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Abstract

Christoffel’s Problem and the Generalized Greens Function for a Shifted Laplacian on the
Hypersphere

By Dallas Albritton

The classical Christoffel’s problem gives rise naturally to an elliptic partial differential equa-
tion ∆h + nh = Φ on the n-dimensional unit sphere Sn, where under certain conditions h
may represent the support function of a non-degenerate convex body in Rn+1 and Φ/n the
mean radius of curvature prescribed on Sn. We construct a closed form of the generalized
Green’s function for the differential operator ∆+n on the hypersphere by reducing the origi-
nal equation to an ordinary differential equation and choosing the undetermined constants in
the correct way. We compare the results with existing expressions for the generalized Green’s
function in the literature and investigate an incorrect claim about the choice of constants.
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1 Introduction

1.1 Christoffel’s Problem

Let F ⊂ Rn+1 be an orientable C2 hypersurface embedded in (n+ 1)-dimensional Euclidean

space. Since F is orientable, it is possible to choose a continuous normal field on F and

calculate the mean radius of curvature Φ: F → R as a continuous function on F . A natural

question is whether or not the above process is somehow reversible. When does a function

describe the mean radius of curvature of some hypersurface? This is the question at the

heart of Christoffel’s problem.

Posed in 1865 by E. B. Christoffel, the classical Christoffel’s problem is usually phrased

in the language of convex bodies. Christoffel sought necessary and sufficient conditions on a

function Φ: Sn → R such that Φ(u) is the mean radius of curvature of a convex surface at the

point where u is the outer unit normal to the surface. Firey solved the classical Christoffel’s

problem in 1967 and the so-called generalized Christoffel’s problem in 1968 [Fir67, Fir68].

The problem was also solved independently by Berg in 1969 [Ber69].

Firey’s answer to Christoffel’s problem involves solving an elliptic partial differential

equation using the generalized Green’s function and asking conditions on the solution such

that it describes the support function of a convex body. Unfortunately, the conditions given

by Firey and Berg would be difficult to verify in practice, in part because the representations

for the Green’s function are not easy to manipulate analytically. It would be beneficial to

have a closed form of the generalized Green’s function, and construction of such an expression

is the primary goal of this paper.

1.2 Content of this Paper

In Section (2), we review basic facts about convex bodies in Rn+1 and the Laplace operator

on the n-dimensional unit sphere Sn. In Section (3), we construct the generalized Green’s

function for the differential operator L = ∆ + n on Sn by determining constants for the
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solution of the ordinary differential equation (12) in the correct way. In the process, we

attempt to make transparent how our expressions satisfy the properties of the Green’s func-

tion. Section (4) compares the expressions derived here to the expression for the generalized

Green’s function given in [Szm07] and discusses a claim cited in [Oli11] relating to choice of

constants for the Green’s function. In Section (5), we summarize the results and present pos-

sible directions for further study. Finally, Section (6) contains justification for the equations

used in the paper.
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2 Preliminaries

2.1 Convex Bodies

We consider Christoffel’s problem in (n + 1)-dimensional Euclidean space with the usual

inner product, denoted 〈·, ·〉. Let Sn be the n-dimensional unit sphere canonically embedded

in Rn+1 and σn denote the surface area of Sn, with explicit formula

σn =
2π(n+1)/2

Γ((n+ 1)/2)
. (1)

Remark. The following facts about convex bodies can be recovered from [Fir67] and [Sch93].

2.1.1 Definitions

Definition (Convex body). A convex body K ⊂ Rn+1 is a compact, convex subset of

(n+ 1)-dimensional Euclidean space.

For our purposes, we always assume that the convex body has nonempty interior. A

convex surface is defined to be the boundary of a convex body, and in the nondegenerate

case, a convex surface is topologically equivalent to Sn.

In order to characterize the boundary of a convex body K, we define the notion of a

support plane to K.

Definition (Support plane). The support plane Hu ⊂ Rn+1 to K with outer normal u ∈ Sn

is the n-dimensional hyperplane such that K is entirely contained on one side of Hu, K and

H have nonempty intersection, and u points into the side of Hu which does not contain K.

The positions of supporting planes to the convex body K can be encoded into a function

known as the support function.

Definition (Support function). Let K ⊂ Rn+1 be a convex body. The support function
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hK : Rn+1 → R of K is defined as

hK(u) = sup
x∈K
〈x, u〉.

When u ∈ Sn, the support function describes the signed distance from the origin to the

support plane Hu of K. Since K is compact and hK is a continuous function, the sup above

is actually a max. This represents that for each u ∈ Sn the support plane Hu with outer

normal u has nonempty intersection with K.

2.1.2 Properties of the Support Function

For all u, v ∈ Rn+1, the support function hK satisfies the following properties:

1. hK(λu) = λhK(u) for all λ ≥ 0, i.e. positive homogeneity of degree 1 and hK(0) = 0

2. hK(u+ v) ≤ hK(u) + hK(v), i.e. subadditivity

These two properties require that the support function is convex. If the subadditivity is

strict, then the support function is strictly convex. Furthermore, any function h : Rn+1 → R

which satisfies the above properties is the support function of some (possibly degenerate)

convex body.

Given a support function hK , we can recover its corresponding convex body K as

K = {x ∈ Rn+1 | 〈x, u〉 ≤ hK(u) for all u ∈ Sn}.

Geometrically, the above process is that of taking the intersection over all u ∈ Sn of the

“inward” sides of support planes Hu with outer normal u, where the inward side is the side

into which u does not point. It follows that every convex body K is uniquely determined by

its support function hK .
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2.1.3 Relation to Christoffel’s Problem

Lastly, if K is a non-degenerate convex body in Rn+1 with support function hK ∈ C3(Rn+1)

and strictly convex, then the Gauss map N : ∂K → Sn is invertible. For u ∈ Sn, the support

function hK satisfies

∇hK(u) = N−1(u)

where ∇ denotes the usual gradient in Rn+1 [Fir68]. Furthermore, the restriction of hK to

Sn satisfies

∆SnhK + nhK = Φ. (2)

Here, ∆Sn denotes the Laplacian on Sn and Φ(u)/n is the mean radius of curvature of ∂K

at the point N−1(u).

Remark. If a function f : Rn+1 → R is positive homogeneous of degree one, then

∆Rn+1f(u) = ∆Snf(u) + nf(u)

when u ∈ Sn (see p. 7 of [Fir67]). Firey solves the partial differential equation using the

expression on the left, while we address the expression on the right.

Equation (2) is the foundation for solving the classical Christoffel’s problem. Before

solving the equation, we must recall some facts about the Laplacian on the hypersphere.

