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Abstract

The recognition of DNA 5-methylcytosine: Studies on Arabidopsis thaliana DNA glycosylase
ROS1 and basic leucine-zipper transcription factors in human and Epstein-Barr virus

By Samuel Hong

Eukaryotic DNA methylation, often a chemical modification of cytosine via methylation of
the carbon-5, generates 5-methylcytosine (5mC) in genomes. This modified base serves as a
critical epigenetic signal implicated in development, imprinting, immune responses, and
various forms of diseases. Characterizing how DNA 5mC is recognized and regulated is
critical to effectively understanding the function of DNA methylation. Previous
investigations have shown that the base excision repair pathway can regulate active DNA
demethylation—the enzyme-driven process of erasing and thus reversing the methyl
modification signal. Particularly, Repressor of Silencing 1 (ROS1) and its paralogs in
Avrabidopsis thaliana can directly excise 5mC to reverse DNA methylation. A major portion of
this dissertation describes the molecular mechanism of ROST activity. Specifically shown is
the interaction between the C-terminal domain and the catalytic domain of ROS1, and the
requirement of the C-terminal domain for the 5mC excision activity. This understanding
expands the paradigm of DNA repair enzymes from their traditionally understood
housekeeping roles to their extended roles in epigenetic regulations. In addition to the
discoveries on how DNA 5mC is erased, understanding how proteins specifically recognize
this modified base is also critical. It is widely generalized that 5mC is inhibitory for
transcription factor binding. However, recent data show that certain transcription factors can
preferentially recognize 5mC within specific sequences. As a major extension to this
discovery, the other major portion of this dissertation describes the DNA sequence-specific
recognition of methylated DNA by human AP-1 and Epstein-Barr virus AP-1-like
transcription factors. The study provides the biochemical and structural basis of how DNA
methylation can generate novel transcription factor binding sites to dynamically regulate
transcription.
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CHAPTER L.

General Introduction

DNA methylation

DNA modifications by enzymes have fundamental biological roles in many living organisms.
In both prokaryotes and many eukaryotes, DNA cytosine can be methylated at the carbon-5
(C5) position by cytosine C5 methyltransferases that incorporate S-adenosyl-L-methionine
(SAM) as a cofactor to generate 5-methylcytosine (5mC)” . According to the reaction
mechanism proposed by Wu and Santi**, the catalytic cysteine of a methyltransferase makes
a nucleophilic attack on C6 of cytosine to form a covalent complex, followed by transferring
of the methyl group from SAM to cytosine C5 (Figure 1). M.Hhal was the first DNA
methyltransferase to be structurally characterized, and the crystal structure of M.Hhal-DNA-
SAM ternary complex supported the proposed mechanism and demonstrated base flipping
as a mode of accessing DNA base substrate’. Prokaryotic DNA methylation is often
described in the context of bacteria-phage warfare, as extensively reflected in the restriction-
modification systems’. In certain eukaryotes, however, DNA methylation is critically
involved in transcriptional regulation of many biological processes.

Eukaryotic DNA methyltransferases are classified as maintenance methyltransferase
ot de novo methyltransferase” ’. In mammals, the maintenance methyltransferase DNMT1
preferentially recognizes a hemi-methylated CpG dinucleotide over unmethylated DNA
during DNA replication and methylates the daughter strand to maintain methylation patterns
encoded in the mother strand””’. UHRF1 is potentially engaged in the process of guiding
DNMTT1 to the hemi-methylated sites. The SRA domain of UHRF1 recognizes a hemi-

methylated CpG’"”"” and is associated with guiding DNMT1 activities to the hemi-methylated



DNA™ ", Aside from DNMT1, de noro DNA methyltransferases DNMT3A and DNMT3B
can methylate both CpG and non-CpG sites’””". Mammalian DNMT3A can directly

associate with DNMT3L"” | which contains an ADD domain that binds unmethylated

lysine 4 of histone H3*"#. In a similar way, UHRF1 has a TTD domain that recognizes tri-
methylated lysine 9 of histone H3”?. Thus, generation of DNA methylation is coordinated
with relevant histone modifications in a larger chromatin context. In plants, Metl acts as a
maintenance methyltransferase, and other methyltransferases that belong to domain-
rearranged methyltransferase (DRM) and chromo-methyltransferase (CMT) families act as de
novo methyltransferases in both CpG and non-CpG contexts™.

DNA methylome profiles in terms of distributions and patterns of 5mC within
genomes provide a functional context of DNA methylation. Approximately 1% of a
mammalian genome is methylated, primarily in CpG context” *. A plant genome can be
methylated approximately 20-30% in both CpG and non-CpG context”™ . Most
transposons and repetitive regions in genomes are silenced by methylation’” . However,
CpG-rich clusters of 500 to 2000 base pairs, known as CpG islands (CGI)”, are found in
gene promoter regions and remain largely unmethylated””. Approximately 50-70% of
mammalian promoters contain CGI””. Promoters with methylated CGI are associated with
gene repression, while most promoters with unmethylated CGI are those of housekeeping
genes with stable gene expression profiles™ ”. In contrast to promoter methylation in CGI,
many transcriptionally active gene body regions are methylated with distinct enrichment

30, 40, 41

patterns near exon-intron boundaries , indicating a potential role of DNA methylation

for splicing. In both mammals and plants, germ cells undergo global genome-wide DNA

demethylation”*. Then, an embryo at the pluripotent stage contains the highest level of

40, 45

genome-wide methylation, including the methylation of CpA sites Subsequent



differentiations are followed by a decreased amount of overall methylation and the
establishment of differentially methylated regions (DMR) in both promoter regions and gene
bodies with tissue-specific patterns” *. DMR patterns are thus associated with tissue-specific
gene expression profiles. DMR can also be specifically established in paternal or maternal
alleles as primarily shown in imprinting”” . In cancer cells, CGI methylation patterns can
become aberrant such that tumor suppressor promoters are methylated, whereas proto-
oncogene promoters are unmethylated”” ”.

Proteins that specifically bind methylated CpG can mediate biological signals of
DNA methylation. Certain proteins with the methyl-CpG-binding domain (MBD) are found
in both mammals and plants and can preferentially bind a single, symmetrically methylated
CpG compared to the unmethylated form”’” . Genetic evidence shows that MBD family
proteins—such as MeCP2, MBD1, and MBD2—associate with repressive histone
modifiers””. Particularly, MeCP2 is globally expressed in neurons and represses several
genes as well as repetitive regions””. The lack of functional MeCP2 is linked to an
intellectual disability known at Rett Syndrome”’. Several genome-wide studies of MBD1 and
MBD2 also show that they are involved in transcriptional regulation through gene

repression” . Therefore, transcriptional inhibitory function of DNA methylation is partly

mediated by readers of methylated DNA.
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Figure 1. The reaction mechanism of cytosine C5 methylation (Adapted and modified from
Wu and Santi 1987°).
SAM indicates S-adenosyl-L-methionine; SAH indicates S-adenosyl-L-homocysteine. The

methyl group being transferred is shown in red.



Oxidative modifications of 5-methylcytosine and active DNA demethylation

In addition to 5mC, other chemical modifications of DNA are known. In prokaryotes,
cytosine N4 and adenine N6 in genomes can also be methylated””*’, and DNA adenine N6
methylation is involved in bacterial host defense and gene regulation”. Also, bacteriophage
have yet another form of DNA base known as 5-hydroxymethycytsine (5hmC), which is

modified from 2’-deoxycytidine before its integration into the viral genome”

. 5hmC in phage
was initially discovered in 1953”, but this particular base has garnered much attention
recently due to the discovery of mammalian 5mC dioxygenase enzymes known as Ten-
eleven translocation (Tet) proteins that oxidize 5mC to 5hmC by using o-ketoglutarate
(aKG) and Fe(Il) as cofactors™ ”. Subsequently, Tet dioxygenases were shown to further

74, 75

oxidize 5hmC to 5-formylcytosine (5fC) and then to 5-carboxylcytosine (5¢caC) (Figure

2). Genomic studies have revealed that 5hmC constitutes 5-10% of 5mC in mouse
embryonic stem (ES) cells and approximately 40% of 5mC in mouse Purkinje neurons™ ”.
5hmC is more abundant in brain tissues compared to other tissues, and it can be enriched in
promoters, gene bodies, and enhancer regions™ " 7. The level of 5fC and 5caC are
substantially less than that of 5hmC—0.03% and 0.01% of 5mC respectively” ”*. While the
function of modified bases generated by Tet activities is only beginning to be uncovered,
each modified base may pose a different signal in cells. Particularly, a mass spectrometry
study has revealed several proteins that specifically recognize 5mC as well as each of the
oxidized bases in support of this idea”.

Also, the discovery of Tet proteins has renewed interests in DNA demethylation
pathways, as several mechanisms of DNA demethylation had been proposed”. The simplest

mechanism that does not involve an enzyme would be a passive diffusion of 5mC during

several rounds of DNA replication during which DNMT1 does not maintain the



methylation pattern’”*. On the other hand, active DNA demethylation requires an enzyme-
mediated activity without the need for DNA replication. There are records of activities
whereby DNMT3A and DNMT3B directly remove the C5-methyl group of 5mC and/or

C5-hydroxymethyl group of 5hmC" ¥, though no # wivo data have yet to validate the

activities. Also, it has been proposed that 5mC can be deaminated to thymine, which would
be mismatched to guanine (G:T mismatch). The base excision repair (BER) pathway
involving DNA glycosylases would then initiate a mismatch repair. In zebra fish,
AID/APOBEC deaminases can generate thyimine and 5-hydroxymethyluracil (5hmU)
mismatched to G by deamination of 5mC and 5hmC, after which monofunctional DNA
glycosylases such as MBD4 and thymine DNA glycosylase (TDG) can excise the

dX)'fXX

mismatched pyrimidine by hydrolyzing the glycosidic bon (Figure 3a). The resulting
apyrimidinic (AP) site would be subjected to downstream repair pathways, eventually
involving DNA polymerase  and ligase activities to complete the repair processes (Figure
4). The Tet activities are also implicated in active DNA demethylation through BER, as
TDG was discovered to excise 5fC and 5caC™**”. Indeed, a depletion of TDG in mouse
ES cells was accompanied by increased levels of 5fC and 5caC”" ”. However, the increased
amounts were still substantially low to adequately account for the full level of genome-wide
demethylation observed in the mouse ES cells.

In addition, a direct removal of the modified base by 5mC DNA glycosylases has
been proposed, and mammalian 5mC DNA glycosylase activities have previously been
reported””. 5ShmC DNA glycosylase activities have also been observed”. However, an
enzyme responsible for any of such activity has not been identified. In Arabidopsis thaliana, on

the other hand, bone fide 5mC DNA glycosylases have been clearly identified: ROS1, DME,

DMI.2, and DML3””. They have a catalytic glycosylase domain homologous to E. co/i



endonuclease IIT (Nth), a Helix-hairpin-Helix (HhH) fold DNA glycosylase/lyase known to
contain an iron-sulfur cluster-binding site and excise damaged pyrimidines. Studies have
shown that Arabidopsis thaliana 5mC DNA glycosylases are bifunctional glycosylase/lyase
enzymes that both excise the base and cleaves the phosphate backbone via B-elimination or

100-102

B,0-climination teaction (Figure 3b & Figure 4). ROS1 shows overlapping substrate

102 P
. After a base excision, the

specificities partly shared by endonuclease III family enzymes
resulting single nucleotide gap with 3’- and 5-phosphate termini after the elimination
reaction is tailored by ZDP 3’-phosphatase to generate 3’-OH to initiate the downstream Pol
B and Ligase activities to complete repair’”’ (Figure 4).

Interestingly, ROS1 has been shown to excise 5mC and 5hmC but not 5fC and 5caC
in vitro”” "' Thus, plant ROS1 and mammalian TDG have mutually exclusive substrate
specificities for 5mC, 5ShmC, 5fC, and 5caC: the first two specific for ROS1 and the latter
two specific for mammalian TDG" (Figure 2). Particular residues within the catalytic
glycosylase domain (GD) are involved in the specific recognition of substrate. In TDG, a
single point mutation can alter the substrate specificity profile of the enzyme such that TDG
becomes specific for 5caC in exclusion of other known substrates’”. A catalytic mutation
within ROS1 GD can abolish the glycosylase activity without abolishing the lyase activity’”.
However, an important observation in regards to the mechanism of 5mC and 5hmC
excisions by ROS1 is the requirement of the enzyme’s C-terminal domain (CTD) for the

activity. ROS1 CTD is conserved among Arabidopsis thaliana 5mC DNA glycosylases. Studies

on ROST CTD are covered in Chapter I1I.
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Figure 2. Generation and erasure of cytosine modifications.
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systems only. AP site indicates apyrimidinic site.
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Figure 3. Reaction mechanisms of DNA glycosylases for generating AP sites (Adapted from
Brooks 2013'").

