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Abstract

Assessing the Impact of COVID-19-Related Behavioral Changes
and Clinical Service Disruptions on the HIV Epidemic
in the United States

By

Laura M. Mann

HIV is a major public health challenge that has become more complex because of the COVID-
19 pandemic. Economic and social disruptions from the pandemic have created new challenges
in the control of HIV, prompting major behavioral changes and disrupting access to HIV
screening, prevention, and clinical care services. This dissertation aimed to assess the impact
of these COVID-related changes on the US HIV epidemic and to identify how potential home-
based HIV prevention interventions that provide an alternative to clinic-based HIV services
could have offset some of the COVID pandemic’s epidemiologic impact on HIV.

In Aim 1, we described the magnitude, timing, and variation of sexual distancing and HIV
service utilization changes among MSM in the US during the COVID-19 pandemic. Our results
were consistent with prior studies demonstrating population-level decreases in sexual behavior,
interruptions to use of HIV prevention services, but limited changes to HIV medical care for
persons living with HIV. We newly identified the persistence these changes through the end of
2020 into 2021, demonstrating the durable impact of the COVID pandemic on HIV-related
behavior and services.

In Aim 2, we used a dynamic network-based HIV transmission model of US MSM to estimate
the incidence of HIV during the COVID-19 pandemic. We found that HIV transmission among
US MSM decreased during 2020, but that temporary decreases in HIV incidence during the
pandemic did not lead to long-term decreases in HIV transmission.

In Aim 3, we used a dynamic network-based HIV transmission model of Atlanta MSM to assess
the potential impact that home-based HIV prevention interventions could have had during the
COVID pandemic. We demonstrated that although home-based PrEP retention and HIV testing
interventions could be effective at increasing PrEP use and HIV testing, in isolation they would
have minimal impact on pandemic-era population-level HIV incidence. Scaling up interventions
in terms of coverage, length, post-intervention persistence, increasing their efficacy, or
combining them with other home-based HIV prevention interventions could aid in increasing
their impact on HIV transmission in a pandemic context.

The findings of this dissertation contribute to the overall understanding of how the COVID
pandemic has impacted the US HIV epidemic. We found that though the pandemic affected
sexual behavior and HIV prevention service use of US MSM, the combined effects of these
changes were likely not significant enough to cause long-term effects to the US HIV epidemic’s
trajectory. While home-based HIV prevention interventions could play a role in increasing PrEP
use and HIV testing among MSM, these interventions by themselves may not have substantial
impacts on HIV transmission in a pandemic context.
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Chapter 1. Background and Significance

HIV Prevention in the US

The prevention of HIV remains a major public health challenge in the US. There are
approximately 1.2 million people in the US living with HIV,* and approximately 40 thousand new
diagnoses occur every year.?? Despite recent strides in HIV prevention, the rate of new HIV

diagnoses has remained persistently high over the past decade.*

The risk of HIV is not uniform across the US population. Gay, bisexual, and other men
who have sex with men (MSM) are at increased risk for HIV: despite representing less than 5%
of the US population,>® MSM account for nearly 70% of all HIV diagnoses.® Furthermore, certain
subgroups of MSM are at higher HIV risk. For example, since the beginning of the HIV
epidemic, Black/African American MSM have experienced disproportionate HIV prevalence and
incidence.”® In 2019, Black MSM represented more than 36% of all new HIV diagnoses among
US MSM, despite Black individuals representing only 13% of the US population.®® Studies have
demonstrated that the increased risk among Black MSM is not attributable to higher risk
behaviors but rather network factors and socioeconomic and treatment disparities.1%12 In
addition, Hispanic or Latino MSM also experience disproportionate HIV risk: while HIV
diagnoses have decreased among white MSM and remained stable in Black MSM over the past

decade, HIV diagnoses have increased among Hispanic or Latino MSM.*3

Most HIV infections in MSM are transmitted through sexual contact.* In particular,
unprotected receptive anal sex carries the highest risk for HIV acquisition.® Historically,
consistent condom use has been promoted as an effective way to prevent HIV transmission
among sexually active MSM, and as a result, public health efforts to reduce HIV have focused

on promotion of condom use.'® However, over the past decade, strides in HIV prophylaxis and
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treatment have shifted HIV prevention efforts towards biomedical solutions that require minimal

or no behavioral modification.

In July 2012, the US Food and Drug administration approved the first label indication for
emtricitabine/tenofovir disoproxil fumarate (Truvada) for use as HIV pre-exposure prophylaxis
(PrEP) for patients at high risk of HIV acquisition.” When taken consistently, PrEP has been
shown to reduce the risk of HIV acquisition among MSM not known to be living with HIV by
99%.18 However, effectiveness of PrEP is highly dependent on adherence and retention in PrEP
care.'92% Research has therefore been focused on implementing programs to increase PrEP
initiation, adherence, and retention, especially among groups that have been underserved by

PrEP delivery.1221-23

Initiation of and adherence to PrEP requires ongoing access to health care services. The
PrEP care system/continuum has many steps. To begin PrEP, an individual must first attend an
initial clinical visit. At this visit, a medical provider will perform an clinical evaluation that includes
assessing indications for PrEP, taking a medical history, and performing various lab tests
(including an HIV blood test and screening for sexually transmitted infections (STIs) and
Hepatitis B and C viruses).?* After evaluating for indications for PrEP (in the US, the CDC
indicates PrEP for MSM who are HIV-negative, are sexually active and not in a monogamous
partnership with a recently tested HIV-negative man, and have had unprotected anal sex in the
past six months or a bacterial STI in the past six months),*® PrEP medication may be
prescribed. If laboratory testing results are available on the same day as the initial clinical visit,
this can be on the same day, otherwise obtaining a prescription may take longer.?* Once a
prescription is obtained, the individual must fill it at a pharmacy, unless the medication is offered
at their clinic.?* As per current clinical recommendations, in order to stay on PrEP, indicated
individuals must return for follow-up visits every three months (at which time an HIV risk

behavior assessment, HIV blood test, and STI screening will take place) in order to maintain
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their prescription.?* Partially as a result of this cascade, PrEP uptake has been slow and gaps
exist between recommended and actual levels of PrEP use. Estimates of coverage levels vary:
according to the American Men’s Internet Survey (AMIS), an estimated 20% of PrEP-eligible
MSM in the US were on PrEP in 2017;% compared to an estimated 35% of MSM who were at
risk for HIV infection and likely to meet clinical indications for PrEP from National HIV Behavioral
Surveillance System data;?® compared to 32% of MSM meeting PrEP indications during 2017-
2019 according to ARTnet.?” PrEP use also varies by demographics and geographic area: use
of PrEP may be lower for men who are younger, living outside of urban areas, and lacking
health insurance.?>-?” Furthermore, PrEP adherence is dependent on ongoing access to medical
care.?* Recent HIV prevention interventions have been focused on getting men into PrEP care

and retaining access to care.

Treatment of HIV infection requires ongoing access to antiretroviral therapy (ART).
When taken consistently as prescribed, ART can suppress viral load, maintain high CD4 cell
counts and prevent AIDS, and reduce HIV/AIDS morbidity and mortality.?2° In addition, ART
use can reduce the risk of transmitting HIV to others due to decreased or undetectable viral load
(referred to as “treatment as prevention”)—there is effectively no risk of sexual transmission of

HIV from a person living with HIV that has an undetectable viral load.*°

However, similar to the PrEP cascade, the HIV care continuum also requires ongoing
access to health care services. The HIV care continuum begins with HIV testing and diagnosis
of HIV infection.3! Regular testing is needed to diagnose individuals with undiagnosed HIV and
get them into HIV clinical care.?! Then, individuals need to be linked to care (i.e., have one or
more documented CD4 or viral load tests within 30 days of HIV diagnosis; however, this is only
one metric to evaluate care linkage and care linkage should be done as fast as possible).*?
Once in care, people living with HIV be prescribed ART, fill their prescription, and start ART.3!

After ART initiation, individuals need routine HIV viral load and CD4 testing and medical care to
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be retained in care.3! The recommended testing schedule is testing at entry into care, on
initiation of ART, at any time of treatment regimen modification, two to eight weeks after ART
initiation or modification, every four to eight weeks until viral suppression is achieved, and then

every three or four months.®! This requires ongoing and frequent access to clinical care.

Through ongoing use of ART, individuals can achieve HIV viral suppression. However,
viral suppression is not widespread. According to the CDC, in 2018, approximately 35% of
individuals diagnosed with HIV in the US were not virally suppressed at their last test.®?
However, this may be an underestimate, as it is derived from reported viral load data from a
subset of jurisdictions that vary yearly.3* The prevalence of not being virally suppressed among
individuals living with diagnosed HIV in the US may be closer to 50%.34% In addition, 25% of
individuals living with HIV did not have any viral load test in 2018.1* One major factor associated
with the lack of viral load testing, ART adherence, and viral suppression is lack of accessibility
of quality health care. In addition, regular testing is needed to diagnose individuals with
undiagnosed HIV and get them into HIV clinical care.?! Approximately 14% of people with HIV in
the US are not diagnosed.*® These gaps in HIV testing and clinical care drive HIV transmission

in the US and impact the quality of life of individuals living with HIV.*’

To address these issues, in 2019 the US Department of Health and Human Services
(HHS) announced the Ending the HIV Epidemic in the US (EHE) plan, which aims to eliminate
HIV in the US by 2030.%8 EHE has four key strategies. The first strategy is to diagnose
individuals with HIV as early as possible after infection. The second is to treat individuals with
HIV rapidly and effectively to reach sustained viral suppression. This strategy includes promptly
linking individuals newly diagnosed with HIV to care as well as finding innovative and effective
ways to reengage individuals who are aware of their infection but not receiving HIV care and
treatment. The third strategy is to use interventions, including pre-exposure prophylaxis (PrEP)

and syringe services programs, to prevent new HIV transmissions. The last EHE strategy is to
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respond quickly to potential HIV outbreaks to get needed prevention and treatment services to
people who need them. The EHE initiative focuses its efforts on geographic areas with a high
burden of HIV, many of which are in the southeast US (the Atlanta metropolitan area, Alabama,

Mississippi, South Carolina, among other areas).

The goal of EHE is to reduce new HIV infections in the US by at least 75% in 2025 and
at least 90% by 2030. Modeling studies have predicted that in order for these goals to be
achieved, HIV testing, PrEP initiation, and HIV care retention would need to increase
dramatically (approximately ten-fold, if screening and retention were improved jointly and key
subpopulations were targeted). However, these estimates assume continuity of prevention and
clinical care services. Major disruptions to HIV prevention and clinical care services may instead

move the US further from EHE targets.

COVID-19 Pandemic and HIV

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus that causes
coronavirus disease 2019 (COVID-19), was first identified in January 2020 in Wuhan, China
following a December 2019 outbreak of pneumonia.*® International spread of COVID-19
occurred during the following months and on 11 March 2020 the World Health Organization
(WHO) officially characterized the global COVID-19 outbreak as a pandemic.“® International
“lockdown” orders soon after went into effect, with many countries requiring individuals to limit
social contact and activity with those outside of their household (“social distance”) or quarantine
to prevent potential spread of SARS-CoV-2. In the US, COVID-19 was declared a national
emergency on 13 March 2020 and many states thereafter issued statewide stay-at-home
orders. Aside from businesses and services deemed essential, many workplaces, schools,

restaurants, and other venues were closed. Restrictions have varied over time and by state and
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municipality but decreases in mobility and social contact have been observed through the

pandemic.*

The Impact of COVID-19 on Sexual Activity. In addition to social distancing and decreased
mobility, COVID-19 has also prompted reductions in sexual activity (“sexual distancing”).
Reports of sexual distancing have varied but most studies have suggested an initial overall
decrease in sexual behavior among US adults, especially with partners outside of one’s
household. A cross-sectional study of US adults by Hensel et al. demonstrated that nearly half
of adults reported some kind of change in sexual behavior during March—April 2020, with most
reporting a decrease in partnered sex.*? Another survey of US adults found that half of study
participants reported a decline in their sex life during April-May 2020, but many incorporated

various other sexual activities such as sexting or having cybersex.*?

Sexual distancing has also been observed among US MSM. Using data from a cohort of
PrEP-using MSM in the southern US, Pampati et al. demonstrated a decrease in sexual
partners, anal sex acts, condomless sex, and oral sex during February—March followed by an
increase in April-June.** A study by Sanchez et al. that used data from the AMIS COVID Impact
Survey (which will be used in this dissertation) found that approximately half of US MSM
reported fewer sexual partners during April 2020.%° Similarly, a study by McKay et al.
demonstrated that many US MSM reported a substantial decrease in the amount of sex had and
the number sexual partners during April-May (compared to February—early March), and also
reported changes to the type of sex had (e.g., more virtual sex) and less sex with casual
partners.*® International reports have noted similar trends in sexual distancing among MSM. In
London, 75% of surveyed MSM reported fewer partners during March—June 2020 COVID-19
lockdown.*” In Melbourne, Australia, MSM reported experiencing a decrease in sexual activities

and sex partners during certain periods of lockdown.*®
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In contrast to these reports, Stephenson et al. found that there was an average increase
in anal sex partners among US MSM during April-May 2020 compared to February of that year;
however, reported changes in sex partners were variable (and ranged from 19 fewer to 38 more
partners among study participants).*® Stephenson et al. used data from the first cycle of the
Love & Sex in the Time of COVID survey (which was used in this dissertation). Despite these
early reports, more research is needed that examines the magnitude and variation of sexual
distancing among US MSM, especially among key subpopulations. While most of these studies
collected data on age, race, and geographic region, they did not present stratified estimates of
sexual distancing measures.**6 This approach is needed given that sexual distancing is likely

to vary within and between demographic groups and change over time.

A lack of published evidence about sexual distancing after March—June 2020 exists.
Because social distancing practices were maintained for much of the US through 2020 and into
2021, studies are needed that assess the longitudinal patterns of sexual distancing through the
COVID-19 pandemic. Rebounding sexual behavior has been hypothesized, in which sexual
behavior may have substantially increased after the first US “wave” of COVID infections (i.e.,
after March—June 2020) (perhaps even above pre-pandemic levels), but empirical evidence is

needed to determine if this occurred (or is occurring) among US MSM.

The Impact of COVID-19 on Clinical Services. The COVID-19 pandemic has prompted
clinical service disruptions alongside decreased mobility and social contact.* In addition to
health care systems being overburden by COVID-19 treatment, diverting resources away from
prevention and treatment of hon-respiratory diseases, non-emergency medical services were
disrupted as social distancing measures were enacted.®-%° Beginning in March 2020, some US
medical practices were temporarily closed in order to reduce possible transmission of SARS-
CoV-2.% For example, many sexually transmitted disease (STD) clinics in New York were either

closed or experienced a dramatic reduction in services during April 2020.% Nationally, over 80%
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of STD programs deferred STD services beginning in March 2020 and 62% reported being
unable to maintain their HIV and syphilis caseloads.®” In South Carolina, 56% of HIV clinics
funded by the Ryan White HIV/AIDS Program were partially interrupted and 26% were
completely closed during March 2020 (the Ryan White HIV/AIDS Program is the largest federal
program designed specifically for people with HIV in the US and provides outpatient care and
support services to individuals living with HIV).%8 In the months following March—April 2020, the
financial strain resulting from COVID-19 (e.qg., reduced revenues due to cancellation of certain
services) caused some US hospitals and clinics to close.5*° In addition to clinical disruptions,
COVID-19-related surges in unemployment (approximately 20 million workers) have caused
many to lose employer-sponsored health insurance, leading to further reduction in health care
access.®! Thus, the COVID-19 pandemic has posed significant challenges in access to and

delivery of health care.

HIV programs have attempted to adapt to COVID-19-related challenges but evidence of
decreased access to HIV care still exists. In a survey of Ryan White HIV/AIDS Program medical
provider grantees during the pandemic, 99% reported offering telehealth visits, 89% reported
providing multi-month prescriptions for ART, 56% reported providing home HIV tests for patients
and their partners, and 34% reported reducing frequency of laboratory visits.®> However, 28% of
providers reported seeing a decrease in retention of patients in HIV care, 61% reported a
decrease in their ability to provide HIV testing, and 25% reported a decrease in the ability to
provide PrEP services.®? Similarly, surveys of MSM from April 2020 have demonstrated reduced
access to HIV testing, HIV care visits, and viral load testing.*4454° Further, there is evidence that
HIV infection rates have increased during 2020, but these infections are not being diagnosed. In
a Chicago emergency department that incorporated HIV testing alongside COVID testing, the
resulting observed number of acute HIV diagnoses was significantly higher than in prior years,
whereas other local hospitals (that did not incorporate HIV screening into COVID testing)

observed a decline in HIV screenings and a 25% decrease in HIV diagnoses.®
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The Centers for Disease Control and Prevention (CDC) have released guidance
encouraging health facilities to optimize telehealth and home care during the pandemic to
reduce the impact of COVID-19 on other diseases,*? but gaps in care still remain. Further,
disparities exist in accessing telehealth services. In a study using electronic healthcare record
data at a large hospital in New York City, even after adjusting for individual and community-level
attributes, Black patients had a significantly lower odds of accessing medical care through
telemedicine during March—April 2020 compared to white patients.5* Similar race/ethnic

disparities have been noted across various disease-specific telehealth services.®¢6

Sexual distancing may counterbalance the effects of clinical interruptions on HIV
dynamics: reductions in sexual activity may decrease the rate of HIV acquisition and
transmission while clinical interruptions increase it. Recent modeling studies have found that the
impact of this balance on the HIV epidemic depends on the relative extent and timing of these
changes.?”-%° Jenness et al. found that among MSM in Atlanta, if sexual behavior rebounds
while service interruptions persist, an excess of hundreds of HIV cases in this target population
will be expected over the next five years (Dr. Jenness is the chair of this dissertation and | was a
coauthor of this study).®” Research examining the timing of these changes is lacking, but is
needed to be able to elucidate the full expected impact of the COVID-19 pandemic on HIV in the

us.

HIV Prevention and Care Retention Approaches. Home-based HIV prevention and HIV care
initiation and retention approaches may offset some of the epidemiologic impact of COVID-19
on the HIV epidemic in the US. These approaches may include telehealth services, at-home
HIV testing, at-home PrEP care, multi-month ART prescriptions, at-home HIV testing, and

potential at-home HIV viral load tests.

Telehealth, or the delivery and facilitation of health and health-related services including

medical care, provider and patient education, health information services, and self-care via



21

telecommunications and digital communication technologies,’® has become an important
component of the US health care system in recent years.”* It has been demonstrated to
increase access to health care and potentially reduce health care costs,’? and can be
particularly useful to reach geographically remote or otherwise less accessible populations (e.g.,
currently incarcerated individuals).”" For HIV care, studies have shown that individuals taking
ART achieve similar clinical responses to therapy, adherence to treatment, and quality-of-life

scores whether treated in-person or through telehealth.”7®

Telehealth has been used by HIV providers during the COVID-19 pandemic, alongside
other interventions such as multi-month prescriptions for ART, at-home HIV testing, and
reduced frequency of laboratory visits (as discussed in The Impact of COVID-19 on Clinical
Services).®>"" Multi-month prescriptions for ART work by providing patients living with
diagnosed HIV with two to six months of ART medication (instead of 30-day prescriptions),
therefore reducing the frequency of clinical visits.”® A recent systematic review of eight studies
showed that multi-month ART prescriptions and reduction of clinic visits led to better care
retention without differences in viral failure.”® At-home HIV testing may also be used to diagnose
HIV infection and get individuals into HIV clinical care. At-home tests can be a rapid oral fluid
test (which can be done entirely at home) or a mail-in finger prick blood test.®® Clinical studies
have demonstrated that the oral fluid test has sensitivity of 92% and the mail-in tests have a
sensitivity of 99%.8182 |astly, at-home HIV viral load testing could potentially be used as a
home-based HIV care retention approach. This would allow individuals living with HIV to
undergo their reoccurring viral load testing from home and therefore increase ongoing ART
access and potentially adherence. However, at-home viral load testing is still being developed
given that current testing of viral load relies on a blood draw and nucleic acid testing, both of
which need to be conducted at a clinic or laboratory.318 Therefore, research gaps exist

regarding the potential impact of at-home viral tests on HIV care retention and population-level
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viral suppression, both independently and alongside other telehealth and at-home HIV care

approaches.

These home-based HIV prevention and HIV care approaches may curtail the impact of
service disruptions such as those introduced by the COVID-19 pandemic on PrEP use and
consequentially HIV acquisition risk, or ART adherence and consequentially HIV viral load. At a
population-level, they may also impact HIV transmission and incidence.®* Research is needed,
however, to examine the extent of the potential epidemiologic impact of these approaches in the
context of COVID-19, as well as identify the most effective scenarios for their deployment.”’
Because of the vast inequities in health and HIV care, the impact of these interventions may be
greatest in certain subpopulations, such as Black MSM.%-12 Research focused on the effect of

HIV prevention and care approaches on HIV transmission is prudent.

Mathematical Models of HIV Transmission

Overview of Mathematical Modeling. Mathematical models have been used throughout the

past century to investigate infectious disease dynamics and guide public health policy.® Their
use ranges from identifying ideal public health intervention scenarios (such as optimal vaccine
strategies), to predicting or forecasting the incidence of emerging diseases, to supporting

surveillance-based estimates of infectious diseases.®®

Models are a way to represent complex phenomena simply.® For infectious diseases,
models use population parameters to simulate infection transmission in populations.8®
Mathematical models come in many forms, each of which can represent varying levels of
complexity of infectious disease transmission. They may incorporate randomness into their
parameters and transitions (stochastic) or use only fixed parameters and thus have stable

results (deterministic).8® Compartmental models can be either deterministic or stochastic. They
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model disease dynamics by dividing individuals in a population into categories (compartments)

representing various disease stages (e.g., susceptible to infection, infected, and recovered from
infection) and model their collective progress through disease states.® Alternatively, individual-
or agent-based models track the infection process for every individual in the simulated

population, often incorporating stochasticity.8®

Network Modeling. Network-based models are a type of agent-based models that explicitly
incorporate partnerships. Partnerships can be defined as repeated contact (which has the
possibility of disease transmission if disease were present in at least one of the partners)
between two individuals; in HIV models of sexual transmission, for example, a partnership is
repeated sexual contact/exposure with the same set of persons over time. Network-based
transmission models model the network of contacts within a population and simulate disease
transmission within that network.88” Their major strengths over compartmental models are that
they allow for repeated contacts with the same set of persons, and that they do not rely on the
assumptions that individuals in a subpopulation mix randomly at each time step and each
individual in one subpopulation has a non-zero chance of contacting every other individual in
another subpopulation—this is not representative of human behavior.8%8” Network models can
explicitly model that each individual only has a finite set of contacts to whom they may transmit

or acquire infection.®’

Network-based mathematical models have played an important role in understanding the
epidemiologic processes of infectious diseases, especially STIs and HIV.8” They work by
simulating individuals (nodes) and their contacts (edges) to create a network (a collection of
nodes and edges). One statistical framework that is commonly used in network models to
predict the network configuration of a population is exponential random graph modeling
(ERGM). ERGMs use maximum likelihood estimation to fit statistical models for network

structures to data.®8° They are somewhat analogous to logistic regression: in logistic
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regression, the probability of an outcome/dependent variable is predicted based on a set of
independent variables, whereas with ERGMs, the probability that two nodes will have an edge is
predicted based on a set of network statistics. The general functional form for an ERGM is given
in Equation 1.

eB’g(y) 991x1+62x2+-~+9pxp

Eq.1. P(Y=y)= ) )

Where y is the observed network of edges, nodes, and nodal attributes, g(y) is the vector of
network statistics, 6 is the vector of parameters, and x(8) is a normalizing constant representing

all possible network configurations.
The conditional log-odds of an edge is represented in Equation 2.

. p(Y;; = 1|rest of the network) )
Eq. 2. logit(P(Y;; = 1|rest of the network) = log 7(T,; = Ofrest of the network)) 6'9(g(»))

Where Y;; is the edge between nodes i and j, and a(g(y)) represents the change in g(y) when

Y;; changes from O to 1.

ERGMs model cross-sectional network structures, so they predict presence of an edge, but not
formation and dissolution of edges over time. Temporal exponential random graph models
(TERGMSs) are used to model changes in a network over time. The conditional log-odds of an
edge forming and persisting (i.e., the inverse of dissolving) over time are represented in

Equations 3 and 4, respectively.

Eq. 3. logit (P(Yij,tﬂ = 1|V;;, = 0,rest of the network)) =0%3(g*(»)

Eq. 4. logit (P(Yij,t+1 = 1|Yl-j,t = 1,rest of the network)) = 6"6(g‘(y))
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Where g*(y) is the vector of network statistics in the formation model, 6% is the vector of
parameters in the formation model, g~ (y) is the vector of network statistics in the persistence

model, and 6 is the vector of parameters in the persistence model.

Various network sampling designs can be used to collect data for these forms of network
models. These designs include adaptively sampled networks (such as snowball designs),
convenience samples, or egocentrically sampled networks. The egocentrically sampled network
design was used to collect the data used for the network models in this dissertation. With
egocentric sampling, a population sample is enrolled into a study (nodes) and participants are
asked about their partners/partnerships (edges).? It does not involve link or contact tracing as
partners are not sampled directly. While this sampling method does not provide a network
census (that is, data on the complete network including all nodes and edges), it can provide

enough data to infer the complete dynamic network structure.®*

The EpiModel R software package can be used to build network-based transmission
models.®? EpiModel uses the TERGM framework to estimate and simulate partnership
processes alongside other modules that simulate infection and demographic processes in order
to simulate epidemics over dynamic networks.% The simulation of networks in EpiModel use the
Markov chain Monte Carlo (MCMC) algorithm functions from the ergm software package.®
EpiModelHIV is an extension of the EpiModel package designed for simulating HIV and STI
transmission dynamics among MSM and heterosexual populations.®* It was used to simulate the

network-based HIV transmission model used in Aims 2 and 3 of this dissertation.

Network-based models can be used to inform public health policy as they can simulate
the spread of an infection within a population, estimate epidemic potential, and compare the
effectiveness of various mitigation strategies. For example, they have been used to forecast

SARS-CoV-2 infections and the potential impact of various control measures.® Overall,
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mathematical modeling studies have contributed to the understanding of the dynamics of the

spread of HIV and the theoretical assessment of intervention strategies.®"%

Modeling of the COVID-19 Pandemic & HIV. Modeling studies have also advanced our
understanding of the potential impact of COVID-19-related changes on HIV dynamics. For
example, a modeling study examining the potential COVID-related effects in sub-Saharan Africa
found that interruptions to the supply of ART could significantly increase the rate of HIV
transmission and the rate of HIV-related deaths.®® Another modeling study focused on South
Africa, Malawi, Zimbabwe, and Uganda, similarly found that interruptions to ART supply could
substantially increase HIV deaths (and moreover, that a three-month interruption for 40% of
individuals on ART could cause a similar number of additional deaths as those that might be
saved from COVID-19 through social distancing).'® In a study focused on six US cities,
researchers found that COVID-19-related disruptions in HIV services and sexual behaviors may
increase or decrease HIV incidence (depending on their magnitude), and that a campaign in

which HIV testing is linked with SARS-CoV-2 testing could substantially reduce HIV incidence.®®

Other modeling studies examining the impact of COVID-19 on HIV have focused on
MSM populations. In China, one study found that fewer new HIV infections are projected to
occur among MSM in four Chinese cities during 2020 compared to what would have occurred in
the absence of the COVID-19 pandemic.'°! Similar to other studies,®7:9°:1% this study also found
that in China, new HIV infections would be increased most by disruptions to viral suppression,
compared to disruptions in HIV testing, ART initiation, and condom use.'®* A study focused on
Baltimore MSM found that sexual distancing could reduce new HIV infections but reductions in
condom use, HIV testing, viral suppression, PrEP initiations, PrEP adherence, and ART
initiations could increase new HIV infections.®® This study also found that maintaining access to
ART and adherence support should be the priority to minimize excess HIV-related mortality.®®

These studies complement the findings of Jenness et al. that the impact of COVID-19-related
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changes on incidence of HIV among Atlanta MSM depends on the relative extent and timing of
the changes, and that reductions in ART adherence may have more relative impact on HIV

incidence than reductions in other HIV prevention measures.®’

While these modeling studies have provided insights on the potential impact of the
COVID-19 pandemic on HIV dynamics in various settings, research gaps remain. First, these
studies did not use empirical data on sexual distancing and clinical service interruptions to
estimate the actual impact on HIV incidence in a population, and consequently they did also did
not distinguish diagnosed cases from actual incident infections. This was completed in Aim 2 of
this dissertation. This work is important to elucidate both the actual impact of COVID-19 on HIV
and the limitations of case-based surveillance estimates of HIV diagnoses this context. Some
modeling studies have examined the impact the lack of HIV prevention services on HIV
transmission, but did not examine the potential epidemiologic impact of at-home HIV prevention
approaches at varying coverage and length scenarios (this was completed in Aim 3). This study
is needed in order to identify the most effective HIV prevention interventions during periods of

service disruption.

Measuring HIV Incidence in the US

HIV incidence may be the most useful metric to assess the HIV epidemic because it
provides information on active HIV transmission in communities. Timely incidence information
can guide development and implementation of HIV prevention interventions. However, the
incidence of HIV in the US has never been directly measured.°21%% Incidence has been
measured in a number of US cohort studies representing select subpopulations,%4-1% however,
these estimates are not representative of the full US population and estimates may be impacted
by from selection bias or the “adherence effect” (e.g., if enroliment in a study with follow-up

visits affects HIV incidence rate through recurring exposure to HIV prevention messages).03109
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National estimates are useful in order to assess the US HIV epidemic at a population-level.1%?
Measuring national HIV incidence would require longitudinal follow-up of all individuals who do
not have HIV infection with frequent testing; this is extremely difficult to apply on a large scale
due to the resources it would require.'° Instead, back-calculation models and laboratory assay

data have been used to estimate HIV incidence in the US.1%?

The first estimates of HIV incidence in the US were generated from back-calculation
models that used AIDS incidence data and data on the estimated median incubation period for
HIV infection to AIDS diagnosis.'*!'? These estimates were unreliable, however, because
incubation period can differ considerably by individual characteristics (estimates range from less

than one year to over 20 years).13-115

The development of laboratory assays prompted new methods for incidence estimation.
Laboratory assays test for biomarkers that can be used to infer the phase of HIV infection. They
can differentiate recent from existing HIV infections. Using assay results and information about
the duration of time spent in a phase of HIV infection, incidence can be calculated.!® This
method, originally known as serological testing algorithm for recent HIV seroconversion
(STARHS), relies on the principle that HIV antibody titers evolve in a predictable fashion after
initial seroconversion.!'%11” However, because there is large variation in biomarkers between
individuals and because assays sometimes misclassify late-stage AIDS as recent infections,
STARHS estimates are unreliable.''"11® An additional assay approach, known as recent
infection testing algorithm (RITA), integrates assay results with clinical information (such as CD4
count) to classify infections as recent or existing.*!° However, RITAs are still imperfect because
there is individual variation in HIV immunological responses. The WHO has noted that
misclassification of cases as recent when they are long-standing can severely bias incidence

estimates.'©



29

Recent national estimates generated by the CDC use a CD4 cell count data-based
model to estimate annual HIV incidence.'%120 Specifically, estimates are obtained using the

following steps:11°

(1.) The date of HIV infection is estimated for each person with a CD4 test result by using
the CD4 model. The number of persons with a CD4 test result is weighted to account for
those without a CD4 test result; weighting is based on the year of HIV diagnosis, sex,
race/ethnicity, transmission category, age at diagnosis, disease classification, and vital
status at year-end.

(2.) The distribution of delay (from HIV infection to diagnosis) is used to estimate the annual
number of HIV infections, which includes diagnosed and undiagnosed infections.

(3.) The number of persons with undiagnosed HIV infection is estimated by subtracting
cumulative diagnoses (reported to the National HIV Surveillance System, NHSS) from
cumulative infections.

(4.)HIV prevalence, which represents counts of persons with diagnosed or undiagnosed HIV
infection who were alive at the end of the year, is estimated by adding the number of
persons with undiagnosed HIV infection to the number of persons living with diagnosed
HIV infection (reported to NHSS).

(5.) The percentage of diagnosed (or of undiagnosed) infections is determined by dividing
the number of persons living with diagnosed (or with undiagnosed) infection by the total

HIV prevalence for each year.

Similar to the aforementioned estimation methods, this method is also limited given that
individual CD4 counts are highly variable even over short time intervals'?° and this method
assumes that population-level access to CD4 testing remains constant (i.e., there is no period of
HIV service disruption). This is a major limitation to this method; in a period of widespread

service disruption such as the COVID-19 pandemic,*® this approach may not estimate valid HIV
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incidence because it relies on uninterrupted CD4 testing results and diagnoses. Specifically, the
CD4 distribution of individuals living with HIV and who are retained in care during a period of
service disruptions will likely be different than those who were not retained in care.'?! This has
the potential to bias CD4 models and therefore estimates of HIV incidence obtained from these

models.

Even if the above methods were methodologically valid and produced reliable estimates
of HIV incidence, they are limited in that they calculate incidence retroactively and estimates
can be delayed. If estimates are not current, many of the benefits of measuring incidence
instead of prevalence, such as targeting prevention efforts, are lost. New methods that can

produce up-to-date incidence estimates are thus needed.

Innovative methods incorporating mathematical models may produce timelier incidence
estimates. In influenza surveillance, for example, models have been used alongside
surveillance data to estimate real-time and future estimates of flu activity.?212* Development of
model-based methods to track HIV incidence may also be useful as a supplement to existing

HIV surveillance methods.
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Dissertation Aims

The purpose of this dissertation is to understand the epidemiologic impact of disruptions to
sexual risk behavior and HIV prevention and clinical care on HIV incidence during and after the
COVID-19 pandemic. This dissertation advances knowledge of how US MSM change health
behaviors during pandemic restrictions, how these changes ultimately affect short- and long-
term HIV transmission, and how innovations in HIV prevention interventions could reduce
transmission in this context. The findings of this dissertation have implications for both HIV
surveillance and the implementation of HIV prevention and treatment programs. These findings
may help support the EHE goals of reducing new HIV infections in the US. The specific aims of

this dissertation are:

Aim 1: Describe the magnitude, timing, and variation of sexual distancing and HIV
service utilization changes among MSM in the US during the COVID-19 pandemic.
Hypotheses: We expected that sexual distancing and service interruptions will vary in
magnitude and timing by demographic, clinical, and behavioral factors. We also anticipate that

HIV service interruptions will outlast sexual distancing.

Aim 2: Estimate the incidence of HIV among US MSM during the COVID-19 pandemic in
the presence of competing forces of sexual distancing and clinical service interruptions.
Hypotheses: We expected that sexual distancing (including reductions in sexual risk behavior)
and service reductions will alter the incidence of HIV across the pandemic era. We also
anticipated that changes in HIV service utilization will increase HIV incidence to such an extent

that EHE goals for 2030 may be unattainable.

Aim 3: Assessing the epidemiologic impact of home-based HIV prevention interventions
during the COVID-19 pandemic.

Hypotheses: We expected that because targeted home-based HIV prevention interventions may
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curtail the impact of COVID-19-related service interruptions, increased coverage, length, and
persistence of key HIV prevention interventions will result in reductions in HIV transmission, and

thus lower HIV morbidity and mortality.
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Data Sources

The data for this dissertation came from multiple sources: (1.) the American Men’s
Internet Survey (AMIS) COVID-19 impact survey, (2.) the Love and Sex in the Time of COVID-
19 survey, (3.) the ARTnet study, and (4.) published literature and publicly available data. The
AMIS COVID-19 impact survey collected data on sexual distancing and HIV service
utilization/care engagement during the COVID-19 pandemic experienced by US MSM at three
time points: April, July, and September—December 2020. The Love and Sex in the Time of
COVID-19 survey also collected data from US MSM on sexual distancing and HIV service
utilization/care engagement during the COVID-19 pandemic, but at two time points: April/May
2020 and November 2020—January 2021. The ARTnet study collected data from US MSM
during 2017-2019 on HIV-related risk behaviors, testing, and use of prevention services. It
implemented a population-based egocentric network study design that sampled individuals and
collected data on the number, attributes, and timing of their sexual partnerships. Data from the
AMIS COVID-19 impact survey and the Love and Sex in the Time of COVID-19 survey was
used in Aim 1 to examine the magnitude, timing, and variation of sexual distancing and clinical
service disruptions at various time points during the COVID-19 pandemic. ARTnet data will
provide the foundation of the network-based HIV transmission models used in Aims 2 and 3.
The results obtained from Aim 1, published literature, and publicly available data were also used

to parameterize the models used in Aims 2 and 3.

AMIS COVID-19 Impact Survey

One of the two data sources that was used to assess sexual distancing and HIV service
utilization changes among MSM in the US during the COVID-19 pandemic is the AMIS COVID-
19 impact survey. AMIS and the AMIS COVID-19 impact survey were led by Dr. Travis Sanchez

(dissertation committee member). This survey collected data from a cohort of US MSM at three
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time points during the COVID-19 pandemic: April, July, and September—-December 2020.
Participants were recruited via participation in the August—December 2019 annual AMIS study;
COVID-19 impact survey responses can be linked to 2019 AMIS responses. AMIS study
participants were recruited through convenience sampling from a variety of websites and
through social media applications using banner ads and email blasts to members. AMIS targets
hard-to-reach subpopulations of MSM (based on age, race, and geographic areas). Participants
were eligible to participate in the AMIS study if they were 15 years or older, male sex at birth,
resided in the US, and reported oral or anal sex with a man at least once at any time in the past.
Invited participants for the COVID-19 impact survey were those who participated in the 2019
AMIS study and provided their email address for future study invitations. These individuals were
sent a link to a special COVID-19 impact survey screener where AMIS eligibility was
reassessed. Those who still met AMIS eligibility and consented to participation comprised the

COVID-19 impact survey participants.

