
Distribution Agreement  

 

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an 
advanced degree from Emory University, I hereby grant to Emory University and its 

agents the non-exclusive license to archive, make accessible, and display my thesis or 
dissertation in whole or in part in all forms of media, now or hereafter known, including 
display on the world wide web. I understand that I may select some access restrictions as 

part of the online submission of this thesis or dissertation. I retain all ownership rights to 
the copyright of the thesis or dissertation. I also retain the right to use in future works 

(such as articles or books) all or part of this thesis or dissertation.  
 
 

 
Signature:  

_____________________________            ______________  
                 Li Tang                                                   Date 

  



Analysis of Data with Complex Misclassification in Response or Predictor 
Variables by Incorporating Validation Subsampling  

By 

Li Tang 

Doctor of Philosophy 

Biostatistics 

_________________________________________  

Dr. Robert H. Lyles  

Advisor 

_________________________________________  

Dr. W. Dana Flanders  

Committee Member 

_________________________________________  

Dr. Michael J. Haber  

Committee Member 

_________________________________________  

Dr. John J. Hanfelt  

Committee Member 

Accepted: 

_________________________________________ 

Lisa A. Tedesco, Ph.D. Dean of the James T. Laney School of Graduate 
Studies 

___________________  

Date 



Analysis of Data with Complex Misclassification in 

Response or Predictor Variables by Incorporating 

Validation Subsampling 

By 

Li Tang 

 

M.Sc. Emory University, 2006 

Advisor: Robert H. Lyles, Ph.D. 

 

 

 

 

 

 

An Abstract of 

A dissertation submitted to the Faculty of the 

James T. Laney School of Graduate Studies of Emory University 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

in Biostatistics 

2012 

 

 

 



Abstract 

Analysis of Data with Complex Misclassification in Response or Predictor 
Variables by Incorporating Validation Subsampling 

By Li Tang 

    The problems of misclassification are common in epidemiological and clinical research. 
Misclassification may be present in either an exposure or outcome variable, or both. 

It is well known that the validity of analytic results (e.g., estimates of odds ratios of 
interest) might be questionable when no correction effort is made. Therefore, valid and 
accessible methods with which to deal with these issues are still in high demand.  

    In this dissertation, we first consider the situation when correlated binary response 

variables are subject to misclassification. Building upon prior work that extended 
McNemar‟s test to correct paired-data odds ratio estimation, we propose a nonlinear 
mixed model-based approach to adjust for potentially complex differential 

misclassification in correlated binary responses via internal validation sampling. 

    In the second topic, we shift gears toward predictor misclassification, for which we 
develop likelihood-based approaches based on generalized linear and generalized linear 
mixed models that can efficiently incorporate internal validation data in univariate and 

multivariate settings, respectively. We discuss the use of the approach both in the case 
when a baseline predictor is misclassified and when a time-dependent predictor is 

misclassified.  

In the final topic, we elucidate extensions of well-studied methods in order to 

facilitate misclassification adjustment when a binary outcome and binary exposure 
variable are both subject to complex differential misclassification in the 2-by-2 table 
scenario. We develop maximum likelihood approaches to accommodate a broad range of 

complexity in the joint misclassification process while incorporating various types of 
internal validation observations. We then generalize the method to a more standard 

binary regression setting, allowing the incorporation of covariates both in the main health 
effects model of interest and in misclassification models for both the binary outcome and 
exposure variable. Throughout, illustrative examples are presented via detailed analyses 

of bacterial vaginosis and trichomoniasis data from the HIV Research Epidemiology 
Study (HERS). 
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Chapter 1 Introduction 

1.1 Overview 

In many clinical and epidemiologic studies, one aims to characterize the association of 

a health-related binary response (i.e. disease status) with predictors of interest. The ideal 

situation is that both response variables and predictors are measured without error. When 

this holds, standard statistical procedures, including generalized linear models (GLMs) 

for a univariate response, and generalized linear mixed models (GLMMs) or generalized 

estimating equations (GEE) for repeatedly measured responses, are readily available for 

use. However, in practice, mismeasurement in response or predictors or even both is quite 

common. The reason for mismeasurement lies in the fallibility in the assessment methods 

chosen. Sometimes less accurate methods are used for lowering the cost or for 

convenience. When mismeasurement occurs, employment of methods to correct for it is 

desirable whenever possible in order to reduce the bias in estimation.  

In this dissertation, we focus on developing: (i) a likelihood-based approach that 

incorporates a validation sampling design in a generalized linear mixed model (GLMM) 

context to correct misclassification in correlated misclassified responses; (ii) a parametric 

misclassification-correction approach that restores validity in regression when predictors 

are subject to misclassification; (iii) an accessible parametric approach to correct for the 

bias due to misclassification in both response and predictor variables.  
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1.2 Misclassification in Correlated Binary Responses 

Many researchers have investigated the impacts of binary response misclassification on 

statistical inference. It is widely known that response misclassification can lead to severe 

bias as well as loss in efficiency (1-4). There is broad literature on methods correcting for 

response misclassification, mainly in the context of ordinary logistic regression, with the 

use of validation data (under certain assumptions) or known misclassification 

probabilities (3, 5-11). In the case of generalized linear mixed models, Neuhaus (4) 

quantified the magnitude of the bias when the response is misclassified. He also showed 

that the class of generalized linear models shares a closure property when the 

misclassification probabilities are independent of the covariates, allowing for the 

development of a computationally efficient maximum likelihood (ML) algorithm. He 

further pointed out that the analysis that corrects for the impact from the error in the 

response variable leads to efficiency loss as compared to the analysis using the error- free 

responses.  

Regarding the use of error-assessment data, more recent literature illustrates 

approaches to incorporate validation data into the estimation of the regression 

coefficients when the outcome is differentially misclassified, via the use of a Bayesian 

framework (12-14), nonparametric kernel methods (15), or the use of the likelihood-

based methods (3). Given efficient optimization tools in standard software nowadays, 

Lyles et al. (16) demonstrated a computationally more accessible ML method to correct 

for differentially misclassified binary outcomes in ordinary logistic regression by using 

internal validation data.  
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Despite a wide range of choices on the correction methods, most attention has been 

focused on the case when there is no repeated measurement on the response. However, 

longitudinal studies have been common in practice. An efficient and computationally 

accessible method to adjust for differential misclassification in correlated binary 

outcomes is in demand. Taking the advantage of the closure property of the class of 

generalized linear models when responses are misclassified, Neuhaus (17) proposed a 

general framework to implement population-averaged (GEE) and cluster-specific 

(GLMM) analyses when the misclassification probabilities are known or unknown but 

fixed and independent of covariates. Neuhaus (17) also pointed out that the closure 

property still holds when the misclassification probabilities depend on covariates via a 

known deterministic function. He implied that when the misclassification probabilities 

depend on covariates via a function with unknown parameters, theoretically ML 

estimates can be obtained with nonlinear optimization tools, but identifiability issues may 

arise. Subsequently, Lyles et al (18) specifically examined a case of matched-pair 2 2 

tables in a longitudinal study. When the pairwise correlated responses are measured with 

error, they extended the idea of McNemar‟s test by incorporating external or internal 

validation data to estimate the paired-data odds ratio. They also provided guidance for 

assessing cost-efficiency in terms of the study design.  This likelihood-based method can 

be viewed as an idea closely related to an extension of conditional likelihood or GLMM.  

In this dissertation, we first focus on longitudinal studies with repeatedly measured 

responses misclassified. We integrate and extend the previous work of Neuhaus (17) and 

Lyles et al (18). Neuhaus (17) has provided a general likelihood expression that can 

accommodate correlated binary outcome misclassification, but little guidance was given 
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when the misclassification was differential and when there was a need of incorporating 

validation data. Lyles et al (18) successfully incorporated the idea of validation data, but 

did not address the situation when multiple covariates need to be adjusted for. We seek to 

demonstrate a likelihood-based method that reliably estimates the parameters of interest 

in a generalized linear regression setting in the presence of differentially misclassified 

correlated binary outcomes, by incorporating validation data. We also aim to make the 

method more practically accessible by taking advantage of built- in optimization tools in 

standard software.  

1.3 Misclassification in Predictors 

Misclassification in predictor variables is a long-standing problem in statistics. It has 

been widely known that misclassification on exposure can potentially cause severe bias in 

parameter estimation, when the primary goal of a study is to characterize the association 

between an outcome and a pool of predictors (1, 3, 19, and 20). Further, the direction of 

the bias is known to rely heavily on the pattern of misclassification. Non-differential 

misclassification, in which the misclassification probabilities do not depend on the 

outcome or other covariate status, is often believed to cause a bias towards the null, when 

other conditions are met (3, 20-24). In contrast, when differential misclassification is 

present, the direction of bias is hard to predict (26).   

When there is a validation sample available, misclassification probabilities can be 

estimated, and thus parameter estimates can be adjusted accordingly. Methods developed 

to incorporate validation data include likelihood-based approaches and estimating 

equation approaches (3, 6, 8, 26, and 27). When a gold standard measurement is not 

available, replicates of the error-prone measurements can be used for the correction, 
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assuming nondifferential misclassification (28-35).  When there is no validation or 

replicated data available, investigators may rely on sensitivity analysis to infer the range 

of bias in the estimation by supplying a series of values for misclassification parameters 

and assuming those values are known (36-38).  

Liu and Liang (33) presented a method to correct for binary predictor misclassification 

in generalized linear models. In their approach, they considered generalized linear models 

with predictors non-differentially misclassified, and demonstrated the use of quasi-

likelihood for obtaining corrected estimators. The misclassification probabilities were 

estimated from replicates, and the number of replicates to maintain a desired efficiency 

was discussed. In related work, Kosinski and Flanders (39) outlined an EM algorithm that 

can be implemented in standard statistical software to account for nondifferential or 

differential exposure misclassification in regression analysis by using two imperfect 

measurement methods.   

Although there is much literature on predictor misclassification, so far few references 

have provided detailed information on handling differential predictor misclassification 

when incorporating validation data. In this dissertation, we assume the primary objective 

of a study is to assess the association of a response with one or more health-related binary 

predictors measured with error in generalized linear models, adjusting for other 

covariates. We focus on developing a likelihood-based approach that can be 

accommodated using standard software.  
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1.4 Misclassification in Response and Predictor Variables in 2 2 Tables 

    Known as the “matrix method” in epidemiological textbooks (40, 41), an intuitive 

correction approach due to Barron (1) can be parameterized in terms of familiar 

sensitivity and specificity properties of surrogate measurements on disease and exposure 

status, assuming nondifferential and independent misclassification in both. When 

misclassification in either is negligible, Greenland (6) derived variance estimators for 

differential and non-differential misclassification using the “matrix method”, under 

various validation sampling schemes. Adopting an alternative way of parameterizing with 

positive and negative predictive values, Marshall (8) developed another equality-based 

correction method, designated as the “inverse matrix method” (9). However, the original 

use of the “inverse matrix method” is restricted to the situation when either disease or 

exposure status is differentially misclassified, under which it has since been shown that 

Marshall‟s closed-form internal validation data-based corrected odds ratio estimator is 

also an ML estimator (42). Extensive discussions concerning efficiency of the matrix and 

inverse matrix methods versus the ML approach with misclassified exposure can be 

found in the literature (9).  

    Though rich literature is available for correcting misclassification in a binary variable, 

little guidance has been provided to deal with epidemiologic and clinical data with both 

response and exposure variables subject to misclassification. Therefore, we envision the 

practical need of developing intuitive methods for estimating odds ratios in 2 x 2 tables 

with a more general view, and we also sense the significance of making the correction 

methods computationally friendly and accessible. Greenland and Kleinbaum (26) offered 

an extended version of the matrix method (41) involving differential misclassification, 
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and this method is advantageous in terms of flexibly allowing for differential 

misclassification in either or both variables. Here, we seek to further extend the focus 

within the 2 x 2 table setting with both variables misclassified, while enhancing the ease 

in computation and conceptualization and allowing for flexible modeling of 

misclassification in both variables via internal validation data.  

    We first provide an ML framework allowing for flexible modeling of misclassification 

in both variables. We demonstrate that the ML approach can be viewed as directly 

connected to generalized versions of matrix and inverse matrix methods, while sharing 

common elements with prior work (3, 5 and 9). Compared to well-studied methods, our 

approach is more general in the sense of handling a richer set of misclassification patterns. 

To the best of our knowledge, this is also the first time that the inverse matrix method is 

fully generalized. We draw comparisons between different methods, and make our 

suggestions for analyzing data in practice. We also emphasize the advantage of utilizing 

an internal validation subsample in facilitating efficient estimation of corrected odds 

ratios. A model selection procedure readily implemented in standard statistical software 

is provided to practicing epidemiologists and clinicians. Throughout, the primary focus is 

on the point estimation of odds ratios in cross-sectional studies. However, notes will be 

offered on null testing and the applicability of the methods to case-control studies. 

1.5 Misclassification in Response and Predictor Variables in Regression 

    As 2 2 tables can be viewed as special cases of regressions, a natural extension of the 

topic addressed in Section 1.4 would be an approach that corrects biases in coefficients 

when both response and predictor variables are subject to misclassificat ion. The 

advantage of a regression-based correction approach is that it makes it possible to control 
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for covariate information to make more accurate inference. Most prior attention in 

regression settings has been focused on exposure misclassification (3), though some 

attention has been offered to response misclassification (4, 12, 17). More importantly, 

little guidance has been provided for analyses with complex misclassification 

mechanisms such as differential misclassification, when subject‟s covariate information 

has an impact on the misclassification process. Following the idea of specifying 

misclassification models (16), we aim to propose an approach to accommodate complex 

misclassification in both response and predictor variables simultaneously.  

1.6 Motivating Example 

The motivating examples for this dissertation are taken from the HIV Epidemiology 

Research Study (HERS). This is a multi-center prospective cohort study with a total of 

1310 women enrolled in four U.S. cities from 1993 to 1995 (43). Among them, 871 

women were HIV-infected, and 439 were not infected but at risk. During each semi-

annual visit, a wealth of health-related information was collected.  

The first question of interest is to assess the prevalence of bacterial vaginosis (BV) 

when adjusting for necessary covariates. BV was measured by two different clinical 

methods: the clinically-based (CLIN) and the laboratory-based (LAB). CLIN was a less 

accurate method that diagnoses BV by evaluating multiple clinical characteristics based 

on a modified Amsel‟s criteria (44), while LAB relies on a more sophisticated Gram-

staining technique (45). The LAB method is more expensive and serves here as an 

arguable gold-standard method, while the CLIN method is more cost-efficient and 

accessible. An important feature of the HERS data is that both CLIN and LAB diagnoses 
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were recorded at each visit, which makes it possible for us to thoroughly evaluate the 

performance of the proposed approach.  

A second research question to be addressed is the covariate-adjusted association of 

elevated vaginal PH (>4.7) with trichomoniasis. The predictor of interest that is subject to 

misclassification is trichomoniasis status. Trichomoniasis status was also diagnosed 

semiannually by two techniques, wet mount (WET) and culture testing (CULTURE). 

Wet mount is the most common clinical method for diagnosing trichomoniasis; however, 

it suffers from a low sensitivity (50). For a wet mount, a clinician visually examines a 

microscope slide, prepared by suspending a specimen in saline solution, for trichomonads. 

Culture testing is considered the gold standard, which is highly sensitive and specific 

with negligible error. For culture testing, trichomonads are examined from a specimen 

placed in a culture medium for 2-7 days. Compared to wet mount, culture is more 

expensive and delays diagnostic results (50).  

Our third research question addresses how BV is associated with trichomoniasis. It is 

widely believed that BV and trichomoniasis are associated, since the presence of 

trichomoniasis tends to create a bacterial favorable environment, leading to a higher 

chance of BV incidence (51). Thus, we consider CLIN BV as an error-prone substitute 

(Y*) for LAB BV (Y), while WET TRICH as an error-prone predictor (X*) replacing 

CULTURE TRICH (X). In contrast to the first and second questions above, both BV and 

trichomoniasis are subject to misclassification error. Thus, this setting provides an 

available analytic example to evaluate the performance of the proposed approaches to the 

problems outlined in Sections 1.4 and 1.5 (i.e., with and without covariate adjustment).



10 
 

Chapter 2 Regression Analysis for Differentially Misclassified 

Correlated Binary Responses  

2.1 Methods 

2.1.1 Notation 

    Let Yij be the true response of interest for subject i at the jth occasion, with Yij=1 if 

disease is present and Yij=0 otherwise. The response depends on a set of covariates Xij 

=(Xij1,…,Xijp). Suppose that the association between the two follows a generalized linear 

mixed model: 

    (     |             
      

                  , 

in which g is an arbitrary link, β=(β1,…,βp)T  is a parameter vector with p dimensions, Zij 

=(Zij1,…Zijq) is a regressor vector for random effects, and Ui=(ui1,…, uiq)
T  is a subject-

specific random effect vector that follows a multivariate distribution f(Ui). Conditioned 

on Ui, it is assumed that responses within subject i are conditionally independent (46). 

With such an assumption, the likelihood of Yij can be fully specified as a function of β0, β, 

Ui and parameters involved in f(Ui).  Often f(Ui) is assumed to be a multivariate normal 

distribution N(0, Σ), which will be followed throughout.  

When Yij is misclassified, instead of observing Yij, information on error-prone 

responses Y*
ij is collected. Y*

ij relates to Yij via the bridge of clinical properties of the 

diagnostic tools, known as sensitivity and specificity in epidemiology. For non-

differential misclassification as defined in equation (2.2),  
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     (   
   |     )             (   

   |     )                        

we assume that both sensitivity and specificity are fixed constants across all subjects and 

occasions, and they are independent of other information. For example, 

  (   
     

 |      )     (   
     

 |        ) , where Ci represents a set of time-

dependent and/or time-independent subject-specific characteristics.  

In contrast, when misclassification is differential, we allow sensitivity and specificity 

to vary under different conditions as in (2.3).  

     
   (   

   |          )             
   (   

   |          )                       

We assume that Cij in eqn. (2.3) is a low-dimensional and quantifiable vector (Cij1
T,…, 

Cijq
T)T  that is not necessarily the same as Xij. Cij may be a subset of Xij, or may not 

overlap with Xij at all. The subscript in Cij indicates that misclassification rates depend on 

subject-specific information. Henceforth, we assume that sensitivity and specificity for 

subject i at the j-th occasion only depends on the corresponding true response and 

covariate information at time point j, and that the misclassification processes for different 

occasions within the same subject are conditionally independent. In many situations, such 

conditional independence is a sensible assumption.  More specifically, we assume that 

  (   
     

 |      )    (   
     

 |           ) . Nevertheless, a note is given in 

Section 2.1.7 regarding the case when misclassification correlates within the same subject.  

For both non-differential and differential misclassification cases, SE and SP can be 

estimated via validation data. Otherwise, possible values of SE and SP can be supplied by 

users for the purpose of sensitivity analysis.  
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2.1.2 Validation Sampling Scheme 

    External validation data usually are separate and independent from a current study 

sample (i.e., from previous similar studies, or literature) (9). To incorporate the 

information from the external validation data, one must assume “transportability”, i.e., 

that the misclassification probabilities operating in the external validation set are the 

same as those operating in the current study (3). This assumption is questionable and 

sometimes unverifiable in practice. In external studies, typically, only information on (Yi, 

Yi
*) would be available; note the lack of any „j‟ subscript corresponding to time points in 

the main study. In most of the cases, the use of external validation data forces the fully 

non-differential misclassification assumption because other information is not available.  

    Unlike external validation sampling, internal validation involves a randomly selected 

proportion of the study sample, and in this subsample the true response is measured. 

Benefits of such a type of design include avoidance of the assumption of transportability, 

improved efficiency, and the flexibility of allowing for differential misclassification.  

2.1.3 Non-differential Misclassification with External Validation 

As mentioned in Section 2.1.2, when limited to external validation data, we usually can 

only consider the cases of non-differential and independent misclassification. Let nm be 

the number of subjects in the main study and nv be the number in the external validation 

sample. Assuming non-differentiality and independence, we can show that: 

  (   
   |      )  ∑    (   

   |       )           
 
     |      )                                                              

                                                        (     |      )        



13 
 

Equation (4) has the same form as shown by Neuhaus (17). Thus, the likelihood of the 

main study has the following form: 

   ∏∫  
  

  

  

   

∫ ∏ [                  (     |          )]
   

 
 

   

  

  

 

  [              (     |          )]
(     

 )
                    

With external validation with pairs of (Y*
k, Yk) (k=1,…, nv) observed, we can derive the 

likelihood contribution for each pair as follows: 

     
    

               
    

                                             

in which the first term reflects the misclassification probability and the second term is a 

nuisance parameter reflecting the prevalence of Yk=yk in the external validation sample. 