(a) The reaction mechanism of monofunctional DNA glycosylases involving a hydrolysis of
the glycosydic bond, leaving the AP site product. X indicates the substrate base. (b) The
reaction mechanism of bifunctional DNA glycosylases involving a nucleophilic substitution
of the substrate by a lysine side-chain, forming a Schiff base of a transient enzyme-DNA
covalent complex. The following lyase reaction by B-elimination cleaves the C3’-phosphate

bond, and the enzyme is released. The resulting AP site contains polyunsaturated aldehyde

(PUA.
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Sequence-specific recognition of 5-methylcytosine by transcription factors

The function of DNA methylation is perhaps most cleatly elucidated by understanding how
methylated DNA is specifically recognized during a given biological process. Studies on the
recognition of 5SmCpG by MBD proteins that associate with repressive chromatin modifiers
have linked the function of DNA 5mC to gene silencing cascades as discussed previously.
Studies have also shown that DNA methylation inhibits certain transcription factors from
binding their response elements when the methylation occurs at the binding site’”. Some of
the transcription factors whose DNA binding is inhibited by DNA methylation within the
cognate response element include Myc, STAT1, and CREB’”"". More recently, however,
transcription factors with enhanced DNA binding capabilities upon CpG methylation within
response elements have been discovered. Some zinc-finger (ZnF) family transcription
factors, including Zfp57, ZBTB4, and Kaiso, have shown significant increases in DNA
binding upon methylation within their binding sites’’”’”. In addition, two studies that
utilized mass spectrometry and protein microarray have shown more than a dozen
transcription factor candidates that may bind methylated DNA in a sequence-specific
manner”” ",

Structural studies of ZnF 5mCpG-readers have shown that a single 5mCpG within
the sequences are recognized by a conserved arginine involving a 5mC-Arg-G triad, which
also recognizes TpG in an equivalent manner through its non-polar interaction with the C5-
methyl group’’” (Figure 5). In the case of Zfp57, a glutamate, in addition to the arginine, is
further involved in the recognition of the C5-methyl group of the same 5mC, and an ordered
water network surrounds the symmetric 5mC in the opposite strand to further contribute to
DNA binding'”. Such arginine- and water-mediated recognition of 5mCpG have been

observed in the crystal structure of MeCP2 in complex with methylated DNA'” indicating a
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common mode of 5SmCpG recognition by distinct classes of proteins. Also, the function of

5mCpG-recognizing ZnF transcription factors has been associated with gene repression’’"

"1 suggesting that transcriptional inhibitory output of DNA methylation can be directed to
specific sequences. Such a mode of repression would involve a more targeted gene inhibition
than the inhibitory output by MBD proteins whose sequence specificity is confined to a
single CpG dinucleotide.

In addition to ZnF transcription factors, some basic leucine-zipper (bZIP) family
transcription factors have been shown to preferentially bind 5mCpG within specific
sequences. The bZIP family is comprised of a large number transcription factors that
function as homo- and/or —heterodimers that are known to bind several types of 7-bp to 14-
bp consensus sequences containing inverted repeats of two identical half-sites, each bound

122
by a monomer

. The consensus sequences can be categorized into three types, depending
on the core 7- or 8-bp sequence. The first group contains a semi-palindromic sequence, 5-
TGAGTCA-3" (the middle base can be either G or C), also known as 12-O-
Tetradecanoylphorbol-13-acetate (TPA) response element (TRE). AP-1 transcription factors
such as Jun/Fos heterodimer and Jun/Jun homodimer are known to bind TRE. The second
group contains 8-bp palindromic, TRE-like core sequence, 5-TGACGTCA-3’, known as
cAMP response element (CRE) that contains a CpG in the middle of the sequence. CREB
proteins are primarily known to bind CRE. The third group contains a distinct 8-bp
palindromic sequence, 5" TTGCGCAA-3’, known as C/EBP consensus sequence that also
contains a CpG and are primarily bound by C/EBP family proteins.

A study has shown that methylation of the CpG within CRE reduces CREB binding

but enhances C/EBPo binding to CRE and that methylated CRE-binding by C/EBPgc is

associated with expression of tissue-specific genes in adipocytes’”. The crystal structure of
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C/EBPc homodimer in complex with DNA containing C/EBP consensus sequences shows
that a universally conserved arginine among bZIP family proteins is involved the recognition
of the center CpG. The conformation of the arginine over the CpG is similar to the
conformation seen in the 5mC-Arg-G triad'"* . The structure of C/EBPo in complex with
DNA containing methylated CRE is not available. Yet, it is plausible that the observed
conformation of the arginine of C/EBPc over the CpG within the C/EBP consensus
sequence may be conducive to recognize 5SmCpG within the CRE sequence via a putative
5mC-Arg-G triad.

In two other studies, human Jun/Fos heterodimer and Jun/Jun homodimer, which
binds TRE, were shown to preferentially bind 5mCpG in a TRE-like sequence, 5-
MGAGTCA-2" (where M is 5mC), termed meAP-1 (or meTRE)” "*. A sequence
comparison of TRE and meTRE shows that one thymine in TRE is switched to 5mC in
meTRE, suggesting that this T-to-5mC switch is compatible for the protein-DNA
interaction. Both thymine and 5mC are pyrimidines containing the C5-methyl group. Also,
an AP-1-like Epstein-Batr virus (EBV) transcription factor Zta/Zta homodimer is known to
bind TRE and other TRE-like methylated Zta response elements (meZREs) such as
meZRE-2 (5-TGAGMGA-3’) in CpG methylation-dependent manner””’?. Unlike 5mCpG-
binding ZnF transcription factors that repress genes, methylated DNA binding events
involving human AP-1 and EBV Zta are associated with transcriptional activations'”” "%,
Therefore, the function of DNA methylation may include selective transcriptional
activations. The recognition of 5mC by human AP-1 and EBV Zta in their methylated
consensus sequences involves mechanisms distinguishable from the 5mC-Arg-G triad
mechanism. The structural and biochemical studies of Jun/Jun and Zta/Zta for their

recognition of methylated DNA are covered in Chapter III.
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Zfp57 Zfp57
(PDB: 4GZN) (PDB: 4GZN)
Arg511
Kaiso Kaiso
(PDB: 4F6N) (PDB: 4F6M)

Figure 5. The recognition of 5mCpG and TpG by ZnF family Zfp57 and Kaiso.
The C5-methyl groups of 5mC and T are recognized by the arginine involving a non-polar
interaction, while the polar ends (Arg-N"atoms) are involved in the bifurcated recognition of

3’-Gua O6 and N7 atoms. The bidirectional arrow indicates a non-polar interaction.
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CHAPTERIIIL
The carboxyl-terminal domain of ROS1 is essential for 5-methylcytosine DNA

glycosylase activity*

Abstract

Arabidopsis thaliana Repressor of Silencing 1 (ROS1) is a multi-domain bifunctional DNA
glycosylase/lyase, which excises 5-methylcytosine (5mC) and 5-hydroxymethylcytosine
(5hmC) as well as thymine and 5-hydroxymethyluracil (i.e., the deamination products of 5mC
and 5hmC) when paired with a guanine, leaving an apyrimidinic (AP) site that is
subsequently incised by the lyase activity. ROS1 is slow in base excision and fast in AP lyase
activity, indicating that the recognition of pyrimidine modifications might be a rate-limiting
step. In the C-terminal half, the enzyme harbors a helix-hairpin-helix DNA glycosylase
domain followed by a unique C-terminal domain. We show that the isolated glycosylase
domain is inactive for base excision but retains partial AP lyase activity. Addition of the C-
terminal domain restores the base excision activity and increases the AP lyase activity as well.
Furthermore, the two domains remain tightly associated and can be co-purified by
chromatography. We suggest that the C-terminal domain of ROS1 is indispensable for the

5mC DNA glycosylase activity of ROST1.

* This chapter is adopted and modified from the following manuscript:
Hong S, Hashimoto H, Kow YW, Zhang X, Cheng X. The carboxy-terminal domain of
ROS1 is essential for 5-methylcytosine DNA glycosylase activity. ] Mol Biol. 2014 Nov 11;

426 (22):3703-12.
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Introduction

In eukaryotic genomes, DNA methyltransferases convert a proportion of cytosine into 5-
methylcytosine (5SmC)’. Mammalian ten-eleven-translocation (Tet) dioxygenases then convert
a fraction of these to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-
carboxylcytosine (5caC) in consecutive oxidation reactions””. Mammalian TDG, named
after thymine DNA glycosylase, excises the mismatched base from G:X mismatches, where
X is wuracil, thymine or 5-hydroxymethyluracil (ShmU). These are, respectively, the
deamination products of cytosine, 5mC and 5hmC. In addition, TDG excises the Tet
enzyme products 5fC and 5caC but not 5mC and 5hmC, when paired with a guanine™ ***”.
The resulting apurinic/apyrimidinic (AP) site is enzymatically converted to normal cytosine
through the base excision repair pathway, altering DNA methylation patterns utilized for
epigenetic controls. Mammalian DNA glycosylases that excise 5mC or 5hmC have not been
identified but such activities have been reported””.

In Arabidopsis thaliana, a family of 5mC DNA glycosylases has been identified:
Repressor of Silencing 1 (ROS1)”, Demeter (DME)”, DME-like 2 (DMI.2) and DME-like 3
(DML3)”. ROS1 is a 1393-residue, multi-domain protein: the N-terminal domain containing
a lysine-rich stretch involved in non-specific DNA binding and sliding along DNA"* "/,
followed by the central Helix-hairpin-Helix (HhH) DNA glycosylase domain containing an
iron-sulfur (4Fe-4S) cluster”, and a unique uncharacterized domain at the C-terminus. The
central glycosylase domain (GD) has an atypical insertion of ~230 residues—whose
sequence and length vary among the ROS1 family members—that is not found in other
characterized HhH DNA glycosylases'”. Like ROS1, mammalian Tet proteins have an
atypical insertion into their catalytic domains, and the insertion is not required for the i vitro

catalytic activity 2. ROS1, and its family members, is a bifunctional DNA glycosylase/lyase
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whose glycosylase activity excises a 5mC base from the DNA backbone and then its lyase
activity cleaves the DNA backbone at the AP site’” "> ",

The amino acids sequences within the C-terminal domain (CTD) are conserved
among the ROS1 family members, but no homologous sequence has been found in other
phyla. Introduction of random point mutations or deletions in the corresponding domain in

1 Here we show that the isolated

DME resulted in abrogation of the 5mC excision activity
glycosylase domain of ROS1 does not possess the 5mC excision activity but partially retains

the AP lyase activity. Addition of the CTD restores the 5SmC excision activity. The two

domains remain tightly associated and can be co-purified by chromatography.
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Results

ROS'T ghycosylase domain and the C-terminal domain

First, we constructed a deletion variant of ROS1, deleting the N-terminal 509 residues and
replacing the internal insertion (residues 628-855) with a 5-residue linker, which we refer to

as ROSTAN (Figure 6a). We measured the base excision and the AP lyase activities of the

purified ROS1 full-length (FL), ROS1AN and its catalytic mutant D971N, using various 32-
base pair (bp) DNA oligonucleotides (oligos), each containing a single variable base opposite
a guanine (G:X pair), where X is C, 5mC, and 5hmC. These substrates bear the “natural”
base pairs. Both FL. and AN deletion excised 5mC and 5hmC but not C (Figure 6b). We
further tested time course activities using the oligos with G:X, where X is C, 5mC, 5hmC,
5fC and 5caC as well as C, T and 5hmU that are deamination products of C, 5mC, and
5hmC respectively. 5ShmC excision was weaker (by a factor of ~1.6) than 5mC excision for
both ROS1 and ROS1AN, and no detectable activities were observed for 5fC and 5caC
(Figure 7a). The /n vitro excision activity on 5hmC has recently been reported for ROS1 and

cat

its family members (£, = 0.3-1 h"' under single turnover conditions)’”” ””. However, the
significance of this activity is unclear, because no homologs of Tet dioxygenases have been
identified in Arabidopsis thaliana and data on the existence of ShmC in Arabidopsis thaliana are

conflicting: one study detected no 5hmC’”, whereas another study found low levels of

5hmC in the DNA of leaves and flowers””. In addition to the base-paired substrates,
ROSTAN is also active on G:T and G:5hmU mismatches, but no activity was observed on
G:U mismatch (Figure 7b). The activity on G:T mismatch is comparable with that on

G:5mC. This observation indicates that ROS1 is sensitive to pyrimidine modifications at the

C5 position.
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In the structurally characterized HhH DNA glycosylases, a conserved aspartate,
Asp138 of E. coli endonuclease 111", Asp138 of E. coii MutY"”, Asp238 of E. coli AlkA"”,
Asp268 of human OGG1'", and Asp534 of mouse MBD4* | has been suggested to
activate a catalytic nucleophile (such as a water molecule or a nearby lysine residue) for the
attack on the deoxyribose C1’ carbon atom of the target nucleotide. The equivalent residue
in ROST is Asp971'”, and the mutation of Asp971 to asparagine (D971N) abolished the
base excision activity but not the AP lyase activity (Figure 8). One interesting observation is
that the AP lyase activity of ROS1 is substantially faster than the base excision activity. Both
ROS1 FL and ROS1AN showed ~90% cleavage of AP sites in 15 min compared to ~80%
excision of 5mC over 20 h under the same conditions. ROS1 is known for slow turnover
kinetics'”’, and our observation of the fast AP lyase activity of ROS1 suggests that an initial

stage of 5mC excision reaction, or probably the recognition of pyrimidine modifications, is a

rate-limiting step.
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Figure 6. ROS1 glycosylase domain (GD) and the C-terminal domain (CTD).

(a) Domain organizations of ROS1 full-length (FL) and ROS1AN. (b) Activities of ROS1 FL.
(top panel), ROSTAN (middle panel), and ROSTAN D971N (bottom panel) on 32-bp oligos
for indicated time under the single-turnover condition ([Spy,]=50 nM and [E;]=100 nM or

[Ean]=100 nM or [Epgn]=500 nM). Labels S is for substrate and P is for product.
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Figure 7. DNA glycosylase/lyase activities of ROSTAN.
(a) The time course (0-24 h) of ROSIAN reactions ([E,]=500 nM) on five oligos

([Spna]=50 nM) with various modifications under the single-turnover condition. Data (£
error bars) were averaged from three independent experiments (n=3). (b) The time course
(0-24 h) of ROSIAN reactions ([E, =500 nM) on three oligos with G:X mismatches
([Spnal=50 nM). Data (* error bars) were averaged from three independent experiments

(n=3).
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Figure 8. AP lyase activity of ROSTAN.