2.2 The Laplacian on the Unit Sphere

We examine C2(Sn) as a normed vector subspace of L2(Sn) endowed with the usual inner

product

〈f, g〉L2 =

∫
Sn
fg dσ.

Recall that C2 is not complete with respect to the L2 norm.

Remark. The following facts about the Laplacian and hyperspherical harmonics can be re-
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covered from [Szm07] and many other reliable sources.

2.2.1 Eigenvalues and Eigenfunctions

Consider the Laplace operator ∆: C2(Sn) → C(Sn) on the hypersphere. It is known that

the operator ∆ has a point spectrum consisting of the eigenvalues

λl = −l(l + n− l) for l ≥ 0.

Let dl denote the dimension of the corresponding eigenspace, with

dl =
(2l + n− 1)(l + n− 2)!

l!(n− 1)!
for l ≥ 1

and d0 = 1. Let {Yl,m} denote the set of normalized eigenfunctions of the Laplacian, where

the first index l represents the corresponding eigenvalue −l(l + n− 1) and the second index

is to distinguish between the dl linearly independent eigenfunctions in each eigenspace. The

functions Yl,m are the hyperspherical harmonics, satisfying the equation

∆Yl,m = −l(l + n− 1)Yl,m for 0 ≤ l, 1 ≤ m ≤ dl.

It is well known that the set {Yl,m} of hyperspherical harmonics comprises an orthonormal

basis for L2(Sn).

The second eigenvalue of the Laplacian is λ1 = −n and has geometric multiplicity d1 =

n+1. It can be shown that the corresponding eigenspace consists of the functions hA = 〈u,A〉

for any A ∈ Rn+1, i.e. Euclidean inner products of u ∈ Sn with the point A [Oli11]. From

the perspective of convex bodies, these are support function of points.
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2.2.2 The Shifted Laplacian

Define the shifted Laplacian L : C2(Sn)→ C(Sn) as

L = ∆ + n.

It is easy to see that the hyperspherical harmonics Yl,m are also the eigenfunctions of the

operator L, while the corresponding eigenvalues are shifted to

λ′n = n− l(l + n− 1).

Since λ1 = −n was an eigenvalue of the original Laplacian, the l = 1 eigenvalue of L is a

null eigenvalue. Its null space spanned by the functions {Y1,m}.

2.2.3 Invertibility on a Subspace

There is hope for inverting the operator L provided we mod out the null space. Consider L

restricted to C2(Sn) \ null(L). Let Φ ∈ Range(L) be L2-orthogonal to the null space of the

operator L. Then the modified problem Lh = Φ restricted from the null space has a unique

solution h ∈ C2(Sn) \ null(L), and the general solution h̄ ∈ C2(Sn) to (2) can be recovered

as

h̄ = h+
n+1∑
m=1

amY1,m = h+ hA,

where hA is the support function of an arbitrary point A ∈ Rn+1. Geometrically, this means

that if the solution h is the support function of a convex body K, then K is unique up to

translation [Fir67].

We can recover the solution by constructing the generalized Green’s function for L, which

is the topic of the next section.
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3 The Generalized Green’s Function for a Shifted Lapla-

cian

3.1 Basic Facts

Remark. In this section, we employ many of the definitions and identities presented in

[Szm07]. In particular, this definition of the generalized Green’s function is from [Szm07].

3.1.1 Definition

The generalized Green’s function G : Sn × Sn → (−∞,∞] for the operator L is a solution

of the partial differential equation

LxG(x, x′) = δ(x, x′)−
n+1∑
m=1

Y1,m(x)Y1,m(x′) (3)

such that G(x, x′) is also L2-orthogonal to the null space of the shifted Laplacian L, i.e.

∫
Sn
G(x, x′)Y1,m = 0 for m = 1, ..., n+ 1. (4)

Here, δ(x, x′) denotes the Dirac delta distribution centered at x′ on the unit sphere.

By properties of spherical harmonics [Szm07], we have the identity

n+1∑
m=1

Y1,m(x)Y1,m(x′) =
n+ 1

(n− 1)σn
C

((n−1)/2)
1 〈x, x′〉 =

n+ 1

σn
〈x, x′〉, (5)

where C
(α)
λ (z) is the Gegenbauer function. Substituting (5) into (3), we conclude that

LxG(x, x′) is given by

∆xG(x, x′)− nG(x, x′) = δ(x, x′)− n+ 1

σn
〈x, x′〉. (6)
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3.1.2 Heuristics

Before delving into the details, we provide a non-rigorous but perhaps illuminating explana-

tion for the action of the generalized Green’s function. Suppose h ∈ C2(Sn) \ null(L) and

Lh = Φ. For every x′ ∈ Sn, the Green’s function recovers h(x′) as follows:

∫
Sn
G(x, x′)Φ(x)dxσ =

∫
Sn
G(x, x′)Lh(x)dxσ =

∫
Sn
LG(x, x′)h(x)dxσ

=

∫
Sn

(
δ(x, x′)− n+ 1

σn
〈x, x′〉

)
h(x)dxσ (7)

= h(x′).

The second equality is due to Green’s second identity on Sn, and the final equality is because

the function h(x) was assumed to be L2-orthogonal to the Euclidean inner product 〈x, x′〉.

In reality, the integrals above are improper and should be treated with care.

3.1.3 Symmetry

A natural choice for the Green’s function on the hypersphere is to write G(x, x′) as a function

of 〈x, x′〉 = cos θ, where θ is the angle between the unit vectors x and x′. Let

G(x, x′) = (g ◦ γ)(x, x′), (8)

where g(θ) : [0, π] → (−∞,∞] is a function of the angle between x and x′ and γ(x, x′) =

arccos(〈x, x〉). Under these assumptions, the generalized Green’s function is symmetric in

the two variables x and x′, as desired.

3.1.4 Singularity

From (6), we observe that the generalized Green’s function is finite-valued for x 6= x′ and

singular whenever x = x′, as per the definition of Dirac delta. The order of the singularity

is determined by the dimension n and must be chosen such that the value h(x′) is recovered



10

exactly.

Remark. We say that the function g(θ) is singular of order n at θ = 0 if g(θ) ∼ C/θn as

θ → 0+ from above. We say that g(θ) has logarithmic singularity if g(θ) ∼ C log θ as θ → 0+.

We now clarify the singularity of G(x, x′) and provide a rigorous argument for the asser-

tion made in (7).

Fix x′ ∈ Sn and choose for convenience a coordinate system in which x′ is the North

pole. Let θ denote the angle descending from the North pole. For arbitrary ε ∈ (0, π), let

Ωε = {x ∈ Sn | arccos(〈x, x′〉) ≥ ε}

denote the subset of Sn with angle greater than ε radians from the North pole. Intuitively,

Ωε is the set Sn with a small hole containing x′ on top. The boundary ∂Ωε of Ωε is an

(n − 1)-dimensional hypersphere with radius sinn−1 ε, surface area (sinn−1 ε)σn−1, and unit

normal

ν(x) =
e1 − x cos ε

sin ε
.