Therefore, the likelihood for the external validation sample has a similar form as derived 

in Lyles et al (16): 

   ∏                
                          

    

  

   

                                    

                                     
                          

                        

The full likelihood incorporating external validation is proportional to LmxLv.  

2.1.4 Differential Misclassification 

To model misclassification probability is a function of covariates, we introduce a 

secondary generalized linear model with an arbitrary link g‟ that may or may not be the 

same as the link g in equation (2.1): 
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     (   
   |             ∑   

   

   

                         

As noted in Section 2.1.2, we assume independent misclassification processes here, 

however, this type of setting allows sensitivity and specificity to differ regarding subject-

specific information. It also makes the likelihood ratio (LR) test an option to select 

variables that have important impacts on the sensitivity and specificity, and those 

covariates may or may not overlap with the ones in eqn. (2.1). A likelihood ratio test can 

also be used to check for the assumption of overall non-differentiality (H0: γ1=…= γq=0).  

Similar to the case incorporating external validation data, the likelihood contribution 

from the main study can be derived accordingly: 

   

∏ ∫  ∫ ∑  *(       
)  (     

      
  )    (     |          )+

   
 

 
   

  

  

  

  

  
                                                          

          

  *     
 (     

      
  )   (     |          )+

(     
 )

                             

The difference of eqn. (2.9) from eqn. (2.7) is that in the case of the internal validation 

design, misclassification probabilities can be modeled a function of covariates, which 

adds much more flexibility into the analysis.  

Unlike the case of external validation, there may be multiple possible types of internal 

validation data that can be collected.  For example, for pairwise correlated responses, as 

described in Lyles et al (18), we might consider three types of internal validation data: 
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(Yi1
*,Yi2

*,Yi1) (Type I), (Yi1
*,Yi2

*,Yi2) (Type II), and (Yi1, Yi2) (Type III). Type III 

facilitates a cost-efficiency analysis and optimal design to assess whether we need any 

surrogate measurements for a cost-optimal design. For studies with more than two 

repeatedly-measured outcomes, similar designs can be implemented without conceptual 

difficulty. Let nv1, nv2 and nv3 be the number of subjects randomly assigned into Type I, II 

and III. Without loss of generality, we assume that the data is sorted with the first nm 

subjects forming the main study, and the following nv1 subjects as the Type I internal 

validation subset and so on. For the case when there are two correlated binary responses 

for each subject, Type I subjects in the internal validation sample contribute to the 

likelihood via the form in eqn. (2.10).     

    ∏ ∫  ∫     
   

     
    

          
   

      
       

     
  

  

  

  

    
  

      
                                              

   [        
)         

     
        [     

        
 ]

      
         

 

 [(       
) (     

      
  )    

]
   

 

 

  [     
 (     

      
  )    

]
(     

 )
                                        

where     
                       and     

                      .  

Similarly, for type II and III, the likelihood components are shown in equations (2.11) 

and (2.12).   

    ∏ ∫  ∫     
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The full likelihood when incorporating internal validation is proportional to Lmx 

LV1xLV2xLV3. 

For the purpose of modeling SE/SP differentially, we introduce a secondary model 

(eqn. (2.8)). A careful model selection should be performed to ensure important 

covariates C are included properly. Failing to include important covariates in eqn. (2.8) 

may result in invalidity in estimating regression coefficients in the main model (2.1). 

However, this is not always true. From the likelihood of LmxLV with Lm and Lv defined 

above, if the left-out covariate in eqn. (2.8) is not in the main model (2.1), the MLE of its 

corresponding β coefficient in eqn. (2.1) would not be affected. Only if the left-out 

variable is also a predictor for the main model, the MLE of β will be invalidated. (See 

Section 2.3.3 for details). 

2.1.5 Main-study Only and Sensitivity Analysis 

Under some situations, validation data will not be available. When that is the case, 

sensitivity analysis is a reasonable choice. Neuhaus (17) showed that with non-

differential misclassification, the likelihood-based approach can be applied to incorporate 

sensitivity analysis by supplying a series of possible SE and SP values into eqn. (2.4) and 

(2.5). He also investigated the possibility of obtaining estimates on β in the main model 
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(2.1) without supplying SE and SP values when assuming non-differentiality, but 

numerical issues may arise in this case, as identifiability is likely weak (3).  

2.1.6 Estimation 

The likelihood can be optimized after integrating out the random effects. Many 

numerical methods are available for the numerical integration, including adaptive 

Gaussian quardrature (47) and the first-order method (48).  The full likelihood can then 

be optimized via quasi-Newton optimization, and standard errors of estimates may be 

obtained on the basis of the appropriate Hessian matrix. Such optimization techniques are 

well developed in standard software. All simulations and data examples are carried out 

using the NLMIXED procedure in SAS 9.2 (49) unless otherwise specified.  

2.1.7 Correlation in Misclassification Processes 

If repeated responses within the same individual are measured using the same defective 

device, any two misclassification processes for that subject may or may not correlate with 

each other, depending on the situation. In our motivating HERS BV example, it is 

sensible to assume that misclassification is independent conditioned on observed 

covariates. In other cases, misclassification may be correlated. Generally, if only external 

validation information is available, it is difficult to assess the correlation in the 

misclassification processes because the external validation sample may not share similar 

clustering information. When an internal validation sample is available, it is possible to 

evaluate potential correlation in the misclassification processes by including another 

random effect term in eqn. (2.8) to accommodate correlations in misclassification.  
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2.2 Simulation Studies 

In this section, we describe simulation studies to assess the performance of the 

proposed approaches under different situations. In all cases we confine our attention to 

the case where g and g‟ in models (2.1) and (2.8) are logit links. However, they can be 

easily generalized to other links. Unless specified, simulations were conducted for the 

case when there were two repeated measurements on the response for each subject, 

misclassification was assumed to be independent and only a random intercept was 

involved in model (2.1). The random effects ui generated in eqn. (2.1) followed an i.i.d. 

N(0,1).  

2.2.1 Non-differential Misclassification 

Table 2.1 summarizes the simulation results comparing the performance of MLEs 

based on eqn.s (2.5) and (2.7) with different types of internal validation designs. In each 

case, data were generated via model (2.1) with a continuous normal covariate X with 

mean 0 and variance 4. True values for β0 and β1 were 0 and 1.0. True sensitivity and 

specificity were 0.70 and 0.85 respectively. For each simulated sample there were 500 

main study observations and either 150 external with (Yi, Yi
*) or internal validation 

observations with (Yij,Yij
*) observed. We conducted simulations for the case of 2 

correlated responses and for the case of 5 correlated responses. A total of 1000 

simulations were performed for each. Five models were fitted. The ideal analysis was 

regression with the true response as the outcome. The “naïve” analysis regressing with 

the error-prone outcome, two models incorporated either external or internal validation, 

and the final model only used the main study observations.  
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Table 2.1 Results of simulations comparing MLEs under external/internal validation 

design and under main study only for logistic-mixed regression with non-differential 

outcome misclassification and a single continuous predictor X.† 

2 Correlated Responses  

Model  ̂   ̂    ̂
 
   ̂   ̂ Successful 

Optimization Mean 

(SD) 

95% 

Coverag

e 

Mean 

(SD) 

95% 

Covera

ge 

Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 
Naive -0.35 

(0.07) 

0.002 0.37 

(0.04) 

0 0.21 

(0.24) 

NA NA 1000 

Ideal 0.004 

(0.10) 

0.96 1.00 

(0.09) 

0.95 1.02 

(0.44) 

NA NA 1000 

Main+External -0.001 

(0.31) 

0.97 1.01 

(0.26) 

0.95 0.98 

(0.86) 

0.70 

(0.03) 

0.85 

(0.03) 

994 

Main+Internal 0.005 

 (0.15) 

0.96 1.01 

(0.14) 

0.95 1.03 

(0.64) 

0.70 

(0.03) 

0.85 

(0.02) 

1000 

Main Study 

Only 

-0.004 

(0.48) 

0.95 1.02 

(0.50) 

0.89 0.91 

(0.84) 

0.73 

(0.09) 

0.87 

(0.07) 

939 

4 Correlated Responses 
Model  ̂   ̂    ̂

 
   ̂   ̂ Successful 

Optimization Mean 

(SD) 

95% 

Coverag

e 

Mean 

(SD) 

95% 

Covera

ge 

Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 
Naive -0.35 

(0.05) 

0 0.37 

(0.03) 

0 0.18 

(0.08) 

NA NA 1000 

True  -0.004 

(0.07) 

0.95 1.00 

(0.06) 

0.95 0.99 

(0.19) 

NA NA 1000 

Main+External 0.004 

(0.22) 

0.95 1.02 

(0.20) 

0.93 0.96 

(0.50) 

0.70 

(0.03) 

0.85 

(0.02) 

998 

Main+Internal -0.002 

(0.11) 

0.96 1.00 

(0.08) 

0.95 0.98 

(0.28) 

0.70 

(0.02) 

0.85 

(0.01) 

1000 

Main Study 

Only 

-0.002 

(0.28) 

0.96 1.00 

(0.30) 

0.94 0.93 

(0.54) 

0.71 

(0.05) 

0.86 

(0.04) 

977 

† M L based on eqn. (2.5) and (2.7). 1000 simulat ions of each set of condition.
 
β0 = 0, β1 = 1, σ

2
u=1, SE=0.7, 

SP=0.85, nm=500, nv=150, and X normally distributed with mean 0 and variance 1 in each case. 
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The upper half of Table 2.1 represents the results when J=2, and the lower half is the 

results for J=4. The naïve analysis with the error-prone response as the outcome produces 

drastically biased results with β1 greatly attenuated in both cases. With validation data 

incorporated, (β0, β1) are reliably estimated with excellent 95% confidence interval 

coverage. As compared to the analysis with external validation, “main+internal” is more 

numerically stable and more efficient. Estimates of sensitivity and specificity are similar 

in models with external and internal validation data, regarding the point estimate and 

precision. Predictably, more numerical problems are observed for the main-study only 

analysis without any validation data. Although the validity appears preserved in this case, 

efficiency is lost noticeably. Unsurprisingly, with more repeated measures in each subject, 

the precision in estimating β and SE/SP generally improves.  

2.2.2 Differential Misclassification 

In Table 2.2, we examine the performance of the MLE based on the proposed approach 

in a hypothetical longitudinal study with two time points, when the misclassification is 

differential. The main model (2.13) includes a binary covariate X1 following Bernoulli 

(1,0.5) and a continuous covariate X2 following N(0,4). True values of the β‟s are (0, 0.5, 

0.5). 

     [  (     |      )]                                                

A secondary logistic model (2.14) was used to allow misclassification probabilities to 

depend on individuals‟ covariate information.  

        (   
   |         )                                                     
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The true SE/SP model contains an index variable t to indicate whether it is the first time 

point or the second time point, X1 as in model (2.14), and their interaction term. The true 

values of (γ0, γ1,γ2,γ3,γ4) were (-2, 0.5, -1.6, -0.5, 4). A total of 1000 sets of data were 

generated. For each simulated sample, 1000 subjects were generated, of which 500 

constituted the main study observations, and the other 167, 167 and 166 were randomly 

assigned as the type I, II and III internal validation observations as defined in Section 

2.1.4. We conducted the naïve analysis, the ideal analysis and the analyses incorporating 

internal validation assuming either differentiality as ded icated by model (2.14) or 

assuming non-differentiality.  

    Naïve analysis biased the estimate for β1 in the wrong direction and attenuated the 

estimate for β2. Note that only the binary covariate X1 affects the SE/SP model. When 

wrongly assuming non-differentiality,  ̂  is still approximately unbiased but  ̂  is not. As 

discussed in Section 2.1.4, the invalidity of the estimate for β1 relates to the fact that X1 is 

an important covariate in the SE/SP model, so failure to include X1 in the SE/SP model 

by wrongly assuming non-differentiality leads to invalid estimation of the corresponding 

coefficient. Only when the SE/SP model is specified correctly to handle the differentiality, 

do we find evidence supporting both estimates for β are valid. Also note from Table 2.2 

that loss of efficiency is observed when estimating β1, but efficiency loss is not noticeable 

when estimating β2. There is also a small bias downward in   
 ̂. It is possible to perform a 

hypothesis test to check whether it is necessary to adjust for differential misclassification 

(i.e. in this case, H0 : γ1=γ2 =γ3 =0). If H0 is not rejected in practice, an easier procedure 

only adjusting for non-differential misclassification can be implemented. Nevertheless, 

for validity purposes, it may be safer to employ a more general SE/SP model.  
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Table 2.2 Results of simulations comparing MLEs under internal validation design for 

logistic-mixed regression with differential outcome misclassification and two covariates. 

J=2. † 

Model  ̂   ̂    ̂
 
 Successful 

Optimization Mean(SD) 95% 

Coverage 

Mean(SD) 95% 

Coverage 

Mean(SD) 

Naive -0.77 

(0.16) 

0 0.29 

(0.04) 

0.003 0.35 

(0.26) 

1000 

Ideal 0.51 

(0.13) 

0.94 0.51 

(0.06) 

0.94 1.00 

(0.38) 

1000 

Main+Internal 

/Differential 

0.49 

(0.18) 

0.96 0.50 

(0.05) 

0.94 0.88 

(0.35) 

1000 

Main+Internal 

/Non-

Differential 

-0.31 

(0.16) 

0 0.49 

(0.06) 

0.94 0.94 

(0.37) 

1000 

†  ML based on eqn.s. (2.13) and (2.14); 1000 simu lations under each set of conditions with (β0, β1, β2, 

σ
2

u)= (0, 0.5, 0.5,1), (γ0, γ1,γ2,γ3,γ4)=(-2, 0.5, -1.6, -0.5, 4). X1 ~Bernoulli(1,0.5) and X2 ~ N(0,4). nm=500, 

nv1=167, nv2=167, nv3=167. 

2.2.3 Importance of Correctly Specifying SE/SP Model  

As mentioned and discussed in section 2.1.4 and Section 2.2.2, failure to include an 

important covariate in the SE/SP model may lead to an invalid estimate. We further 

examined the impact of misspecifying the SE/SP model on the estimation. Data were 

generated via a main model (2.13) and an SE/SP model as eqn. (2.15): 

        (   
   |         )                                    . 

X1 and X2 were defined as in Section 2.2.2. True values of β‟s were (0, 0.5, 0.5), and (γ0, 

γ1, γ2,γ3)=(-2, 0.5, -1.6, 4). Note that the main model and the SE/SP model share a 

common covariate X1, and time index covariate is only in the SE/SP model. ML 
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estimation was performed in two ways: i) X1 was omitted from the SE/SP model 

specified; ii) the time index t was excluded in the SE/SP model specified.  A total of 1000 

simulations were conducted. In each sample, 500 were main study observations, and the 

other 167, 167 and 166 were randomly assigned into the type I, II and III internal 

validation sets as described in section 2.1.4.  

Table 2.3 Results from simulation study assessing effects of omitted predictor in SE/SP 

model [Equation (2.15)] † 

Parameter 

Correct SE/SP model 

X1 omitted from SE/SP 

model 

t omitted from SE/SP 

model 

Mean estimate 

(std. deviation) 

Mean estimate 

(std. deviation) 

Mean estimate 

(std. deviation) 

1 0.48 

(0.18) 

-0.20 

(0.15) 

0.48 

(0.18) 2 0.49 

(0.05) 

0.49 

(0.05) 

0.49 

(0.05) †  M L based on eqn.s. (2.13) and (2.15); 1000 simulat ions under each set of conditions. 1000 s imulat ions 

under each set of conditions with (β0, β1, β2, σ
2

u)= (0, 0.5, 0.5, 1), (γ0, γ1,γ2,γ3, γ4)=(-2, 0.5, -1.6, 4). X1 

~ber(1,0.5) and X2 ~ N(0,4). nm=500, nv1=167, nv2=167, nv3=167.  

Table 2.3 summarizes the results. Similar to the findings in section 2.2.2, when a 

covariate is important in both the main model and the SE/SP model, omitting it will cause 

invalid estimation of the main model coefficient for this covariate. In this case, X1 has 

impact on the main model as well as the SE/SP model. Failing to include X1 when 

specifying the SE/SP model in ML analysis thus makes  ̂  invalid. In contrast, when a 

covariate is only in the SE/SP model, omitting it does not affect the validity of 
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coefficients in the main model. From Table 2.3, incorrectly missing the time index t from 

the SE/SP model during the ML analysis,   ̂  and   ̂  are both approximately unbiased. In 

practice, care should be taken when specifying the SE/SP model. We recommend a 

careful model selection in practice to help ensure no important covariates are left out; 

note that this issue highlights the benefits of internal validation.  

2.2.4 A Note About Correlated Misclassification 

As mentioned in Section 2.1.6, misclassification may be correlated within the same 

cluster or subject, even conditioned on covariates. If that is the case, an option is to 

introduce another random effect ui
* in the SE/SP model. For example, we consider 

simulations based on the following model: 

        (   
   |         )                                   

                

We assume the primary model of interest is the same as defined in eqn. (2.13) with a 

binary covariate X1 following Bernoulli(1,0.5) and a continuous covariate X2 following 

N(0,4), and we assume that ui and ui
* are independent. True values of β‟s were (0, 0.5, 

0.5), and (γ0, γ1,γ2,γ3,γ4) = (-2, 0.5, -1.6, -0.5, 4). We examined three scenarios when    
  

took the value of 0.25, 1 and 2.25. A total of 500 simulations were conducted. In each 

sample, 500 were in the main study observations, and other 167, 167 and 166 were 

randomly assigned into the type I, II and III internal validation as described in section 

2.1.4.  

Table 2.4 summarizes the results. It is noticed that when correlation is present in 

misclassification, ignoring the correlation and modeling the misclassification process 

independently does not seem to bias the estimates of the main parameters of interest. 
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However, by correctly specifying the correlation in the misclassification model, 

efficiency is slightly improved and this trend is more obvious when the variance of ui
* 

increases.  

This simulation study suggests that assuming independence in misclassification when 

misclassification is correlated preserves validity in estimating parameters in the main 

model, with efficiency loss as a trade-off. Considering extra computational complications 

when modeling correlated misclassification processes, we suggest proceeding with the 

independence assumption unless the correlation is suspected to be very strong. Of course, 

users can always fit the model assuming independence or not, and compare the results 

and make conclusions based on more sensible results.  
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Table 2.4 Results of simulations comparing MLEs under internal validation design 

assuming when misclassification is correlated††. 

   
 =0.25 

Model  ̂   ̂  Successful 

Optimization 
Mean(SD) 95% 

Coverage 

Mean(SD) 95% 

Coverage 

Naive -0.79 

(0.17) 

0 0.29 

(0.04) 

0 500 

Ideal 0.49 

(0.19) 

0.95 0.51 

(0.05) 

0.95 500 

Main+Internal 

/Independence
†
 

0.48 

(0.19) 

0.94 0.49 

(0.06) 

0.94 500 

Main+Internal 

/Correlated
* 

0.49 

(0.19) 

0.95 0.49 

(0.05) 

0.95 500 

    
 =1  

Model  ̂   ̂  Successful 

Optimization Mean(SD) 95% 

Coverage 

Mean(SD) 95% 

Coverage 

Naive -0.83 

(0.18) 

0 0.28 

(0.04) 

0..01 500 

Ideal 0.50 

(0.19) 

0.95 0.51 

(0.06) 

0.93 500 

Main+Internal 

/Independence
†
 

0.50 

(0.19) 

0.95 0.51 

(0.06) 

0.93 500 

Main+Internal 

/Correlated
* 

0.49 

(0.19) 

0.95 0.50 

(0.05) 

0.94 500 

   
 =2.25 

Model  ̂   ̂  Successful 

Optimization Mean(SD) 95% 

Coverage 

Mean(SD) 95% 

Coverage 

Naive -0.90 

(0.18) 

0 0.28 

(0.04) 

0 500 

Ideal 0.49 

(0.17) 

0.97 0.50 

(0.05) 

0.96 500 

Main+Internal 

/Independence
†
 

0.50 

(0.20) 

0.96 0.52 

(0.06) 

0.96 500 

Main+Internal 

/Correlated
* 

0.49 

(0.19) 

0.96 0.51 

(0.05) 

0.96 500 

† M L based on eqn. (2.5) and (2.7). * ML based on eqn. (2.5) and (2.16). 
†† Data generated based on eqn. 