The goal of the COVID-19 impact survey was to measure COVID-19 related impacts on
several areas: general wellbeing, sexual and substance use behavior, HIV and STI prevention,
and HIV treatment. The survey collected data on reported changes in the above categories as
well as standard demographic information, self-reported HIV status, and COVID-19 mitigation
measures in an individual’s local area (additional information about the study’s measures of
interest that was used in this dissertation is included in Section D.1). Total enrollment in the first
COVID-19 study was 1,051 men, but enrollment decreased over the three survey cycles (Table
1). Participants ranged in age and US region. Approximately 70% of the study sample was non-

Hispanic white, and approximately 90% were not known to be living with HIV.

The September—December COVID-19 impact survey took place within the 2020 annual
AMIS study. Study participants were recruited in the same manner as the 2019 annual study, as

described above. The analyses in this dissertation will focus on the men from the September—
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December cycle that also participated in the April and/or July survey (as described in Section
D.1). However, an additional 6,549 men completed the COVID-19 impact survey in September—

December and their responses was examined and compared.

Table 1.1. AMIS COVID Impact Survey Sample Characteristics

April 2020  July 2020 September—-December 2020

n (%) n (%) n (%)

Total Sample 1,051 572 373
Race/Ethnicity

Non-Hispanic Black 89 (8.5) 35 (6.1) 24 (6.5)

Hispanic or Latino 146 (13.9) 74 (12.9) 40 (10.8)

Non-Hispanic White 740 (70.4) 425 (74.3) 278 (75.3)

Other or multiple races 62 (6.2) 33(5.8) 27 (7.3)
Age

15-24 214 (20.4) 83 (14.5) 49 (13.1)

25-29 179 (17.0) 89 (15.6) 57 (15.3)

30-39 210 (20.0) 118 (20.6) 94 (25.2)

240 448 (42.6) 282 (49.3) 173 (46.4)
HIV Status

Positive 122 (11.6) 59 (10.3) 32 (8.6)

Negative 809 (77.0) 466 (81.5) 327 (87.7)

Unknown 120 (11.4) 47 (8.2) 14 (3.8)
Region

Northeast 187 (17.8) 98 (17.1) 68 (18.2)

Midwest 194 (18.5) 107 (18.7) 65 (17.4)

South 427 (40.6) 223 (39) 154 (41.3)

West 241 (22.9) 143 (25) 85 (22.8)

US Territories 2(0.2) 1(0.2) 1(0.3)

Love and Sex in the Time of COVID-19 Survey

The second data source that was used to assess and parameterize sexual distancing
and HIV service utilization changes among MSM in the US during the COVID-19 pandemic is
the Love and Sex in the Time of COVID-19 survey. This survey collected data from US MSM at
two time points during the COVID-19 pandemic: April/May 2020 and November 2020-January
2021. Participants were recruited through paid banner advertisements featured on the social

networking platforms Facebook and Instagram, and on the Grindr app. Eligibility criteria
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included being over the age of 18, current residency in the US and its dependent areas,
assigned male sex at birth and currently identifying as a cis man, and reporting any type of sex
in the past 12 months. The Love and Sex in the Time of COVID-19 survey collected data on the
impact of the COVID-19 pandemic on sexual behavior, HIV prevention behaviors, substance
use, and economic and structural instability (e.g., unemployment, housing instability) (additional

information about the study’s measures of interest that was used in this dissertation is included

in Section D.1).

Approximately 700 individuals completed the survey (Table 2). Participants ranged in
age and US region. Approximately 75% of the study sample was non-Hispanic white, and

approximately 90% were not known to be living with HIV.

Table 1.2. Love and Sex in the Time of COVID-19 Survey Sample Characteristics

April/May 2020 November 2020-January 2021
n (%) n (%)

Total Sample 696 279
Race/Ethnicity

Black 35 (5.0) 11 (3.9)

White 518 (74.4) 226 (81.0)

Other 143 (20.5) 42 (15.1)
Age

18-24 140 (20.1) 40 (14.3)

25-34 317 (45.5) 129 (46.2)

35-44 171 (24.6) 78 (28.0)

245 68 (9.8) 32 (11.5)
HIV Status

Positive 56 (8.0) 23(8.2)

Negative 550 (79.0) 238 (85.3)

Unknown 90 (12.9) 18 (6.5)
Region

Northeast 117 (16.8) 45 (16.1)

Midwest 194 (27.9) 84 (30.1)

South 195 (28.0) 64 (22.9)

West 190 (27.3) 85 (30.5)

Puerto Rico 0 (0.0) 1(0.4)
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ARTnet Study

Data from the ARTnet study was used to create the network-based HIV transmission
models used in Aims 2 and 3. ARTnet was led by Dr. Samuel Jenness (dissertation chair).
ARTnet is a cross-sectional web-based study of US MSM conducted between 2017 and 2019. It
collected data in two waves: during July 2017—February 2018 and September 2018-January
2019. Participants were recruited through the annual AMIS study (described in Section C.1).1%
ARTnet eligibility criteria included male sex at birth, current male cisgender identity, lifetime

history of sexual activity with another man, and age between 15 and 65 years.

ARTnet collected data on demographic and clinical information (including HIV status),
sexual and HIV prevention behaviors, and egocentric network structures. It had an egocentric
network sampling design (described in Section B.3). Participants were asked summary
guestions about their overall number of partnerships within three types in the past year: main (a
“boyfriend, significant other, or life partner”), casual (someone they have had sex with more than
once, but not a main partner), and one-time. Persistent partnerships include both main and
casual partnerships. They were then asked detailed partner-specific questions for up to their
most recent five partners. These questions included attributes of the partner (e.g.,
demographics) and about the partnership itself (e.g., start and end dates, frequency of sexual

activity).

ARTnet enrolled 4,904 men and collected data on 16,198 partnerships (Table 3, Table
4). Participants ranged in age and US region. Approximately 72% of the study sample was non-

Hispanic white and approximately 90% were not known to be living with HIV.

Table 1.3. ARTnet Study Sample Characteristics

n (%)
Total Sample 4,904
Race/Ethnicity
Non-Hispanic Black 266 (5.4)




Hispanic 676 (13.8)
Non-Hispanic White 3,523 (71.8)
Non-Hispanic Other 439 (9.0)
Age
15-24 1324 (27.0)
25-34 1,268 (25.9)
35-44 694 (14.2)
45-54 833 (17.0)
55-65 785 (16.0)
HIV Status
Positive 428 (8.7)
Negative 3,726 (76.0)
Unknown 750 (15.3)
Region
Northeast 882 (18)
Midwest 994 (20.3)
South 1,782 (36.3)
West 1,246 (25.4)

Table 1.4. ARTnet Study Partnership Characteristics

n (%)
Total Sexual Partnerships 16,198 (100.0)
Main Partners 2,618 (16.2)
Casual Partners 5,978 (36.9)
One-time Partnerships 7,602 (46.9)
Race/Ethnicity of Partners
Black-Black 369 (2.4)
Black-Hispanic 308 (2.0)
Black-Other 181 (1.2)
Black-White 1,341 (8.8)
Hispanic-Hispanic 796 (5.2)
Hispanic-Other 453 (3.0)
Hispanic-White 2,792 (18.3)
Other-Other 233 (1.5)
Other-White 1,684 (11.0)
White-White 7,094 (46.5)
HIV Status of Partners
Negative-Negative 8,752 (54.1)
Negative-Positive 1,013 (6.3)
Negative-Unknown 4,632 (28.6)
Positive-Positive 367 (2.3)
Positive-Unknown 551 (3.4)
Unknown-Unknown 863 (5.3)
Age (Both Partners)
15-24 2,289 (14.7)
25-34 2,116 (13.6)
35-44 685 (4.4)

38
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45-54 747 (4.8)
55-65 489 (3.1)
Different Age Groups 9,229 (59.3)

External Sources

Additional Sources for Model Parameterization. Models used in Aims 2 and 3 were
additionally parameterized by estimates from external literature and publicly available data
(Table 5). Parameters included population-level information about demography, HIV clinical
epidemiology, HIV intrahost epidemiology, and HIV transmission probability. Reported estimates
were obtained in the pre-COVID era. Where applicable, parameters were updated during the
COVID-19 pandemic as indicated by Aim 1 results (e.g., clinical parameters such as HIV
testing, PrEP discontinuation, etc.). We assumed that certain parameters, in particular those
related to HIV intrahost epidemiology and HIV transmission probability, remained the same

throughout the COVID-19 pandemic.

Table 1.5. Key External Data Sources for Model Parameterization

Parameter Potential Source Aim
Demography
Race/ethnicity distribution (US) US Census Bureau® 2
Race/ethnicity distribution (Atlanta) US Census Bureau?® 3
Age distribution (US) US Census Bureau?® 2
Age distribution (Atlanta) US Census Bureau® 3
All-cause mortality National Vital Statistics12® 2,3
Proportion households headed by a male who lived
with a male partner ACS126 2
Urbanicity distribution NHANES27 2
HIV Prevention & Clinical Epidemiology (pre-COVID
Era)
HIV screening ARTnet! 2,3
ART initiation Rosenberg? 2,3
ART adherence and viral suppression Rosenberg? 2,3
Disease progression after ART initiation Chut28 2,3
PreP coverage (US) ARTnet?, NHBS?6, AIDSVul?® 2
PrEP coverage (Atlanta) ARTnet%l, NHBS?%, AIDSVu!?® 3
PrEP adherence Liul30 2,3

PrEP discontinuation Chan13t 2,3
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ART initiation, adherence, viral suppression in Georgia ~ GA DPH32 3
HIV Intrahost Epidemiology
Time to peak viremia Little133 2,3
Viral load at peak viremia Little133 2,3
Time from peak viremia to viral set point Little133, Leynaert!34 2,3
Level of set point Little133 2,3
Duration of chronic stage infection Buchbinder135 2,3
Duration of AIDS Buchbinderiss 2,3
HIV Transmission Probability
By sexual role Vittinghoff136 2,3
By viral suppression status of HIV Wilson137, Superviel38 2,3
By acute stage Leynaert134 2,3
By condom use Varghese!3® 2,3
By circumcision status Gray40 2,3
By PrEP adherence Grant41 2,3

Reported HIV Diagnoses. Case-based surveillance estimates of HIV diagnoses were used to
compare estimated incidence to reported diagnoses to examine the pattern between reported

cases and actual HIV transmission.

Multiple jurisdictions have noted less overall HIV diagnoses than expected during 2020.
For example, in North Carolina, there were 1,085 diagnoses in 2020, down from 1,379 in 2019
and 1,205 in 2018.'*? For jurisdictions releasing quarterly data, the reductions in HIV diagnoses
(relative to previous quarters) appear to be more pronounced in quarter 2 or 3 (i.e., April-June
or July—September 2020).142-144 Other jurisdictions have noticed a similar drop in HIV diagnoses
in early 2020: in New York City, there were 56 HIV diagnoses during March 23—-June 7, 2019
but only 23 during March 23-June 7, 2020 (a 59% decrease).*® Similar trends have also been

observed in reported STI diagnoses by local jurisdictions.145146

Although local data were available, we used national HIV diagnoses data of HIV
infections that are attributed to male-to-male sexual contact transmission from the National HIV
Surveillance System (NHSS).1*” These data were available quarterly from January 2019—

December 2021. Although NHSS represents HIV diagnoses, whereas our models estimated



41

incidence, we used these data to understand how closely, if at all, model-based incidence may

line up with real-world diagnoses.



42
Chapter 2. The Magnitude, Timing, and Variation of Sexual Distancing and
HIV Service Utilization Changes among MSM in the US During the COVID-

19 Pandemic

ABSTRACT

Early in the COVID-19 pandemic, disruptions to sexual health services and changes to sexual
behavior due to the first COVID-19 lockdowns were common among US gay, bisexual, and
other men who have sex with men (GBMSM). Less is known about the persistence of these
changes after this initial lockdown period. These changes have long-term implications for HIV
prevention for current and future pandemic periods. This study collected information on COVID-
related impacts on sexual behavior and HIV-related health service disruptions from a cohort of
US GBMSM at three time points during the COVID-19 pandemic. We observed that COVID-
related disruptions to sexual behavior continued from early lockdown periods through December
2020. Though early interruptions to PrEP access resolved in later 2020 and interruptions to ART
adherence were minimal, extended disruptions were observed in HIV testing, STI testing, HIV
care clinical visits, and HIV viral load testing. Although sexual behavior did not return to pre-
pandemic levels in late 2020, the reduced access to HIV prevention, testing, and treatment
services during this period could result in an overall increased HIV transmission rate, with long-
term impacts to the trajectory of the US HIV epidemic. Additional resources and programs are
needed to address challenges created by the COVID-19 pandemic, as well as prepare for future

potential pandemics and other disruptive events.

INTRODUCTION
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International restrictions to social contact and mobility (“lockdowns”), spurred by the spread of
SARS-CoV-2, have caused social and economic disruptions since March 2020. In the United
States (US), reports from early 2020 have identified that COVID-19 has prompted major
behavioral changes related to the prevention and control of HIV 444549.50.148149 "These changes
include reductions in sexual activity (“sexual distancing”) as well as disruptions to patient access

to HIV prevention, screening, and clinical care services 4445495014814

Present-day HIV prevention efforts for gay, bisexual, and other men who have sex with
men (GBMSM) focus on reducing HIV acquisition and transmission through promoting safer
sexual behaviors, increasing the availability and use of preexposure prophylaxis (PrEP), and
promoting the consistent and correct use of antiretroviral therapy (ART) so persons living with
diagnosed HIV can maintain a suppressed HIV viral load 1624150 The latter two strategies
require ongoing access to clinical services 2432; HIV transmission remains high partly due to

gaps in access to these tools 3.

COVID-related disruptions have the potential to impact the trajectory of the US HIV
epidemic. For example, clinical interruptions that lead to decreased HIV and sexually
transmitted infection (STI) testing, PrEP use, STI treatment, and HIV care may increase HIV
incidence — decreasing the proportions of GBMSM who know their status, have access to PrEP,
or are virally suppressed. Conversely, reductions in sexual risk behaviors may decrease the
spread of HIV. The impact of COVID-related disruptions firstly depends on the demographic
distribution of disruptions. Like HIV burden, disruptions have not been uniform across the US
3151 For example, Black individuals experience a higher risk of HIV and may also experience
more COVID-related disruptions in HIV prevention and care (due to disproportionate impacts of
COVID-19 on Black communities in addition to existent decreased access to HIV prevention
and care programs) 31%1-153_|n addition to demographic variations, the impact of pandemic-

related disruptions on the HIV epidemic depends on the relative extent and timing of changes in
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sexual behavior and clinical interruptions. A 2021 modeling study assessing the impact of the
COVID pandemic on HIV incidence identified that if sexual behavior rebounded while clinical
interruptions persisted, excess HIV infections would be expected because clinical interruptions

outweighed transmission-reducing impacts of sexual distancing °.

Short-term COVID-related changes can alter the US HIV epidemic in the long term
because HIV incidence and prevalence are affected by changes in HIV risk behavior and HIV
care engagement. It is necessary to understand the demographic distribution, magnitude, and
timing of COVID-related changes to sexual behavior and disruptions to HIV-related health
services in order to predict their long-term impact on HIV dynamics. Early data have
documented changes in early 2020 444550.148.149 "ht the persistence of these changes remains
unclear. It is possible that with increased social mobility following easing of lockdown restrictions
in the later months of 2020 (the “post-lockdown” period) ***, sexual behavior and access to
clinical services may have returned to pre-pandemic levels. Data on sexual behavior and clinical
service disruptions in the post-lockdown period are needed to inform how HIV transmission may

have changed at later stages of the COVID-19 pandemic.

In this study, we present the prevalence and trends of COVID-related sexual distancing
and clinical service disruptions among a cohort of US GBMSM through December 2020.
Outcomes include information on how the COVID-19 pandemic has impacted sexual behavior,
HIV testing, PrEP use, HIV clinical care, and ART adherence during the first year of the
pandemic. Characterizing the impact of the COVID-19 pandemic on HIV-related behaviors of
US GBMSM may help guide HIV prevention programs in the post-lockdown era, for example
through highlighting the need for targeted HIV testing, targeted PrEP programs, and home-
based HIV care approaches. Further, understanding the impact of the COVID-19 pandemic on
GBMSM HIV-related behavior can provide insight on how behavior may alter in future

pandemics, and thus aid in pandemic preparedness.
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METHODS

Participants. This study used data from the American Men’s Internet Survey (AMIS) COVID-19
impact survey, collected from a cohort of US GBMSM at three time points during the COVID-19
pandemic: April 2020, July 2020, and September—December 2020. Participants were recruited
via participation in the August—-December 2019 annual AMIS study *°; COVID-19 impact survey
responses were linked to 2019 AMIS responses. AMIS study participants were recruited through
convenience sampling from websites and through social media applications using banner ads
and email messages to members. AMIS targets subpopulations of GBMSM that are
underserved (with respect to age, race, and geographic area). Participants were eligible to
participate in the AMIS study if they were 15 years or older (participants 1517 years had a
waiver of parental permission), male sex at birth, resided in the US (including US territories),
and reported oral or anal sex with a man at least once. For the April 2020 COVID-19 impact
survey, individuals from the 2019 AMIS study were sent a link to a special COVID-19 impact
survey screener where AMIS eligibility was reassessed. Those who were still eligible and
consented to participation (provided online written consent) comprised the COVID-19 impact
survey participants. The analyses in this study include only on the men that completed the April
2020 survey and at least one of the follow-up surveys (either the July and/or September—
December follow-up surveys) (Figure 2.2). The study was conducted in compliance with federal
regulations governing protection of human subjects and was reviewed and approved by Emory

Univeristy’s institutional review board.

Measures. The goal of the COVID-19 impact survey was to measure COVID-19 related impacts
on several areas: general wellbeing, sexual and substance use behavior, HIV and STI
prevention, and HIV treatment. The survey collected data on reported changes in the above

categories as well as standard demographic information, self-reported HIV status, and COVID-
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19 mitigation measures in an individual’s local area. This analysis focuses on outcomes related
to sexual behavior, HIV and STI prevention, and HIV treatment in order to assess the impact
that the COVID pandemic had on HIV-related behaviors. At each time point, participants were
asked if the COVID-19 pandemic has impacted various behaviors/experiences related to sexual
health and substance use. Specifically, participants were asked, “compared to the time before
COVID-19/Coronavirus, please tell us if COVID-19 and the plans used to manage COVID-19
have impacted these things related to related to sexual health and substance use. Please tell us
only if it has changed because of COVID-19.” These behaviors/items included number of sexual
partners, opportunities to have sex, access to STI testing or treatment, use of condoms, getting
HIV tested, access to HIV medications, taking HIV medications every day as prescribed, getting
HIV care clinical visits, and getting viral loads or other labs done. Participants were asked to
select if the behavior/item “has decreased/less because of COVID-19, has not changed or
changed for reasons other than COVID-19, or has increased/more because of COVID-19.”
Participants also were asked a series of questions related to service interruptions: “Have you
had trouble getting [a given service] because of COVID-19 or the public health efforts to
manage it?” Clinical services included getting an HIV test, getting PrEP prescription from your

doctor, and getting your PrEP prescription filled at the pharmacy.

Analyses. The prevalence of COVID-19 related impacts were calculated overall and stratified by
age category and race/ethnicity category. In order to represent the full US GBMSM population,
demographic standardization using 2019 US Census age and race/ethnicity distribution weights
° was used to obtain standardized estimates with 95% confidence intervals of sexual distancing
and HIV clinical care interruptions for all US GBMSM. Chi-squared tests or Fisher's exact tests,
where applicable, were used to determine if differences by race/ethnicity were statistically
significant (with a p-value of 0.05). To examine the impacts of attrition on the study results, a
sensitivity analysis that examined the prevalence of COVID-19 related impacts only on the men

who completed each of the three study cycles was completed.
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RESULTS

Total enrollment in the first COVID-19 impact survey was 1,051 men, but enrollment decreased
over the three survey cycles (Table 1). Participants ranged in age from 15-82 years, with a
median age of 35 years (SD=15.7 years). Participants were from across the US, with the most
represented regions being the South (n=427, 40.6%). Approximately 70% of participants
(n=740) were non-Hispanic White in the first cycle, but this increased to 75% (n=278) by the

third cycle. Approximately 10% (n=122) of participants self-reported as HIV-positive.

Over half of participants (h=542, 51.5%) reported a decrease in the number of sexual
partners in April 2020, relative to sexual partners at any time before the pandemic (Table 2.2).
This continues through 2020. Approximately 5% of participants (n=57, 5.5%) reported a
decrease in condom use because of COVID-19 through December 2020. Reported decreases
in the number of sexual partners did not vary by race/ethnicity at any study cycle (Figure 2.1,
Supplemental Table 2.1), although change in use of condoms did vary (p=0.02, 0.01, 0.02 for
April, July, September—December, respectively): at each study cycle, non-Hispanic Black
participants reported both more increases in condom use (n=7, 7.8%; n=3, 9.1%; and n=3,
14.3%; respectively) and decreases in condom use (n=3, 3.3%; n=2, 6.1%; and n=3, 14.3%;
respectively) (e.g., reported the least amount of no change in condom use) relative to other

race/ethnicity groups.

Among men self-reporting as HIV-negative or with unknown HIV status, about 15% of
participants reported a decrease in HIV testing in both early and late 2020 (n=142, n=47,
respectively) (Table 2.2). In April 2020, approximately 9% of men (n=18) currently on PrEP
reported trouble getting PrEP prescription from their doctor because of the COVID-19
pandemic; by the end of the year, 7% of participants (n=6) reported trouble getting a PrEP

prescription. Although point estimates of the proportion of Hispanic men and non-Hispanic Black
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men reporting a decrease in HIV testing were higher relative to non-Hispanic White men in the
first two study cycles (n=25, 19.8%; n=8, 16.3%; and n=94, 14.7%; respectively in April 2020;
n=10, 16.4%; n=3, 15.8%; and n=44, 11.9% in July 2020), differences were not statistically
significantly different by race/ethnicity at any study cycle (p=0.12, 0.67, and 0.10, respectively).
Differences in trouble getting an HIV test or getting a PrEP prescription also were not

statistically significantly different by race/ethnicity at any study cycle.

Among men self-reporting as living with HIV, 28% of men (n=33) reported a decrease in
getting HIV care clinical visits because of the COVID-19 pandemic in April 2020, decreasing to
19% (n=6) by the end of the year (Table 2.2). Few participants reported disruptions in their
access to antiretroviral therapy: only 5% (n=6) of participants living with HIV reported a
decrease in taking HIV medication every day as prescribed in April 2020, although this
increased to 6.7% (n=2) in late 2020. Although participants reported decreases in access to HIV
medication, taking HIV medication every day as prescribed, getting HIV care clinical visits,
getting viral loads or other labs are higher among minority race/ethnic groups relative to non-
Hispanic White men, differences were not statistically significantly different by race/ethnicity at

any study cycle.

Standardization by Census-derived age and race/ethnicity weights did not greatly impact
our results (Table 2.3). For example, the percent of men who reported a decrease in sexual
partners in April 2020 changed from a crude percent of 52% to a standardized percent of 54%.
However, the 95% confidence intervals for some standardized estimates are wide due to limited

sample size within strata.

We observed similar results when restricting the study participants to only those who
participated in all three study cycles (n=265) (Table 2.4). Overall, approximately 55% (n=143) of
these participants reported a decrease in the number of sexual partners through the study

period. Among these HIV-negative participants, approximately 14% reported a decrease in HIV
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testing in both early and late 2020 (n=34 and n=39, respectively), and 9% (n=5) of these
participants on PrEP reported trouble getting a PrEP prescription in late 2020. Among these
HIV-positive participants, 32% of men (n=7) reported a decrease in getting HIV care clinical
visits because of the COVID-19 pandemic in April 2020, decreasing to 10% (n=2) by the end of
the year. Only one participant (5%) that participated in all three study cycles reported a

disruption in antiretroviral therapy adherence, which occurred in April 2020 only.

DISCUSSION

In this study, we observed that COVID-related disruptions to HIV prevention and treatment
services and changes in sexual behavior continued from early lockdown periods through
December 2020. Extended disruptions were observed in HIV testing, STI testing, HIV care
clinical visits, and HIV viral load testing, with only small improvements over time. Although
sexual behaviors including number of sexual partners and opportunities to have sex remained
below pre-pandemic levels in later 2020 for many GBMSM, reduced access to HIV prevention,
testing, and treatment services that lasted through the year created additional challenges for the

control of HIV, which could result in an overall increased HIV transmission rate.

Consistent with other studies and as previously reported,**148 we observed that
measures of sexual behavior decreased in early 2020. In our study, GBMSM reported both a
decrease in sexual partners and opportunities to have sex in April-May 2020. This aligns with
the findings of Pampati et al, who observed that among a cohort of PrEP-using MSM in the
southern US, MSM had a decrease in number of sexual partners during February—April 2020 .
A study by McKay et al of US gay and bisexual men also noted a decrease in sexual partners
during April-May 2020 48, Our results expand upon these early findings in finding that changes

in sexual behavior persisted through the end of the year: most participants reported both a
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decrease in number of sexual partners and opportunities to have sex in both July 2020 and

September—December 2020.

Our results additionally complement the early reports that document decreased
utilization of/access to HIV prevention and treatment services in the initial stages of the COVID-
19 pandemic “°14%; our study observed that US GBMSM experienced HIV prevention and
service disruptions because of the pandemic. For GBMSM not living with HIV, initial disruptions
to HIV testing and PrEP prescriptions continued in late 2020 for 15% and 7% of participants,
respectively. For GBMSM living with HIV, care access was reduced throughout 2020; in late
2020, approximately 19% of participants reported a decrease in HIV medical care visits, down
from 28% in April 2020. As others have reported, we observed that few participants reported
disruptions in their access to antiretroviral therapy in early 2020, and this continued through the
year. Although interruptions to HIV clinical care were not widespread and decreased by the end
of 2020, these findings highlight the opportunity for new and targeted HIV clinical care
interventions, such as home-based HIV care initiation and retention approaches, including

telehealth services and multi-month ART prescriptions.

We observed that most sexual behavior and clinical service disruption measures did not
vary significantly by race/ethnicity. Due to the vast racial/ethnic inequities in HIV infection and
HIV prevention in the US that pre-date the COVID pandemic, we would expect HIV transmission
to increase most dramatically as a result of the COVID pandemic in a scenario in which clinical
service disruptions are more experienced by Black and Hispanic/Latino GBMSM. Historically
and in present day, Black and Hispanic/Latino GBMSM have been the most disproportionately
affected populations in the US 3. This is a result of social and structural factors, including but not
limited to structural racism, lack of access to quality health care, provider bias, discrimination,
and poverty, which exist in the environments in which sexual risk behaviors occur %1%, In our

study, we observed that non-Hispanic White men reported less trouble accessing HIV testing,
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PrEP, and HIV clinical care services, but these differences were not statistically significant for
any measure at any study cycle. However, small population-level changes in health care access
and/or behavior might still affect the HIV epidemic since HIV transmission in a community can
be driven by a small number of individuals,'®*” so even non-significant differences are of note.
Targeted HIV prevention efforts among marginalized communities remain essential due to the

historically higher burden of HIV experienced by Black and Hispanic GBMSM populations.

Data that assess the temporal changes of sexual risk behaviors and HIV prevention and
treatment service utilization are necessary to determine the impact of the COVID-19 pandemic
on HIV transmission. The impact of decreased HIV screening, for example, could be offset by
concurrent reductions in sexual risk behavior, but the timing and demographic distribution of
changes are important. If service interruptions occur in populations with the highest burden of
HIV, for example, there may be greater effects on HIV transmission. Modeling studies that use
demographically stratified empirical reports of sexual distancing and HIV clinical service
disruptions, such as the data presented in our study, can help examine how pandemic

disruptions will impact the trajectory of the US HIV epidemic.

This analysis has several limitations. First, study data were obtained from convenience
sampling and may not generalizable to all US GBMSM even after demographic standardization.
Study participants were more likely to be of non-Hispanic White race/ethnicity, of higher
socioeconomic status, and more likely to be insured than the general US GBMSM population.
This was patrticularly true in the later cycles of this study because there was significant loss to
follow-up. Although our sensitivity analysis findings demonstrate that attrition did not affect the
overall results (the prevalence of sexual behavior and clinical services disruptions experienced
by the subset of men who participated in all three study cycles were similar to those
experienced by the full study population), participants in the third study cycle were more likely to

be non-Hispanic white, older, and not known to be living with HIV. Lack of generalizability may
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be particularly important for our race/ethnicity findings, given that minority race/ethnicity
participants may be more likely to be insured and of higher SES than minority race/ethnicity

GBMSM populations, skewing our results to appear to have less racial/ethnic disparities.

Further, the surveys only involved self-report of COVID-related impacts. Participants
might have misreported the impacts that the COVID-19 pandemic have had on their sexual
behaviors or service utilization/access or misreported the timing of changes. For example,
although all participants in this study participated at each study cycle, participants may have
been referring to any time during the COVID-19 pandemic when they complete the impact
guestions (e.g., referring to a decrease in partners during August when they complete the
survey in September). However, this concern is somewhat mitigated in seeing that clear
temporal decreases in some outcomes are observed (e.g., trouble getting an HIV test, trouble in
getting a PrEP prescription). Further, COVID-19 impact survey measures are primarily
categorical (e.g., behavior increased, decreased, no change); continuous measures such as the
exact number of sexual partners would be useful to identify more specific changes in sexual
behavior. For example, a fraction of participants may have reduced their partners by only one
partner, whereas others may have reduced their partners by several partners. The impact of
these reductions on population-level transmission dynamics are difficult to predict without data
on these nuances. Lastly, our findings have limited temporal generalizability, given the ongoing
changing nature of the COVID-19 pandemic and local restrictions and social behavior patterns.
A major strength of this study is its longitudinal nature, but even within one study cycle there

could be short-term temporal fluctuations.

This study is the first to examine the impact of the COVID-19 pandemic on both sexual
behavior and clinical services disruptions among US GBMSM through December 2020.
Although our findings demonstrated that GBMSM had continued reductions in sexual behavior

in late 2020, that access to PrEP was returned to normal in late 2020, interruptions to ART
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adherence were minimal, and interruptions did not significantly vary by race/ethnicity, our
findings highlight the gaps in HIV prevention and treatment that have worsened in the pandemic
era. In addition to elucidating behavioral patterns that may occur during future pandemics (and
thus aiding in pandemic preparedness), our findings highlight that additional resources and
programs will be needed to address existing disparities in HIV prevention and treatment (such
as those increasing uptake of PrEP among indicated GBMSM), in addition to solving the new

challenges created by the COVID-19 pandemic (such as decreases in HIV testing).



TABLES

Table 2.1. Characteristics of GBMSM Who Participated in All Three Cycles of the 2020 AMIS COVID-19 Impact Survey, United States, April—

December 2020
April 2020 July 2020 D(f:elzor;eb”e]z?;:)_m
n (%) n (%) n (%)
Total Sample 1,051 572 373
Race/Ethnicity
Non-Hispanic Black 89 (8.5) 36 (6.3) 24 (6.5)
Non-Hispanic White 740 (70.4) 428 (75.0) 278 (75.3)
Hispanic or Latino 146 (13.9) 74 (13.0) 42 (11.4)
Other or multiple races 65 (6.2) 33 (5.8) 25 (6.8)
Age (years)
15-24 214 (20.4) 83 (14.5) 49 (13.1)
25-29 179 (17.0) 89 (15.6) 57 (15.3)
30-39 210 (20.0) 118 (20.6) 94 (25.2)
240 448 (42.6) 282 (49.3) 173 (46.4)
HIV Status
Positive 122 (11.6) 59 (10.3) 32 (8.6)
Negative 809 (77.0) 466 (81.5) 327 (87.7)
Unknown 120 (11.4) 47 (8.2) 14 (3.8)
Region
Northeast 187 (17.8) 98 (17.1) 68 (18.2)
Midwest 194 (18.5) 107 (18.7) 65 (17.4)
South 427 (40.6) 223 (39) 154 (41.3)
West 241 (22.9) 143 (25) 85 (22.8)
US Territories 2(0.2) 1(0.2) 1(0.3)




Table 2.2. Frequency of Selected AMIS COVID-19 Impact Survey Outcomes, United States, April-December 2020
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Not Changed Decreased Increased
n (%) n (%) n (%)
April 501 (47.6) 542 (51.5) 9 (0.9)
Number of sexual
partners July 219 (40) 320 (58.4) 9 (1.6)
Sept—-Dec 158 (44.8) 189 (53.5) 6 (1.7)
o April 283 (27.1) 718 (68.6) 45 (4.3)
Opportunities to have
sex July 151 (27.6) 381 (69.5) 16 (2.9)
Sept-Dec 104 (29.8) 237 (67.9) 8 (2.3)
April 980 (93.8) 57 (5.5) 8 (0.8)
Use of condoms July 515 (94.3) 23 (4.2) 8 (1.5)
Sept-Dec 322 (92.3) 19 (5.4) 8 (2.3)
April 737 (83.4) 142 (16.1) 5 (0.6)
Getting HIV tested?® July 415 (86.8) 62 (13.0) 1(0.2)
Sept-Dec 261 (84.5) 47 (15.2) 1(0.3)
_ April 775 (74.2) 267 (25.6) 3(0.3)
Access to STl testing
or treatment July 438 (80.4) 106 (19.4) 1(0.2)
Sept-Dec 281 (80.5) 66 (18.9) 2 (0.6)
April 112 (92.6) 7 (5.8) 2(1.7)
Access to HIV meds® July 53 (93) 3(5.3) 1(L.8)
Sept—Dec 28 (90.3) 2 (6.5) 1(3.2)
April 111 (91.7 6 (5 4 (3.3
Taking HIV meds every P (91.7) ®) (3.3)
day as prescribed® July 55 (96.5) 1(1.8) 1(1.8)
Sept—Dec 28 (93.3) 2(6.7) 0 (0)
April 86 (71.7 33 (27.5 1(0.8
Getting HIV care P (717 (e7.5) ©.8)
clinical visits® JU'y 38 (66.7) 19 (33.3) 0 (0)
Sept-Dec 25 (80.6) 6 (19.4) 0 (0)
Getting viral loads or April 88 (73.3) 29 (24.2) 3(2.5)
b
other labs done July 41 (71.9) 16 (28.1) 0 (0)
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Sept-Dec 25 (83.3) 5 (16.7) 0 (0)
No Yes | haven’t tried to get
n (%) n (%) n (%)
_ April 236 (25.8) 52 (5.7) 628 (68.6)
Trouble getting an HIV
test? July 244 (50.4) 39 (8.1) 201 (41.5)
Sept-Dec 207 (65.1) 31(9.7) 80 (25.2)
Trouble getting PrEpP April 140 (68.6) 18 (8.8) 46 (22.5)
prescription from your July 84 (88.4) 8 (8.4) 3(3.2)
doctor®
Sept—-Dec 76 (92.7) 6 (7.3) 0(0)
Trouble getting your April 138 (67.6) 12 (5.9) 54 (26.5)
PreP prescriptiocn filled July 87 (91.6) 5 (5.3) 3(3.2)
at the pharmacy Sept-Dec 72 (87.8) 7 (8.5) 3(3.7)

STI, sexually transmitted infection; PrEP, pre-exposure prophylaxis
a8For men self-reporting as HIV-negative or with unknown HIV status
®For men self-reporting as living with HIV
°For men self-reporting as HIV-negative or with unknown HIV status and currently using PrEP

Table 2.3. Age and Race/Ethnicity Standardization of Selected AMIS COVID-19 Impact Survey Outcomes, United States, April-December 2020

No Change Decreased Increased
% (95% CI) % (95% CI) % (95% CI)
ber of | April 0.45 (0.4, 0.49) 0.54 (0.49, 0.59) 0.01 (0, 0.02)
Number of sexua
partners July 0.39 (0.33, 0.44) 0.6 (0.52, 0.68) 0.02 (0.01, 0.03)
Sept-Dec 0.43 (0.35, 0.51) 0.56 (0.46, 0.65) 0.01 (0, 0.03)
April 0.27 (0.23, 0.3) 0.69 (0.64, 0.75) 0.04 (0.03, 0.05)
Opportunities to
have sex July 0.25 (0.21, 0.3) 0.72 (0.63, 0.8) 0.03 (0.01, 0.04)
Sept-Dec 0.28 (0.21, 0.34) 0.7 (0.6, 0.81) 0.02 (0.01, 0.04)
April 0.93 (0.87, 1) 0.06 (0.04, 0.07) 0.01 (0, 0.02)
Use of condoms July 0.93 (0.84, 1) 0.05 (0.03, 0.07) 0.02 (0, 0.04)
Sept-Dec 0.91 (0.79, 1) 0.06 (0.03, 0.1) 0.03 (0.01, 0.05)
Getting HIV tested? April 0.83 (0.76, 0.91) 0.16 (0.13, 0.19) 0.01 (0, 0.01)




July 0.87 (0.77, 0.98) 0.13 (0.09, 0.16) 0 (0, 0.01)
Sept-Dec 0.86 (0.73, 0.99) 0.14 (0.09, 0.2) 0 (0, 0.01)
Access 1o STI April 0.74 (0.69, 0.8) 0.25 (0.22, 0.29) 0 (0, 0.01)
testing or July 0.81 (0.72, 0.9) 0.19 (0.15, 0.23) 0 (0, 0)
treatment Sept-Dec 0.8 (0.69, 0.91) 0.19 (0.14, 0.24) 0.01 (0, 0.02)
April 0.87 (0.67, 1) 0.07 (0.01, 0.13) 0.03 (0, 0.09)
ﬁ%%isés to HIV July 0.76 (0.53, 0.98) 0.04 (0, 0.08) 0.02 (0, 0.05)
Sept-Dec 0.6 (0.37, 0.83) 0.04 (0, 0.09) 0.02 (0, 0.05)
Taking HIV meds April 0.88 (0.68, 1) 0.06 (0.0, 0.11) 0.04 (0, 0.08)
every day as July 0.78 (0.56, 1) 0.01 (0, 0.04) 0.02 (0, 0.05)
prescribed” Sept-Dec 0.6 (0.37, 0.83) 0.06 (0, 0.14) 0 (0, 0)
_ April 0.74 (0.54, 0.93) 0.24 (0.14, 0.33) 0 (0, 0.01)
giert]til:na? ylg/tg? re July 0.51 (0.34, 0.68) 0.3 (0.15, 0.45) 0 (0, 0)
Sept-Dec 0.52 (0.31, 0.74) 0.13 (0.02, 0.25) 0 (0, 0)
o April 0.71 (0.53, 0.89) 0.25 (0.14, 0.36) 0.02 (0, 0.04)
ngtt'ﬂgr‘iggg 'gg‘gzb July 0.56 (0.38, 0.75) 0.25 (0.11, 0.39) 0(0, 0)
Sept-Dec 0.54 (0.32, 0.76) 0.12 (0.0, 0.23) 0 (0, 0)
No Yes | haven’t tried to get
% (95% Cl) % (95% Cl) % (95% Cl)
. April 0.27 (0.23, 0.31) 0.06 (0.04, 0.08) 0.67 (0.6, 0.73)
Lrls/utgﬁagemng an July 0.52 (0.43, 0.6) 0.08 (0.05, 0.11) 0.4 (0.33, 0.46)
Sept-Dec 0.64 (0.53, 0.74) 0.1 (0.05, 0.15) 0.27 (0.19, 0.34)
Trouble getting April 0.73 (0.59, 0.87) 0.07 (0.03, 0.1) 0.2 (0.13, 0.28)
PrEP prescription July 0.84 (0.61, 1) 0.1 (0.02, 0.19) 0.02 (0, 0.04)
from yourdoctor®  gon_pec 0.87 (0.63, 1) 0.08 (0, 0.17) 0 (0, 0)
Trouble getting April 0.7 (0.56, 0.83) 0.04 (0.0, 0.06) 0.27 (0.18, 0.35)
g‘r’:gcfir;f’on e July 0.88 (0.64, 1) 0.05 (0, 0.11) 0.03 (0, 0.06)
at the pharmacy® Sept-Dec 0.83 (059, 1) 0.09 (0, 0.17) 0.03 (0, 0.07)

Standardized by age (15-24, 25-29, 30-39, 240 years) and race (NH Black, NH White, Hispanic, Other).

