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Abstract 

 

Assessing the Impact of COVID-19-Related Behavioral Changes 

and Clinical Service Disruptions on the HIV Epidemic  

in the United States 

By 

Laura M. Mann 

 

HIV is a major public health challenge that has become more complex because of the COVID-

19 pandemic. Economic and social disruptions from the pandemic have created new challenges 

in the control of HIV, prompting major behavioral changes and disrupting access to HIV 

screening, prevention, and clinical care services. This dissertation aimed to assess the impact 

of these COVID-related changes on the US HIV epidemic and to identify how potential home-

based HIV prevention interventions that provide an alternative to clinic-based HIV services 

could have offset some of the COVID pandemic’s epidemiologic impact on HIV. 

In Aim 1, we described the magnitude, timing, and variation of sexual distancing and HIV 

service utilization changes among MSM in the US during the COVID-19 pandemic. Our results 

were consistent with prior studies demonstrating population-level decreases in sexual behavior, 

interruptions to use of HIV prevention services, but limited changes to HIV medical care for 

persons living with HIV. We newly identified the persistence these changes through the end of 

2020 into 2021, demonstrating the durable impact of the COVID pandemic on HIV-related 

behavior and services. 

In Aim 2, we used a dynamic network-based HIV transmission model of US MSM to estimate 

the incidence of HIV during the COVID-19 pandemic. We found that HIV transmission among 

US MSM decreased during 2020, but that temporary decreases in HIV incidence during the 

pandemic did not lead to long-term decreases in HIV transmission. 

In Aim 3, we used a dynamic network-based HIV transmission model of Atlanta MSM to assess 

the potential impact that home-based HIV prevention interventions could have had during the 

COVID pandemic. We demonstrated that although home-based PrEP retention and HIV testing 

interventions could be effective at increasing PrEP use and HIV testing, in isolation they would 

have minimal impact on pandemic-era population-level HIV incidence. Scaling up interventions 

in terms of coverage, length, post-intervention persistence, increasing their efficacy, or 

combining them with other home-based HIV prevention interventions could aid in increasing 

their impact on HIV transmission in a pandemic context. 

The findings of this dissertation contribute to the overall understanding of how the COVID 

pandemic has impacted the US HIV epidemic. We found that though the pandemic affected 

sexual behavior and HIV prevention service use of US MSM, the combined effects of these 

changes were likely not significant enough to cause long-term effects to the US HIV epidemic’s 

trajectory. While home-based HIV prevention interventions could play a role in increasing PrEP 

use and HIV testing among MSM, these interventions by themselves may not have substantial 

impacts on HIV transmission in a pandemic context. 
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Chapter 1. Background and Significance 

HIV Prevention in the US 

The prevention of HIV remains a major public health challenge in the US. There are 

approximately 1.2 million people in the US living with HIV,1 and approximately 40 thousand new 

diagnoses occur every year.2,3 Despite recent strides in HIV prevention, the rate of new HIV 

diagnoses has remained persistently high over the past decade.4 

The risk of HIV is not uniform across the US population. Gay, bisexual, and other men 

who have sex with men (MSM) are at increased risk for HIV: despite representing less than 5% 

of the US population,5,6 MSM account for nearly 70% of all HIV diagnoses.3 Furthermore, certain 

subgroups of MSM are at higher HIV risk. For example, since the beginning of the HIV 

epidemic, Black/African American MSM have experienced disproportionate HIV prevalence and 

incidence.7,8 In 2019, Black MSM represented more than 36% of all new HIV diagnoses among 

US MSM, despite Black individuals representing only 13% of the US population.3,9 Studies have 

demonstrated that the increased risk among Black MSM is not attributable to higher risk 

behaviors but rather network factors and socioeconomic and treatment disparities.10–12 In 

addition, Hispanic or Latino MSM also experience disproportionate HIV risk: while HIV 

diagnoses have decreased among white MSM and remained stable in Black MSM over the past 

decade, HIV diagnoses have increased among Hispanic or Latino MSM.13 

Most HIV infections in MSM are transmitted through sexual contact.14 In particular, 

unprotected receptive anal sex carries the highest risk for HIV acquisition.15 Historically, 

consistent condom use has been promoted as an effective way to prevent HIV transmission 

among sexually active MSM, and as a result, public health efforts to reduce HIV have focused 

on promotion of condom use.16 However, over the past decade, strides in HIV prophylaxis and 
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treatment have shifted HIV prevention efforts towards biomedical solutions that require minimal 

or no behavioral modification. 