(2.5) and (2.16). 500 simulat ions of each set of condition with (β0, β1, β2)= (0, 0.5, 0.5), (γ0, γ1,γ2,γ3,γ4)=(-2, 

0.5, -1.6, -0.5, 4). X1 ~Bernoulli(1,0.5) and X2 ~ N(0,4). ui, ui
*
 independently follow N(0,1). nm=500, 

nv1=167, nv2=167, nv3=167. J=2. 
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2.3. Example 

2.3.1 HERS Example 

    The HERS example was described in Section 1.4. We considered bacterial vaginosis 

(BV) as a response of interest for illustrative purposes, and BV status may be 

misclassified when diagnosed by the CLIN method. As aforementioned, an important 

feature of HERS data is that both CLIN and LAB diagnoses were recorded at each visit, 

which makes it possible for us to evaluate the performance of the validation design-based 

ML approach.  

2.3.2 Example 1: Pairwise No-covariate case 

Lyles et al (18) proposed an extended McNemar‟s test to compute paired-data odds 

ratio estimates for a 2 2 table with correlated binary responses misclassified, without 

adjusting for any other covariates. Our ML approach is equivalent to the extended 

McNemar‟s approach when specifying covariates in eqn.s (2.1) and (2.8) appropriately. 

As in reference (18), we consider the BV prevalence change from visit 1 to visit 4 among 

565 black women. They were randomly assigned to the main study (280 women), and 

Type I (95 women), II (95 women) and III (95 women) internal validatio n sets. A paired-

data odds ratio in a McNemar‟s test is defined as    
   ̅

   ̅

 (26), which is the ratio of 

probabilities with discordant responses at two time points.   

In order to estimate the crude paired-data odds ratio, we consider a GLMM main 

model  

     [  (     |   )]                                                                
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in which tij=0 (visit 4) or 1 (visit 1). The model characterizing the differential sensitivity 

and specificity is 

[  (   
   |          )]                                                       , 

allowing for sensitivity/specificity to vary from visit 1 to visit 4. As shown in (18), the 

sensitivity/specificity of the BV status test appeared to change among black women in the 

HERS sample from visit 1 to visit 4. Without correcting for misclassification, the naïve 

analysis based on the error-prone CLIN method produced a paired-data   ̂ of 2.31 (95% 

CI=(1.49, 3.57)). However, the analysis based on the “gold-standard” LAB method gave 

an OR of 1.17 (95% CI=(0.90, 1.52)). The odds ratio estimate obtained without the 

appropriate correction was biased away from the null and led to a different hypothesis 

testing conclusion than the one produced by the gold-standard model.  
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Table 2.5 Change in BV prevalence as measured by paired data OT estimates for black 

women between HERS visits 1 and 4. 

Results reported in reference (18) 

 ln(OR)(SE) OR(95% CI) p-value 

LAB result 0.15 (0.13) 1.17 (0.90,1.52) 0.25 

Corrected result 0.39 (0.26) 1.47 (0.89,2.43) 0.12 

Results from proposed random effects model* 

 ln(OR)(SE) OR(95% CI) p-value 

LAB result 0.15 (0.16) 1.17 (0.84,1.61) 0.35 

Corrected result 0.38 (0.32) 1.46 (0.78, 2.74) 0.24 

* ML based on eqn.s (2.16) and (2.17).   
 ̂=3.81. nm=280, nv1=nv2=nv3=95. 

By performing the correction using the proposed nonlinear mixed model likelihood-

based approach, the odds ratio estimate after adjusting for misclassification was 1.46 (95% 

CI=(0.78, 2.74)), consistent with the result reported in (18). The point estimate after the 

correction was close to the point estimate from the analysis using the gold standard, with 

some loss in efficiency (Table 2.5). The estimated sensitivity and specificity at visit 1 and 

visit 4 are reported in Table 2.6.  At visit 4, the sensitivity of the BV status test decreased 

markedly from visit 1 (from 0.69 to 0.49), while the specificities at the two visits were 

similar (Table 2.5). This finding is consistent with the findings in reference (18), although 

the scientific reason for the drop in the sensitivity is not clear.  
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Table 2.6 SE and SP estimates. Test for equal SE/SP (nondifferentiality) assumption (H0: 

γ1=γ3 =0; χ2=12.5,df=2,p=0.002) 

SE/SP estimates reported in reference (18) 

SE1 SP1 SE4 SP4 

0.69 0.92 0.49 0.92 

SE/SP estimates based on proposed random effect model* 

SE1 SP1 SE4 SP4 

0.68 0.91 0.45 0.89 

* ML based on eqn.s (2.16) and (2.17). nm=280, nv1=nv2=nv3=95. 

The ML approach presented provided results consistent with those from the extended 

Mcnemar‟s approach regarding the point estimate. A slight difference in precision is 

observed, with slightly more variability in the proposed ML approach.  The reason may 

be that different numerical methods are used in the two approaches in obtaining standard 

errors. Nevertheless, this example shows that the proposed method can serve as a 

valuable substitute for the case of the 2 2 paired data table. More importantly, it can also 

accommodate covariates/confounders that the extended McNemar‟s test cannot (see 

Example 2).  

2.3.3 Example 2: Pairwise Covariate-adjusted case 

In the second example, we use black, white and Hispanic patients from the 1st and the 

4th semi-annual visit. In total, there are 870 patients aged greater than or equal to 25 years 

old at enrollment with both CLIN and LAB BV as well as all risk factors measured for 
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those two visits. Information collected regarding potential covariates associated with the 

BV status includes race, HIV status (negative or positive), HIV risk group (via sexual 

contact or via intravenous drug use (IDU)), and age in years. The median age at 

enrollment was 36.0 years. The study sample consists of 530 blacks (60.9%), 207 

Caucasians (23.8%) and 133 Hispanics (15.3%). For model fitting purposes, Hispanics 

were combined with the Caucasians after performing analysis suggesting similar BV 

prevalence for these two groups. 587 women were HIV positive (67.5%), and 465 were 

in the IDU group (53.5%).  At the 1st semi-annual HERS visit, the estimated BV 

prevalence was 33.8% by the CLIN method and 46.3% by the LAB method. At the 4 th 

visit, a crude BV prevalence estimate from the CLIN method was 25.2%, and the 

estimate by the LAB method was 40.9%. Thus, the CLIN method seems to underestimate 

the prevalence of BV in the sample.  

The crude sensitivity and specificity estimates in “via sexual contact” HIV risk group 

are 0.46 and 0.94 respectively, combining data from two visits. However, in the HIV risk 

group via IDU, sensitivity and specificity are estimated to be 0.63 and 0.88. Specificity 

seems to be higher in the risk group with sexual contact, but the sensitivity is higher in 

the IDU group. In the HIV negative group, sensitivity and specificity estimates are 0.62 

and 0.90, while in the HIV positive group, crude sensitivity and specificity are 0.53 and 

0.92, combined across visits. Thus, the sensitivity for the CLIN method is higher in the 

HIV negative group. Sensitivity and specificity also change over time. At visit 1, the 

crude sensitivity estimate is 0.59, and it drops to 0.42 at visit 4. In contrast, the specificity 

increases from 0.88 to 0.94. All this indicates that a complex differential misclassification 

process exists in this sample.  
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Let Yij denote BV status for subject i at the jth time point, where j=1,4. After 

preliminary model selection, we assume Yij follows a logistic model as in eqn. (2.19):  

     [  (     |      )]                                                        

Because the surrogate CLIN BV measurements were obtained independently at each 

semi-annual visit, misclassification in repeated BV status is assumed independent, 

conditioned on the covariates in (2.19). A random subsample of 200 patients were 

selected, and we randomly assigned 100 of them to Type I and 100 to Type II internal 

validation sets as described in Section 2.1.4. We fitted three types of models here. The 

first model is the one regressing with the BV status measured by the gold-standard (LAB 

method) as the response. This provides the ideal result that we can compare results from 

other models against. The second “naïve” model is the one with the BV status measured 

by the error-prone CLIN method as the response. The third type of model is fitted by 

using the ML approach proposed, assuming either non-differentiality or differentiality as 

dedicated by (2.19). For the naïve model, we fitted eqn. (2.20) with Yij
* replacing Yij: 

     [  (   
   |      )]                                                     . 

For the joint model to adjust for misclassification via ML, we fitted equations (2.19) and 

(2.21) simultaneously, with the latter allowing for differential misclassification.  

     [  (   
   |       )]

                                                                     

When assuming non-differential misclassification, we remove all the covariates except y 

in eqn. (2.21). We note that although formal selection of the misclassification model is 
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not our primary focus, model (2.21) is supported by our univariate preliminary 

investigations of the misclassification process.    

Table 2.7A and 2.7B summarizes the fit of all models. The error-prone model and the 

gold-standard model differ mainly in the magnitude of the estimated OR for HIV risk 

group (1.63 for the ideal analysis, 2.79 for the naïve model) and in the directionality of 

HIV status (1.04 and non-significant for the ideal analysis, 0.70 and significant for the 

naïve model). This implies the potential benefit for adjusting for outcome 

misclassification.  
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Table 2.7 Change in BV prevalence for women between HERS visits 1 and 4 with 

covariate adjustment (Ideal and Naïve Analysis) 

Ideal Analysis
a
 

Variable  ̂(SE) Estimated OR  

(95% CI) 

P-value 

HIV Status 

(Positive vs. Negative) 

0.02(0.14) 1.04 

(0.78,1.38) 

0.88 

Age 

(Older vs Younger) 

-0.05(0.01) 0.95 

(0.93, 0.97) 

<0.0001 

Risk Group 

(IDU vs Sex) 

0.48(0.14) 1.63 

(1.23, 2.13) 

0.0005 

Race 

(Black vs Other) 

0.92(0.14) 2.53 

(1.90, 3.37) 

<0.0001 

Naïve Analysis
b
 

Variable  ̂(SE) Estimated OR  

(95% CI) 

P-value 

HIV Status 

(Positive vs. Negative) 

-0.34(0.15) 0.70 

(0.51, 0.97) 

0.03 

Age 

(Older vs Younger) 

-0.06(0.01) 0.94 

(0.92,0.96) 

<0.0001 

Risk Group 

(IDU vs Sex) 

0.98(0.15) 2.79 

(2.03, 3.84) 

<0.0001 

Race 

(Black vs Other) 

1.05(0.16) 3.01 

(2.16, 4.19) 

<0.0001 

a. ML based on eqn. (2.19). 

b. ML based on eqn. (2.20).  
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Table 2.8 Change in BV prevalence for women between HERS visits 1 and 4 with 

covariates adjusted (Main+Internal Validation Analysis). 

Main+Internal, Differential
* 

Variable  ̂(SE) Estimated OR  

(95% CI) 

P-value 

HIV Status 

(Positive vs. Negative) 

0.26(0.39) 

 

1.30 

(0.60, 2.82) 

0.50 

Age 

(Older vs Younger) 

-0.05(0.03) 0.96 

(0.91, 1.01) 

0.09 

Risk Group 

(IDU vs Sex) 

0.46(0.42) 1.58 

(0.69, 3.61) 

0.28 

Race 

(Black vs Other) 

0.93(0.40) 2.54 

(1.15, 5.60) 

0.02 

Main+internal, non-differential† 

Variable  ̂(SE) Estimated OR  

(95% CI) 

P-value 

HIV Status 

(Positive vs. Negative) 

-0.45(0.25) 0.64 

(0.39, 1.05) 

0.08 

Age 

(Older vs Younger) 

-0.07(0.02) 0.93 

(0.88, 0.96) 

0.0005 

Risk Group 

(IDU vs Sex) 

1.34(0.27) 3.81 

(2.26, 6.41) 

<0.0001 

Race 

(Black vs Other) 

1.48(0.28) 4.39 

(2.51, 7.68) 

<0.0001 

* SE and SP assumed to vary with the binary  variables dichotomized age, HIV risk group, HIV status, race 

and index for time point (Visit 4 as the reference level) via model (2.21). n m=670, nv1=nv2 =100.   

  ̂
 
     .  

† No covariates affect ing SE and SP;  this assumption is not supported by the data (chi-sq=47.2, P<0.0001). 

  ̂
 
     .  
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Table 2.9 Change in BV prevalence for women between HERS visits 1 and 4 with 

covariates adjusted (Main+Internal Validation Analysis with correlated misclassification).  

Main+Internal, Differential, Correlated Misclassification
* 

Variable  ̂(SE) Estimated OR  

(95% CI) 

P-value 

HIV Status 

(Positive vs. Negative) 

0.02(0.25) 

 

1.02 

(0.62, 1.68) 

0.93 

Age 

(Older vs Younger) 

-0.04(0.02) 0.97 

(0.93, 1.01) 

0.11 

Risk Group 

(IDU vs Sex) 

0.52(0.26) 1.68 

(0.99, 2.83) 

0.05 

Race 

(Black vs Other) 

0.87(0.34) 2.39 

(1.22, 4.69) 

0.01 

Main+Internal, Non-Differential, Correlated Misclassification
* 

Variable  ̂(SE) Estimated OR  

(95% CI) 

P-value 

HIV Status 

(Positive vs. Negative) 

-0.37(0.24) 

 

0.69 

(0.44, 1.10) 

0.12 

Age 

(Older vs Younger) 

-0.06(0.24) 0.94 

(0.91, 0.98) 

0.002 

Risk Group 

(IDU vs Sex) 

1.17(0.25) 3.23 

(1.99, 5.24) 

<0.0001 

Race 

(Black vs Other) 

1.33(0.27) 3.80 

(2.25, 6.40) 

<0.0001 

* SE and SP assumed to vary with the binary  variables dichotomized age, HIV risk group, HIV status, race 

and index fo r time point (Vis it 4 as the reference level) via model ( 2.21). n m=670, nv1=nv2 =100.   ̂
 
 

    .     ̂
 
     . 

† No covariates affect ing SE and SP;  this assumption is not supported by the data (chi-sq=49.9, P<0.0001). 

  ̂
 
         ̂

 
     . 
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Table 2.8 shows the results when assuming non-differentiality and allowing for 

differentiality with the independent misclassification assumption, while utilizing the 

main/internal validation likelihood. When assuming non-differentiality, we are forcing 

the condition that γ1=γ2 =γ3=γ4 = γ5 =0 in eqn. (2.20). This assumption is rejected by a 

likelihood-ratio test (2=47, P<0.0001); therefore, differential misclassification is more 

plausible in this case. When allowing for differential misclassification probabilities, the 

interpretations are similar to those when fitting the gold-standard model, with regard to 

the magnitudes and directionality of the estimated ORs. In contrast, when wrongly 

assuming non-differentiality, the results differ markedly from the analysis allowing 

differential misclassification and the gold-standard analysis, regarding the point estimates.  

When mistakenly assuming non-differentiality, interestingly, the estimated OR for HIV 

status is in the same direction as for the naïve analysis. This indicates that it is important 

to model SE/SP differentially when non-differentiality is rejected. Sensitivity and 

specificity are found to be significantly associated with HIV status, risk group, time index, 

dichotomized age and race based on the joint NL analyses. Sensitivity tends to be higher 

and specificity tends to be lower in younger patients (  ̂=-0.50, p=0.02), black women 

(  ̂=0.73, p=0.006), at visit 1 (  ̂=0.68, p<0.0001), HIV negative patients (  ̂=-0.66, 

p=0.02) and patients via IDU (  ̂=0.96, p=0.0006). This finding is consistent with the 

crude estimates and references (16) and (18).  

We also relaxed the independence assumption on the misclassification process, and 

introduced a random effect in the SE/SP model. The random effects ui
* accommodate 

within-subject correlations in misclassification across visits, and are assumed to be 

independent from the ui‟s in eqn. (2.19).  Table 2.9 summarizes the results when allowing 
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for correlated misclassification under the assumption of differentiality and non-

differentiality, based on the following generalization of the model (2.21): 

     [  (   
   |       )]

                                                       
            

With the same main study and internal validation subsample, the estimates are very 

similar to those obtained when assuming independence, but with improved efficiency 

(smaller standard errors), with HIV risk group marginally significant (p=0.05).  The non-

differentiality assumption is still strongly rejected (χ2=49.9, P<0.0001).  

2.3.4 Example 3: Longitudinal Analysis with >2 Time Points 

    In the third example, we consider 706 patients older than 25 at the time of enrollment 

from the 1st through the 4th semi-annual visits. The median age at enrolment was 36.0  

years. There were 425 blacks (60.2%) in the sample. 487 women were HIV positive 

(69.0%), and 392 were in the IDU group (55.5%).  At the 1st semi-annual visit, the 

estimated BV prevalence was 34.3% by the CLIN method and 46.7% by the LAB method. 

At the 2nd visit, a crude BV prevalence estimate from the CLIN method was 32.3%, and 

the estimate by the LAB method was 43.6%. The prevalence was 29.5% by CLIN 

method and 42.8% by LAB method at the 3rd visit, and changed to 25.9% and 41.2% at 

the 4th visit. The prevalence of BV had a general decreasing pattern over time.  

We consider three types of models here: the ideal analysis with the gold-standard 

(LAB method) as the response, the naïve model with the BV status measured by the 

error-prone CLIN method as the response, and models fitted by using the approach 

proposed, assuming either non-differentiality or differentiality. On the basis of 
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preliminary model selection, for the “gold-standard” model, we fit 

     [  (     |      )]                                                       . 

For the naïve model, we fit equation (2.24) instead: 

     [  (   
   |      )]                                                       . 

For the model to adjust for differential misclassification, we fit equation (2.23) and (2.25):  

     [  (   
   |       )] 

                                                                               

In eqn. (2.25), we introduced (0,1) indicator variables vst2, vst3 and vst4, using visit1 as 

the reference level. When assuming non-differential misclassification, we removed all the 

covariates except y in equation (2.25). We evenly assigned 240 patients randomly chosen 

into one of five internal validation types: (Yi1
*, Yi2

*, Yi3
*, Yi4

*, Yi1) (Type I), (Yi1
*, Yi2

*, 

Yi3
*, Yi4

*, Yi2) (Type II), (Yi1
*, Yi2

*, Yi3
*, Yi4

*, Yi3) (Type III), and (Yi1
*, Yi2

*, Yi3
*, Yi4

*, 

Yi4) (Type IV).  The remaining 466 patients were in the main study, and they contributed 

to observations on Y* not Y.  

Table 2.10 summarizes the fit of all models. In general, the results are similar to those 

in Section 2.3.2. The error-prone model had the coefficient for the HIV status in the 

opposite direction as that in the gold-standard model (with estimates ORs of 1.04 for the 

gold-standard model, 0.75 for the error-prone model), and also had an inflated OR 

estimate for HIV risk group (1.98 for the gold-standard model, 3.08 for the error-prone 

model). With “main+internal” correction by allowing for differentiality, the results are 

similar to those from the ideal analysis, though predictably with more variability in the 
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estimates than in the ideal analysis. Sensitivity and specificity are found to associate with 

each of race, HIV status, HIV risk group, time index and age significantly based on the fit 

of model (2.25) in the joint ML analyses. Sensitivity tends to be higher in blacks, patients 

at risk via IDU, HIV negative patients, younger patients, and at visit 1. This finding is 

consistent with Section 2.3.3.2.When assuming the erroneous non-differentiality (2=46.7, 

P<0.0001), the estimate for HIV status is similar to the estimate from the naïve analysis, 

suggesting the need of adjusting for differential misclassification.  

As in section 2.3.3.2, we examined the need of accounting for correlations in 

misclassification across time. Table 2.12 summarizes the results. In general, with the 

correlations taken into account, the regression coefficient estimates in the primary model 

are very close to those obtained when assuming independence. The non-differentiality 

assumption is still rejected in this case (P<0.0001), again strongly suggesting that we 

should adjust for differential misclassification.  
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Table 2.10 Change in BV prevalence for women from HERS visits 1 through visit 4 with 

covariates adjusted (Ideal and Naive Analysis). 

Ideal Analysis
a
 

Variable  ̂(SE) Estimated OR  

(95% CI) 

P-value 

HIV Status 

(Positive vs. Negative) 

0.04(0.17) 1.04 

(0.69, 1.41) 

0.82 

Age 

(Older vs Younger) 

-0.06(0.01) 0.94 

(0.91, 0.96) 

<0.0001 

Risk Group 

(IDU vs Sex) 

0.68(0.16) 1.98 

(1.35, 2.62) 

<0.0001 

Race 

(Black vs Other) 

1.19(0.17) 3.30 

(2.21, 4.42) 

<0.0001 

Naïve Analysis
b
 

Variable  ̂(SE) Estimated OR  

(95% CI) 

P-value 

HIV Status 

(Positive vs. Negative) 

-0.29(0.15) 0.75 

(0.53, 0.97) 

0.06 

Age 

(Older vs Younger) 

-0.07(0.01) 0.93 

(0.91,0.95) 

<0.0001 

Risk Group 

(IDU vs Sex) 

1.13(0.15) 3.08 

(2.19,3.98) 

<0.0001 

Race 

(Black vs Other) 

1.18(0.15) 3.25 

(2.28,4.22) 

<0.0001 

a. ML based on eqn. (2.23). 

b. ML based on eqn. (2.24).  
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Table 2.11 Change in BV prevalence for women from HERS visits 1 through visit 4 with 

covariates adjusted (Correction Analysis with Differential and Nondifferential 

Assumptions Assuming Independent Misclassification). 