(a) The time course (0—15 min) of ROSIAN AP lyase reactions ([Spya]=50 nM ). (b) The

time-course of AP lyase reactions under three enzyme concentrations on oligo ([Spy,]=50

nM).
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ROST glycosylase domain and the C-terminal domain associate tightly

Most structurally characterized HhH DNA glycosylases, like endonuclease III"”7, hOGG1',
AlkA™’, and MBD4* ™' exist as or have an isolated glycosylase domain active on its own 7z
vitro. We asked whether ROS1 glycosylase domain (GD) could function on its own and thus
purified the isolated glycosylase domain (GD) and the C-terminal domain (CTD)
individually. We note that the isolated domains, particularly CTD, were somewhat
problematic duting expression and/or purification with low yield, more impurity, and
tendency to aggregate (see Materials and Methods). Nevertheless, GD is inactive on 5mC
and 5hmC excisions while retaining residual AP lyase activity (Figure 9a lane 2 & Figure
9b), whereas CTD alone did not show any activity (Figure 9a lane 3). Addition of the CTD
(with estimated 3:1 molar ratio of CTD:GD) restored partial activity of base excision on
5mC and 5hmC and increased the AP lyase activity as well (Figure 9a lane 4).

We reasoned that, in order to restore the base excision activity of ROS1, the C-
terminal domain must interact with the glycosylase domain, either directly or through DNA.
To test this notion and to overcome the problems of the isolated GD and CTD, we
engineered a new construct, termed as ROSTAN:P, in which the PreScission protease
recognition sequence (LEVLFQGP) was inserted in the linker between GD and CTD
(Figure 10a). The 8-residue insertion did not affect the 5mC and 5hmC excision activities
(Figure 10b lanes 2 & 3) and AP lyase activities (Figure 9b). Approximately the same base
excision and AP lyase activities were observed with and without the protease cleavage
(Figure 10b lanes 3 & 4). Analytical size-exclusion chromatography measurements revealed
that the two cleaved fragments of ROS1 associated together in presence of 500 mM NaCl
(Figure 10c-e), suggesting that the interactions between the two domains are hydrophobic, a

plausible reason that the isolated domains tend to aggregate in aqueous solution. Introducing
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guanidine hydrochloride (0-2 M) showed a delayed peak for the cleaved fragments compared
to the uncleaved form under the same conditions, indicating the dissociation of the two
domains under denaturing conditions (Figure 11).

In a previous report by Mok and his colleagues’”’, dozens of randomly generated
point mutations mapped to the CTD of DME—a close paralog of ROS1—were shown to
abolish 5mC DNA glycosylase activity by DME. Based on the identity of mutations in DME
CTD, we likewise designed comparable mutations in the CTD of ROS1 in the background
of ROSTAN:P— 11233M, W1234R, R1287Q), and D1309N. We used the following four
principles to design the mutants: (1) the amino acid conserved among all four 5mC DNA
glycosylases within Arabidopsis thaliana was given a priority for mutagenesis; (2) the amino
acid that would likely cause mis-folding such as proline and glycine was not considered; (3)
mutations that significantly alter chemical properties such exchanging hydrophobic residue
with hydrophilic residue (e.g. valine to aspartate) or mutations that drastically alter the size of
the side-chain (e.g. arginine to serine) were avoided; (4) mutations that resulted in a partial
loss of the activity were considered. Out of the four mutants designed, only 11233M and
R1287Q) were purified comparably to the wild-type (WT). The mutants were subjected to
DNA glycosylase and AP lyase activities as done previously, except that the AP lyase activity
was performed in ~0 °C. Compared to WT, 11233M did not show a significant change in the
activities, whereas R1287Q showed significantly reduced overall base excision activities
(Figure 12a) and the AP lyase activity (~4-fold reduction) (Figure 12b). Both 11233M and
R1287Q) were also subjected to size-exclusion chromatography with and without the
protease cleavage. For both mutants, the peak elution volume before and after the cleavage
remained the same as comparable to WT (Figure 12c,d), indicating that the mutations did

not significantly affect the association between GD and CTD.
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Figure 9. Effects of the C-terminal domain (CTD) on ROS1 glycosylase domain (GD)
activity.

(a) Activities of ROSTAN ([E,\]=0.5 pM), the glycosylase domain ([E;p]=0.5 pM), and the
C-terminal domain ([Eqp]=1.5 uM) on 32-bp oligos ([Spya] = 50 nM) at 20 h (G:5mC and
G:5hmC) or 15 min (G:AP) reactions. (b) The time course of AP lyase activities of

ROS1AN, ROSTAN:P (with and without the protease cleavage) and GD.
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Figure 10. ROS1 glycosylase domain and the C-terminal domain associate tightly.

(a) The Prescission protease recognition sequence (LEVLFQGP) was inserted between
ROS1 GD and CTD. (b) Activities of ROSIAN and ROSIAN:P before and after the
protease cleavage, on 32-bp oligos (G:5mC) at 20 h reaction in room temperature ([E]=500
nM and [Spy,]=50 nM). (c) Elution profiles of ROSTIAN:P in two consecutive runs on a
Superdex 200 (10/300 GL) column (GE Healthcate) before and after the protease cleavage,
in 20 mM Tris-HCI (pH 8.0), 5% glycerol, 1 mM dithiothreitol, and 500 mM NaCl. Peak
heights reflected relative OD280 absorbance and the retention volume shown as fractions.
(d and e) SDS-PAGE (15%) analyses of S200 fractions containing ROS1AN:P, before and

after the protease cleavage.
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Figure 11. ROS1 glycosylase domain and the C-terminal domain dissociate in the presence

of guanidine hydrochloride (Gua-HCI).

(a-d) Elution profiles of ROSTAN:P in consecutive runs on a Superdex 200 (10/300 GL)

column (GE Healthcare) before and after the protease cleavage, in 20 mM Tris-HCI (pH

8.0), 5% glycerol, 1 mM dithiothreitol, 500 mM NaCl, and Gua-HCI in the concentration of

0, 0.5, 1, and 2 M. The peak height (y-axis) reflects relative OD280 absorbance as function

of the retention volume in the x-axis. Red arrow in the panel (b) indicates a small amount of

dissociated fragments shown as a delayed peak.
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Figure 12. Effects of selected CTD mutagenesis on DNA glycosylase and lyase activities.

(a) Activities of ROSTAN:P WT, 11233M, and R1287Q) reactions ([E,\]=500 nM) on five
oligos ([Spna]=50 nM) with various modifications and three oligos with G:X mismatches
([Spnal=50 nM) under the single-turnover condition. (b) The time course (0-15 min) of AP
lyase activities of ROSTIAN:P WT, 11233M, and R1287Q (JE]=0.5 pM) on 32-bp oligos
([Spnal = 50 nM) at 0 °C. (c and d) Elution profiles of ROSTIAN:P 11233M and R1287Q,
each in two consecutive runs on a Superdex 200 (10/300 GL) column (GE Healthcare)
before and after the protease cleavage, in 20 mM Tris-HCI (pH 8.0), 5% glycerol, 1 mM

dithiothreitol, and 500 mM NaCl. Peak heights reflected relative OD280 absorbance.
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Monse MY H does not possess 5-methyleytosine DINA glycosylase activity
We were intrigued by the observation that adding ROS1 CTD could restore the base
excision activity by ROS1 GD. We asked whether ROS1 CTD could also allow other
glycosylases to be active on 5mC and 5hmC for four reasons: (1) ROS1 shares some
common substrates (such as 5-hydroxyuracil) with several DNA glycosylases (Nthl,
Neill)’”, (2) some of them are oxidized pyrimidine-specific DNA glycosylases that have
been characterized in mammalian cells (Nth1, Neill /2, TDG)'”, (3) several mouse DNA
glycosylases (Neill/2, Nth1l and Oggl) were identified to bind 5mC- or 5hmC-containing
oligos in a DNA pull-down experiment combined with quantitative mass spectrometry’’, and
(4) mouse MutY homolog (mMYH) has recently been suggested to possess 5mC DNA
glycosylase activity'”. However, none of the mammalian enzymes we examined (Figure 13),
including mMYH (Figure 14), showed 5mC or 5hmC DNA glycosylase activity with and
without the addition of ROS1 CTD, whereas they were active on their respective substrates.
Furthermore, addition of ROS1 CTD had no effect on the activities of mMBD4 and
mMYH on their cognate substrates (Figure 13b and 14a). We were unable to observe the
suggested 5mC activity for mMYH using either the 32-bp oligos (Figure 14a) or the 71-bp
sequence from the mouse I1.-2 promoter used by Wu and Zheng'” (Figure 14b).

Among the HhH DNA glycosylases, mammalian MYH (MutY homolog) shares a
similar domain organization as that of ROSTAN. MutY cleaves the adenine opposite 8-
oxoguanine (8oxoG), which arises from unrepaired oxoG after DNA replication. In the
structure of Bacillus stearothermophilus MutY in complex with DNA, the C-terminal domain
recognizes 80oxoG and the opposite Ade flips out into the active site of the glycosylase
domain where the excision occurs’”, Mouse MYH (mMYH) is also known to excise Ade

opposite Gua with comparable efficiencies as that of A:80xoG’*. For comparison with
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ROS1, we generated the analogous mMYH:P construct, in which the PreScission protease
recognition sequence was inserted in the linker connecting the mMYH glycosylase domain
and its C-terminal domain (Figure 15a). The separated glycosylase domain of mMYH has
much reduced activity on adenine excision (Figure 15b lanes 3 & 4), similar to E. /i MutY
where the glycosylase domain alone has reduced activity’” . Unlike ROS1, the protease-
cleaved mMYH fragments eluted as two separate and delayed peaks in the size exclusion
chromatography (Figure 15c-e), clearly showing that the two domains dissociated after the
cleavage.

We attempted to test whether ROS1 CTD could allow mMYH glycosylase domain
to be active on 5mC by generating a hybrid enzyme (Figure 16a). The fusion enzyme has
reduced activity on G:A mismatch (Figure 16b lanes 5 & 6), similar to that of cleaved

mMYH glycosylase domain, but is not active on a G:5mC pair (Figure 16b land 3).
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Figure 13. ROS1 CTD and other DNA glycosylases.

(a) Bifunctional DNA glycosylases, with and without ROS1 CTD ([E¢p]=1.5 uM), on
G:5mC and G:5hmC 32-bp oligos ([Spy4]=50 nM) at 20 h reactions. AP lyase activities (15
min; 1 h for hOggl) under the same condition are shown as positive controls. The enzyme
concentrations used were 0.1 pg plI' of hNth1'*, 1.6 U of hOGGT1 (catalog #M0241; New
England Biolabs), and 50 ng pl"! of hNeill’"” and hNeil2’*. (b) The glycosylase domains of
hTDG?” and mMBD4* ([E]=500 nM), incubated with and without ROS1 CTD ([E¢pp]=1.5
uM), on G:5mC and G:5hmC 32-bp oligos ([Spy,]=50 nM) at 20 h reactions. Activities on
G:T mismatch (30 min) under the same condition are shown as positive controls. Bottom

panel: the activity of mMBD4 on G:T substrate is unaffected by the addition of ROS1 CTD.
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Figure 14. ROS1 CTD and mouse MutY homolog (mMYH).

(@) mMYH ([E]=500 nM), with and without ROS1 CTD ([E¢p]=1.5 uM), on G:5mC and
G:5hmC 32-bp oligos ([Spy]=50 nM) at 20 h reactions. Activities on G:A mismatch (2 h)
under the same condition is shown as a positive control. Bottom panel: the activity of
mMYH on G:A substrate is unaffected by the addition of ROS1 CTD. (b) mMYH or
ROS1AN ([E]=500 nM) on 71-bp oligos from the mouse IL.-2 promoter " ([Spya]=50 nM)
at 20 h reactions. mMYH is only active on G:A mismatch (lane 2), while ROS1AN is active

on G:5mC (lane 6) under the same condition.
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Figure 15. mMYH glycosylase domain and the C-terminal domain do not associate.

(a) The Prescission protease recognition sequence (LEVLFQGP) was inserted between
mMYH GD and CTD. (b) Activities of mMYH and mMYH:P before and after the protease
cleavage, on 32-bp oligos (G:A) at 30 min reaction in 37 °C (JE]=500 nM and [Spy\,]=50
nM). (c) Elution profiles of mMYH:P in two consecutive tuns on a Superdex 200 (10/300
GL) column, before and after the protease cleavage, in 20 mM Tris-HCl (pH 8.0), 5%
glycerol, 1 mM dithiothreitol, and 500 mM NaCl. Peak heights reflected relative OD280
absorbance. (d and e) SDS-PAGE (15%) analyses of S200 fractions containing mMYH:P,

before and after the protease cleavage.
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Figure 16. mMYH:GD-ROS1:CTD hybrid.