As noted in [Oli11], the derivative ∂/∂ν = −∂/∂θ because of the choice of coordinate system.

Remark. The above construction can also be found in [Fir67].

As before, suppose Lh = Φ is L2-orthogonal to the null space of L. Because G(x, x′) is

singular at x = x′, the integral
∫
Sn
G(x, x′)Φ dxσ is really an improper integral; the approach

is to integrate over Ωε and let ε approach zero from above.

We can apply the second Green’s identity to obtain

∫
Ωε

G(x, x′)[∆xh(x) + nh(x)]dxσ −
∫

Ωε

[∆xG(x, x′) + nG(x, x′)]h(x)dxσ (9)

=

∫
∂Ωε

[
G(x, x′)

∂h(x)

∂νx
− h(x)

∂G(x, x′)

∂νx

]
dxσε.

Already, the second term of (9) converges to zero because on this domain LxG(x, x′) =

−(n+ 1)〈x, x′〉/σn and h(x) is orthogonal to 〈x, x′〉.
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The singularity of G at x = x′ must be such that the third term of (9) goes to zero as

well and the final term recovers h(x′). Indeed, the third term approaches zero as ε becomes

small provided that g(θ) has singularity of order strictly less than n− 1, since

∫
∂Ωε

G(x, x′)
∂h(x)

∂νx
dxσε ≤ σn−1 max

x∈∂Ωε
|∇h(x)|g(ε) sinn−1 ε.

The final term in (9) converges to Ch(x′) for some constant C provided that g(θ) has

singularity of logarithmic order for n = 2 and order n− 2 for n ≥ 3. Write

−
∫
∂Ωε

h(x)
∂G(x, x′)

∂νx
dxσε = σn−1Mh(ε)

dg(θ)

dθ

∣∣∣
θ=ε

sinn−1 ε (10)

where Mh(ε) is the average of h(x) taken over the boundary of Ωε, i.e.

Mh(ε) =

∫
∂Ωε

h(x)dxσε

σn−1 sinn−1 ε
. (11)

Suppose n = 2. If g(θ) has logarithmic singularity, then its derivative has singularity

of order 1. Now suppose n ≥ 3. If g(θ) is singular of order n − 2, then its derivative has

singularity of order n− 1. Under these conditions, the limit of (10) as ε→ 0+ exists and is

given by the product of limits.

σn−1 lim
ε→0+

dg(θ)

dθ

∣∣∣
θ=ε
Mh(ε) sinn−1 ε = Ch(x′).

Ideally, we want the Green’s function such that C = 1 and h(x′) is recovered exactly.

3.2 Reduction to an Ordinary Differential Equation

Remark. The omitted details of this section can be found in [Oli11].

At last, it is time to construct the generalized Green’s function. Under the symmetry

conditions we proposed in (8), i.e. G(x, x′) = (g ◦ γ)(x, x′), the partial differential equation
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(6) reduces nicely to an ordinary differential equation

g′′(θ) + (n− 1) cot θg′(θ) + ng(θ) = −n+ 1

σn
cos θ (12)

on the interval θ ∈ (0, π).

We do not solve the equation (12) here. It is sufficient to report the general solution

deduced from the arguments in [Oli11]:

gn(θ) = cos θ(ĝn + C2)

ĝn(θ) = C1Qn−1 − (In−1 − log | cos(θ)|) /σn. (13)

The functions above are defined as

Ip =

∫
Spdθ

cos2 θ sinp θ
(14)

Sp =

∫
sinp θdθ (15)

Qp =

∫
dθ

cos2 θ sinp θ
. (16)

Also, cos θ and Qn−1(θ) are the solutions of the homogeneous equation on the interval (0, π).

Observe that the log | cos(θ)| term in (13) is singular at θ = π/2 and must somehow be

eliminated. Moreover, the function Qn−1 is singular at θ = 0, π/2, and π and must be scaled

appropriately to the middle term In−1 as to ensure boundedness at θ = π/2 and π. The

constant C1 is responsible for this scaling.

In contrast, the constant C2 does not affect the smoothness g(θ) and is only responsible

for the orthogonality condition (32). In fact, the function G(x, x′) will recover the solution

h(x′) regardless of the choice of C2.
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Remark. For later use, define the functions

Mp =

∫
dθ

sinp θ
(17)

Lq =

∫
dθ

cos θ sinq θ
(18)

. Also, define the double factorial

m!! =


(m)(m− 2) · · · 3 · 1 m odd,m > 0

(m)(m− 2) · · · 2 m even,m > 0

1 else

. (19)

We remark that this paper follows the convention that if the upper index if a sum is less

than the lower index, then the sum is taken to be 0.

In the next sections, we expand each of the integrals in (13) and show how to choose the

constants C1 and C2 to meet these requirements.

3.3 The Case of n Even

Let n > 0 be an even integer. Recall from (13) that we want expressions for Qn−1, Sn−1,

and In−1.

3.3.1 Closed Form for Qn−1

Integrating by parts, we find that

Qp =
1

cos θ sinp+1 θ
+ (p+ 1)Mp+2, p > 0. (20)
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We have a recursive formula for Mq given by

Mp = − cos θ

(p− 1) sinp−1 θ
+
p− 2

p− 1
Mp−2, p > 1 (21)

Using the recurrence (21), the function Mp can be written

Mp = −
(p−1)/2∑
k=1

(p− 2)!!

(p− 1)!!

(2k − 2)!!

(2k − 1)!!

cos θ

sin2k θ
+

(p− 2)!!

(p− 1)!!
log tan(θ/2), p odd (22)

Substitute (22) back into (20). Since log tan(θ/2) = log(1 − cos θ) − log(sin θ), let us write

Qn−1 as

Qn−1 =
1

cos θ sinn−2 θ
−

n/2−1∑
k=1

(n− 1)!!

(n− 2)!!

(2k − 2)!!

(2k − 1)!!

cos θ

sin2k θ
(23)

+
(n− 1)!!

(n− 2)!!
(log(1− cos θ)− log(sin θ))

It is undesirable that the term log(sin θ) is singular at θ = π, so eventually the constant C1

will be chosen such that log(sin θ) cancels out with a logarithmic term in In−1.

3.3.2 Closed Form for Sn−l

Next, we look for an expression for the function Sn−1. Using the recurrence relation

Sp = −sinp−1 θ cos θ

p
+
p− 1

p
Sp−2, p > 0, (24)

it is possible to show that

Sp =−
(p−1)/2∑
k=0

(p− 1)!!

p!!