Main+Internal, Differential
* 

Variable  ̂(SE) Estimated OR  

(95% CI) 

P-value 

HIV Status 

(Positive vs. Negative) 

0.27(0.31) 1.32 

(0.71, 2.44) 

0.38 

Age 

(Older vs Younger) 

-0.08(0.02) 0.93 

(0.89, 0.97) 

0.0005 

Risk Group 

(IDU vs Sex) 

0.67(0.31) 1.95 

(1.07, 3.58) 

0.03 

Race 

(Black vs Other) 

1.17(0.31) 3.22 

(1.43, 5.00) 

0.0011 

Main+internal, non-differential† 

Variable  ̂(SE) Estimated OR  

(95% CI) 

P-value 

HIV Status 

(Positive vs. Negative) 

-0.31(0.22) 0.73 

(0.47, 1.12) 

0.15 

Age 

(Older vs Younger) 

-0.10(0.02) 0.90 

(0.87, 0.93) 

<0.0001 

Risk Group 

(IDU vs Sex) 

1.50(0.22) 4.48 

(2.88, 6.96) 

<0.0001 

Race 

(Black vs Other) 

1.66(0.23) 5.24 

(3.31, 8.31) 

<0.0001 

* SE and SP assumed to vary with dichotomized age, HIV risk group, HIV status, race and index fo r time 

point (Visit 1 as the reference level) via model (2.25). nm=466, nv1=nv2=nv3=nv4=60.   ̂
 

     . 

† No covariates affecting SE and SP; this assumption is not supported by the data (P<0.0001).   ̂
 
     . 
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Table 2.12 Change in BV prevalence for women from HERS visits 1 through visit 4 with 

covariates adjusted (Correction Analysis with Differential and Nondifferential 

Assumptions Allowing for Correlated Misclassification). 

Main+Internal, Differential, Correlated Misclassification
* 

Variable  ̂(SE) Estimated OR  

(95% CI) 

P-value 

HIV Status 

(Positive vs. Negative) 

0.35(0.34) 1.32 

(0.72, 2.78) 

0.31 

Age 

(Older vs Younger) 

-0.08(0.02) 0.93 

(0.89, 0.97) 

0.0005 

Risk Group 

(IDU vs Sex) 

0.67(0.31) 1.95 

(1.07, 3.58) 

0.04 

Race 

(Black vs Other) 

1.17(0.31) 3.22 

(1.43, 5.00) 

0.01 

Main+Internal, Non-Differential, Correlated Misclassification
* 

Variable  ̂(SE) Estimated OR  

(95% CI) 

P-value 

HIV Status 

(Positive vs. Negative) 

-0.17(0.24) 0.85 

(0.52, 1.37) 

0.50 

Age 

(Older vs Younger) 

-0.09(0.02) 0.91 

(0.88, 0.95) 

<0.0001 

Risk Group 

(IDU vs Sex) 

1.45(0.25) 4.28 

(2.60, 7.02) 

<0.0001 

Race 

(Black vs Other) 

1.45(0.26) 4.25 

(2.54, 7.11) 

<0.0001 

* SE and SP assumed to vary with dichotomized age, HIV risk group, HIV status, race and index fo r time 

point (Visit 1 as the reference level) v ia model (2.26). nm=466, nv1=nv2=nv3=nv4=60.   ̂
 

     .     ̂
 

 

    . 

† No covariates affecting SE and SP; this assumption is not supported by the data (P<0.0001). .   ̂
 
     .  

   ̂
 

     . 
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2.4. Discussion 

The problem of misclassification has been studied extensively. However, less emphas is 

has been placed on response misclassification, as compared to predictor misclassification. 

In particular, for the case with longitudinally collected binary responses that are subject 

to error, few references have explicitly provided detailed instruction. Our work here 

primarily builds upon previous work by Neuhaus (17) and Lyles et al (18), while the 

likelihood derivation relies heavily on general materials in Carroll et al (3).  

Our work differs from previous work in several ways. First, we explicitly provide the 

form of the likelihood for repeatedly measured misclassified responses when there is 

internal validation data available. Second, we do not restrict the misclassification 

probabilities to be non-differential. Third, we also provide an accessible computational 

method to optimize the likelihood. Fourth, we also note that the usual assumption of 

conditional independence in misclassification can be relaxed if the user does feel the need 

to take it into account. Previous work by Neuhaus (17) gave a similar likelihood form and 

pointed out the possibility of optimizing it when misclassification probabilities are 

determined by a function. However, the work focused more on the non-differential case 

with either sensitivity analysis or main study only analysis, and no information about 

incorporating internal validation was given. Lyles et al (18) demonstrated a way to 

incorporate internal validation for a matched-pair 2 2 table setting with a likelihood-

based approach when the outcome is misclassified, but no covariate adjustment was made. 

Carroll et al (3) is a general textbook with comprehensive information on likelihood 

specification and validation designs under the topic of mismeasurement, but specific 
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motivating examples and details, especially details for computation in the context 

conveyed here, are not provided.  

We have shown in detail how to use our approach to incorporate validation data to 

correct for longitudinal response misclassification. Although our method can incorporate 

both external and internal validation, we recommend the internal validation design when 

possible to avoid the unverifiable transportability assumption, gain more precision in 

estimation, and allow for more flexibility in modeling misclassification probabilities. 

Both simulation studies and the HERS example indicate that internal validation design is 

far more favorable than the external validation design when differential misclassification 

is present.  

Neuhaus (17) suggested that when misclassification probabilities depend on covariates 

via a function, the “closure property” will not hold because the probability of response 

depends on the covariate through the GLMM model and also through the 

misclassification probability function. He also stated that in principle the likelihood can 

be constructed and optimized, but identifiability issues may arise.  We have demonstrated 

that by introducing a second model for SE/SP, the likelihood with internal validation data 

incorporated can be derived and maximized using commercial software. Both simulation 

studies and the HERS example suggest that the approach is generally stable and reliable, 

although in some unlikely cases there may be numerical difficulty.  

In Section 2.3.4, we briefly examined the impact of different designs regarding the 

proportions of various types of internal validation samples on the precision of estimation. 

Lyles et al (18) provided some general guidance to achieve maximized estimation 
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efficiency with a fixed total cost for a 2  2 matched-pair table setting. A similar 

comprehensive cost-efficiency consideration could be an interesting future research topic 

and will be beneficial in practice.  

We have also examined the case when accounting for correlations in misclassification 

across time points, by simulation studies and by illustrating it in the HERS example. Our 

studies suggest that the validity in estimating regression coefficients in the primary model 

is preserved when simply assuming independence in misclassification, even if 

correlations do exist, but that efficiency may be a trade-off of doing this. Considering 

much less complicated computation when assuming independence, we leave it for the 

users to decide whether the correlations should be taken into account or not.  

The approach presented here relies on a gold-standard method in order to perform the 

correction for misclassification. In practice, there may not be a gold-standard technique 

available. When that is the case, the use of replicates or multiple imperfect diagnostic 

tools can be helpful to develop a valid correction method.  Future work also includes 

developing semi-parametric alternatives to the parametric approach presented here, with 

emphasis on accommodating (via study design and analysis) potentially complex 

differential misclassification procedures.  
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Chapter 3 Regression Analysis for Differentially Misclassified 

Binary Covariates 

3.1 Univariate Case 

3.1.1 Model Specification 

We start with the setting of the ordinary generalized linear model. Assume that our 

primary interest is to characterize a true underlying model as follows: 

                                                          

in which g is an arbitrary link, Xi is a binary predictor of interest and subject to 

misclassification, Ci =(Ci1,…,Cip) is a covariate vector with p dimensions measured 

without error. γ=(γ1,…,γp)T is a parameter vector with p dimensions. With Xi 

misclassified, instead of observing Xi directly, we observe an error-prone binary predictor 

Zi instead. Zi associates with Xi via misclassification probabilities.  

When misclassification is non-differential, the key misclassification properties, known 

as sensitivity (SE) and specificity (SP), are defined as follows: 

                                                              

Here, both SE and SP are constants and independent of other information. For example, 

                                    .  

If misclassification is differential, SE and SP may vary across subjects. Thus, we 

define them as follows: 
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where Ci
* =(C*i1,…, C*iq)

T  is a low-dimensional and quantifiable covariate vector that 

has impact on SE and SP. Ci
* may or may not overlap with Ci in eqn. (3.1). We further 

assume here misclassification rates only depend on information for the ith subject. More 

specifically,                                   
   . 

3.1.2 External Validation: Non-differential Misclassification 

As defined in 2.1.2, an external validation sample is a sample independent of the main 

study, and in external validation samples, (X, Z) pairs of (Xi, Zi) are typically measured. 

An example of external validation data could be a similar study to one‟s own that has 

previously been published in the literature. The nature of external validation sampling 

requires the assumption of “transportability”, i.e., the misclassification properties in the 

validation sample are the same as those operating in the main study sample (3). In 

addition, in external validation sampling, it is seldom the case that covariates are also 

measured. Thus, the use of the external validation design usually forces the assumption of 

non-differentiality. Advantages of external validation sampling, however, include cost-

efficiency and convenience.  

    Let nm be the number of subjects in the main study and nv be the number in the 

external validation sample. Here we consider modeling the joint probability Pr(Y, Z | C, 

C**) in eqn. (3.4) instead of Pr(Y|Z, C, C**):  
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The first term in eqn. (3.4) reflects the SE/SP property, and in the case of non-differential 

misclassification, this term can be further reduced to Pr(Zi=zi |Xi=xi) as in eqn. (3.2). The 

second term in eqn. (3.4) represents the main model in eqn. (3.1). To utilize eqn. (3.4), 

we introduce an “X|C” model as follows: 

                      
                                

where g** is an arbitrary link, φ=(φ1,… φr)
 is parameter vector and Ci

** is an 1 n row 

vector of covariates that may be a subset of Ci  and or may include other variables. Let 

Pyik=Pr(Yi=1|Xi=k, Ci=ci) and Pxi=Pr(Xi=1| Ci
**=ci

**) where  k=(0,1). By integrating all 

the information together and assuming non-differentiality, we have the likelihood 

contribution from the main study as follows: 

   ∏         

  

   

                         
     

                                         
           

                                                 
  

                          

                                                 
                                                                          

For the external validation sample, we assume that each pair (Xi, Zi) (i=1, … , nv) 

contributes the likelihood in eqn. (3.7): 
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where the first term reflects the misclassification probability defined by SE/SP, and the 

second term reflects a nuisance parameter characterizing the prevalence of X in the 

external validation sampling population. Denote Pxv=Pr(X=1) in the validation study 

population. Thus, the likelihood contribution from the external validation sample is: 

   ∏                                                                   
  
   

                        . 

The full likelihood is proportional to LmxLv. 

3.1.3 Internal Validation: Differential Misclassification 

Unlike external validation data, an internal validation sample consists of a proportion 

of subjects randomly selected from the convenient study sample. In this subset, in 

addition to measurements on Y, Z and other covariates, the true predictor X is also 

measured. The nature of an internal validation design ensures several benefits, including 

avoidance of making the assumption of transportability, improved statistical efficiency 

and the possibility of modeling SE/SP differentially. However, it is clearly more labor-

intensive than is using an external validation sample.  

Taking similar steps as in Section 3.1.2, we can derive the likelihood contribution for 

the main study as follows:  

   ∏       
      

  

   

     (       
 )              
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                                    . 

Although eqn. (3.9) has a similar form as eqn. (3.6), attention should be paid to the 

misclassification probability terms. In the case of differential misclassification, SE and 

SP depend on subject-specific information, indicated by the subscripts. Similarly, we 

have the likelihood contribution from the validation sample as in eqn. (3.10).  

   ∏       
      

  

  

   

                  
     

                           
       

                    
         

                                      
       

           
           

  
     

    

                                              
      

                      
                       . 

The full likelihood is proportional to LmxLv. To set the stage for the proposed approach 

when misclassification is differential, we introduce a third generalized linear model that 

characterizes the association of SE/SP with covariates Y and C*:   

                   
       ∑      

  
                                              , 

where g* is an arbitrary link and the predictor in Ci
* may or may not overlap with those 

in Ci. Eqn. (3.11) allows flexibility in modeling SE/SP, depending on subject-specific 

covariate information. Assuming g* is the logistic link, it implies that SEyci* and SPyci*are 

functions of parameters in eqn. (3.11), as follows: 
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and     

     
                    

    
 

           
              

with         ∑      
  

                                . 

In practice, a hypothesis test can be conducted to test whether the misclassification is 

differential or not. Based on main/internal validation study design, if H0 is not rejected, 

the likelihood could be reduced to the version that applies when misclassification is non-

differential.  

3.1.4 Note on Impact of Mis-specifying X|C Model 

    Model selection can be used to select the covariate vector Ci
** in the X|C model in 

practice without much technical difficulty. When the X|C model specified in the 

likelihood differs from the true underlying model, estimates for (β, γ) in the main model 

(3.1) may be invalid. The validity only preserves when the X|C model is correctly 

specified or when a covariate omitted from the X|C model is not important for the main 

model (3.1). Therefore, a careful preliminary model selection on X|C model is 

recommended to ensure the validity of ML estimates for the main model (3.1) parameters.  

3.2 Extension to Repeated Measures 

3.2.1 Model Specification 

In this section, we move further to consider the situation when the response and the 

error-prone predictor are measured repeatedly within each subject, while other predictors 

Cij may be repeatedly measured or fixed across all occasions. To demonstrate how the 
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approach proposed can be extended to the case with repeated measures, we consider a 

generalized linear mixed model: 

 {  (     |           )}                                                

This model is a natural extension of model (3.1) to accommodate repeated measures. In 

model (3.13), Yij (0/1)and Xij (0/1)  are the repeated outcome measured without error and 

the predictor variable, both of which would ideally be measured repeatedly at the j-th 

occasion on the i-th subject (i=1,…,n; j=1,…, Ji). Cij is a 1 q covariate vector, possibly 

consisting of a mix of occasion-stationary and occasion-varying predictors. We assume 

that the random effects uiy represent i.i.d. draws from f(uiy); typically, we assume 

         ̃         
  .  

Similar as in the univariate case in Section 3.1, we assume that in the main study that 

error-rpone Zij replace Xij (i=1,…, n; j=1,…, Ji). As before, we introduce an X|C model 

for later likelihood derivation purposes.  

   {  (     |         )}        
                                     

In (3.14) the random effects uix are assumed to follow f(uix) ; typically, we assume 

         ̃         
  .  

Misclassification probabilities SE and SP are defined as follows when misclassification 

is non-differential: 

     (     |     )             (     |     )                        
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With differential misclassification, we allow subject-specific information to have an 

impact on SE/SP in a fashion similar to that seen in Section 3.1: 

      
    (     |             

  )         

      
    (     |             

  )                , 

and note here that SE and SP may also vary across occasions. 

3.2.2 External Validation: Non-Differential Misclassification 

    As with the univariate case, we start with non-differential misclassification. Following 

the strategy in section 3.1.2, the likelihood contribution from the main study is derived as 

follows: 

   ∏ ∬ ∏                                            

  

   

  

   

 

                                       (      ) 
           

                                              (      ) 
(     )    

 [       (       )          (       )  (      ) 
              } (       )            

where Pyijk=Pr(Yij=1|Xij=k,Cij=cij) and Pxij=Pr(Xij=1| Cij
**=cij

**) (k=0, 1). Sometimes X 

may be a baseline predictor whose value carries across all occasions. When that is the 

case, the random effects uix may be dropped from model (3.14) accordingly. We assume 

that in the external validation sample, only pairs of (Zi, Xi) (i=1 ,…, nv)are observed. 

Then the validation data contributes the same likelihood as in eqn. (3.8) because the 

layout of the external validation sample is the same. Then as before, the full likelihood is 
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proportional to LmxLv. Note here we do not put any constraints on the correlation of uiy 

and uix, so a covariance term σxy can be introduced and modeled if needed. 

3.2.3 Internal Validation: Differential 

    In order to model the dependency of SE/SP on covariate information, a model in eqn. 

(3.18) could be assumed.  

  {  (     |           
     )}

    ∑       
 

 

   

                                                

Note that this is analogous to model (3.11), except with the random effects uiz to account 

for repeated sampling of (Zij, Xij) in the validation set. Typically, we assume 

         ̃         
  . In practical setting, assuming independent misclassification 

processes across time is often sensible, reflected in eqn.(3.19).  

  {  (     |           
 )}     ∑       

 

 

   

                                           

Thus, from now on, we will make this assumption unless specified otherwise.       
  and 

      
  can be defined accordingly based on eqn.(3.19). When misclassification is 

differential, the main study contributes to the likelihood via eqn. (3.20).  

   ∏ ∬ ∏        
             (        

 )                 
      

  

   

  

   

 

                     
                    

        (      )            
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The likelihood for the internal validation data is 

   ∏ ∫ ∫ ∏        
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Thus, the full likelihood is proportional to the product of Lm and Lv.  

3.2.4 Estimation 

The marginal full likelihood can be optimized after integrating out the random effects. 

Numerical methods available for the integration computation include adaptive Gaussian 

quardrature (46) and the first-order method (47). The full likelihood can be then 

optimized via quasi-Newton optimization, and standard errors of estimates may be 

obtained from the final Hessian matrix. Such optimization techniques are well developed 

in standard software as optimization routines. All simulations and data examples are 

carried out using the NLMIXED procedure in SAS 9.2 (48).  
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3.3. Simulation Studies 

In this section, we describe simulation studies to assess the performance of the 

proposed ML approach under different situations. In all cases we confine our attention to 

the cases where g, g* and g** are logit links. It can be easily generalized to other links 

without much difficulty.  

3.3.1 External Validation in Univariate Case: Non-Differential Misclassification 

    Table 3.1 summarizes simulations under external validation sampling with a univariate 

predictor nondifferentially misclassified. In each case considered, data were generated via 

the logistic version of model (3.1) containing a binary predictor (X) that is misclassified 

as Z in the observed main study data, a continuous covariate (C1) and a binary covariate 

(C2). The version of the X|C model (eqn. (3.5)) included both C1 and C2 as predictors. 

Three models were examined, each with (β0, β1, γ1, γ2, φ0, φ1, φ2)=(0 , 1, 1.5,  -1,  0, -0.25,  

0.5) and sample size of (nm, nv)=(1000,200). The true SE and SP were 0.7 and 0.85 

respectively. C1 was normally distributed with mean 0 and variance 4. C2 was a Bernoulli 

variable with a probability of 0.5. A total of 500 simulations were run. 

Unsurprisingly, the “naïve” analysis produced drastically attenuated estimates for all 

parameters in model (3.1). In general, the results show that the ML method proposed in 

Section 3.1 performs well. As expected, the efficiency of β1 suffers as compared to the 

ideal analysis, while γ1 and γ2 are estimated with only slightly lower precision than in the 

ideal analysis.  
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Table 3.1 Results of simulations comparing ML estimates under external validation 

sampling for logistic regression with non-differential predictor misclassification* 

Main + External Validation 

Parameter Mean SD 95% CI Coverage Convergence 

β0 -0.04 0.30 0.96 500 

β1 1.06 0.48 0.96 500 

γ1 1.53 0.13 0.97 500 

γ2 -1.01 0.23 0.95 500 

φ0 0.02 0.29 0.97 500 

φ1 -0.26 0.08 0.95 500 

φ2 0.52 0.28 0.96 500 

Ideal Analysis 

Parameter Mean SD 95% CI Coverage Convergence 

β0 -0.01 0.17 0.93 500 

β1 1.02 0.20 0.96 500 

γ1 1.52 0.10 0.97 500 

γ2 -1.00 0.21 0.94 500 

Naïve Analysis 

Parameter Mean SD 95% CI Coverage Convergence 

β0 0.27 0.16 0.56 500 

β1 0.51 0.20 0.29 500 

γ1 1.43 0.09 0.84 500 

γ2 -0.89 0.20 0.87 500 

*  500 simulations; (β0, β1, γ1, γ2, φ0, φ1, φ2)=(0 , 1, 1.5,  -1,  0, -0.25,  0.5); SE=0.7, SP=0.85; nm=1000, 

nv=200; C1~N(0,4);C2~Ber(0.5).  