(a) The hybrid enzyme generated by fusing the N-terminal mMYH glycosylase domain to the
ROS1 C-terminal domain. (b) Activities of mMYH and the Hybrid at 20 h reaction (JE]=500

nM and [Spy,]=50 nM) on G:5mC and G:A 32-bp oligos.
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Discussion
Extensive studies on DNA repair glycosylase enzymes, such as human uracil DNA
glycosylase (hUNG) and 8-oxoguanine DNA glycosylases (hOGG and bacterial MutM),
showed that they recognize damaged bases through a multi-step interrogation process
[reviewed in " and "”’]. Allowing only a true substrate to reach the active site, these enzymes
distort DNA by bending it followed by intrahelical interrogation to detect a lesion, flipping
potential substrate nucleotides to varying degrees and rejecting non-substrate nucleotide
back to DNA helices. The two-domain structure of MutY in complex with DNA containing
an 80x0G:A mismatch™ revealed that the C-terminal domain contributes specific contacts
to the intra-helically stacked 8oxoG lesion, which are functionally important for the lesion
recognition and thus enzymatic excision of the extra-helical adenine opposite 8oxoG by the
catalytic glycosylase domain. In other words, the two domains of MutY are primarily
responsible, respectively, for essential interaction with the bases on opposite DNA strands;
as changing 80oxoG:A to C:A significantly reduces the activity of MYH from calf thymus’”.
In the case of ROSI, the two domains, the glycosylase domain and the C-terminal domain,
strongly associate with each other and seem to be insensitive to the base identity paired with
the modified cytosine, as ROS1AN is active on all four pairs of 5mC:X or 5hmC:X (X=G,
A, T, or C) (Figure 17). However, somehow the target 5mC or 5hmC must be recognized
intrahelically, flipped out and delivered to the active site of the glycosylase domain to allow
excision. The precise way in which the two interacting domains of ROS1 mediate specific
DNA recognition and excision awaits the solution of a protein-DNA complex structure.
One possibility is that the C-terminal domain stabilizes the glycosylase domain and
stimulates its intrinsic excision and lyase activities. A precedent is mammalian DNA

methyltransferase 3A (DNMT3A) and its interaction with DNMT3-like protein (DNMT3L).
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DNMT3A has a low activity on its own and forms oligomers. Interaction with DNMT3L
disrupts the DNMT3A oligomer, forming a DNMT3L-3A tetramer via the catalytic domain
of DNMT3A, and stimulates the DNMT3A activity’” ”*"”. Previous published works by
Ariza and colleagues showed, based on structural homology modeling and site-directed
mutagenesis, that the ROS1 glycosylase domain interacts with both strands of DNA™ " Tt
was suggested that residues Phe589 and Tyr1028 in the glycosylase domain are involved in

the recognition of flipped-out 5mC in the cleavage center'”, and residues Arg903 and

Met905 interact with the orphan guanine in the complementary strand””. However, these
suggested interactions would be post-base flipping and would not account for the steps of
the intrahelical modification interrogation that precedes the specific extrahelical base
recognition. It is conceivable that the C-terminal domain could have a nonspecific DNA
binding activity and thus stimulates the modification interrogation process by the glycosylase
domain. Alternatively, we speculate that the C-terminal domain is a novel DNA substrate
recognition domain responsive to pyrimidine modifications at the C5 position. The C-
terminal domain might function in the early steps of intrahelical interrogation to detect the
C5 modification and facilitate base flipping by the glycosylase domain for specific binding in
the active site.

Arabidopsis thaliana ROS1 and mammalian TDG are the two DNA glycosylases
currently implicated in so-called active DNA demethylation pathways by removing a
modified cytosine base””: ROS1 excises 5mC and 5hmC but not 5fC and 5caC, whereas
TDG removes 5fC and 5caC but not 5mC and 5hmC*” . It is worthy to note that ROS1 is

3 . 102, 134
inactive on G:U

, whereas TDG, even named after thymine DNA glycosylase, has much
faster activity on G:U mismatch” ", The four chemically modified forms of cytosine might

not be equivalent in terms of base pairing. A strong intramolecular hydrogen bond has been
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observed between the exocyclic N4 amino group (NH,) and the carbonyl oxygen (O=C) at

158, 159
>

ring carbon-5 position of 5fC, in the free nucleoside form and the carboxyl moiety

(COO) of 5caC in the protein bound form'”. It was hypothesized that the existence of such

106, 161, 162 .
» 105 7%% which would

an intra-base hydrogen bond would shift the amino-imino equilibrium
enable 5fC and 5caC to form two, instead of three, hydrogen bonds with an opposite
guanine, equivalent to a G:T or G:U ‘wobble’ pair. Previously observed mutagenic potential

. . . . 158, 161-164
of 5fC and 5caC in vivo and i vitro™®

suggested the possible existence of the imino
tautomeric form. TDG might take advantage of the tendency of G:5fC and G:5caC to form
a mismatch-like wobble hydrogen bonding pattern and turn them into substrates, whereas
ROS1 is insensitive to mismatches.

Besides ROS1, which recognizes and excises 5mC from the ‘natural’ G:5mC base
pair, another enzyme, Pabl in Pyrococcus abyssi, initially identified as a restriction enzyme,
actually is a sequence-specific adenine DNA glycosylase’”. The dimeric Pabl recognizes a
palindromic 5-GTAC-3’, hydrolyses the N-glycosidic bond between the adenine base and
the sugar, and produces two opposing AP sites that are subsequently cleaved by AP

endonucleases to introduce a double-strand break. Thus, not every DNA glycosylase is

involved in DNA repair, and some may generate damage.
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Figure 17. The effect of mismatching 5mC and 5hmC for excision activities.
(a and b) The effect of the opposing base on 5mC and 5hmC excision by ROSTAN:P before
and after the PreScission protease cleavage. Reactions were performed with [E]=500 nM and

[S]=50 nM for 4 h.
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Materials and Methods

Protein Expression and Purification

The full-length (FL) ROS1 (pXC1135) was expressed in Escherichia coli dem BIL21-
CodonPlus(DE3)-RIL (Stratagene) as a 6xHis fusion in a pET28a vector (Novagen).
ROSIAN  (pXC1256), ROSIAN—DY7IN (pXC1273), ROSIAN:P (pXC1327),
ROS1AN:P—I1233M  (pXC1375), ROSIAN:P—R1287QQ  (pXC1391), ROS1:GD
(pXC1278), ROSL1:CTD (pXC1297), mMYH (pXC1321), mMYH:P (pXC1332), and
mMYH-ROS1 hybrid (pXC1338) were ligated into a modified pET28b vector (Novagen) as
an N-terminal 6xHis-SUMO fusion and expressed in E. co/i der BL21-CodonPlus(DE3)-
RIL (Stratagene). Bacterial cells were cultured in LB media at 37 °C, and protein expression
was induced at 16 °C overnight or at 23°C for 2 h (ROS1 FL). Cells were harvested and
stored in -80 °C. Cell pellet was thawed and lysed by sonication in lysis buffer [20 mM Tris-
HCI (pH 7.5), 500 mM NaCl, 5 % glycerol and 1 mM dithiothreitol]. Lysate was clarified by
centrifugation at 18,000 rpm for 1 h. The fusion protein was isolated on a Nickel-charged
HisTrap affinity column (GE Healthcare).

For ROST:FL, eluted fractions from the nickel column were further purified on
tandem HiTrap Q and HiTrap SP ion exchange columns (GE Healthcare). For ROS1AN,
ROSTAN—DI71N, ROS1A:P, ROS1AN:P—I11233M, ROS1AN:P—R1287Q), and mMYH-
ROS1 hybrid, eluted fractions from the nickel column were purified on Heparin affinity
column (GE Healthcare) followed by cleavage of the 6xHis-SUMO tag via yeast ubiquitin-
like-specific protease 1 (ULP-1; purified in-house), and then purified on a HiTrap QQ column.
For ROS1AN, 6xHis-SUMO tag-cleaved sample was passed through Glutathione Sepharose
4B (GE Healthcare) pre-bound with GST (glutathione S-transferase)-tagged Uracil

166

glycosylase inhibitor protein (GST-UGI; purified in-house)™ to remove any residual E. co/i
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uracil DNA glycosylase activity. ROSTIAN, ROSTIAN—D971N, ROS1A:P, ROS1AN:P—
11233M, and ROS1AN:P—R1287Q were further purified by Superdex 200 16/60 size
exclusion column (GE Healthcare).

For ROS1:GD, ROS1:CTD, mMYH, and mMYH:P, eluted fractions from the nickel
column were cleaved of their 6xHis-SUMO tag and further purified on an Heparin column.
For ROS1:GD, mMYH, and mMYH:P, eluted fractions from the Heparin column were
further purified on Superdex 200 (16/60 or 10/300 GL) size-exclusion column (GE
healthcare). Final protein concentrations were estimated by absorbance at 280 nm for
ROS1AN (absorbance coefficient €=1.084), ROS1AN:P (¢=1.071), ROS1 GD (e=1.450),
mMYH (e=1.472), mMYH:P (¢=1.456) or by Coomassie Blue staining using Bovine Serum
Albumin as a standard for ROST:FL and CTD. Compared with ROS1AN, the isolated
ROS1:GD had lower yield and a broader peak on size exclusion column with some of the
fractions overlapping with a major E. co/i contaminant. ROS1:CTD had lower yield and
higher impurity. In addition, ROS1:CTD was aggregated as it eluted in void volume after

loaded on size-exclusion chromatography (data now shown).

DNA glycosylase activity assay

Activities of ROS1 and its variants, and other DNA glycosylases, on various DNA oligos
labeled with 6-carboxy-fluorescein (FAM) were performed in reaction buffer [50 mM Tris-
HCI pH 8.0, 1 mM ethylenediamine-tetraacetic acid (EDTA), 1 mM DTT and 0.1% bovine
serum albumin]| for the indicated time in room temperature (~23 °C or otherwise indicated).
For reactions with ROSTAN:P and mMYH:P after being cleaved by the Prescission protease

(purified in-house), the protease (0.1 ug ul') was present in the reaction mixture. Reactions

were stopped by adding 2 ul Proteinase K (1 mg ml") and incubating at 50 °C for 15 min.
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For substrates except G:AP, reactions were stopped by adding 0.1 M NaOH and incubating
at 95°C on a heat block for 10 min. An aliquot (20 ul) of loading buffer (98% formamide, 1
mM EDTA, and trace amount of bromophenol blue and xylene cyanole) was added, and
samples were heated in 95°C on a heat block for 10 min. Samples were then immediately
transferred to ice water to cool and loaded on a 10 cm x 10 cm denaturing PAGE gel
containing 15% acrylamide, 7 M urea and 24% formamide in 1x Tris-Borate-EDTA (TBE).
For G:AP substrates, reactions were stopped by adding 20 ul of loading buffer and samples
were loaded on the gel without heating. The gel was run in 1x TBE at 200 V for 75 min.
Typhoon Trio+ (GE Healthcare) was used to visualize the intensities from FAM-labeled
DNA. The image-processing program Image] was used to quantify the intensities and data
points were fit to a curve using Prism 6.0 (GraphPad).

Various 32-bp oligos labeled with FAM (synthesized by New England Biolabs) were
used as substrates: (FAM)-5-TCG GAT GTT GTG GGT CAG XGC ATG ATA GTG
TA-3" (where X = C, 5mC, 5hmC, 5fC, 5caC, U, T, or 5hmU) and its complementary strand
5-TAC ACT ATC ATG CYC TGA CCC ACA ACA TCC GA-3' (whete Y = G, A, T, or
C). Oligo containing G:AP was generated by incubating G:U oligo with 1 Unit of E. c/i
uracil DNA glycosylase (catalog #M0280; New England Biolabs) for 30 min in room
temperature (~23 °C). In addition, 71-bp oligos (synthesized by Sigma) were used for testing
mMYH activity: (FAM)-5-CAT GAG TTA CTT TTG TGT CTC CAC CCC AAA GAG
GAA AAT TTG TTT CAT ACA GAA GGX GTT CAT TGT ATG AA-3" (where X = A
or 5mC) and its complementary strand 5-TTC ATA CAA TGA ACG CCT TCT GTA
TGA AAC AAATTT TCC TCT TTG GGG TGG AGA CAC AAA AGT AAC TCA TG-

3.
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CHAPTER III.
Structural basis of methylated DNA recognition by human AP-1 and Epstein-Barr

virus Zta transcription factors

Abstract

AP-1 is a classic basic leucine-zipper (bZIP) family transcription factor that binds the TPA
response element (TRE; TGAGTCA). AP-1 can also bind a methylated response element
(meTRE; MGAGTCA where M = 5mC). Homologous to AP-1, Epstein-Barr virus Zta/Zta
homodimer also binds TRE and recognizes several methylated Zta response elements
(meZRE) in a CpG methylation-dependent manner, one of which is meZRE-2
(TGAGMGA where M = 5mC). In this study, we have solved the crystal structures of
Jun/Jun homodimer in complex with oligonucleotides containing meTRE and Zta/Zta
homodimer in complex with oligonucleotides containing meZRE-2. The two structures
reveal that Jun Ala265 and Zta Ser186 are involved in the specific recognition of T by one
monomer and 5mC by the other monomer in the cognate methylated sequences. In addition,
the highly conserved asparagine residues in both Jun and Zta show alternative
conformations by each monomer for the recognition of different half-site sequences within
meTRE and meZRE-2. Fluorescence polarization-based DNA binding analysis supports the
observations in the structures. Our results demonstrate novel modes of 5mC recognition
and explain the mechanism of DNA methylation-dependent, sequence-specific transcription

factor binding by bZIP family proteins.
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Introduction

DNA methylation is generally thought to inhibit transcription factor binding events, but
mounting evidence shows that several families of transcription factors can preferentially bind
5mCpG within specific sequences™ ''» "7 17 1% 1216719 The classic basic leucine zipper
(bZIP) transctiption factor family of AP-1 (e.g. Jun/Jun homodimer and Jun/Fos
heterodimer) is critically involved in various regulations including oncogenesis,
proliferations, and apoptosis’® ", AP-1 activates a set of genes by binding a 7-bp 12-O-
Tetradecanoylphorbol-13-acetate (TPA)-response element (TRE; 5-TGAGTCA-3’) as well
as a methylated response element known as meAP-1 site (termed as meTRE; 5-
MGAGTCA-3" where M = 5mC)"” ** ””!. The sequence of meTRE is reminiscent of a
distinct set of 5SmCpG-containing 7-bp DNA sequences known as methylated Z response
elements (meZREs), which ate bound by AP-1-like Epstein-Barr virus (EBV) Zta/”Zta
homodimer (BZLF-1, Zebra, or Z) in a CpG methylation-dependent manner’”"”. EBV is a
human B cell-infecting gamma-herpesvirus, and its genome is heavily methylated during the
latent stage of the virus cycle’”"”. Early lytic cycle activation is related to events in which
EBV Zta/Zta binds TRE as well as preferentially recognizing methylated DNA containing
meZREs, a notable example of which is meZRE-2 (5-TGAGMGA-3")""" ",

Both human AP-1 and Zta are thus considered bZIP family transcription factors that
bind the classic TRE, yet recognizing 5SmCpG within different sequence contexts: AP-1
recognizes meTRE, and Zta/Zta recognizes meZRE-2. An alignment of amino acids
sequences of AP-1 transcription factors and Zta shows that four DNA base-contacting
amino acids are highly conserved except for Zta Ser186, which is equivalent to Jun Ala266 in
AP-1. Zta Ser186 has been shown critical for methyl-dependent meZRE-2 binding'*" """

Although a crystal structure of Zta bZIP homodimer-DNA complex was previously solved,
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the reported structure has S186A mutation (AP-1 mimicry) and oligonucleotides containing
TRE, not meZRE-2"7. Comparing meZRE-2 to meTRE in DNA sequences shows that the
relative position of 5mCpG within each sequence is different, indicating that the recognition
of 5mC within meTRE would involve a distinct base-contacting amino acid other than the
one equivalent to Zta Ser186. To date, how AP-1 and Zta/Zta recognize 5mC within their
cognate methylated response elements is unknown.