Cl: confidence interval; STI, sexually transmitted infection; PrEP, pre-exposure prophylaxis
a8For men self-reporting as HIV-negative or with unknown HIV status
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bFor men self-reporting as living with HIV
°For men self-reporting as HIV-negative or with unknown HIV status and currently using PrEP

Table 2.4. Frequency of Selected AMIS COVID Impact Survey Outcomes Where Participant Participated in All Three Survey Cycles (n=265)

Not Changed Decreased Increased
n (%) n (%) n (%)
April 120 (45.6) 143 (54.4) 0 (0.0)
Number of sexual
partners July 106 (42.7) 137 (55.2) 5 (2.0)
Sept-Dec 107 (42.8) 137 (54.8) 6 (2.4)
April 67 (25.5) 185 (70.3) 11 (4.2)
Opportunities to
have sex July 68 (27.4) 171 (69.0) 9 (3.6)
Sept-Dec 68 (27.6) 173 (70.3) 5 (2.0)
April 248 (94.3) 13 (4.9) 2 (0.8)
Use of condoms July 232 (93.5) 11 (4.4) 5(2.0)
Sept-Dec 227 (91.2) 15 (6.0) 7 (2.8)
April 195 (84.4) 34 (14.7) 2 (0.9)
Getting HIV
testeda July 195 (86.7) 30 (13.3) 0 (0.0)
Sept-Dec 190 (86.4) 29 (13.2) 1 (0.5)
Access to ST April 202 (76.8) 61 (23.2) 0 (0.0)
testing or July 201 (81.0) 46 (18.5) 1(0.4)
treatment Sept-Dec 207 (83.1) 41 (16.5) 1(0.4)
April 22 (100.0) 0 (0.0) 0 (0.0)
Access to HIV
meda® July 15 (88.2) 1(5.9) 1 (5.9)
Sept-Dec 18 (90.0) 1(5.0) 1 (5.0)
every day as July 16 (94.1) 0 (0.0) 1(5.9)
H b
prescribed Sept-Dec 20 (100.0) 0 (0.0) 0(0.0)
Getting HIV care April 15 (68.2) 7(31.8) 0(0.0)
clinical visits® July 14 (82.4) 3(17.6) 0 (0.0)




Sept-Dec 18 (90.0) 2 (10.0) 0 (0.0)
Getting viral April 17 (77.3) 5(22.7) 0 (0.0)
loads or other July 15 (88.2) 2(11.8) 0 (0.0)
labs done”® Sept-Dec 16 (84.2) 3 (15.8) 0(0.0)
No Yes | haven’t tried to get
n (%) n (%) n (%)
. April 69 (28.9) 16 (6.7) 154 (34.4)
;;Oﬁﬁllet gsetgt'”g July 128 (56.1) 20 (8.8) 80 (35.1)
Sept-Dec 149 (65.6) 22 (9.7) 56 (24.7)
Trouble getting April 39 (69.6) 2(3.6) 15 (26.8)
PrEP prescription July 52 (89.7) 5 (8.6) 1(1.7)
from your doctor Sept-Dec 52 (91.2) 5(8.8) 0(0.0)
Trouble getting April 39 (69.6) 3 (5.4) 14 (25.0)
ﬁ%ﬂ!ﬂﬁﬁlnnued July 53 (914) 3(5:2) 2(3.4)
at the pharmacy® Sept-Dec 50 (87.7) 5(8.8) 2 (3.5)

STI, sexually transmitted infection; PrEP, pre-exposure prophylaxis
aFor men self-reporting as HIV-negative or with unknown HIV status

®For men self-reporting as living with HIV

°For men self-reporting as HIV-negative or with unknown HIV status and currently using PrEP

Table 2.5. Frequency of Selected AMIS COVID-19 Impact Survey Outcomes Stratified by Race/Ethnicity
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P-
Hispanic Non-Hispanic Black Non-Hispanic White Other valu
e
Decrease Increase ChNOt Decrease Increase Not Decrease Increase Not Decrease Increase Not
d ange d d Change d d Chadnge d d Cha&nge
d
0, 0, 0,
") ne | MO0 OO g | 0D nOD g | M09 0B e
. 40 380 355
April | 74 (51.0) 2(14) 69(47.6) | 49(54.4)  1(L.1) (4a.4) (51.3) 6 (0.8) (479 | 330608 0000 32(49.2) | 0.94
Number of ) ) y
sexual July | 43(632) 0(0.0) 25(36.8) | 18(545)  1(3.0) (41244) (;;112) 8 (1.9) (3?96‘3) 16(57.1) 0(0.0) 12(42.9) | 0.86
partners ' ’ )
Sept 144 118
Toee | 171459 0(0.0) 20(54.1) | 13(61.9) 1(4.8) 7(33.3) (53.9) 5 (1.9) (ap) | 14660 0000 11(440) | 061
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April | 9(6.3) 0(0.0) (9133.‘;) 7(78)  3(3.3) (88899) 36(4.9)  3(04) (963%) 347 231 59(92.2) | 0.02
gosr? docfms uly | 49 3(44) 61(89.7) | 3(©1)  2(6.1) (Bffs) 1434  3(0.7) (55?.2) 2(71)  0(0.0) 26(929) | 0.01

St 254 0(0.0) 35(94.6) | 3(143) 3(14.3) (711*.34) 14(5.3)  5(L9) (gg_‘é) 0(0.0)  0(0.0) (15(;3. o | 002

. ) 40 545

seting April | 25(19.8) 2(16%) 99(786) | B(163) 120 g | 94@4D 203 g0 | 1211 000 45(789) | 0.2
HIV July | 10(16.4) 0(0.0%) 51(83.6) | 3(15.8)  0(0.0) (8162) 44(119) 1(0.3) (:72‘:3) 4(167)  0(0.0) 20(83.3) | 0.67
tested? i y

_Sggé 4(121)  0(0.0%) 29(87.9) | 4(26.7)  1(6.7) (6};)7) 37(156)  0(0.0) (822'3) 295  0(0.0) 19(90.5) | 0.10

April | 1(7.7) 000) 12(92.3) | 2(5.3) 1(2.6) (gefl) 4(6.2) 1(15) 60(92.3) | 0(0.0) 0(0.0) 5(100.0) | 1.00
ﬁf\fenfz dtgb July | 0(0.0) 0(0.0)  7(100.0) | 1(9.1) 0(0.0) (9%)(_’9) 2 (5.6) 1(28) 33(91.7) | 0(0.0) 0(0.0) 3(100.0) | 1.00

_Sggé 0(0.0) 0(0.0) 2(100.0) | 0(0.0)  0(0.0) (102_0) 2(9.5) 1(4.8) 18(85.7) | 0(0.0) 0(0.0) 2(100.0) | 1.00
LT‘\';';% gs  April | 2(15.4) 1(7.7) 10(76.9) | 1(2.6) 3(7.9) (83‘.‘5) 3 (4.6) 0(0.0) 62(95.4) | 0(0.0) 0(0.0)  5(100.0) | 0.08
:‘S’ery day 54y | 0(0.0) 0(0.0) 7(100.0) | 1(9.1) 0(0.0) (9%)99) 0(0.0) 1(28) 35(97.2) | 0(0.0) 0(0.0) 3(100.0) | 0.61
prescribed _Sggé 1 (50.0) 0(0.0) 1(50.0) | 0(0.0) 0(0.0) (102.0) 1(4.8) 0(0.0) 20(95.2) | 0(0.0) 0(0.0) 2(100.0) | 0.28
Getting April | 4(30.8)  0(0.0) 9(69.2) | 14(36.8) 1(2.6) (6%?5) 15(23.4) 0(0.0) 49(76.6) | 0(0.0) 0(0.0) 5(100.0) | 0.26
CHI'I\él‘éz{e July | 4(7.1)  0(00) 3(429) | 6(545  0(0.0) 5(@55 | 8222  0(0.0) 28(77.8) | 1(333) 0(0.0) 2(66.7) | 0.09
visits? _Sggé 1(50.0) 0(00) 1(500) | 1(16.7) 0(00) 5(833) | 4(19.0) 0(0.0) 17(81.0) | 0(0.0) 0(0.0) 2(100.0) | 0.71
Getting April | 4(30.8) 1(77)  8(615) | 10(26.3) 2(5.3) (6?4) 15(23.4) 0(0.0) 49(76.6) | 0(0.0) 0(0.0) 5(100.0) | 0.25
‘(;irri'ﬂ!fr‘ds July | 2(28.6) 0(0.0) 5(71.4) | 6(545)  0(0.0) 5(455) | 7(19.4) 0(0.0) 29(80.6) | 1(33.3) 0(0.0) 2(66.7) | 0.11
labs done® _SDegé 1 (50.0) 0(0.0) 1(50.0) | 0(0.0) 0(0.0) (10%_0) 4(20.00 0(00) 16(80.0) | 0(0.0) 0(0.0) 2(100.0) | 0.38

| haven’t | haven’t | haven’t | haven’t
tried to No Yes tried to No Yes tried to No Yes tried to No Yes
get n (%) n (%) get n (%) n (%) get n (%) n (%) get n (%) n (%)
n (%) n (%) n (%) n (%)

Lo April | 83(63.4) 38(29.0) 10 (7.6) (683%) 13(26.0) 3(6.0) (?c?i) (2156'71) 32 (4.8) (62.3) 16(27.1) 5(85) | 056
ggt‘:iz'g a Uy | 25610 29(75) 7(15) | 4(00) 12600 400 | jg’%) (5133) 2567 | 43.%) 12(48.0) 3(12.0) | 0.15
AViestt  SePl| 529 25(714) 2(7) | 5(333) 7(67) 3(200) | 62(25.6) (slﬂa) 23(95) | 5(L7) 15(652) 3(13.0) | 0.62

April | 4(143) 20(71.4) 4(143) | 4(250) 12(75.0) 0(0.0) | 34(23.3) 98(67.1) 14(9.6) | 3(25.0) 9(75.0) 0(0.0) | 0.69




Had
trouble
getting
Prep
prescripti
on from
doctor®

Juy | 1(7.2) 11(78.6) 2 (14.3) 0(0.0) 6(100.0) 0(0.0) 2(2.9)  62(89.9)

SePU| 0@o) 11(17)  1(83) | 0(00) 4(1000) 0(00) | 0(00)  57(9L9)

5(7.2)

5(8.1)

0 (0.0)

0 (0.0)

5 (83.3)

4(100.0)

1(16.7)

0(0.0)
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0.56

1.00

PrEP, pre-exposure prophylaxis

aFor men self-reporting as HIV-negative or with unknown HIV status

®For men self-reporting as living with HIV

°For men self-reporting as HIV-negative or with unknown HIV status and currently using PrEP



FIGURES

Figure 2.1. Prevalence of Selected AMIS COVID-19 Impact Survey Outcomes Stratified by
Race/Ethnicity during April-December 2020
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Figure 2.2. Flow Diagram Linking AMIS 2019, AMIS 2020, AMIS COVID-19 Impact Survey Cycles, and
Study Population
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Chapter 3. Estimation of the Incidence of HIV among US MSM During the
COVID-19 Pandemic in the Presence of Competing Forces of Sexual

Distancing and Clinical Service Interruptions

ABSTRACT
BACKGROUND

HIV is a major public health challenge that has become more complex because of the COVID-
19 pandemic. It is unclear what the long-term impacts of temporary COVID-19-related social
distancing and clinical service disruptions will be on HIV transmission and dynamics. This study
uses empirical behavioral data in a mathematical model to estimate the incidence of HIV among

US MSM during the COVID-19 pandemic up to mid-2021.
METHODS

Parameterized by multiple nationally representative data sources of COVID-era sexual
behavior, HIV prevention services, and/or HIV clinical service disruptions, we used a network-
based model of HIV transmission dynamics to estimate HIV incidence during the COVID
pandemic among all US MSM. Model scenarios were used to simulate the combined effect of
COVID-era changes in sexual behavior, condom use, HIV testing, and PrEP use; the individual
isolated effects of these changes; and to represent a counterfactual scenario in which the

COVID pandemic did not take place and affect HIV-related behaviors and services.
RESULTS

When incorporating reported sexual behavior and service disruption changes through the Spring
of 2021, a decrease in HIV incidence was observed from March 2020 and is sustained until mid-

2021. The largest decrease in incidence occurred in May 2020, representing a 36% decrease in
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HIV incidence compared to the base (no pandemic) scenario. Driven mainly by reductions in
sexual behavior, the COVID pandemic is projected to have prevented 2,227 new HIV infections
among all US MSM over a five year period. Despite the temporary reductions in HIV
transmission, by 2022, HIV incidence returned to the counterfactual HIV incidence of our base

(no pandemic) scenario.
CONCLUSIONS

Although temporary decreases in HIV transmission may have occurred during the COVID
pandemic, they were not sufficient to alter the long-term trajectory of the US HIV epidemic. HIV

prevention efforts remain important, both in and out of a pandemic context.

INTRODUCTION

Human immunodeficiency virus (HIV) remains a major public health challenge in the
United States (US) and has become more complex because of the COVID-19 pandemic.
Current public health efforts to prevent HIV among gay, bisexual, and other men who have sex
with men (MSM) focus on reducing HIV acquisition and transmission by promoting safer sexual
behaviors,® increasing the availability and use of pre-exposure prophylaxis (PrEP),?* and
increasing the consistent use of antiretroviral therapy (ART).2° These strategies are a part of
the US Ending the HIV Epidemic: A Plan for America (EHE) initiative.®® Announced in early
2019, EHE aims to reduce new HIV infections in the US by 75% by 2025 and 90% by 2030 by
expanding HIV prevention and treatment efforts.*® EHE was developed and initiated in the pre-
COVID era, however, and did not anticipate mass pandemic-related impacts. But since its
inception, economic and social disruptions in response to the COVID-19 global pandemic have
interrupted HIV prevention and treatment services, reducing access to HIV testing, PrEP visits,

and HIV care retention.*445:49.50.158,159
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These COVID-19-related interruptions to HIV prevention and clinical care may increase
the rate of HIV acquisition and transmission. For example, reduced access to PrEP for indicated
persons can lead to additional risk of HIV acquisition, and reduced HIV testing can lead to more
undiagnosed HIV, and therefore more population-level risk of HIV transmission as newly
infected individuals do not know their HIV status (but may not take precautions to prevent
transmitting it to others). Reduced access to HIV care retention can lead to less viral
suppression, and a higher risk for HIV transmission. At a population level, these factors can

increase HIV transmission and alter the trajectory of the HIV epidemic.

COVID-19 disruptions have also prompted major behavioral changes to social
interaction, including reductions in sexual activity (“sexual distancing”) and reductions in number
of sexual partners.*+1%° Such reductions in sexual activity may counterbalance the effects of
clinical service interruptions with respect to HIV transmission. Disruptions to HIV prevention and
clinical care can increase the rate of HIV acquisition and transmission, while reductions in
sexual risk activity can decrease it. The impact of this balance depends on the relative extent
and timing of such changes.®”® Studies of the magnitude of clinical interruptions and sexual
behavior changes among US MSM#44549.158,161-168 g ggest that COVID impacts may be
detrimental to HIV prevention efforts. For example, in a cohort of PrEP-using MSM in the south,
Pampati et al. found that a quarter of the cohort documented challenges when attempting to
access PrEP, HIV testing, or STl testing.** Using data from 60 state and local health
departments, Patel et al. found that there was a 46.0% reduction in the number of HIV tests
conducted in 2020 compared to 2019.1%” On the other hand, in a study of US MSM, McKay et al.
found that there were decreases to number of reported sexual partners in April and May 2020

compared to before the pandemic.%®

However, the actual combined effect of these changes (based on empirical data, not

theoretical data) on HIV transmission among US MSM during the COVID-19 pandemic has not
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yet been quantified. Some modeling studies have examined how certain theoretical levels of
COVID-related changes may potentially impact HIV transmission,®”¢® but to our knowledge
none have examined actual HIV transmission using empirical data. The Centers for Disease
Control and Prevention (CDC) has released HIV incidence estimates during the pandemic
period, but have noted that these data are not reliable due to pandemic impacts to HIV
services.'®®17% Studies which determine the actual impact of COVID-related disruptions to
clinical care services and sexual behavior on HIV transmission among US MSM are needed.
These studies can help fill the gap in the literature regarding unknown COVID-era HIV
transmission (caused both by theoretical COVID impact studies, and by the unreliability of case-

based HIV surveillance-based incidence estimates during the COVID pandemic).

This study uses empirical data to parameterize a network-based mathematical model in
order to estimate the incidence of HIV among US MSM during the COVID-19 pandemic. We
hypothesized that sexual distancing and service reductions would alter the incidence of HIV
across the pandemic era, with long-term effects/consequences on control of HIV transmission.
We also hypothesized that changes in HIV service utilization would increase HIV incidence to
such an extent that EHE goals for 2030 would be unattainable. This study represents a novel

approach to estimating the actual impact of COVID-19 on HIV transmission among US MSM.

METHODS

Study Design. This model of HIV transmission dynamics for US MSM was built on the EpiModel
software platform.t”* EpiModel simulates HIV epidemics over dynamic contact networks of US
MSM using temporal exponential random graph models (TERGMSs).1"2 Specific model
extensions were built to simulate HIV transmission among US MSM from 2018 to 2030 to

estimate the impact of reported COVID-related changes in sexual behavior and HIV clinical
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services on HIV transmission during the COVID pandemic period. Our goal was to project the

long-term impact of these pandemic changes on HIV incidence.

Network Model. Components of the model representing sexual network structure were fit using
data from ARTnet, a cross-sectional web-based study of US MSM conducted between 2017
and 2019.°* ARTnet participants were recruited through the annual American Men'’s Internet
Survey (AMIS) study.'?* ARTnet eligibility criteria included male sex at birth, current male
cisgender identity, lifetime history of sexual activity with another man, and age between 15 and
65 years. The use of ARTnet data in EpiModel network models has been described

previously.67173

Our model represented main, casual, and one-time sexual partnerships. Age and
race/ethnicity mixing, the formation and dissolution of persistent partnerships, and the rate of
one-time partnership formation were represented as estimated from ARTnet data. Behavior
within sexual partnerships, including the rate of intercourse per partnership per time step,
condom use per sexual act, and sexual role were modeled based on individual and partnership

characteristics, with probabilities estimated from ARTnet data.

The model also represented demography of the population, HIV interhost epidemiology
(disease transmission), HIV intrahost epidemiology (disease progression), and HIV clinical
epidemiology.®* Demography included aging, entries, and exits. HIV interhost epidemiology
included HIV transmission (per-act transmission probability). HIV intrahost epidemiology
represented HIV disease progression, including viral load progression, within HIV-positive
individuals. HIV clinical epidemiology included disease diagnosis, ART initiation, ART

adherence and viral load suppression, and AIDS disease progression and mortality.

The HIV prevention care cascade and HIV care continuum were both represented in the

model. The HIV prevention continuum consisted of HIV testing, PrEP initiation, PrEP
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adherence, and persistence in PrEP care for daily oral tenofovir/emtricitabine.?® Weekly pre-
COVID HIV testing rates were race-stratified and determined by ARTnet HIV testing rates,
surveillance data on diagnosed fraction of HIV-infected MSM, and model calibration.33° After
testing negative for HIV, MSM who met indications for PrEP based on CDC guidelines were
eligible to start PrEP.® They then started PrEP based on an initiation probability generating a
coverage level of approximately 30%, which approximates US estimates of PrEP coverage.*
Heterogeneous PrEP adherence was modeled, with 78% of PrEP users reaching a high-
adherence level that resulted in a 99% relative reduction in HIV acquisition risk. Pre-COVID
PreP discontinuation was based on estimates of the proportion of MSM who were retained in
PrEP care at 6 months,*** and weekly pre-COVID PrEP discontinuation rates were 0.021, 0.012,
and 0.012, for Black, Hispanic, and White/other MSM, respectively. COVID and post-COVID
PrEP discontinuation was based on the number of PrEP prescriptions over time in a national
pharmacy database (IQVIA Real World Data—Longitudinal Prescriptions Database).}’* PrEP
care consisted of routine HIV and STI screening. For the HIV care continuum, MSM initiated
ART after testing positive for HIV. ART lowered their HIV viral load and increased their
longevity. MSM progressed through HIV disease with viral loads represented continuously.
Lower viral load with sustained ART use was associated with a reduced probability of HIV
transmission per act. HIV transmission probability was also modified by PrEP use, condom use,
sexual position, and circumcision. Additional full methodological details of HIV interhost,
intrahost, and clinical epidemiology; network generation; parameter selection; calibration; and

modeling are provided in the Supplemental Appendix.

Modeling COVID-19-Related Impacts. Changes in sexual behavior and condom use
representing from March 2020-January 2021 were included in the model. These changes were
parameterized based on behavioral data from the AMIS COVID Impact Survey and the Love

and Sex in the Time of COVID studies. The AMIS COVID-19 Impact Survey collected data on
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sexual distancing and HIV service utilization/care engagement from 1,051 US MSM at three
time points during the COVID-19 pandemic: April, July, and September—-December 2020.%° The
Love and Sex in the Time of COVID-19 survey also collected data from 696 US MSM on sexual
distancing and HIV service utilization/care engagement during the COVID-19 pandemic, at two
time points: April-May 2020 and November 2020-January 2021.4° Where applicable, such as
for sexual behavior by partnership type, sexual behavior parameters were standardized using
the proportions of partnership types obtained from the ARTnet study. This approach allowed us
to stratify COVID-era sexual behavior results to best map to EpiModelHIV partnership-stratified
parameters. Because these surveys did not collect data in all months of the COVID pandemic
(e.g., in August 2020, between July 2020 and September 2020 AMIS COVID-19 Impact Survey
time points), we assumed that during these periods, changes in outcomes were steady and
continuous. Therefore, where applicable between survey points, we implemented weekly
gradual changes in model parameters (e.g., to fill the gap in COVID-19 Impact Survey data,
outcomes steadily changed in magnitude by week in August 2020). Full details on all parameter
estimates, ranges, sources, and calculations (where applicable) are included in the

Supplemental Appendix.

Before implementing COVID-related changes, we first ran a base scenario in which we
assumed model parameters remained at their 2019 levels for the full model simulation. Changes
in HIV prevention and clinical care services, including race-stratified HIV testing and PrEP use
rates, were incorporated from March 2020—April 2021 as indicated by national estimates of HIV
screening tests from three overlapping data sources (Health Resources and Services
Administration’s Uniform Data System, CDC’s National HIV Prevention Program Monitoring and
Evaluation system, National Syndromic Surveillance Program’s commercial laboratory data)!’®
and PrEP prescriptions and new PrEP users in national pharmacy database (IQVIA Real World

Data—Longitudinal Prescriptions Database).!’* Changes in ART initiation, ART adherence and
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viral load suppression, and AIDS disease progression were not incorporated during the
pandemic, since meaningful changes in ART use among men living with diagnosed HIV were
not observed in either the AMIS COVID Impact Survey nor the Love and Sex in the Time of
COVID study, nor in external reports examining ART prescriptions during the COVID

pandemic.176-178

Because we found that in a subset of individuals (in both the AMIS COVID Impact
Survey and the Love and Sex in the Time of COVID study) decreases in sexual behavior
occurred alongside decreases in HIV testing and/or PrEP use, we introduced a behavior
changer feature/attribute into our model. This feature allowed us to modify persistent
partnership act rates and one-time partnership formation rates alongside HIV testing and PrEP
use in the same group of individuals. Modification rates were set as determined from our

primary data sources.

Because our primary data sources and other studies®1176.177.17° did not observe
significant decreases in ART use or viral load suppression, we did not incorporate these

changes into our models and examine their isolated impact.

Sexual distancing and clinical care interruptions were integrated into the model by
changing the appropriate parameters for behavior and HIV prevention and clinical services use.
Because at the time of this study, data on the sexual behavior and HIV testing of US MSM was
not available after April 2021, we assumed parameters reverted to their pre-pandemic value in
the latter half of 2021 and did not change after 2021 (though for PrEP and HIV testing, data has
shown that PrEP use and HIV testing have returned to and/or exceeded pre-pandemic
levels).'® Full details of parameter selection and source are available in the Supplemental
Technical Appendix. Sensitivity analyses regarding the magnitude and timing of sexual behavior
and clinical care changes were additionally completed (Supplementary Figure 1) to explore the

impact of some of the uncertainty in our parameterization. Our modeling and analytic code is
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available in a git repository at https://github.com/EpiModel/COVIDHIVAIM2 [to be

renamed/made public].

Calibration and Simulation. The model spanned 2018 to 2030. This timespan was chosen to
demonstrate HIV incidence before, during, and after the COVID-19 pandemic, and up to the

EHE target of 2030.

The model was calibrated with a Bayesian approach that defined prior distributions for
parameters and fit the model to empirical surveillance-based estimates of diagnosed HIV for all
US MSM in 2019. After calibration, we simulated the model 500 times and summarized the
distribution of results with medians and 95% simulation intervals. COVID-related model
scenarios were compared to the baseline (no COVID) scenario in order to assess how the

COVID pandemic affected HIV transmission, relative to a no pandemic state.

The primary outcomes were HIV incidence per 100 person-years at risk (PYAR), five-
year cumulative incidence during March 2020—March 2025, and population impact. Population
impact was calculated in two steps: first, we adjusted the 5-year cumulative incidence to
represent the full US MSM population (approximately 4,503,080 MSM),*8! then we subtracted
this total US MSM population cumulative incidence for each scenario from the value of the base
scenario to obtain the difference. Because of the stochastic framework of our model, 95%
simulation intervals were calculated for all primary outcome measures along with simulation

medians.

Comparison to Surveillance-Based Diagnoses. In order to determine how closely our model-
based estimates of HIV incidence and HIV positive tests track with case-based surveillance
estimates, we used HIV diagnoses data that are attributed to male-to-male sexual contact
transmission from the National HIV Surveillance System (NHSS).1*” These data were available

guarterly from January 2019-December 2021. Although NHSS represents HIV diagnoses,
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whereas our model estimates incidence, we wanted to track how closely model-based incidence

may line up with real world diagnoses data.

RESULTS

Figure 3.1 depicts HIV incidence among US MSM from 2019 to 2022. A decrease in HIV
incidence was observed from March 2020 and was sustained through March 2021. At its lowest
point in May 2020, simulated HIV incidence was 0.25 per 100 person-years at risk (PYAR) (95%
simulation interval (Sl): 0.05, 0.49), 36% lower than the base (ho COVID pandemic) scenario
(HIV incidence of 0.39 per 100 PYAR; 95% SI: 0.15, 0.64) (Table 3.1). Slight increases in HIV
incidence are noted in mid-2021, but they neither persist nor affect the trajectory of the epidemic
later in the year. In a sensitivity analysis with more conservative estimates of behavior changes,
the overall decrease in HIV incidence during 2020 is still observed (Figure 3.6). From the period
of March 2020 to March 2025, the simulated 5-year cumulative incidence was 1,661.5 (95% SI:
1,547.4, 1,773.4) per 100,000 MSM. Compared to the base scenario, this represents a 3%
reduction in 5-year cumulative incidence (cumulative incidence of 1,710.9; 95% SI: 1,600.3,
1,820.5), but for all US MSM, represents a five-year population impact of 2,227 (95% SI: -

2,382.5,-2,121.4) less HIV infections.

When the effects of reported changes in sexual behavior, condom use, HIV testing, and
PrEP use are isolated (Figure 3.2), the decrease in HIV incidence observed in the pandemic
period is most attributable to changes in sexual behavior: over five years and in isolation, the
decreases in sexual behavior during 2020-2021 would have prevented -4,341.8 (95% SI: -
4,192.8, -4,345.0) HIV infections among US MSM compared to the base scenario. In isolation,

the 2020-2021 changes in condom use, HIV testing, and PrEP use, would have increased new
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HIV infections by 186.2 (95% SI: 184.5, 523.6), 475.2 (95% SI: 564.7, 599.4), and 2,360.3 (95%

Sl: 2,683.2, 2,794.6), respectively.

When compared to NHSS-sourced quarterly HIV diagnoses (attributed to male-to-male
sexual contact transmission) data,'*’ although comparing two separate things (diagnoses vs.
incidence) our model-based estimates of HIV incidence and HIV positive tests follow a similar
trend, with the largest decreases occurring in the second quarter of 2020 (Figure 3.3). In our
model, HIV test positivity (the proportion of all HIV tests that are positive) dips during the
pandemic period, from 0.0036 before March 2020 to 0.0017 at its lowest point in 2020 (Figure
4). Our model-based PrEP coverage estimate decreases from 32% in January 2020 to 22% in
March 2021, and only reverts to 27% by December 2021, nine months after COVID-era PrEP
changes are discontinued (Figure 3.7). By 2030, PrEP coverage returns to 31%, aligning with

the base (no COVID) scenario of a PrEP coverage of 31% in 2030 (Figure 3.8).

Figure 3.5 visualizes the long-term trajectory of the HIV epidemic in our model-based
population, assuming parameters remain stable and no other HIV prevention or treatment
interventions or disruptions occur between 2022 and 2030. Between 2022 and 2030, the
median HIV incidence from our simulations decreased by 14%, from 0.389 to 0.336 per 100
PYAR, though with a wide simulation interval (Figure 3.5). In the base (no COVID) scenario,
HIV incidence was similarly 0.388 in 2022 and 0.336 per 100 PYAR in 2030; we did not observe

long-term effects of the COVID pandemic on HIV incidence.

DISCUSSION

This study represents a novel approach that uses empirical data within a network-based
mathematical model to estimate HIV incidence among US MSM in a period of both HIV-related

behavior changes and clinical service disruptions. Using multiple nationally re presentative data
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sources on pandemic-era sexual behavior, HIV prevention, and HIV clinical care services, we
found that HIV incidence among US MSM decreased during 2020, and that COVID-related
impacts did not generate long-term increases in HIV transmission in the post-pandemic period.
Although we observed temporary decreases in HIV incidence compared to a no pandemic
scenario, these reductions were not significant enough to sustain lasting decreases to HIV
transmission that will affect the trajectory of the US HIV epidemic. Our results draw attention to
the ongoing need for HIV prevention programs for MSM at risk of HIV infection, HIV testing for
those with newly acquired HIV, and for HIV treatment services for men living with diagnosed

HIV, both within and outside of a pandemic context.

Consistent with prior studies,®”®® we found that the magnitude and timing of pandemic-
related changes drives changes in HIV transmission. We also found that the widespread
changes in sexual behavior can be a significant driver of changes in HIV transmission.®’
However, unlike other US-based modeling studies that found that changes in sexual behavior
would effectively offset changes in HIV services, resulting in minimal differences compared to a
no COVID scenario,?”%° we found that the combined effects of COVID-related behavior changes
resulted in an overall decrease in HIV transmission. Our findings likely diverge from previous
studies because we used actual reported data from US MSM to parameterize our models,
whereas previous studies relied only on predicted or hypothetical patterns of pandemic-era HIV-

related behavior.67-6°

When comparing our results to nationally available estimates of quarterly HIV
diagnoses,'*’ our observed changes in HIV incidence and positive HIV tests closely follows the
trend of new HIV cases. This is a notable finding, because US HIV diagnosis data in 2020 have
been largely considered to be unreliable and recommended to be interpreted with caution.6°
Although it is important to interpret diagnostic data during 2020 in the context of widespread

decreases in HIV testing with appropriate skepticism, our findings suggest that decreasing new
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cases of HIV in 2020 may reflect an overall trend of decreased incidence during this period.
However, because it can take weeks to months for antibodies to become detectable!®? and the
average time from HIV infection to HIV diagnosis may be several years,'® immediate decreases
in diagnoses following the onset of the COVID pandemic might be a result of decreased testing
and not simply changes in underlying transmission. Yet, because an increase in HIV diagnoses
in 2021 (compared to 2019) was not observed!’*#* even after testing returned to pre-pandemic
levels in 2021,'* the decrease in incidence that our model estimated in 2020 seems to
accurately reflect the overall trend. Even with a lag between infection and diagnosis, if there
were many undiagnosed HIV cases in 2020, then 2021 data should have reflected a sharp
increase in new diagnoses—which it does not.1%18* |n our model, we found that decreases in
HIV testing (and other HIV services) during the COVID pandemic were not severe enough to
overcome the decreased risk of HIV transmission resulting from population-level decreases in

sexual risk behaviors.

Our findings demonstrate that although we may expect long-term marginal/slight
decreases in HIV incidence, the trajectory of the US HIV epidemic is still far from the EHE goal
of reducing new HIV infections in the US by 90% by 2030.%8 In our model, we noted a decrease
in HIV incidence from 2019 to 2030 by only 14%. Similarly, in a no COVID scenario, HIV
incidence also decreased from 2019 to 2030 only by 14%. However, these base scenario and
projected results should be interpreted with caution because they do not include counterfactual
increases in HIV prevention and care services that may have occurred in the absence of
COVID, nor those that may occur between now and 2030. However, our findings support that
targeted and immediate HIV prevention services are needed in high burden areas to better
approach EHE goals.'"*1 Even without pandemic disruptions, significant investments are
required to scale up EHE’s core strategies, particularly because approved federal funding for

EHE during fiscal year (FY) 2019—-FY 2023 has fell short of proposed funding.8®
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Beyond overall HIV prevention needs, our results demonstrate some key weaknesses in
HIV testing provisioning. Our model found decreases in HIV test positivity during the COVID
period, suggesting that provision of HIV testing could be improved; in the context of less HIV
testing, we would expect positivity to increase if testing was targeted to those most likely to test
positive. However, a limitation of our positivity results is that we did not model changes related
to testing behaviors during the pandemic; in our model, we are still using the same criteria to
drive/predict testing behavior in the model before and after the onset of the COVID pandemic.
Because we only modeled decreases in the rate of HIV testing, but not changes in the
processes that drive HIV testing in a pandemic context (such as testing only if one had a recent
high risk behavior), our positivity results may not be appropriate to use as a guideline of
positivity during the pandemic. Real-world data on the positivity of HIV tests administered to

MSM during the COVID pandemic are needed to support our findings and their interpretations.

For PrEP, although many reductions in PrEP during the COVID pandemic might
correspond to reductions in sexual risk behavior (and, therefore loss of PrEP indication),
decreases in PrEP coverage from pre-pandemic limits still remained at the onset of 2022, and
the overall PrEP coverage levels before and after the pandemic remained lower than ideal
targets.'®’ PrEP coverage varies significantly between US cities and communities,?® and
resulting risk behavior!®18 and HIV risk!®® can lead to disparities in HIV transmission between
US communities. Additionally, during the pandemic, MSM who reported pandemic-related
changes to PrEP access had significantly higher odds of HIV seroconversion.'®! Increased
provision of HIV testing and PrEP to those at highest risk of HIV infection, and who have
challenges with access to HIV prevention services, should be prioritized regardless of pandemic

context.