 

 



59 
 

3.3.2 Internal Validation in Univariate Case: Differential Misclassification 

Table 3.2 summarizes simulation results under internal validation sampling with 

differential misclassification in the univariate case. Data were generated via the logistic 

versions of model (3.1) and model (3.5) as described in section 3.3.1. To allow for 

differential misclassification, a logistic version of model (3.11) was specified as the 

SE/SP model with X, Y and C2 as predictors, and (δ0, δ1, δ2, δ3)=(-1.5, 0.2, -0.1, 2.6). As 

in Section 3.1, 1000 main study observations with 200 validation sample observation 

were used, and three models were examined. A total of 500 simulations were run. 

Again, the “naïve” analysis produces largely attenuated estimates for parameters of 

interest. The ML method proposed with internal validation data incorporated performs 

well with regard to point estimates of the parameters of interest (β0, β1, γ1, γ2). There is 

some efficiency loss in the estimation as expected. The parameters characterizing the 

SE/SP model and the X|C model are also estimated reliably.  
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Table 3.2 Results of simulations comparing ML estimates under internal validation 

sampling for univariate logistic regression with differential predictor misclassification* 

Main + Internal Validation 

Parameter Mean SD 95% CI Coverage Convergence 

β0 -0.08 0.42 0.94 500 

β1 1.17 0.77 0.92 500 

γ1 1.57 0.17 0.96 500 

γ2 -1.04 0.30 0.96 500 

φ0 0.02 0.60 0.96 500 

φ1 -0.27 1.05 0.96 500 

φ2 0.52 0.29 0.94 500 

δ0 -1.51 0.36 0.93 500 

δ1 0.22 0.37 0.91 500 

δ2 2.62 0.38 0.95 500 

δ3 -0.10 0.33 0.94 500 

True Predictor 

Parameter Mean SD 95% CI Coverage Convergence 

β0 0.00 0.16 0.94 500 

β1 1.01 0.19 0.94 500 

γ1 1.52 0.09 0.95 500 

γ2 -1.01 0.18 0.95 500 

Naive 

Parameter Mean SD 95% CI Coverage Convergence 

β0 0.28 0.15 0.50 500 

β1 0.47 0.18 0.16 500 

γ1 1.44 0.08 0.86 500 

γ2 -0.92 0.17 0.92 500 

*  500 simulations; (β0, β1, γ1, γ2, φ0, φ1, φ2)=(0 , 1, 1.5,  -1,  0, -0.25,  0.5); nm=1000, 

nv=200;C1~N(0,4);C2~Ber(0.5). (δ0, δ1, δ2, δ3)=(-1.5, 0.2, 2.6,  -0.1). 
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3.3.3 External Validation in Longitudinal Case: Non-Differential Misclassification 

   Table 3.3 presents the results of simulations designed to assess the implementation and 

performance of ML in the setting of a repeated measures study based on the methods in 

Section 3.2. For illustrative purposes, we considered the case where there were two 

repeated measurements. Data were simulated under the following versions of models 

(3.21) and (3.22), respectively: 

     {  (     |         )}                                 

(t=0, 1 as the index for time) and 

                                         . 

The overall sample size for each simulated dataset was 1000 for the main study and 200 

for the external validation set. Here C1 was normally distributed with mean 0 and 

variance 4, and C2 followed a Bernoulli distribution of probability 0.5. X was binary and 

misclassified as Z. C1, C2 and X were time- invariant. (β0, β1, γ1, γ2, φ0, φ1, φ2)=(0 , 1, 1.5,  

-1,  0, -0.25,  0.5) and the true SE and SP were 0.7 and 0.85 respectively. Five scenarios, 

the ideal analysis, the naïve analysis, the analysis with X|C correctly specified, the 

analysis with C1 left out from the X|C model and the analysis with C2 left out, were 

examined.   

 

 



62 
 

Table 3.3 Results comparing ML estimates under external validation sampling for 

pairwise correlated measurements with non-differentially misclassified predictor X and 

assessing effects of omitted predictor in X | C model * 

Main+Internal (X|C correctly specified) 

Parameter Mean(SD) Mean StdErr 95% Coverage 

β0 0.01(0.20) 0.19 0.94 

β1 0.98(0.30) 0.29 0.95 

γ1 1.49(0.12) 0.12 0.92 

γ2 -0.99(0.14) 0.14 0.96 

Main+Internal (X|C incorrectly specified with C1 left out) 

Parameter Mean(SD) Mean StdErr 95% Coverage 

β0 0.22(0.26) 0.23 0.74 

β1 0.62(0.39) 0.35 0.70 

γ1 1.29(0.09) 0.09 0.34 

γ2 -1.00(0.14) 0.14 0.96 

Main+Internal (X|C incorrectly specified with C2 left out) 

Parameter Mean(SD) Mean StdErr 95% Coverage 

β0 0.01(0.22) 0.21 0.94 

β1 0.98(0.34) 0.33 0.94 

γ1 1.49(0.12) 0.13 0.94 

γ2 -0.99(0.14) 0.14 0.96 

True predictor 

Parameter Mean(SD) Mean StdErr 95% Coverage 

β0 -0.01(0.16) 0.16 0.96 

β1 0.99(0.22) 0.23 0.96 

γ1 1.49(0.11) 0.11 0.94 

γ2 -0.98(0.13) 0.14 0.96 

Naive 

Parameter Mean(SD) Mean StdErr 95% Coverage 

β0 0.44(0.13) 0.13 0.07 

β1 0.28(0.16) 0.16 0.01 

γ1 1.27(0.08) 0.08 0.19 

γ2 -0.99(0.14) 0.14 0.20 

*  500 simulations; (β0, β1, γ1, γ2, φ0, φ1, φ2)=(0 , 1, 1.5,  -1,  0, -0.25,  0.5); SE=0.7, SP=0.85; nm=1000, 

nv=200; C1~N(0,4);C2~Ber(0.5),t=0/1. (δ0, δ1, δ2, δ3)=(-1.5, 0.2, -0.1, 2.6). 
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The results indicate that the ML approach proposed performs well when the X|C model 

is correctly specified. Slight efficiency loss is observed when using the ML approach as 

expected.  The impact of mis-specifying the X|C model depends on the situation. The 

covariate C1 is an important covariate for both model (3.21) and model (3.22). Omitting 

C1 from the X|C model causes inconsistency in estimates of both β1 and γ1. In contrast, C2 

is only a predictor for model (3.22) and is not involved in the main model (3.21). 

Omitting C2 in specifying the X|C model reveals no inconsistency in estimates for 

parameters of interest.  

3.3.4 Internal Validation in Longitudinal Case: Differential Misclassification 

We considered the same version of model (3.21) and model (3.22) as in Section 3.3.3 

with the same true values. Unlike in the nondifferential case, here we specified the SE/SP 

model (3.23) to allow misclassification probabilities to vary across subjects.  

     {  (     |           
 )}                                      

with true values (δ0, δ1, δ3, δ2)=(-1.5, 0.2, -0.1, 2.6). All covariates in consideration here 

were time- invariant, except for X. The sample size for the main study was 1000, and 200 

subjects were randomly assigned into the internal validation sample. Four scenarios, the 

ideal analysis, the naïve analysis, the analysis with X|C correctly specified, and the 

analysis with C2 left out, were examined.   
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Table 3.4 Results comparing ML estimates under internal validation sampling for 

pairwise correlated measurements with differentially misclassified predictor X and 

assessing effects of omitted predictor in X | C model * 

Main+Internal (X|C correctly specified) 

Parameter Mean(SD) Mean SD 95% Coverage 

β0 -0.03(0.41) 0.36 0.93 

β1 1.05(0.73) 0.66 0.94 

γ1 1.54(0.16) 0.14 0.96 

γ2 -1.02(0.25) 0.28 0.97 

φ0 0.04(0.39) 0.37 0.97 

φ1 -0.28(0.15) 0.13 0.96 

φ2 0.47(0.56) 0.54 0.96 

δ0 -1.57(0.38) 0.36 0.94 

δ1 0.23(0.35) 0.34 0.94 

δ2 2.66(0.37) 0.37 0.95 

δ3 -0.07(0.36) 0.33 0.93 

Main+Internal (X|C incorrectly specified) 

Parameter Mean(SD) Mean SD 95% Coverage 

β0 -0.07(0.41) 0.38 0.95 

β1 1.05(0.71) 0.65 0.94 

γ1 1.54(0.16) 0.14 0.96 

γ2 -0.95(0.20) 0.21 0.93 

φ0 0.27(0.29) 0.27 0.85 

φ1 -0.28(0.16) 0.12 0.96 

φ2 -1.68(0.37) 0.35 0.91 

δ0 2.61(0.36) 0.35 0.95 

δ1 -0.07(0.35) 0.32 0.93 

δ2 0.50(0.17) 0.17 0.58 

True Predictor 

Parameter Mean(SD) Mean SD 95% Coverage 

β0 0.00(0.15) 0.15 0.97 

β1 1.00(0.18) 0.18 0.95 

γ1 1.52(0.09) 0.09 0.96 

γ2 -1.01(0.17) 0.18 0.96 

*  500 simulations; (β0, β1, γ1, γ2, φ0, φ1, φ2)=(0 , 1, 1.5,  -1,  0, -0.25,  0.5); nm=1000, nv=200; 

C1~N(0,4);C2~Ber(0.5),t=0/1. (δ0, δ1, δ2, δ3)=(-1.5, 0.2, 2.6, -0.1). 
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Table 3.4 illustrates the performance of the different models. When the X|C model is 

correctly specified, the proposed ML approach performs quite well with only slight 

efficiency loss as compared to the ideal analysis. In this example, C2 is not involved in 

the main model (3.21), but is an important predictor for the X|C model (3.22) and the 

SE/SP model (3.23). When C2 is omitted when specifying the X|C model in the likelihood, 

maximization leads to invalid estimates for δ1 in the SE/SP model. However, parameters 

of primary interest (β0, β1, γ1, γ2) are still appear to be reliably estimated. Although care 

should always be taken when selecting the X|C model, the results shown here indicate 

that the X|C model does have some robustness to mis-specification when it comes to 

estimating the primary model parameters.   

3.4. Example 

3.4.1 HERS Example 

    The HERS example was described in Section 1.4. Here we considered elevated vaginal 

PH (>4.7) as a response (Y) of interest for illustrative purposes, and the predictor variable 

richomoniasis status (X) may be misclassified when diagnosed by the wet mount method. 

The gold standard assessment of trichomoniasis is culture testing, which was also 

measured along with wet mount for all subjects in HERS.  

3.4.2 Example 1: Univariate Analysis with Visit 4 

A total of 873 women with all measurements on the response, predictor and covariates 

available at visit 4 were considered. Among them, 18% of women had trichomonads 

present in culture testing, while only 7.7% had positive wet mount results. 53% of 

women were observed to have vaginal PH greater than 4.7 (PH). 61.5% of the women 
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were blacks, 53.0% were intravenous drug users (IDU) and 67.8% were HIV positive. 

One-fourth of the women were randomly selected as an internal validation subset to 

illustrate misclassification correction, while for the remaining three-fourths included in 

the main study sample, trichomoniasis diagnoses from culture testing were ignored.  

With a careful model selection, the chosen version of eqn. (3.1) using the true 

(CULTURE) diagnosis is: 

                                                   

We then fit the same model by substituting the error-prone wet mount (WET) as the 

predictor 

                                                 . 

The results of these two analyses are summarized in the upper half of Table 3.5. The 

results differ markedly in terms of the magnitude of the estimated OR for trichomoniasis 

(1.54 for eqn. (3.24) and 4.14 for eqn. (3.25)).  

    Model selection via eqn. (3.11) fit to women in the internal validation subsample 

revealed that the outcome status has a significant impact on the performance of the wet 

mount test.  

                                                             , 

indicating the presence of differential misclassification. Similarly, fitting eqn. (3.5) to all 

916 women yielded a version of eqn. (3.27) used in the likelihood: 
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Table 3.5 Results of maximum likelihood analysis of main/internal validation study data 

on 873 women (nm=655, nv=218) at the 4th visit: estimates of primary analyses. 

Ideal Analysis1 

Variable β̂  (std. error) 
Estimated OR 

95% CI 
P-value 

Risk Group 
(IDU vs. sex) 

0.43 
(0.14) 

1.42 
(0.99, 2.02) 

0.05 

trichomoniasis (Culture) 
(yes vs no) 

0.35 
(0.18) 

1.54 
(1.18, 2.02) 

0.002 

Naïve Analysis2 

Variable β̂  (std. error) 
Estimated OR 

95% CI 
P-value 

Risk Group 
(IDU vs. sex) 

0.38 
(0.14) 

1.25 
(1.12, 1.93) 

0.01 

trichomoniasis (Wet 
Mount) 

(yes vs no) 

1.42 
(0.33) 

4.14 
(2.18, 7.87) 

<0.0001 

Assuming differential misclassification3 

Variable β̂  (std. error) 
Estimated OR 

95% CI 
P-value 

Risk Group 
(IDU vs. sex) 

0.45 
(0.14) 

1.57 
(1.14, 1.99) 

0.001 

trichomoniasis  
(yes vs no) 

0.33 
(0.29) 

1.39 
(0.60, 2.17) 

0.25 

Assuming non-differential misclassification4 

Variable β̂  (std. error) 
Estimated OR 

95% CI 
P-value 

Risk Group 
(IDU vs. sex) 

0.42 
(0.14) 

1.52 
(1.10,1.94) 

0.003 

trichomoniasis  
(yes vs no) 

0.88 
(0.26) 

2.41 
(1.17, 3.65) 

0.001 

1. Analysis using eqn. (3.24). 2. Analysis using eqn. (3.25). 3. Analysis using models (3.25), (3.26) and 

(3.27). 4. Analysis using models (3.25), (3.26) and (3.28).  



68 
 

The lower half of Table 3.5 summarizes a complete analysis of data via the joint 

likelihood of eqn.s (3.25)-(3.27) or (3.25), (3.26) and (3.28) when assuming 

nondifferential misclassification. 

                                          

    To test whether the assumption of nondifferentiality is plausible or not (restricting θ2=0 

in eqn. (3.26)), a likelihood ratio test was performed, with a significant result supporting 

differential misclassification (χ2=12.7, p<0.01). This conclusion is also supported by the 

analytic results. By allowing differential misclassification, the magnitude of the estimated 

OR of trichomoniasis is closer to that from the ideal analysis. In contrast, if 

nondifferentiality is inappropriately assumed, the analytic results are similar to those of 

the naïve analysis, with an elevated estimate for trichomoniasis.    

3.4.3 Example 2: Longitudinal Analysis 

    In the second example, we use data from black, white and Hispanic patients from the 

4th and 5th semi-annual visits. In total, 734 women were considered. Similarly as in 

Section 3.4.2, one-fourth of the women were randomly selected as internal validation 

subset. We still consider vaginal PH greater than 4.7 as the response variable. After 

model selection, the chosen version of model (3.13) is: 

                                                            

We also fit eqn. (3.29) by replacing culture testing results with wet mount results.  

The results of these two analyses are summarized in the upper half of Table 3.6. Similarly 

as in the univariate analysis presented in Section 3.4.2, the results differ primarily in 
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terms of the magnitude of the estimated OR for trichomoniasis (2.11 for the gold standard 

analysis and 8.25 for the naïve analysis).  

The selected version of model (3.20) by allowing independent and differential 

misclassification is,  

                                                                           ,  

where misclassification in diagnosing trichomoniasis is differential about the response 

variable as well as the HIV risk cohort. Note that we assume the misclassification process 

at each visit is independent from that at other visits.  

Similarly, the selected version of model (3.13) based on evaluating X|C models with the 

total sample size yielded eqn. (3.31): 

                                                          

The lower half of Table 3.6 summarizes a complete analysis of data via the joint 

likelihood of eqn.s (3.29)-(3.31). As in section 3.4.2, misclassification is significantly 

differential (χ2=11.5, p<0.01). Therefore, we do not further reduce the model and keep it 

as it is. The differential model produces results closes to those of the ideal analysis. In 

contrast to the differential model, the nondifferential model yields highly biased estimate 

for trichomoniasis, although there appears markedly improvement compared to the naïve 

analysis.  
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Table 3.6 Results of maximum likelihood analysis of main/internal validation study data 

on 734 women (nm=550, nv=184) at the 4th and 5th visit: estimates of primary analyses. 

Ideal Analysis1 

Variable β̂  (std. error) 
Estimated OR 

95% CI 
P-value 

Risk Group 
(IDU vs. sex) 

0.28 (0.14) 
1.33 

(0.97, 1.69) 
0.04 

trichomoniasis (Culture) 
(yes vs no) 

0.75 (0.20) 
2.11 

(1.27, 2.96) 
0.002 

Naïve Analysis2 

Variable β̂  (std. error) 
Estimated OR 

95% CI 
P-value 

Risk Group 
(IDU vs. sex) 

0.23 (0.14) 
1.26 

(0.92, 1.59) 
0.09 

trichomoniasis (Wet 
Mount) 

(yes vs no) 
2.11 (0.43) 

8.25 
(1.29, 15.21) 

<0.0001 

Assuming differential misclassification3 

Variable β̂  (std. error) 
Estimated OR 

95% CI 
P-value 

Risk Group 
(IDU vs. sex) 

0.28 (0.24) 
1.32 

(0.82, 2.13) 
0.22 

trichomoniasis  
(yes vs no) 

0.85 (0.69) 
2.35 

(0.61, 9.06) 
0.26 

Assuming nondifferential misclassification3 

Variable β̂  (std. error) 
Estimated OR 

95% CI 
P-value 

Risk Group 
(IDU vs. sex) 

0.25 (0.14) 
1.28 

(0.93, 1.63) 
0.08 

trichomoniasis  
(yes vs no) 

1.42 (0.34) 
4.14 

(1.37, 6.91) 
<0.0001 

1. Analysis using culture testing as a predictor in model (3.29). 2. Analysis using wet mount as a predictor 

as a predictor in model (3.29). 3. Analysis based on internal validation data via models (3.29), (3.30) and 

(3.31).     
 ̂      ,     

 ̂       . 4. Analysis based on internal validation data via models (3.29), (3.30) 

(θ2=θ3=0) and (3.31).     
 ̂      ,     

 ̂       .  
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3.5. Discussion 

In this chapter, we have proposed a parametric method to correct for the bias that stems 

from predictor misclassification. The primary novelty of the proposed approach lies in a 

clear illustration of specifying the likelihood functions when internal validation is 

available. We also provide detailed guidance on how to adjust the likelihood functions 

when differential misclassification is present. It has also been shown that the approach 

could be extended to handle a repeatedly measured exposure variable that is subject to 

misclassification in a generalized linear mixed model context. Although throughout we 

have used logit links for the response, misclassification and X|C models, other links can 

be also adopted without too much conceptual and technical difficulty.  

We have evaluated the performance of the proposed method via extensive simulations 

and detailed analysis of trichomoniasis data in the HERS study, both of which have 

highlighted the value of internal validation sampling, which makes it possible to flexibly 

model complex differential misclassification. Note that if correction is made based on an 

inappropriate assumption on the misclassification mechanism, only marginal 

improvement over the naïve analysis would be offered, as shown in the HERS example, 

reinforcing the importance of carefully evaluating misclassification mechanisms in 

practice.  

It has been shown that with correctly-specified models, our approach produces reliable 

estimates on primary parameters of interest. However, it has also been pointed out in 

Section 3.1.4 that careful model selection is necessary to ensure the validity of primary 

analyses. Although we recommend careful model selection on the X|C model to ensure 
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the validity, empirical evidence suggests that the proposed approach maintains validity 

for estimating primary parameters that are not associated with the X|C model.  

We have mainly focused on the case when the misclassification process is independent 

across occasions in a repeatedly measured study in this chapter. However, it is 

straightforward to extend the work to accommodate correlated misclassification 

processes when needed, as shown in eqn. (3.18). Involving more random effects tend to 

encounter more numerical issues when optimizing the likelihood. Thus, future work 

could involve development of semiparametric (33) or nonparametric approaches (55) to 

estimate the misclassification process, which would have great value by making the 

approach more robust and computationally easy.  
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Chapter 4 Misclassification in Response and Predictor 

Variables in 2 2 Tables 

4.1 Methods 

4.1.1 Notations and Terminology 

4.1.1.1 Differential and Dependent Misclassification 

    Consider a 2   2 table in which one intends to measure an error-prone surrogate X* for 

a true exposure X and an error-prone surrogate response Y* for a true response Y. We 

assume X, X*, Y and Y* are all binary variables. Now define                 and 

   
                 (i, j=0,1). The true OR of primary interest is calculated as 

            
⁄ , while with misclassification in both variables, the naïve OR is 

   
    

 

   
    

 ⁄  . 