Using isolated Jun and Zta bZIP domains, each forming a homodimer, we here
report two high-resolution crystal structutes of Jun/Jun-DNA complex containing meTRE
and Zta/Zta-DNA complex containing meZRE-2. Both Jun/Jun and Zta/Zta recognize
DNA by phosphate backbone contacts and base-specific contacts contributing to overall
DNA binding affinities. The structures show that the C5-methyl groups of 5mC within
meTRE and meZRE-2 are specifically recognized. Double-stranded DNA sequence
comparison of TRE, meTRE, and meZRE-2 reveals that the position of the specifically
recognized 5mC within meTRE and meZRE-2 aligns with the position of one of four T
bases in TRE that are recognized by the equivalent amino acids in Jun (Ala265) and Zta
(Ser186). We have generalized this observation as “T-to-5mC switch” to represent the model
in which DNA methylation can uncover hidden binding sites for AP-1 and Zta/Zta by

allowing 5mC to replace and mimic T for specific protein-DNA interactions.
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Results

Ouverall structures

The crystal structure of Jun bZIP homodimer (Jun"/Jun®-DNA complex containing a
hemi-methylated meTRE was solved in the space group of C2 and refined to 1.89 A (Figure
18a). The oligonucleotides used contained a 5’-terminal Ade extension on one strand and 5-
terminal Thy extension on the other strand, and both ends of the oligonucleotides were
involved in protein-to-DNA contacts via symmetry related molecules for crystal packing.
The overall structure in an asymmetric unit resembles the classic Jun/Fos-DNA complex
structure characterized by two long o-helical monomers docking on the major groove of
DNA via the basic region and forming a leucine-zipper dimer via the C-terminus’”’. The
high-resolution data allowed 120 water molecules to be positioned, which are mostly
involved in coating both major and minor groove of DNA as well as mediating various
electrostatic protein-DNA interactions.

Next, the crystal structure of EBV Zta bZIP homodimer (Zta"/Zta")-DNA complex
containing a fully methylated meZRE-2 sequence, or 5-TGAGCGA-3’ (underlined CpG
and the complementary CpG methylated), was solved in the space group of C2 and refined
to 2.25 A (Figure 18b). The oligonucleotides used contained 5-terminal Ade or Thy in each
end. Crystal packing shows one end of the oligonucleotides involved in a protein-to-DNA
contact and the other involved in a DNA-to-DNA contact in a head-to-head fashion. The
5-terminal Thy and the adjacent C:G base pair are partly overlapped with the equivalent
bases in the adjacent symmetry-related molecule. The overall structure in an asymmetric unit
reveals the similar N-terminal DNA binding regions and the C-terminal dimerization
features as shown in the structure of Zta/Zta-DNA complex containing the TRE

177
sequence .
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The two structures—human Jun/Jun-DNA and EBV Zta/Zta-DNA complexes
containing methylated DNA—are remarkably similar in that both Jun and Zta form
homodimers via the C-terminal leucine-zipper regions of the domains and recognize the
same number of bases in the major groove via the basic N-terminal regions of the o-helices.
However, the two structures significantly differ in that the C-terminal tails of Zta/Zta
homodimer present disordered loops, each spanning approximately 12 amino acids. In
addition to the leucine zipper-like dimerization formed between two helices, the disordered

C-terminal tails are engaged in salt bridge-mediated dimerization as previously reported’”.
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Figure 18. Overall Structures of Jun/Jun-DNA and Zta/Zta-DNA complexes.

(a) Jun®/Jun® (orange) binds meTRE through the major groove, and the identical monomers
recognize non-identical half-sites: 5” half-(MGA) is indicated by yellow and 5’ half-(TGA) is
indicated by green. (b) Zta*/Zta" (skyblue) recognizes non-identical half-sites of meZRE-2:

5’ half-(TGA) in green and 5 half-(TMG) in purple are indicated.
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Response elements containing asymmetric half-sites

Three 7-bp response elements—TRE, meTRE, and meZRE—are relevant to this study.
Each sequence contains two half-sites, and each half-site is recognized by a single monomer
of Jun or Zta (Figure 19a). Within the classic TRE (TGAGTCA) in the double-stranded
context, the middle G:C base pair is flanked by two symmetric sites of 5 half-(TGA), or
equivalently 3’ half-(TCA) in the complementary strand. In contrast to TRE, meTRE and
meZRE-2 contain asymmetric half-sites. In meTRE, one of the half-sites is identical to 5’
half-(TGA) of TRE, and the other half-site is 5 half-(MGA). meZRE-2 also has 5 half-
(TGA) and a distinctive 5’ half-(TMG). In the N-terminal basic region of Jun and Zta, four
core amino acids in conserved positions are involved in the recognition of DNA bases
within a single half-site plus the middle G or C (Figure 19b). The four core amino acids of
Jun and Zta differ at a single position corresponding to Jun Ala266 and Zta Ser186. This
Ala-to-Ser difference in the position partly distinguishes how ]unA/JunB and Zta"/Zta®
interact with the cognate sequences.

In the structure of Jun®/Jun®-DNA complex containing meTRE (Figure 19¢c), Jun®
recognizes 5 half-(MGA) from -3 to -1 positions via Asn262, Ala265, and Ala266. Jun®
engages the equivalent amino acids to recognizes 5 half-(TGA) from +3 to +1 positions.
The middle G:C base pair is recognized by both monomers via conserved Arg270: Arg270"
recognizing C (0) via a water molecule and Arg270” recognizing G (0). In the structure of
Zta"/Zta"-DNA complex containing meZRE-2 (Figure 19d), Zta" recognizes 5’ half-(TGA)
from -3 to -1 positions via Asn182, Ala185, and Ser186; and Zta® recognizes 5’ half-(TMG)
from +3 to +1 positions via the equivalent amino acids. The middle G:C base pair is
recognized likewise by both monomers with Arg190* recognizing C (0) via a water molecule

and Arg190® recognizing G (0). Therefore, Jun® and Zta" monomers can both recognize 5’
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half-(TGA) via the four core amino acids despite the Ala-to-Ser difference (Figure 20a).
Conversely, Jun® and Zta"® engage the same core amino acids to recognize distinct half-sites
containing 5mCpG: Jun® recognizing 5 half-(MGA) (Figure 20b) and Zta"” recognizing 5’
half-(TMG) (Figure 20c). The Ala-to-Ser difference in this case is critical for the recognition

of different methylate sequences.
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Figure 19. Summary of Jun/Jun-DNA and Zta/Zta-DNA base-specific interactions.

(a) The DNA sequences of the three response elements are aligned. Each half-sites in double
strands is shown in corresponding colors. 5mC is indicated by M in red. (b) The basic
regions of human Jun and EBV Zta are aligned. Bolded letters indicate the four core
residues involved in base-specific contacts. The red arrow indicates the residue that directly
recognizes 5mC. (c and d) Schematic representations of base-specific interactions of
]unA/]unB—DNA confined to meTRE-2 and Zta*/Zta® DNA confined to meZRE-2 are
shown. Van der Waals contacts are indicated by black lines, and electrostatic and H bond
interactions are indicated by blue lines (“W” indicates a water molecule). Each residue is
indicated by the corresponding identity of the monomer A or B. The Jun"/Jun®-DNA
complex structure contains hemi-methylated meTRE sequence in which the asterisk (*)

indicates the unmethylated Cyt.
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Figure 20. Comparison of 5” half-(TGA), 5” half-(MGA), and 5’ half-(TMG).

(a) A structural view of Zta" over 5 half-(TGA) in green with an overlay of Jun® is shown.
(b) Jun® over 5 half-(MGA) in yellow is shown. 5mC (M in red) bases of the double-
stranded 5mCpG within the half-site are indicated in red. (c) Zta® over 5 half-(TMG) in

purple is shown.
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Position-specific pyrimidine C5-methyl group recognitions: “I-to-5mC switch”
The chemical structures of T and 5mC are very similar, as both bases are pyrimidines
containing the C5-methyl group. T is otherwise known as 5-methyluracil (5mU). In light of
this similarity, a comparison of the three response elements—TRE, meTRE, and meZRE-
2—reveals that the positions of carbon-5 (C5)-methyl-presenting bases (T or 5mC) within
the sequences are conserved at -3, -1, +1, and +3 positions where 5mC replaces T in one of
the positions within meTRE and meZRE-2 in respect to TRE (Figure 21a). The C5-methyl
groups of either 5mC or T bases at -3 and -1 positions are symmetrically related to those at
+3 and +1 respectively (indicated by * sign). In TRE, four T bases are found in all four
positions. In the structure of Jun/Fos-DNA complex (PDB: 1FOS) containing TRE, Jun
Ala265 and Ala266 over one 5 half-(TGA) have van der Waals contacts to the C5-methyl
group of T (-3 )and T (-1) respectively via the Ala-CP with the interatomic distance of 3.7-3.9
A" (Figure 21b,c). Over the other 5 half-(TGA), Fos Alal50 and Ala151, which are
equivalent to the two alanine residues from Jun, have the equivalent van der Waals contacts
to T (+3) and T (+1) respectively (Figure 21d,e).

In comparing meTRE to TRE sequences(Figure 21a top and middle panels), M (-
3) replaces T (-3) in one of the conserved positions (“T-to-5mC switch” at -3 position),
forming 5mCpG from -3 to -2 positions. The T bases in the other conserved positions (-1,
+1, and +3) remain the same as in TRE. In the structure of Jun®/Jun®-DNA complex
containing meTRE, Jun® Ala265 over 5’ half-(MGA) has a van der Waals contact to the C5-
methyl group of M (-3) (Figure 21f). Jun" Ala266 likewise recognizes T (-1) of 5 half-
(MGA) (Figure 21g). Therefore, Jun Ala265 can effectively recognize both T and 5mC via

the van der Waals contact between Ala-CP and the C5-methyl group. Jun® Ala265 and
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Ala266 over 5 half-(TGA) recognize T (+3) and T (+1) respectively, involving the similar
van der Waals contact (Figure 21h-i).

An equivalent pattern is observed in the structure of Zta"/Zta"DNA complex
containing meZRE-2, though a “T-to-5mC switch” is found at a different position. In
comparing meZRE-2 to TRE sequences (Figure 2la top and bottom panels), 5mC
replaces T at the conserved +1 position, along with a C-to-G change at +2 position, forming
5mCpG from +1 to +2 positions. Zta* Ala185 over 5 half-(TGA) recognizes T (-3) via the
typical van der Waals contact (Figure 21j), and Zta® Ala185 over 5 half-(TMG) recognizes
T (+3) in much the same way (Figure 21m). On the other hand, Zta Ser186 is equivalent to
Jun Ala266, and thus involve a serine side-chain instead of alanine to contact the base in -1
and +1 positions. Over 5 half-(TGA), Zta* Ser186 recognizes T (-1) via the H bond-
donating Ser-OY that contacts T (-1) O4 with an interatomic distance of 2.9 A, and the Ser-
CP contacts the C5-methyl group via a van der Waals contact (Figure 21k). The van der
Waals contact between the Ser-CP and the C5-methyl group is similar to that between an
Ala-CP and a C5-methyl group. Over the other half-site of meZRE-2, or 5 half-(TMG), Zta"
Ser186 coordinates M (+1) in much the similar way as the T (-1) recognition (Figure 21I).
Yet, Ser-O" would now accept an H bond from M (+1) N4, while Ser-CP maintains the
typical van der Waals contact to the C5-methyl group of M (+1). Zta" Ser186 and Zta"
Ser186 are thus distinguishable in that Zta* Ser186 over 5 half-(TGA) donates an H bond to
T (-1) O4, whereas Zta® Ser186 over 5 half-(TMG) accepts an H bond from M (+1) N4.
Nevertheless, both Zta* Ser186 and Zta"” Ser186 recognize the C5-methyl group of T (-1)
and M (+1), involving the van der Waals contact by Ser-CP.