(2k − 1)!!

(2k)!!
cos θ sin2k θ, p odd. (25)
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3.3.3 Closed Form for In−1

Recall from (14) that

Ip =

∫
Spdθ

cos2 θ sinp θ
.

Substituting (25) into the above equation, the integral Ip only requires computing the integral

for each term, i.e. Lq for odd q. Integration by parts gives the recursion formula

Lq = − 1

(q − 1) sinq−1 θ
+ Lq−2, q > 1. (26)

By applying the recursion (26) over and over, we arrive at an expression for Lq, namely

Lq = log | tan θ| −
(q−1)/2∑
k=1

1

2k sin2k θ
, q odd. (27)

Substitute the expression (27) back into (14) to obtain

In−1 = −
n/2−1∑
k=0

(n− 2)!!

(n− 1)!!

(2k − 1)!!

(2k)!!
Ln−2k−1. (28)

3.3.4 Choice of C1

Now, it is time to cancel the logarithmic terms. It is possible to show by induction that

log | tan θ| terms hidden in (27) and (28) reduce nicely.

−
n/2−1∑
k=0

(n− 2)!!

(n− 1)!!

(2k − 1)!!

(2k)!!
log | tan θ| = log | cos θ| − log sin θ. (29)

Thus, we have cancellation of the log | cos θ| terms in (13) for free!

Next, we choose C1 such that the − log sin θ term in C1Qn−1 (23) cancels the log sin θ

term in −In−1/σn (28). Inspecting the coefficient of − log sin θ in (23), one finds that the

constant C1 should be

C1 =
1

σn

(n− 2)!!

(n− 1)!!
. (30)
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3.3.5 Closed Form for ĝn(θ)

For n even, the function ĝn(θ) in (13) can be represented by

ĝn(θ) =
1

σn

(n− 2)!!

(n− 1)!!

1

cos θ sinn θ
− 1

σn

n/2∑
k=1

(2k − 2)!!

(2k − 1)!!

cos θ

sin2k θ
(31)

+
1

σn
log(1− cos θ)− 1

σn

n/2−1∑
k=0

(n− 2)!!

(n− 1)!!

(2k − 1)!!

(2k)!!

n/2−k−1∑
l=1

1

2l sin2l θ
.

3.3.6 Choice of C2

We choose C2 to fulfill the orthogonality condition (32).

As before, choose coordinates such that x′ is the North pole. Suppose 〈A, x〉 is a func-

tion in the null space of the operator L. Let (x1, ..., xn+1) and (A1, ..., An+1) represent the

components of x and A in the standard basis for Euclidean space. The following steps are

equivalent.

∫
Sn
G(x, x′)〈A, x〉dxσ =

π∫
0

[cos θ(ĝn(θ) + C2)]

∫
∂Ωθ

〈A, x〉dxσε dθ

=

π∫
0

[cos θ(ĝn(θ) + C2)]

∫
∂Ωθ

n+1∑
k=1

Akxk dxσε dθ

= An+1σn−1

π∫
0

[cos θ(ĝn + C2)] cos θ sinn−1 θdθ (32)

Therefore, we must choose C2 such that the numerator in (32) is zero, i.e.

C2 = −
∫ π

0
ĝn(θ) cos2 θ sinn−1 θdθ∫ π
0

cos2 θ sinn−1 θdθ
. (33)

We do not compute this integral explicitly here; this is a direction for possible future work.

Remark. Recall that the choice of C2 does not affect the smoothness of gn(θ) nor the order

of the singularity at θ = 0. Since we ask the forcing term Φ in (9) to be L2-orthogonal to
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the null space of L, the function gn(θ) will recover the solution of Lh = Φ regardless of C2.

3.3.7 The Generalized Green’s Function for n = 2

For the case n = 2, the explicit computation (33) is simple enough. Since the surface area

of the 2-sphere is 4π, we have that

ĝ2 =
1

4π

[
1

cos θ
+ log(1− cos θ)

]
. (34)

Evaluating the definite integrals in (33), it can be shown that C2 = (4/3− log 2)/4π.

The generalized Green’s function in two dimensions is

g2(θ) =
1

4π

[
1 + cos θ

(
log

1− cos θ

2
+

4

3

)]
. (35)

As expected, the singularity is logarithmic. In addition, the equation agrees with the ex-

pression given in [Szm06].

3.4 The Case of n Odd

Suppose n > 1 is an odd integer. As in the previous section, we derive closed form expressions

for Qn−1, Sn−1, and In−1 and show how to choose the constants C1 and C2.

3.4.1 Closed Form for Qn−1

From the formula recursive formula (21) for Mq,

Mp = −
p/2∑
k=1

(p− 2)!!

(p− 1)!!

(2k − 3)!!

(2k − 2)!!

cos θ

sin2k−1 θ
, p even. (36)
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After substituting (36) into the formula (20) for Qn−1, it follows that

Qn−1 =
1

cos θ sinn−2 θ
−

(n−1)/2∑
k=1

(n− 1)!!

(n− 2)!!

(2k − 3)!!

(2k − 2)!!

cos θ

sin2k−1 θ
. (37)

This formula for Qn−1 differs from the formula (23) for even n in that there are no logarithmic

terms to cancel.

3.4.2 Closed Form for Sn−1

Using the recurrence (24) for Sp, we obtain the formula

Sp = −
p/2−1∑
k=1

(p− 1)!!

p!!

(2k)!!

(2k + 1)!!
cos θ sin2k+1 θ +

(p− 1)!!

p!!
(θ − sin θ cos θ), p even. (38)

3.4.3 Closed Form for In−1

Because θ is present in the last term of (38), computing Ip may be more difficult in this case.

As before, it is necessary to know the equations for Lq with q odd given by (18) and (27).

More importantly, we must know the integral of θ/(cos2 θ sinp θ), given by

∫
θdθ

cos2 θ sinp θ
=

θ

cos θ sinp−1 θ
− Lp−1 + p

∫
θdθ

sinp θ
. (39)

The last term in (39) can be integrated as

∫
θdθ

sinp θ
= θMp −

∫
Mpdθ. (40)

We can compute an expression for
∫
Mpdθ by integrating (36) termwise and adjusting the

indices:

∫
Mpdθ =

p/2−1∑
k=1

(p− 2)!!

(p− 1)!!

(2k − 1)!!

(2k)!!

1

2k sin2k θ
− (p− 2)!!

(p− 1)!!
log | sin θ|, p even. (41)



19

Combining the various expressions from before, (28) becomes

Ip = −
p/2−1∑
k=1

(p− 1)!!

p!!

(2k)!!