    The observed-data likelihood can be expressed as follows without losing generality:  

   
  ∑ ∑                     

  

 

 ∑∑                       

  

                             

where d, e=0, 1. The first and second terms in eqn. (4.1) represent the most general form 

of the likelihood expressed with the familiar misclassification parameters known as 

sensitivity and specificity. With no additional constraints, we define              
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                and                             . Note that 

misclassification parameters on Y depend on the joint distribution of (X, X*), which can 

be viewed as a generalized version of the typical notion of differential misclassification. 

Similarly, denote                        and                     

  , taking the typical form of differential misclassification. Eqn. (4. 1) also allows 

flexible modeling on dependence of misclassification of Y on misclassification of X. 

With the most general form in eqn. (4.1), note that  

                                                        

is not necessarily true, while such an important misclassification assumption is 

commonly made in previous literature. Thus, for convenience, we consider a 

misclassification process as in eqn. (4.1) as reflecting “differential and dependent 

misclassification”.  

    Alternatively, one may also choose to parameterize the observed likelihood in terms of 

positive and negative predictive values, as reflected here: 

    ∑ ∑                          

 ∑∑                       

  

                  
             

where the first and second terms relate to predictive values of X and Y, defined as 

                             ,                              , 

                         and                         . In 

contrast to the parameterization using SE and SP, note that the predictive values of X 
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depend on the surrogate response measurement. Again, predictive values of Y depend on 

the joint distribution of (X, X*), implying the dependence on the other misclassified 

variable. Note that, when only the exposure X is subject to misclassification, eqn. (4.2) 

can be rewritten as 

    ∑                   ∑                                 

which conforms to Marshall‟s proposal (8), from which the term “inverse matrix method” 

was derived.   

4. 1.1.2 Differential and Independent Misclassification 

    In practice, differential but independent misclassification is of general interest.  If 

taking the parameterization based on SE and SP, this corresponds to reducing eqn. (4.1) 

to the form as follows: 

   
  ∑ ∑                     

  

 

 ∑∑                  

  

                             

where misclassification on Y only depends on true exposure X characterized by 

parameters                        and                       . The 

model for misclassification on X stays the same as in section 4.1.1.1. Assuming 

independence in misclassification, we imply that                       

                                 holds.  
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4.1.1.3 Non-Differential and Independent Misclassification 

    When nondifferentiality and independence in misclassification are assumed 

simultaneously, by defining                  ,                  , 

                  and                  , we can rewrite the observed 

data likelihood as: 

   
  ∑ ∑                     

  

 ∑ ∑             

  

                       

4.1.1.4. Other Combinations 

    Sections 4.1.1.1-4.1.1.3 give examples of three situations. However, in practice, it may 

be possible for Y to be differentially but X to be nondifferentially misclassified. Other 

combinations can exist. For illustrative purposes, we confine our attention to the three 

situations described above in sections 4.1.1,1-4.1.1.4. The method for other situations can 

be generalized without conceptual difficulty.  

4.1.2 Maximum Likelihood (ML) Approach 

    In general, the main study likelihood based on observed data paris (Yi
*, Xi

*) 

(1=1,…,nm) can be expressed as: 

   ∏   
    

   
  

   
       

    
  

   
    

      
   

   
       

       
   

  

   

                                 

where the π*s take appropriate forms corresponding to different assumptions on the 

misclassification process described in Section 4.1.1.  



77 
 

    For instance, if parameterizing in terms of SE/SP and allowing for differential and 

dependent misclassification,  

   
                                                                

     . In contrast, if independence is assumed while with preserving differentiality on 

both variables,  

   
                                                                 . 

Under the most simplified situation, assuming independence and nondifferentiality at the 

same time,  

   
                                                          . Other 

π*s can be derived similarly.  

4.1.3 Generalized Matrix Method 

    We generalize the concept of the matrix method and its extensions (1, 28) by allowing 

flexible incorporation of various situations. In general, one is able to relate surrogate and 

true cell probabilities via the equality      , where                    , 

       
    

    
    

     and the definition of A varies according to the 

assumptions made. For differential and dependent misclassification, A takes its most 

general from: 

 

 

[
 
 
 
 

                                                    

                                                    

                                                    

                                                    ]
 
 
 
 

 

If instead assuming traditional differential misclassification with independence,  
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[
 
 
 
 

                                                

                                                

                                                

                                                ]
 
 
 
 

 

which has the same form as defined by Greenland et al. (28). 

Under the circumstance of nondifferential and independent misclassification, 

  

[
 
 
 
 

                                        

                                        
                                        

                                        ]
 
 
 
 

 

and with some algebraic work, one can easily show  that this equation is equivalent to 

that underlying Barron‟s original matrix method (1). With algebraic work, it can be 

shown that A is invertible if and only if             and            . 

Under usual circumstances, the chance of correctly classifying a diagnosis should be 

greater than a random chance; thus, in realistic setting it should be always the case that 

            and            .  

    Thus, the generalized matrix method can be derived immediately as П=A-1П*.  

4.1.4 Generalized Inverse Matrix Method 

    The inverse matrix method directly expresses true cell probabilities as sums of 

products of surrogate cell probabilities and predictive values, without inversion 

computations involved. Here, we expand Marshall‟s inverse matrix method (8) to a 

general context when both variables are misclassified in a 2   2 table. For example, by 

laws of probability,  

             
       (        )   

                
         

               
    

       under dependent and differential misclassification. 
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    Packaging linear equations into matrices, the form of generalized inverse matrix 

method is the same as Marshall‟s original proposal of П=BП*. However, in our approach, 

the matrix B takes a more complicated form in characterizing misclassification in both 

the X and Y variables:  

 

 

[
 
 
 
 

                                                           

                                                            

                                                            

                                                            ]
 
 
 
 

 

    In contrast to the generalized matrix method, there is no matrix inversion involved in 

computing the corrected OR through the generalized inverse matrix method.  

4.1.5 Estimation of Misclassification Probabilities and Variance 

Our primary measure of association of interest is the OR, and the estimate of the 

corrected OR is   ̂  
   
̂    

̂

   
̂    

̂⁄   . In all of the approaches presented above, 

estimation of misclassification probabilities is crucial. Although misclassification 

probability estimates from external studies may be used, there is always good reason to 

suspect that they may vary from study to study. Thus, when possible we recommend the 

use of an internal validation subsample randomly selected from one‟s current study, in 

which true disease and exposure status is measured using gold standard methods. The 

primary appeal of adopting internal validation sampling is the potential of avoiding 

assuming “transportability” in misclassification probabilities.   
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Table 4.1 Description and likelihood contributions for 16 possible types of observations 

under the internal validation samplinga. 

Obs. Type Description Likelihood 

contribution in terms 

of SE and SP 

Likelihood 

contribution in terms 

of Predictive Values 

1 X
*
=1, Y

*
=1, X=1,Y=1 SEy11SEx1π11 PPVy11PPVx1 π11

* 

2 X
*
=1, Y

*
=1, X=1,Y=0 (1-SPy11)SEx0π10 (1-PPVy11)PPVx1 π11

*
 

3 X
*
=1, Y

*
=1, X=0,Y=1 SEy01(1-SPx1)π01 PPVy01(1-PPVx1) π11

*
 

4 X
*
=1, Y

*
=1, X=0,Y=0 (1-SPy01)(1-SPx0)π00 (1-PPVy01)(1-PPVx1) π11

*
 

5 X
*
=1, Y

*
=0, X=1,Y=1 (1-SEy11)SEx1π11 (1-NPVy11)PPVx0 π10

* 

6 X
*
=1, Y

*
=0, X=1,Y=0 SPy11SEx0π10 NPVy11PPVx0 π10

*
 

7 X
*
=1, Y

*
=0, X=0,Y=1 (1-SEy01)(1-SPx1)π01 (1-NPVy01)(1-PPVx0) π10

*
 

8 X
*
=1, Y

*
=0, X=0,Y=0 SPy01 (1-SPx0)π00 NPVy01(1-PPVx0) π10

*
 

9 X
*
=0, Y

*
=1, X=1,Y=1 SEy11(1-SEx1)π11 PPVy10(1-NPVx1) π01

* 

10 X
*
=0, Y

*
=1, X=1,Y=0 (1-SPy11)(1-SEx0)π10 (1-PPVy10) (1-NPVx1) π01

*
 

11 X
*
=0, Y

*
=1, X=0,Y=1 SEy01SPx1π01 PPVy00NPVx1π01

*
 

12 X
*
=0, Y

*
=1, X=0,Y=0 (1-SPy01)SPx0π00 (1- PPVy00) NPVx1π01

*
 

13 X
*
=0, Y

*
=0, X=1,Y=1 (1-SEy11)(1-SEx1)π11 (1-NPVy10) (1-NPVx0)  π00

* 

14 X
*
=0, Y

*
=0, X=1,Y=0 SPy11 (1-SEx0)π10 NPVy10(1-NPVx0)π00

*
 

15 X
*
=0, Y

*
=0, X=0,Y=1 (1-SEy01)SPx1π01 (1-NPVy00)NPVx0π00

*
 

16 X
*
=0, Y

*
=0, X=0,Y=0 SPy01SPx0π00 NPVy00NPVx0π00

*
 

a. See Section 4.1.1 foe definitions of terms.  
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    When allowing full generality, i.e., dependent and differential misclassification, it can 

be shown that the likelihood approach is equivalent when parameterized in terms of 

predictive values and SE/SP. There are in total 16 types of validation observations if 

validations on X and Y are measured simultaneously for each subject of the subsample, 

and Table 4.1 shows the representations from two approaches. The main likelihood is 

always written as    

   ∏    
    

   
  

   
       

    
  
   

    
      

   
   

       
       

     
   , 

while if expressed in terms of SE and SP, all the π*s can be further written out (see 

Section 4.1.2).  

    The internal validation subsample likelihood is    ∏    

     
   , where Lvj is the 

likelihood term read from type j in Table 1, while nvj is the total number of observations 

in the jth type (j=1,2,…16). Note that the total validation sample size    ∑    
  
   .The 

overall likelihood is proportional to       . There are no closed-form solutions for the 

MLEs based on the complete likelihood written in terms of SE and SP, but closed-forms 

exist for the version expressed in terms of predictive values. For example, one can derive 

      
̂  

∑              
   

  
   

  
. Since under the circumstance of dependent and differential 

misclassification, the two paramerizations are equivalent, we may obtain MLEs for the 

  ̂ and   ̂ parameters as functions of    ̂‟s and    ̂‟s. For example,  

     ̂  
      
̂      ̂   

 ̂        
̂         

̂     
 ̂

   ̂
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    However, when misclassification is non-differential or differential but independent, the 

equivalence does not hold any more, since nondifferentiality under one parameterization 

poses nonlinear constraints on the parameters of the other. In such cases there is no 

simple closed-form for the   ̂‟s,   ̂‟s and  ̂‟s. Therefore, if supplying the generalized 

matrix method with crude estimates of SE and SP parameters based on simple 

corresponding sample proportions, the corrected   ̂ will not be as efficient as the MLE. 

These conclusions are consistent with previous findings, though under a simpler and 

slightly different context (42).  

    In general, we recommend the use of the ML approach in the interest of optimal 

efficiency and based on the ease of computing standard errors. Optimizing the likelihood 

in both parameterization paths is readily available by taking advantage of numerical 

procedures in standard statistical software. We view matrix and inverse matrix forms as a 

convenient identity-based methods to compute the corrected    ̂. Through tedious but 

straightforward multivariate delta-method practices, the approximate standard error of the 

corrected       ̂) based on the general matrix and inverse matrix methods could also be 

computed.  

4.1.6 Notes on Case-Control Studies 

    Though throughout the focus has been on cross-sectional sampling, case-control, as an 

important sampling scheme in epidemiology, is also worth discussion. We consider 

“case-control” studies as those where case over-sampling is conducted based on the error-

prone responses. In other words, observations with Y*=1 (cases) are sampled with a 

greater probability than those with Y*=0 (controls). Thus, (mis)classification occurs 

before the case-control sampling. Prior work (26) has noticed that supplying the 
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population misclassification probabilities to the correction methods will not yield valid 

estimates; however, with nondifferential misclassification, the validity of the analytic 

results could be restored by introducing the sampling fraction between cases and controls 

into the correction. With straightforward algebraic work, we can make the following 

definitions: 

               
     

               
  

“         ”    
     

               
  

where ρi=Pr(being selected | Y*=i).  

Lyles et al. (16) further examined the impact of case oversampling on correcting 

outcome misclassification in ordinary logistic regressions. They pointed out that the 

“operating” misclassification probabilities under the “case-control” sampling differ from 

the population diagnostic properties, and that this difference is essential to validly 

estimating the corrected ORs. For this reason, the main/internal validation study is 

favorable because it readily permits estimating “operating” misclassification probabilities. 

With empirical evidence and some analytic work, they also suggested that the corrected 

OR in case-control studies is generally valid with proper handling of the analysis, when 

misclassification is nondifferential. However, the validity only exists for special cases 

under differential misclassification.  

    With oversampling of “cases” (Y*=1), the method described in the previous sections 

yields valid estimation of the OR, assuming misclassification is nondifferential. As 

observed in (16), with such oversampling, the estimate of SEy is inflated while SPy is 
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deflated, reflecting the “operating” characteristics of the diagnostic method. In contrast, 

SEx and SPx are not affected. The difference between “operating” and population 

properties reinforces the importance of incorporating an internal validation data. 

Otherwise, one would have to know the corresponding selection probabilities in order to 

reasonably convert population SE/SP to “operating” SE/SP. However, when the 

nondifferential misclassification assumption is not met, the validity of the estimated OR 

based on the main/internal validation design does not hold. A brief argument can be made 

as follows. Consider an ordinary logistic model to specify the relationship between Y and 

X as 

                        where exp(β1)=OR.  

    Taking the dependent and differential misclassification as an example,  

   {
               

               
}

      

    .
  (       )       

    (       )            
       

             

       
       

                (       )       
    (       )    

/       

where S=(0,1) with 1 if selected. Similarly, 

   {
               

               
}

       .
  (       )       (       )                                    

                             (       )       (       )        
/      

where ρi=Pr(being selected | Y*=i). It is assumed here that ρi only depends on the status 

of Y*. In other words, Pr(being selected | Y*=i, Y=y, X=x, X*=x*)= Pr(being selected | 

Y*=i), indicating completely random case-dependent sampling.  
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    Thus, it is clear that the logistic model does not hold any more, and the OR is a 

function of β, and the SE‟s and SP‟s associated with X and Y. When nondifferential 

misclassification is assumed,  

                        
  

  
      

where the logistic model reserves and the selection probabilities are absorbed into the 

intercept. Interestingly, as long as Y is nondifferentially misclassified, even while X is 

differentially misclassified, one can easily show with eqn.s (4.6) and  (4.7) that the 

logistic regression still holds, and the estimate of the OR is valid.  Similarly, if the case-

control sampling is conducted on the basis of X*, logistic regression holds regardless of 

the misclassification mechanism of Y. Note here again that the selection probability is 

assumed only dependent on the status of Y*. For example,                 

                               

4.1.7 Model Selection 

When correcting the estimate of the OR, we would ideally choose the misclassification 

mechanism fitting best with the data. As described in Section 4.1.1.4, there are other 

types of misclassification models than those mentioned in Section 4.1.1.1 through Section 

4.1.1.3. Here we provide a straightforward model selection procedure to guide 

practitioners to pick the desired model. For the ease of discussion, denote the dependent 

and differential misclassification model as “model 1”, followed by “model 2” (the 

independent and differential misclassification model in Section 4.1.1.2), “model 3” (the 

model with differential X* and nondifferential Y*), “model 4” (the model with 

nondifferential X* and differential Y*) and “model 5” (the completely nondifferential 
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model in Section 4.1.1.3). Denote    
̂ =  ̂ from Model i and LRi=-2log Likelihood o f 

Model i (i=1,…,5). In practice, one may use a 2-step procedure to implement model 

selection. 

Step 1: By treating    ̂ as a standard, compute the relative change in   ̂ as |
   ̂     ̂

   ̂
|. 

(i=2,3,4,5). Pick models with the relative change less than θ, a pre-specified threshold. 

For example, one may specify θ=0.1.  

Step 2: Among those models picked in Step 1, perform the likelihood ratio test (LRT) on 

model i with the smallest relative change to test H0: Model reduction is appropriate. LR 

test statistic=-2(LRi-LR1), which under H0 follows a χ2 distribution with a corresponding 

df. For example, if i=2, df=4. When i=3 or 4, df=6, and df=8 if i=5.  

    The performance of the proposed model selection strategy is evaluated via simulations 

in Section 4.2.3. It has also been applied to the real data example. 

4.1.8 Comments Regarding Null Testing 

    With complete nondifferentiality in misclassification of both X and Y (Model 5), one 

can show that OR=1 is a necessary and sufficient condition for OR*=1, suggesting that 

the hypothesis test of no association is still valid though with lowered power. Thus, with 

nondifferentiality, if one‟s interest is only in hypothesis testing, the naïve analysis is 

defensible. 

    We show below that             when H0 is true.  

1)             
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Define               ;          ;   
              ;   

       

  , and note that 

             . 

Assuming nondifferentiality, we have 

   
                                                          

Rewriting in terms of P and Px, this becomes 

   
            (     )   

                                          

          

 [     (     )     ]                     . 

Similarly, we can derive that 
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Note that to show       is equivalent to showing 
  

 

  
 ⁄   . 

Since   
  

   
 

   
     

  
[     (     )     ]                     

                     
 [     (     )     ] 

and   
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Therefore,            . 

2)             

Note that         
 

  
 ⁄    where   

                  and   
  

        

Solving for     from the linear system above, we get 
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Replacing the π*s above with the appropriate functions of P* and Px
*, we can rewrite the 

expressions as follows: 

    
       (     )           

                    
      (     )        
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          (     )       
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   (     )           

                
          (     )        

                
 

                      
, and 
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It follows that 

   
   

       
 

       
              

(         )       
    

 
        

         
, and 

   
   

       
 

       
            

(         )       
  

 
        

         
. 

Thus, 
  

  
⁄        . 

Therefore, we have established that            . 

Combining 1) and 2), we conclude that the equivalence relationship holds, i.e.,     

        . This result is reminiscent of classic findings in the case of single variable 

misclassification (19).  
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4.2. SIMULATION STUDIES 

4.2.1 Study I: Mimicking Real-data Example 

    Our first simulation experiment evaluates the performance of our methods under 

conditions mimicking the HERS example (Section 4.3).  The cell counts are simulated 

from a multinomial distribution with cell probabilities and main and internal validation 

sample sizes similar to those observed from the HERS example. Error-prone response Y* 

and exposure X* are generated with misclassification probabilities estimated from the 

HERS sample. The underlying misclassification process is assumed dependent and 

differential. For each of 500 simulated datasets, we conduct naïve analysis associating Y* 

with X*, true analysis with Y and X, and main/internal validation analyses based on 

Models 1 through 5.  

    Table 4.2 summarizes the results. The naïve analysis yields a biased result away from 

the null. Model 1 produces the corrected OR estimate closest to the gold standard OR, 

with tolerable sacrifice in efficiency. The 95% CI coverage of Model 1 is also excellent. 

When reducing Model 1 to other simpler versions, by assuming independence or 

nondifferentiality, the results are biased, indicating the reduced models are not consistent 

with the data generation process. Note that with the simplest model assuming 

nondifferential misclassification (Model 5), the corrected result is similar to the naïve 

result (in fact, arguably worse), suggesting the importance of a careful model selection. 

The corrected results using the generalized matrix methods discussed in Section 4.1.1.1 

agree well with the MLEs, when ML estimates of misclassification probabilities are 

supplied. However, when the simpler crude estimates obtained from the validation 
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subsample are inserted into the generalized matrix method, the results are not satisfying, 

even producing negative estimates of probabilities in some cases (results not shown). 

Thus, in practice, we favor the ML approach in order to obtain both valid and efficient 

corrections.  