Here, it is important to note that the C5-methyl group of 5mC is biologically

different from that of T, as only 5mC is generated by DNA methyltransferases whose
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activities are differently regulated under various biological cues. Therefore, T is permanently
“methylated” at the C5 position, while the C5 methyl group of 5mC is dynamically regulated.
The preservation of the key interactions by Jun Ala265 and Zta Ser186 for the recognition of
both T and 5mC in different half-site contexts indicates that the C5-methyl group of 5mC
can effectively mimic that of T for a protein-DNA interaction. In other words, 5mC can
functionally replace T for specific DNA binding. Our observations directly present the
mechanism by which AP-1 and Zta/Zta recognize their cognate methylated response
elements whose sequences differ from TRE in that the most significant change in the

sequence involves a “T-to-5mC switch”.
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Figure 21. Position-specific C5-methyl group recognitions by Jun/Jun and Zta/”Zta.
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(a) Conserved positions (-3, -1, +1, and +3) of four C5-methyl groups (indicated by “m”) of

5mU (T) bases in black and 5mC (M) bases in red within the three response elements are

shown. Double-stranded half-sites within the sequences are shown in colors: 5 half-(TGA)

in green, 5" half-(MGA) in yellow, and 5’ half-(TMG) in purple. (b-¢) The recognition of the

C5-methyl groups of T (-3), T (-1), T (+1), and T (+3) by conserved alanine residues in Jun

and Fos (PDB: 1FOS). (f-i) The recognition of the C5-methyl groups of M (-3), T (-1), T

(+1), and (T+3) by conserved alanine residues in Jun. (j-m) The recognition of T (-3), T (-1),

M (+1), and (T+3) by the conserved alanine and serine residue in Zta.
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Methyl-dependent binding in solution
In our structures, we have observed that 5mC bases in the conserved positions—M (-3) of
meTRE and M (+1) of meZRE-2—are specifically recognized. However, we have not been
able to directly address the specific recognition of 5mC bases at the “non-conserved”
positions (-2 in meTRE and +2 in meZRE-2) in the complementary strands within the CpG
dinucleotide context. For the crystallization of Jun®/Jun®-DNA complex, we used double-
stranded oligonucleotides containing meTRE sequence with a hemi-methylated CpG: M (-3)
and C (-2). We did not observe any amino acid side-chain that may account for the
recognition of the methyl group at -2 position if the base in the position was methylated. For
the crystallization of Zta"/Zta-DNA complex, we used double-stranded oligonucleotides
containing meZRE-2 sequence with a fully methylated CpG: M (+1) and M (+2). Still, we
did not observe any direct recognition of the C5-methyl group of M (+2) in the structure.
We were then motivated to better understand the effect of methylation in each strand for
DNA binding and to quantitatively demonstrate the “T-to-5mC switch” model in solution to
examine that the C5-methyl groups in the conserved positions determine specific DNA
binding. Using fluorescence polarization analysis, we measured the dissociation constant
(Kp) for meTRE DNA binding by Jun®/Jun® and meZRE-2 DNA binding by Zta"*/Zta" as
a function of different methylation conditions: no methylation (C/C), methylation of CpG in
one strand (M/C or C/M), and methylation of CpG in both strands (full methylation;
M/M).

In the analysis of Jun/Jun DNA binding in the meTRE sequence context under the
different methylation conditions (Figure 22a), K, for full methylaton (M/M) was
determined to 107 nM and for no methylation (C/C) determined to 472 nM (4- to 5-fold

weaker binding). K, for methylation in the conserved position-only (M/C) was determined
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to 96 nM, essentially equivalent to Ky for full methylation. On the other hand, K, for
methylation in the “non-conserved” position in the other strand (C/M) was determined to
396 nM, approaching K, for no methylation. Therefore, methylation in the conserved -3
position significantly contributed to specific DNA binding, whereas methylation in the
“non-conserved” position was insensitive to specific DNA binding. Our analysis agrees with
results from previous studies measuring the effect of methylation in meTRE sequence
context for Jun/Fos or Jun/Jun binding, performed using different methods’®” ** "%, ‘The
reported data as well as our analysis clearly support that methyl-specific DNA binding by
Jun/Jun for meTRE is mediated by methylation in the conserved position where the “T-to-
5mC switch” is found.

For Zta/Zta-DNA binding in meZRE-2 sequence context, several studies have
reported that full methylaton (M/M) results in significantly stronger binding compared to
no methylation (C/C), primarily shown via electronic mobility shift assays (EMSA) "#" "7,
However, to our knowledge, the effect of methylation in each strand on DNA binding
affinities had not been accounted for. In our analysis of Zta/Zta-DNA binding under the
different methylaton conditions (Figure 22b), K, for full methylation (M/M) was
determined to 6 nM, and for no methylation (C/C) it was determined to 122 nM (20-fold
weaker binding). K, for methylation in the consetved position (M/C) was determined to 12
nM, which is only 2-fold weaker than K, for full methylation and 10-fold stronger than K,
for no methylation. K, for methylation in the other strand (C/M) was determined to 54 nM,
approximately 2-fold stronger than K, for no methylation. The observation that the effect
of methylation in one strand is stronger than that in the other resonates with the previous
studies on methyl-dependent DNA binding by proteins such as several MBD proteins,

Zfp57, and KIf4, all showing the similar 2-fold increase in DNA binding® "% . For some of
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these proteins, a network of water molecules in the vicinity of the C5-methyl group is

considered to contribute to DNA binding’"> ',

However, we have not observed a
comparable network of water molecules over the related M position in our Zta/Zta-DNA
complex structure, likely due to the limitation in the resolution of our structural data.

Nevertheless, the effect of the methylation in the conserved position at M"" regardless of the

methylation status in the other strand is clear and supports the “T-to-5mC switch” model.
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Figure 22. C5-methyl-dependnet DNA binding by Jun/Jun and Zta/Zta in solution.

(a) Effects of different methylation status in the conserved position (X in red) in one strand
and/or non-consetved position in the other strand (Y in gray) on meTRE DNA binding by
Jun/Jun in solution ate shown compared to no methylation (X/Y = M/M, M/C, C/M, and
C/C). Binding affinities was measured by fluorescence polatization analysis. (b) The effects

of methylation status on meZRE-2 DNA binding by Zta/Zta in solution are shown.
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Effects of oxidative modifications on DNA binding

Mammalian genomes have three other forms of modified cytosine in addition to 5mC: 5-
hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5¢caC)””.
Mammalian Ten-eleven translocation (Tet) dioxygenases can oxidize the C5-methyl group of
5mC to generate 5hmC, and further oxidations of 5ShmC can produce 5fC and then 5caC’”
77751 Understanding how the five forms of cytosine (C, M, 5hmC, 5fC, and 5caC) are
specifically recognized within the context of various protein-DNA interactions can shed
light on fundamental mechanisms of epigenetic regulations by DNA modifications.
Particularly, both AP-1 and Tet dioxygenases are implicated in several types of
malignancies'” . Also, Zta/Zta can bind the host genome in the EBV-infected cells via

183, 184

meZRE-2 or meZRE-2-like sequence context and may respond to Tet dioxygenase
activities iz vivo'”. We therefore tested the effect of additional cytosine C5 modifications for
Jun/Jun-DNA binding (meTRE sequence background) and Zta/Zta-DNA binding (meZRE
sequence background). Because the effect of methylation in the conserved position was
critical for methyl-specific binding, we introduced the five forms of cytosine at the
conserved position in the background of methylation in the non-conserved position (X/M;
where X = C, M, 5hmC, 5fC, and 5caC).

In our analysis, both Jun/Jun and Zta/Zta showed decreased DNA binding affinities
with the introduction of the oxidative modifications. For meTRE DNA binding by Jun/Jun
in reference to full methylation (M/M), 5hmC (5hmC/M) showed less than 2-fold weaker
binding, followed by both 5fC and 5caC (5fC/M and 5caC/M) showing ~3-fold weaker
binding (Figure 23a). However, all modifications presented stronger binding than no

modification at the conserved position (C/M). For Zta/Zta meZRE-2 DNA binding in

reference to full methylation (M/M), 5ShmC (5hmC/M) showed ~4-fold weaker binding, and
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5C (5fC/M) and 5caC (5caC/M) showed ~10-fold and ~22-fold weaker binding
respectively (Figure 23b). 5ShmC and 5fC, but not 5caC, presented stronger binding than no
modification at the conserved position (C/M).

The effect of weak DNA binding with the introduction of the oxidative
modifications can be effectively explained by our structures, as the van der Waals contact
between an amino acid side-chain CP and the C5-methyl group of 5mC is critical for
methylated DNA binding by both Jun/Jun and Zta/Zta. Each successive oxidative
modification accompanied by increasing bulkiness would progressively disrupt this key
interaction. Such progressive reduction in specific DNA binding by the modifications has
also been observed in Zfp57 and KIf4 DNA binding studies’”” "**. 5ShmC in both strands of
CpG within meZRE-2 was also shown to reduce meZRE-2 DNA binding by Zta/Zta in a

recent report’”’) correlating with our observation. These results suggest that, oxidative

b
modifications may serve as graduated signals to progressively reduce the activity of certain
5mC-binding transcription factors during the event of active DNA demethylation. On the
other hand, proteins with 5caC-reading capabilities, such as WT'1 transcription factor’®’, Tet3

CXXC domain™’, and RNA Pol II elongation complex’®, may be distinctively signaled by

the oxidative modifications.
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Figure 23. Effects of oxidative modifications on DNA binding by Jun/Jun and Zta/Zta.

(a) Oxidative modifications in the conserved position (X) in the background of methylation
in the other strand (Y = M) on meTRE DNA binding by Jun/Jun in solution are shown
compared to no methylation or methylation in the corresponding position (X = C, 5mC,

5hmC, 5fC, and 5caC). (b) The effects of oxidative modifications on meZRE-2 DNA

binding by Zta/Zta in solution ate shown.
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Resolving the difference of asymmetric half-sites

While the “T-to-5mC switch” preserves the recognition of the C5 methyl groups by Jun
Ala265 and Zta Ser186 upon DNA methylation, methylation-dependent DNA binding
would not be possible without the adaptation of other base-contacting core amino acids to
accommodate different half-site sequences. Indeed, we have observed that Jun Asn262 and
Zta Asn182, which are highly conserved asparagine residues based on the alignment of bZIP
family proteins, undergo the most significant changes in the rotamer y angles for alternative
sequence recognitions. Both Jun® Asn262 and Zta* Asn182 over 5 half-(TGA) have the
same orientation, recognizing T (-3) O4 via the H bond-donating Asn-N° and recognizing C
(-2) N4 via the H bond-accepting Asn-O° (Figure 24a). This asparagine orientation is
conventional to other bZIP family transcription factors that recognize 5 half-(TGA)"”" "**'*.
Jun® Asn262 over 5 half-(MGA), however, has the y, and y,angles significantly changed in
reference to its conventional conformation, to coordinate M (-3) N4 via Asn-O° and G 06
via Asn-N° involving a water molecule (Figure 24b).

Zta® Asn182 over 5 half-(TMG) shows another distinct alternative conformation in
which the g, angle shows a minor shift, but the 7, angle is rotated nearly 180° to coordinate
Ade (-3) N6 via the Asn-O°, and to coordinate the O6 and N7 atoms of Gua® via the Asn-
N° (Figure 24c). Previous studies have shown that the corresponding asparagine residues in
other bZIP proteins that recognize 5 half-(TTA), such as yeast Papl and human C/EBP
subfamily, can likewise adapt to a different sequence context compared to the conventional
5 half-(TGA)"* ', Therefore, the flexibility of the conserved asparagine and its ability to
form both the H-bond acceptor and donot account for how Jun/Jun and Zta/”Zta recognize
asymmetric half-sites, provided that any change in DNA sequence preserves other key

interactions critical for specific DNA binding.
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In addition to the conserved asparagine, Zta Ser186 is also distinctively engaged in
H-bond interactions in each half-site of meZRE-2, apart from its role in the recognition of T
and 5mC in the conserved *1 positions. In our Zta" ) Zta® DNA complex structure, Ztat
Ser186 and Zta" Ser186 present different networks of interactions over 5” half-(TMG) and 5’
half-(TGA) within meZRE-2. The “T-to-5mC switch” within meZRE-2 engages an H bond
donator-acceptor alteration for Ser186 as described previously: Zta" Ser186 Oy donates an
H bond to T (-1) O4, and Zta® Ser186 Oy accepts an H bond from M (+1) N4 (Figure
25a,b). Also, DNA sequences adjacent to T (-1) and M (+1) are not symmetric, as they are
part of distinct half-sites. Consequently, neighboring atoms near each Serl86 within
Zta*/7Zta® are involved in a distinct network of interactions. Over 5 half-(TGA), Zta"
Ser186 recognizes T (-1) as well as the Zta* Arg190, as the Ser-O" accepts an H bond from
Arg-N" that also has an H bond with a water molecule to coordinate C (0) N4 (Figure 25a).
In contrast, Zta” Ser186 over 5 half-(TMG) recognizes M (+1) as well as M (+2) by
accepting an H bond from M (+2) N4 (Figure 25b). Also, Zta” Arg190 does not engage
Zta” Serl86 as in the Zta" Ser186-Argl90 interaction but is involved in the bifurcated
recognition of G (0) (Figure 25b).