In July 2012, the US Food and Drug administration approved the first label indication for 

emtricitabine/tenofovir disoproxil fumarate (Truvada) for use as HIV pre-exposure prophylaxis 

(PrEP) for patients at high risk of HIV acquisition.17 When taken consistently, PrEP has been 

shown to reduce the risk of HIV acquisition among MSM not known to be living with HIV by 

99%.18 However, effectiveness of PrEP is highly dependent on adherence and retention in PrEP 

care.19,20 Research has therefore been focused on implementing programs to increase PrEP 

initiation, adherence, and retention, especially among groups that have been underserved by 

PrEP delivery.12,21–23 

Initiation of and adherence to PrEP requires ongoing access to health care services. The 

PrEP care system/continuum has many steps. To begin PrEP, an individual must first attend an 

initial clinical visit. At this visit, a medical provider will perform an clinical evaluation that includes 

assessing indications for PrEP, taking a medical history, and performing various lab tests 

(including an HIV blood test and screening for sexually transmitted infections (STIs) and 

Hepatitis B and C viruses).24 After evaluating for indications for PrEP (in the US, the CDC 

indicates PrEP for MSM who are HIV-negative, are sexually active and not in a monogamous 

partnership with a recently tested HIV-negative man, and have had unprotected anal sex in the 

past six months or a bacterial STI in the past six months),18 PrEP medication may be 

prescribed. If laboratory testing results are available on the same day as the initial clinical visit, 

this can be on the same day, otherwise obtaining a prescription may take longer.24 Once a 

prescription is obtained, the individual must fill it at a pharmacy, unless the medication is offered 

at their clinic.24 As per current clinical recommendations, in order to stay on PrEP, indicated 

individuals must return for follow-up visits every three months (at which time an HIV risk 

behavior assessment, HIV blood test, and STI screening will take place) in order to maintain 
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their prescription.24 Partially as a result of this cascade, PrEP uptake has been slow and gaps 

exist between recommended and actual levels of PrEP use. Estimates of coverage levels vary: 

according to the American Men’s Internet Survey (AMIS), an estimated 20% of PrEP-eligible 

MSM in the US were on PrEP in 2017;25 compared to an estimated 35% of MSM who were at 

risk for HIV infection and likely to meet clinical indications for PrEP from National HIV Behavioral 

Surveillance System data;26 compared to 32% of MSM meeting PrEP indications during 2017-

2019 according to ARTnet.27 PrEP use also varies by demographics and geographic area: use 

of PrEP may be lower for men who are younger, living outside of urban areas, and lacking 

health insurance.25–27 Furthermore, PrEP adherence is dependent on ongoing access to medical 

care.24 Recent HIV prevention interventions have been focused on getting men into PrEP care 

and retaining access to care. 

Treatment of HIV infection requires ongoing access to antiretroviral therapy (ART). 

When taken consistently as prescribed, ART can suppress viral load, maintain high CD4 cell 

counts and prevent AIDS, and reduce HIV/AIDS morbidity and mortality.28,29 In addition, ART 

use can reduce the risk of transmitting HIV to others due to decreased or undetectable viral load 

(referred to as “treatment as prevention”)—there is effectively no risk of sexual transmission of 

HIV from a person living with HIV that has an undetectable viral load.30 

However, similar to the PrEP cascade, the HIV care continuum also requires ongoing 

access to health care services. The HIV care continuum begins with HIV testing and diagnosis 

of HIV infection.31 Regular testing is needed to diagnose individuals with undiagnosed HIV and 

get them into HIV clinical care.31 Then, individuals need to be linked to care (i.e., have one or 

more documented CD4 or viral load tests within 30 days of HIV diagnosis; however, this is only 

one metric to evaluate care linkage and care linkage should be done as fast as possible).32 

Once in care, people living with HIV be prescribed ART, fill their prescription, and start ART.31 

After ART initiation, individuals need routine HIV viral load and CD4 testing and medical care to 



15 
 

 

 

be retained in care.31 The recommended testing schedule is testing at entry into care, on 

initiation of ART, at any time of treatment regimen modification, two to eight weeks after ART 

initiation or modification, every four to eight weeks until viral suppression is achieved, and then 

every three or four months.31 This requires ongoing and frequent access to clinical care. 