Table 4.2 Results of Simulations Addressing Main/Internal Validation Study-Based 

Analysis Mimicking HERS Dataa.b 

Model        ̂  (SD) 95% CI Coverage 

Naivec 1.42(0.23) 67.4% 

Gold Standardd 1.15(0.18) 93.6% 

Model 1e 1.16(0.34) 95.7% 

Model 2f 1.28(0.34) 93.3% 

Model 3g 1.41(0.33) 57.8% 

Model 4h 1.35(0.33) 89.0% 

Model 5i 1.58(0.31) 72.4% 

a. 500 simulation studies; 229 internal validation observations and 687 main study observations per 

simulation. b. True ln(OR)=1.14. c.   ̂is calcu lated using Y
*
 and X

*
 data. d.   ̂is calcu lated from using Y 

and X data. e . Model is fitted assuming dependent and differential misclassification. f. Model is fitted 

assuming independent and differential misclassification. g. Model is fitted assuming differential 

misclassification in Y and nondifferential misclassification in X. h. Model is fitted assuming nondifferential 

misclassification in Y and differential misclassification in  X. i. Model is fitted assuming completely 

nondifferential misclassification. 
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4.2.2 Study II: Different Types of Misclassification 

Tables 4.3-4.6 summarize the results when the true underlying misclassification 

mechanism is either independent and differential (Model 2), differential for Y and 

nondifferential for X (Model 3), nondifferential for Y and differential for X (Model 4), or  

completely nondifferential (Model 5). In this experiment, 500 simulated datasets are 

generated accordingly. Experiments under the various misclassification mechanisms 

demonstrate that the proposed approach performs quite well under different situations. 

For example, Table 4.5 summarizes the results when only X is differentially misclassified. 

Without correction, the naïve analytic approach produces ln(OR) estimates that are biased 

and on the wrong side of the null on average. This contradiction reinforces the 

importance of appropriate correction. Model 1 is the fully general misclassification model; 

thus, the corrected estimate agrees well with the true value. Similarly, though Model 2 is 

unnecessarily complicated and further model reduction should be appropriate, Model 2 is 

still valid. Models 3 and Model 5 are not correct models for this example; therefore,  

results based on them are noticeably biased. Especially, the corrected result of Model 5 is 

biased toward the null by ~30%, compared to the true value, reinforcing the notion that 

when the misclassification assumed is too simplistic, validity is lost. In the meantime, the 

efficiency loss fitting overly general models appear small. 
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Table 4.3 Results of Simulations Addressing Main/Internal Validation Study-Based 

Analysis with Model 2 as the True Underlying Modela.b 

Model        ̂  (SD) 95% CI Coverage 

Naivec 0.66(0.25) 67.4% 

Gold Standardd 1.12(0.18) 93.6% 

Model 1e 1.12(0.34) 96.0% 

Model 2f 1.09(0.34) 94.6% 

Model 3g 1.03(0.33) 90.3% 

Model 4h 1.17(0.33) 91.2% 

Model 5i 1.03(0.33) 89.7% 

a. 500 simulation studies; 229 internal validation observations and 687 main study observations per 

simulation. b. True ln(OR) =1.10. c.   ̂is calculated using Y
*
 and X

*
 data. d.   ̂is calculated from using Y 

and X data. e . Model is fitted assuming dependent and differential misclassification. f. Model is fitted 

assuming independent and differential misclassification. g. Model is fitted assuming differential 

misclassification in Y and nondifferential misclassification in X. h. Model is fitted assuming nondifferential 

misclassification in Y and differential misclassification in  X. i. Model is fitted assuming completely 

nondifferential misclassification. 

 

 

 

 

 

 



94 
 

Table 4.4 Results of Simulations Addressing Main/Internal Validation Study-Based 

Analysis with Model 3 as the True Underlying Modela.b 

Model        ̂  (SD) 95% CI Coverage 

Naivec 0.61(0.15) 22.8% 

Gold Standardd 1.00(0.14) 94.8% 

Model 1e 1.01(0.26) 97.6% 

Model 2f 0.99(0.26) 95.0% 

Model 3g 1.01(0.25) 95.6% 

Model 4h 1.13(0.25) 90.4% 

Model 5i 1.20(0.24) 85.0% 

a. 500 simulation studies ; 229 internal validation observations and 687 main study observations per 

simulation. b. True ln(OR)=1. c.   ̂is calculated from using Y
*
 and X

*
 data. d.   ̂is calculated from using 

Y and X data. e. Model is fitted assuming dependent and differentia l misclassification. f. Model is fitted 

assuming independent and differential misclassification. g. Model is fitted assuming differential 

misclassification in Y and nondifferential misclassification in X. h. Model is fitted assuming nondifferential 

misclassification in Y and differential misclassification in  X. i. Model is fitted assuming completely 

nondifferential misclassification. 
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Table 4.5 Results of Simulations Addressing Main/Internal Validation Study-Based 

Analysis with Model 4 as the True Underlying Modela.b 

Model        ̂  (SD) 95% CI Coverage 

Naivec -0.13(0.15) 0 

Gold Standardd 1.01(0.14) 95.0% 

Model 1e 1.00(0.26) 95.0% 

Model 2f 0.99(0.25) 94.8% 

Model 3g 0.78(0.25) 82.6% 

Model 4h 0.99(0.25) 94.8% 

Model 5i 0.74(0.25) 76.4% 

a. 500 simulation studies; 229 internal validation observations and 687 main study observations per 

simulation. b. True ln (OR) =1. c.   ̂is calculated from using Y
*
 and X

*
 data. d.   ̂is calculated from 

using Y and X data. e. Model is fitted assuming dependent and differential misclassification. f. Model is 

fitted assuming independent and differential misclassification. g. Model is fitted assuming differential 

misclassification in Y and nondifferential misclas sification in X. h. Model is fitted assuming nondifferential 

misclassification in Y and differential misclassification in  X. i. Model is fitted assuming completely 

nondifferential misclassification. 
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Table 4.6 Results of Simulations Addressing Main/Internal Validation Study-Based 

Analysis with Model 5 as the True Underlying Modela.b 

Model        ̂  (SD) 95% CI Coverage 

Naivec 0.46(0.27) 40.0% 

Gold Standardd 1.06(0.18) 93.8% 

Model 1e 1.05(0.33) 97.6% 

Model 2f 1.06(0.32) 96.0% 

Model 3g 1.06(0.32) 95.8% 

Model 4h 1.06(0.32) 96.0% 

Model 5i 1.06(0.31) 96.2% 

a. 500 simulation studies; 229 internal validation observations and 687 main study observations per 

simulation. b. True ln(OR) =1.05. c.   ̂is calculated from using Y
*
 and X

*
 data. d.   ̂is calcu lated from 

using Y and X data. e. Model is fitted assuming dependent and differential misclassification. f. Model is 

fitted assuming independent and differential misclassification. g. Model is fitted assuming differential 

misclassification in Y and nondifferential misclassification in X. h. Model is fitted assuming nondifferential 

misclassification in Y and differential misclassification in  X. i. Model is fitted assuming completely 

nondifferential misclassification. 
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4.2.3 Study III: Performance of Model Selection 

    Results in Sections 4.2.1 and 4.2.2 suggest the importance of a careful model 

selection to ensure the model is specified correctly (or, at least, generally enough) and the 

results are valid. By adopting the model selection procedure described in Section 4.1.7, 

92.8% of the time we correctly select Model 1 out of 500 simulations mimicking the 

HERS example, yielding a valid corrected result. The 95% CI coverage is also 

satisfactory (Table 4.7). When the true underlying model is the one with independent and 

differential/nondifferential mechanisms, similar conclusions are observed. For example, 

when the true model has both X and Y are nondifferentially misclassified (Table 4.8), by 

selecting the model, the validity of the analysis is maintained, A small efficiency gain is 

also observed, based on modele selection, as opposed to fitting overly general models.  

In practice, since Model 1 is always valid, we suggest that the users consider adopting 

Model 1 all the time when there is a rich validation resource. Only if users strongly aim 

to obtain a more precise confidence interval, given that the validity is ensured, we 

recommend a careful model selection in order to improve the efficiency.  
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Table 4.7 Performance of Model Selection with Main/Internal Validation Study-Based 

Analysis Mimicking HERS Dataa,b 

Model        ̂  (SD) Mean SE 95% CI Coverage 

Naïve 1.42(0.23) 0.23 67.4% 

Gold 1.15(0.18) 0.18 93.6% 

Model 1 1.17(0.35) 0.34 95.6% 

Model Selection 

Result 

(α=0.05c,θ=0.1) 

1.18(0.36) 0.24 94.8% 

Percentage of runs for which model was selected 

Pr(General) Pr(diff X and Y) Pr (diff Y 

nondiff X) 

Pr (nondiff 

Y diff X) 

Pr(nondiff) 

78.0% 9.0% 2.0% 11.2% 0% 

a. 500 simulation studies; 229 internal validation observations and 687 main study observations per 

simulation. b. True ln(OR)=1.14. c. α is the significance level used for LRT. 
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Table 4.8 Performance of Model Selection with Main/Internal Validation Study-Based 

Analysis under Completely Nondifferential Modela,b 

Model        ̂  (SD) Mean SE 95% CI 

Coverage 

Naïve 0.46(0.27) 0.26 40.0% 

Gold 1.06(0.18) 0.17 93.8% 

Model 1 1.05 (0.34) 0.34 97.5% 

Model 5 1.06(0.31) 0.31 96.2% 

Model Selection 

Result (α=0.05c, 

θ=0.1) 

1.06(0.31) 0.32 96.0% 

Percentage of runs for which model was selected 

Pr(General) Pr(diff X and 

Y) 

Pr (diff Y 

nondiff X) 

Pr (nondiff 

Y diff X) 

Pr(nondiff) 

25.5% 16.8% 23.4% 21.2% 13.0% 

a. 500 simulation studies; 229 internal validation observations and 687 main study observations per 

simulation. b. True ln(OR)=1.14. c. α is the significance level used for LRT. 
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4.2.4 Study IV: Misclassification in Case-control studies 

Table 4.9 summarizes simulations assessing our approach under the “case-control” 

sampling. We first generated 5000 cross-sectional observations, with a true OR of 2.7 

(ln(OR)=1).  Error-prone response Y* and exposure X* values were then generated with 

pre-specified misclassification probabilities. To mimic the case-oversampling, all the data 

with Y*=1 (cases) were selected, while only 5% of observations with Y*=0 (controls) 

were picked. This resulted in approximately 800 observations, from which ¼ of the tota l 

sample was then randomly selected as the internal validation subsample. When 

misclassification in Y is nondifferential, Table 4.9 suggests that the main/internal 

validation study-based analysis remained valid, regardless of the misclassification 

mechanism of X. However, the “operating” SE of Y is greater than the population SEy, 

while the “operating” SPy is smaller than the population SPy. If misclassification on Y is 

nondifferential, however, the validity of the analysis fails to hold (results not shown).  
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Table 4.9 Results of Simulations Addressing Main/Internal Validation Study-Based 

Analysis Under Case-control Samplinga 

Model        ̂  (SD) 95% CI Coverage 

Nondifferential SE and SP Case: log(OR)=1; SEx=0.7; SPx=0.94;SEy=0.85;SPy=0.9 

Naive 0.14(0.16) 0 

True 0.99(0.20) 95.8% 

Main/Internal Validation 1.00(0.42) 96.0% 

Nondifferential in Y and Differential in X: log(OR)=1; SEx1=0.75; SPx1=0.80; 

SEx0=0.60; SPx0=0.90;SEy=0.60;SPy=0.90 

Naive 0.17(0.16) 0 

True 1.01(0.23) 97.0% 

Main/Internal Validation 1.04(0.49) 96.7% 

a. 500 simulation studies; roughly 200 internal validation observations and 600 main study observations per 

simulation based on 100% and 5% sampling of cases and controls, respectively.  

4.3. EXAMPLE 

The motivating example here is the HIV Epidemiology Research Study (HERS). This 

is a multi-center prospective cohort study with a total of 1310 women enrolled in four 

U.S. cities from 1993 to 1995 (43). Among them, 871 women were HIV-infected, and 

439 were not infected but at risk. During each semi-annual visit, a large body of 

information was collected. The question of interest is to assess the association between 

the prevalence of bacterial vaginosis (BV) and the incidence of trichomoniasis. BV was 

measured by two different clinical methods: the clinically-based (CLIN) and the 

laboratory-based (LAB) methods. CLIN was a less accurate method that diagnoses BV 
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by evaluating multiple clinical criteria based on a modified Amsel‟s criteria (44), while 

LAB relies on a more sophisticated Gram-staining technique (45). The LAB method is 

more expensive and serves here as an arguable gold-standard, while the CLIN method is 

more cost-efficient and accessible. The presence of trichomoniasis was evaluated by a 

wet mount technique and a culture method. Wet mount is the clinical diagnostic tool that 

is estimated to have much lower sensitivity compared to culture testing for trichomoniasis 

(50). For both BV and trichomoniasis measurements, gold-standard and error-prone 

diagnoses are widely available for all patients in the HERS beyond visit 4, making HERS 

an excellent illustrative example to demonstrate the performance of the proposed 

validation data-based statistical methods.  

We consider 916 patients with complete observations on both error-prone and gold-

standard diagnoses of BV and trichomoniasis at the 4th visit. The prevalence of BV via 

the LAB technique in the sample is around 18.2%, and after misclassifying the diagnoses, 

the naïve CLIN prevalence is about 7.5%. Compared to the LAB BV, the CLIN BV has a 

crude SE around 37% and SP about 99%, indicating that by using CLIN BV to assess the 

BV status, more than half of the BV positive patients are misdiagnosed as BV negative, 

while most BV-negative subjects are assessed correctly. The true prevalence of 

trichomoniasis in our sample is around 40.2% when assessed by culture testing. In 

contrast, when evaluated by wet mount, the prevalence is only 24.5%, with crude SE of 

51.9% and SP of 94.0%. Like CLIN BV, wet mount diagnoses of trichomoniasis are 

relatively accurate when evaluating negative subjects, but the capability of capturing 

positive subjects is not satisfactory.  
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Table 4.10 Results of Analysis of 916 Women at Visit 4 

Model        ̂  (SE)   ̂  

(95% CI) 

P-value 

Naivea 1.54(0.26) 4.65 

(2.81, 7.69) 

<0.0001 

Trueb 1.14(0.18) 3.13 

(2.21, 4.43) 

<0.0001 

Main/Internal 

Validation: Model 1c 

1.18(0.33) 3.24 

(1.14, 5.35) 

0.0004 

Main/Internal 

Validation: Model 2d 

1.25(0.33) 3.48 

(1.25, 5.71) 

0.0001 

Main/Internal 

Validation: Model 3e 

1.50(0.32) 4.47 

(1.63, 7.30) 

<0.0001 

Main/Internal 

Validation: Model 4f 

1.34(0.32) 3.82 

(1.39, 6.25) 

0.0001 

Main/Internal 

Validation: Model 5g 

1.58(0.31) 4.84 

(1.90, 7.78) 

<0.0001 

a.CLIN BV vs Wet Mount Trichomoniasis. b. LAB BV vs Culture Trichomoniasis c. 229 internal 

validation observations and 687 main study observations per simulation. Model 1 assuming dependent and 

differential misclassification. d. Model 2 assuming independent and differential misclassification. e. Model 

3 assuming differential misclassificat ion for Y and nondifferentiality for X. f. Model 4 assuming 

nondifferential misclassificat ion for Y and differentiality for X.g. Model 5 assuming completely 

nondifferential misclassification. 
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    Table 4.10 summarizes the results of using gold-standard measurements, error-prone 

diagnoses and fitting correction models under various misclassification mechanisms. The 

naïve result characterizing the association between CLIN BV and wet mount-based 

trichomoniasis inflated estimated OR by nearly 50% relative to the LAB and culture-

based analyses. With main/internal validation analysis based on Model 1 through Model 

5, using a random subsample accounting for ¼ of the total sample size as the internal 

validation set, the corrected   ̂ is close to the gold-standard (LAB and culture-based) 

result, though with expected efficiency loss, when dependent and differential 

misclassification is allowed (model 1). If independence with differentiality (model 2) is 

assumed, the corrected   ̂ appears biased away from the null. When nondifferentia l 

misclassification models (either or X or Y or both) are adopted, the corrected   ̂ is 

similar to the naïve result.  

With the proposed model selection approach (Section 4.1.7), we first compare Model 2 

vs. Model 1. The LRT test statistic=6.7 with df=1, and the p-value is 0.009. Therefore, 

we keep Model 1 as our final model, suggesting that in ther HERS example, one ideally 

needs to model dependent misclassification that is differential with respect to both X and 

Y. 

4.4 Discussion 

In this chapter, we have considered the classic problem of analyzing 2 2 tables, when 

both binary response and exposure variables are subject to misclassification. We place a 

heavy emphasis on specifying likelihood functions corresponding to main/internal 

validation designs, by expanding prior well-known matrix (1) and inverse matrix (8) 
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methods to a more general context. We also expand the idea of correcting the OR 

estimate from equation-based approaches to a more formal parametric approach, yielding 

a reliable estimate. Though matrix and inverse matrix methods can be viewed as special 

cases of the proposed approach, it distinguishes from prior efforts mainly in the flexibility 

of modeling more complex misclassification mechanisms, for instance, dependent and 

differential misclassification. This advantage may help to resolve many practical issues 

arising from data in this context, especially when the issues are seldom covered in the 

literature. It should be noted that matrix and inverse matrix methods are only equivalent 

to special cases of the proposed likelihood-based approach, when MLEs of 

misclassification rates are supplied into the generalized matrix identities given in this 

chapter. Otherwise, matrix and inverse matrix methods are not fully efficient. The 

likelihood can either be numerically optimized, the MLEs can be obtained explicitly 

when specified in its most general form based on the predictive value parameterization 

given in Section 4.1.3. If one is also interested in obtaining a confidence interval for the 

OR, the numerical optimization is recommended for its ease in computing standard errors.  

We have proposed a straightforward model selection procedure for practitioners who 

not only seek to obtain a valid analytic result but also pursue a more precise result.  It has 

been demonstrated that the proposed model selection procedure works stably in ensuring 

the correctly-specified model is often picked, while necessary model reduction is 

obtained. However, since the saturated model allowing dependent and differential 

misclassification is valid all the time, and appear to sacrifice relatively little efficiency 

given an adequate validation sample, it may often be prudent to recommend the choice of 

the saturated misclassification model (model 1).  
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We have also examined the impact of “case” oversampling on misclassification 

correction, which is a practical view of a case-control setting. in our context We have 

found that cautions need to be taken when analyzing such case-control data with 

misclassification. Only under certain situations, the proposed approach can be applied 

directly, yielding valid results. More specifically, with oversampling on Y*, the approach 

holds if Y is nondifferentially misclassified, regardless of how X is misclassified. 

Similarly, with oversampling on X*, how X is misclassified is crucial. If X is subject to 

nondifferential misclassification, the proposed approach works, no matter what 

misclassification process applies to Y. This result is consistent with prior findings (16).  

The performance of the approach is demonstrated via a detailed analysis of the HERS 

example along with extensive simulation studies. It is important to note that when 

misclassification is differential, the resulting naïve ln(OR) can be biased in either 

direction; thus, applying a misclassification model that is sufficiently general is critical to 

getting a sensible result. More interestingly, when nondifferentiality does not hold, the 

corrected result based on that assumption may not even outdo the naïve result, as shown 

in the HERS example. For this reason, we urge readers not to simply assume 

nondifferentiality when analyzing data, unless the assumption is supported by the data or 

there are no other choices.  

Future work could involve more consideration of cost-efficient designs of the internal 

validation sampling. Throughout the chapter, for convenience, we assume validation on 

both X and Y simultaneously in the internal validation sample. However, in practice, the 

costs associated with validating X or Y can be very different. It would be of interest to be 

able to allocate the validated observations cleverly into different types, to ensure the 
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control of the cost while still maintaining analytic validity, which is an extension o f prior 

work (18). In some situations, the investigator may be more interested in validating a 

particular subpopulation, leading to nonrandom validation sampling. For example, one 

may care more about validating cases than controls. (52). There could also be interest in 

correction approaches when there is no gold standard available but one has access to 

replicates or an alloyed gold standard (53, 54).  
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Chapter 5 Misclassification in Response and Predictor 

Variables in Logistic Regression 

5.1. Methods 

5.1.1 Notation 

Consider a cross-sectional study with n subjects. In the absence of misclassification, 

assume that we want to fit a logistic regression as follows: 

                             ∑   
 
                         , 

where Y is the binary response variable, Cp (p=1,…P) denotes the pth covariate measured 

perfectly, and X stands for a binary predictor that is subject to misclassification. In the 

main study sample, instead of X and Y, mismeasured dichotomous exposure status X* 

and disease status Y* are observed. For the purpose of evaluating the misclassification 

mechanism in the study (assumed in Chapter 4), a random sample of size nv is selected, 

and gold standard measures of the response and exposure Y and X are made. Thus, the 

sample size of the main study will be nm=n-nv. If replacing X and Y in eqn. (5.1) with 

naïve measures X* and Y*, estimates of (β0, …, βp, βp+1) can be potentially biased, and the 

magnitudes of biases rely on diagnostic properties of the methods used to classify X* and 

Y*.  