Interestingly, the orientations involved in the recognition of middle G:C at position 0
by Zta" Arg190 and Zta” Arg190 are conventional to most bZIP proteins recognizing the
“pseudo-palindromic” response elements such as TRE or TRE-containing sites’”” " '*?, This
middle G:C base pair can be switched (C:G) in TRE for AP-1 binding, as the conserved
arginine from each monomer would switch the orientation. However, such switching may
not be allowed for meZRE-2 DNA binding by Zta"/Zta", as the neighboring Zta" Ser186
and Zta” Ser186, having their specific orientations in relation to the arginine residues, may

prevent such flexibility. The consequence would be that meZRE-2 binding by Zta*/Zta"
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would require the middle G:C to be fixed in such that G (0) is always 3’ to the 5 half-(TGA)
and 5’ to the 3’ half-(MGA). Alternatively, C (0) would be fixedly 3’ to 5 half-(TMG) and 5’
to 3” half-(TCA). This prediction is supported by ChIP-seq data from other studies, showing
that middle G or C can be varied in TRE for AP-1 (Jun) but fixed in meZRE-2 for Zta"”"”.

The recognition of M (+2) N4 by Zta® Ser186 (Figure 25b) points out a critical
aspect of how Zta/Zta recognizes meZRE-2, as Jun and other AP-1 transcription factors
presenting alanine (Jun Ala266) in the corresponding position would lack this particular
interaction. Previous studies showed that AP-1 does not activate promoters via meZRE-2
binding and that Zta S186A mutant has a reduced meZRE-2 binding capability compared to
the wild type (WT)"?” " ", Particularly, Yu et al. showed that Zta SI86A mutant rendered
an inability to activate promoters via meZRE-2 binding, whereas Jun A266S mutant led to a
gain-of-function resembling Zta W'T to activate promoters via meZRE-2"%".

We were therefore motivated to quantitatively measure the effect of Zta S186A and
Jun A266S mutants for DNA binding in the meZRE-2 sequence context under the
background of no methylation (C/C) and full methylation (M/M) of the CpG within the
sequence. Subsequent results showed that meZRE-2 DNA binding by Zta S186A for full
methylation (M/M) with K, of 201 nM was ~13-fold weaker compated to Zta WT,
suggesting the loss of M™* N4 recognition by Zta” Ser186-O" (Figure 25c). Interestingly, Zta
S186A for full methylaton (M/M) still showed approximately 6-fold stronger binding
compared to no methylation (C/C). This difference is likely due to that the mutant Zta
Alal86 still recognizes the C5-methyl group of M (+1) within meZRE-2 in the same manner
as shown in the interaction between Jun Ala266 and the C5-methyl group of T within
meTRE. Comparatively, Jun A266S for full methylation (M/M) showed approximately 4-

fold stronger meZRE-2 DNA binding compared to Jun WT in the same background,
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suggesting that Jun A266S may now engage in the recognition of M (+2) N4 within meZRE-
2 and become capable of specific binding (Figure 25d). Also, Jun A266S for full
methylation (M/M) showed 6-fold stronger meZRE-2 DNA binding compared to no
methylation (C/C), while Jun WT did not present such binding affinity difference in
response to changing the methylation status. These results suggest that meZRE-2 DNA
binding by Jun WT is non-specific without the Ala-to-Ser mutation. Therefore, our
structures and DNA binding assay results effectively present Zta Ser186 as a critical factor

for both methyl-specific and meZRE-2 sequence-specific DNA binding by Zta/”Zta.
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Figure 24. Alternative conformations adapted by the conserved asparagine for engaging
asymmetric half-sites.

() A structural view of Zta" Asn182 (light blue) coordinating T (-3) O4 and C (-2) N4
within 5" half-(TGA) of meZRE-2 is shown. The basic region of Jun®, which also recognizes
5 half-(TGA) of meTRE, is structurally aligned to that of Zta". Jun® Asn262 (light orange)
shows a conformational equivalence to Zta" Asn182. (b) Jun" Asn262 (darker orange)
coordinating M (-3) N4 and G (-3) OG6 via a water molecule (W) over 5 half-(MGA) of
meTRE. Compared to Jun® Asn262 (light orange) over the other half-site of 5 half-(TGA),
Jun® Asn262 shows a different conformation with the y; angle swung by nearly 90 © and the
%, angle also rotated. (c) Zta” Asn182 (darker blue) coordinating O6 and N7 atoms of G (+2)
via Asn-N° and Ade (+3) N6 via Asn-O° over 5’ half-(TMG) of meZRE-2. Compared to
Zta" Asn182 (light blue) over the other half-site of 5’ half-(TGA), the y, angle is rotated

approximately 180°.
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Figure 25. The recognition of T and 5mC by Zta Ser180.

(a) A structural view of Zta* Ser186 and Zta* Arg190 over 5 half-(TGA) of meZRE-2 is
shown. Zta" Ser186 recognizes T (-1) as described (Fig. 2K). In addition, Ser-O" H bonds
with Zta" Arg190-N" that coordinates C (0) N4 via a water molecule (W). (b) Over the other
half-site of 5" half-(TMG), Zta" Ser186 recognizes M (+1). In addition, the Ser-O" accepts an
H bond from M (+2). The adjacent Zta” Arg190 has a bifurcated coordination to G (0) via
Arg-N" atoms. (c) Fluorescence analysis of the effects of full (M/M) or no methylation
(C/C) on meZRE-2 DNA binding by Zta/Zta was shown in the wild-type (WT)
background and the S186A mutant background. Binding affinities (K;) measured are
indicated. S186A reduces meZRE-2 binding but still retains methyl-specific binding. (d)
Fluorescence analysis of the effects of full (M/M) or no methylation (C/C) on meZRE-2
DNA binding by Jun/Jun was shown in the wild-type (WT) background and A266S mutant
background. Binding affinities (K,) measured are indicated. Jun WT shows non-specific

binding regardless of methylation status, whereas A266S increases methyl-specific binding.
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Discussion

Historically, prokaryotic and eukaryotic 5mC recognition can be categorized into two
structurally distinct modes of interactions. In one mode, 5mC is flipped out of DNA helix
and thus extrahelically recognized, as most extensively shown in SET and RING finger-
associated (SRA) domains™ " ™. In the other mode, 5mC within a CpG dinucleotide is
recognized via a non-base flipping mechanism involving the 5mC-Arg-G triad’"’. The
examples include methyl-CpG binding domain (MBD)-containing MeCP2 as well as C2H2
zinc finger (ZnF) family transcription factors such as Kaiso, Zfp57, and Klf4 that bind
5mCpG within specific sequences’?’"” "' Recent studies have shown that there are other
families of transcription factors including the bZIP family that can recognize 5SmCpG within
specific sequences besides the ZnF family”™ '”". As the first structural demonstration of such,
our ]unA/JunB—DNA Zta/Zta®-DNA complex structures reveal distinct modes of the
recognition of 5mCpG compared to the 5mC-Arg-G triad mode.

In the 5mC-Arg-G triad, the arginine side-chain has a non-polar interaction with the
C5-methyl group of 5mC, and two Arg-N" atoms are engaged in bifurcated interactions with
the 3-Gua for the recognition of 5mCpG in one strand’’’. The same interaction may be
adopted for the recognition of TpG. For meTRE binding by Jun/Jun, however, Ala265 side-
chain recognizes 5mCpG by contacting the C5-methyl group via Ala-CP. Asn262 nearby
then engages in an alternative conformation to adopt the CpG dinucleotide context, as
previously described. Therefore both Asn262 and Ala265 from one Jun monomer over 5’
half-(MGA) recognize the double-stranded 5mCpG in which only one C5-methyl group is
recognized. The same Asn262 and Ala265 can recognize the TpG dinucleotide, involving a

different conformation of Asn262 over 5 half-(TGA).
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meZRE DNA binding by Zta/Zta shows yet another distinct mechanism of 5mCpG
recognition. In the structure of Zta/Zta-DNA containing meZRE-2, Serl86 recognizes
5mCpG by contacting the C5 methyl group of 5mC by Ser-CPand the N4 atom by Ser-O".
The same Ser-O' then engages in the recognition of 5mC N4 in the other strand. Zta Ser186
thus primarily recognizes double-stranded 5mCpG by recognizing both 5mC bases by the
N4 atoms but recognizes only one C5-methyl group. In addition, Zta Asnl82 recognizes
Gua O6 and N7 within 5mCpG. Despite such different modes of 5mCpG recognitions,
both of our structures and other structures showing 5mC-Arg-G triads point to the principle
of “T-to-5mC switch” in such that the C5-methyl group of 5mC can effectively equate the
C5-methyl group of T for transcription factor binding,.

Further studies call for a systematic understanding in which various sequence-
specific 5mC readers control gene regulations in response to extra-cellular cues and in
relation to intra-cellular chromatin states. Studies have shown that bZIP family proteins may
bind methylated CpG in distal promoter regions for gene activations, whereas proximal
promoter regions of transcriptionally active genes are primarily unmethylated’” " ',
Particularly interesting for future directions would be to broadly understand how DNA
methylation and demethylation events at genomic regions bound by such 5mC-binding

transcription factors are regulated.
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Materials and Methods

Protein Expression and Purification

Human Jun bZIP (residues 254-315 containing C269S mutation) with wild-type Ala266 (Jun
WT, pXC1398) or A266S mutant (Jun A266S, pXC1440) was expressed as an N-terminal
6xHis-SUMO (HisSUMO) fusion via modified pET28b vector (Novagen) in Escherichia coli
BL21-CodonPlus(DE3)-RIL (Stratagene). EBV Zta bZIP (residues 175-236 containing
C189S mutation) with wild-type Ser186 (Zta WT, pXC1416) or S186A mutant (Zta S180A,
pXC1455) was expressed under the same background as Jun bZIP. Bacterial cells were
cultured in LB at 37 °C, and protein expression was induced at 16 °C overnight by adding 0.5
mM isopropyl-B-d-1-thiogalactopyranoside (IPTG). Cells wetre harvested and stored in -80
°C. Cell pellets were thawed and lysed by sonication in 20 mM sodium phosphate pH 7.4,
500 mM NaCl, 25 mM imidazole, 5% (v/v) glycerol, and 1 mM DTT. Lysate was clarified by
centrifugation at 18,000 rpm for 1 h, and the fusion protein was isolated on a Nickel-charged
HisTrap affinity column (GE Healthcare). Eluted fractions from the nickel column were
pooled.

For the purification of Jun bZIP, ubiquitin-like-specific protease 1 (ULP-1; purified
in-house) was added to the pooled nickel column fractions, followed by overnight
incubation at 16 °C to completely cleave the HisSUMO tag. The tag-cleaved sample was
then loaded to tandem HiTrap-Q/HiTrap-Heparin column (GE Healthcare), followed by
elution from the Heparin column using a linear gradient of NaCl (500 mM to 2 M). The
cluted fractions were loaded onto Superdex 200 16/60 size exclusion column (GE
Healthcare) in buffer containing 20 mM Tris-HCl pH 7.5, 500 mM NaCl, 5% (v/v) glycerol,
and 1 mM DTT. The final concentration of the purified homodimer was estimated by

Bradford protein assay (Bio-Rad no. 500-0205).
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For Zta bZIP purification, the pooled Ni column fractions were loaded to tandem
HiTrap-Q/HiTrap-Heparin column (GE Healthcatre) in Zta buffer (Tris-HCl pH 7.5, 150
mM ammonium acetate, 150 mM NaCl, and 1 mM DTT). The Heparin column was then
cluted using a linear gradient of NaCl (150 mM to 2 M). The eluted fractions were pooled
and dialyzed against the Zta buffer in presence of ULP-1 in 4 °C to cleave the HisSUMO
tag. The dialyzed sample was then loaded to Heparin column followed by elution as before.
The eluted fractions were then dialyzed against the Zta buffer again, concentrated, and then
loaded to Superdex 200 16/60 size exclusion column in the Zta buffer. Elution from the
column showed a single peak corresponding to the expected Zta bZIP homodimer size. The

final concentration of the purified homodimer was estimated by measuring absorbance at

280 nm.

Crystallography
For Jun bZIP homodimer (Jun/Jun)-DNA complex, purified Jun/Jun was mixed with
annealed oligonucleotides containing methylated meTRE sequence (hemi-methylated CpG,
See Table 1) in a molar ratio of ~ 1:1. The final complex was concentrated to ~1 mM in 20
mM Tris-HCl (pH 7.5), 100 mM NaCl, and 5 % v/v glycerol. Initial screening was
performed by the sitting-drop method, and select conditions were optimized by the hanging-
drop method. The final rod-shaped crystals appeared at 16 °C within 3 days in mother liquor
containing 0.05 M Citric Acid, 0.05 M Bis-Ttis-Propane, and 16% w/v polyethylene glycol
3350 at pH 5.0.

For Zta bZIP homodimer (Zta/Zta)-DNA complex crystallization, purified Zta/”Zta
was mixed with annealed oligonucleotides containing methylated meZRE-2 sequence (fully

methylated CpG) in a molar ratio of ~1:1. The final complex was concentrated to ~1 mM in
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20 mM Tris-HCI (pH 7.5), 150 mM ammonium acetate, 150 mM NaCl, and 1 mM DTT. A
wide range of screening resulted in the formation of a well-diffracting crystal at 16 °C within
2 months in mother liquor containing 0.2 M sodium phosphate monobasic monohydrate
and 20% w/v polyethylene glycol 3,350.

Crystals were diffracted at the SER-CAT 22ID beamline at the Advanced Photon
Source, Argonne National Laboratory, and the diffraction data were processed using
HKI.2000"”. Crystallographic phase for Jun/Jun-DNA and Zta/Zta-DNA complexes were
determined by molecular replacement using the coordinates from previous structures (PDB
1FOS for Jun and PDB 2C9L for Zta). Model refinements were performed using
PHENIX"”. Graphics for the figures were generated using PyMol (Del.ano Scientific, LLC).