A major limitation of this study is the uncertainty surrounding our model parameters,

particularly those that control the magnitude and timing of COVID-era HIV-related behavior
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changes. A strength of our approach is that we triangulated data from multiple primary data
sources to parameterize these processes; however, many of the data sources did not include
granular information that would allow for better accuracy and precision of model estimates. For
example, HIV testing and PrEP use data were available by week through December 2020 and
by month through March 2021, respectively.}’*17> These data allowed for stratification by race or
age, but not transmission category. Ideally, we would have had access to data available by
week for MSM only and available through present day, by both race and age sub-strata. For
sexual behavior parameters, our data spanned only through January 2021, and these data were
grouped into multi-month time periods (though we implemented weekly gradual changes where
possible). A previous study found that many of the key patterns in sexual behavior, such as
change in the number of sexual partners during various stages of the pandemic, did not
significantly vary by age, race, or US geography,®* However, the most accurate models would
represent variations in changes at the most granular scale, because small but well-linked sub-
networks can drive epidemics.'%? Further, like all modeling studies, our results are subject to
limitations of the studies from which model parameters were sourced (e.qg., limited
generalizability or selection biases). For example, there could be selection bias present in our
sexual behavior data sources if MSM with less risky sexual behavior may be more likely to
participate in the survey. The purpose of our sensitivity analyses assuming the most
conservative decreases in sexual behavior changes was to explore the effect of this potential
bias; even with smaller decreases in sexual risk behavior, an overall trend of decreases HIV
incidence during COVID was observed. Therefore, this bias is unlikely to affect our overall study

conclusions.

There are several other limitations to this study. First, this study is focused on all US
MSM, and does not represent city or regional variations. Therefore, this study does not capture

city- or community-level differences in HIV-related behavior, nor differences in COVID
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responses (and ensuing changes to social and health behaviors) among different geographic
areas. Additionally, although many of the model parameters were race-stratified (capturing
differences in HIV prevention services, HIV treatment, and behavior by race/ethnic group), this
model does not explore how the COVID pandemic affected different racial/ethnic groups. Future
studies should explore how the pandemic affected HIV sub-epidemics in specific racial/ethnic
populations, particularly because certain groups, such as Black MSM, are at disproportionately
high risk of contracting HIV and may be less likely to have access to or receive key HIV
prevention services like PrEP.191931% Thjs additionally model also fails to represent network
structure related to geographic clustering, which can play a role in the dynamics of local HIV
epidemics. However, by using a target population of all US MSM, we are able to draw
inferences on a wider population, and also compare our results to estimates of HIV diagnoses

that are only available on the national scale.

This is the first study to use empirical sexual behavior and clinical data to estimate the
impact of the COVID pandemic on the HIV epidemic among US MSM. Using a network-based
transmission model, we provide evidence that HIV incidence among US MSM temporarily
decreased during 2020, and did not generate long-term increases in HIV transmission in the
post-pandemic period. Ongoing assessment of the effect of COVID-related changes on HIV
transmission are needed at the local, state, and national level to guide effective post-pandemic
HIV mitigation recommendations, and to contribute to the development of future pandemic

preparedness strategies.

TABLES

Table 3.1. Effect of COVID-Related Sexual Behavior and Service Utilization Changes on
Incidence Rate, Cumulative Incidence, and Population Impact, over 500 Simulations
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Incidence Rate,
Scenario May 2020
(95% SI)*

Cumulative Incidence Population Impact
(95% Sl)y** (95% St

Base Scenario (No COVID) 0.39(0.15,0.64) 1710.9 (1600.3, 1820.5) —
Combined Impact of COVID-Related Changes

Lower Estimate 0.13 (0, 0.29) 1634.5 (1533.8, 1743.9) -3438.9 (-3452.0, 2994.5)
Estimate 0.25(0.05,0.49)  1661.5 (1547.4, 1773.4) -2226.5 (-2382.5, -2121.4)
Upper Estimate 0.33(0.10, 0.59) 1717.4 (1608, 1823.9) 292.7 (344.5, 152.2)
Isolated Impact of COVID-Related Changes

Sexual Acts 0.24 (0.05,0.49)  1614.5(1507.2, 1724) -4341.8 (-4192.8, -4345.0)
Condom Use 0.4 (0.15, 0.69) 1715 (1604.4, 1832.1) 186.2 (184.5, 523.6)
HIV Testing 0.39(0.15,0.68) 1721.5(1612.9, 1833.8) 475.2 (564.7, 599.4)
PreP Use 0.4 (0.15, 0.69) 1763.3 (1659.9, 1882.6) 2360.3 (2683.2, 2794.6)

*Rate per 100 person-years at risk during May 2020.

**Cumulative incidence over 5 year period (from March 2020—March 2025) per 100,000 MSM.
Difference, compared to base scenario, in 5-year cumulative incidence (March 2020—March 2025) for full
US MSM population (approximately 4,503,080 MSM).*8!

Figure 3.1. Estimated HIV Incidence among US MSM over 500 Simulations, Compared to Base
(No COVID Pandemic) Scenario, 2019-2021.
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Figure 3.2. Isolated and Combined Impacts of Sexual Acts, Condom Use, PrEP Use, and HIV
Testing Changes on HIV Incidence among US MSM, Compared to Base (No COVID Pandemic)
Scenario, Over 500 Simulations, 2019-2021
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Figure 3.3. Comparison of Model-Based HIV Incidence Estimation and Quarterly HIV
Diagnoses with Male-to-Male Sexual Contact Transmission,'*’ 2019-2021

Estimated HIV Incidence among US MSM over 500 Simulations, 2019-2020
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Figure 3.4. Comparison of HIV Tests, Positive HIV Tests, and HIV Test Positivity, Over 500

Simulations, January 2020-April 2021
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that individuals who are HIV-negative and take PrEP to prevent HIV acquisition should test quarterly.
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Figure 3.5. Estimated HIV Incidence among US MSM, Incorporating COVID-Related Changes
Through Mid-2021, Compared to Base (No COVID Pandemic) Scenario, over 500 Simulations,
2019-2030
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Figure 3.6. Range of Estimated HIV Incidence Generated from Upper, Middle, and Lower
Estimates of Sexual Behavior and Service Utilization Changes among US MSM, Over 500
Simulations, 2019-2021
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Figure 3.7. Estimated PrEP Coverage among Eligible US MSM Resulting from Incorporating
COVID-Related Changes Through Mid-2021, Over 500 Simulations, 2019-2021
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Figure 3.8. Estimated PrEP Coverage among Eligible US MSM Resulting from Incorporating
COVID-Related Changes Through Mid-2021, Over 500 Simulations, 2019-2021
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Chapter 4. Assessing the Epidemiologic Impact of Home-Based HIV

Prevention Interventions During the COVID-19 Pandemic

ABSTRACT
BACKGROUND

Home-based HIV prevention interventions may help address reductions in HIV prevention
services caused by the COVID pandemic. Several home-based interventions focused on PrEP
use and HIV testing have recently been developed outside of a pandemic context. However,

their potential population-level impact within a pandemic context has not yet been assessed.
METHODS

In our review of CDC’s Compendium of Evidence-Based Interventions and Best Practices for
HIV Prevention: Prevention Research Synthesis we identified two interventions for MSM with a
PrEP retention component and two with an HIV testing component designed that were not
delivered in in-person clinics. We used intervention efficacy estimates and data on changes of
HIV-related behaviors during the COVID pandemic to parameterize a network-based model of
HIV transmission among Atlanta MSM. Model scenarios were designed to represent COVID-era
changes in sexual behavior and service utilization, and investigate the isolated epidemiologic
impact of these home-based HIV testing and PrEP retention interventions with varying levels of

intervention coverage, length, persistence, and efficacy.
RESULTS

Decreases in rates of HIV testing and PrEP use resulting from the COVID pandemic disruptions
could be patrtially offset by the HIV testing and PrEP retention interventions when interventions

had 20% coverage of the eligible population and lasted for one year. However, these
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interventions had minimal impact on overall HIV incidence when examined in isolation. In order
for a single intervention to yield meaningful reductions in HIV transmission in a pandemic
context, an intervention would need to be significantly scaled up in terms of coverage, length,

and post-intervention persistence, or its efficacy would need to improve.
CONCLUSIONS

Home-based interventions can play a role in offsetting pandemic-related changes to HIV
prevention services. However, because in isolation interventions do not have a major impact on
population-level HIV transmission in the context of reduced population-level sexual activity,
interventions may need to be combined and/or scaled up to translate to meaningful impacts in

pandemic-era transmission.

INTRODUCTION

The COVID-19 pandemic has created new challenges to the control and prevention of
HIV. Alongside behavioral changes to sexual behavior resulting from more general patterns of
social distancing during the early COVID era, widespread interruptions to HIV prevention
services have been noted. The impact of the COVID pandemic on HIV clinical care and viral
load suppression was a concern early in the pandemic,*® but several reports have shown that
HIV viral load was not greatly impacted by the pandemic due to limited impacts on HIV clinical

care and treatment.161.176.177.179 However, some HIV prevention services were interrupted.

For HIV testing, several reports documented MSM not being able to access HIV testing
services during the COVID pandemic.*#°16! |n one study, an estimated 67% of MSM not known
to be living with diagnosed HIV reported barriers to obtaining an HIV test in April 2020.%5 In
another study that used data from 60 state and local health departments, a 46% reduction in the

number of HIV tests conducted in 2020 compared to 2019 was observed.'®” Overall across the
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US, it is estimated that hundreds of thousands of HIV screening tests were either delayed or

skipped during 2020.1%

Regarding PrEP, there were reports of MSM experiencing trouble accessing PrEP: in
one study in April 2020, 20% of PrEP-using MSM reported trouble getting PrEP prescription and
27% reported trouble getting their PrEP prescription filled at the pharmacy.*>6! Both new PrEP
users and PrEP prescriptions decreased during the COVID pandemic.'’# These interruptions
are of particular concern in US areas with a high burden of HIV. In 2019, among all US states
(not including the District of Columbia), Georgia had the highest rate of HIV diagnoses in the

US, with the majority of these diagnoses occurring in the Atlanta metropolitan area.®*32

COVID-19-related interruptions to HIV prevention and clinical care may increase the rate
of HIV acquisition and transmission. For example, reduced access to PrEP for indicated
persons can lead to additional risk of HIV acquisition, and reduced HIV testing can lead to more
undiagnosed HIV, and therefore more population-level risk of HIV transmission as newly
infected individuals do not know their HIV status (and therefore may not take precautions to
prevent transmitting it to others) and cannot then seek treatment to become virally suppressed

(and are therefore infectious).

Home-based HIV prevention approaches may have curtailed the impact of the pandemic
on HIV transmission. Such approaches could include home-based HIV testing and telehealth
services for PrEP initiation or retention.1°®1%” Home-based self-testing is an effective HIV
screening method for MSM that can facilitate access to PrEP, antiretroviral treatment, and other
prevention services.®% Currently, the only FDA-approved HIV self-test currently available in
the United States is an oral fluid test.®° Home-based PrEP services may include home-based
PrEP eligibility screening, telehealth visits for PrEP care, HIV prevention counseling, PrEP

education, support for PrEP adherence, or home-based HIV self-testing.’®® These home-based
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interventions could potentially be used to offset decreased access or availability of clinic-based

HIV prevention services.

However, because resources are finite, population-level projection modeling is needed
to estimate the impact of home-based HIV prevention interventions on the HIV epidemic. This
information may be used in order deploy the most impactful interventions. Randomized
controlled trials (RCTs) have been completed on several home-based HIV prevention
interventions outside of a pandemic context to assess home-based intervention efficacy,® but
the impact of these interventions in a real-world pandemic setting has not yet been quantified.
Studies which determine the impact of certain home-based HIV prevention services on HIV
transmission among MSM are needed. These studies can help fill the gap in the literature
regarding the unknown effectiveness of home-based HIV prevention approaches on HIV

transmission in pandemic settings.

In this study, we use efficacy data from home-based RCTs of HIV testing and PrEP
retention interventions to parameterize a network-based mathematical model to estimate the
population impact of these interventions among Atlanta MSM in the context of the COVID-19
pandemic. Empirical data were used in order to represent COVID-related changes to HIV
prevention behaviors; home-based interventions were introduced within this setting. This
allowed us to assess the epidemiologic impact of individual home-based HIV prevention

interventions on HIV transmission during the COVID-19 pandemic.

METHODS

Study Design. This model of HIV transmission dynamics for US MSM was built on the EpiModel
software platform.1”* EpiModel simulates HIV epidemics over dynamic contact networks of US

MSM using temporal exponential random graph models (TERGMSs).1"2 Specific model
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extensions were built to: 1) simulate HIV transmission among MSM during the COVID pandemic
to estimate the impact of reported COVID-related changes in sexual behavior and HIV clinical
services on HIV transmission during the COVID pandemic period (March 2020-January 2021);
and 2) simulate the selected home-based HIV prevention interventions. Our goal was to
represent COVID-related changes to HIV prevention behaviors, so that the effectiveness of

home-based HIV prevention interventions could be assessed in this setting.

Network Model. Components of the model representing sexual network structure were fit using
data from ARTnet, a cross-sectional web-based study of US MSM conducted between 2017
and 2019.°* ARTnet participants were recruited through the annual American Men'’s Internet
Survey (AMIS) study.?* ARTnet eligibility criteria included male sex at birth, current male
cisgender identity, lifetime history of sexual activity with another man, and age between 15 and
65 years. The use of ARTnet data in EpiModel network models has been described

previously.®"173

Our model represented main, casual, and one-time sexual partnerships. Age and
race/ethnicity mixing, the formation and dissolution of persistent partnerships, and the rate of
one-time partnership formation were represented based on ARTnet data. Behavior within sexual
partnerships, including the rate of intercourse per partnership per time step, condom use per
sexual act, and sexual role were modeled based on individual and partnership characteristics,

with probabilities estimated from ARTnet data.

The model also represented demography of the population, HIV interhost epidemiology
(disease transmission), HIV intrahost epidemiology (disease progression), and HIV clinical
epidemiology.®* Demography included aging, entries, and exits. HIV interhost epidemiology
included HIV transmission (per-act transmission probability). HIV intrahost epidemiology

represented HIV disease progression, including HIV viral load progression, within HIV-positive
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individuals. HIV clinical epidemiology included disease diagnosis, ART initiation, ART

adherence and viral load suppression, and AIDS disease progression and mortality.

The HIV prevention care cascade and HIV care continuum were both represented in the
model. The HIV prevention continuum consisted of HIV testing, PrEP initiation, PrEP
adherence, and persistence in PrEP care for daily oral tenofovir/emtricitabine.?® Weekly pre-
COVID HIV testing rates were race-stratified and determined by ARTnet HIV testing rates,
surveillance data on diagnosed fraction of HIV-infected MSM, and model calibration.33° After
testing negative for HIV, MSM who met indications for PrEP based on CDC guidelines were
eligible to start PrEP.® They then started PrEP based on an initiation probability generating a
coverage level of approximately 30%, which approximates Atlanta estimates of PrEP
coverage.® Heterogeneity in PrEP adherence was modeled, with 78% of PrEP users reaching a
high-adherence level that resulted in a 99% relative reduction in HIV acquisition risk. Pre-
COVID PreP discontinuation was based on estimates of the proportion of MSM who were
retained in PrEP care at 6 months,*! and weekly pre-COVID PrEP discontinuation rates were

0.0048, 0.0041, 0.0058, for Black, Hispanic, and White/other MSM in Atlanta, respectively.

COVID-era and post-COVID-era PrEP discontinuation was based on the number of

PrEP prescriptions over time in a national pharmacy database (IQVIA Real World Data—
Longitudinal Prescriptions Database).!’* PrEP care consisted of routine HIV and STI screening.
For the HIV care continuum, MSM initiated ART after testing positive for HIV. ART lowered their
HIV viral load and increased their longevity. Lower viral load with sustained ART use was
associated with a reduced probability of HIV transmission per act. HIV transmission probability
was also modified by PrEP use, condom use, sexual position, and circumcision. Additional full
methodological details of HIV interhost, intrahost, and clinical epidemiology; network generation;

parameter selection; calibration; and modeling are provided in the Supplemental Appendix.
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Modeling COVID-19-Related Impacts. Changes in sexual behavior and condom use among
MSM during March 2020-January 2021 were included in the model. These changes were
parameterized based on behavioral data from the AMIS COVID Impact Survey and the Love
and Sex in the Time of COVID studies. Although these were national surveys, we assumed that
they approximated Atlanta MSM behavior. The AMIS COVID-19 Impact Survey collected data
on sexual distancing and HIV service utilization/care engagement from 1,051 US MSM at three
time points during the COVID-19 pandemic: April, July, and September—December 2020.%° The
Love and Sex in the Time of COVID-19 survey also collected data from 696 US MSM on sexual
distancing and HIV service utilization/care engagement during the COVID-19 pandemic, at two
time points: April-May 2020 and November 2020-January 2021.%° Where applicable, such as
for sexual behavior by partnership type, sexual behavior parameters were standardized using
the proportions of partnership types obtained from the ARTnet study. This approach allowed us
to stratify COVID-era sexual behavior results to best map to EpiModelHIV partnership-stratified
parameters. Because these surveys did not collect data in all months of the COVID pandemic
(e.g., in August 2020, between July 2020 and September 2020 AMIS COVID-19 Impact Survey
time points), we assumed that during these periods, changes in outcomes were steady and
continuous. Therefore, where applicable between survey points, we implemented weekly
gradual changes in model parameters (e.g., to fill the gap in COVID-19 Impact Survey data,
outcomes steadily changed in magnitude by week in August 2020). Full details on all parameter
estimates, ranges, sources, and calculations (where applicable) are included in the

Supplemental Appendix.

Before implementing COVID-related changes, we first ran a base scenario in which we
assumed model parameters remained at their 2019 levels for the full model simulation period.
Changes in HIV prevention and clinical care services, including race-stratified HIV testing and

PrEP use rates, were incorporated from March 2020—April 2021 as indicated by national
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estimates of HIV screening tests from three overlapping data sources (Health Resources and
Services Administration’s Uniform Data System, CDC’s National HIV Prevention Program
Monitoring and Evaluation system, National Syndromic Surveillance Program’s commercial
laboratory data)!’® and PrEP prescriptions and new PrEP users in national pharmacy database
(IQVIA Real World Data—Longitudinal Prescriptions Database).'’# Changes in ART initiation,
ART adherence and viral load suppression, and AIDS disease progression were not
incorporated during the pandemic, since meaningful changes in ART use among men living with
diagnosed HIV were not observed in either the AMIS COVID Impact Survey nor the Love and
Sex in the Time of COVID study, nor in external reports examining ART prescriptions during the

COVID pandemic.176-178

Because we found that in a subset of individuals (in both the AMIS COVID Impact
Survey and the Love and Sex in the Time of COVID study), decreases in sexual behavior
occurred alongside decreases in HIV testing and/or PrEP use, we introduced a behavior
changer feature/attribute into our model. This feature allowed us to modify persistent
partnership act rates and one-time partnership formation rates alongside HIV testing and PrEP
use in the same group of individuals. Modification rates were determined from our primary data

sources (additional details are in the Supplemental Appendix).

Sexual distancing and clinical care interruptions were integrated into the model by
changing the appropriate parameters for behavior and HIV prevention and clinical services use.
Because at the time of this study, data on the sexual behavior and HIV testing of US MSM was
not available after April 2021, we assumed parameters reverted to their pre-pandemic value in
the latter half of 2021 and did not change after 2021 (though for PrEP and HIV testing, data has
shown that PrEP use and HIV testing have returned to and/or exceeded pre-pandemic
levels).*® Our modeling and analytic code is available in a Github repository at

https://github.com/EpiModel/COVIDHIVAIM3 [to be renamed/made public].
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Home-Based HIV Prevention Interventions. We searched the CDC’s Compendium of Evidence-
Based Interventions and Best Practices for HIV Prevention: Prevention Research Synthesis
(PRS) Compendium Intervention®® for HIV testing and PrEP interventions that were intended
for MSM that were not delivered in in-person clinics. We identified three interventions that met
our search parameters that were solely home-based: M-CUBED (Mobile Messaging for Men)
(PrEP retention and HIV testing only),?°° DOT Mobile App (PrEP retention only),?°* and eSTAMP
(Evaluation of Rapid HIV Self-testing Among MSM Project) (HIV testing only).2%2 A full
description of each intervention is available in Table 4.1. M-CUBED did have addition clinic-
based components, such as PrEP initiation, so we only focused on its PrEP retention and HIV
testing components for this model. Since there were two interventions for both the testing and
PrEP retention, this allowed us to give a range of effectiveness estimates for both HIV testing
and PrEP. We did not focus on PrEP adherence because previous studies have found that
PreEP adherence and persistence are interlinked, such that those who persist generally have

high adherence.?%?

We translated the efficacy of the intervention RCT data into model parameters for HIV
testing and PrEP retention by adjusting race/ethnicity-stratified HIV testing rates and PrEP
discontinuation rates, respectively, by an RCT-sourced modifier. The details of these
modifiers/calculations are shown in Table 4.2. Although the RCTs did not provide race-specific
efficacy data, because we applied these modifiers to baseline race/ethnicity-stratified rates, we
still were able to account for differences in HIV screening and PrEP retention by race/ethnicity
(i.e., we did not have to assume rates were the same for all race/ethnic groups). Rates were
adjusted weekly because HIV testing rates and PrEP discontinuation rates continuously
changed through the COVID pandemic. Intervention discontinuation rates were incorporated

based on RCT retention rates (as described in Table 4.2),200-202
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For the standard scenarios, all interventions were assumed to be deployed for one year
for 20% of the eligible population. For HIV testing, that was 20% of all HIV-negative MSM, and
for PrEP retention, that was 20% of MSM currently using PrEP. Although in the DOT, M-
CUBED, and eSTAMP RCTs the interventions had a length of 6 weeks, 3 months, 12 months,
respectively, but because we expect the real-world implementation of these interventions is not
the same as the RCT length, we assumed a length of one year to better observe intervention
effects. For PrEP retention interventions only, we assumed the intervention had a persistence of
one year. This meant that after the intervention ended for any individual, PrEP discontinuation
rates gradually returned to their pre-intervention levels for intervention participants after one
year. We included this post-intervention persistence effect to represent retained PrEP education
gained from the PrEP interventions. We did not assume any intervention persistence for HIV
testing interventions because of the resource constraints that intervention participants would
face post-intervention (i.e., they would have to buy home-based HIV testing kits since they were
no longer mailed to them). For all scenarios, the interventions were assumed to start two weeks
after the onset of the COVID pandemic in mid-March 2020. This was chosen so that we could

model the lag time between pandemic-induced intervention need and intervention deployment.

Sensitivity analyses were used to determine how varying the population coverage,
length of intervention, and persistence of intervention may impact the impact of the intervention
on HIV testing, PrEP use/retention, and HIV incidence. In order to compare the epidemiologic
impact of the interventions, we ran an additional base scenario (separate from the base

scenario of no COVID pandemic) of no intervention.

We additionally ran scenarios that explored how modification of HIV testing rates and
PrEP discontinuation rates by set values could impact our outcomes. For this subset of
analyses, we assumed that interventions had 50% coverage, a length of one year, and

persistence of one year (for PrEP retention intervention only). This allowed us to determine what
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level of effectiveness an HIV testing or PrEP retention intervention would need to have on HIV
testing rates and PrEP discontinuation rates to approach a meaningful impact on HIV
transmission. All intervention effects were run in isolation (i.e., we did not estimate the combined

intervention effects).

Calibration and Simulation. The model was calibrated with a Bayesian approach that defined
prior distributions for parameters and fit the model to empirical surveillance-based estimates of
diagnosed HIV for all Atlanta MSM in 2019. After calibration, we simulated the model 500 times
and summarized the distribution of results with medians and 95% simulation intervals (SIs).
COVID-related model scenarios were compared to the baseline (no COVID) scenario in order to

assess how the COVID pandemic affected HIV transmission, relative to a no pandemic state.

The primary outcomes were HIV incidence per 100 person-years at risk (PYAR), three-
year cumulative incidence per the total HIV-susceptible MSM population in Atlanta (sexually
active HIV-negative MSM in Atlanta was approximately 87,723 MSM),® the number of infections
averted among the total HIV-susceptible MSM population in Atlanta (relative to a scenario in
which there was no intervention), the total person-time on PrEP over a three-year period (per
the HIV-susceptible MSM population of Atlanta), the excess (additional) person-time on PrEP
(relative to a scenario in which there was no intervention), the total number of HIV tests over a
three-year period (per the HIV-susceptible MSM population of Atlanta), and the excess
(additional) number of HIV tests (relative to a scenario in which there was no intervention).
Because of the stochastic framework of our model, 95% simulation intervals were calculated for

all primary outcome measures along with simulation medians.

RESULTS
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Among Atlanta MSM, the COVID pandemic resulted in reductions in model-simulated
HIV testing and PrEP coverage (Figures 4.1, 4.2, 4.3) during 2020-2023, consistent with
empirical data used to parameterize the model. During March—December 2020, the COVID
pandemic increased the number of MSM stopping PrEP, but it then decreased the number of
MSM stopping PrEP during 2021-2023 (Figure 4.4). Overall, the COVID pandemic decreased
HIV transmission among Atlanta MSM (Figure 4.5), with the largest relative decrease
(compared to a no pandemic scenario) occurring in May 2020 (HIV incidence of 0.66 (95% SI:

0.29, 1.09) and 1.01 (95% SI: 0.57, 1.55), respectively) (Table 4.3).

Neither implementation of a PrEP retention intervention nor a HIV testing intervention
resulted in reduced HIV incidence in a pandemic context. For HIV testing, both eSTAMP and M-
CUBED increased the number of HIV tests: over a three-year period following its start, eSTAMP
generated 5,463 (95% SI: 3,440, 7,494) additional completed HIV tests among Atlanta MSM,
whereas M-CUBED generated 2,238 (95% SI: 237, 4,058) (Figure 4.1). However, neither
eSTAMP nor M-CUBED (HIV testing only) had meaningful impacts on HIV incidence, and only
averted 19.6 (95% SI: -75.4, 118.0) (1.0% infections averted) and 13.2 (95% SI. -75.3, 107.5)
(0.7% infections averted) HIV infections, respectively, over a three-year period. For PrEP, both
DOT and M-CUBED increased the number of MSM currently on PrEP and PrEP coverage
compared to a no intervention scenario. DOT and M-CUBED generated an additional 24,058
(95% SI: 1,020, 46,745) and 7,552 (95% SI: -15,021, 29,005) person-years on PrEP among
Atlanta MSM over a three-year period (Figure 4.2, 4.3, 4.4). However, neither DOT nor M-
CUBED (PrEP retention only) had meaningful impacts on HIV incidence, and only averted 7.8
(95% SI: -89.8, 111.1) (0.4% infections averted) and 3.4 (95% SI: -94.4, 107.3) (0.2% infections

averted) HIV infections, respectively, over a three-year period.

Increasing the coverage, length, and persistence of the PrEP retention interventions only

minimally increased the effectiveness of the interventions. While increasing the coverage of
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DOT from 10% to 50% increased the total person-time on PrEP from 1,445,029 to 1,491,773
over a three-year period, a 3.2% increase, this did not translate to a change in HIV incidence
during the pandemic nor cumulative incidence over a three-year period (Figure 4.6). For M-
CUBED, increasing its coverage from 10% to 50% increased the total person-time on PrEP from
1,435,609 to 1,451,002 over a three-year period, a 1.1% increase, but this did not ultimately
affect HIV incidence during the pandemic nor cumulative incidence over a three-year period.
The same was true for increasing the length or persistence of the interventions (Figure 4.7,

Figure 4.8).

Similarly, increasing the coverage and length of the HIV testing interventions did not
have a meaningful impact on HIV transmission. These changes only minimally increased the
effectiveness of the interventions. While increasing the coverage of eSTAMP and M-CUBED
from 10% to 50% increased the number of HIV tests from 171,880 to 182,785 and 170,254 to
174,766 over a three-year period (a 6.3% and 2.6% change), respectively, HIV incidence and
cumulative incidence were not affected by these interventions (Figure 4.9). Increasing the length
of the HIV testing interventions eSTAMP and M-CUBED from 6 weeks to 2 years did prevent
32.3 and 12.0 HIV cumulative infections among Atlanta MSM, however simulations intervals

were wide and overlapped (Figure 4.10).

In exploring how intervention efficacy may impact HIV transmission in a meaningful way,
we found that reducing PrEP discontinuation by 50% or more would avert infections, but only a
few (12.9 (95% SI: -81.6, 109.5) over a three-year period). The number of infections averted
increased in a stepwise fashion for further decreases in PrEP discontinuation (Figure 4.12). For
HIV testing, increasing the weekly rate of HIV testing would avert HIV infections, but doubling it
would only avert 1.1% of infections, and modifying it by 5, 10, and 25 would avert 3.4%, 5.4%,

and 8.2% of infections only (Figure 4.11).
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Although the impact of the interventions was assessed in isolation, we did observe that
the HIV testing intervention affected PrEP use, and vice versa. For example, increasing the
coverage, length, and persistence of the PrEP interventions all independently increased the
number of HIV tests completed. On the other hand, increasing the coverage and length of the
HIV testing interventions actually decreased the total person-time on PrEP. However, these

effects were all small with overlapping Sis.

DISCUSSION

In this study, we assessed the epidemiologic impact of the home-based HIV testing
and/or PrEP retention interventions DOT, eSTAMP, and M-CUBED during the COVID
pandemic. We found that although these home-based interventions were effective at increasing
PrEP use and HIV testing, they had minimal impact on HIV incidence. In order for isolated
intervention effects to translate into more meaningful reductions in HIV transmission in a
pandemic context, they would need to be scaled up in terms of coverage, length, and post-

intervention persistence, and/or their efficacy would need to improve.

Our results align with previous studies showing that changes in HIV prevention
parameters (and therefore HIV prevention interventions) have very minimal impact on HIV
transmission. For example, one study found that general reductions in ART adherence may
have a more severe impact on HIV incidence than reductions in other HIV prevention measures,
such as PrEP use.®” Additionally, in the context of the COVID pandemic, modeling studies have
shown that changes to viral load may have the most impact on HIV incidence. One study based
in China found that new HIV infections would be increased most by disruptions to viral
suppression, compared to disruptions in HIV testing, ART initiation, and condom use.°? A study

focused on Baltimore MSM found that maintaining access to ART and adherence support
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should be the priority to minimize excess HIV-related mortality.®® These studies complement the
findings of Jenness et al. that reductions in ART adherence during the COVID pandemic may
have more relative impact on HIV incidence among Atlanta MSM than reductions in other HIV
prevention measures.®” HIV viral load interventions could include telehealth services, multi-
month ART prescriptions, home-based HIV testing, and potential home-based HIV viral load
tests. However, since there were not significant changes to HIV viral load during the pandemic,
development of HIV care retention interventions would be unlikely to impact transmission in a
pandemic context. The impact of such interventions should be studied however outside of a

pandemic context.

In our sensitivity analyses, we explored how varying intervention coverage, length, or
post-intervention persistence may increase the effectiveness of DOT, eSTAMP, and M-CUBED.
We found that although differences in coverage, length, and persistence did slightly lower HIV
incidence, it did not translate to meaningful changes in incidence. This is not necessarily
surprising given that changes in HIV prevention services during a pandemic has only small
impacts on HIV transmission, and that the interventions were examined in isolation. Although
some of the interventions, for example M-CUBED, have multiple HIV prevention components to
them, we chose to examine the effects independently in order to measure how important
individual components are for home-based HIV prevention interventions. Future studies should
examine how combined home-based interventions (e.g., interventions that provide a
combination of home-based PrEP care, HIV testing, HIV care, etc.) may impact HIV

transmission, both in and out of a pandemic context.

We also explored how varying the efficacy of theoretical home-based PrEP retention and
HIV testing interventions may impact HIV transmission. Even when the efficacy of such
interventions was dramatically increased, for example increasing the HIV testing rate by 25

times its baseline value, we still do not see major changes in HIV transmission. In order for
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these interventions to have an effect on HIV transmission, they first must be effective in
increasing PrEP/HIV testing. Then, the population-level increases in PrEP/HIV testing must
translate into a decrease in HIV transmission. For PrEP, this can occur because PrEP is very
effective at preventing HIV acquisition,*® and having more people on PrEP means that less
people in a population are susceptible to HIV. However, for this to translate to a decrease in HIV
transmission, these additional individuals remaining on PrEP (relative to not having the
intervention and discontinuing PrEP) must actively be at risk of HIV transmission; that is, they
need to have unprotected sex with a non-virally-suppressed sexual partner living with diagnosed

or undiagnosed HIV.

Because the COVID pandemic did not cause population-level changes to viral
suppression,t’”?% put did decrease sexual behavior,*®15%161177 particularly with non-main
partners (i.e., decreased sexual risk behavior), there was less likelihood during the COVID
pandemic that an individual not on PrEP would acquire HIV. This may explain why we did not

see reductions in PrEP discontinuation translate into reductions in HIV incidence.

For HIV testing, increased HIV testing would impact HIV incidence if the increased
testing diagnoses individuals who would otherwise go undiagnosed until and after their
incubation period (to the point that their viral load causes them to be infectious), and then
spread HIV to others via unprotected intercourse with HIV-negative partners not currently on
PreP. However, if increased HIV testing is mostly occurring in individuals who already undergo
routine HIV screening, or who are not at risk of HIV (either by PrEP use or by a lack of sexual
risk behavior), then this would not translate into meaningful changes in HIV incidence. Further, if
undiagnosed individuals are experiencing a reduction in sexual activity, such as that
experienced during the COVID pandemic by the majority of MSM, 6! there is less of an
opportunity to newly infect another individual. Therefore, even if HIV testing rates increase, this

does not necessarily mean that it will translate to changes in transmission.
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It is possible that if these interventions were targeted to those most at risk of HIV
acquisition, they may have had more of a real-world impact. There are disparities in the risk of
HIV across demographic groups of MSM: historically and in present day, Black and Hispanic
MSM have been the populations most disproportionately impacted by HIV.2 This is a result of
social and structural factors, including but not limited to structural racism, lack of access to
guality health care, provider bias, discrimination, and poverty, which exist in the environments in
which sexual risk behaviors occur.'>1% This is particularly relevant in the southern US, where
there is a higher concentration of Black MSM. In a 2016 analysis of CDC-funded HIV testing
data from 20 different Southern health department jurisdictions, Black MSM received only 6% of
HIV tests provided at community-based facilities, despite making up 36% of new diagnoses at
these non—health care facilities.?> However, this is not just an issue with HIV testing. For PrEP,
MSM who are indicated for but not currently on PrEP are more likely to be Black.'%* If home-
based interventions were targeted towards these groups, it is possible that they may have more

impact on HIV transmission.

One interesting finding from our analysis was that increasing the coverage, length, and
persistence of the PrEP interventions all slightly increased the number of completed HIV tests.
This is likely due to the increased HIV testing (reduction in HIV screening interval) required to
maintain PrEP: the clinical guidelines is that HIV testing should be repeated at least every 3
months after PrEP initiation.2% Further, we found that increasing the coverage and length of the
HIV testing interventions actually decreased the total person-time on PrEP. This may be
because with increased HIV testing, the time to HIV diagnosis is reduced, which means people
may be on PrEP for less time. However, this would only impact individuals with low PrEP
adherence, since those with high PrEP adherence have a 99% relative reduction in HIV
acquisition risk in our model (and are therefore essentially immune to HIV infection), so

additional mechanisms may explain this finding. Moreover, these effects were all small with
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overlapping Sls, so these results should be interpreted with appropriate skepticism—we cannot

deduce that HIV testing interventions would worsen PrEP outcomes.

Limitations. This study has several limitations. First, the effectiveness of the interventions were
drawn from individual RCTs, all with different study periods, populations, and outcomes. Most of
the intervention effects did not perfectly map onto model parameters. For example, the M-
CUBED study measured current PrEP use in the intervention and control groups and presented
it as an adjusted OR, but did not measure weekly PrEP discontinuation. For the DOT study, we
used a measure of PrEP adherence to estimate PrEP discontinuation. Although adherence
does not map directly to PrEP discontinuation, studies examining trends of adherence over time
have found that initial adherence is somewhat predictive of the likelihood of
discontinuation.2°”:2% |f the RCTs had measured the outcomes of weekly PrEP discontinuation
rate and weekly rate of HIV testing, for both the intervention and control groups, and also
provided these outcomes stratified by race/ethnicity, better model parameterization would be
possible. In addition, our study used data on COVID-related impacts from sources of all US
MSM to parameterize a model of Atlanta MSM. It is possible that geographic differences in the
COVID pandemic and associated lockdown policies, as well as behavioral adaptations to the
pandemic, differed between studies. However, since changes in HIV-related behaviors during
the COVID pandemic did not statistically differ by geographic region (Appendix A: Chapter 2
Supplementary Results), this may not have biased our model. Lastly, like all modeling studies,
our results are subject to the limitations of the studies from which model parameters were

sourced (e.g., selection biases or limited generalizability).

Conclusions. This is the first study that uses home-based HIV prevention efficacy data within a
dynamic model of HIV transmission to estimate the effectiveness of isolated potential
interventions on Atlanta MSM during the COVID-19 pandemic. We provide evidence that

although PrEP retention and HIV testing interventions are effective at increasing PrEP use and
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HIV testing, their use does not equate to meaningful changes in HIV transmission in a pandemic
context when their effects are isolated. Additional HIV prevention interventions, combination HIV
prevention interventions, and targeted deployment of interventions may be needed to more

effectively decrease HIV incidence in this context.



