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Abstract 

Surrogate models for incompressible fluid dynamics in periodic regime 

By Bob Bao 

Computational fluid dynamics (CFD) plays an important role in modeling the system of Left 

Ventricle Assist Device (LVAD), which is now a main solution for the patients who reach to an 

end-stage heart failure. However, because the post-surgery conditions create an abnormal 

hemodynamics that may eventually lead to long-term complications and diseases in aorta. CFD 

can be used to understand the interplay between post-op morphology, hemodynamics and 

clinical outcomes. However, a main fallback of using CFD is the high computational cost. In 

order to reach to accurate solutions with an inexpensive cost, a surrogate model for the 

unsteady Navier-Stokes equation is preferred. Acknowledging that heart has a periodic 

behavior in beats, we try to use the solution for steady Navier-Stokes equation to approximate 

the time-average solution for unsteady Navier-Stokes equation in periodic regime. Because of 

the existence of the non-linear term in the Navier-Stokes equation, this approximation will 

present some differences between those two solutions. By using FreeFem++ to run the 

numerical simulations on different geometries for those two problems, this paper will discuss 

how the differences between those two solutions will be affected by various of factors 

including the amplitude of boundary conditions, number of time steps at which the unsteady 

problem is solved, the quality of meshes and different geometries. From the results obtained 

from the numerical tests, it is concluded that the geometry will have a dominated effect on the 

differences between those two solutions. When the geometry is regular and indicates a non-

linear term approaching to 0, the amplitude of the boundary condition will have a polynomial-

like relationship with that difference. The quality of messes and number time steps will only 

affect the computational cost but the differences between those two solutions. 
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Chapter 1

Introduction

1.1 Motivations

In the field of the medicine, computational modeling is used pretty often in the case of helping
doctors make a better decision and prediction for the diagnosis of the patients. The LVAD surgery
is a good example. LVAD, defined as the Left Ventricular Assist Device, is a pump that is used to
implant in the patients who have reached the end-stage heart failure [2]. As the figure shown below
(figure 1.1), this surgery is giving a ”new heart” to those people with cardiovascular diseases such as
poor cardiac ejection fraction [3]. With this ”new heart”, it can than pump the fresh blood through
a hole made on the aorta, which should be originally pumped through the connection between
the aorta and the heart. However, the post-surgery conditions create an abnormal hemodynamics
that eventually may lead to long-term complications and diseases in the aorta. Computational
models may have an important role in understanding the interplay between post-op morphology,
hemodynamics and clinical outcomes.
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CHAPTER 1. INTRODUCTION Bob Bao

Figure 1.1: This is the demonstration of LVAD presenting as a ”new heart” in man’s body.
[2]

In order to make better prediction and have a better understanding of the effect of implanting
LVAD in the patient’s body and the ideal position of the injection the pipe of the pump on the
aorta, we need to introduce the computational fluid dynamics(CFD) to simulating the flow of
the blood inside the vessels. With those simulation, we can predict how a small change in the
position, direction, rate or the strength of the injection will affect patients in long term and make
a better decision for the LVAD surgery based on that to make the effect of LVAD last longer. All
these features, including position, direction, rate or strength can be characterized by the change
of boundary conditions in the CFD model. To reach to the goal to investigate the effect of those
details of the surgery in the CFD model, we’re just researching on how the change in boundary
conditions can affect the results of the CFD model. In this way, the cardiovascular and vessels
system with LVAD can be simulating by a CFD model with different boundary conditions.

The efficiency of solving the simulation in CFD is always important because of the time cost
for solving the problem and the complexity of the problem. Surrogate models are more interested
on using simpler models to reach to the goals or effects we needed for the problem. For example,
while doing numerical approximation, interpolation of the functions is always a important way of
finding the trends and some certain data points of the function. Sometimes we we’ll only know
some of the data points of a function but we need some for data from that function. Interpolating
the data points with polynomials will make it easier to find the data for the function. With this,
we successfully avoided extrapolating the function directly, but rather focused on finding the rest
of the data points on the function. Another example appears when solving the system above, it is
really hard directly on the shape of the human vessels itself since the vessel of human being has an
irregular shape and it is really hard to solve equation directly over the shape of the vessels itself.
The surrogate models is needed here for the problems to be solved more efficiently. To reduce the
computational costs, one possible way consists of simplifying the geometry, discarding a precise 3D

10



CHAPTER 1. INTRODUCTION Bob Bao

geometrical modeling in favor of a pure 1D [1].
There is specific surrogate in the numerical approach which is approaching a time dependent

problem with periodic boundary conditions (an unsteady periodic problem) with a time indepen-
dent problem (a steady problem) in CFD. Admittedly the time dependent problem is detailed and
informative since it will provide a solution after a defined time period with the full detailed infor-
mation of the data of the simulation at each time points. This is helpful sometimes when you need
to find the prediction of a patients data, but there are some drawbacks of numerically solving the
time dependent problem. Since there are tons of data for a single patients (for each time point),
it is hard to compare the data across the patients which is also an important component of the
medical research. However, the most significant drawbacks of the transient problem is that they are
computational expensive [3]. Depending on the computational resources and the simulated time
interval set for the simulation, the time of solving a unsteady problem can varies from hours to
days[3]. Since usually accurate simulations are needed for medical solutions, it means in most of
the simulations, large computational resources and small time interval is needed which will lead to
an high computational cost. That’s why it becomes so important to use the solution of the steady
problem to approach the unsteady problem to reduce the computational cost.