Through ongoing use of ART, individuals can achieve HIV viral suppression. However, 

viral suppression is not widespread. According to the CDC, in 2018, approximately 35% of 

individuals diagnosed with HIV in the US were not virally suppressed at their last test.33 

However, this may be an underestimate, as it is derived from reported viral load data from a 

subset of jurisdictions that vary yearly.34 The prevalence of not being virally suppressed among 

individuals living with diagnosed HIV in the US may be closer to 50%.34,35 In addition, 25% of 

individuals living with HIV did not have any viral load test in 2018.14 One major factor associated 

with the lack of viral load testing, ART adherence, and viral suppression is lack of accessibility 

of quality health care. In addition, regular testing is needed to diagnose individuals with 

undiagnosed HIV and get them into HIV clinical care.31 Approximately 14% of people with HIV in 

the US are not diagnosed.36 These gaps in HIV testing and clinical care drive HIV transmission 

in the US and impact the quality of life of individuals living with HIV.37 

To address these issues, in 2019 the US Department of Health and Human Services 

(HHS) announced the Ending the HIV Epidemic in the US (EHE) plan, which aims to eliminate 

HIV in the US by 2030.38 EHE has four key strategies. The first strategy is to diagnose 

individuals with HIV as early as possible after infection. The second is to treat individuals with 

HIV rapidly and effectively to reach sustained viral suppression. This strategy includes promptly 

linking individuals newly diagnosed with HIV to care as well as finding innovative and effective 

ways to reengage individuals who are aware of their infection but not receiving HIV care and 

treatment. The third strategy is to use interventions, including pre-exposure prophylaxis (PrEP) 

and syringe services programs, to prevent new HIV transmissions. The last EHE strategy is to 
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respond quickly to potential HIV outbreaks to get needed prevention and treatment services to 

people who need them. The EHE initiative focuses its efforts on geographic areas with a high 

burden of HIV, many of which are in the southeast US (the Atlanta metropolitan area, Alabama, 

Mississippi, South Carolina, among other areas). 

The goal of EHE is to reduce new HIV infections in the US by at least 75% in 2025 and 

at least 90% by 2030. Modeling studies have predicted that in order for these goals to be 

achieved, HIV testing, PrEP initiation, and HIV care retention would need to increase 

dramatically (approximately ten-fold, if screening and retention were improved jointly and key 

subpopulations were targeted). However, these estimates assume continuity of prevention and 

clinical care services. Major disruptions to HIV prevention and clinical care services may instead 

move the US further from EHE targets.  

 

COVID-19 Pandemic and HIV 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus that causes 

coronavirus disease 2019 (COVID-19), was first identified in January 2020 in Wuhan, China 

following a December 2019 outbreak of pneumonia.39 International spread of COVID-19 

occurred during the following months and on 11 March 2020 the World Health Organization 

(WHO) officially characterized the global COVID-19 outbreak as a pandemic.40 International 

“lockdown” orders soon after went into effect, with many countries requiring individuals to limit 

social contact and activity with those outside of their household (“social distance”) or quarantine 

to prevent potential spread of SARS-CoV-2. In the US, COVID-19 was declared a national 

emergency on 13 March 2020 and many states thereafter issued statewide stay-at-home 

orders. Aside from businesses and services deemed essential, many workplaces, schools, 

restaurants, and other venues were closed. Restrictions have varied over time and by state and 
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municipality but decreases in mobility and social contact have been observed through the 

pandemic.41 

The Impact of COVID-19 on Sexual Activity. In addition to social distancing and decreased 

mobility, COVID-19 has also prompted reductions in sexual activity (“sexual distancing”). 

Reports of sexual distancing have varied but most studies have suggested an initial overall 

decrease in sexual behavior among US adults, especially with partners outside of one’s 

household. A cross-sectional study of US adults by Hensel et al. demonstrated that nearly half 

of adults reported some kind of change in sexual behavior during March–April 2020, with most 

reporting a decrease in partnered sex.42 Another survey of US adults found that half of study 

participants reported a decline in their sex life during April–May 2020, but many incorporated 

various other sexual activities such as sexting or having cybersex.43  

Sexual distancing has also been observed among US MSM. Using data from a cohort of 

PrEP-using MSM in the southern US, Pampati et al. demonstrated a decrease in sexual 

partners, anal sex acts, condomless sex, and oral sex during February–March followed by an 

increase in April–June.44 A study by Sanchez et al. that used data from the AMIS COVID Impact 

Survey (which will be used in this dissertation) found that approximately half of US MSM 

reported fewer sexual partners during April 2020.45 Similarly, a study by McKay et al. 

demonstrated that many US MSM reported a substantial decrease in the amount of sex had and 

the number sexual partners during April–May (compared to February–early March), and also 

reported changes to the type of sex had (e.g., more virtual sex) and less sex with casual 

partners.46 International reports have noted similar trends in sexual distancing among MSM. In 