TABLES

Table 4.1. Description of Home-based Interventions

Intervention

Intervention Type

Intervention Description

Source

M-CUBED (Mobile
Messaging for Men)

PrEP Retention

HIV Testing

M-CUBED is an individual-level digital health intervention that uses a status
neutral approach via a mobile app to address multiple HIV prevention and care
needs for GBMSM. The app delivers tailored prevention messaging through
content and videos depending on whether participants have higher risk factors
for HIV or lower risk factors. It offers a suite of prevention and care services,
including: self-screening for HIV and STI risk factors, scheduling and reminder
system for routine HIV and STI testing, PrEP eligibility screener, non-
occupational post-exposure prophylaxis (nPEP) risk factor assessment tool,
ordering platform for delivery of home-based HIV- and STI-screening kits,
condoms, and lubricants, and service locators for testing, PrEP, nPEP, and HIV
treatment and care. The duration of the study intervention was 3 months.
Participants were in Atlanta, GA; Detroit, MI; and New York City, NY.

Sullivan et
a|_200

DOT Mobhile App

PrEP Retention

DOT is a PrEP adherence mobile app that combines personalized PrEP pill
reminders with positive psychology-based texts to encourage PrEP adherence
and provide PrEP information. The DOT app uses three different text messaging
types: Daily pill reminders, Alternating daily educational or motivational texts,
Weekly text: “It's PrEP every day and condoms every time.” The duration of the
study intervention was 6 weeks. Participants mostly resided in Boston, MA.

Weitzman et
a|.201

eSTAMP (Evaluation of
Rapid HIV Self-testing
Among MSM Project)

HIV Testing

eSTAMP examines the effectiveness of distributing HIV self-test kits via the
internet to MSM in the United States. Intervention participants are mailed two
oral fluid and two finger-stick HIV self-tests and can order additional HIV self-
tests. Online videos on how to use HIV testing materials are also provided.
Additionally, intervention participants have phone access to speak with an HIV
counselor to discuss their HIV test results. Finally, participants are provided a
link to AIDSvu.org that includes HIV prevention information and locations of local
HIV testing services.

MacGowan
et al.22




Table 4.2. Epidemiological Model Parameters and Pre-COVID, COVID Onset, and Intervention Values
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- Description M-
Description . . Base Value (Pre- Base Value DOT eSTAMP
Parameter  gace) (Interventio  Unit COVID)* coviD onset)*  CYBED  Value  value
n) Value
The
mean
percentag
e of
participan
ts who
. reported
0.02120, 0.01267, g)f”i‘tgfor per:fect
The rate of 0.01259 for cufrent (100%)
spontaneous Black/Hispanic/W PrEP use Prep
PrEP discontinuati 0.0207, 0.012, hite MSM, immediaté adherenc
PrepP discontinuation on from Weekly  0.012 for respectively, osttest e
Discontinuati  rate for PrepP per probabili Black/Hispanic/W then changes gﬁer significant —
on Rate Black/Hispanic/W time step for ty hite MSM, through the interventio ly
hite MSM. those in the respectively pandemic weeks ) ) increased
n: 1.26;
Prep (based on usin from pre-
intervention. pandemic PrEP 9 to post-
modifier of . .
data) 0.7794 interventi
' on (0.39
vs. 0.72);
using
modifier
of
0.541666
7
The rate of Retention No
drop-off from was 1085 rition
the PrEP of 1226 reported
PrEP retention Weekl (86.87%) in stud
Retention : ! v at3 y
: — intervention  probabili — — . (0 of 54
Intervention er time t months; drop-
Drop-off gtep for y weekly offsl;
those in the (rj;?ep;)c;ff weekly
intervention. drop-off

1.25%



HIV Testing
Rate

HIV Testing
Intervention
Drop-off

Mean probability
of HIV testing per
time step for
Black/Hispanic/W
hite MSM,
respectively.

Mean
probability of
HIV testing
per time
step for men
in the HIV
testing
intervention.

The rate of
drop-off from
the HIV
testing
intervention
per time
step for
those in the
HIV testing
intervention.

Weekly
probabili

ty

Weekly
probabili

ty

0.0048, 0.0041,
0.0058 for
Black/Hispanic/W
hite MSM,
respectively

0.00367, 0.0030,
0.0043 for
Black/Hispanic/W
hite MSM,
respectively
then changes
through the
pandemic weeks
(based on
pandemic HIV
testing data)

based on
3-month
length

Report of
HIV
testing
immediate
ly post-
interventio
n (aOR =
2.02);
using
modifier of
2.02

Retention
was 1065
of 1226
(86.87%)
at 3
months;
weekly
drop-off
rate of
1.25%

rate set to
0%
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HIV testing
(number of
any type of
testing over
12 months)
was
significantly
higher
among
intervention
participants
than
comparison
participants:
5.29vs. 1.50
tests; using
modifier of
3.5267
Retention
rate of
Participants
who initiated
any follow-up
survey:
74.7%;
weekly drop-
off rate for 12
week is 2.6%

*Values are set during model calibration. See supplemental appendix for full details on model calibration including sourcing of target
model parameters.

Table 4.3. The Effect of COVID-Related Changes and PrEP Retention and HIV Testing Interventions Set to Various Coverage,
Length, and Persistence Levels on Epidemiologic Outcomes, Over 500 Simulations
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Relative

Incidence 3-Year Number Percent _'ll_'iont]zl gﬁrpsfgé Excess Number of 'Eilfélsvse
Inter- Scenari Rate, Cumulative Infections Infections  Over 3 Years (in Person-Time HIV Tests Number of
vention o] May 2020 Incidence Averted Avertedht Weeks)t on PrEP (in Over 3 Yearst HIV TestsHl
(95% SIy* (95% Sly<t (95% Siyt+ (055 o Weeks)"s (95% SI) (95% 1
(95% SI)
No 1,432,327 169,132
Inter- O'Gf (gg')zg' 1'97;86%'3)7 04, — (1,408,967, — (167,200, _
vention ) T 1,453,985) 170,951)
Coverage
. 065(0.29, 19632 (1867.6, 7.79(-89.17, . 1,445,029 12,581 (-9,912, 170,027 880 (-1,048,
10% 1.09) 2,060.2) 103.43) 0.40% (1,422,536, 34,439) (168,099, 2,681)
: ,060. : 1,466,887) : 171,828) :
. 0.65(0.29, 1,963.2(1860.0, 7.82 (-89.84, . 1,456,462 24,058 (1,020, 170,839 1,698 (-249,
20% 1.03) 2,060.9) 111.05) 0.40% (1,433,424, 46,745) (168,893, 3,547)
: ,060. : 1,479,149) : 172,688) :
1,468,108 35,842 171,663
s 0-65(029, 19611(18606 9.92(90.40, .o VR 2.0 Leaoos 2,538 (796,
0 1.03) 2,061.4) 110.46) U0 (1,447,025, (14,760, (169,921, 4,388)
: ,061. : 1,490,802) 58,536) 173.513) :
. 064(0.34, 19596 (1,861.4, 11.39 (-82.96, . 1,480,218 47,885 12513 = 5 380 (1,411,
40% o9) > 054.0) T00.67 0.58% (1.457.078, (24.745, (170,544, Aty
: ,054. : 1,500,357) 68,024) 174,256) :
. 066(0.34, 19582 (1,865.9, 12.83(-82.19, ; 1,491,773 59,468 173,344 4 515 (2,373,
50% o%) 5 053.3) tos 12 0.65% (1,470,434, (38,129, (171,502, 6,059
: ,053. : 1,513,278) 80,073) 175,169) :
DOT Length
6 065(029, 19616(1,860.8, 9.41(8238 o o0 (1’1‘212'251)‘51 16,272 (-6,146, éég'éii 1,153 (-634,
weeks 1.03) 2.053.4) 110.25) LT 41,024) 172.529) 3,183)
3 065(029, 1961.6(1,866.6, 9.38(8895 oo (i‘jgg'égg 18,895 (-2,587, (%g'ﬂg 1,345 (-410,
months 1.08) 2,060.0) 104.45) L 74.709) 42,513) 72425) 3,296)
6 065(0.20, 19646 (18669, 6.41(-89.98, oo &’jgg'ggé 20,456 (-2,470, (%g'?gg 1,454 (-381,
months 1.03) 2,061.0) 104.15) 76457 43,982) 172475) 3,329)
12 065(0.20, 19632 (L860.0, 7.82(-89.84, o o0 é’jgg'jgi 24,058 (1,020, égg'ggg 1,698 (-249,
months 1.03) 2,060.9) 111.05) L0 10 46,745) 172 686) 3,547)
24 0.65(0.29, 1,963.0 (1,866.1, 8.07 (-90.66, . 1,465,864 33,413 171,486 2,339 (487,
months 1.04) 2.061.7) 104.93) 0.41% (1,444,468, (12,017, (169,634, 4.188)
: ,061. : 1,487,300) 54,848) 173,335) :

Persistence of Intervention Effects (PrEP Interventions Only)



1,453,499

170,648
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- - 1,500 (-475,
0 0.65 (0.29, 1,964.0 (1,?168.4, 6.9190(2%%41, 0.35% (1.429.609, 21,043375(4%,)854, (168,673, o 3‘(17)
months 1.09) 2,059.4) .65) 1,476,002) , 1177204%33) ,
1,454,859 )
6 0.65(0.29, 1,960.9 (1,867.3, 10.14 (-85.77, o ’ 22,658 (-1,930, 168 754 1,626 (-363,
2,056.8 103.75 0.51% (1,430,271, 46,346) ( ’ ' 3,489)
months 1.08) , .8) .75) 1,478,548) , 177%%%2 ,
1,456,462 )
12 0.65 (0.29, 1,963.2(1,860.0, 7.82(-89.84, o ' 24,058 (1,020, 168 893 1,698 (-249,
2,060.9 111.05 0.40% (1,433,424, 46,745) (168,893, 3,547)
months 1.03) ,060.9) .05) 1,479,149) ’ 1721,%%81) ’
1,459,186 171,
24 0.66 (0.34, 1,964.7 (1,870.4, 6.28 (-90.44, o 26,890 (2,136, 168 998 1,893 (-131,
60 0.32% (1,434,432, 48,921) (168,998, 3,758)
months 1.09) 2,061.5) 100.60) 1,481,217) , 172.886) ,
Coverage
1,435,609 169,375
0.65(0.29, 1,967.9(1,866.6, 3.11 (-90.47, o 1412537 3,304 (-19,768, (167,627 245 (-1,502,
10% 1.03 2,061.5) 104.39) 0.16% (L ' ' 26,254) ’ ' 2,101)
03) ’ ’ ’ 1,458,559) ’ 17619.’%37%))
1,439,982 169,
- ’ ' 7,552 (-15,021, 535 (-1,341,
20% 0.66 (0.34, 1’96;'86(:;’263'7’ 3'4140(7 9248)41 0.17% (1,417,409, 29(005) (167,804, > (334)
1.08) ,065.4) : 1,461,435) ' 172,4;722) ‘
1,443,683 11,326 (- 169,
- ’ ' ! 788 (-950,
30% 0.66 (0.29, 1,967.2 (1,868.2, 3.8170(2984;30, 0.20% (1.422.234, 10,123, (168,186, : 6(26)
1.09) 2,065.3) -83) 1,465,952) 33,595) 171,762) '
1,447,243 170,180
. . .83 (-94.36, ’ ’ 14,870 (-6,465, ’ 1,043 (-756,
40% 0.615 53-29, 1’962 36%2)72 o ® 98( 99) 0.30% (1,425,907, 38 2(68) (168,382, 2,970)
e ” o | 1451002 ’ 170427
CUBED ’ ' - ’ 280 (-581
. . 1 .8 (1,868.3, 4.18 (-94.47, 18,544 (-4,223, 1, ( ,
(PrEP 500 © 6;1 ég)zg, ,962 8 6(5 3 10(2 os 0.21% (1,428,235, 41.614) (168,567, 3,138)
Retention ) T 1,474,072) 172,286)
Only)  Length
1,440,786 169,729
6 0.65 (0.29, 1,969.5 (1,871.4, 1.51 (-96.72, o 8,339 (-14,954, 167 808 582 (-1,338,
2,067.7 99.67 0.08% (1,417,498, 31,121) ( ’ ' 2,444)
weeks 1.03) ,067.7) .67) 1,463,568) , 112%357972 ,
1,441,590 )
3 0.65(0.29, 1,965.5(1,863.6, 5.54 (-95.73, o ’ 9,289 (-13,784, 167.994 650 (-1,136,
2,066.8 107.39 0.28% (1,418,518, 30,755) ( ’ ' 2,431)
months 1.03) , .8) .39) 1,463,056) , 12%5761%) ,
440,515 169,
6 0.66 (0.34, 1,968.8 (1,871.4, 2.19 (-98.26, o L 8,049 (-15,089, 167 852 564 (-1,297,
2,069.3 99.63 0.11% (1,417,376, 30,372) ( ’ ' 2,486)
months 1.08) , .3) .63) 1,462,838) , 1719‘66372) ,
1,439,982 1609,
12 0.66 (0.34, 1,967.6 (1,863.7, 3.44 (-94.41, o 3 7,552 (-15,021, 167.804 535 (-1,341,
07.28 0.17% (1,417,409, 29,005) (167,804, 2,334)
months 1.08) 2,065.4) 107.28) 1,461,435) , 171,478) ,



1,447,223

170,191
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24 0.65(0.34, 1,964.7 (1,865.9, 6.29 (-98.03, 14,898 (7,128, 1,059 (-789,
0.32% (1.425,196, (168,343,
months 1.09) 2.069.1) 105.13) 66 150 36,856) TLoto) 2,787)
Persistence of Intervention Effects (PrEP Interventions Only)
0 066 (029, 1967.9(1,870.3, 313(9638, ..o é’ﬁ?'ggi 7,554 (14,608, &23'223 545 (-1,275,
months 1.04) 2,067.4) 100.73) Lot o) 29,360) a7 2,354)
6 066 (029, 19665 (L8721, 453 (9745, o0 &’j‘llg'égé 7,679 (-14,351, égg'gzg 524 (-1,330,
months 1.08) 2.068.5) 98.92) L os 3res 29,933) a7 2,326)
12 066 (034, 19676 (L8637, 344(944L o (i’ﬁg'igg 7,552 (-15,021, (igg'ggi 535 (-1,341,
months 1.08) 2,065.4) 107.28) o1 135) 29,005) TLare) 2,334)
24 065(0.20, 19681 (L8736, 292(-9588, (. eo &’ﬁ%%@ 7,449 (-15,785, (123’3113 508 (-1,427,
months 1.04) 2,066.9) 97.46) oL oty 29,458) 71 ean 2,394)
Coverage
0.65(0.29, 1,956.0 (1,862.9, 14.98 (-86.03, 1,430,953 1411 (- 171,880 2,744 (864,
10% 03) 087 1) 108.06) 0.76% (1,409,467, 22,897, (170,001, a3
: ,057. : 1,453,901) 21,537) 173,769) :
0.65(0.29, 1,951.4 (1,853.1, 19.63 (-75.43, 1,429,188 -3,132 (- 174,594 5,463 (3,440,
20% 09) 2 045.5) o0 1.00% (1,404,886, 27,435, (172,572, AT
: ,046. : 1,453,795) 21.474) 176,626) :
0.66 (0.29, 1,940.7 (1,842.6, 30.30 (-64.15, 1,428,071 -4,310 (- 177,343 8,204 (6,251,
30% o) 2 035.3) 125 45 1.54% (1,405,124, 27,257, (175.389, 10143
: ,035. : 1,450,256) 17.875) 179,282) :
1,425,802 -6,383 (- 180,018 10,903
ao% 08 ég')zg' 1'933'82(%'3)32'5' 40'22&3(_28)'32’ 2.03% (1,402,560, 29,626, (178,145, (9,030,
CSTAMP : 027. : 1,449,236) 17,051) 181,879) 12,763)
1,424,708 7,669 (- 182,785 13,647
50% 0'6f 52534' 1'92;'82%2)35'8' 43'125('5’51)'29’ 2.22% (1.401.784, 30,594, (180,843, (11.705,
: ,022. : 1,446,846) 14.469) 184,671) 15,532)
Length
6 0.65(0.29, 1,966.6 (L,871.4, 4.43 (-89.94, . 1,433,383 910 (-22,852, 169,558 409 (-1,527,
weeks 1.09) 2,061.0) 99.62) 0.22% (1,409,621, 26,096) (167,622, 2,459)
: ,061. : 1,458,569) : 171,609) :
3 066 (020, 19624 (L8681 867 (8592, o 00 (i’jgg'gg 409 (-23,610, &23’232 923 (-1,022,
months 1.03) 2,056.9) 102.87) Lok oan 21,731) 7L870) 2,749)
6 066 (034, 19563 (18629, 14.69 (8140, co (i’jgé'géé -585 (-22,652, (%é'?gg 2,434 (573,
months 1.04) 2.052.4) 108.14) Lo 126 21,821) 1734450 4.318)



1,429,188

-3,132 (-

174,594
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12 065(029, 19514 (L8531, 19.63 (7543, | oo (1402 356, Sl (v2o7s,  5463(3440,
months 1.03) 2.046.5) 117.96) 155705 e 6000 7,494)
24 065(0.20, 19343 (L84L8, 36.76 (5957, oo &’jﬁ‘ééﬁ% -gélfgo(- (1‘33'822 (ié’ggg
months 1.09) 2,030.6) 129.24) : 400,206, 150, 956, 820,
1,448,060) 15,703) 183,906) 14,771)
Coverage
. 065(029, 1961.2(1,861.3, 9.80 (-92.64, . 1,431,925 -323 (-24,088, 170,254 1,130 (-833,
10% 0.50% (1,408,160, (168,290,
1.09) 2.063.7) 109.75) o4 536 22,388) 172065 2.942)
1,431,240 41,012 (- 171,362
20% 0'615 (gg')zg' 1'95;'8 4%'%63'6' 13'%7('12)'29‘ 0.67% (1,407,915, 24,337, (169,360, 2'24335(5)37*
: ,046. : 1,453,176) 20,924) 173,182) :
1,430,923 41,447 (- 172,508
30% O'Gf 53534' 1'952'85%'2)58'4' 15'(1)i2('§;)'60’ 0.76% (1.407.693, 24,676, (170,573, 3’3213%6;‘36’
: ,058. : 1,454,402) 22.032) 174,438) :
1,429,873 -2,524 (- 173,576
ao% % ég')zg' 19529 4%'3)4 9.4, 19'?31('5%'97’ 0.98% (1,408,713, 23,684, (171.808, 4’43(;52(§é‘)568’
: ,045. : 1,452,402) 20,005) 175.426) !
M- . 064(029, 1950.0(1,857.7, 21.03(-77.11, . 1,430,152 -2,257 (- 174,766 5 654 (3,720,
50% 1.07% (1,407,007, 25,402, (172.862,
CUBED 1.03) 2.048.1) 113.33) 50 916 20.508) ey 7,561)
(HlV i) y il il
Testing  Length
Only) 6 0.65(0.29, 1,964.4 (1,869.0, 6.58 (-86.03, 1,432,943 591 (-23,137, 169,321 186 (-1,714,
0.33% (1,409,215, (167.422,
weeks 1.08) 2,057.1) 102.06) L ioa 705 22,441) 171 o6t 1,949)
3 066 (029, 1966.1 (L8743, 496 (8907, (oo (i’j‘gg'ggg 52 (-23,407, égg'ggg 358 (-1,543,
months 1.04) 2,060.1) 96.76) : 154 555 22,165) 71516, 2,177)
6 065(0.20, 19614 (L8666, 9.64(-92.69, o000 (i’ﬁg'ggi 771 (-21,597, égg'i(l’é 1,077 (-709,
months 1.03) 2.063.7) 104.44) : 54 468) 22,228) T o50) 2,825)
12 065(0.20, 19578 (L8636, 13.24(7529, (oo (iiig%g, '214’1?;327(1' (%ézggg, 2,238 (237,
months 1.04) 2.046.3) 107.46) L5810 20,95, 173162) 4,058)
24 064(029, 19525(1,850.7, 1853 (-90.38, . o.o (i”igg"gig, _36?21(?7(,_ (g‘z‘lﬁ‘z‘, 5,210 (3,308,
months 1.04) 2.061.4) 120.31) ot 360) o oion 6,983)
No
COVID  1.01(057, 2076.2(1,9755  -105.16 (- 5.34% (i’ggg'%g égg’ggg ég?gig é‘z"ggg
Pandem  1.55) 2,189.3) 218.28, -4.51) : 658,778, 333, 944, 798,
. 1,708,016) 275,570) 195,939) 26,793)

IC
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*Rate per 100 person-years at risk during May 2020.

**Cumulative incidence over 3 year period (from March 2020-March 2023) for full susceptible Atlanta MSM population.
TFor susceptible Atlanta MSM population (approximately 87,723 HIV-negative MSM).

iDifference in 3-year cumulative incidence compared to base scenario.

SDifference in total person-time on PrEP between given scenario and base scenario.

liDifference in all HIV tests between given scenario and base scenario.

Table 4.4. The Effect of Modifying the Efficacy of Home-Based PrEP Retention and HIV Testing Interventions on Epidemiologic
Outcomes in a COVID Pandemic Context, Over 500 Simulations

Incidence 3-Year Number Total Person-Time Relative Excess Number of HIV Relative Excess
Scenario Rate, Cumulative Infections on PrEP Over 3 Person-Time on Tests Over 3 Number of HIV
May 2020 Incidence Averted Yearst Prept$ Yearst Teststl
(95% SI)* (95% SIy+t (95% SI)t+ (95% SI) (95% SI) (95% SI) (95% SI)
0.6 (0.20 1,971.0 1,432,327 169,132
No Intervention ) 1 095 ' (1,870.4, — (1,408,967, — (167,200, —
: 2,066.0) 1,453,985) 170,951)
Efficacy of PrEP Retention Intervention
Modifier of 0.75  0.64 (0.29, 1.966.1 4.9 (:97.18, 1,459,299 27,070 (6,764, 171,023 1,902 (137,
(25% Change) 1.09) (18733, 97.71) (1,438,992, 47,741) (169,258, 3,647)
: 2,068.2) : 1,479,970) ’ 172,768) '
Modifier of 0.50  0.66 (0.29, 1,958.2 12.86 (-81.62, 1,498,735 66,288 (42,836, 173,808 4,661 (2,698,
(50% Change) 1.03) (18616, 109.47) (1,475,283, 88,220) (171,845, 6,492)
: 2,052.6) : 1,520,668) ’ 175,639) ’
Modifier of 0.25  0.64 (0.34, 1,940.9 30.17 (-68.69, 1,549,469 117,067 (93,193, 177,428 8,287 (6,393,
(75% Change) 1.09) (1,844.8, 126.2) (1,525,595, 139,434) (175,535, 10,135)
: 2,039.7) : 1,571,837) ’ 179,276) '
Modifier of 0 0.64 (0.29, 1,920.3 50.75 (-48.31, 1,614,751 182,347 (156,837, 182,068 12,925 (10,939,
(18215, (1589,241, (180,080,
(100% Change) 1.03) 5 0193) 149.55) L 638.772) 206,368) 164 01) 14,873)
Efficacy of HIV Testing Intervention
Modifier of 2.0 0.65 (0.29, 1,948.8 22.25 (-76.6, 1,429,182 -2,937 (-26,816, 174,533 5,425 (3,496,
2x) 1.08) (1,854.3, 116.75) (1,405,304, 19,841) (172,604, 7,268)
: 2,047.6) : 1,451,961) * 176,376) '
Modifier of 5.0 0.65 (0.29, 1.904.6 66.38 (-26.35, 1,419,455 -12,897 (-35,622, 190,616 21,480 (19,470,
(5%) 1.04) (18116, 159.45) (1,396,729, 10,800) (188,606, 23,484)
: 1,097.4) : 1,443,151) * 192,619) '
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Modifier of 10.0  0.65 (0.29, 1,863.6 107.39 (15.83, 1,400,837 -31,589 (-53,977, - 217,083 47,939 (45,969,
(10x) 1.03) (1,767.1, 203.89) (1,378,449, 8,316) (215,113, 49,048)
: 1,955.2) : 1,424,110) : 219,092) '

Modifier of 25.0  0.64 (0.29, V8002 161.52 (75.51, nree 75,207 (-96,514, - ooroee 121908
(25x) 1.03) (1,720.3, 250.73) (1,335,901, 52,327) (294,872, (125,729,

1,895.5) 1,380,088) : 299,384) 130,241)
Modifier of 50.0  0.64 (0.29, 1,783.9 187.13 (97.35, 1,322,718 -109,744 (- 433,437 264,289
500 69) (1.691.6, o) (1,300 210, 132051 88,525 (430,419, (261,271,

1,873.7) 1,343,936) ,251, -88, 436,550) 267,402)

*Rate per 100 person-years at risk during May 2020.

**Cumulative incidence over 3 year period (from March 2020-March 2023) for full susceptible Atlanta MSM population.
TFor susceptible Atlanta MSM population (approximately 87,723 HIV-negative MSM).

iDifference in 3-year cumulative incidence compared to base scenario.

8Difference in total person-time on PrEP between given scenario and base scenario.

lIDifference in all HIV tests between given scenario and base scenario.



FIGURES

Figure 4.1. Number of HIV Tests by Home-Based HIV Testing Intervention,* Over 500
Simulations
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*Assumes intervention length of 1 year, intervention coverage of 20% of eligible, intervention began 2 weeks into
pandemic, with no intervention persistence

Note: The sudden sharp drops/spikes in all HIV tests are due to PrEP-based testing patterns. The model uses an
interval-based approach where it is retesting with a testing interval of 12.86 weeks. This follows from PrEP guidance
that individuals who are HIV-negative and take PrEP to prevent HIV acquisition should test quarterly.
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Figure 4.2. Current PrEP Use by Home-Based PrEP Retention Intervention,* Over 500
Simulations

Iieginning of COVID ntervention End IPersistence of Intervention End
Intervention Start
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10000 -

T oL P e e ey

Week

QR DOT M-CUBED No COVID . No Intervention Median DOT M-CUBED Mo COVID = Mo Intervention

*Assumes intervention length of 1 year, intervention coverage of 20% of eligible, intervention began 2 weeks into
pandemic, with 1 intervention persistence of 1 year
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Figure 4.3. PrEP Coverage among Atlanta MSM by Home-Based PrEP Retention Intervention,*
Over 500 Simulations
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Figure 4.5. Isolated Impact of Home-Based Interventions on Incidence among Atlanta MSM,*
Over 500 Simulations, 2020-2023
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Figure 4.6. Current PrEP Use per week by coverage level of eligible population for (A) M-
CUBED and (B) DOT,* Over 500 Simulations
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Figure 4.7. Current PrEP Use per week by length of intervention for (A) M-CUBED and (B)
DOT,* Over 500 Simulations
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Figure 4.8. Current PrEP Use per week by length of persistence for (A) M-CUBED and (B)
DOT,* Over 500 Simulations
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Figure 4.9. Number of HIV Tests per week by coverage level of eligible population for (A) M-
CUBED and (B) eSTAMP,* Over 500 Simulations
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Figure 4.10. Number of HIV Tests per week by length of intervention for (A) M-CUBED and (B)
eSTAMP,* Over 500 Simulations
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Figure 4.11. Impact of Increasing Efficacy of HIV Testing Intervention on (A) HIV Incidence
During 2020-2022 and (B) 2020,* Over 500 Simulations
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Figure 4.12. Impact of Increasing Efficacy of PrEP Retention Intervention on (A) HIV Incidence
During 2020-2022 and (B) 2020,* Over 500 Simulations
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Chapter 5. Public Health Implications

With over 1.2 million Americans currently living with HIV, and nearly 40,000 new
infections every year,3'1° HIV remains a major public health challenge in the United States. To
address this, the US Ending the HIV Epidemic (EHE) initiative aims to reduce new HIV
infections in the US by 75% by 2025 and 90% by 2030 by addressing disparities and expanding
HIV prevention and treatment efforts in high-need areas like the Southeast US.*® However, EHE
strategies were developed before the pandemic-era changes. Economic and social disruptions
from the COVID-19 global pandemic have created new challenges in the control of HIV,
prompting major behavioral changes, but also disrupting access to HIV prevention, screening,
and clinical care services. These changes have the potential to dramatically impact the

trajectory of the US HIV epidemic.

A better understanding of how the COVID-19 pandemic has affected and will continue to
affect HIV dynamics in the US is required in order to shape future HIV prevention and care
services and research. The goal of this dissertation was to elucidate pandemic-era HIV-related
behaviors and HIV transmission dynamics and assess the potential impact of contextually

relevant home-based HIV prevention interventions.

Review of Major Findings

In Chapter 2, we conducted an empirical analyses of a web-based survey of US MSM to
assess the impact of the pandemic on HIV-related behaviors and service interruptions. We
found that COVID-related disruptions to HIV prevention and treatment services and changes in
sexual behavior continued from early lockdown periods through early 2021. Extended
disruptions were observed in HIV testing, STI testing, HIV care clinical visits, and HIV viral load

testing, with only small improvements over time. Although sexual behaviors including number of
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sexual partners and opportunities to have sex remained below pre-pandemic levels in later 2020
for many MSM, reduced access to HIV prevention, testing, and treatment services that lasted
through the year created additional challenges for the control of HIV, which could result in an

overall increased HIV transmission rate.

These findings demonstrate that some, though not all, HIV-related pandemic effects
continued into early 2021. Our results suggest that the gaps in access to HIV prevention and
treatment services have worsened in the pandemic era. In addition to elucidating behavioral
patterns that may occur during future pandemics, and therefore aiding in pandemic
preparedness, our findings highlight that additional resources and programs may be needed to
address existing disparities in HIV prevention and treatment, in addition to solving the new

challenges created by the COVID-19 pandemic.

In Chapter 3, we used a dynamic network-based HIV transmission model to estimate
the incidence of HIV among US MSM during and after the COVID-19 pandemic. We found that
HIV incidence among US MSM decreased during 2020, but that incidence returned to pre-
pandemic levels in subsequent years, and COVID-related impacts did not translate to long-term
increases in HIV transmission in the post-pandemic period. Although we observed temporary
decreases in HIV incidence (compared to if the COVID pandemic had not occurred), these
reductions were not significant enough to sustain lasting decreases to HIV transmission that will

affect the trajectory of the US HIV epidemic.

Our results draw attention to the ongoing need for HIV prevention programs for MSM at
risk of HIV infection, HIV testing for those with newly acquired HIV, and for HIV treatment
services for men living with diagnosed HIV, both within and outside of a pandemic context.
Although our findings demonstrate we may expect long-term marginal/slight decreases in HIV
incidence, the trajectory of the US HIV epidemic is still far from the EHE goal of reducing new

HIV infections in the US by 90% by 2030; in our study, we noted a decrease in HIV incidence
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from 2019 to 2030 of only 14%. Our findings support that additional HIV prevention services are

needed in high burden areas to better approach EHE goals.

Lastly, in Chapter 4, we used a network-based mathematical model to estimate the
effectiveness of at-home HIV testing and PrEP retention interventions among Atlanta MSM in
the context of the COVID-19 pandemic. We found that although home-based PrEP retention
and HIV testing interventions were effective at increasing PrEP use and/or HIV testing, in
isolation they had minimal impact on HIV incidence during a period of decreased transmission.
We found that for these individual interventions to translate into meaningful reductions in HIV
transmission in a pandemic context, they would need to be scaled up in terms of coverage,
length, and post-intervention persistence, or their efficacy and real-world effectiveness would

need to improve.

These results demonstrate firstly that home-based interventions can play a role in
offsetting the impact of pandemic disruptions on HIV services. However, they also demonstrate
that in a pandemic context where widespread decreases in sexual behavior are occurring,
increases in HIV testing and PrEP use (non-discontinuation) may not translate into meaningful

population-level public health impact.

Strengths and Limitations

A major strength of this dissertation is that is used several independent data sources to
determine the impact that the COVID pandemic had on the US HIV epidemic among MSM.
First, we used empirical data from the AMIS COVID Impact Survey on COVID-era HIV-related
behavior change of US MSM. Then, we used this data alongside other data sources, including
the Love and Sex in the Time of COVID study as well as surveillance-based national sources, in

order to determine the combined impact of COVID-related change on HIV transmission. From
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this, we were then able to combine these data sources to investigate the effect of COVID-
related changes on the HIV epidemic and HIV dynamics. If not for combining multiple data
sources within a mathematical model, we would not have been able to determine the overall
effect these changes had on the US HIV epidemic, nor investigate approaches to counteract

their detrimental effects.

On the flipside, the main limitation of this dissertation is that it bears the limitations of all
of the data sources it utilized. Our results for each Aim are therefore subject to limitations and
biases of the studies from which their data were sourced. In addition, our results were limited by
the availability of granular data that appropriately mapped to our study outcomes or model
parameters. For example, in Aims 2 and 3, the data that were used to set model parameters did
not always map perfectly. For all Aims, we were limited by a lack of granularity of primary data
by temporal, demographic, and geographic stratification (because COVID impacts may have
changed over short time periods, and impacts may have differed with certain demographic and
geographic strata). Our results would be strengthened if data for model parameters, for

example, were available at the very specific time points for each key demographic subgroup.

Public Health Implications

Despite recent advancements in biomedical prevention and treatment, HIV risk still
remains high for US MSM. Disruptions from the COVID-19 global pandemic created new
challenges in the control of HIV, including reducing access to HIV prevention, screening, and
clinical care services. However, the actual impact of COVID-related changes on HIV
transmission had remained largely unclear. This dissertation investigated the impact and
implications of the COVID pandemic on the US HIV epidemic. We demonstrated that the

pandemic presented challenges in HIV prevention, but at a population-level, the epidemiologic
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impact of behavioral changes resulting from the pandemic outweighed the impact of changes in
HIV services to the extent that HIV transmission temporarily decreased because of the COVID

pandemic.

This work aids in our understanding of the epidemiologic impact of disruptions to sexual
behaviors and HIV prevention and clinical care on HIV incidence during and after the COVID-19
pandemic. Our results advance knowledge of how US MSM change health behaviors during
pandemic restrictions, how network-based mathematical models can be used to estimate HIV
transmission in a period of service disruptions, and how home-based HIV prevention

interventions may affect transmission in a pandemic context.

Though this research is timely at present given its temporal proximity to the COVID
pandemic, the questions it addressed will continue to be relevant for years to come. For
example, information about how MSM alter their behaviors during periods of service
interruptions have implications for HIV prevention outside of a pandemic context, such as in
settings of decreasing funding to HIV clinics, which is an ongoing challenge. In addition, COVID-
19 is just one extreme example of a respiratory pandemic; inferences drawn from this project

will be useful for future pandemic preparedness.

Future Directions

This dissertation has prompted several new research questions that merit investigation.

1. This dissertation only explored the impact of the COVID pandemic on sexual behaviors
and clinical services among US MSM through early 2021. Although there are some local
US studies that have examined the impact beyond early 2021, large scale nationally
representative studies are needed given that the COVID pandemic was still occurring in

2021 and onward, even if most COVID lockdowns had elapsed by early 2021.
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2. Although Aim 2 explored how simulated HIV incidence may track with the general trend
of real-time HIV diagnhoses, a study that disentangles HIV diagnoses from HIV
infection/incidence would be useful. That is, a model-based study could incorporate HIV
diagnosis data within it (beyond calibration) to assess if HIV diagnoses are a
representation of fewer HIV infections or an artifact of reduced screening.

3. Because home-based HIV prevention and HIV care are somewhat novel, there are many
important research questions that should be investigated regarding their effectiveness
and implementation. Studies are needed that (1.) examine the combined impact of
interventions within a pandemic context, (2.) explore how targeted deployment of
interventions based on demographic features (e.g., racial/ethnic, age, geography, etc.)
or by HIV risk group (i.e., higher risk MSM based on behavior) could affect the
epidemiologic impact of interventions, (3.) investigate the general impact that home-
based HIV prevention interventions can have outside of pandemic context (given that
home-based care could transform HIV prevention and care in the coming years), and
(4.) explore the possible impact that home-based event-driven PrEP?% and long-acting
injectable PrEP?!° (assuming it can be dispensed at home) interventions could have,
both in and out of a pandemic context.

4. Because our results demonstrated that the US is far from reaching 2030 EHE targets,
implementation science studies that examine how we can get to EHE goals given what
occurred during the COVID pandemic are needed. This is of particular importance given
that approved federal funding for EHE during FY 2019—FY 2023 has fell short of

proposed funding.18®



130

Appendix A. Technical Appendix for Chapters 3 and 4

Assessing the Impact of COVID-19-Related Behavioral Changes and Clinical Service

Disruptions on the HIV Epidemic in the United States: Supplemental Appendix

This supplemental technical appendix is based on a previous technical appendix written by Dr.
Samuel Jenness (Dissertation Advisor). It has been modified and included in numerous studies
that use the EpiModel software platform. It has been adapted and expanded here by Laura

Mann to support Aims 2 and 3 of her dissertation.
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1 Introduction

This supplementary technical appendix describes the mathematical model structure,

parameterization, and statistical analysis of dissertation Aims 2 and 3 in further detail.
1.1 Model Framework

The mathematical models for HIV transmission dynamics presented in this study are network-
based transmission models in which uniquely identifiable sexual partnership dyads were
simulated and tracked over time. This partnership structure is represented using temporal
exponential-family random graph models (TERGMs), described in Section 3. On top of this
dynamic network simulation, the epidemic model represents demography (entries, exits, and
aging), interhost epidemiology (disease transmission), intrahost epidemiology (disease
progression), and clinical epidemiology (disease diagnosis and treatment and prevention
interventions). Individual attributes related to these processes are stored and updated in

discrete time over the course of each epidemic simulation.