Replacing an unsteady problem with a steady one is possible here because we can reasonably
assume that the circulation is time-periodic. As we will see, if you properly exploit this feature, we
can approximate the unsteady probloem with a steady one. The main purpose of this work is to test
to which extent, and under what flow conditions this simplification may be considered acceptable.

1.2 Outline

We first discuss how the surrogate from an unsteady problem to a steady one works in some basic
equations of fluid dynamics such as the Stokes problem and the Navier-Stokes problem. Then
we introduce the numerical environment that we’re using to solve this problem together with the
code and the 3D models that we are applying to. Finally we’ll show the results of running the
simulations, how the time-averaged solutions in the unsteady Navier-Stokes equations are different
from the steady Navier-Stokes equations and how the non-linear part in the Navier-Stokes equations
will affect this surrogate from the unsteady problem to the steady one.

Specifically, in Chapter 2 we present the basic mathematical models for incompressible fluid
dynamics, used in cardiovascular applications. In Chapter 3 we introduce the rationale of our
surrogate modeling when we replace the unsteady problem with a time average, resulting in a
steady system. This is invariably much faster to solve. In Chapter 4 we illustrate the numerical
approximation of the problems via the FreeFem++ environment. Results are discussed in Chapter
5.
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Chapter 2

The Stokes and the Navier-Stokes
Equations

2.1 The Stokes flow problem

The basic model for incompressible fluids is given by four partial differential equations known as
”Navier-Stokes systems”. These equations follow from the application of conservation of momen-
tum and conservation of mass to a fluid. Specifically, we will assume that the liquid at hand
is ”Newtonian” (so that the stress tensor is proportional to the strain rate through a constant
called ”viscosity”). As we will see, the system is non-linear and it is generally impossible to find
a solution by analytical methods. Numerical approximations are necessary. However, under some
circumstances, the nonlinear term can be dropped, resorting to the so-called ”Stokes equations”.
We start here introducing this problem.

Since the Navier-Stokes equation has not been solved in general case, the only possible ways to
get a solution for the problem is to find an analytical solution for a simpler geometry (for example,
getting a solution in 1D) or find an Stokes analytical solution for a simpler equation that has some
limit in it [7]. Stokes equation for the stokes flow problem and Laplace equations are the examples
of solving Navier-Stokes problem with those simpler equations. We’ll give an detailed explanation
of the Stokes flow problem here since this is a problem that can be perfectly applied to the approach
introduced in the last chapter: surrogate the time-averaged solution of an unsteady problem with
a steady problem.

The Stokes flow problem, also called the creeping flow problem, works under low Reynolds
number. The Reynolds number is an important factor that illustrates the flow regime. When the
Reynolds number is low, fluid mainly behaves as laminar flow (shown by the graph 2.1a) and when
the Reynolds number is high, it suggests that disturbed or even turbulent flow (shown by the graph
2.1b) will dominates the behavior under that environment. Strictly speaking, it requires Reynolds
number to be far less than 1. However, sometimes it is considered a good approximation under
more general conditions.

13
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(a) This is the graph for the laminar flow. We as-
sume the layer like behaviour of the fluid when the
Reynolds number is small.

[6]

(b) This is the graph for the turbulent flow. We
assume this behaviour when the Reynolds number is
large.

[9]

Figure 2.1: This is the graphs for two different flow types.

The Stokes equation with incompressible fluid is stated below:


ρ
∂u

∂t
− µ∆u +∇p = f

∇ · u = 0

(2.1)

For the first equation, ρ stands for the density of the fluid, µ stands for the kinematic viscosity of
the fluid and this will varies among different fluids. u stands for the three dimensional velocity vector
of the flow of the fluid. p stands for the pressure of the fluid and f stands for the non-homogeneous
forcing term for the stokes equation. The second equation, which states the divergence of the fluid
is 0, represents that the fluid is incompressible.

There is also a steady version for the Stokes equation:


−µ∆u +∇p = f

∇ · u = 0

(2.2)

In the applications, the space variables (x1, x2, x3) belongs to a limited part of space denoted by
Ω and on a time interval [0,T]. For this reason, in the applications, we need boundary conditions on
∂Ω and an initial condition. Possible boundary conditions prescribe the velocity u on ∂Ω and the
initial velocity u(x, 0) = u0(x). Other boundary conditions can be considered as well. For example
the natural (Neumann) conditions read pn− µ∇u · n where n is the outward normal unit vector to
∂Ω. Finally, if we assume that the problem is periodic in time, we may consider u(x, 0) = u(x, T ).
While one can exploit this feature directly in the solution (both analytical and numerical), here we
will limit to apply this assumption in surrogating the original unsteady problem with a steady one.

