 500 controls), with the disease status coded as (0, 1) representing 

the subject contracted a disease or not. Among the 2000 features, 200 are true predictors.  

We wish to construct a regression model on metabolic feature (𝑋𝑖 : 𝑖 = 1, . .200) in predicting 

disease (𝐷𝑗) status, which is as follows: 

𝐷𝑗 = ∑ 𝑋𝑖𝛽𝑖
200
𝑖=1 + 𝜀, 
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𝑦𝑗 = 𝐼 (𝐷𝑗 > 𝑚𝑒𝑑𝑖𝑎𝑛({𝐷𝑘}𝑘=1,…,1000)) 

Where  𝜀~𝑁(0,1) , 𝑋𝑖  is generated by random sampling from the standard normal distribution, 

 𝛽𝑖 are from random sampling from the uniform distribution on (0, 1) interval.   

 

2.3.2 Simulating the Pathways 

 

We create 50 pathways, among which 10 are true pathway related to disease and the remaining 

are not. For true pathways, we randomly assign a fixed number of true features, with a pre-

specified a number (k) of true features to be strictly non-overlapping with other pathways. The 

purpose of controlling this proportion is to make the proportion of multi-matched features to be 

roughly the same for all pathways. At the same time, a false pathway comprises of features 

randomly sampled from all features. We tune the k parameter and monitor the multi-match 

percentage to keep all pathways nearly the same.  

 

2.3.3 Tune Parameters 

 

In real data, we don’t know which pathway is truly related to the disease and which are not. We 

only observe their proportion of multi-matched features and their predictive power. Thus, in 

simulation, we try to adjust the number of true predictors in the true pathways to check in what 

situation the weighted method works well. Also, when we sample randomly from the feature pool 

for each pathway, the multi-match feature percent should be monitored. If all features were 

randomly sampled, the true pathway will have more multi-matched future, as they all include a 

higher proportion of true features sampled from a small pool. So we control two main parameter:   

𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒 : Number of true predictors in true pathways; 
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𝑟 ∶ Ratio of non-multi match true features in true pathways, 𝑘 = 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ∗ 𝑟  

We run the simulation on 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = 5,10,15,20,25,30 ; 𝑟 = 0.2,0.5,0.6 . All result are the 

average on 50 simulations.  

 

3. Result  
 

3.1 Tree level accuracy is impacted by the number of true predictors involved in the 

tree 

To prove the feasibility of our algorithm, we need to assess whether trees involving more true 

predictors are indeed more predictive. We also observe how the tree accuracy based on OOB 

samples is related to different weights on the tree. We found that the accuracy has a positive trend 

as the percent of true predictor increase, though the relation is quite noisy and non-linear (Figure 

2). The weights in the figure correspond to the following: 

𝑤_𝑡𝑟𝑒𝑒_𝑝𝑜𝑠1 =  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑡𝑟𝑢𝑒            𝑤_𝑡𝑟𝑒𝑒_𝑛𝑒𝑔1 =  1 −  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑡𝑟𝑢𝑒      

       𝑤_𝑡𝑟𝑒𝑒_𝑝𝑜𝑠2 =  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑡𝑟𝑢𝑒^2        𝑤_𝑡𝑟𝑒𝑒_𝑛𝑒𝑔2 =  (1 − 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑡𝑟𝑢𝑒)^2      

  𝑤_𝑡𝑟𝑒𝑒_𝑝𝑜𝑠3 =  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑡𝑟𝑢𝑒^4       𝑤_𝑡𝑟𝑒𝑒_𝑛𝑒𝑔3 =  (1 − 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑡𝑟𝑢𝑒)^4  

As shown on the first row (Figure 2), the accuracy has positive association with percent of true 

predictors in tree. This proves potentially manipulating the tree level output can influence the 

overall accuracy of the random forest. However, the range of tree-level accuracy is widely varied.  
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Figure 2, plot of tree-level accuracy, percent true features, and various weighting 

parameters.  