(2k + 1)!!
Lp−2k−1 (42)

+
(p− 1)!!

p!!

[
θ

cos θ sinp−1 θ
− 2Lp−1 + p

(
θMp −

∫
Mpdθ

)]
, p even.

3.4.4 Cancellation of log Terms

For smoothness when θ 6= 0, we expect that the log | cos θ| terms in ĝn(θ) cancel as in the

previous section, and similarly for the log sin θ terms. Indeed, the log terms taken from the

Lq above reduce nicely:

−
p/2−1∑
k=1

(p− 1)!!

p!!

(2k)!!

(2k + 1)!!
log | tan θ| − 2(p− 1)!!

p!!
log | tan θ| = − log | tan θ|. (43)

The log | sin θ| term in (42) coming from
∫
Mpdθ also reduces nicely once coefficients are

multiplied, resulting in the desired cancellations.

3.4.5 Choice of C1

The constant C1 has not yet been determined. We want to choose C1 such that the limit in

(10)

σn−1 lim
θ→0

dgn(θ)

dθ
sinn−1 θ → 1, (44)

as ε → 0+. Because we want to differentiate, it is useful to consider the original expression

(13). The derivative with respect to θ is given by

dgn(θ)

dθ
=

C1

cos θ sinn−1 θ
− C1 sin θQn−1

− 1

σn

Sn−1

cos θ sinn−1 θ
+

sin θ

σn
In−1 −

1

σn
sin θ(1 + log | cos θ|) (45)

+ C2(cos θ − sin θ).
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Multiplying (45) by σn−1 sinn−1 θ causes every term to vanish under the limit except for the

first term, converging to C1σn−1. Taking

C1 = 1/σn−1, (46)

we conclude that the limit (44) converges to 1, as desired.

3.4.6 Closed Form for ĝn(θ)

Combining all the previous expression, it is possible to write down an expression for ĝn(θ):

ĝn(θ) =

(
1

σn−1

− θ

σn

(n− 2)!!

(n− 1)!!

)
1

cos θ sinn−2 θ

+

(
θ

σn
− 1

σn−1

(n− 1)!!

(n− 2)!!

) (n−1)/2∑
k=1

(2k − 3)!!

(2k − 2)!!

cos θ

sin2k−1 θ
(47)

− 1

σn

(n− 2)!!

(n− 1)!!

[
(n−1)/2−1∑

k=1

(2k)!!

(2k + 1)!!

(n−1)/2−k−1∑
l=1

1

2l sin2l θ

+ 2

(n−1)/2−1∑
k=1

1

2k sin2k θ

]
+

1

σn

(n−1)/2−1∑
k=1

(2k − 1)!!

(2k − 2)!!

1

2k sin2k θ

Remark. The constant C2 is determined by the equation (33), as in the previous section.

3.4.7 The Generalized Green’s Function for n = 3

An explicit formula for g3(θ) is relatively easy to compute. Substituting n = 3 into the

expression (47), we find that

ĝ3(θ) =
(1− 2 cos2 θ)(π − θ)

4π2 cos θ sin θ
. (48)

With the help of a computer algebra system, we determine the constant C2 = 1/8π2.
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The generalized Green’s function in three dimensions is

g3(θ) =
(1− 2 cos2 θ)(π − θ)

4π2 sin θ
+

cos θ

8π2
. (49)

Note that the singularity is of order one, as desired. The expression (49) agrees with the

expression given in [Szm07].
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4 Comparison of Closed Form Expressions

4.1 Reduction From Spectral Expansion [Szm07]

In [Szm07], Szmytkowski constructs a closed form of the (generalized) Green’s function for

a more general operator

H(λ)
Sn = ∆ + λ(λ+ n− 1)

on the hypersphere, with λ any complex number. The operator H(λ)
Sn is known as the

Hemholtz operator on the hypersphere, for which our operator L = ∆ + n is the special

case λ = 1. However, his expressions are in terms of higher functions. It would be informa-

tive to reduce and compare them with the expressions discovered in this paper.

It is known that the generalized Green’s function for the Hemholtz operator with a null

eigenvalue can be expanded in the basis of hyperspherical harmonics. Szmytkowski was able

to manipulate the spectral expansion to construct a closed form for the generalized Green’s

function in terms of Gegenbauer polynomials C
(α)
k (z).

4.1.1 Closed Form for n Even

Suppose n = 2m for m ≥ 1. As recovered from [Szm07], the generalized Green’s function

for the operator L is

G(x, x′) =
1

σn

[
〈x, x′〉

(
log

1− 〈x, x′〉
2

+
n∑

l=m+1

2

l
+

1

n+ 1

)
+

2

n

]
(50)

− (m− 1)!

(n− 1)!!σn

m−1∑
k=1

(n− 2k − 3)!!

k(m− k − 1)!

C
(m−k−1/2)
k+1 (〈x, x′〉)
(1− 〈x, x′〉)k

.

The main advantage of the expression (50) derived in Szmytkowski’s paper is that the

regularity of the Green’s function is made transparent, since the terms with singularity are

functions of 1−〈x, x′〉. The singularity is of correct order because (1− cos θ) ∼ (sin2 θ)/2 as

x → x′. For n = 2, the summation drops out and the logarithmic singularity is recovered.



23

Because (50) must also satisfy the ordinary differential equation (12) and there is a unique

way to choose the constants C1 and C2, some algebraic manipulations should transform (50)

into the equation for gn(θ) recovered in this paper for the case of even dimension.

4.1.2 Closed Form for n Odd

Now suppose n = 2m+ 1 for m ≥ 1. The generalized Green’s function for L is given by

G(x, x′) =
1

(m+ 1)σn

m∑
k=0

(−1)k

2kk!
C

(m−k+1)
k (〈x, x′〉)Xk(−〈x, x′〉)

− 〈x, x′〉
2(m+ 1)σn

, (51)

where the singularity is hiding in the expression

Xk(x) =
dk

dxk

(√
1− x2 arccosx

)
for x ∈ R. (52)

In this case, the order of the singularity in (51) is somewhat obscured, whereas it is more

explicit in the formula (47) derived here. This is an advantage of the expression derived

in this paper over the general expression found in [Szm07]. Again, because G(x, x′) must

satisfy the equation (12), some algebraic manipulations should show that the expression (51)

is equal to the expression for gn(θ) found in this paper.

4.2 Construction in [Oli11]

In [Oli11], the differential equation (12) is replaced by a variant, namely

g′′(θ) + (n− 1) cot θg′(θ) + ng(θ) = a cos θ. (53)
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for some constant a undetermined. The general solution to the differential equation is given

by

gn,a(θ) = cos θ(ĝn + C2)

ˆgn,a(θ) = C1Qn−1 +
a

n+ 1
(In−1 − log | cos(θ)|) . (54)

The expression (13) is recovered for a = −(n+ 1)/σn.