14
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2.2 The Navier-Stokes problem

The Navier-Stokes equation is a generalization of the equation provided by Lenohard Euler made in
the 18th century which describes the behavior of the frictionless and incompressible fluid. In 1821,
French engineer Claude-Louis Navier, introduced the element of viscosity for the more realistic
condition of the fluid. With the improvement made by Sir George Gabriel Stokes in the middle of
the 19th century, some solution of the Navier-Stokes equation has been unveiled such as the case
of simple two dimensional flow. However, the general 3D Navier-Stokes equation has been proven
to be intractable in general and can only be approximated by numerical approach [5].

The equation of the Navier Stokes problem is shown below:
ρ
∂u

∂t
+ ρ (u · ∇)u− µ∆u +∇p = f

∇ · u = 0

(2.3)

Here, all the variables in the equation has the same meaning as the Stokes equation. The only
difference of this equation compared to the Stokes equation is that it contains the non-linear term
stated as ρ (u · ∇)u.

There is also a steady version (time independent) of the equation which is presented below.
When the time derivative is set to 0:

ρ (u · ∇)u− µ∆u +∇p = f

∇ · u = 0

(2.4)

Also in this case, the problem must be completed by boundary and initial conditions. As for
the Stokes problem, if we assume the problem to be periodic in time, we may introduce some
simplifications that will be addressed in the next Chapter.

This equation has all the variable the same meaning as the full version of the Navier-Stokes
equation but the only thing different here is that the time dependent term is eliminated. Unlike
the Stokes equations, there is no specific physical meaning for the steady and it is just a numerical
trick for people to solve on the path of solving the full Navier-Stokes equation. However, it can be
a good way of surrogating the full Navier-Stokes equation in some way.

2.3 Numerical approximation of the (Navier)-Stokes equa-
tions

Since the Navier-Stokes Equation at this moment has not been solved in the general 3D cases, a
way of numerical approaching is needed to find a numerical solution to the equation while doing the
simulation. The method of numerical approximation applied in this research is the method of space
discretization [8]. This is a method based on the replacement of the derivatives by incremental
quotients after descretisizing the onto a suitable grid of points [8]. These points are actually where
the problems are solved. These points are usually chosen along the Cartesian directions [8], which,
in this research, is represented by the vertices and the midpoint of the sides of the tetrahedrons
in the mesh. These points are actually the spaces for the numerical solution, that is, where the
solution is actually solved [8]. In this research, we are using FreeFem++, a popular 3D partial
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differential equation solver across the world in which the physics for solving incompressible Navier-
Stokes equation with space discretization has already been built [4].
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Chapter 3

Surrogating the unsteady periodic
equations with steady problems

In many medical applications, doctors are not interested in the instantaneous quantities (velocity
and pressure) but to their time average. This is true - for instance - when looking at the stress
exerted by blood on the wall, that is considered a main factor for atheorsclerosis or when evaluating
the pressure drop induced by a vascular occlusion in coronary diseases. These time averages are
generally computed by taking the average of the unsteady solution. However it is reasonable to
ask the question: is it possible to compute directly the time average by solving a steady problem?
What if we take the time average of the Stokes and Navier-Stokes equations and then we solve the
problem we obtain? In this Chapter we show how the surrogate steady problems look like and what
is the approximation introduced.

3.1 The linear case (Stokes)

Between the two stokes equations in the linear(Stokes) cases, we can find there are certain relation-
ship between the equation 2.1 and 2.2 when the problem is solved under periodic conditions.

Here is the deduction:

Denote by ∆T the period of our problem and compute the time average of the unsteady Stokes
equations over one period. We obtain (REMOVE p for the SPACE VARIABLES, IT IS MESSING
UP WITH p=pressure).

17
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1

∆T

∫ t+∆T

t

(ρ
∂u

∂t
− µ∆u +∇p = f),

1

∆T

∫ t+∆T

t

ρ
∂u

∂t
− 1

∆T

∫ t+∆T

t

µ∆u +
1

∆T

∫ t+∆T

t

∇p =
1

∆T

∫ t+∆T

t

f ,

Because of the linearity of all the terms, we have,

ρ

∆T
[u(x, t+ ∆T )− u(x, t)]− µ∆

∆T

∫ t+∆T

t

u +
1

∆T
∇
∫ t+∆T

t

p = f ,

Because the the problem is periodic, u(x, t) = u(x, t+ ∆T ),

Then we can get, − µ∆u∗ +∇p∗ = f ,

(3.1)

In this equation, t can be a certain time point at any time period. ∆T stands for the period
for any periodic behavior. u∗ and p∗ stands for the time average solution for both velocity and
pressure. p stands for the position vector and it is obvious to see that the velocity in the unsteady
problem u is a vector that depends on both the position vector and time.