 

3.2 Examine the number of multi-match feature and number of true predictors 

We examine one multi count plot with r=0.6 (Figure 3). When true predictor=5, 10, 15, 20, all 

show similar level of multi count feature proportions among all pathways. When true predictor= 

25,30, the true pathways tend to have larger multi count proportions. The situation may require 

larger r value. In real data, the number of true predictors in each pathway is expected to be <50%. 

Thus the latter situation may not be as relevant.  
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Figure 3 scatterplot of number of multi-match feature and true predictors for all pathways 

at r=0.6. The last 10 pathways are true pathways. The three columns from left to right are: 

number of true predictors per true pathway, the scatterplot of number of multi-match features for 

each pathway, the scatterplot of the number of true features for each pathway.  

 

3.3 Comparison between wRF and RF in pathway selection 

We next examine whether the weighted method show a better performance in terms of 

differentiating true pathways from false pathways. The OOB accuracy rate was found for each 

pathway, and compared with the pathway labels using Receiver Operating Characteristic (ROC) 

curves and Precision Recall (PR) curves.  
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At r=0.6, the boxplots (Figure 4) for both Precision recall  and ROC curve AUC were created on 

50 simulations for each 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = 5,10,15,20,25,30. In all cases, there is no clear difference 

between the weighted and unweighted results.   

 

 

Figure 4, Boxplots of ROC-AUC and PR-AUC of weighted and unweighted RF.  the six 

boxplot above from left to right, upper to lower are true predictors from 5 to 30 sequentially. The 

fix ratio of r=0.6 is used in all plots. In each box plot, the 4 box from left to right are sequentially 

weighted ROC AUC, unweighted ROC AUC, weighted Precision Recall AUC, and unweighted 

Precision Recall AUC.  

 

This plots of PR-AUC and ROC-AUC for multiple combinations of #true predictors and fix ratios 

(r) shows the AUC has a significant overall increase when the number of true predictor increase 

(Figure 5). The AUC values can be compared on two levels: among different fix ratio and weight 
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vs. traditional. Examining the AUC from ROC curve, the accuracy tends to converge as the true 

predictor increase. However, the AUC from the PR curve shows an inconsistent trend. More 

importantly, the weighted method seems not to have a significant improvement in accuracy.  

 

 

Figure 5, Comparison of ROC-AUC and PR-AUC of weighted and unweighted RF. The 

point and line shape represent different r values; the line color represent different category of 

AUC: pr_int_multi: the Precision-Recall AUC for multi-match weighted method; pr_int_un: the 

Precision-Recall AUC for unweighted method; roc_multi: the ROC curve AUC for multi-match 

weighted method; roc_un: the ROC curve AUC for unweighted method. 
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4. Discussion and Conclusion 

The result does not show significant difference on AUC when we use multi-match information to 

calculate the tree weight. We think it is because most of trees contain one or two multi-match 

nodes. If we down-weight for all the trees, the overall accuracy will not change much. In addition, 

the multi-match information does not include the feature predictive power, it is an information we 

wish to apply on the model.   

We may combine the feature importance score and number of pathway each feature matches to as 

feature weight, and design a formula to convert feature weight into tree weight. This would be 

more precise in utilizing the tree level info.  

 

4.1 Adjust on the formula by adding feature importance 

  

Scheme1: construct tree weight based on multi-match and importance for each feature 

Assume 𝑡𝑟𝑒𝑒𝑗  has used features 𝑓1, 𝑓2, 𝑓3… , 𝑓𝑚  , and feature 𝑓𝑖  matches to 𝜇𝑖 pathways, and its 

importance score calculated from RF is 𝐼𝑖, we can weigh the tree by 

𝑤𝑗 =
log(𝐼1 ∗ 𝐼2 ∗ …∗ 𝐼𝑛) − 𝑟 ∗ 𝑙𝑜𝑔(𝜇1 ∗ 𝜇2 ∗ …∗ 𝜇𝑛  )

𝑛
 

 

Scheme 2: apply R package ‘viRandomForests’ and use multi-match in feature sampling 

probability  

Brief introduction on ‘viRandomForests’:  comparing to traditional random forest which sample 

features with equal probability at each node, the ‘viRandomForests’ samples according to 

variable importance [12]. The default setting samples based on variable importance. We can set 
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sample probability in function by ourselves. This flexibility allows us to add multi-match info 

when constructing sample probability.  