The modeling methods presented here utilize and extend the EpiModel software platform to
incorporate HIV-specific epidemiology and transmission dynamics. The HIV extensions for gay,
bisexual and other men who have sex with men (MSM) were originally developed by Goodreau
et al. for use in prior modeling studies of MSM in the United States and South America,?1-213
and subsequently used for a model for HIV preexposure prophylaxis (PrEP) among US
MSM.2¥4-217 The most recent innovation in our modeling platform has been to incorporate
primary data from the ARTnet study of MSM in the United States directly into the workflow for

parameterizing the network and behavioral components.?!8
1.2 Model Software

The models in this study were programmed in the R and C++ software languages using the

EpiModel [http://epimodel.org/] software platform for epidemic modeling. EpiModel was
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developed by the authors for simulating complex network-based mathematical models of
infectious diseases, with a primary focus on HIV and sexually transmitted infections (STls).2°
EpiModel depends on Statnet [http://statnet.org/], a suite of software in R for the representation,

visualization, and statistical analysis of complex network data.??°

EpiModel allows for a modular expansion of its built-in modeling tools to address novel research
guestions. We have developed a set of extension modules into a software package called
EpiModelHIV. This software is available for download, along with the scripts used in the
execution of these models. The tools and scripts to run these models are contained in two

GitHub repositories:

o [http://github.com/statnet/EpiModelHIV] contains the general extension software package.
Installing this using the instructions listed at the repository homepage will also load in
EpiModel and the other dependencies. We use a branching repository architecture on
Github; the branch of the repository associated with this research project is CombPrevNet.

o [http://github.com/EpiModel/CombPrevNet] contains the scripts to execute the models and

to run the statistical analyses provided in the manuscript.

1.3 Core Model Specifications

For Aim 2, we started with a network size of 100,000 MSM aged 15 to 65 to represent the larger
population of sexually active US MSM. For Aim 3, we started with a network size of 100,000
MSM aged 15 to 65 to represent the larger population of sexually active MSM in the Atlanta
metropolitan area. The population size was allowed to increase and decrease with arrivals into
the sexually active population at age 15 and departures related to mortality or aging out of the
sexually active population at age 65. MSM were stratified as Black, Hispanic/Latino (hereafter in
the text called Hispanic), and White/Other (hereafter in the text, called White) race/ethnicity in
proportions equivalent to Census-derived proportions. Further details on the demography (race

and age) are provided in Section 5. We used a three-stage simulation framework, first
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calibrating the model to HIV diagnosis rates and HIV care continuum parameters for 60 years of
burn-in time (Stage 1), then calibrating the model to current estimated levels of PrEP coverage
for 5 years of burn-in time (Stage 2), and then simulating the reference and counterfactual
intervention scenarios for 10 years (Stage 3). The time unit used throughout the simulations was
one week. Unless otherwise noted, all rate-based parameters listed below are to be interpreted
as the rate per week and all duration-based estimates are to be interpreted as the duration in

weeks.
2 The ARTnet Study

This model featured an innovative parameterization design in which primary individual-level and
partnership-level data were used to fit statistical models for summary statistics that were then
entered into the epidemic model. The primary data source for network structure and behavioral
data was the ARTnet study, described below. Wherever possible, we used primary data from
this study for model parameterization, and only relied on the secondary published literature for
model parameters that could be generalized across target populations (e.g., HIV natural history

or clinical response parameters).
2.1 Study Design

This analysis used data collected in the ARTnet study of MSM in the United States in 2017—
2019.28 MSM were recruited directly after participating in the American Men’s Internet Study
(AMIS),?2t a parent web-based study about MSM sexual health that recruited through banner
ads placed on websites or social network applications. At the completion of AMIS, MSM were
asked to participate in ARTnet, which focused on sexual network features. ARTnet data
collection occurred in two waves (following AMIS): July 2017 to February 2018 and September

2018 to January 2019.
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Eligibility criteria for ARTnet were male sex at birth, current male cisgender identity, lifetime
history of sexual activity with another man, and age between 15 and 65. Respondents were
deduplicated within and across survey waves (based on IP and email addresses), resulting in a
final sample of 4904 participants who reported on 16198 sexual partnerships. The Emory

University Institutional Review Board approved the study.
2.2 Primary Measures

ARTnet participants were first asked about demographic and health-related information.
Covariates used in this analysis included race/ethnicity, age, ZIP Code of residence, and current
HIV status. ZIP Codes were transformed into Census regions/divisions and urbanicity levels by
matching against county databases (using standardized methods for selecting county in the
small number of cases when ZIP Codes crossed county lines). Participants reporting as never
testing for HIV, having indeterminate test results, or never receiving test results were classified

as having an unknown HIV status.

Participants were then asked detailed partner-specific questions for up to most recent 5
partners. The detailed partner-specific questions included attributes of the partner and details
about the partnership itself. Partner attributes considered here included age, race/ethnicity, and
HIV status. Participants were allowed to report any partner attribute as unknown. When partner
age was unknown, age was imputed based on a response to a categorical question (e.g., 5-10
years younger/older, 2-5 years younger/older). Partnerships were classified into three types:
“‘main” (respondent reported they considered this partner a “boyfriend, significant other, or life
partner’) casual (someone they have had sex with more than once, but not a main partner), and
one-time.??? For one-time partners, we asked for the date that sexual activity occurred. For
persistent (main and casual) partnerships, we asked for the date of most recent sex, the date
first sex (which could have been prior to the past year), and whether the partnership was

ongoing (if the participant expected sexual activity would occur in the future). For each
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partnership, we asked whether (for one-time) or how frequently (for persistent) anal sex

occurred.

Outcome measures include descriptive statistics for characteristics of participants and their
reported partnerships, and the aggregate network statistics used to estimate the TERGMs
underlying epidemic simulations on dynamic networks. The network statistics include ego
degree, attribute mixing in partnerships, and the current length of ongoing partnerships,
stratified by the attributes of persons and partnerships. Degree is a property of individuals,
whereas mixing and length are properties of partnerships. Degree was defined as the ongoing
number of persistent partners measured on the day of the survey (includes main and casual
partnerships). Degree is not defined for one-time partnerships, so for these we instead
calculated a weekly rate of new contacts by subtracting the total main and casual partners from
the total past-year partners, and dividing by 52. Partnership length for ongoing main and casual
partnerships was calculated by taking the difference between the survey date and the
partnership start date. The mean length of ongoing partnerships is the network statistic needed
for TERGM estimation; the logic and derivation are explained here.?*® Mixing was measured by
the relative frequency of partnerships that occurred within and between groups defined by

race/ethnicity, and age.
2.3 Statistical Analysis

We fit a series of generalized linear models (GLMSs) to estimate summary statistics for features
of the sexual network structure and the behavior within partnerships. Specific GLM
parameterizations are detailed below in the discussion of each set of model parameters.
Common across all models was the general approach of including geography of residence as a
main effect with two levels (Atlanta versus all other areas). This allowed for the model
coefficients and predicted summary statistics to vary by geography while ensuring stability of

outcomes under the assumption of conditional exchangeability.



136

3 Networks of Sexual Partnerships

We modeled networks of three interacting types of sexual relations: main partnerships, casual
(but persistent) partnerships, and one-time anal intercourse contacts. We first describe the
methods conceptually, including the parameters used to guide the model and their derivation,
and then present the formal statistical modeling methods. Consistent with our parameter
derivations, all relationships are defined as those in which anal intercourse is expected to occur

at least once.

3.1 Conceptual Representation of Sexual Networks

Our modeling methods aim to preserve certain features of the cross-sectional and dynamic
network structure as observed in our primary data, while also allowing for mean relational
durations to be targeted to those reported for different groups and relational types. Our methods
do so within the context of changing population size (due to births, deaths, arrivals, and
departures from the population) and changing composition by attributes such as age. The
broader motivation, methodological details, and link between models and primary data are

described here.?'®

The network features that we aim to preserve are as follows:

e Persistent (Main and Casual) Partnerships
o The mean degree (number of ongoing partners), stratified by main and casual
partnership types, and the proportion of men with concurrency (2 or more ongoing
partners) for each partnership type, at any time point.
o Variations in the mean degree specific to each persistent partnership type by:
» Race/ethnicity group (3 categories for Black, Hispanic, and White MSM).

= Age group (5 categories for 15-24, 25-34, 35-44, 45-54, and 55—-64).
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» Cross-type degree: Degree in the other persistent partnership type (e.qg.,
mean degree of MSM for main partnerships given current casual degree of 0,
1,2,3).
o Selection of partners within the same race/ethnicity group (mixing by race/ethnicity).
o Selection of partners within the same age group (mixing by age).
o Mean partnership durations, stratified by main and casual partnership types, and by
mixing within age groups.
e One-Time Partnerships
o The overall rate of having one-time anal intercourse partnerships per week.
o Variations in this contact rate by:
» Race/ethnicity group.
= Age group.
» Total persistent degree (sum of main and casual partnerships ongoing).
» Risk level heterogeneity above variations by these three factors (mean
partnership rates for five quintiles of MSM stratified by mean one-time rates).
o Selection of partners within the same race/ethnicity group (mixing by race/ethnicity).
o Selection of partners within the same age group (mixing by age).
e Common to Persistent and One-Time Partnership Types
o Prohibitions against MSM with incompatible sexual positioning roles (e.g., no
partnerships between exclusively receptive MSM).

3.1.1 Overall Mean Degree for Persistent Partnerships

Ongoing persistent partnerships (whether main or casual) were defined from the partnership-
level ARTnet dataset as those in which sex had already occurred more than once, and in which
the respondent anticipated having sex again. The momentary main or casual mean degree is

then defined as the mean of the degree of all MSM for main or casual partnerships on the day of



138

study. We estimated this with a Poisson model with main or casual degree as the outcome and
a dummy variable for Atlanta residence as the predictor and then exponentiating the
coefficients, resulting in an estimated mean main degree of 0.396 and a mean casual degree of

0.541.

In addition, we modeled the proportion of MSM with concurrency (degree of 2 or more) by
partnership type. This was estimated with logistic regression models for binary outcomes with a
dummy variable for Atlanta residence as the predictor. Taking the inverse of the logit of the
coefficient yielded the predicted probabilities of 0.9% for main concurrency and 14.5% for

casual concurrency.

3.1.2 Heterogeneity in Mean Degrees for Persistent Partnerships

We estimated the heterogeneity in main and casual mean degree by fitting three Poisson
regression models. For race/ethnicity, we estimated the mean degree for each group within the
target population by including dummy variables for city and race/ethnicity. For age, we modeled
the non-linear relationship between age and mean degrees by including city, age group, and
square root of age group to allow for a non-linear relationship between age and the outcome.
For cross type degree, we modeled the mean degree for main partnerships as a function of
degree of casual partnerships, and vice versa, again with city also as a predictor. For each of
the 6 models (2 partnership types times three predictors of interest), we fit the statistical models
and then exponentiated the coefficients to obtain the rates for each stratum. Those are shown in

the Table below.

Supplemental Table A.1l. Heterogeneity in Mean Main and

Casual Degree by Race/Ethnicity, Age Group, and Cross

Predictor Main Mean Casual Mean

Race/Ethnicity
Black 0.279 0.605
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Hispanic 0.423 0.513
White 0.412 0.534
Age Group

15-24 0.374 0.297
25-34 0.469 0.479
35-44 0.448 0.615
45-54 0.372 0.701
55-64 0.282 0.741
Cross Type

0 0.440 0.632
1 0.352 0.401
2 0.282 0.255
3 0.225 —

3.1.3 Mixing by Race/Ethnicity and Age for Persistent Partnerships

Respondents reported on their perception of the race and ethnicity (Hispanic/non-Hispanic) for
each partner. We categorized the respondents’ and partners’ races into three mutually exclusive
groups: Black, Hispanic, and White. Using logistic regression models, we estimated the
proportion of partnerships between MSM of the same race (within-group mixing) by evaluating
relationship between the respondent group and partner group as a binary outcome (using
geography of residence predictor as a main effect with two levels, Atlanta versus all other
areas). The inverse logit of the coefficients is then interpreted as the predicted probability of a
same-race/ethnicity partnership. The values were 76.5% for main partnerships and 63.3% for

casual partnerships.

For mixing by age, we used a model parameterization for the 5-category age group that allowed
for differences in the level of age mixing that could vary by age group (differential homophily).
We fit a logistic regression model for partnerships, with being in a partnership of the same age

group as the outcome and the age group of the respondent as the main predictor. With the
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inverse logit transformation, the probabilities of partnerships within the same age group,

stratified by partnership type are shown in the table below.

Supplemental Table A.2. Proportion of Main and Casual
Partnerships within the Same Age Group, by Age of Ego
Age Group Main Within Group | Casual Within
15-24 78.1% 53.2%

25-34 69.6% 42.4%

35-44 59.4% 32.4%

45-54 48.5% 23.7%

55-64 37.6% 16.8%

3.1.4 Duration of Persistent Partnerships

We model partnership dissolution as a heterogenous, geometrically distributed process with
unique parameters for each relational type. The geometric distribution for relational durations
implies a “memoryless process,” which is a common assumption within ordinary differential
equation modeling. Although this assumption implies that the rate of dissolution does not
depend on the current age of the partnership, the overall exponential shape of the dissolution
distribution matches reasonably well to empirical data on relational durations. The fit is improved
considerably when the partnership types are stratified, as we do here, implying a mixture of
geometric distributions. Once one-time contacts are removed, and longer-duration main
partnerships are separated from shorter-term causal partnerships, the set of distributions fits the

empirical data on partnership durations well.

The fit is improved further by stratifying based on the interaction between partnership type and
age of both members within the dyad. For this analysis, we explored how relationship duration
varied by multiple demographic characteristics, and unsurprisingly age was most strongly

associated with duration. For this model parameterization, we specifically elected to estimate
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and input based on matched age groups (that is, partnerships between two persons of the same

age).

As detailed in previous work,?121° for memoryless processes, the expected age of an extant
(ongoing) relationship at any moment in time is an unbiased estimator of the expected
uncensored duration of relationships, given the balancing effects of right-censoring and length
bias for this distribution. Raw relational ages were calculated as the difference between first sex
date and the study date for each dyad the ego reported sex with more than once in the interval.
To derive our estimator of relational age, we take the median of the observed distribution and
then calculate the mean for the geometric distributions associated with that median. To account
for estimation within the Atlanta target population, we weighted this estimator by the inverse of

the relative differences in Atlanta partnerships to non-Atlanta partnerships.

The resulting expected relational ages are summarized in the table below.

Supplemental Table A.3. Duration of Main and Casual Partnerships

by Group of Ego (Respondent) and Alter (Partner)

Dyadic Age Group Main Relational Age | Casual Relational
(Weeks) Age (Weeks)

Both 15-24 71.2 50.5

Both 25-34 253.5 72.5

Both 35-44 523.3 1121

Both 45-54 637.1 161.3

Both 55-64 903.1 147.4

Different Groups 217.9 106.4

3.1.6 Overall Mean One-Time Contact Rate

In addition to persistent main and casual partnerships, we modeled one-time sexual contacts

involving anal intercourse based on ARTnet reports on the number and variation in these types
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of relations. As noted above, degree is not defined for one-time contacts, so for these we
instead calculated a weekly rate of new contacts by subtracting the total main and casual
partners from the total past-year partners. We estimated the weekly rate by fitting a Poisson
regression model with the count of one-time contacts as a function of city, exponentiating the
coefficient to get the predicted count, and dividing by 52 to get the week rate. The overall mean

one-time contact rate was 0.076 Al contacts per week.

3.1.7 Heterogeneity in One-Time Contact Rates

Heterogeneity in one-time contact rates was modeled with four Poisson regression models to
estimate the rates as a function of race/ethnicity, age group, risk level strata, and total persistent
(main plus casual) degree. Similar to the one-time rate, we fit these models with geography of
residence as a main effect (which had two levels, Atlanta versus all other areas, with the former
level used for predictions) and exponentiated the coefficients and then divided by 52 to get the
group-specific rates. For age group, similar to the estimation of degree, we modeled this non-
linearly by including age group and the square root of age group as the joint predictors (along

with city). The results are shown in the table below.

Supplemental Table A.4. Weekly One-Time
Contact Rates by Race/Ethnicity, Age Group,
Risk Level, and Total Persistent Degree of Ego
(Respondent)

Predictor Weekly Contact
Race/Ethnicity

Black 0.062

Hispanic 0.071

White 0.079

Age Group

15-24 0.048

25-34 0.075

35-44 0.089




45-54 0.093
55-64 0.087
Risk Level Quintile

1 0.000
2 0.000
3 0.012
4 0.043
5 0.326
Total Persistent

0 0.049
1 0.057
2 0.121
3+ 0.284

3.1.8 Mixing by Race/Ethnicity and Age for One-Time Contacts
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We used a similar approach to within-group mixing by race/ethnicity and age group for one-time

contacts to the one used for persistent contacts, with one difference that we did not model

differential homophily by age group to improve model stability. Therefore, the overall proportion

of one-time contacts that were within the same race/ethnic group was 67.6% and the proportion

of one-time contacts that were within the same age group was 32.8%.

3.1.9 Mixing by Sexual Role Across All Partnership Types

We assign men a fixed sexual role preference (exclusively insertive, exclusively receptive,

versatile). The model then includes an absolute prohibition, such that two exclusively insertive

men cannot partner, nor can two exclusively receptive men. We estimated the proportion men

were in each category (insertive, receptive, and versatile) by analyzing whether men had only

insertive anal intercourse, only receptive anal intercourse, or both insertive and receptive anal

intercourse (respectively) in their past five anal partnerships over the past year. These
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proportions were stratified (restricted) by geography of residence to the city of Atlanta. The

proportions were: 18.5% exclusively insertive, 27.1% exclusively receptive, and 54.4% versatile.
3.2 Statistical Representation of Sexual Networks

Exponential-family random graph models (ERGMs) and their dynamic extension temporal
ERGMs (TERGMSs) provide a foundation for statistically principled simulation of local and global
network structure given a set of target statistics from empirical data. Main and casual
relationships were modeled using TERGMs,?? since they persist for multiple time steps. One-
time contacts, on the other hand, were modeled using cross-sectional ERGMs.??* Formally, our
statistical models for relational dynamics can be represented as five equations for the
conditional log odds (logits) of relational formation and persistence at time t (for main and casual

relationships) or for relational existence at time t (for one-time contacts):

logit (P(Yij,t =1|Y;j,1 =0, Ylft)) = 04'3(g () Main partnership formation

] = . = c =gt + . .
logit (P(Yu,t =1|Y;j,1 =0, Yij,t)) 6r'9(gr () Casual partnership formation
logit (P(Yij,t =1| Y1 =1, Ylft)) =0 0(gm ™)) Main partnership persistence

. - _ - _ Cc _ _ _ . .
logit (P(YM =1| Y1 =1, Yij,t)) =0:'9(g9:(»)) Casual partnership persistence
logit (P(Yl-j,t =1| Ylft)) =0,'0(9.(»)) One-time contact existence

where:

e Y =the relational status of persons i and j at time t (1 = in relationship/contact, 0 =
not).
e Y&, =the network complement of i,j at time t, i.e. all relations in the network other than

ij,t

ij.
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¢ g(y) = vector of network statistics in each model (the empirical statistics defined in the
tables above).

° a(g(y)) = the change in g(y) when Yj; is toggled from O to 1 (for formation models) or 1
to O (for persistence models).

e O =vector of parameters in the model.

For g(y) and 6, the superscript distinguishes the formation model (+), persistence model (-) and
existence models (neither). The subscript indicates the main (m), casual (c) and one-time (0)

models.

The recursive dependence among the relationships renders the model impossible to evaluate
using standard techniques; we use MCMC in order to obtain the maximum likelihood estimates

for the 0 vectors given the g(y) vectors.

Our method of converting the statistics laid out in Section 3.1 into our fully specified network

models consists of the following steps:

1. Construct a cross-sectional network of 10,000 men with no relationships.

2. Assign men demographics (race/ethnicity and age) based on Census data for Atlanta
and assign men sexual roles based on frequencies listed above, as well as one-time risk
quintiles (20% of the men in each race per quintile).

3. Calculate the target statistics (i.e., the expected count of each statistic at any given
moment in time) associated with the terms in the formation model (for the main and
casual partnerships) and in the existence model (for one-time contacts).

4. Assign each node a place-holder main and casual degree (number of on-going
partnerships) that is consistent with the estimated distributions, and store these numbers
as a nodal attribute. (Note: this does not actually require individuals to be paired up into

the partnerships represented by those degrees).
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5. For the main and casual networks, use the mean relational durations by age group
combination to calculate the parameters of the persistence model, using closed-form
solutions, given that the models are dyadic-independent (each relationship’s persistence
probability is independent of all others).

6. For the main and casual networks, estimate the coefficients for the formation model that
represent the maximum likelihood estimates for the expected cross-sectional network
structure.

7. For the one-time network, estimate the coefficients for the existence model that
represent the maximum likelihood estimates for the expected cross-sectional network

structure.

Steps 5—7 occur within the EpiModel software, and use the ERGM and STERGM methods
therein. They are completed efficiently by the use of an approximation in Step 6.22° During the
subsequent model simulation, we use the method of Krivitsky??® to adjust the coefficient for the
edges term in each model at each time step, in order to preserve the same expected mean
degree (relationships per person) over time in the face of changing network size and nodal
composition. At all stages of the project, simulated partnership networks were checked to
ensure that they indeed retained the expected cross-sectional structure and relational durations

throughout the simulations.
4 Behavior Within Sexual Partnerships

In this study, we model three phenomena consecutively within relationships at each time step:
the number of anal intercourse sex acts, condom use per sex act, and sexual role per sex act.

We simulate these within all relationships regardless of HIV status (whether diagnosed or not).

4.1 Anal Intercourse Acts Per Partnership
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The rate of anal intercourse is applicable to persistent (main and casual) partnerships in which
there are repeated Al acts between the start and end of the partnership. We use ARTnet data
on the overall rate and predictors of variation in rates unique to each partnership type. For one-
time contacts, we assumed that the number of Al exposures was one, although there could
have been multiple Al acts within an exposure due to role versatility (see Section 4.4). The
modeling of act rates here is based on the expectation that changes in coital frequency depend

on race/ethnicity, age, diagnosed HIV status, and partnership type.
4.1.1 Measurement of Acts in ARTnet

We measured the number of acts within each reported partnership within the ARTnet study by
asking participants about the frequency of Al acts. Study participants could report on the
average number of acts within the partnership over the past year by week, month, year, or total
partnership duration. We then scaled this into a total weekly act rate. The final ARTnet
partnership-level dataset on 16198 partnerships includes this weekly rate as the outcome and
predictors at the individual and dyadic level that we used for statistical modeling as described

below.
4.1.2 Statistical Models of Act Rates

With this partnership-level dataset, we then modeled the count of acts per year per partnership

based on the Poisson regression formula:
Yi ~ bo + b1X1 + b2X12 + bsXz + baXs + bsX1X3 + beXs + b7X4? + bgXs + boXe
where:
Yi = Log of the count of acts per year.

X1 = Duration of partnership in weeks at the survey date.
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X2 = Racial/ethnic combination of the ego (respondent) and alter (partner), coded in 6
categories to capture within and across group mixing: Black-Black, Black-
Hispanic/White, Hispanic-Black/White, Hispanic-Hispanic, White-Black/Hispanic, White-

White.

X3 = Partnership type (0 = main; 1 = casual).

X4 = The combined age of ego and alter in years.

Xs = The concordant diagnosed HIV-positive status of both ego and alter, compared to
all other combinations of dyadic HIV status (1 = concordant positive; O = all other

combinations of dyadic HIV status).
Xs = Residence (1 = Atlanta metropolitan area; O = all other areas).

Note that we modeled the partnership duration and combined age of partners quadratically, and
we modeled the interaction of partnership duration and partnership type. Terms within the
prediction model were selection based on a combination of a priori theory and exploratory data
analysis. The coefficients for the model, and their lower and upper 95% confidence intervals,
are presented in the table below. Exponentiating any linear combination of coefficients will yield

the yearly rates, which may be converted to weekly through division.

Supplemental Table A.5. Statistical Model of Act Rates in Main and
Casual Partnerships

Model Parameter Estimate Ic_:cl)wer 95% g:oper 95%
bo (Intercept) 4.9615 4.9208 5.002

b (Duration) -0.0013 -0.0013 -0.0012

b, (Duration?) 6.3197E-07 | 6.0598E-07 | 6.5781E-07
bs (B-H/W Combo) 0.5196 0.4888 0.5505

bs (H-B/W Combo) 0.2178 0.1908 0.2449
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bs (H-H Combo) 0.1967 0.1687 0.2250

bs (W-B/H Combo) 0.4758 0.4505 0.5013

bs (W-W Combo) 0.1765 0.1516 0.2016

bs (Casual Type) -1.0373 -1.0458 -1.0287

% g;‘;raﬂon xCasual | 5 0009 100010 -0.0009

bs (Combined Age) -0.0113 -0.0122 -0.0104

b, (Combined Age?) 5.6269E-05 | 5.0154E-05 | 6.2374E-05
bs (HIV+ Concordant) 0.3614 0.3452 0.3776

by (Atlanta residence) -0.0229 -0.0396 -0.0063

Abbreviations: ClI, confidence interval; B-H/W, Black ego with either a
Hispanic or White alter; H-B/W, Hispanic ego with either a Black or
White alter; H-H, Hispanic ego with a Hispanic alter; W-B/H, White
ego with either a Black or Hispanic alter; W-W, White ego with a
White alter.

4.1.3 Predicted Rates in Epidemic Model

Predicted weekly rates of Al based on the combination of partnership and individual attributes is
then obtained dynamically by predicting from the statistical model with inputs based on the
current simulated population. EpiModel tracks the current age of partners, the duration of their
partnership, their racial combination, and the partnership type. This set of predictors was input
into a predict function in R to obtain the weekly mean rates in each strata. The size of the
potential set of strata and corresponding predicted means is therefore nearly infinite based on

all the potential combinations of input values.

In Supplemental Figure A.1 below, we display some example weekly rates based on a subset of
model inputs. This figure shows that rates decline in partnerships with a longer duration, that
they are higher in partnerships in which both partners are younger, they are lower for casual
partnerships (ptype = 2) compared to main partnerships, and that they are higher in White-

White partnerships compared to Black-Black partnerships. The act rates generally ranged from
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0.5 acts per week to 2 acts per week. Other predicted rates may be obtained by exponentiating

the coefficients in the table above and dividing by 52 (to convert from yearly rates to weekly

rates).
Supplemental Figure A.1. Predicted Weekly Act Rates from the Poisson Statistical Model, by Partnership
Duration, Partnership Type (ptype: 1 = Main; 2 = Casual), Combined Partner Age (comb.age: 40 and 80 Years).
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Based on these model predictions, which represent means for each linear combination, we then
drew individual counts of acts per partnership per time step in EpiModel using the rpois function
to draw randomly from the Poisson distribution with a vector of parameters, one value for each

partnership.

4.1.4 Cessation of Sexual Activity During Late-Stage AIDS

In addition to these data-driven statistical calculations, we assumed that MSM in late stages of
AIDS (HIV viral load above 5.75), had no acts due to active disease that would limit their sexual
activity. This reflected the mid-point between set-point viral load of chronic stage infection (4.5

logio) and peak viral load (7.0 logio, corresponding to the nadir of immunological function). We
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had no primary data in ARTnet on sexual partnerships in this late disease stage, but prior

analysis and modeling studies support a large decline in sexual activity due to AIDS.??’

4.2 Condom Use Per Act

We modeled condom use within all three partnership types (main, casual, and one-time
contacts) based on ARTnet data on the frequency of condom use within reported partnerships.
We followed the same general approach to measuring, fitting statistical models, and dynamically
predicting condom use within EpiModel as we used for rates of Al. The modeling of condom
here is based on the expectation that changes in condom use depend on race/ethnicity, age,

diagnosed HIV status, current PrEP use, and partnership type.
4.2.1 Measurement of Condom Use in ARTnet

We measured condom use within partnerships in the ARTnet study by asking about the
frequency of condom use (for persistent partnerships) or whether condom use occurred (for
one-time partnerships) during anal intercourse. Study patrticipants first reported on the number
of Al acts that occurred in the time intervals described above, and then we followed-up with a
guestion on the number of those total acts that involved condom use. We then transformed
these subsetted counts into proportions of acts that were condom-protected. This resulted in a
U-shaped distribution of proportions, with most persistent partnerships involving either always or
never condom use. For this current study, we simplified the outcome variable to any condom

use (yes, no) over the past year.
4.2.2 Statistical Models of Condom Use Probabilities

With the outcome described above, we used the partnership-level dataset to fit two logistic
regression models for any condom use in the partnership, with one model for persistent (main
and casual) and another model for one-time partnerships. The linear model formula for

persistent partnerships was as follows:
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Yi~ bo + biX1 + boXi2 + bsXo + baXs + bsX1 X3 + beXa + b7Xa? + bgXs + boXe + b10X7

Y; = Log odds of the probability of condom use per act.

X1 = Duration of partnership in weeks at the survey date.

X2 = Racial/ethnic combination of the ego (respondent) and alter (partner), coded in 6
categories to capture within and across group mixing: Black-Black, Black-
Hispanic/White, Hispanic-Black/White, Hispanic-Hispanic, White-Black/Hispanic, White-

White.

X3 = Partnership type (0 = main; 1 = casual).

X4 = The combined age of ego and alter in years.

Xs = The concordant diagnosed HIV-positive status of both ego and alter, compared to
all other combinations of dyadic HIV status (1 = concordant positive; 0 = all other

combinations of dyadic HIV status).

Xe = Current use of pre-exposure prophylaxis (PrEP) by the ego (respondent).

X7 = Residence (1 = Atlanta metropolitan area; 0 = all other areas).

Note that we modeled the partnership duration and combined age of partners quadratically, and

we modeled the interaction of partnership duration and partnership type. Terms within the

prediction model were selected based on a combination of a priori theory and exploratory data

analysis. The coefficients for the model, and their lower and upper 95% confidence intervals,

are presented in the table below. Taking the inverse logit of the linear combination of

coefficients will yield to the strata-specific predicted probabilities of condom use within the

partnership.



Supplemental Table A.6. Statistical Model of Per Act Condom Use

Probability for Main and Casual Partnerships

Lower 95%

Upper 95%

Model Parameter Estimate - -

bo (Intercept) 2.008 1.3020 2.7144
b: (Duration) -0.0031 -0.0040 -0.0023
b, (Duration?) 1.2561E-06 5.8878E-07 1.8614E-06
bs (B-H/W Combo) -0.3355 -0.8549 0.1802
bs (H-B/W Combo) -0.3692 -0.7798 0.04214
bs (H-H Combo) -0.3989 -0.8314 0.0336
bs (W-B/H Combo) -0.4402 -0.8235 -0.0557
bs (W-W Combo) -0.5031 -0.8738 -0.1310
b4 (Casual Type) 0.5710 0.4084 0.7347
bs (Duration x Casual

Type) -0.0467 -0.0638 -0.0294
bs (Combined Age) 0.0002 9.5502E-05 | 0.0003
bz (Combined Age?) -1.6150 -2.1624 -1.1322
bs (HIV+ Concordant) -0.5248 -0.6790 -0.3724
b (PrEP Use) 0.1701 -0.1385 0.4743
bio (Atlanta residence) 0.0012 0.0005 0.0019

Abbreviations: ClI, confidence interval; B-H/W, Black ego with either a

Hispanic or White alter; H-B/W, Hispanic ego with either a Black or White

alter; H-H, Hispanic ego with a Hispanic alter; W-B/H, White ego with

either a Black or Hispanic alter; W-W, White ego with a White alter; PrEP,

preexposure prophylaxis.
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For the logistic regression model of one-time partnerships, we used a similar logistic regression
approach as for persistent partnerships but dropped the partnership duration and partnership
type (since there was only one type for this model) predictor variables. The corresponding linear

model formula for persistent partnerships was as follows:

Yi~bo+ b1 X1+ boXo+ b3X22 + bsXz + bsXs + bsXs

where:

Yi = Log odds of the probability of condom use per one-time contact.

X1 = Racial/ethnic combination of the ego (respondent) and alter (partner), coded in 6
categories to capture within and across group mixing: Black-Black, Black-
Hispanic/White, Hispanic-Black/White, Hispanic-Hispanic, White-Black/Hispanic, White-

White.
X2 = The combined age of ego and alter in years.

X3 = The concordant diagnosed HIV-positive status of both ego and alter, compared to
all other combinations of dyadic HIV status (1 = concordant positive; 0 = all other

combinations of dyadic HIV status).

Xa = Current use of pre-exposure prophylaxis (PrEP) by the ego (respondent) (1 = yes; 0
=no)
Xs = Residence (1 = Atlanta metropolitan area; O = all other areas).

The coefficients for the model, and their lower and upper 95% confidence intervals, are

presented in the table below. Taking the inverse logit of the linear combination of coefficients

will yield to the strata-specific predicted probabilities of condom use within the partnership.

Supplemental Table A.7. Statistical Model of Per-Act Condom Use
Probability for One-Time Sexual Contacts




Lower 95%

Model Parameter Estimate ~ Upper 95% CI
bo (Intercept) 2.4287 1.6597 3.2007
b1 (B-H/W Combo) 0.1526 -0.3728 0.6785
b1 (H-B/W Combo) -0.1042 -0.5311 0.3221
b1 (H-H Combo) -0.10538 -0.5617 0.3506
b1 (W-B/H Combo) -0.1189 -0.5205 0.2825
b1 (W-W Combo) -0.2507 -0.6414 0.1396
b2 (Combined Age) -0.0542 -0.0733 -0.0351
b, (Combined Age?) 0.0003 0.0001 0.0004
bs (HIV+ Concordant) -1.8369 -2.6547 -1.1610
bs (PrEP Use) -0.7133 -0.8732 -0.5553
bs (Atlanta residence) 0.3102 0.0107 0.6095

Abbreviations: Cl, confidence interval; B-H/W, Black ego with either a

Hispanic or White alter; H-B/W, Hispanic ego with either a Black or White

alter; H-H, Hispanic ego with a Hispanic alter; W-B/H, White ego with either

a Black or Hispanic alter; W-W, White ego with a White alter; PrEP,

preexposure prophylaxis.

4.2.3 Predicted Probabilities in Epidemic Model

Predicted probabilities of condom use conditional on an Al act were calculated based on the
linear combination of partnership and individual attributes obtained dynamically by predicting
from the statistical model with inputs based on the current simulated population. This set of

predictors was input into a predict function in R to obtain the expected mean probabilities.

155



156

In Supplemental Figure A.2 below, we display some example probabilities based on a subset of
model inputs. This figure shows that condom use is lower in partnerships of a longer duration,
higher in casual compared to main partnerships, higher when both partners are younger, and
lower in partnerships in which the ego (respondent) reported currently using PrEP. Other
predicted probabilities may be obtained from Supplemental Table A.6 by taking the inverse logit

of the linear combination of coefficients of interest.

Supplemental Figure A.2. Predicted Probabilities of Condom Use Per Al Act in Persistent Partnerships from the
Logistic Regression Model, by Partnership Duration, Partnership Type (ptype: 1 = Main; 2 = Casual), Combined
Partner Age (comb.age: 40 or 80 years), and PrEP Use.
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Supplemental Figure 3 shows the predicted probabilities for the second logistic model, for
condom use within one-time Al contacts. Here we display variation in condom use by combined
age of the partners, current PrEP use, and racial combination of the partners. As the figure
shows, condom use is higher within partners of a lower combined age, higher in partnerships

involving Black MSM (race.combo = 1 or 2), and lower among current PrEP users.
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Based on these model predictions, which represent expected probabilities for each linear
combination, we then drew individual probabilities of condom use per act in EpiModel using the
rbinom function to draw randomly from the Bernoulli distribution with a vector of parameters,
one value for each act. This generated a set of 0’s and 1’s for whether condom use occurred

within the act as a function of the predictors in the statistical model.

Supplemental Figure A.3. Predicted Probabilities of Condom Use in One-Time Al Contacts from the Logistic
Regression Model, by Combined Partner Age, Current PrEP Use, and Racial Combination of Partners
(race.combo: 1 = black ego-black alter; 2 = black ego-Hispanic or White alter; 3 = Hispanic ego-black or White
alter; 4 = Hispanic ego-Hispanic alter; 5 = White ego-black or Hispanic alter; 6 = White ego-White alter.
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4.4 Sexual Role

Men were assigned an individual sexual role preference (exclusively insertive, exclusively
receptive, or versatile) as described in Section 3.1.9. Relationships between two exclusively
insertive or two exclusively receptive men are prohibited via the TERGM models. Versatile men

were further assigned a preference for being the insertive partner drawn from a uniform
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distribution between 0 and 1 upon entry into the population; we refer to this proportion as the
‘insertivity quotient’. When two versatile men are simulated to have an anal intercourse act, their
sexual positions during that act must be determined (all other allowed combinations have only
one direction). One option is for men to engage in intra-event versatility (IEV; i.e. both men
engage in insertive and receptive anal intercourse during the act). The probability of this was
derived from the partner-specific role data described in Section 3.1.9. If IEV does not occur,
then each man’s probability of being the insertive partner equals his insertivity quotient divided

by the sum of the two men’s insertivity quotients.
5 Demography and Initial Conditions

In this model, there are three demographic processes: entries, exits, and aging. Entries and
exits are conceptualized as flows into and out of the sexually active population of interest: MSM
aged 15 to 65 years old. Entry into this population represents the time at which persons become
at risk of infection via male-to-male sexual intercourse, and we model these flows as starting at
an age associated with sexual debut and ending at an age potentially before death (age 65).