London, 75% of surveyed MSM reported fewer partners during March–June 2020 COVID-19 

lockdown.47 In Melbourne, Australia, MSM reported experiencing a decrease in sexual activities 

and sex partners during certain periods of lockdown.48  
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In contrast to these reports, Stephenson et al. found that there was an average increase 

in anal sex partners among US MSM during April–May 2020 compared to February of that year; 

however, reported changes in sex partners were variable (and ranged from 19 fewer to 38 more 

partners among study participants).49 Stephenson et al. used data from the first cycle of the 

Love & Sex in the Time of COVID survey (which was used in this dissertation). Despite these 

early reports, more research is needed that examines the magnitude and variation of sexual 

distancing among US MSM, especially among key subpopulations. While most of these studies 

collected data on age, race, and geographic region, they did not present stratified estimates of 

sexual distancing measures.44–46 This approach is needed given that sexual distancing is likely 

to vary within and between demographic groups and change over time.  

A lack of published evidence about sexual distancing after March–June 2020 exists. 

Because social distancing practices were maintained for much of the US through 2020 and into 

2021, studies are needed that assess the longitudinal patterns of sexual distancing through the 

COVID-19 pandemic. Rebounding sexual behavior has been hypothesized, in which sexual 

behavior may have substantially increased after the first US “wave” of COVID infections (i.e., 

after March–June 2020) (perhaps even above pre-pandemic levels), but empirical evidence is 

needed to determine if this occurred (or is occurring) among US MSM. 

The Impact of COVID-19 on Clinical Services. The COVID-19 pandemic has prompted 

clinical service disruptions alongside decreased mobility and social contact.50 In addition to 

health care systems being overburden by COVID-19 treatment, diverting resources away from 

prevention and treatment of non-respiratory diseases, non-emergency medical services were 

disrupted as social distancing measures were enacted.51–55 Beginning in March 2020, some US 

medical practices were temporarily closed in order to reduce possible transmission of SARS-

CoV-2.55 For example, many sexually transmitted disease (STD) clinics in New York were either 

closed or experienced a dramatic reduction in services during April 2020.56 Nationally, over 80% 
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of STD programs deferred STD services beginning in March 2020 and 62% reported being 

unable to maintain their HIV and syphilis caseloads.57 In South Carolina, 56% of HIV clinics 

funded by the Ryan White HIV/AIDS Program were partially interrupted and 26% were 

completely closed during March 2020 (the Ryan White HIV/AIDS Program is the largest federal 

program designed specifically for people with HIV in the US and provides outpatient care and 

support services to individuals living with HIV).58 In the months following March–April 2020, the 

financial strain resulting from COVID-19 (e.g., reduced revenues due to cancellation of certain 

services) caused some US hospitals and clinics to close.59,60 In addition to clinical disruptions, 

COVID-19-related surges in unemployment (approximately 20 million workers) have caused 

many to lose employer-sponsored health insurance, leading to further reduction in health care 

access.61 Thus, the COVID-19 pandemic has posed significant challenges in access to and 

delivery of health care. 

HIV programs have attempted to adapt to COVID-19-related challenges but evidence of 

decreased access to HIV care still exists. In a survey of Ryan White HIV/AIDS Program medical 

provider grantees during the pandemic, 99% reported offering telehealth visits, 89% reported 

providing multi-month prescriptions for ART, 56% reported providing home HIV tests for patients 

and their partners, and 34% reported reducing frequency of laboratory visits.62 However, 28% of 

providers reported seeing a decrease in retention of patients in HIV care, 61% reported a 

decrease in their ability to provide HIV testing, and 25% reported a decrease in the ability to 

provide PrEP services.62 Similarly, surveys of MSM from April 2020 have demonstrated reduced 

access to HIV testing, HIV care visits, and viral load testing.44,45,49 Further, there is evidence that 

HIV infection rates have increased during 2020, but these infections are not being diagnosed. In 

a Chicago emergency department that incorporated HIV testing alongside COVID testing, the 

resulting observed number of acute HIV diagnoses was significantly higher than in prior years, 

whereas other local hospitals (that did not incorporate HIV screening into COVID testing) 

observed a decline in HIV screenings and a 25% decrease in HIV diagnoses.63 
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The Centers for Disease Control and Prevention (CDC) have released guidance 

encouraging health facilities to optimize telehealth and home care during the pandemic to 

reduce the impact of COVID-19 on other diseases,52 but gaps in care still remain. Further, 

disparities exist in accessing telehealth services. In a study using electronic healthcare record 

data at a large hospital in New York City, even after adjusting for individual and community-level 

attributes, Black patients had a significantly lower odds of accessing medical care through 

telemedicine during March–April 2020 compared to white patients.64 Similar race/ethnic 

disparities have been noted across various disease-specific telehealth services.65,66 