Extract feature importance score 𝐼𝑖, construct the sample probability 𝑓𝑝𝑟𝑜𝑏,𝑖 for the feature 𝑓𝑖, the 

number of pathways 𝑓𝑖 matches is  𝑛𝑚𝑢𝑙𝑡𝑖−𝑖 , d is the total number of features  

𝑤𝑖 =

{
 

 
1

𝑑
+

𝐼𝑖
max (𝐼𝑗)

     𝑖𝑓max(𝐼𝑗) > 0

1

𝑑
                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

   

𝑓𝑝𝑟𝑜𝑏,𝑖 =
𝑤𝑖

𝑛𝑚𝑢𝑙𝑡𝑖−𝑖
 

Our simple workflow summary:  

Run traditional random forest 

Extract feature importance score 

Calculate {𝑓𝑝𝑟𝑜𝑏,𝑖}𝑖=1,…,𝑝   

Run viRandomForests function using {𝑓𝑝𝑟𝑜𝑏,𝑖}𝑖=1,…,𝑝 as sampling probabilities 

  

Scheme 3: A more extreme version of Scheme 2. 

In order to yield more obvious comparison between weighted and unweighted methods, one 

extreme method to decrease the weight of multi-matched feature is to force the feature 

importance  𝐼𝑖  to min(𝐼𝑖 , 𝑖 = 1,… , 𝑝) if  𝑛𝑚𝑢𝑙𝑡𝑖−𝑖>1.  

𝐼𝑖̃ = {
𝐼𝑖       𝑖𝑓 𝑛𝑚𝑢𝑙𝑡𝑖−𝑖 = 1 

min(𝐼𝑖  )    𝑖𝑓 𝑛𝑚𝑢𝑙𝑡𝑖−𝑖 > 1
 

 



P a g e  | 16 

 

𝑓𝑝𝑟𝑜𝑏,𝑖 =

{
 
 

 
 1

𝑑
+

𝐼𝑖̃

max (𝐼𝑖̃)
     𝑖𝑓max(𝐼𝑖̃) > 0

1

𝑑
                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

The workflow follows that of Scheme 2. 

 

4.2 Simple comparison between the schemes 

We create a data contains 100 features among which 10 are true predictors, and a continuous 

outcome variable using a linear model. We calculate MSE using three weighting methods for 

each of the schemes mentioned in section 4.1.  

• w: Weight using only importance score; 

• w.m: Weight using both importance score and multi-match, artificially set all true predictor 

as multi-match, to check whether the MSE will decrease drastically; 

• uw: Unweighted. 

As shown in Figure 6, only scheme 3 showed a significant difference between weighting using 

importance score only and weighting using both importance score and multi-match status. Thus in 

future simulations, scheme 3 is the most promising to separate true pathways from the false ones, 

where false pathway have been assigned to true features but most of them are multi-matched to 

many pathways. We decided to generate multiple pathway data simulation using scheme3. 

4.3 Conclusion 

In conclusion, weighted Random Forest may be a promising method to select important pathways 

in the presence of multi-matching. We have found that weighting by trees is generally not 
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sensitive enough for multi-matching, and weighting by feature sampling probability may be a 

viable approach.  

 

Figure 6, boxplot of MSE generated from the 3 schemes.  The labels 1, 2 and 3 represent 

scheme 1,2,3 respectively. w: Weight using only importance score;  w.m: weight using both 

importance score and multi-match, artificially setting all true predictor as multi-match; uw: 

unweighted.  

 

 

 

w1 w.m1 uw1 w2 w.m2 uw2 w3 w.m3 uw3

1
2

3
4

5
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