From the last equation in the equation 3.1, we can observe that the problem has been changed
from solving the unsteady version of the equation stated in equation 2.1 to solving the steady
equation stated in equation 2.2 with the velocity and pressure changed from time dependent to
their time averaged version.

In this case of the stokes problems, the time-dependent problem can be surrogated directly with
the steady problem to find the time-averaged solution with no errors.

This system is used later as the way to confirm the correctness of the algorithm of the solver.

3.2 The nonlinear case (Navier-Stokes)

The surrogate from the unsteady problem to the steady problem cannot be perfectly applied to the
Navier-Stokes equations. Here is the deducton:

1

∆T

∫ t+∆T

t

(ρ
∂u

∂t
+ ρ (u · ∇)u− µ∆u +∇p = f),

1

∆T

∫ t+∆T

t

ρ
∂u

∂t
+

1

∆T

∫ t+∆T

t

ρ (u · ∇)u− 1

∆T

∫ t+∆T

t

µ∆u +
1

∆T

∫ t+∆T

t

∇p =
1

∆T

∫ t+∆T

t

f ,

ρ

∆T
[u(p, t+ ∆T )− u(p, t)] +

ρ

∆T

∫ t+∆T

t

(u · ∇)u− µ∆

∆T

∫ t+∆T

t

u +
1

∆T
∇
∫ t+∆T

t

p = f ,

Because the the problem is periodic, u(p, t) = u(p, t+ ∆T ),

Then we can get,
ρ

∆T

∫ t+∆T

t

(u · ∇)u− µ∆u∗ +∇p∗ = f ,

(3.2)
The variables in this equation 3.2 has the same meaning as the previous deduction. However,

the results is different since we can not factorized the gradient out of the integral of the term
ρ

∆T

∫ t+∆T

t
(u · ∇)u because of the non-linearity. This shows that the time dependent Navier-

Stokes equation (equation 2.3) cannot be perfectly surrogated by its steady version of the equation
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(equation 2.4). At the same time, it also raises a problem: how well the problem can be surrogated,

which can also be stated as how close is the term ρ
∆T

∫ t+∆T

t
(u · ∇)u and the term

(
u∗ · ∇

)
u∗. In

other terms: what is the error when we replace the time average of the nonlinear terms with the
nonlinear term involving the time average? We will answer in the next Chapters.
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Chapter 4

The numerical code

4.1 The FreeFem++ environment

The FreeFem++ is a popular partial differential equation solver for non-linear multi-physics system
in 2D and 3D. Navier-Stokes equation, as a important physics problem, has its solver already been
pre-built in the software. It also offers a large finite element lists. It also includes a first interpolation
algorithms and a language for the manipulation of data on multiple meshes [4].

It is written in C++ and its language is C++ idiom [4].

4.2 Numerical test 1: flow in a cylinder

4.2.1 The meshes and boundary conditions

A figure of the meshes of the cylinder is shown in figure 4.1 below.
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Figure 4.1: This is an example of the fine mesh that is going to be used in this experiment, the
dotted lines describes the boundary of those tetrahedrons and they are where the solutions are
derived.

In this research, the cylinder is assumed to be a pipe that is injected fluid from one side, that
is, all the velocity of the fluid at the side boundaries for the cylinder should set to be zero because
they are considered as the boundary of the pipes. The fluid is injected from one side and that
is characterized by the injection condition on the z axis. The injection condition for the steady
problem in the cylinder is set to be uIn, which is a variable that control the boundary condition.
The boundary condition of the unsteady problem with the periodic boundary condition is set to be
uIn(1 + sin(2πt)).

4.2.2 The algorithm to solve the steady problem

Since, in this case, steady problem is a non-linear problem, so some iterative converging method
to find the root is needed to be applied here besides solving it on the mesh. Two methods, Picard
and Newton, are used in this solver and they are explain below in the case of finding the root for a
1D problem and after that we’ll explain why we use two methods together to reach to our roots.

Assume there is non-linear problem x2 = a and we are using the Picard iterative method to
approach solution for x. We change the equation into the form below:

xn =
a

xn−1
(4.1)

In this equation, xn stands for the value of x at the nth iteration and xn−1 stands for the x

22
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value at the (n-1)th iteration. Solving this equation iteratively and stop at a point where xn−xn−1

reaches to a small value, that is, when they are about to equal to each other, will lead us to the
solution of x for the non-linear problem. This method’s advantage is that it is generous about the
initial guesses and even for a guess that is far away from the solution it will still converge in the
end. However, it takes too many iterations to reach to the solution, especially at the positions that
is really close to the solution.

In order to reach to the solution with less iterations, we need to have a method that will converge
faster to the solution and this method, in our research, is the Newton way of finding the root. A
sample graph of this solution is shown by figure 4.2 below :

−3 −2 −1 1 2 3

−2

−1

1

2

3

4

x

y

Figure 4.2: This is a graph showing how Newton find method in a non-linear problem. In this
graph, the red curve is the tangent line of the orange curve at the blue point.