Sexual distancing may counterbalance the effects of clinical interruptions on HIV 

dynamics: reductions in sexual activity may decrease the rate of HIV acquisition and 

transmission while clinical interruptions increase it. Recent modeling studies have found that the 

impact of this balance on the HIV epidemic depends on the relative extent and timing of these 

changes.67–69 Jenness et al. found that among MSM in Atlanta, if sexual behavior rebounds 

while service interruptions persist, an excess of hundreds of HIV cases in this target population 

will be expected over the next five years (Dr. Jenness is the chair of this dissertation and I was a 

coauthor of this study).67 Research examining the timing of these changes is lacking, but is 

needed to be able to elucidate the full expected impact of the COVID-19 pandemic on HIV in the 

US. 

HIV Prevention and Care Retention Approaches. Home-based HIV prevention and HIV care 

initiation and retention approaches may offset some of the epidemiologic impact of COVID-19 

on the HIV epidemic in the US. These approaches may include telehealth services, at-home 

HIV testing, at-home PrEP care, multi-month ART prescriptions, at-home HIV testing, and 

potential at-home HIV viral load tests.  

Telehealth, or the delivery and facilitation of health and health-related services including 

medical care, provider and patient education, health information services, and self-care via 
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telecommunications and digital communication technologies,70 has become an important 

component of the US health care system in recent years.71 It has been demonstrated to 

increase access to health care and potentially reduce health care costs,72 and can be 

particularly useful to reach geographically remote or otherwise less accessible populations (e.g., 

currently incarcerated individuals).73,74 For HIV care, studies have shown that individuals taking 

ART achieve similar clinical responses to therapy, adherence to treatment, and quality-of-life 

scores whether treated in-person or through telehealth.75,76  

Telehealth has been used by HIV providers during the COVID-19 pandemic, alongside 

other interventions such as multi-month prescriptions for ART, at-home HIV testing, and 

reduced frequency of laboratory visits (as discussed in The Impact of COVID-19 on Clinical 

Services).62,77 Multi-month prescriptions for ART work by providing patients living with 

diagnosed HIV with two to six months of ART medication (instead of 30-day prescriptions), 

therefore reducing the frequency of clinical visits.78 A recent systematic review of eight studies 

showed that multi-month ART prescriptions and reduction of clinic visits led to better care 

retention without differences in viral failure.79 At-home HIV testing may also be used to diagnose 

HIV infection and get individuals into HIV clinical care. At-home tests can be a rapid oral fluid 

test (which can be done entirely at home) or a mail-in finger prick blood test.80 Clinical studies 

have demonstrated that the oral fluid test has sensitivity of 92% and the mail-in tests have a 

sensitivity of 99%.81,82 Lastly, at-home HIV viral load testing could potentially be used as a 

home-based HIV care retention approach. This would allow individuals living with HIV to 

undergo their reoccurring viral load testing from home and therefore increase ongoing ART 

access and potentially adherence. However, at-home viral load testing is still being developed 

given that current testing of viral load relies on a blood draw and nucleic acid testing, both of 

which need to be conducted at a clinic or laboratory.31,83 Therefore, research gaps exist 

regarding the potential impact of at-home viral tests on HIV care retention and population-level 
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viral suppression, both independently and alongside other telehealth and at-home HIV care 

approaches. 

These home-based HIV prevention and HIV care approaches may curtail the impact of 

service disruptions such as those introduced by the COVID-19 pandemic on PrEP use and 

consequentially HIV acquisition risk, or ART adherence and consequentially HIV viral load. At a 

population-level, they may also impact HIV transmission and incidence.84 Research is needed, 

however, to examine the extent of the potential epidemiologic impact of these approaches in the 

context of COVID-19, as well as identify the most effective scenarios for their deployment.77 

Because of the vast inequities in health and HIV care, the impact of these interventions may be 

greatest in certain subpopulations, such as Black MSM.10–12 Research focused on the effect of 

HIV prevention and care approaches on HIV transmission is prudent. 