This age range also mapped directly on to the eligibility criteria of the ARTnet study.??®
5.1 Arrivals at Sexual Onset

All persons enter the network at age 15, which was the lower age boundary of ARTnet. The
number of new entries at each time step was based on a fixed rate (0.052 per 100 person-
weeks) that kept the overall network size in a relatively stable state. The model parameter
governing this rate was tuned iteratively to generate simulations with a population size at
equilibrium, given the inherent variability in population flows related to background mortality,
sexual cessation (i.e., reaching the upper age limit of 65), and disease-induced mortality. At
each time step, the exact number of men entering the population was simulated by drawing

from a Poisson distribution with the rate parameter.
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5.2 Initialization of Attributes

Persons entering the population were assigned attributes in different categories. Some
attributes remained fixed (e.g., race/ethnicity), others were fixed by assumption (e.g., insertive
versus receptive sexual role), and others were allowed to vary over time (e.g., age and disease
status). Here we describe attributes initialized at the outset in the model and for arrivals into the

population at each time step:

¢ Race/ethnicity. This model was based on a race/ethnic population composition
categorized into three mutually exclusive groups: Black, Hispanic, and White. At the outset
of the model simulations, individuals were randomly assigned into one of these three
groups with a probability equal to the proportions each represented in the Atlanta
metropolitan target population based on 2018 Census data estimates for men aged 15 to
65. Those probabilities were: 51.5% Black, 4.6% Hispanic, and 43.9% white. Incoming
nodes during the dynamic simulation were also randomly assigned a race/ethnicity in
these proportions.

¢ Age. In the dynamic simulation, as noted above, all incoming nodes were assigned an age
of 15, which incrementally grew in weekly time steps. At the outset of the model
simulations, we assigned nodes an age based on a uniform distribution, with ages from 15
to 65. This population-level age distribution was expected to converge to a more realistic
distribution during model burn-in and calibration (explained in Section 9.2).

e HIV Status. In the dynamic simulation, all incoming nodes were assigned an HIV status of
uninfected upon arrival into the population. This reflects the assumption that arrival
corresponded with sexual debut, before which exposure to HIV would be very rare. At the
outset of the model simulations, we randomly seeded the nodes with HIV infection by
fitting and predicting from a logistic regression of diagnosed HIV status from the ARTnet

data. This model incorporated city (residence in Atlanta), age, and race/ethnicity as the
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primary predictors based on the self-reported diagnosed HIV status reported by ARTnet
respondents. These initial infections were all assumed to be diagnosed based on this
outcome. We did not expect that this initial condition of diagnosed HIV prevalence at the
outset of the burn-in model to match the calibrated disease prevalence prior to
experimental intervention models; instead, this statistical modeling approach allowed for a
data-driven seeding of HIV infection in the population that was distributed according to
known demographic and geographic heterogeneity. Further description of the transition

from initial HIV conditions to calibrated levels are provided in Section 8.2.

Circumcision Status. Circumcision status was randomly assigned to incoming nodes at
arrival and for all nodes as initial conditions in the simulations. Based on empirical data
from Atlanta MSM,??° 89.6% of men were circumcised before sexual onset. As described
in Section 8, circumcision was associated with a 60% reduction in the per-act probability of
infection for HIV- males for insertive anal intercourse only (i.e., circumcision did not lower
the transmission probability if the HIV+ partner was insertive).22230

Departures from the Network

All persons exited the network by age 65, either from mortality or by reaching the upper age

bound of the MSM target population of interest. This upper limit of 65 was modeled

deterministically (probability = 1), but other exits due to mortality were modeled stochastically.

Departures included both natural (non-HIV) and disease-induced mortality causes before age

65. Background mortality rates were based on US all-cause mortality rates specific to age and

race/ethnicity from the National Vital Statistics life tables.?®! Note that these rates include deaths

due to HIV/AIDS; however, the relative fraction of those deaths to total deaths is small enough

not to impact this background mortality process. Supplemental Table 8 shows the probability of

mortality per year by age and race/ethnicity.



161

Supplemental Table A.8. Age- and Race/Ethnicity-
Specific Probabilities of Mortality among Men in the United
States

Age Black Hispanic White
15-19 0.00166 0.00080 0.00065
20-24 0.00299 0.00153 0.00127
25-29 0.00329 0.00175 0.00174
30-34 0.00396 0.00197 0.00226
35-39 0.00473 0.00242 0.00274
40-44 0.00590 0.00309 0.00332
45-49 0.00799 0.00437 0.00444
50-54 0.01130 0.00653 0.00653
55-59 0.01699 0.01013 0.00990
60-64 0.02553 0.01488 0.01443

These yearly probabilities were transformed into weekly risks. Natural mortality was then
applied to persons within the population at each time step stochastically by drawing from a
Bernoulli distribution for each eligible person with a probability parameter corresponding to their
age- and race-specific risk of death. Disease-related mortality, in contrast, was modeled based

on clinical disease progression, as described in Section 6.

54 Aging

The aging process in the population was linear by time step for all persons. The unit of time step
in these simulations was one week, and therefore, persons were aged in weekly steps between
the minimum and maximum ages allow (15 and 65 years old). Evolving age impacted
background mortality, age-based mixing in forming new partnerships, and other features of the
epidemic model described below. Persons who exited the network were no longer active and

their attributes such as age were no longer updated.

6 Intrahost Epidemiology
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Intrahost epidemiology includes features related to the natural disease progression within HIV+
persons in the absence of clinical intervention. The main component of progression that was
explicitly modeled for this study was HIV viral load. In contrast to other modeling studies that
model both CD4 and viral load, our study used viral load progression to control both interhost

epidemiology (HIV transmission rates) and disease progression eventually leading to mortality.

Following prior approaches,?!1212:214.216.232 \ye modeled changes in HIV viral load to account for
the heightened viremia during acute-stage infection, viral set point during the long chronic stage
of infection, and subsequent rise of VL at clinical AIDS towards disease-related mortality. The
HIV viral load has a direct impact on the rates of HIV transmission within serodiscordant pairs in
the model, and this interaction is detailed in Section 8. A starting viral load of 0 is assigned to all
persons upon infection. From there, the natural viral load curve is fit with the following

parameters.

Supplemental Table A.9. HIV Natural History Parameters

Parameter Value Reference
Time to peak viremia in acute stage 21 days Robb?3
Level of peak viremia 6.886 logio | Little?*
Time from peak viremia to viral set point | 21 days Robb?%
Level of viral set point 4.5 logio Little®**

Duration of chronic stage infection (no .
3550 days | Buchbinder,?® Katz?*

ART)
Duration of AIDS stage 728 days Buchbinder?*

_ _ Estimated from average duration of
Peak viral load during AIDS 7 log1o

AIDS

After infection, it takes 21 days to reach peak viremia, at a level of 6.886 logio. This was
estimated as 13 days in Robb et al.,?*® but we added an additional 8 days to account for less

than perfect sensitivity of RNA testing in that study. From peak viremia, it takes another 21 days
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to reach viral set point, which is set at a level of 4.5 logi0. Changes occur linearly on the log
scale. The total time of acute stage infection is therefore 3 months. The duration of chronic
stage infection in the absence of clinical intervention is 3550 days, or 9.7 years. The total
duration of pre-AIDS disease from infection is therefore approximately 10 years. At onset of
AIDS, HIV viral load rises linearly on the log scale from 4.5 logio to 7 l0g10. The time spent in the
AIDS stage is 728 days, or 2 years; this duration is used to calculate the rate of viral load
increase during the AIDS stage but does not determine AIDS-related mortality. This viral load
trajectory is for ART-naive persons only, and the influence of ART on disease progression is
detailed in Section 7. These transitions are deterministic for all ART-naive persons. For persons
in the AIDS stage who are not currently on ART, disease-related mortality is imposed
stochastically with a homogenous weekly risk of 0.0006. This is accomplished by drawing from
a binomial (Bernoulli) distribution for all eligible individuals in the AIDS stage. Mortality risk
values were sourced from Krebs et al.?’ and calibrated to the HIV-related death rates in Atlanta
reported by the Georgia Department of Public Health?38, The risk of disease-related mortality is

reduced for those on ART as detailed in Section 7.
7 Clinical Epidemiology

Clinical epidemiological processes in the model refer to all steps along the HIV care continuum
after initial HIV infection: diagnosis, linkage to ART care, adherence to ART, and HIV viral load
suppression. In this model, these clinical features have interactions with behavioral features
detailed above, as well as impacts on the rates of HIV transmission, detailed in the next section.
The features of our model’s clinical processes generally follow the steps of the HIV care
continuum, in which persons transition across states from infection to diagnosis to ART initiation

to HIV viral suppression.?®

7.1 HIV Diagnostic Screening
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Both HIV-uninfected and HIV-infected persons in our model were exposed to regular interval-
based HIV screening that served as a common entry point for HIV prevention and HIV treatment
services, respectively. Individuals screened at routine intervals first based on whether they were
currently using PrEP or not. For HIV screening outside of PrEP care, based on exploratory
analyses of behavioral and clinical data, and the research questions of this study, we elected to

stratify these screening rates by race/ethnicity.

Our approach to parameterization for HIV screening among PrEP non-users was first to start
with priors based on ARTnet data for time since last HIV test for HIV-uninfected, and then use
model calibration (the technical details of which are explained in Section 9) to fit these
parameters to reproduce the race-stratified levels of the first step of the HIV care continuum (the
fraction of HIV-infected persons who were diagnosed). For this and the following surveillance
target statistics, we have used values specific to MSM. We used that approach because self-
reported HIV screening data alone may be biased, and this calibration approach allows for

triangulation of diagnostic history based on more objective laboratory data.

Supplemental Figure 4.1-4.2 shows the general results to this calibration. The model starts with
all persons with HIV infection as undiagnosed, then the model is simulated for 60 years (x axis
for plot time scale is in weeks) to establish stable equilibrium conditions for this and the other
calibrated parameters. The target statistics are shown with dashed horizontal lines and the

simulated statistics are shown with solid lines.
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Supplemental Figure A.4.1. Fraction of MSM with HIV Who Are Diagnosed, Simulations versus Target
Statistics, Stratified by Race/Ethnicity (blue = White MSM, red = Black MSM, green = Hispanic MSM), for Aim 2
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Each model calibration was simulated 1000 times, so the solid lines represent the median
values across those simulations and the polygon bands are the interquartile ranges. The three
model parameters for the weekly screening rates were calibrated to meet the target statistics,
which were the fraction of HIV-infected MSM who were diagnosed. The numerical results from

this parameterization are shown in Supplemental Table 10.
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Value

Supplemental Figure A.4.2. Fraction of MSM with HIV Who Are Diagnosed, Simulations versus Target
Statistics, Stratified by Race/Ethnicity (blue = White MSM, red = Black MSM, green = Hispanic MSM), for Aim 3
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Supplemental Table A.10. Model Parameterization for HIV Screening

Hispanic .
Black MSM White MSM
MSM
Target Statistic: Diagnosed
_ . 84.7% 81.8% 86.2%
Fraction?4%241 (Aim 3)
Target Statistic: Diagnosed
_ _ 86.6% 83.6% 89.2%
Fraction® (Aim 2)
Simulations: Diagnosed Fractions | 80.1% 81.7% 88.3%
Calibrated Rates (per Week) 0.00385 0.00380 0.00690
Mean Inter-Test Interval (Years) 5.00 5.06 2.79
Median Diagnostic Delay (Years) | 2.50 2.52 1.70

Abbreviation: MSM, men who have sex with men.

The target statistics for the diagnosed fraction were calculated from a 2019 CDC HIV

surveillance report that specified the diagnosed fraction among HIV-infected MSM nationally
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and from AIDSVu demographic data on the HIV-positive population in Atlanta, by assuming that
the national unstratified diagnosed fraction among MSM is equivalent to the corresponding
fraction among MSM in Atlanta and that the ratios between race-specific diagnosed fractions in
US adults are transportable to Atlanta MSM. The diagnosed fraction was higher for White MSM
compared to Black and Hispanic MSM. After calibration, the simulated diagnosed fractions were
nearly identical to those targets. The calibrated screening rates per week were higher among
White MSM, and lower among Black and Hispanic MSM, consistent with producing the
differentials in the diagnosed fractions across the groups. These weekly rates were consistent
with average inter-test intervals, or the average time between HIV negative screening events, of
2.8 t0 5.1 years. Note that these intervals represent marginal averages across the target

population; some MSM may screen more frequently while others screen very rarely.

We also calculated the diagnostic delay as a validation of this calibration process. Whereas the

inter-test interval is calculated for HIV-negative MSM in the model, the diagnostic delay is

Supplemental Figure A.5. Median Years Delay Between Infection and Diagnosis, Stratified by Race/Ethnicity
(blue = Black MSM, red = Hispanic MSM, green = White MSM)
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calculated for HIV-infected MSM who are eventually diagnosed positive. This delay is the
median number of years between HIV infection and HIV diagnosis. As shown in Supplemental
Figure 5A, this time starts out low in the early part of the burn-in model, but converges to a
stable equilibrium value by the end of the burn-in. The simulated median values were 2.5 years
for Black and Hispanic MSM, and 1.7 years for White MSM. This is what would be expected
given the differences in the calibrated screening rates. This is also consistent with forward
projections of two external studies of national surveillance data. Hall et al. estimate race-
stratified median times between infection and diagnosis for 2003 and 2011,%*? and Dailey et al.
update these estimates for 2015.1% The median delays declined substantially over this period,
from 5.4 years in 2003 to 3.0 years in 2015. To compare against our other target statistics, we fit
a log-linear model to estimate the relative yearly declines in median delay times, with a
prediction for 2017. The 2017 projections from this model were 2.44 years overall, 2.47 years
for Blacks, 2.51 years for Hispanics, and 2.09 years for Whites. The corresponding estimates
from our simulation model calibrated to the Georgia Department of Public Health HIV care
continuum statistics resulted in median times of 2.32 years overall, 2.50 years for Blacks, 2.56
years for Hispanics, and 1.71 years for Whites. So overall our simulations slightly (by 5%)
underestimate the projected 2017 median time to diagnosis, but this gap was small (but larger

for White MSM), and it captured the racial/ethnic differences.

Diagnostic testing was simulated stochastically using draws from a binomial distribution with
probability parameters equal to these stratified probabilities. This generated a population-level
geometric distribution of times since last test. For PrEP users, we modeled HIV screening
practice based on CDC clinical practice guidelines.?*® The guidelines recommend ongoing
screening at 3-month intervals for MSM actively using PrEP. This schedule was imposed for all
PrEP users active in their PrEP use, regardless of PrEP adherence categories. We also

assumed no racial/ethnic variation in HIV screening rates for PrEP users.
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Finally, we also modeled a 21-day window period after infection during which the tests of the
truly HIV+ persons would show as negative to account for the lack of antibody response
immediately after infection.?** HIV+ persons who tested after this window period would be
correctly diagnosed with 100% test sensitivity. MSM with recent but undetected infection were
still eligible for PrEP initiation since PrEP eligibility was based diagnosed HIV status. This would
have resulted in a period in which HIV-infected but undiagnosed persons were classified as on
PrEP. This did not impact their HIV transmission potential (and could not impact their acquisition
potential). This undetected infection would then be identified at the next quarterly PrEP clinical

visit, at which point they would be transitioned off PrEP.
7.2 Antiretroviral Therapy (ART) Initiation

Following HIV diagnosis, individuals were linked to HIV care that provided ART. In the absence
of quantitative data and based on current clinical practice guidelines for MSM in the U.S., we
assumed no gap between treatment entry and ART initiation. Although the intermediate steps of
the HIV care continuum are often characterized by any linkage to HIV care and/or ART, we
selected a second HIV care continuum target of linkage to HIV care specifically within one
month of diagnosis for two reasons. First, in the dynamic modeling context, the temporally
defined threshold easily mapped on to the tracking implemented for simulated individuals in the
model. Second, there were readily available surveillance estimates for this outcome. With
respect to the latter, we used data from the Georgia Department of Public Health care
continuum estimates for 2019, stratified by transmission risk level and race/ethnicity. We
assume therefore that there is a statistical relationship between the proportion linked to care
within one month and the average time to care entry following diagnosis: time-to-care entry is
assumed to be exponentially distributed, where we use the data on proportion linked to care

within one month to solve for the exponential rate parameter. This time-to-event estimate below
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is generally consistent with recent cohort data that suggest relatively rapid ART initiation

following diagnosis.?*

Supplemental Figure 6.1-6.2 shows the general results to this calibration. The approach was
similar to calibration for HIV screening rates. Over the 60-year burn-in simulation period,
persons were linked to HIV care with ART with initiation rates that were specific to
race/ethnicity. The specific metric used within the simulations to compare against the target
statistics was the period between diagnosis and first ART use, which were uniquely tracked for
all individuals with HIV infection in the model. A group-specific proportion of persons whose

difference between diagnosis and ART initiation was less than or equal to four weeks was

Supplemental Figure A.6.1. Proportion of Diagnosed HIV-Infected MSM Linked to ART Care within One Month
of Diagnosis, Stratified by Race/Ethnicity (blue = White MSM, red = Black MSM, green = Hispanic MSM), for Aim
2
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calculated in the model. The target statistics are shown with dashed horizontal lines and the

simulated statistics are shown with solid lines. Each model calibration was simulated 1000
times, so the solid lines represent the median values across those simulations and the polygon

bands are the interquartile ranges.
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Supplemental Figure A.6.2. Proportion of Diagnosed HIV-Infected MSM Linked to ART Care within One Month
of Diagnosis, Stratified by Race/Ethnicity (blue = White MSM, red = Black MSM, green = Hispanic MSM), for Aim

3
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Supplemental Table 11 shows the numerical results of the calibration. The rate of care

establishment was higher for White and Hispanic MSM than for Black MSM. With the calibrated

rates, the model simulations matched these target statistics. The inverse of these rates implied

that the average time to ART initiation after HIV diagnosis was between 4 to 6 weeks on

average.

Supplemental Table A.11. Model Parameterization for ART Linkage After
Diagnosis
Hispanic _
Black MSM White MSM
MSM
Target Statistic: Fraction Linked
o _ 82.9% 89.8% 88.1%
within 1m?4¢ (Aim 3)
Target Statistic: Fraction Linked
o _ 78.2% 84.8% 84.5%
within 1m3 (Aim 2)
Simulations: Fraction Linked 62.3% 65.1% 76.5%
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Calibrated Rates (per Week) 0.1775 0.1900 0.2521
Mean Time to ART (in Weeks) 5.6 5.3 4.0

Abbreviations: ART, antiretroviral therapy; m, month; MSM, men who have sex with

men.

7.3 ART Adherence and HIV Viral Load Suppression

MSM who initiated ART could cycle on and off treatment, where cycling off treatment resulted in
an increase in the VL back up to the assumed set point of 4.5 logi0. The slope of changes to VL
were calculated such that it took a total of 3 months to transition between the set point and the

on-treatment viral loads.?*” Individuals on ART could reach full suppression with sustained ART
use. The nadir HIV viral load level was assumed to be 1.5 logio among those at full suppression
levels.?*” The latter corresponds to a rounded value (on the logio) scale of an absolute viral load
below the standard levels of detection (viral load = 50).%*% Viral load was tracked and updated

continuously over time based on the natural history of HIV disease by stage, and current use of

ART.

The patterns of ART adherence (cycling on and off ART) leading to full HIV viral suppression
were estimated based on an analysis of HIV care patterns among MSM in the United States?4°
and model calibration similar to the first two HIV care continuum steps. The rates of cycling off
ART after initially starting (the “halting rate”) and the rates of cycling back on after a period of
stopping (the “reinitiation rate”) controlled overall levels of HIV viral suppression. Within the
intervention component of the model, improvement to HIV care retention corresponded to

reductions in the halting rate by relative amounts compared to the base calibrated rates.

Because of the negative collinearity of the halting and reinitiation rates that would result in non-
identifiability issues with both were simultaneously estimated, we elected to keep the reinitiation

rates fixed and fit the halting rates. We started with halting and reinitiation rates and their
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uncertainty intervals based on an earlier model of the HIV care continuum in the U.S.?*° These
reinitiation rates were 0.1326 per year, corresponding to an average time spent off ART before
reengagement of 7.5 years. With the reinitiation rates fixed there, we then allowed the halting
rates to vary by race/ethnicity and fit them to generate simulations matching the race/ethnicity-
specific proportions of diagnosed MSM with a suppressed VL in the cross-section. We did not
model a distinct clinical typology of ART users with a lower propensity for ART discontinuation,
above and beyond the differences by race/ethnicity, for two reasons. First, the empirical data to
support a distinct typology at the population-level are insufficient. Second, the retention
interventions currently in the scenarios are designed to shift the overall population averages

rather than focus on a subgroup who would be at higher risk of ART dropout.

Supplemental Figure A.7.1-A.7.2 shows the general results of this calibration. The general
approach was the same as for calibration of HIV screening rates and ART linkage rates. The

specific metric used within the simulations to compare against the target statistics was the

Supplemental Figure A.7.1. Proportion of Diagnosed HIV-Infected MSM with HIV Viral Load Suppression,
Stratified by Race/Ethnicity (blue = White MSM, red = Black MSM, green = Hispanic MSM), for Aim 2
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proportion of individuals who had a HIV VL below the detectable limit of 200 copies/mL. A
group-specific proportion of persons was calculated at each time step in the model. The target
statistics are shown with dashed horizontal lines and the simulated statistics are shown with
solid lines. Each model calibration was simulated 1000 times, so the solid lines represent the

median values across those simulations and the polygon bands are the interquartile ranges.

Supplemental Figure A.7.2. Proportion of Diagnosed HIV-Infected MSM with HIV Viral Load Suppression,
Stratified by Race/Ethnicity (blue = White MSM, red = Black MSM, green = Hispanic MSM), for Aim 3
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Supplemental Table A.12 shows the numerical results of the calibration. Georgia Department of
Public Health data for MSM in 2019 were our target statistics for the proportion of diagnosed
MSM with a suppressed viral load in the cross-section. This mapped directly onto to our model

simulations.
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Supplemental Table A.12. Model Parameterization for ART Retention Rates After
Linkage
Hispanic i
Black MSM White MSM
MSM
Target Statistic: Fraction VL
_ 60.2% 62.0% 71.0%
Suppressed?*® (Aim 2)
Target Statistic: Fraction VL
_ 61.6% 66.6% 73.5%
Suppressed®? (Aim 3)
Simulations: Fraction VL Suppressed 55.1% 60.9% 72.5%
Calibrated Halting Rates (per Week) 0.0058 0.00475 0.0028
Mean Time to First ART Stoppage (in
171.4 209.5 356.1
Weeks)
Mean Time to First ART Stoppage (in
3.3 4.0 6.8
Years)

Abbreviations: ART, antiretroviral therapy; MSM, men who have sex with men; VL,

viral load.

The corresponding halting rates were therefore lowest in White MSM and highest in Black MSM.
The inverse of these rates implied a time to first stopping ART after initiation of 161 to 323

weeks.
7.4  AIDS Disease Progression and AIDS-Related Mortality

Progression to AIDS after ART initiation was modeled based on the cumulative time on and off
ART for individuals who had been linked to treatment (persons never linked to ART progressed
according to the rates in Section 6). The maximum untreated time between infection and the
start of AIDS for those who never initiate treatment was 9.7 years.?® For those with some
treatment history, we assumed a slower progression time, with individuals who had ever
initiated ART spending a maximum of 15 years off of ART over the life course before
progression to AIDS, similar to previous models.?!! Persons who had ever initiated ART

progressed to AIDS at a similar rate as those who were ART-naive, but ART use during the
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AIDS stage was associated with the same declines in HIV viral load as in pre-AIDS stages. For
persons within the AIDS stage who are currently on active ART, the probability of mortality per
week is reduced to 0. This mortality risk value was calibrated to the HIV-related death rates in

Atlanta reported by the Georgia Department of Public Health?3,

7.5 PrEP Initiation and Adherence

In our models, we consider that PrEP initiation can only occur after a negative HIV test. This
makes the PrEP initiation rate linked to the test rate. PrEP start and stop rate are thus calibrated

after the other parameters (the technical details of which are explained in Section 13.2).

8 Interhost Epidemiology

Interhost epidemiological processes represent the HIV-1 disease transmission within the model.
Disease transmission occurs between sexual partners who are active on a given time step. This
section will describe how the overall rate is calculated as a function of the intrahost
epidemiological profile of each member of a partnership, and behavioral features within the

dyad.
8.1 HIV-Discordant Dyads

At each time step in the simulation, a list of active dyads was selected based on the current
composition of the network. This was called an “edgelist.” Given the three types of partnerships
detailed above, the full edgelist was a concatenation of the type-specific sublists. The complete
edgelist reflects the work of the STERGM- and ERGM-based network simulations, wherein
partnerships formed on the basis of nodal attributes and degree distributions (see Section 3).
From the full edgelist, a disease-discordant subset was created by removing those dyads in

which both members were HIV- or both were HIV+. This left dyads that were discordant with
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respect to HIV status, which was the set of potential partnerships over which infection may be

transmitted at that time step.
8.2 HIV Transmission Rates

Within HIV-discordant dyads, transmission was simulated stochastically across separate sexual
acts at each timestep. The per-act probabilities were a combined function of attributes of the
HIV-negative and HIV-positive partner; these probabilities were calibrated to reach the empirical
HIV diagnosis rates. The final per-partnership transmission rates per time step were then a
function of one minus these per-act transmission probabilities raised to the number of acts

within the partnership during that time step.
8.2.1 Per-Act Transmission Probabilities

Within disease-discordant dyads, HIV transmission was modeled based on a sexual act-by-act
basis, in which multiple acts of varying infectiousness could occur within one partnership within
a weekly time step. Determination of the number of acts within each discordant dyad for the
time step, as well as condom use and role for each of those acts, was described in Section 4.
Transmission by act was then modeled as a stochastic process for each discordant sex act
following a Bernoulli distribution with a probability parameter that is a multiplicative function of
the following predictors of the HIV- and HIV+ partners within the dyad, as shown in

Supplemental Table 13 below.

For each act, the overall transmission probability was determined first based on sexual position
and HIV viral suppression status of the infected partner. If the infected partner was virally
suppressed and on ART, then the base probability was 2.2/100,000, which was derived from a
model-based estimate of Supervie.?®! This study estimated upper bound of the transmission

probability of 4.4/100,000 for MSM; we used the mean between the observed number (zero)
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and this upper bound as our base per-act transmission probability (so 2.2 transmissions per

100,000 exposures) in our model.

If the infected partner was not virally suppressed (at conditions of 200 copies/mL or higher) or
not currently on ART, the base probability was a function of whether the HIV- partner was in the
receptive or insertive role, with the former at a 2.6-fold infection risk compared to the latter.
Then, following the parametric function of Wilson,?°? the HIV+ partner’s viral load modifies this
base probability in a non-linear formulation, upwards if the VL was above the VL set point during

chronic stage infection in the absence of ART, and downwards if it was below the set point.

Following others, we modeled an excess transmission risk in the acute stage of infection above
that predicted by the heightened VL during that period.?>® Three covariates could reduce the risk
of infection: condom use within the act by either the HIV- or HIV+ partner, circumcision status of
the HIV- partner (only if the HIV- partner was insertive in that act), and PrEP use at the time of

the act by the HIV- partner.
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Supplemental Table A.13. Per-Act Transmission Probabilities and Modifiers

Predictor Partner Parameters References
Receptive: 0.008938 base
probability when HIV+ partner | Vittinghoff2>
Sexual role )
_ _ has 4.5 logao viral load
(insertive or HIV- i
_ Insertive: 0.003379 base
receptive) - o
probability when HIV+ partner | Vittinghoff?**
has 4.5 logio viral load
HIV+ (Not o
_ Multiplier of 2.45Vt-45) gn
virally N _
sexual-role specific base Wilson?>?
suppressed or .
_ probabilities above
HIV viral load (VL) | noton ART)
HIV+ (Virally N
0.000022 base probability, _
suppressed Supervie®?!
regardless of sexual role
and on ART)
o Leynaert,?®
Acute stage HIV+ Multiplier of 6
Bellan?®®
Multiplier of 0.05 times (1 — Varghese,?%®
Condom use Both _
0.25) Weller,?” Smith?°8
Circumcision ) . o
HIV-, insertive | Multiplier of 0.40 Gray?
status
High adherence: Multiplier of
0.01
Preexposure Medium adherence: Multiplier
_ HIV- Grant?®®
Prophylaxis (PrEP) of 0.19
Low adherence: Multiplier of
0.69
Urethral Multiplier of 1.73 Fitted values (see
Current STI _ bel
Rectal Multiplier of 2.78 Section 9.2 below)

For condom use, we updated our previous approach to explicitly represent condom failure that

would result in a transmission event. Our previous models used estimates of HIV incidence
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comparing consistent condom users to occasional or non-condom users, resulting in a condom
“efficacy” of 75—-80%. However, this efficacy gap of 20—25% is the function of both the
biological/physiological gaps in protection given perfect and consistent condom use during anal
intercourse as well as the human error resulting in impact use. Such error could represent
condom breakage, misapplication, incomplete use during sexual activity, and other related
causes.?®® For this model, we assumed a 95% efficacy for the former, and a 25% absolute
reduction in that efficacy as a function of condom failure to arrive at the previous range of 71%

total effectiveness.

8.2.2 Calibration of Transmission Probabilities

In addition to the calibration of the HIV care continuum parameters described in Section 7, we
also calibrated the per-act transmission probabilities so that the rate of new HIV diagnoses was
consistent with empirical data on HIV burden in this target population. Our target statistic for this

calibration step was the number of new HIV diagnoses in 2019 by race/ethnicity as reported by

Supplemental Figure A.8.1. New HIV diagnoses per 100 PY, Stratified by Race/Ethnicity (blue = White MSM,
red = Black MSM, green = Hispanic MSM), For Aim 2

0.25

i.prev.dx.B

= i.prev.dx.H

Value

i.prev.dx.wW

0.15
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CDC,'"® scaled to the MSM population size by race/ethnicity, which was estimated in
Rosenberg.?®° The target statistics of new HIV diagnoses per 100 person-years in the Atlanta
area were 2.596 for Black MSM, 1.588 for Hispanic MSM, and 0.380 for White/Other MSM. We
took this approach to calibration because there are no external data on the baseline estimated
HIV incidence by race/ethnicity for our target population of MSM aged 15 to 65 of alll
race/ethnicities. There is some historical cohort data for younger (18 to 39 years old) Black and
White MSM in Atlanta;??? these were used to calibrate our earlier modeling studies.?'* But we
are concerned that the cohort members may be higher risk than all demographically similar
MSM in Atlanta due to selection biases. This was a main motivation to moving towards
calibrating the model primarily based on population-level surveillance targets for the care

continuum and diagnosis rate.

The per-act transmission probabilities defined above were then multiplied by a factor unique to
each race/ethnic group. For Aim 2, the final factor levels were 4.06 for Black MSM, 0.94 for
Hispanic MSM, and 0.72 for White MSM. For Aim 3, the final factor levels were 3.08 for Black
MSM, 0.52 for Hispanic MSM, and 0.39 for White MSM. These calibration factors represent the
additional sources of potential error in the transmission parameters that would generate the
current HIV epidemic. These include co-factors not included in this model, such as untreated
sexually transmitted infections.?%* The upweighting of the transmission probabilities for Black
MSM and down-weighting for White and Hispanic MSM is due to the long-standing finding that
race-stratified behavioral and network data do not, by themselves, explain the excess burden of

HIV among Black MSM.262:263

The results of the calibration are visualized in Supplemental Figure A.8.1-A.8.2. The HIV
prevalence was initialized based on the statistical model of diagnosed HIV prevalence with
ARTnet data but allowed to change over the 60-year burn-in period to reach the specified target

statistics. In the calibrated model for Aim 2, the median diagnosis rate during the final year of
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the calibration period was 24 new diagnoses per 100 person-years for Black MSM, 10 new
diagnoses per 100 person-years for Hispanic MSM, and 8 new diagnoses per 100 person-years
for White MSM. In the calibrated model for Aim 3, the median diagnosis rate during the final
year of the calibration period was 31 new diagnoses per 100 person-years for Black MSM, 13
new diagnoses per 100 person-years for Hispanic MSM, and 8 new diagnoses per 100 person-

years for White MSM.

Supplemental Figure A.8.2. New HIV diagnoses per 100 PY, Stratified by Race/Ethnicity (blue = White MSM,
red = Black MSM, green = Hispanic MSM), For Aim 3

i.prev.dx.B

= iprev.dx.H

Value

i.prev.dxW

8.2.3 Final Per-Partnership-Week Transmission Rates

The final transmission rate per partnership per weekly time step was a function of the per-act
probability of transmission in each act and the number of acts per time step. The per-act
transmission probability could be heterogeneous within a partnership due to various types of

acts in each interval: for example, a HIV- man who is versatile in role may have both insertive
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and receptive intercourse within a single partnership; some acts within a partnership may be
protected by condom use while others are condomless. Transmission was simulated for each
act within each serodiscordant dyad, based on draws from a Bernouli distribution with the

probability parameter equal to the per-act transmission probabilities detailed above.

9 COVID-Related Changes

9.1 Addition of COVID-Era Parameters

Several new parameters were created in order to allow for COVID-era changes in sexual
behavior and clinical service utilization. Some parameters adapted existing EpiModelHIV
parameters to allow for additional demographic stratification, such as stratifying HIV testing rate
(by race/ethnicity) also by age category. In these models, the cutoff for binary age category
(young/old) for age-stratified model parameters was 30 years. Below is a list of the new model

parameters with their descriptions.

¢ hiv.test.rate.young: Mean probability of HIV testing per time step for younger
Black/Hispanic/White MSM (vector of length 3).

¢ hiv.test.rate.old: Mean probability of HIV testing per time step for older
Black/Hispanic/White MSM (vector of length 3).

e prep.start.prob.young: Probability of a younger Black/Hispanic/White MSM starting PrEP
given current indications.

e prep.start.prob.old: Probability of an older Black/Hispanic/White MSM starting PrEP given
current indications.

o prep.discont.rate.young: PrEP discontinuation rate for younger Black/Hispanic/White
MSM.

¢ prep.discont.rate.old: PrEP discontinuation rate for older Black/Hispanic/White MSM.
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e part.prep.start.prob.young: Probability of a younger Black/Hispanic/White MSM individual
identified through partner identification starting PrEP given current indications at the
current time step.

o part.prep.start.prob.old: Probability of an older Black/Hispanic/White MSM individual
identified through partner identification starting PrEP given current indications at the
current time step.

¢ tx.init.rate.young: Probability per time step that a younger Black/Hispanic/White MSM who
has tested positive will initiate treatment (vector of length 3).

¢ tx.init.rate.old: Probability per time step that an older Black/Hispanic/White MSM who has
tested positive will initiate treatment (vector of length 3).

o tx.halt.partial.rate.young: Probability per time step that a younger Black/Hispanic/White
MSM who has started treatment and assigned to the partial VL suppression category will
stop treatment (vector of length 3).

o tx.halt.partial.rate.old: Probability per time step that an older Black/Hispanic/White MSM
who has started treatment and assigned to the partial VL suppression category will stop
treatment (vector of length 3).

o tx.halt.full.or.young: Odds ratio comparing the odds of stopping treatment for a younger
Black/Hispanic/White MSM in the full VL suppression category vs. in the partial VL
suppression category (vector of length 3).

o tx.halt.full.or.old: Odds ratio comparing the odds of stopping treatment for an older
Black/Hispanic/White MSM in the full VL suppression category vs. in the partial VL
suppression category (vector of length 3).

¢ tx.halt.durable.or.young: Odds ratio comparing the odds of stopping treatment for a
younger Black/Hispanic/White MSM in the durable VL suppression category vs. in the

partial VL suppression category (vector of length 3).
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o tx.halt.durable.or.old: Odds ratio comparing the odds of stopping treatment for an older
Black/Hispanic/White MSM in the durable VL suppression category vs. in the partial VL
suppression category (vector of length 3).

¢ tx.reinit.partial.rate.young: Probability per time step that a younger Black/Hispanic/White
MSM who has stopped treatment and assigned to the partial VL suppression category
will restart treatment (vector of length 3).

o tx.reinit.partial.rate.old: Probability per time step that an older Black/Hispanic/White MSM
who has stopped treatment and assigned to the partial VL suppression category will
restart treatment (vector of length 3).

o tx.reinit.full.or.young: Odds ratio comparing the odds of re-starting treatment for a younger
Black/Hispanic/White MSM in the full VL suppression category vs. in the partial VL
suppression category (vector of length 3).

o tx.reinit.full.or.old: Odds ratio comparing the odds of re-starting treatment for an older
Black/Hispanic/White MSM in the full VL suppression category vs. in the partial VL
suppression category (vector of length 3).

o tx.reinit.durable.or.young: Odds ratio comparing the odds of re-starting treatment for a
younger Black/Hispanic/White MSM in the durable VL suppression category vs. in the
partial VL suppression category (vector of length 3).

¢ tx.reinit.durable.or.old: Odds ratio comparing the odds of re-starting treatment for an older
Black/Hispanic/White MSM in the durable VL suppression category vs. in the partial VL
suppression category (vector of length 3).

¢ part.tx.init.rate.young: Probability that a younger Black/Hispanic/White MSM who has been
identified as the partner of an incident HIV+ MSM will initiate treatment during the current

time step.
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¢ part.tx.init.rate.old: Probability that an older Black/Hispanic/White MSM who has been
identified as the partner of an incident HIV+ MSM will initiate treatment during the current
time step.

¢ part.tx.reinit.rate.young: Probability per time step that a younger Black/Hispanic/White
MSM who has been identified through partner identification, stopped treatment will
restart treatment (vector of length 3).