This figure 4.2 is illustrating how Newton method approaches its solution. We first have a
initial guess and we find the point corresponding to that initial guess on the function of x in the
space. After that, we take the tangent to that function at that point and find its intersection with
the x-axis. After find that new x value, we find the point corresponding to that x value again on
the function and redo the iteration again. This is the iteration for the Newton method is and it
is proved to converge faster than the Picard method. However, it needs a strict initial guess for
method to converge in the end for the solution. It requires the initial guess on the curve to be at
the position of the curve that has the same concavity as the root.

Because both of these methods have fallback, we take a combination of those two methods to a
better designed method to reach the root of the problem. We use the Picard method first to find
a acceptable guess that is close to the root for the Newton method. Then, we used the Newton
method to reach to an actual solution to the problem. Since if Newton method can converge faster
with a good initial guess, this method can take less iterations to reach to the root.

23
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This is prove by our test for those two methods in the code. When we use only the Picard
method, it will take around 15 iterations to converge to the solution. When we use the Newton
method, sometimes the iteration will not converge because of the bad guesses. At the same time,
the combination of those two method will finally reach to the root with only 10 iterations.

4.2.3 The algorithm to solve the unsteady problem

To solve the unsteady problem, besides using the space discretization approximation, we also need
to solve time step by time step to do the simulation. After having the solution on every time
points, we take the time average of them to find the time average solution over one period. Since
the boundary condition is set to be uIn(1 + sin(2πt)), the time period for one cycle is 1 second.
The time steps is set to be identically separated in one period to be 1/Ns, where Ns stands for the
number of the time steps that is needed to be solved at. The result of the test is showing in the
section 5.1.1.

4.2.4 Test the code’s correctness in cylinder

As we mentioned in the section 3.1, the Stokes equation can be used as a way for testing the
correctness of the solver of the problem. Before doing the test, we should first removed the nonlinear
term from the problem defined and analyze the solution given by those two problems. We expect
to see the time-averaged solution for the unsteady problem to be the same as the solution given
from solving the steady problem in this test.

4.2.5 Variables set in the code for testing

There are three variables that is set in the code, represented by the global variable uIn, Ns and nn
respectively. uIn will affect the amplitude of the boundary condition. Ns will affect the number of
time steps that the unsteady will be solved on. nn will affect the mesh quality that is generated by
FreeFem++ and this will affect the points of the solution to be solved on.

4.3 Numerical test 2: flow in a room

4.3.1 The meshes and boundary conditions

The mesh generated for the room is shown in figure 4.3 below:
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Figure 4.3: This is an example of the fine mesh that is going to be used in this experiment for
the model of the room, the purple lines in the graph stands for the boundaries of the tetrahedrons
generated in this mesh.

In this figure 4.3, there are four parts in black. They represents three windows and one door in
the geometry. The black rectangle in the back of this figure shows the position of the door and the
three black rectangles in the front shows the positions of the windows.

In this experiment, fluid is set to be injected from the door and will exit from those windows.

4.3.2 The algorithm to solve the problem

If the algorithm for the solver for the cylinder works, it will also work for a different geometry.
This means we can use the exactly same solver for the room and set the same variables in there.
This time, the variable is represented by three different global variable. They are inflow, Ns and n.
They represents the amplitude of boundary condition, number of time steps and the mesh quality
respectively.
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Chapter 5

Numerical results

5.1 Test case 1: Flow in a cylinder

5.1.1 The linear case: code testing

In order to test the code is correct, as we said in section 3.1, we need to test the code first to make
sure the code is giving us the reliable result of the problem. In order to do this, we remove all the
no linear part in the problem and run the code of the solver. It is better to do this experiment
for the cylinder since the results on a regular shape is predictable and will not be affected by the
irregular behavior of the meshes. Once it is confirmed to be correct on the cylinder geometry, it
works on the other geometry because the solver doesn’t change between geometries, the only thing
changing between different shapes is the meshes and nodes.

After testing the code for the cylinder without those linear terms, it is found that the difference
between the solution of steady problem and the time-averaged solution of the unsteady problem is
less than a order of 10−13. It is about the order of machine epsilon, which is around 10−16, which
means the algorithm of the solver is tested to be good to solve the problem with Stokes problems
considering the size of the problem. By adding the non-linear terms to the solver, we can now sure
that this solver will works for the full Navier-Stokes equation.

5.1.2 The nonlinear case

In these problems, as we described in section 4.2.5, we have several variables that can be tested
on: mesh quality, the amplitude of the boundary condition, and the number of time steps while
solving the full unsteady Navier-Stokes equation (equation 2.3). Changing those variables will lead
us to different results. In the experiment, the variable that is not expected to change will always
be controlled to be the same.