 

Mathematical Models of HIV Transmission 

Overview of Mathematical Modeling. Mathematical models have been used throughout the 

past century to investigate infectious disease dynamics and guide public health policy.85 Their 

use ranges from identifying ideal public health intervention scenarios (such as optimal vaccine 

strategies), to predicting or forecasting the incidence of emerging diseases, to supporting 

surveillance-based estimates of infectious diseases.85  

Models are a way to represent complex phenomena simply.86 For infectious diseases, 

models use population parameters to simulate infection transmission in populations.86 

Mathematical models come in many forms, each of which can represent varying levels of 

complexity of infectious disease transmission. They may incorporate randomness into their 

parameters and transitions (stochastic) or use only fixed parameters and thus have stable 

results (deterministic).86 Compartmental models can be either deterministic or stochastic. They 
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model disease dynamics by dividing individuals in a population into categories (compartments) 

representing various disease stages (e.g., susceptible to infection, infected, and recovered from 

infection) and model their collective progress through disease states.86 Alternatively, individual- 

or agent-based models track the infection process for every individual in the simulated 

population, often incorporating stochasticity.86  

Network Modeling. Network-based models are a type of agent-based models that explicitly 

incorporate partnerships. Partnerships can be defined as repeated contact (which has the 

possibility of disease transmission if disease were present in at least one of the partners) 

between two individuals; in HIV models of sexual transmission, for example, a partnership is 

repeated sexual contact/exposure with the same set of persons over time. Network-based 

transmission models model the network of contacts within a population and simulate disease 

transmission within that network.86,87 Their major strengths over compartmental models are that 

they allow for repeated contacts with the same set of persons, and that they do not rely on the 

assumptions that individuals in a subpopulation mix randomly at each time step and each 

individual in one subpopulation has a non-zero chance of contacting every other individual in 

another subpopulation—this is not representative of human behavior.86,87 Network models can 

explicitly model that each individual only has a finite set of contacts to whom they may transmit 

or acquire infection.87 

Network-based mathematical models have played an important role in understanding the 

epidemiologic processes of infectious diseases, especially STIs and HIV.87 They work by 

simulating individuals (nodes) and their contacts (edges) to create a network (a collection of 

nodes and edges). One statistical framework that is commonly used in network models to 

predict the network configuration of a population is exponential random graph modeling 

(ERGM). ERGMs use maximum likelihood estimation to fit statistical models for network 

structures to data.88,89 They are somewhat analogous to logistic regression: in logistic 
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regression, the probability of an outcome/dependent variable is predicted based on a set of 

independent variables, whereas with ERGMs, the probability that two nodes will have an edge is 

predicted based on a set of network statistics. The general functional form for an ERGM is given 

in Equation 1. 

Eq. 1.   𝑃(𝑌 = 𝑦) =
𝑒𝜃′𝑔(𝑦)

𝜅(𝜃)
=

𝑒𝜃1𝑥1+𝜃2𝑥2+⋯+𝜃𝑝𝑥𝑝

𝜅(𝜃)
 

Where 𝑦 is the observed network of edges, nodes, and nodal attributes, 𝑔(𝑦) is the vector of 

network statistics, 𝜃 is the vector of parameters, and 𝜅(𝜃) is a normalizing constant representing 

all possible network configurations. 

The conditional log-odds of an edge is represented in Equation 2. 

Eq. 2.  logit(P(Yij = 1|𝑟𝑒𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘) = log (
𝑃(𝑌𝑖𝑗 = 1|𝑟𝑒𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘)

𝑃(𝑌𝑖𝑗 = 0|𝑟𝑒𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘)
) = 𝜃′𝜕(𝑔(𝑦)) 

Where Yij is the edge between nodes i and j, and 𝜕(𝑔(𝑦)) represents the change in 𝑔(𝑦) when 

Yij changes from 0 to 1. 

ERGMs model cross-sectional network structures, so they predict presence of an edge, but not 

formation and dissolution of edges over time. Temporal exponential random graph models 

(TERGMs) are used to model changes in a network over time. The conditional log-odds of an 

edge forming and persisting (i.e., the inverse of dissolving) over time are represented in 

Equations 3 and 4, respectively. 

Eq. 3.  𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑌𝑖𝑗,𝑡+1 = 1|𝑌𝑖𝑗,𝑡 = 0, 𝑟𝑒𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘)) = 𝜃+′𝜕(𝑔+(𝑦)) 

Eq. 4.  𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑌𝑖𝑗,𝑡+1 = 1|𝑌𝑖𝑗,𝑡 = 1, 𝑟𝑒𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘)) = 𝜃−′𝜕(𝑔−(𝑦)) 
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Where 𝑔+(𝑦) is the vector of network statistics in the formation model, 𝜃+ is the vector of 

parameters in the formation model, 𝑔−(𝑦) is the vector of network statistics in the persistence 

model, and 𝜃− is the vector of parameters in the persistence model. 