5.1.2 Independent Nondifferential Misclassification 

Assuming nondifferentiality, the misclassification parameters, known as sensitivity 

(SE) and specificity (SP), are constants that do not vary upon other information. For 



109 
 

example, regarding diagnostic properties relating Y* to Y, in the nondifferential case, we 

define  

                  and                          

Similarly, to characterizing the method classifying X*, we denote that  

                  and                         . 

Note that SE and SP presented here are constants, and they are independent of other 

information, such as disease status and prognostic factors. In other words, we assume that 

                             .  

For the simplicity of illustration, we first consider the situation when both X and Y are 

subject to nondifferential misclassification. Following the rule of total probability, each 

independent observation in the main study contributes to the following likelihood term: 

                    ∑ ∑                

   

   

   

   

 ∑ ∑           

   

   

   

   

                                 

The first and second terms in eqn. (5.4) represent the SE/SP of Y and X, while the third 

term reflects the primary model of interest that is defined in eqn. (5.1). The last term 

characterizes the association of X with other covariates C. Note that in fact the vector C 

in the latter model may or may not be exactly the same as the vector C in the primary 

model, though throughout this chapter we do not rotationally distinguish the two. To 

facilitate the likelihood representation, a model for Pr(X|C) needs to be specified. Here 
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we adopt the familiar logit link as in eqn. (5.5), as X is a binary variable. However, other 

links can be applied without conceptual difficulty.  

     [  (   |        )]     ∑   

 

   

            

Assuming nondifferential misclassification in both X and Y, we can repeat the 

likelihood of the main study as follows: 

   ∏ ,∑ ∑   (  
 
|  )  

    
    

    
    

   
                          - 

  
                 . 

The estimates for SEx, SEy, SPx and SPy are assumed to come from extra data, such as 

internal validation data which is the focus of this chapter. In the internal validation 

subsample, we assume that (X, X*,Y,Y*) are observed on each subject. The likelihood 

contribution from the subsample is: 

   ∏   (  
 
| 

 
)     

     

  

   

  ( 
 
      )                    

5.1.3 Independent Differential Misclassification 

In contrast to nondifferential misclassification, differential misclassification occurs 

when the misclassification probabilities of one variable depends on the value(s) of the 

other variable(s). More specifically, regarding classifying via Y*, we define 

                            and 

                                           . 
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As opposed to nondifferential misclassification as described in Section 5.2.2, the SE and 

SP of Y now can be functions of exposure (X) and other covariates (C). For clarification, 

as long as SE and SP depend only on the true values of other variables, we call it 

“differential but independent misclassification”. Eqn. (5.8) is the most general 

representation of SEy and SPy under such an assumption. However, the definition of C is 

flexible upon model selection, and it may not be the same as the C in the primary model 

eqn. (5.1). It may share overlap with the covariate vector in the primary model, or may 

include factors not included in eqn. (5.1). In the meantime, X may or may not be an 

important factor in characterizing the diagnostic properties for Y, and it can be left out 

when it is deemed not to be. Similarly, we may define the misclassification process of X 

as: 

                            and 

                                    . 

Again, like in Section 5.1.2, each observation in the main study contributes to the 

likelihood as follows: 

                    ∑ ∑               

   

   

   

   

 ∑ ∑              

   

   

   

   

                                     

The last two terms of eqn. (5.10) are described in Section 5.1.2. The first two terms, 

characterizing SE and SP for X and Y, need to be fully specified in order to write out the 
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likelihood. Here again we favor logistic regressions for modeling the misclassification 

processes of X and Y. More specifically, we define 

                                ∑   
 
                            and 

                                ∑   

 

   

                         

Eqn. (5.11) implies that 

      
        ∑   

 
                 

          ∑   
 
                 

 

and 

        
 

          ∑   
 
            

 

The corresponding definition of SExdc and SPxdc follows simultaneously from model 

(5.12). The full likelihood is L=LmxLv, where  
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The major distinction of eqn.s (5.13) and (5.14) from eqn. (5.6) and (5.7) is that the 

likelihood representing differential misclassification incorporates the modeling of the SE 
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and SP of X and Y based on (5.11) and (5.12). Nondifferential misclassification may be 

viewed as a special case of differential misclassification, since it indicates that 

(θ1=…=θR=θR+2=0) or (δ1=…=δS=δS+2=0). The likelihood-based approach allows 

hypothesis testing to assess the null hypothesis of nondifferentiality, as well as model 

selection for screening out factors associated with SE and SP for both X and Y.   

5.1.4 Dependent and Differential Misclassification 

In Section 5.1.3, SE and SP of X and Y were allowed to be impacted by the true values of 

other factors, noted as “differential misclassification”. Another type of misclassification 

what we will refer to as “dependent misclassification”, when SE and SP depend on error-

prone values. The likelihood for the saturated model (shown in eqn. (5.15)) is an example 

of the combination of dependence and differentiality. In particular, eqn. (5.15) implies 

that                                           , where                 

                          suggests statistical independence. So more generally, 

                    ∑ ∑                

   

   

   

   

 ∑ ∑                  

   

   

   

   

                                    

Note that eqn. (5.15) is the example of a saturated model with both dependent and 

differential misclassification present; the dependence is implied by the conditioning or X* 

in the firs tterm.  The full likelihood is still L=LmxLv, where  

   ∏{∑ ∑   (  
 
|        

    )  
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and  

   ∏   (  
 
| 
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With proper model selection, it is possible to reduce the saturated model to a simpler 

form. The hypothesis testing for independence for eqn. (5.15) is to test whether the 

logistic regression coefficient for x* (θR+3 in eqn. (5.16)) from the SE/SP model of Y is 

zero or not.  

                            

    ∑   

 

   

                    
            

 

5.2.5 Other Types of Misclassification 

It should be noted that besides the misclassification mechanisms displayed in Sections 

5.2.2-5.2.4, there are other possible types of mechanisms. For example, in practice, it is 

possible that both exposure and disease status are nondifferentially misclassified, but 

misclassification is dependent (41). When this is the case, we may adjust the form of the 

likelihood as follows: 

   ∏{∑ ∑   (  
 
|     

 )  

    

    

    

    

   
                          } 

  

   

     

and  
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Other types may include the possibility that only disease or exposure status is 

independently nondifferentially misclassified. For example, if only disease status is 

independently nondifferentially misclassified, we have the likelihood as: 

   ∏ ∑ ∑   (  
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The likelihoods presented in Section 5.2 can be numerically optimized via standard 

statistical software such as SAS NLMIXED (57). In practical analysis, thorough model 

selection should be performed for the SE/SP models for X and Y using the validation 

sample, to assess whether dependence and/or differentiality is involved in the 

misclassification process.  

5.2. Example 

We consider data on bacterial vaginosis (BV) and trichomoniasis (Trich) status for 

women in the HIV Epidemiology Research Study (HERS) as an illustrative example.  

The HERS data at the 4th visit is used with 904 women with complete data on BV, 

TRICH and other risk factors. The medium age at enrollment was 37.  Among them, 61.7% 

of women were blacks, 67.4% were HIV positive and 52% were intravenous drug users. 
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Using culture testing, 18% of women were diagnosed with trichomoniasis. Since wet 

mount is not sensitive, only 7.6% were trichomoniasis-positive based on wet mounts. 

40.3% of women were BV positive via the LAB method, compared to only 24.5% based 

on the CLIN method. The crude sensitivities for the wet mount and CLIN methods were 

only 37.8% and 51.7% respectively, while the specificities were 93.9% and 99.0%, 

indicating that both error-prone methods were highly specific but not sensitive. In the 

HERS data, (X,X*,Y,Y*) were measured on all participants, providing an ideal data 

example to illustrate the performance of the proposed approach.  

We first fit eqn. (5.1) on all subjects by using Y and X as the response and predictor 

variables, referred to as “Ideal Analysis”. Preliminary model selection suggests that 

trichomoniasis status, age, race, HIV risk cohort (RISKCHRT) and HIV status (HIVPOS) 

are important risk factors for BV, as shown in eqn. (5.17).  

                   

                                                           

We then fit the same model by replacing X and Y with X* and Y*, denoted as “Naïve 

Analysis”. The results are summarized in Table 5.1. The two analyses differ markedly in 

magnitudes of the estimated OR for trichomoniasis (2.41 for ideal vs. 3.44 for naïve) and 

HIV risk cohort (1.37 for ideal vs. 2.45 for naïve). The estimated ORs for HIV status 

differ in directionality (1.25 for ideal vs. 0.73 for naïve).  
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Table 5.1 Logistic Regression Results on 904 Women at 4th Visit. 

Variable  ̂ (StdErr)   ̂ 

(95% CI) 

Ideal Analysisa 

Trichomoniasis  

(+ vs. -) 

0.88 (0.19) 2.41 
(1.66, 3.50) 

Age 

(Years) 

-0.04 (0.01) 0.96 

(0.94, 0.98) 

Race  

(Black vs. Others) 

0.76 (0.16) 2.15 
(1.57, 2.92) 

HIV Risk Cohort  

(IDU vs. Sexual) 

0.31 (0.15) 1.37 

(1.03, 1.83) 

HIV Status 

(+ vs. -) 

0.22 (0.15) 1.25 
(0.93, 1.69) 

Naive Analysisb 

Trichomoniasis  

(+ vs. -) 

1.24 (0.27) 3.44 

(2.03, 5.84) 

Age 

(Years) 

-0.05 (0.01) 0.95 
(0.93, 0.98) 

Race  

(Black vs. Others) 

0.69 (0.18) 1.99 
(1.40, 2.83) 

HIV Risk Cohort  

(IDU vs. Sexual) 

0.90 (0.17) 2.45 
(1.74, 3.45) 

HIV Status 

(+ vs. -) 

-0.31 (0.17) 0.73 
(0.52, 1.03) 

a.CLIN BV vs Wet Mount Trichomoniasis, adjusting for age, race, HIV risk cohort and HIV staus. b. LAB 

BV vs Culture Trichomoniasis , adjusting for age, race, HIV risk cohort and HIV staus. 

In order to demonstrate the performance of the proposed approach, we randomly 

selected 1/3 of the total sample size (nv=214) into the internal validation subsample. 

Model selection on those 214 women suggested a version of the X|C model as follows: 

                                                            

where age, race and HIV risk cohort are associated with trichomoniasis status. Predictor 

selection appiled to these 214 women future suggested dependent and differential 

misclassification in the CLIN BV and WET TRICH methods. The selected SE/SP models 

for CLIN BV and WET TRICH are as shown in eqns. (5.19-5.20).  
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More specifically, the classification rates of CLIN BV are dependent on risk factors HIV 

risk cohort and HIV status, implying differential misclassification. In the meanwhile, the 

misclassification process for BV also depends on the error-prone wet mount version of 

the trichomoniasis diagnosis, implying the presence of dependent misclassification. 

Similarly, HIV risk cohort has a significant impact on the SE and SP of the wet mount 

method, a typical example of differential misclassification.  

The first model fitted in Table 5.2 is the complete analysis of the data by jointly 

modeling eqn.s (5.17)-(5.20), yielding the same interpretation as the ideal analysis, with 

all primary parameter estimates having similar magnitudes and the same directionalities. 

In contrast, results assuming independent differential or nondifferential misclassification 

are more similar to the results of the naïve analysis. For instance, when assuming 

independence but allowing differential misclassification, the estimate for trichomoniasis 

status largely increases, with a similar magnitude as observed in the naïve analysis.  If 

assuming independent and nondifferential misclassification, a greatly elevated estimate 

for HIV risk cohort and a negative estimated ln(OR) for HIV status are also noticed, 

besides the bias in trichomoniasis. Unsurprisingly, the likelihood ratio tests comparing 

the two simpler models in Table 5.2 with the most general misclassification model highly 

significant, strongly suggesting a need to account for dependent and differential 

misclassification  (χ2=15.4, p<0.0001 for comparing independent differential model with 

dependent and differential model; χ2=40.4, p<0.0001 for comparing independent 

nondifferential model with dependent and differential model). This clearly highlights the 
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importance of internal validation sampling for evaluating and modeling complicated 

misclassification mechanisms.  

Tables 5.3-5.4 summarize the maximum likelihood estimates of SE and SP 

corresponding to CLIN BV and wet mount trichomoniasis in different strata. For CLIN 

BV, wet mount trichomoniasis diagnoses, HIV risk cohort and HIV status all 

significantly affect the diagnostic properties of CLIN BV. By holding other covariates 

constant, SE tends to be higher in wet mount trichomoniasis positive patients and 

intravenous drug users, while lower in HIV positive women. An opposite trend is 

observed for the SP estimates. For wet mount trichomoniasis, intravenous drug users 

seem to have a greater SE than those at risk via sexual contact, while the test is similarly 

highly specific in both groups.  

 

 

 

 

 

 

 

 



120 
 

Table 5.2 Results of Maximum Likelihood Analysis of Main/Internal Validation Study 

Data on 904 Women at 4th Visit (nm=690, nv=214). 

Variable  ̂ (StdErr)   ̂ 

(95% CI) 

Assuming dependent and differential misclassification 

Trichomoniasis  

(+ vs. -) 

0.76 (0.40) 2.13 
(0.44, 3.82) 

Age 

(Years) 

-0.05 (0.02) 0.95 
(0.92, 0.98) 

Race  

(Black vs. Others) 

0.80 (0.23) 2.22 

(1.19, 3.26) 

HIV Risk Cohort  

(IDU vs. Sexual) 

0.28 (0.26) 1.33 
(0.65, 2.01) 

HIV Status 

(+ vs. -) 

0.22 (0.27) 1.24 

(0.58, 1.91) 

Assuming independent and differential misclassification  

Trichomoniasis  

(+ vs. -) 

1.33 (0.37) 3.78 
(1.02, 6.54) 

Age 

(Years) 

-0.05 (0.02) 0.95 

(0.92, 0.98) 

Race  

(Black vs. Others) 

0.76 (0.24) 2.13 
(1.14, 3.11) 

HIV Risk Cohort  

(IDU vs. Sexual) 

0.32 (0.26) 1.38 

(0.68, 2.09) 

HIV Status 

(+ vs. -) 

0.16 (0.27) 1.17 
(0.55, 1.80) 

Assuming nondifferential misclassification  

Trichomoniasis  

(+ vs. -) 

1.51 (0.38) 4.51 

(1.17, 7.86) 

Age 

(Years) 

-0.05 (0.02) 0.96 
(0.92, 0.99) 

Race  

(Black vs. Others) 

0.71 (0.24) 2.04 

(1.09, 2.98) 

HIV Risk Cohort  

(IDU vs. Sexual) 

0.81 (0.22) 2.25 
(1.26, 3.25) 

HIV Status 

(+ vs. -) 

-0.15 (0.23) 0.86 

(0.47, 1.25) 
a. Maximum likelihood estimates of primary  parameters are obtained by jointly  modeling eqn.s (5.17)-

(5.20). b. W ETTRICH is removed from eqn. (5.19) to indicate independence. The assumption is not 

supported by the data (p<0.0001). c. No covariates affect SE and SP of Y and X in eqn.s (5.19) and (5.20). 

The assumption is not supported by the data (p<.0001). 
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Table 5.3 Results of Maximum Likelihood Analysis of Main/Internal Validation Study 

Data on 904 Women at 4th Visit (nm=690, nv=214): Estimates of SE and SP of CLIN BVa. 

Wet Mount 

Trichomoniasis 

HIV Risk 

Cohort 

HIV Status   ̂ (StdErr)   ̂ (StdErr) 

+ IDU + 0.83 (0.07) 0.81 (0.08) 

+ IDU - 0.90 (0.05) 0.69 (0.11) 

+ Sexual + 0.67 (0.11) 0.91 (0.05) 

+ Sexual - 0.79 (0.09) 0.85 (0.07) 

- IDU + 0.51 (0.05) 0.95 (0.02) 

- IDU - 0.66 (0.07) 0.92 (0.03) 

- Sexual + 0.29 (0.04) 0.98 (0.01) 

- Sexual - 0.44 (0.07) 0.96 (0.02) 

a. Std errors obtained by multivariate delta method.  

Table 5.4 Results of Maximum Likelihood Analysis of Main/Internal Validation Study 

Data on 904 Women at 4th Visit (nm=690, nv=214): Estimates of SE and SP of Wet 

Mount Trichomoniasis.a 

HIV Risk Cohort   ̂ (StdErr)   ̂ (StdErr) 

IDU 0.51 (0.08) 0.99 (0.01) 

Sexual 0.23 (0.06) 0.99 (0.003) 

a. Std errors obtained by multivariate delta method.  
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5.3. Simulation Studies 

The simulation experiment summarized in Table 5.5 demonstrates the performance of 

jointly modeling eqns. (5.17-20) under conditions similar to the HERS example described 

in Section 5.2. The predictor subject to misclassification (X) along with three covariates 

(C1-C3) were generated with distributions mimicking the observed data in the HERS 

study at visit 4, i.e., mimicking trichomoniasis, age, HIV risk cohort and HIV status. The 

true response Y was simulated under eqn. (5.17).  Error prone outcome and predictor (Y* 

and X*) were generated via eqns. (5.19-5.20), with true coefficients similar to these 

estimated in the ideal analysis in Table 5.1. With 500 simulated datasets, ideal, naïve and 

complete analyses were conducted on each dataset. Table 5.5 suggests that the naïve 

analysis yields greatly biased estimates. Assuming dependent and differential 

misclassification, note that a complete analysis produces reliable results and excellent 95% 

confidence interval coverage.    
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Table 5.5 Results of Simulations Designed to Mimic Conditions of HERS Examplea. 

Variable  ̂ (StdErr) 95% CI Coverage 

Ideal Analysisb 

Trichomoniasis  

(+ vs. -) 

0.89 (0.27) 94.8% 

Age 

(Years) 

-0.04 (0.003) 93.2% 

Race  

(Black vs. Others) 

0.77 (0.18) 96.0% 

HIV Risk Cohort  

(IDU vs. Sexual) 

0.31 (0.19) 94.8% 

HIV Status 

(+ vs. -) 

0.22 (0.19) 94.2% 

Naïve Analysisc 

Trichomoniasis  

(+ vs. -) 

1.35 (0.28) 63.2% 

Age 

(Years) 

-0.02 (0.002) 0 

Race  

(Black vs. Others) 

0.30 (0.17) 25.0% 

HIV Risk Cohort  

(IDU vs. Sexual) 

0.89 (0.19) 10.4% 

HIV Status 

(+ vs. -) 

-0.42 (0.18) 4.8% 

Complete Analysisd  

Trichomoniasis  

(+ vs. -) 

0.91 (0.52) 94.2% 

Age 

(Years) 

-0.04 (0.006) 94.8% 

Race  

(Black vs. Others) 

0.79 (0.30) 96.4% 

HIV Risk Cohort  

(IDU vs. Sexual) 

0.35 (0.34) 94.8% 

HIV Status 

(+ vs. -) 

0.22 (0.34) 94.4% 

a. 500 simulat ions. nm=690, nv=214. Maximum likelihood estimates of primary parameters are obtained by 

jointly  modeling eqn.s (5.17)-(5.20). True parameters: (β0=0.14, β1=0.88, β2=-0.04, β3=0.76, β4=0.31, 

β5=0.22). (θ, γ, δ) are set to equal MLEs from HERS analysis (not shown). b. MLEs from eqn. (5.17). c. 

MLEs from eqn. (5.17) with (Y
*
, X

*
) rep lacing (Y, X). c. Maximum likelihood estimates of primary 

parameters are obtained by jointly modeling eqn.s (5.17)-(5.20). 
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5.4. Discussion 

In this chapter, we have expanded the ML approach proposed in Chapter 4 to a general 

regression setting, by following parametric ideas outlined in Lyles et al (16). Our goal is 

to provide clear guidance on adjusting for biases due to misclassification in binary 

response and predictor variables in ordinary logistic regressions. We strongly emphasize 

the importance of using internal validation sampling to assess misclassification patterns 

and to ensure the validity of the results. The approach outlined in this chapter provides a 

general and reliable way to flexibly model a wide variety of misclassification 

mechanisms, including dependent and differential misclassification. The parametric 

model makes likelihood ratio testing an option to assist with model selection and 

mechanism evaluation, as demonstrated by the HERS example. Though throughout logit 

links are adopted for all models, other links can also be used without additional 

conceptual and technical difficulty.  

As with any parametric model, to correctly specify the model is crucial in terms of 

obtaining valid estimates. However, empirical evidence suggests that the approach enjoys 

some robustness to misspecification of the X|C and SE/SP models (not shown), requiring 

further investigation.   

There may be interest in extending the regression-based correction approach to adjust 

for outcome and predictor misclassification in situations when both are repeatedly 

measured, representing a longitudinal setting. To address this question, methods 

described in Chapter 2 and 3 may aid in the methodology development. 
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