Changing the quality of the meshes

The variable nn in our code dictates the number of the points taken on the 3D model, which will then
affect the quality of the meshes since the number of nodes and the number of the tetrahedrons are
changing. The theory of the finite element method ensures that for nn→∞ with some regularity
assumptions the error vanishes (in exact arithmetic). This effect is shown by the graphs below,
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from which we can see the difference between the condition of nn = 3 and nn = 8. The amplitude
of the boundary condition is set to be 1.0 as constant and the number of time steps is set to be
100, which means the time difference in this 1s period for every steps is set to be 0.01s as constant.
After testing the data at nn = 3, 4, 5, 6, 7, 8 respectively , we have the data.

Since our goal is to find the effect of the non-linear term in this surrogate from the time dependent
problem to the time independent problem, the important data in this table is the percentage
difference of the spacial average norms and the time taken for the CPU to solving with those two
different approaches . After taking those data out of the table, we have the table 5.1:

Table 5.1: The table shows the useful data in the test

nn(quality of meshes) cpu time difference %∆
∥∥u∗

∥∥ %∆
∥∥p∗∥∥

3 9.73 0.987% 1.30%
4 19.465 0.986% 1.29%
5 40.064 1.018% 1.21%
6 71.284 1.04% 1.22%
7 103.717 1.04% 1.26%
8 204.272 1.05% 1.27%

When observing the data, we can see that the time difference of the solving two problems
increase significantly when the mesh qualities improve. It matches our expectations that because
the size of the matrices to solve will increase significantly as the increasing in the number of nodes
(solutions are taken at nodes and at the mid points of nodes), solving with time steps will cause
an explosion in the cost of the algorithm. However, it seems that the fineness of mesh will not
affect the percentage difference between the solution of the steady problem and the time-averaged
solution of the unsteady problem as the percentage difference of both average norm of velocity

∥∥u∗
∥∥

and the average norm of pressure
∥∥p∗∥∥ will oscillating at the level 0.010 and 0.012 respectively.

To understand the relationship between data more clearly, we have plotted the graphs below
according to the table 5.1.
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Figure 5.1: The plotted graph for the data in table 5.1

From the figures 5.1a and 5.1b, we can see that only the differences in the time cost of CPU
is increasing rapidly, in a rate that can be extrapolated by the exponential function, which is
definitely a rate of explosive. It meets our expectation to see that it is increasing significantly
and it is the reason that we’re doing this surrogation to reduce the cost of computation and this
seems to be meaningful. However, while the quality of the mesh is increasing, it seems that the
percentage difference between the solution of the steady problem and the time-averaged solution
of the unsteady problem are relatively stable (with the percentage difference of velocity oscillating
around 1.25% and the percentage difference of pressure oscillating around 1.02%), which can be
said that the fineness of the mesh will not affect how they’re different to each other.

These differences, on the other hand, are due to the approximate computation of the average,
the time-discretization and the rounding errors.

Changing the amplitude of the boundary conditions

In this numerical experiment we change the peak value of boundary condition in one period, which
can also be said as the amplitude of the boundary condition. While changing the amplitude of the
boundary conditions represented by Q in the code, we’re keeping the other two variables to be the
same to controlled the other variables. The mesh quality, represented by nn in the code, is set to
be constant equal to 6 for this experiment. At the same time, the number of time steps is set to be
100, which means 0.01s interval, the same as the time steps number for the previous test.

Since the qualities of the meshes is the same this time, we can take the time from the important
data series since under this condition there is no difference in the number of equation solved.
However, since the percentage differences, which is a core tested terms in this experiment, will also
depend on the time-averaged solution of the unsteady problem which will indicate the absolute
differences together with the percentage differences and is changing when the boundary condition
is changing.
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Here we have the tables for the necessary data about the percentage differences between the
solutions and the amplitude for the boundary conditions.

Table 5.2: These are the data obtained while doing the numerical experiment for changing the
amplitude of the boundary conditions.

Q
∥∥u∗

∥∥ ∥∥p∗∥∥ %∆
∥∥u∗

∥∥ %∆p∗

1.0 1.45239 47.7902 1.04% 1.22%
2.0 2.90312 96.14 1.18% 1.19%
3.0 4.35265 145.034 1.33% 1.31%
4.0 5.80137 194.473 1.46% 1.55%
5.0 7.24957 244.473 1.58% 1.85%
6.0 8.69746 295.054 1.67% 2.20%

The results show a weak dependence of the errors on the amplitude of the boundary conditions.
As a matter of fact, we argue that the change is basically due to a larger impact pf the time approx-
imation and the rounding errors. It is worth noting that FreeFem++ has a bizarre management of
the boundary conditions, that induces a large condition number of the matrices. We may speculate
that also this factor my explain the weak dependence on Q. However, an error of 2% can still be
considered acceptable, showing that the time average and the solution of the Stokes equations can
commute. For a better understanding of the results, we show some graphs hereafter.
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Figure 5.2: The plotted graph for the data in table 5.2

We can almost observe a linear relationship for the percentage error of pressure but since the
solution of pressure is changing significantly, it is less meaningful to observe the relationship of
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the percentage error for pressure and velocity(which even decrease in percentage error first). How-
ever, the results for the relationship between the factor of amplitude and the absolute difference
in the solutions of velocity is far better than the expectation. They almost fit in the cubic and
quadratic extrapolation perfectly. This suggests a strong relationship between the boundary condi-
tion’s amplitude and the absolute difference between the solutions which means when constructing
the equation that illustrates the surrogate of the Navier-Stokes equation with its steady version,
the boundary condition’s amplitude must be an important factor in that equation.