4.2.1 A Note About Uniqueness

Suppose gn,a satisfies the differential equation equation (53) on (0, π) for a and gn,a′ satisfies

the equation for a′. Define

D(θ) = a′gn,a(θ)− agn,a′(θ). (55)

It is clear that D(θ) satisfies the homogeneous equation

LD(θ) = 0

on the interval (0, π), which implies that

D(θ) = K1 cos θ +K2Qn−1(θ)

for some constants K1, K2 ∈ R. Moreover, if both gn,a and gn,a′ are continuous on (0, π],

then K2 must be zero and gn,a must be a multiple of gn,a′ , up to a cos θ term.
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4.2.2 Choice of the Constant a

There is a claim reproduced in [Oli11], originating in another paper, that one should first

set C1 = 1 and then let

a =



−3 n = 2

−2m+2

π
n = 2m+ 1 for m ≥ 1

− 1
3(m/2)−2

(n+1)!!
(m−1)!!

n = 2m,m > 1 even

− 2
3(m−1)

(n+1)!!
(m−2)!!

n = 2m,m > 1 odd.

. (56)

The claim is that gn,a(θ) with this choice of constants recovers the solution to the partial

differential equation (2) such that the solution is scaled by some constant C which depends

only on the dimension. We want to analyze and eventually rebut the above claim: The

choice of a given above is not correct except in the case n = 2.

4.2.3 The Case of n Even

The claim should be easy to check for even n > 2 because the ratio R = a/C1 must be such

that the log | sin θ| terms in Qn−1 and In−1 cancel. The desired ratio R is determined by C1

chosen in (30) and a = −(n+ 1)/σn:

R = −(n+ 1)!!

(n− 2)!!
. (57)

Let us compare the correct ratio R and the ratio a/C1 given in the claim. Recall that

the claim assumes that C1 = 0. We compare the left and right hand expressions of

(n− 2)!! and (3(m/2)− 2)(m− 1)!! m even, (58)

(n− 2)!! and (3m− 1)m!!/2 m > 1 odd. (59)
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It is clear that neither is an equality in general, e.g. take m = 2 and m = 3, respectively. In

particular, the left and right expressions are never equal for the given values of m.

Lastly, for the case n = 2, the ratio R = −3 by substituting into (57).

4.2.4 The Case of n Odd

Suppose n = 2m+ 1 and gn,a is finite valued at θ = π. We can examine the ratio R = a/C1,

as before. For our choice of C1 = 1/σn−1 in (46) and a = −(n+ 1)/σn, we have

R = −(n+ 1)

π

4mm!m!

(n− 1)!
6= −2m+2

π
. (60)

We conclude that the choice of a reproduced in [Oli11] is not correct except in the case

n = 2.
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5 Conclusion

In this paper, we introduced a linear partial differential equation arising naturally in the ge-

ometric context of Christoffel’s problem. With some perseverance, we constructed the gener-

alized Green’s function for the corresponding differential operator ∆ +n on the n-dimension

unit sphere by solving an ordinary differential equation and choosing the constants in the

correct way. Expanding the integrals and justifying the choice of C1 was the main original

contribution of this paper. Following the construction, we compared the expressions devel-

oped in this paper to the existing expressions in [Szm07]. Moreover, we examined a curious

expression cited in [Oli11] as to what the choice of constants should be for the generalized

Green’s function, and the expression was shown to be incorrect in general. Investigating this

last point was the main motivation for this paper, and it serves as a reminder for the author

that the mathematical literature is imperfect.

5.0.5 Further Work

There are some obvious directions for further investigation into the generalized Green’s

function derived in this paper. The most obvious is that we did not compute a satisfying

expression for the constant C2 chosen in (33). Knowing explicitly the constant C2 is not vital

for solving the partial differential equation, but it does restore uniqueness to the function

gn(θ) and allows expressions for gn(θ) to be compared more easily.

Another possible direction is to manipulate the expressions (50) and (51) given in [Szm07]

to collapse with the respective expressions derived in this paper, since the expressions are

known to be equal a priori, barring mistakes. In the case of n even, the equation (50) should

reduce with some computational persistence. For n odd, reducing the expression (51) could

be more difficult because of its dependence on the function Xk(x) defined in (52). Perhaps

such manipulations would be best approached with a computer algebra system on hand.

Lastly, it could be interesting from a numerical standpoint to use the generalized Green’s

function to compute solutions to the equation (2) and visualize them for low dimensions.
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The Green’s function would have to be numerically optimized to maximize accuracy and

minimize the number of operations, especially for large n. The issue of integrating G(x, x′)

near the singularity would be another hurdle. How would a computational method based

on the Green’s function fair against standard finite element methods for solving partial

differential equations? Perhaps these considerations could generate a whole research project

by themselves.

5.0.6 Acknowledgments

The author would like to thank Vladimir Oliker for serving as the advisor for this project,

and David Borthwick and Fereydoon Family for serving on the thesis committee.



29

6 Appendix

6.1 Formulas From [Szm06] and [Szm07]

6.1.1 The Case n = 2

From Equation (4.1) in [Szm06], the generalized Green’s function of the Hemholtz operator

for λ = 1 in two dimensions is

G(x, x′) =
1

4π
P1(〈x, x′〉)

[
log

1− 〈x, x′〉
2

+
4

3

]
+

1

4π
P0(〈x, x′〉)

=
1

4π

[
1 + cos θ

(
log

1− cos θ

2
+

4

3

)]
,

where Pk(z) is the kth Legendre polynomial, such that P0(z) = 1 and P1(z) = z. The above

expression is exactly the expression we derived for g2(θ) in (35).

6.1.2 The Case n = 3

From Equation (4.23) in [Szm07], the generalized Green’s function of the Hemholtz operator

for λ = 1 in three dimensions is

G(x, x′) = − 1

4π2
T2(〈x, x′〉)arccos(−〈x, x′〉)√

1− 〈x, x′〉2
+

1

16π2
U1(〈x, x′〉)

=
(1− 2〈x, x′〉2)

4π2

arccos(−〈x, x′〉)√
1− 〈x, x′〉2

+
〈x, x′〉
8π2

=
(1− 2 cos2 θ)(π − θ)

4π2 sin θ
+

cos θ

8π2
,

where T2(z) = 2z2 − 1 and U1(z) = 2z are Chebyshev polynomials of the first and second

kinds, respectively. Also, note that the functions arccos(− cos θ) and (π − θ) agree on the

interval [0, 1], so we use the latter.