Various network sampling designs can be used to collect data for these forms of network 

models. These designs include adaptively sampled networks (such as snowball designs), 

convenience samples, or egocentrically sampled networks. The egocentrically sampled network 

design was used to collect the data used for the network models in this dissertation. With 

egocentric sampling, a population sample is enrolled into a study (nodes) and participants are 

asked about their partners/partnerships (edges).90 It does not involve link or contact tracing as 

partners are not sampled directly. While this sampling method does not provide a network 

census (that is, data on the complete network including all nodes and edges), it can provide 

enough data to infer the complete dynamic network structure.91 

The EpiModel R software package can be used to build network-based transmission 

models.92 EpiModel uses the TERGM framework to estimate and simulate partnership 

processes alongside other modules that simulate infection and demographic processes in order 

to simulate epidemics over dynamic networks.92 The simulation of networks in EpiModel use the 

Markov chain Monte Carlo (MCMC) algorithm functions from the ergm software package.93 

EpiModelHIV is an extension of the EpiModel package designed for simulating HIV and STI 

transmission dynamics among MSM and heterosexual populations.94 It was used to simulate the 

network-based HIV transmission model used in Aims 2 and 3 of this dissertation. 

Network-based models can be used to inform public health policy as they can simulate 

the spread of an infection within a population, estimate epidemic potential, and compare the 

effectiveness of various mitigation strategies. For example, they have been used to forecast 

SARS-CoV-2 infections and the potential impact of various control measures.95,96 Overall, 
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mathematical modeling studies have contributed to the understanding of the dynamics of the 

spread of HIV and the theoretical assessment of intervention strategies.97,98 

Modeling of the COVID-19 Pandemic & HIV. Modeling studies have also advanced our 

understanding of the potential impact of COVID-19-related changes on HIV dynamics. For 

example, a modeling study examining the potential COVID-related effects in sub-Saharan Africa 

found that interruptions to the supply of ART could significantly increase the rate of HIV 

transmission and the rate of HIV-related deaths.99 Another modeling study focused on South 

Africa, Malawi, Zimbabwe, and Uganda, similarly found that interruptions to ART supply could 

substantially increase HIV deaths (and moreover, that a three-month interruption for 40% of 

individuals on ART could cause a similar number of additional deaths as those that might be 

saved from COVID-19 through social distancing).100 In a study focused on six US cities, 

researchers found that COVID-19-related disruptions in HIV services and sexual behaviors may 

increase or decrease HIV incidence (depending on their magnitude), and that a campaign in 

which HIV testing is linked with SARS-CoV-2 testing could substantially reduce HIV incidence.68 

Other modeling studies examining the impact of COVID-19 on HIV have focused on 

MSM populations. In China, one study found that fewer new HIV infections are projected to 

occur among MSM in four Chinese cities during 2020 compared to what would have occurred in 

the absence of the COVID-19 pandemic.101 Similar to other studies,67,99,100 this study also found 

that in China, new HIV infections would be increased most by disruptions to viral suppression, 

compared to disruptions in HIV testing, ART initiation, and condom use.101 A study focused on 

Baltimore MSM found that sexual distancing could reduce new HIV infections but reductions in 

condom use, HIV testing, viral suppression, PrEP initiations, PrEP adherence, and ART 

initiations could increase new HIV infections.69 This study also found that maintaining access to 

ART and adherence support should be the priority to minimize excess HIV-related mortality.69 

These studies complement the findings of Jenness et al. that the impact of COVID-19-related 
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changes on incidence of HIV among Atlanta MSM depends on the relative extent and timing of 

the changes, and that reductions in ART adherence may have more relative impact on HIV 

incidence than reductions in other HIV prevention measures.67 

While these modeling studies have provided insights on the potential impact of the 

COVID-19 pandemic on HIV dynamics in various settings, research gaps remain. First, these 

studies did not use empirical data on sexual distancing and clinical service interruptions to 

estimate the actual impact on HIV incidence in a population, and consequently they did also did 

not distinguish diagnosed cases from actual incident infections. This was completed in Aim 2 of 

this dissertation. This work is important to elucidate both the actual impact of COVID-19 on HIV 

and the limitations of case-based surveillance estimates of HIV diagnoses this context. Some 

modeling studies have examined the impact the lack of HIV prevention services on HIV 

transmission, but did not examine the potential epidemiologic impact of at-home HIV prevention 

approaches at varying coverage and length scenarios (this was completed in Aim 3). This study 

is needed in order to identify the most effective HIV prevention interventions during periods of 

service disruption. 