Detail X-ray data collection results are summarized in Table 1.

Fluorescence-based DNA binding Assay

Fluorescence polarization assay was performed using Synergy 4 microplate reader (BioTek)
to measure DNA binding by Jun/Jun and Zta/”Zta. For DNA binding assay, Jun bZIP (WT
and A266S) and Zta bZIP (WT and S186A) were purified as HisSUMO tag-uncleaved forms
by following the same purification procedure used for tag-cleaved Jun bZIP, except for the
addition of ULP-1. 6-caboxy-fluorescein (FAM)-labeled dsDNA probe (5 nM) was
incubated with increasing concentration of proteins in 20 mM Tris-HCI pH 7.5, 5% glycerol,
and 185 mM NaCl (for Jun/Jun) or 225 mM NaCl (for Zta/”Zta). The sequences of the
probe for Jun/ Jun were 5’>~-GGAXGAGTCATAG-3’ and FAM-5-CTATGACTYGTCC-3’
(where X and Y are C, M, 5hmC, 5fC, or 5caC); and the sequences for the probe for
Zta/Zta were 5’-CTATGAGXGATCC-3’ and FAM-5-GGATYGCTCATAG-3’ (where X

and Y are C, M, 5hmC, 5{C, or 5caC). K, values were calculated as [mP] = [maximum mP] x
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[C]/(K, + [C]) + [baseline mP], and % binding was calculated as (mP] — [baseline
mP])/(|maximum mP] — [baseline mP]) (where mP is milipolarization and [C] is protein

concentration). Average K, values and standard errors are indicated.
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Table 1. Jun/Jun-DNA and Zta/Zta-DNA crystals data collection and refinement.

Protein

Human Jun DBD homodimer

EBV Zta DBD homodimer

DNA (M = 5mC)

Beamline
Wavelength (A)
Space group
Cell dimensions

a b, ¢ (A)

apgC)
Resolution (A)*
Rmerge*
<I/0I>*
Completeness (%0)*
Redundancy*
Observed reflections
Unique reflections*

Refinement

5’ AATGGAMGAGTCATAGGAG 3’
3’ TACCTGCTCAGTATCCTCT 5’
SER-CAT AP 22ID
1.0
C2

158.87,42.49, 45.17

90, 98.01, 90
35.00-1.89 (1.96-1.89)
0.034 (0.405)

134.05 (2.63)
98.5 (90.1)
6.9 (4.2)
164,675
23,735 (2181)

5’ AAGCACTGAGMGATGAAG 3’
3’ TCGTGACTCGMTACTTCT 5°
SER-CAT AP 22ID
1.0
C2

95.549, 26.732, 99.673

90 97.248 90
35.00-2.25 (2.33-2.25)
0.086 (0.885)

16.8 (1.09)
88.7 (48.9)
7.2 (2.8)
77,911
10789 (579)

Resolution (A)
Number of reflections
Rwork / Rfree
Number of atoms
Average B-factors (A2)
Wilson B-factors (A2)
RMS deviations
Bond lengths (A)
Bond angle (°)
All atom clash score
Ramachandran Favored (%)
Additional allowed
CP deviation

1.89
23,712
20.1/23.7
1890
48.0
33.9

0.011
1.325
2.11
99.2
0
0

* Data for the highest-resolution shell are in parentheses.

2.25
10,726
25.3/29.2
1765
85.0
54.8

0.005
0.679
1.85
96.6
0
0
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CHAPTERIV.

Discussions and Future Directions

Comparison of 5-methylcytosine and thymine
5mC and thymine as pyrimidines within DNA share a common feature of possessing the
C5-methyl group (Figure 26). The methyl group of 5mC is regulated by DNA
methyltransferases, whereas the methyl group of thymine is not. An important observation
from the ROST substrate specificity studies (See Chapter II) is that ROS1 is comparatively
active for the excision of both 5mC base-paired with guanine and thymine mismatched to
guanine, whereas it is not active on uracil mismatched to guanine’” '”. Therefore, ROS1
does not share TDG’s characteristic mismatch repair, which is substantially active on uracil
as well as thymine mismatched to guanine. Such a distinctive substrate specificity profile by
ROS1 clearly suggests that the substrate base recognition is responsive to the presence of the
C5-methyl group. It is not clear how ROS1 distinguishes between the thymine mismatched
to guanine as opposed to the one base-paired to adenine. Nevertheless, the recognition of
both 5mC and thymine by ROS1 is reminiscent of transcription factors that recognize 5mC
and T equivalently. As shown in Chapter III, our structures of bZIP transcription factors in
complex with 5mC-containing DNA show that the C5-methyl groups of 5mC and thymine
could be equivalent for protein-DNA interactions, involving an alanine or serine side-chain
to form van der Waals contacts. Some ZnF family transcription factors also equivalently
recognize 5mC and T via a different mode of interaction involving the 5mC-Arg-G triad’”.
The ability of ROS1 to recognize and excise thymine mismatched to guanine may be
a feature of protection from 5mC deamination. It is widely recognized that many 5mCpG

sites in the genomes are prone to deamination during which the generation of thymine from
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5mC would initially generate a T:G mismatch” . Subsequent rounds of DNA replication
without repairing the mismatch would establish a C:G to T:A transition mutation. As such,
some deamination events in plants may be disruptive to genetic regulation. For instance,
Arabidopsis  thaliana 5mC DNA glycosylases can activate silenced genes by promoter
demethylation”. If the methylated promoter sequence becomes deaminated and results in
transition mutations, the promoter function would be compromised. Also, methylated rice
retrotransposon Tos17 is activated by 5mC DNA glycosylases in response to environmental

200
stress elements

. Deamination of transposable elements that results in deactivation would
interfere with the organism’s adaptive responses to changing environments. Therefore, the
correction of T:G mismatches through thymine excision by 5mC DNA glycosylases may be
a DNA repair housekeeping feature in addition to their role in DNA demethylation.

A similar mechanism of a protection from deamination is also present in mammalian
systems. Mammalian MBD4 has 5mCpG-binding MBD domain as well as a DNA
glycosylase domain that excises thymine mismatched to guanine®”’. Mammalian MBD4 can
thus bind methylated CpG islands and allow the glycosylase domain to excise thymine
mismatched to guanine in the vicinity. Interestingly, the plant MBD4 homolog lacks the
MBD domain while preserving the glycosylase domain, and thus the 5mCpG-binding
function and the mismatched thymine repair function appear to be unlinked in plants™.
Thymine excision activity by plant 5mC DNA glycosylases and mammalian MBD4 may thus

be functionally equivalent in preventing deamination of 5mC in 5mCpG-rich regions of

plant genomes.
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The methyl group of 5mC is in dynamic equilibrium within the genome. On the other hand,

the methyl group of thymine (5mU) is fixed. The unmethylated form of thymine—uracil—is

not a building block of genomic DNA (blue) but of RNA (red). For protein-DNA

interactions in which the C5-methyl group of thymine is specifically recognized, the C5-

methyl group of 5mC may substitute for thymine to enable DNA methylation-dependent

binding events.
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Role of 5-methylcytosine-binding transcription factors
While 5mC deamination may be mutagenic, many of the eukaryotic transcription factor-
binding sites near and upstream of transcription start sites contain TpGs that are thought to

have originated from deamination of 5mCpGs'”

. Therefore, 5mC deamination presents an
evolutionary process that has shaped the function of many gene promoters. In light of such
a perspective, it is noteworthy that the binding sites of AP-1 transcription factors as well as
other bZIP family proteins recognize TpGs within the response element sequences. The
ability of AP-1 to bind 5mCpG in lieu of TpG within the sequences may thus be an aspect
of evolutionary memory.

Alternatively, the above dual binding ability may be biologically driven for specific
functions. Previous evidence shows that TRE binding by AP-1 occurs near transcription
start sites, whereas meTRE binding predominantly occurs more than 5 kb away from
transcription start sites’”. Further, methylated CRE binding by bZIP family C/EBPa in

. . . . . 123
adipocytes for tissue-specific gene expression occurs at an enhancer region

. Another study
shows that many active enhancers are methylated®”. Interestingly, EBV Zta was also shown
to bind the genome of EBV-infected host cells in distal regulatory regions'”’. Although DNA
methylation status of the regions was not directly addressed in the study, EBV-infected cells
can have significantly elevated levels of DNA methylation throughout the host genome, as
shown in other studies® *”. Collectively, these data suggest that DNA methylation may
control transcription factor-binding events in distant regulatory regions in genomes.
Therefore, future studies investigating the role of methylated DNA binding by certain

transcription factors during well-defined biological processes can expand our fundamental

understanding of the function of DNA methylation.
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The recognition of oxidative modifications

The existence of the oxidative derivatives of DNA 5mC generated by Tet dioxygenases
poses the question of how the oxidized bases differently influence protein-DNA
interactions. Several 5mC-binding transcription factors such as human AP-1 and EBV Zta
showed reduced binding affinities for the oxidized bases (See Chapter I1I). Also, many MBD
family proteins showed reduced binding affinities for oxidized bases’. ROS1 also showed
reduced activities towards 5ShmC compared to 5mC, followed by even further decrease in the
activity for 5fC and 5caC (See Chapter II). On the other hand, ZnF family WT1 and basic
helix-loop-helix (bHLH) family Tcf3-Ascll heterodimer can have significantly increased
binding affinities for 5caC within specific sequences compared to the unmodified base or

: . 186, 20
other modified bases in the same sequence background™” *

. Specifically, the crystal
structure of WT'1 in complex with oligos containing 5caC displays the specific recognition of
the C5-carboxyl group of 5caC'”. Further, a study utilizing 2 mass spectrometry pull-down
experiment with oligos containing 5mC, 5hmC, 5fC, or 5caC has revealed several proteins
that may preferentially bind a particular modified base”. Therefore, each form of cytosine
modification by methylation and iterative oxidations can serve as a distinct epigenetic signal.
Identifying additional readers that specifically recognize a particular oxidative derivative of
5mC would be critical to support this hypothesis.

One of clearly demonstrated ways of recognizing a base by a reader domain involves
base flipping, which is a mode of protein-DNA interaction that different classes of proteins
have adapted. As previously mentioned, the SRA domain of UHRF1 recognizes 5mC by
base flipping””"”"”. While structurally distinct from the SRA domain, DNA glycosylases also

flip bases for the extra-helical recognition in the active site. The crystal structure of the TDG

catalytic domain in complex with oligos containing 5caC shows that the C5-carboxyl group



83

of 5caC is specifically recognized in the active site”. TDG not only recognizes 5caC, but also
recognizes 5fC, thymine, uracil, and 5-hydroxymethyluracil” > ”. Introducing a point
mutation to the binding pocket can allow the enzyme to be specific for 5caC’” *”. Also,
some of mammalian 5mC- or 5hmC-binding proteins discovered from the mass
spectrometry pull-down experiment are DNA glycosylases such as Oggl, Nth1, Neil1-2”. I
vitro DNA glycosylase assays of these enzymes revealed a lack of specific activities towards
5mC or 5hmC (See Chapter II). However, they may able to remove the bases in concert with
other proteins, as exemplified by the C-terminal domain of ROS1, which is required together

with the catalytic glycosylase domain for the base excision activities.
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Future directions for ROS1
The study on the C-terminal domain of ROS1 5mC DNA glycosylases from Chapter II has
clearly demonstrated that the domain is essential for the enzyme’s activity. The C-terminal
domain may stabilize the glycosylase domain for reaction and/or engage in DNA
recognition to convey the substrate base to the glycosylase domain (Figure 27). Isolating
individual domains resulted in unstable aggregates that compromised further experiments for
characterizing DNA binding or protein-protein interactions. Insertion of a protease
recognition sequence between the domains and introducing cleavage by protease unlinked
the two domains, though they still tightly associated afterwards.

Introducing an optimal amount of denaturing agent such as guanidine hydrochloride
can disrupt the protein-protein interaction between the C-terminal domain and the
glycosylase domain while minimally affecting overall folding of each individual domain.

Comparing hydrogen-deuterium exchange (HDX) mass spectrometry””

of the two domains
before and after introducing the denaturing agent may reveal the regions involved in the
domain-domain interaction. The hypothesis regarding whether the C-terminal domain
recognizes DNA can also be tested in a similar fashion whereby HDX mass spectrometry
analysis of ROS1 before and after the addition of substrate DNA can be compared to reveal
the region in the C-terminal domain engaged in DNA binding. Attempts to crystallize ROS1
with or without substrate DNA have failed so far, however, continued efforts to eventually
solve the structure of ROS1 can be pursued. The structure of ROS1-DNA complex would
clearly reveal how the two domains are engaged and involved in the recognition of the base
substrate.

In addition to the study of understanding the mechanism of ROS1, a separate study

for applying ROS1 5mC DNA glycosylase activity for epigenomic editing may be
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informative. Because ROS1 and its family of 5mC DNA glycosylases are the only enzymes
known to directly remove 5mC for active DNA demethylation, the enzyme can be targeted
to a specific locus within a mammalian genome as a fused component of engineered
modular proteins such as transcription activator-like effectors (TALE) and ZnF proteins that
can bind specific DNA sequences as designed™” *. The idea of epigenomic editing by
delivering enzymes to a specific genomic locus to locally alter the chromatin state has been
discussed””’. ROS1 could be ideally applied as a DNA methylation eraser tool for various

studies investigating stem cell functions, immune responses, and cancer epigenetics.
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Figure 27. Model for the reaction mechanism of ROST.
ROS1 CTD stabilizes GD and/or recognizes DNA, specifically or non-specifically, to
facilitate the catalytic activity of the substrate base excision. Yellow circle indicates the C5-

methyl group of 5mC or T opposite G.
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