The expression above is exactly the expression we derived for g3(θ) in (49).
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6.1.3 The General Case n Even

For λ = 1 and n = 2m even, the expression (4.41) in [Szm07] becomes

G(x, x′) =
1

(n− 1)σn
C

(m−1/2)
1 (〈x, x′〉) log

1− 〈x, x′〉
2

− (m− 1)!

(n− 1)!!σn

m−1∑
k=1

(n− 2k − 3)!!

k(m− k − 1)!

C
(m−k−1/2)
1+k (〈x, x′〉)
(1− 〈x, x′〉)k

+
2

nσn
C

(m−1/2)
0 (〈x, x′〉) (61)

+
1

(n− 1)σn
[Ψ(n+ 2) + Ψ(n+ 1)

− 2Ψ(m+ 1)]C
(m−1/2)
1 (〈x, x′〉).

where Cα
k are the Gegenbauer functions, which are polynomials for k ∈ N, as occurs here.

The function Ψ(z) is the digamma function

Ψ(z) =
1

Γ(z)

dΓ(z)

dz

satisfying

Ψ(k + 1) = −γ +
k∑
l=1

1

l

where γ is the Euler-Mascheroni constant.

We can substitute C
(α)
0 = 1 and C

(α)
1 = 2αx into (61) and evaluate

Ψ(n+ 2) + Ψ(n+ 1)− 2Ψ(m+ 1) =
n∑

l=m+1

2

l
+

1

n+ 1
,
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to arrive the expression

G(x, x′) =
〈x, x′〉
σn

log
1− 〈x, x′〉

2

− (m− 1)!

(n− 1)!!σn

m−1∑
k=1

(n− 2k − 3)!!

k(m− k − 1)!

C
(m−k−1/2)
1+k (〈x, x′〉)
(1− 〈x, x′〉)k

(62)

+
2

nσn
+

1

σn

(
n∑

l=m+1

2

l
+

1

n+ 1

)
〈x, x′〉,

which rearranges to become

G(x, x′) =
1

σn

[
〈x, x′〉

(
log

1− 〈x, x′〉
2

+
n∑

l=m+1

2

l
+

1

n+ 1

)
+

2

n

]

− (m− 1)!

(n− 1)!!σn

m−1∑
k=1

(n− 2k − 3)!!

k(m− k − 1)!

1

(1− 〈x, x′〉)k
C

(m−k−1/2)
k+1 (〈x, x′〉).

Remark. To keep the notation consistent in this paper, we have substituted 2n+ 2→ n and

n+ 1→ m in the original expression (4.41) in [Szm07].

6.1.4 The General Case n Odd

For λ = 1 and n = 2m+ 1 odd, the expression (4.34) in [Szm07] becomes

G(x, x′) =
1

(m+ 1)σn

m∑
k=0

(−1)k

2kk!
C

(m−k+1)
k (〈x, x′〉)Xk(−〈x, x′〉)

− 1

4m(m+ 1)σn
C

(m)
1 (〈x, x′〉).

Substituting C
(m)
1 (z) = 2mz into the expression above, we obtain the expression (51) in the

paper.
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6.2 Proof of Minor Claims

6.2.1 Equation (20)

u =
1

sinp+1 θ
, v′ =

sin θ

cos2 θ
, u′ = −(p+ 1) cos θ

sinp+2 θ
, v =

1

cos θ

∫
dθ

cos2 θ sinp θ
=

1

cos θ sinp+1 θ
+

∫
(p+ 1)dθ

sinp+2 dθ

6.2.2 Equation (21)

d

dθ

(
cos θ

sinp−1 θ

)
= − sin θ

sinp−1 θ
− (p− 1)

cos2 θ

sinp θ

= − 1

sinp−2 θ
− (p− 1)

1

sinp θ
+ (p− 1)

1

sinp−2 θ

= (p− 2)
1

sinp−2 θ
− (p− 1)

1

sinp θ∫
1

sinp θ
dθ = − cos θ

(p− 1) sinp−1 θ
+
p− 2

p− 1

∫
1

sinp−2 θ
dθ

6.2.3 Equation (22)

Let p = 1. Integrating directly, we find that M1 = log tan(θ/2), so the equation (22) holds.

Next, let p ≥ 3 odd and suppose (22) holds for p− 2. Applying the recursion (21), we have

Mp =− cos θ

(p− 1) sinp−1 θ
+
p− 2

p− 1
Mp−2

(22)
= − cos θ

(p− 1) sinp−1 θ
− p− 2

p− 1

(p−3)/2∑
k=1

(p− 4)!!

(p− 3)!!

(2k − 2)!!

(2k − 1)!!

cos θ

sin2k θ

+
p− 2

p− 1

(p− 4)!!

(p− 3)!!
log tan(θ/2)

=−
(p−1)/2∑
k=1

(p− 2)!!

(p− 1)!!

(2k − 2)!!

(2k − 1)!!

cos θ

sin2k θ
+

(p− 2)!!

(p− 1)!!
log tan(θ/2)
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6.2.4 Equation (24)

d

dθ

(
sinp−1 θ cos θ

)
= (p− 1) sinp−2 θ cos2 θ − sinp θ

= (p− 1) sinp−2 θ − (p− 1) sinp θ − sinp θ

= (p− 1) sinp−2 θ − p sinp θ∫
sinp θdθ = −sinp−1 θ cos θ

p
+
p− 1

p

∫
sinp−2 θdθ

6.2.5 Equation (25)

Let p = 1. A simple integration shows that S1 = − cos θ, and therefore the equation (25)

holds. As in the previous section, let p ≥ 3 odd and suppose (25) holds for p− 2. By (24),

we have

Sp(θ) =− sinp−1 θ cos θ

p
+
p− 1

p
Sp−2(θ)

(25)
= − sinp−1 θ cos θ

p
− p− 1

p

(p−3)/2∑
k=0

(p− 3)!!

(p− 2)!!

(2k − 1)!!

(2k)!!
cos θ sin2k θ

=−
(p−1)/2∑
k=0

(p− 1)!!

p!!

(2k − 1)!!

(2k)!!
cos θ sin2k θ

6.2.6 Equation (26)

d

dθ

(
1

(q − 1) sinq−1 θ

)
= − cos θ

sinq θ
= − cos2 θ

cos θ sinq θ
=

1

cos θ sinq−2 θ
− 1

cos θ sinq θ∫
1

cos θ sinq θ
dθ = − 1

(q − 1) sinq−1 θ
+

∫
1

cos θ sinq−2 θ
dθ
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6.2.7 Equation (27)

Let q = 1. A simple integration shows that L1 = log | tan θ|, and therefore the equation (27)

holds. Let q ≥ 3 odd and suppose (27) holds for q − 2. Using the recursion (26), we have

Lq =− 1

(q − 1) sinq−1 θ
+ Lq−2

(27)
= − 1

(q − 1) sinq−1 θ
−

(q−3)/2∑
k=1

1

2k sin2k θ
+ log | tan θ|

=−
(q−1)/2∑
k=1

1

2k sin2k θ
+ log | tan θ|

6.2.8 Equation (29)

If n = 2, the equation (29) is equal to − log | tan θ| trivially. Suppose n ≥ 4 even and (29) is

true for n− 2.