At the same time, the result can also be observed by the vector solutions manually on the model.
Here we have the graphs for the iso-value planes for pressure in the cylinder and the point-wise
vector solutions for those different boundary conditions

(a) Iso-value planes for pressure
at Q = 1.0

(b) Iso-value planes for pressure
at Q = 2.0

(c) Iso-value planes for pressure
at Q = 3.0

(d) Iso-value planes for pressure
at Q = 4.0

(e) Iso-value planes for pressure
at Q = 5.0

(f) Iso-value planes for pressure
at Q = 6.0

Figure 5.3: The pressure plots on the geometry

31



CHAPTER 5. NUMERICAL RESULTS Bob Bao

(a) The velocity point-wise vec-
tor plot at Q = 1.0

(b) The velocity point-wise vec-
tor plot at Q = 2.0

(c) The velocity point-wise vec-
tor plot at Q = 3.0

(d) The velocity point-wise vec-
tor plot at Q = 4.0

(e) The velocity point-wise vec-
tor plot at Q = 5.0

(f) The velocity point-wise vec-
tor plot at Q = 6.0

Figure 5.4: The velocity plots on the geometry

The results show that while the solution is expected for the most part, there are some unex-
pected boundary effects (the vectors deflecting at the boundary) probably due to the inaccurate
management of the boundary conditions.

The effect of number of time steps on the differences

Now we cast the tests on how the number of the time steps will affect the differences of the solutions
from two approaches. In this experiment, we will keep the mesh quality to be fixed at 6 and the factor
of the amplitude of the boundary condition Q to be fixed at 1.0 to controlled the other variables.
Since the time steps will affect the number of the matrices solved in the solver and the number
of loops needed for solving the unsteady problem, the computational time here again becomes a
relevant data for this numerical experiment. Since we need to make sure that the calculation stops
at 1 period, which means the calculation will stop at 1s exactly to make the time-averaged solution
of the unsteady problem comparable with the solution obtained by solving steady version of the
problem (that is, to make sure the time-averaged solution to covered the whole period), we need to
make sure that the time interval can be divides 1 to a integer to make sure it will finally reach to
1s at the final step. In this case, we take time intervals to be 0.02s, 0.04s, 0.10s, 0.20s

After doing the test, we have the data below as our data for the experiment:

Table 5.3: The data of the numerical testing on different time steps, Q is set to be 1 and mesh
quality is set to be 6 for this experiment

time interval[s] cpu time difference %∆
∥∥u∗

∥∥ %∆
∥∥p∗∥∥

0.02 39.419 0.33% 0.33%
0.04 16.337 0.32% 0.46%
0.1 4.137 0.28% 1.05%
0.2 -0.735 0.18% 1.81%
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From table 5.3, we can observe several patterns. The first main pattern that we can observe
is that the time difference between the unsteady solver and the steady solver is becoming less and
less since the steps needed for solving unsteady problems has be reduced because of the increasing
in the time interval but the period does not change. There is even a negative time difference here
in the table because as we explained in the section 4.2.5, In order to make the non-linear problem
converge and find the solution, we use Picard and Newton’s way of converge for the steady case,
which cause several loop and in this case it is even takes longer than the calculating the 5-step long
problem.

However, for the other terms in the table, it is obvious that %∆
∥∥u∗

∥∥ is decreasing while the

%∆
∥∥p∗∥∥ is increasing. With the fact that the solution is not changing in this case, this will also

be affect in terms of absolute. Since the time steps decreases, the time-averaged solution will be
only reflected on less times points which will finally be calculated into the time-averaged solution.
So it is hard to say whether the solution of

∥∥u∗
∥∥ and

∥∥p∗∥∥ will be more accurate or not since it
is unpredictable which points and what will be the behavior of the solution at those points. The
results show that: (1) with an appropriate selection for the time step, the errors between time
average and steady solution is, in fact, negligible; (2) finer is the time step, much larger is the
computational time between the two options, justifying the use of surrogate steady models to buy
computational efficiency.

5.2 Test case 2: Flow in a room (Navier-Stokes Problem)

Using the geometry of a room is for finding how the geometry of the shape will affect the result
of the simulation and how it will change the difference between two solvers. Since even we take
the same nn for the mesh quality, we will get different numbers of tetrahedrons and nodes on the
shape so it is hard to control all the variables between the geometries since the original accuracy .
The only method reliable is to find how the rate of change of differences changes with the changing
of those variables compared with those changes happened under the shape of a cylinder. It means
that the main purpose of using this shape is to have cross comparison with the cylinder’s case.

We will only test the dependence on the mesh quality for the sake of brevity.