¢ part.tx.reinit.rate.old: Probability per time step that an older Black/Hispanic/White MSM
who has been identified through partner identification, stopped treatment will restart
treatment (vector of length 3).

¢ cond.modifier.mc: Modifier for condom usage for persistent partnerships (main and
casual).

e cond.modifier.oo: Modifier for condom usage for one-time partnerships.

¢ pr.behav.changer: Probability that an individual is a "behavior changer," i.e., changes their
sexual behavior (and subsequently, potentially their HIV service utilization) during the
COVID pandemic.

¢ seed.behav.changer: Parameter to turn on/off assigning behavior changers. The default is
FALSE, then change to TRUE during the COVID pandemic (or when we want there to
be behavior changers). If set to TRUE and pr.behav.changer is a hon-zero probability
(like 0.2), then this will set the proportion of behavior changers to pr.behav.changer.
Once set, people can remain as behavior changers but the effect of behavior changers
can be stopped (for example, at the end of the COVID pandemic) by changing the
behavior changer effect parameters (such as behav.modifier.tests) back to their no-
effect/null values.

¢ behav.modifier.casual: Modifier of sexual act rate of casual partnerships for behavior

changers.
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¢ behav.modifier.oo: Modifier of sexual act rate of one-time partnerships for behavior
changers.

e behav.modifier.tests: Modifier of HIV testing rate for behavior changers (i.e., if setto 0.7,
then expect testing to be 0.7 of what it was for these people, the behavior changers,
before COVID).

¢ behav.modifier.prep: Modifier of PrEP initiation for behavior changers (includes general
PrEP initiation indication and identified partners indication). l.e., If set to 0.25, then
expect PrEP initiation to be 0.25 of what it was for these people (the behavior changers)
before COVID; if set to 0.25, expect that 75% of behavior changers will NOT initiate
Prep.

¢ acts.modifier.mc: Modifier of sexual act rate for persistent partnerships (main and casual).
This precedes and is separate from modification of sexual act rate related to behavior
changers.

¢ acts.modifier.oo: Modifier of sexual act rate for one-time partnerships. This precedes and
is separate from modification of one-time sexual acts related to behavior changers.

9.2 Addition of COVID-Era Intervention Parameters

Additional new model parameters were created to allow for the home-based HIV testing and
PrEP retention interventions used in Aim 3, in addition to those added in the preceding section.

is a list of the new intervention-related model parameters with their descriptions.

e prep.interv.cov: The proportion of those eligible to start the PrEP retention intervention that
will enter the intervention.

¢ prep.discont.rate.interv: The rate of spontaneous discontinuation from PrEP per time step
for Black/Hispanic/White MSM in the PrEP intervention. The effect of the intervention is

changing the PrEP discontinuation rate from prep.discont.rate.young



prep.discont.rate.old (the default rate for those not on the intervention) to

prep.discont.rate.interv.
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¢ prep.interv.dropoff: The rate of drop-off from the PrEP retention intervention per time step

for those in the intervention.

e hiv.test.interv.cov: The proportion of those eligible for the HIV testing intervention that

become enrolled in the intervention (the coverage of the HIV testing intervention).

¢ hiv.test.rate.interv: The updated HIV testing rate for Black/Hispanic/White MSM for those

in the HIV testing intervention.

¢ hiv.test.interv.dropoff: The rate of drop-off from the HIV testing intervention per time step

for those in the HIV testing intervention.

9.3 Parameterization of COVID-Era Parameters

COVID-era sexual behavior and clinical service model parameters were set using data from a

variety of sources. The Supplemental Table A.14 below explains the model parameters, data

sources, and parameter calculations and related assumptions, where applicable, for these

parameters.

Supplemental Table A.14. Model Parameters, Data Sources, and Parameter Calculations and

Related Assumptions, Where Applicable, for Parameters.

Estimate/
p Model MOdlf'er and Information/Justification Source
arameter Time
Information
behav.modif | April-May Behavior Stephens
ier.casual 2020: L&S Question All Changers on et al
Only 2021;%64
Casual: 0.11 April-May Mean 4.26 5.96 Stephens
(0.11-0.77) 2020: How on et al
many sex 2022165;
partners in 3 Median 2 5 Weiss et
November months before al 2020218
2020-January COVID19?
2021: April-May Mean 8.29 6.57
2020: How
many times Median 4 5
anal sex in 3
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Casual: 1.0
(0.95-1.0)

Between May

and November
2020: Gradual
slope

between time
steps 4026—
4045 (the last
week of May
and first week
of October
2020) and then
4056 and 4069
(January—
March 2021)

A gradual slope
approach was
also utilized for
behav.modifier,
acts, and
condom use
weekly
parameters
between time
steps 4026—
4045 (last
week of May
and first week
of October
2020) and then
4056 and 4069
(January 2021
through March
2021).

months before
COVID19?

April-May Mean

1.83

1.50

2020: How
many sex
partners during Median
COVID19
pandemic?

April-May Mean

6.99

3.81

2020: How
many times
anal sex during
COoVID19?

Median

November Mean

2.55

4.07

2020-January
2021: How
many sex
partners in
past 3
months?

Median

November Mean

8.45

8.15

2020-January
2021: How
many times
anal sex in
past 3

Median

months?

In Love & Sex in the Time of COVID (L&S) dataset, in April-May
2020, the median number of sex partners for behavior changers
decreases from 5 (pre-COVID) to 1 (COVID); the average
decreases from 6.0 to 1.5). In L&S dataset, in November 2020—
January 2021, the median number of sex partners for behavior

changers decreases from 5 (pre-COVID) to 3 (COVID); the average

decreases from 6.0 to 4.1. From this, we make the following

calculations:

Network degree and partnership type data, from Weiss et al

Casual Degree

2020:218
0
] 1432
Main Degree 1 1463
2 48
Frequency 60%
Marginal
Summary Mean Main 0.53

Degree

1 2 3

719 320 338

271 136 130

9w n 7

21 10 10%

Y
A

e

031 037 030

Marginal Summary

Frequency Mean Casual

Degree
57% 0.84
41% 0.47
2% 0.86
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Partnership Dataset
n (Partnars) = 16108
One-Time Partners Persistent Partners
n [FPariners) = 7602 l n (Partners) = 8506
Main Partners Casual Partners
n (Partners) = 2618 l n [Partners) = 5678

=
Ongoing Partners Inacive Pariners Ongoing Partners rlrmchue Partners
n (Partners) = 21980 n (Parfmars) = 428 f (Partners) = 3388 Lr.l Partnars) = 2580

Before COVID, the median number of sex partners is 5.
From distribution of partner types from ARTnet, then:

2618

2618 + 5678 + 7602
5% 0.357 = 1.79 casual partners

5% 0.478 = 2.39 oo partners

5 median partners * (

For April/May 2020:

Reduces to 1 partner.
If we assume main partners are not affected and one-time are
100% reduced (most likely scenario):

0.82 main partners (0% reduction)

1.79 — 0.18
1—-0.82 =0.18 casual - <W) = 89.9% reduction

0 00 (100% reduction)

If we assume there is an even split between main and casual
partner reduction, and one-time (00) are 100% reduced:

2618 L med . 0316 mai . (0.82—0
S — = 0. = | —
2618 + 5678 median partner main partners 0.82

5678 1 = 0.684 ; (1.79 — 0.684) 614
—_— % = . > | = .
2618 + 5678 casua 1.79
000 = (100% reduction)
If assume even split between main, casual, and one-time partner
reduction:
( 2618 ) 1 = 0165 . " (0.82 — 0.165>
* = U. > |—] 37
2618 + 5678 + 7602 main partners 0.82
( 5678 ) 1 = 0357 ] (1.79 — 0.357)
* = . - —— =
2618 + 5678 + 7602 casua 1.79
( 7602 ) 1 = 0478 (2.39 — 0.478) 80.0
*1 =0. > |— = .
2618 + 5678 + 7602 00 239

All experience 80% reduction. But this is unlikely to be what is
actually happening.

It is not logical to assume that all changes are in casual
partnerships (and none in one-time partnerships).

) =5%0.165 = 0.82 main
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For November 2020-January 2021:

Reduces to 3 partners.

If we assume main partners are not affected and one-time are
100% reduced, this would result in an increase in casual partners
(2.18 casual partners vs 1.79 pre-COVID). So instead, we assume
that main partners are not affected, casual are not affected, and
one-time partnership absorb the decrease:

0.82 main partners (0% reduction)
1.79 casual (0% reduction)
2.39-0.39

3-082-179=0.3900 - ( 239

) = 83.7% reduction

If we assume there is a even split between casual and one-time
partner reduction, and main partners are not affected, then both
experience a 40% reduction.

Ranges for April/May 2020 (from partner numbers):

Main: Decrease by 0%-80% = modifier of 0.2-1.0; 1.0 most likely

Casual: Decrease by 61%-89%; modifier of 0.11-0.39; 0.11 most
likely

OO: Decrease by 80%-100%=modifier of 0.0-0.2; 0.0 most likely

Ranges for November 2020-January 2021 (from partner numbers):

Main: Decrease by 0%; modifier of 1.0; 1.0 most likely
Casual: Decrease by 0%-40%; modifier of 1.0 most likely

OO: Decrease by 40%-83.7%-100%; modifier of 0.16 most likely

However, the number of causal partners # number of casual acts.
To translate from partners to acts, we could assume that the
change in number of partners directly approximates the change in
number of acts (that is, assume the act rate is the same for each
persistent partner an individual has). If assuming all changes are
within one-off partnerships, the maximum modifier for both main
and casual could be 1.0.

Or, alternatively, can use act rate data:

Before COVID, the median number of sexual acts is 5.

From distribution of partner types from ARTnet, then:
2618

2618 + 5678 + 7602
5% 0.357 = 1.79 acts with casual partners
5% 0.478 = 2.39 acts with oo partners

5 median acts * (

) =5%0.165 = 0.82 acts with g
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For April/May 2020: Reduces to 2 acts.

If assume main partner acts are not affected and one-time are
100% reduced:

0.82 main partner acts = (0% reduction)
1.79 - 1.18

1.79
0 00 acts = (100% reduction)

2 acts — 0.82 = 1.18 casual acts — ( ) = 34.0% reduction

If assume even split between main and casual partner reduction,
and one-time are 100% reduced:

2618

0.82—0.631) _
2618+5678 -

* 2 median acts = 0.631 main partner acts — ( 082
1.79-1.37

79 ) = 23.5%redy
000 = (100% reduction)

5678
2618+5678

* 2 = 1.37 casual acts — (

If assume even split between main, casual, and one-time acts
reduction:

0.82—-0.3

0.82

) 9 = 0.714 L act (1.79 - 0.714)
* = . —_ _—
casuat acts 1.79

239 — 0.956) B
2.39 -

( 2618

2618 + 5678 + 7602
( 5678

2618 + 5678 + 7602
( 7602

2618 + 5678 + 7602

) * 2 = 0.329 main partners acts = (

)*2:0.95600—) (

All experience 60% reduction.

For November 2020-January 2021:

Maintains at 5 acts=modifier of 1.0 for all (if assuming that all 5 acts
weren'’t shifted to main partner, for example). We could also
assume, for example, that there were 3 one-time partners and 1
persistent partner with 2 acts (because 3 partners reported). This is
unlikely however, though not impossible.

Ranges for April/May 2020 (from acts):

Main: Decrease by 0%-60% = modifier of 0.4-1.0; 1.0 most likely

Casual: Decrease by 23%-60%=modifier of 0.4-0.77; 0.66 most
likely

OO: Decrease by 60%-100%=modifier of 0.0-0.2; 0.0 most likely

Ranges for November 2020-January 2021 (from acts):

All: 1.0; but with uncertainty
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Overall ranges for April/May 2020 (combining partner and act

approach):

Main: 1.0 (0.2-1.0)
Casual: 0.11 (0.11-0.77)
00: 0.0 (0.0-0.2)

Overall ranges for November 2020—January 2021 (combining
partner and act approach):

Main: 1.0 (0.95-1.0); 0.95 to introduce uncertainty
Casual: 1.0 (0.95-1.0); 0.95 to introduce uncertainty
00: 0.16 (0.0-1.0)

Modifiers are then applied to weekly rates.

behav.modif | April-May See above for calculations. Stephens
ier.0o 2020: on et al
2021;%64
00: 0.0 (0.0- Stephens
0.2) on et al
2022165,
Weiss et
November al 202028
2020-January
2021:
00: 0.16 (0.0-
1.0)
acts.modifie | April-May Behavior Stephens
r.mc 2020: L&S Question All Changers on et al
) Only 2021;%64
Main: 1.0 (0.5- | ["Apri—-May 2020: Mean 4.26 5.96 Stephens
1.0) How many sex on et al
Casual: 0.94 partners in 3 _ 2022165
(0.5-1.0) months before Median 2 5 Weiss et
COVID19? al 2020218
April-May 2020: Mean 8.29 6.57
November How many times
2020-Januar anal sex in 3 .
2021: Y months before Median 4 5
COVID19?
Main: 1.0 (0.5- April-May 2020: Mean 1.83 1.50
1.0) How many sex
Casual: 0.94 artners durin .
(0.5-1.0) covip1g Median 1 1
pandemic?
April-May 2020: Mean 6.99 3.81
How many times
anal sex during Median 3 2
COoVID19?
November 2020— Mean 2.55 4.07
January 2021:
How many sex .
partners in past 3 Median 1 3
months?
November 2020- Mean 8.45 8.15
January 2021: Median 4 5
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How many times
anal sex in past 3
months?

In Love & Sex in the Time of COVID (L&S) dataset, in April-May
2020, the median number of sex partners for decreases from 2
(pre-COVID) to 1 (COVID). In L&S dataset, in November 2020—
January 2021, the median number of sex partners also decreases
from 2 (pre-COVID) to 1 (COVID). From this, we make the following
calculations:

Before COVID, the median number of sex partners is 2.
From distribution of partner types from ARTnet, then:

2618
2618 + 5678 + 7602
2 % 0.357 = 0.714 casual partners
2% 0.478 = 0.956 oo partners

2 median partners * ( ) = 0.329 main partners

For April-May 2020:

Reduces to 1 partner.
If we assume main partners are not affected and one-time are
100% reduced (most likely scenario):

0.329 main partners (0% reduction)

1 — 0329 = 0.671 ] (0.714—0.671
—0. =0. S
casua 0714

0 00 (100% reduction)

) = 6.0% reduction

If we assume there is an even split between main and casual
partner reduction, and one-time are 100% reduced:

2618 L medi . 0316 mai . (0.329—
—_— =0. - | —
2618 + 5678 median paritner main partners 032

5678 1= 0684 I (0.714 - 0.684) §
—_— % = U. > | =
2618 + 5678 casua 0714 1
000 — (100% reduction)
If assume weighted split between main, casual, and one-time
partner reduction:
( 2618 ) 1 = 0.165 . . (0.329 — 0.165)
* = . B Il [
2618 + 5678 + 7602 main partners 0329
( 5678 ) 1 = 0357 ; (0.714 — 0.357)
*1=0. N e
2618 + 5678 + 7602 casua 0.714
( 7602 ) 1 = 0478 (0.956 — 0.478)
* = 0. - || =
2618 + 5678 + 7602 00 0.956

In this approach, all experience 50% reduction. But this doesn'’t
really make sense.
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It is not logical to assume that all changes are in casual (and none
in one-time partnerships).

For November 2020-January 2021:

Also reduces to 1 partner. So same calculations as April/May can
be used.

Ranges for April-May 2020and November 2020-January 2021
(from partner numbers):

Main: Decrease by 0%-50% = modifier of 0.5-1.0; 1.0 most likely

Casual: Decrease by 4%-50%; modifier of 0.5-0.96; 0.94 most
likely

OO: Decrease by 50%-100%=modifier of 0.0-0.5; 0.0 most likely

However, the number of causal partners # number of casual acts.
To translate from partners to acts, we could assume that the
change in number of partners directly approximates the change in
number of acts (that is, assume the act rate is the same for each
persistent partner an individual has). If assuming all changes are
within one-off partnerships, the maximum modifier for both main
and casual could be 1.0.

Alternatively, using act rate data:
Before COVID, the median number of sexual acts is 4.
From distribution of partner types from ARTnet, then:

2618

2618 + 5678 + 7602
4 % 0.357 = 1.428 acts with casual partners

4%0.478 = 1.912 acts with oo partners

4 median acts * <

For April-May 2020: Reduces to 3 acts

If we assume main partner acts are not affected and one-time are
100% reduced, this would result in an increase in casual partner
acts. So instead, we assume that main partner acts are not
affected, casual acts are not affected, and one-time partnership
acts absorb the decrease:

0.66 main partner acts (0% reduction)
1.43 casual acts (0% reduction)
1.912-091

3-0.66—143 = 091 00 - ( .

) = 52.4% reduction

For November 2020-January 2021: Maintains at 4 acts=modifier
of 1.0 for all

Ranges for April-May (from acts):

) = 0.659 acts with main partn
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Main: Decrease by 0% = modifier of 1.0 most likely
Casual: Decrease by 0% = modifier of 1.0 most likely

OO: Decrease by 52.4%=modifier of 0.48 most likely

Ranges for November 2020-January 2021 (from acts):

All: 1.0; but with uncertainty

Overall ranges for April-May 2020 (combining partner and act

approach):

Main: 1.0 (0.5-1.0)
Casual: 0.94 (0.5-1.0)
00: 0.0 (0.0-0.48)

Overall ranges for November 2020-January 2021 (combining
partner and act approach):

Main: 1.0 (0.5-1.0)
Casual: 0.94 (0.5-1.0)
00: 0.5 (0.0-1.0)

acts.modifie | April-May See above for calculations. Stephens
r.0o 2020: on et al
2021264
00: 0.0 (0.0- Stephens
0.48) on et al
2022165,
Weiss et
November al 20202
2020-January
2021:
00: 0.5 (0.0-
1.0)
cond.modifi | April 2020: In AMIS, in April and July, 94% of participants reported no change Sanchez
er.mc 0.95 (0.93-1.0) | in condom use; 4-5% reported decrease in use. In September— et al
December 2020, this changed to 92% and 5%, respectively, with 2020;265
September— 2% reporting increased use. We assume this is same for main & Mann et
December causal and one-time partners (though with decreases in one-time al 2023161
2020: 0.93 rate, this will have less of an effect there). For calculating, we
(0.92-1.0) looked at distribution of increase/decrease/no change. Since
majority was no change we used these values.
cond.modifi | April 2020: In AMIS, in April and July 2020, 94% of participants reported no Sanchez
er.oo 0.95 (0.93-1.0) | change in condom use; 4-5% reported decrease in use. In et al
September—December 2020, this changed to 92% and 5%, 2020;265
September— respectively, with 2% reporting increased use. We assume this is Mann et
December same for main & causal and one-time partners (though with al 2023161
2020: 0.93 decreases in one-time rate, this will have less of an effect there).
(0.92-1.0) For calculating, we looked at distribution of increase/decrease/no
change. Since majority was no change we used these values.
pr.behav.ch | 0.185 L&S: In April-May 2020, 18.5% of people stopped PrEP and Sanchez
anger reduced sexual partners. etal
2020;265

Mann et
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AMIS: In April, 11.4% decreased sexual partners and decreased al
HIV testing (no PrEP stoppage data in AMIS COVID survey). 2023;161
Stephens

We will keep the parameter at 0.185 the whole time, but dilute the on et al
behavior changer modifier parameters over time since we see less | 9021264
behavior changers over time (to weaken its effect).

We cannot really change the rate (create a range) without re-
calibrating model (given that the probability is set at initialization
and arrivals), so we will keep the value at 0.185.

hiv.test.rate. | Week- and The number of HIV screening tests, from DiNenno et al 2022:175 DiNenno
young_1 race- specific 250000 et al
) modifiers . 2022;175
hiv.test.rate. 1NV TN Ay Goodreau
200,000 o ]
young_2 - ! N e TN et al
£ ! ==~ v I 177
5 ] r
hiv.test.rate. H I \ Y v R 2023
young 3 5 150,000 4 ll |‘ . ’J \' l|' \
| E, \‘ ,,\l' ‘Il' ‘l
hiv.test.rate. R v '
> 4
old 1 S Y
s
H Feb 3, 2019 (week 6)—Dec 28, 2019 (week 52)
h:\é.teSt. rate. 50000 o — — Dec 29, 2019 (week 1}—Dec 26, 2020 (week 52)
old_2
hiv.test.rate. ol .
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
0|d—3 Surveillance week
1,000, 1 180,000
-%0 160,000
800,000 80 140,000
770?_’\ 120,000 2
£ 6000004 g £ g
f 3 fl[ﬂ].ﬂﬂﬂ- 2
I 50w T o
5 Z T so000 z
£ 00,0004 40 8 .
0B 60,000 S
200,000 -20 40,000
L 10 20,000
o o o
Al/AN Black NH/OPI Multiple
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Latino contact or IDU
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2019 O2020 X % Change, 2019-2020
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The number of HIV tests in NYC and Atlanta, from Goodreau et al

2023:177
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Data on weekly HIV screening tests reported by two commercial
laboratories from the National Syndromic Surveillance Program
were used to estimate the weekly decrease in HIV testing between
2019 and 2020. A week-specific modifier was created that was
adjusted for by race: In 2020, the total number of HIV tests funded
by CDC that were distributed in health care and non—health care
settings decreased by 44.1% for Black individuals, 46.3% for
Hispanic individuals, and 45.1% for White individuals. For example,
the week-specific Black modifier was calculated by month-specific
modifier*(1-0.441))/(1-0.451)=week-specific modifier for Black
individuals.

The COVID-era data stop in December 2020, so these modifiers
were generated through December 2020.
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We are not stratifying by young/old age category because data are
very similar, especially when splitting into two binary categories
(<30, 230 years); the differences more so are in very old, very
young, but are lost in the large binary categories. Also no weekly
HIV screening data divided by age are available the time of this
analysis.

behav.modif | 0.0 We don't know the number of HIV tests for behavior changers in Sanchez
ier.tests AMIS, just that they experienced a decrease in their HIV testing. et al
Since the average HIV testing interval is already >1 year, we will 2020;265
assume if behavior modifiers are changing their testing this means | Mann et
they will not have any tests in COVID period, so modify their testing | al 2023161
by 100% (modifier of 0).
tx.init.rate.y | Same as base There was no change in HIV treatment linkage from 2019 to 2020 CDC
oung_1 (there was actually an increase), so we assume no change in 2019;266
o treatment initiation rate. CDC
tX.Init.rate.y 2020267
oung_2
tx.init.rate.y Linkage to HIV Medical Care in 30 days in 2019 (CDC-funded HIV
oung_3 testing and linkage to HIV medical care among persons newly
. diagnosed with HIV, 60 jurisdictions in the United States, Puerto
tx.init.rate.ol Rico, and the U.S. Virgin Islands, 2019): 71.4%. For Black: 68.3%,
d_ 1 for Hispanic: 76.3%, for White: 72.9%.
tx.init.rate.ol Linkage to HIV Medical Care in 30 days in 2020: 76.4%. For Black:
d_2 74.2%, for Hispanic: 82.4%, for White: 73.9%.
tx.init.rate.ol
d_3
tx.halt.partia | Same as base No significant difference in results between 2019 and 2020 for the CDC
l.rate.young following: ART adherence in the past 30 days: How many days did 2021;268
1 you miss at least 1 dose of any of your HIV medicines? How well CDC
) did you do at taking your HIV medicines in the way you were 2022;204
tx.halt.partia supposed to? How often did you take your HIV medicines in the Goodreau
|.rate.young way you were supposed to? et al
2 2023177
ART outcomes for NYC and Atlanta, from Goodreau et al 2023:177
tx.halt.partia
l.rate.young
3
tx.halt.partia
l.rate.old_1
tx.halt.partia
l.rate.old_2
tx.halt.partia

l.rate.old_3
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Also, when looking at ART data in New York City and Atlanta, we
do not see notable changes in adherence:

tx.halt.full.or
.young_1

tx.halt.full.or
.young_2

tx.halt.full.or
.young_3

tx.halt.full.or
.old_1

tx.halt.full.or
.old_2

tx.halt.full.or
.old_3

Same as base

No significant difference in results between 2019 and 2020 for the
following: ART adherence in the past 30 days: How many days did
you miss at least 1 dose of any of your HIV medicines? How well
did you do at taking your HIV medicines in the way you were
supposed to? How often did you take your HIV medicines in the
way you were supposed to?

Also, when looking at ART data in New York City and Atlanta, we
do not see notable changes in adherence.

CDC
2021;268
CDC
2022;204
Goodreau
et al
2023177
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tx.halt.durab | Same as base | No significant difference in results between 2019 and 2020 for the CDC
le.or.young_ following: ART adherence in the past 30 days: How many days did | 2021;268
1 you miss at least 1 dose of any of your HIV medicines? How well CDC
did you do at taking your HIV medicines in the way you were 2022;204
tx.halt.durab supposed to? How often did you take your HIV medicines in the Goodreau
le.or.young_ way you were supposed to? et al
2 2023177
tx.halt.durab Also, when looking at ART data in New York City and Atlanta, we
I;.or.young_ do not see meaningful changes in adherence.
tx.halt.durab
le.or.old_1
tx.halt.durab
le.or.old_2
tx.halt.durab
le.or.old_3
tx.reinit.parti | Same as base | No significant difference in results between 2019 and 2020 for the CDC
al.rate.youn following: ART adherence in the past 30 days: How many days did | 2021;268
g 1 you miss at least 1 dose of any of your HIV medicines? How well CDC
. . did you do at taking your HIV medicines in the way you were 2022;204
tx.reinit.parti supposed to? How often did you take your HIV medicines in the Goodreau
al.rate.youn way you were supposed to? etal
g_2 2023177
tx.reinit.parti Also, when looking at ART data in New York City and Atlanta, we
al.gate.youn do not see notable changes in adherence.
g_
tx.reinit.parti
al.rate.old_1
tx.reinit.parti
al.rate.old_2
tx.reinit.parti
al.rate.old_3
tx.reinit.full. | Same as base | No significant difference in results between 2019 and 2020 for the CDC
or.young_1 following: ART adherence in the past 30 days: How many days did | 2021;268
N you miss at least 1 dose of any of your HIV medicines? How well CDC
tx.reinit.full. did you do at taking your HIV medicines in the way you were 2022;204
or.young_2 supposed to? How often did you take your HIV medicines in the Goodreau
?
tx reinit.full. way you were supposed to~ etal -
2023
or.young_3
tx reinit full Also, when looking at ART data in New York City and Atlanta, we
: S do not see notable changes in adherence.
or.old_1
tx.reinit.full.
or.old_2
tx.reinit.full.

or.old_3
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tx.reinit.dura | Same as base | No significant difference in results between 2019 and 2020 for the CDC
ble.or.young following: ART adherence in the past 30 days: How many days did | 2021268
1 you miss at least 1 dose of any of your HIV medicines? How well CDC
o did you do at taking your HIV medicines in the way you were 2022;204
tx.reinit.dura supposed to? How often did you take your HIV medicines in the Goodreau
ble.or.young way you were supposed to? et al
2 2023177
tx.reinit.dura Also, when looking at ART data in New York City and Atlanta, we
bl:f.or.young do not see notable changes in adherence.
tx.reinit.dura
ble.or.old_1
tx.reinit.dura
ble.or.old_2
tx.reinit.dura
ble.or.old_3
part.tx.init.ra | Same as base | There was no change in HIV treatment linkage from 2019 to 2020 CcDC
te.young_1 (there was actually an increase), so we assume no change in 2019;266
. treatment initiation rate. CDC
part.tx.init.ra 2020267
te.young_2
part.tx.init.ra Linkage to HIV Medical Care in 30 days in 2019 (CDC-funded HIV
te.young_3 testing and linkage to HIV medical care among persons newly
o diagnosed with HIV, 60 jurisdictions in the United States, Puerto
part.tx.init.ra Rico, and the U.S. Virgin Islands, 2019): 71.4%. For Black: 68.3%,
te.old_1 for Hispanic: 76.3%, for White: 72.9%.
part.tx.init.ra Linkage to HIV Medical Care in 30 days in 2020: 76.4%. For Black:
te.old_2 74.2%, for Hispanic: 82.4%, for White: 73.9%.
part.tx.init.ra
te.old_3
part.tx.reinit. | Same as base | No significant difference in results between 2019 and 2020 for the CDC
rate.young_ following: ART adherence in the past 30 days: How many days did | 2021;268
1 you miss at least 1 dose of any of your HIV medicines? How well CDC
o did you do at taking your HIV medicines in the way you were 2022;204
part.tx.reinit. supposed to? How often did you take your HIV medicines in the Goodreau
rate.young_ way you were supposed to? et al
2 2023177
part.tx.reinit. Also, when looking at ART data in New York City and Atlanta, we
r3ate.young_ do not see notable changes in adherence.

part.tx.reinit.
rate.old_1

part.tx.reinit.
rate.old_2

part.tx.reinit.
rate.old_3
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prep.start.pr
ob.young_1

prep.start.pr
ob.young_2

prep.start.pr
ob.young_3

prep.start.pr
ob.old_1

prep.start.pr
ob.old_2

prep.start.pr
ob.old_3

Month- and
race- specific
modifiers

Calculated from monthly data on new PrEP users. Data are from a
national pharmacy database from January 2017 through March
2021, and from an interrupted time-series model that predicted
PrEP prescriptions and new PrEP users had the pandemic not
occurred.

Huang et
al 2022174
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PrEP prescriptions, from Huang et al 2022:174
Table 1.
Observed and Expected Number of PrEP Prescriptions and New PrEP Users and Predicted Percentage Reduction by Month
PrEP Prescriptions New PrEP Users
Observed Expected %% 5% C1 Observed Expected % 5%
Total 1058 162 220 19.1-248 125793 167720 250 209-289
Month
15-31March 2020 31151 32545 43 -0.81088 4550 5668 19.7 136251
April 2020 68 502 85587 200 155240 8452 13960 39.5 45437
May 2020 53878 69 144 23 179-263 7062 10740 342 85389
June 2020 58442 70 747 174 127-216 9266 11098 165 96224
July 2020 70520 91338 2s 184-267 11291 15434 %8 209220
August 2020 58477 14512 26 17.2.255 9899 12778 s 16.7-282
September 2020 58971 76951 234 191-27.2 9588 12622 240 180-293
October 2020 8025 99207 191 145232 127% 15344 16.6 928-225
November 2020 63448 79510 202 15.7-242 8499 11669 2 a2n13
December 2020 74199 99625 55 214-292 10161 14697 0.9 252-35.7
January 2021 64991 82923 216 17.2-256 10209 12935 21 146266
February 2021 63782 86357 261 219299 115 13919 201 136-258
March 2021 78622 109457 282 239-20 12951 16857 132 165-289
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Table 2.

Observed and Expected Number of PrEP Prescriptions and New PrEP Users and Predicted Percentage Reduction From 1Y

Characteristics  PrEP Prescriptions New PrEP Users
Observed Expected %0 95% CI Observed Expected %
No. No. Reduction No. No. Reduction
Total 825239 1058 162 220 151-248 125793 16T 720 25.0
Sex
Male TT7508 597528 221 152-249 110327 146362 246
Female 47412 59958 209 17.2-245 15202 21533 296

Age group (years)

16-29 228206 294 897 206 18.0-270 51145 TO623 276
30-39 297576 357818 233 20.5-26.0 40113 54126 255
40-49 152454 1585931 13.3 163-222 17199 21945 216
50+ 145963 156 800 213 18.2-243 17335 21279 185
Racefethnicity
White 202283 253142 201 17.2-228 21724 30418 286
Black L0074 47 867 16.5 15.7 6383 8274 218
Hispanic 48115 15.4 161-226 6665 ar7s 240
Other 11185 15738 15 18.7-26.2 1352 1916 9.4
Unknown 522572 681 756 13 03-262 BI66EI 118 455 243
Payer type
Commercial 456850 597358 215 20.7-263 52454 T4050 291
Public 106426 125232 15.0 115-184 19048 26534 282
Cash 13876 15500 127 6.8-18.3 4923 6336 223
Other 110287 137718 15.9 157-239 128213 31606 10.7
Region
Morthwest 21.8 251-30.3 22188 33579 339
Midwest 124385 160 258 220 18.8-25.1 15533 351
South 2583054 360393 17.4 14.1-206 57032 66613 14.4
West 223347 4.4 214-274 30787 44 556 305

95% ClI

204-286

25.2-338

25.0-331

235-326

15.8-28.3

5.0-16.1

29.5-38.0

To calculate the time- and race-specific modifier, first a month-

specific modifier was generated from the percent reduction in

new

PrEP users. Then, these modifiers were adjusted for race (for
example, the month-specific Black modifier was calculated by

month-specific modifier*(1-0.229))/(1-0.2584)=month-specific
modifier for Black individuals.

The COVID-era data stop in March 2021, so these modifiers were

generated through March 2021.

part.prep.st
art.prob.you
ng_1

part.prep.st
art.prob.you
ng_2

part.prep.st
art.prob.you
ng_3

Same as base/

We are not modifying partner starts and instead focusing on other

PrEP initiation.
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part.prep.st

art.prob.old
1
part.prep.st
art.prob.old
2
part.prep.st
art.prob.old
_3
prep.adhr.di | Same as base | Not focusing on adherence but instead persistence/discontinuation. | Jin et al
st 1 Adherence trajectory has been found to be closely associated with | 2021;269
) PrEP continuation, and retention may be a bigger challenge with Chan et al
ptreg.adhr.dl more impact on PrEP effectiveness than adherence. 201627
S
prep.adhr.di
st 3
prep.discont | Month- and Calculated from monthly data on PrEP prescriptions. This assumes | Sanchez
.rate.young_ | race- specific PrEP prescriptions approximates PrEP discontinuation. etal
1 modifiers 2020;265
Data are from a national pharmacy database from January 2017 Mann et
prep.discont through March 2021, and from an interrupted time-series model al
.rate.young_ that predicted PrEP prescriptions and new PrEP users had the 2023:161
2 pandemic not occurred. Stephens
prep.discont onetal
’ 2021264
.rate.young_
3 To calculate the time- and race-specific modifier, first a month-
specific modifier was generated from the percent reduction in PrEP
prep.discont prescriptions. For example, a reduction by 4% translated to a
.rate.old_1 modifier of 1.04. Then, these modifiers were adjusted for race (for
) example, the month-specific Black modifier was calculated by
prep.discont month-specific modifier*(1.165))/(1.1867)=month-specific modifier
rate.old_2 for Black individuals.
prep.discont
rate.old_3 The COVID-era data stop in March 2021, so these modifiers were
generated through March 2021.
behav.modif | 0.0 By our definition (and set from L&S and AMIS data), these Sanchez
ier.prep represent people that discontinue PrEP alongside sexual behavior et al
change. lItis illogical for them to have PrEP initiation, so we can 2020;265
assume the modifier is 0. Stephens
on et al
2021264

10 Model Calibration

This section describes the methods for executing the simulations and conducting the data

analysis on the outcomes in further detail.

Even though our model uses around 20 parameters with uncertain values, most of them have a

monotonic direct relationship with a single target. (e.g. HIV test rate and proportion of the HIV

positive being diagnosed).
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Our calibration methodology employs a two-step process, utilizing various techniques to
optimize the model parameters based on target statistics. In the initial step, we focused on
calibrating the model to accurately reproduce the target statistics pertaining to the HIV care
continuum and HIV diagnosis rates. To achieve this, we conducted simulations of the model

over a 60-year period.
We did not include STIs in our models.

To calibrate the model, we employed polynomial regression surrogates to optimize the
parameters. Through the process of fitting these regression models, we obtained the most
optimal estimates for each parameter. Subsequently, we conducted additional simulations,
narrowing down the parameter range to values centered around the estimated optimal values.
This iterative process continued until further improvement in the surrogate's prediction was no

longer observed, signifying the successful calibration of the parameters.

The selection of the polynomial regression degree, the rate at which the parameter range was
reduced, and the improvement threshold were determined as hyperparameters, tuned to

enhance the calibration process.

Given that certain parameters exhibited conditional dependencies on the values of other
parameters, they were calibrated in a subsequent step. For example, the HIV prevalence

parameter relied on a fixed value of the HIV test rate.

For the HIV prevalence, 3 transmission scale parameters govern 3 race stratified HIV
prevalence target. In this case, we employed a shrinking grid search approach, aiming to
minimize the root mean squared error (RMSE). At each iteration, the search space was
narrowed down to the parameter space of the top-performing P simulations. Calibration
concluded once we attained N simulations wherein the target statistics deviated from the
desired targets by less than a threshold T. The calibrated values were determined by computing

the median of each parameter among the qualifying simulations.

Once the HIV care continuum calibration was complete, we simulated 20,000 replicates of the
fitted model and selected the single simulation with values of the target statistics closest to the

targets (with total absolute deviance).

In the second step of our calibration process, we conducted additional model simulations over a
5-year period to introduce entropy into the system. Subsequently, we extended the simulation

for an additional 10 years to incorporate the PrEP continuum.
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Similar to the first step, the parameters in this stage were optimized using a polynomial

regression surrogate. We then calibrated the PrEP parameters.

For each candidate parameter, 6, to be estimated, we:

1.
2.
3.

Sampled a candidate 8¢ from a prior distribution ()
Simulated the epidemic model with candidate value, 6°.
Tested if a distance statistic, d (e.g., the difference between observed HIV diagnosis rate
and model simulated diagnosis rate) was greater than a tolerance threshold, .

a. Ifd > e then discard

b. Ifd < ethen add the candidate 6° to the posterior distribution of 6.
Sample the next sequential candidate, 8+, either independently from () (if 3a) or
from 6! plus a perturbation kernel with a weight based on the current posterior
distribution (if 3b).
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