−
n/2−1∑
k=0

(n− 2)!!

(n− 1)!!

(2k − 1)!!

(2k)!!
log | tan θ| =− n− 2

n− 1

n/2−2∑
k=0

(n− 4)!!

(n− 3)!!

(2k − 1)!!

(2k)!!
log | tan θ|


− log | tan θ|

n− 1
(29)
= −

(
n− 2

n− 1
+

1

n− 1

)
log | tan θ|

= log | cos θ| − log sin θ
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6.2.9 Equation (36)

A direct integration shows that M2 is equal to − cos θ/ sin θ, so (36) holds for p = 2. Now

suppose p ≥ 4 even and (36) is true for p− 2. By the recursion (21),

Mp =− cos θ

(p− 1) sinp−1 θ
+
p− 2

p− 1
Mp−2

(36)
= − cos θ

(p− 1) sinp−1 θ
− p− 2

p− 1

p/2−1∑
k=1

(p− 4)!!

(p− 3)!!

(2k − 3)!!

(2k − 2)!!

cos θ

sin2k−1 θ

=−
p/2∑
k=1

(p− 2)!!

(p− 1)!!

(2k − 3)!!

(2k − 2)!!

cos θ

sin2k−1 θ

6.2.10 Equation (38)

By integrating directly, one may show that S2 = (θ − sin θ cos θ)/2, so the equation (38)

holds for p = 2. Let p ≥ 4 even and assume (38) holds for p− 2.

Sp(θ) =− sinp−1 θ cos θ

p
+
p− 1

p
Sp−2(θ)

(38)
= − sinp−1 θ cos θ

p
− p− 1

p

p/2−2∑
k=1

(p− 3)!!

(p− 2)!!

(2k)!!

(2k + 1)!!
cos θ sin2k+1 θ

+
p− 1

p

(p− 3)!!

(p− 2)!!
(θ − sin θ cos θ)

=−
p/2−1∑
k=1

(p− 1)!!

p!!

(2k)!!

(2k + 1)!!
cos θ sin2k+1 θ +

(p− 1)!!

p!!
(θ − sin θ cos θ)

6.2.11 Equation (39)

Integration by parts using

u =
θ

sinp θ
, v′ =

1

cos2 θ
, u′ =

1

sinp θ
− p θ cos θ

sinp+1 θ
, v = tan θ
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gives the desired result

∫
θdθ

cos2θ sinp θ
=

θ

cos θ sinp−1 θ
−
(∫

dθ

cos θ sinp−1 θ
− p

∫
θdθ

sinp θ

)
=

θ

cos θ sinp−1 θ
− Lp−1 + p

∫
θdθ

sinp θ
.

6.2.12 Equation (40)

The equation follows from integration by parts with

u = θ, v′ =
1

sinp θ
, u′ = 1, v = Mp(θ).

6.2.13 Equation (43)

For p = 2, the claim is trivially true. Let p ≥ 4 even and suppose the claim is true for p− 2.

−
p/2−1∑
k=1

(p− 1)!!

p!!

(2k)!!

(2k + 1)!!
log | tan θ| − 2(p− 1)!!

p!!
log | tan θ|

=− p− 1

p

p/2−2∑
k=1

(p− 3)!!

(p− 2)!!

(2k)!!

(2k + 1)!!
log | tan θ| − log | tan θ|

p

− p− 1

p

2(p− 3)!!

(p− 2)!!
log | tan θ|

=− p− 1

p
log | tan θ| − log | tan θ|

p
= − log | tan θ|

6.2.14 Equation (56)

For n = 2m and m > 1, the original expression found in [Oli11] is

a = −(n+ 1)(n− 1) · · · n+ 1− (−1)m−1

2
/
m−1∑
j=1

√
2

1+(−1)j

We divide into cases for m even and odd.

If m is odd, then the product in the numerator must end at n/2 = m. Likewise, if m is
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even, the product must end at (n+ 2)/2 = m+ 1.

The summand in the denominator alternates between 1 and 2 so that for m even, the

sum is 3(m− 2)/2 + 1, or 3(m/2)− 2. For m odd, the sum is simply 3(m− 1)/2.

The resulting expression for n = 2m in (56) is

a =


− 1

(3(m/2)−2)
(n+1)!!
(m−1)!!

m > 1 even

− 2
3(m−1)

(n+1)!!
(m−2)!!

m > 1 odd.

6.2.15 Equation (60)

For n = 2m+ 1, we have the equation

R = −(n+ 1)
σn−1

σn
(1)
= −(n+ 1)

2πn/2

Γ(n/2)

Γ((n+ 1)/2)

2π(n+1)/2

(63)
= −(n+ 1)

π

4mm!m!

(n− 1)!

where we used the identity

Γ
(

1
2

+ k
)

=
(2k)!

4kk!
π1/2 =

(2k − 1)!!

2k
π1/2 (63)

for the gamma function at half-integers.



38

References

[Ber69] C. Berg. Corps convexes et potentiels spheriques. Mat.-Fys. Medd. Danske Vid.

Selsk., 37: 6, 1969.

[Fir67] W. J. Firey. The determination of convex bodies from their mean radius of curvature

functions. Mathematika. 14, Part 1 (27):1-13, 1967.

[Fir68] W. J. Firey. Christoffel’s problem for general convex bodies. Mathematika. 15 (1968),

Part 1 (29):7-21, 1968.

[Goo11] P. Goodey, V. Yaskin, and M. Yaskina. A Fourier transform approach to Christoffel’s

problem. Transactions of the AMS. 363, 12: 6351-6384, 2011.

[Oli11] V. I. Oliker. Class notes for Math 546 at Emory University, 2011.

[Sch93] R. Schneider. Convex Bodies: The Brunn-Minkowski Theory. Cambrdige Univ.

Press, Cambridge, 1993.

[Szm06] R. Szmytkowski. Closed forms of the generalized Green’s function for the Hemholtz

operator on the two-dimensional unit sphere. J. Math. Phys. 47: 063506, 2006.

[Szm07] R. Szmytkowski. Closed forms of the Green’s function and the generalized Green’s

function for the Hemholtz operator on the N-dimensional unit sphere. Journal of Physics

A: Math. Theor. 40: 995-1009, 2007.