5.2.1 Changing the quality of the meshes

Here we keep inflow to be at 100 and the number of time steps to be 10 (since the computational
cost is too high under this irregular shape). We test the case under n = 1 and n = 2. The quality
of the meshes is shown by the figure 5.5a and 5.5b.
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(a) Mesh of the room when n = 1 (b) mesh of the room when n = 2

Figure 5.5: The different quality of the meshes of the roomn

The data tested is shown in the table 5.4,

Table 5.4: The table for the tested data of changing the quality of meshes for the room geometry

n
∥∥u∗

∥∥ ∥∥p∗∥∥ %∆
∥∥u∗

∥∥ %∆p∗

1 377.783 27949 19% 23%
2 733.103 49479.8 17% 24%

From the table, it can be easily observed that the solutions for the pressure becomes really
large. Since in this case, even the solution itself is quite different when the quality of the meshes
is different, we can conclude that the when the geometry becomes more complicated, the fineness
of the mesh itself will have a large effect on the solution of the solvers. However, comparing to the
change in the solutions(almost 1.8 times change in this case), the percentage difference changes are
relatively tiny(with only 1% to 2% change) which means the quality of the meshes will not affect
the %∆

∥∥u∗
∥∥ and %∆p∗ a lot, which leads to a similar results for the solutions in cylinder.

5.2.2 Changing the inflow factor of the boundary condition

Now keeping the quality of meshes and number of time steps unchanged, we test how the inflow
conditions will change the difference between two approaches. We take the inflow condition to be
100 and 50 respectively for the amplitude of the inflow boundary condition.

Here is the table for the data obtained from the experiment:

Table 5.5: The data obtained from the numerical experiment of testing the inflow on the percentage
difference

inflow
∥∥u∗

∥∥ ∥∥p∗∥∥ %∆
∥∥u∗

∥∥ %∆p∗

50 346.419 14944.6 21.04% 20.95%
100 733.103 49479.8 17.21% 24.23%
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From table above, we can clearly see that we cannot find a pattern that is even close to the
percentage difference presented in the cylinder. We cannot see monotonicity in the change of the
percentage difference between the two solutions for p∗ and

∥∥u∗
∥∥. However, with the fact that

the absolute difference in the cylinder has a really strong relationship with the amplitude, we can
conclude that the target geometry will has a larger effect in the construction of the mapping from
the solution of the steady version of the problem to the unsteady one.

5.3 Discussion

5.3.1 For the nonlinear term in the equation

In this experiment, we found that there is a good pattern for the differences between those two
solutions found in the cylinder but not found in the geometry of a room when changing the boundary
condition. This is because the cylinder has analytically a zero nonlinear term. The nonlinear term
is shown by equation 5.3.1:

(u · ∇)u =


ux

∂ux
∂x

+ uy
∂ux
∂y

+ uz
∂ux
∂z

ux
∂uy
∂x

+ uy
∂uy
∂y

+ uz
∂uy
∂z

ux
∂uz
∂x

+ uy
∂uz
∂y

+ uz
∂uz
∂z

 (5.1)

In this equation, because the fluid velocity in the cylinder will only depends on x axis and y axis

but the velocity u in those two directions will be zero all the time, which means ux, uy,
∂ux
∂z

,
∂uy
∂z

and
∂uz
∂z

will all becomes zero in this way. This will lead the non-linear term to become zero in

the cylinder’s geometry. Numerically, this term will approach to zero which means it will not have
a significant effect on the solution. In that condition, it seems that the amplitude of the boundary
condition will have a small polynomial effect on the differences between those two solutions. Since
this behavior is not observed while changing the boundary condition of the room, we can say that
the amplitude of the boundary condition will dominates the differences between those two solutions
only at small non-linear terms.

5.3.2 For the irregular geometry

Comparing with the relative differences between those two solutions for the room and the differences
for the cylinder, we can see that the relative differences between the solutions for the room is a
lot larger. This means that when the geometry is irregular, the nonlinear behavior caused by
the geometry will dominates the differences. In this condition, unless we’re looking for a ”quick-
and-dirty” solution for the results, we should not used the steady problem as a surrogate for the
unsteady problem or we can find a relationship between those two solutions with geometry and the
amplitude of the boundary condition as factors.
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5.3.3 Future directions

In order to test how the value of the non-linear term can affect the differences between the solutions,
we can run this simulation on a cylinder-like geometry. Comparing the results of that with the
results from the perfect cylinder can give us insight on how a slight change in the nonlinear term
will affect the differences between solutions. We can also run the simulation directly on the geometry
for an aorta to test whether this surrogate is a good approach to solve realistic problems in human
vessels.
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Conclusion

In this numerical experiment, we reach to a conclusion that in a irregular geometry, the relative
differences between the solutions solved from steady Navier-Stokes equations and the time-averaged
solutions from unsteady Navier-Stokes equations with periodic boundary conditions will be domi-
nated by the geometry itself. In a regular geometry, when the non-linear term is small, the amplitude
of the boundary condition will have a polynomial effect on the differences.
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