 

Measuring HIV Incidence in the US 

HIV incidence may be the most useful metric to assess the HIV epidemic because it 

provides information on active HIV transmission in communities. Timely incidence information 

can guide development and implementation of HIV prevention interventions. However, the 

incidence of HIV in the US has never been directly measured.102,103 Incidence has been 

measured in a number of US cohort studies representing select subpopulations,104–108 however, 

these estimates are not representative of the full US population and estimates may be impacted 

by from selection bias or the “adherence effect” (e.g., if enrollment in a study with follow-up 

visits affects HIV incidence rate through recurring exposure to HIV prevention messages).103,109 
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National estimates are useful in order to assess the US HIV epidemic at a population-level.102 

Measuring national HIV incidence would require longitudinal follow-up of all individuals who do 

not have HIV infection with frequent testing; this is extremely difficult to apply on a large scale 

due to the resources it would require.110 Instead, back-calculation models and laboratory assay 

data have been used to estimate HIV incidence in the US.102 

The first estimates of HIV incidence in the US were generated from back-calculation 

models that used AIDS incidence data and data on the estimated median incubation period for 

HIV infection to AIDS diagnosis.111,112 These estimates were unreliable, however, because 

incubation period can differ considerably by individual characteristics (estimates range from less 

than one year to over 20 years).113–115 

The development of laboratory assays prompted new methods for incidence estimation. 

Laboratory assays test for biomarkers that can be used to infer the phase of HIV infection. They 

can differentiate recent from existing HIV infections. Using assay results and information about 

the duration of time spent in a phase of HIV infection, incidence can be calculated.116 This 

method, originally known as serological testing algorithm for recent HIV seroconversion 

(STARHS), relies on the principle that HIV antibody titers evolve in a predictable fashion after 

initial seroconversion.110,117 However, because there is large variation in biomarkers between 

individuals and because assays sometimes misclassify late-stage AIDS as recent infections, 

STARHS estimates are unreliable.117,118 An additional assay approach, known as recent 

infection testing algorithm (RITA), integrates assay results with clinical information (such as CD4 

count) to classify infections as recent or existing.110 However, RITAs are still imperfect because 

there is individual variation in HIV immunological responses. The WHO has noted that 

misclassification of cases as recent when they are long-standing can severely bias incidence 

estimates.110 
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Recent national estimates generated by the CDC use a CD4 cell count data-based 

model to estimate annual HIV incidence.119,120 Specifically, estimates are obtained using the 

following steps:119  

(1.) The date of HIV infection is estimated for each person with a CD4 test result by using 

the CD4 model. The number of persons with a CD4 test result is weighted to account for 

those without a CD4 test result; weighting is based on the year of HIV diagnosis, sex, 

race/ethnicity, transmission category, age at diagnosis, disease classification, and vital 

status at year-end.  

(2.) The distribution of delay (from HIV infection to diagnosis) is used to estimate the annual 

number of HIV infections, which includes diagnosed and undiagnosed infections. 

(3.) The number of persons with undiagnosed HIV infection is estimated by subtracting 

cumulative diagnoses (reported to the National HIV Surveillance System, NHSS) from 

cumulative infections.  

(4.) HIV prevalence, which represents counts of persons with diagnosed or undiagnosed HIV 

infection who were alive at the end of the year, is estimated by adding the number of 

persons with undiagnosed HIV infection to the number of persons living with diagnosed 

HIV infection (reported to NHSS).  

(5.) The percentage of diagnosed (or of undiagnosed) infections is determined by dividing 

the number of persons living with diagnosed (or with undiagnosed) infection by the total 

HIV prevalence for each year. 

Similar to the aforementioned estimation methods, this method is also limited given that 

individual CD4 counts are highly variable even over short time intervals120 and this method 

assumes that population-level access to CD4 testing remains constant (i.e., there is no period of 

HIV service disruption). This is a major limitation to this method; in a period of widespread 

service disruption such as the COVID-19 pandemic,50 this approach may not estimate valid HIV 



30 
 

 

 

incidence because it relies on uninterrupted CD4 testing results and diagnoses. Specifically, the 

CD4 distribution of individuals living with HIV and who are retained in care during a period of 

service disruptions will likely be different than those who were not retained in care.121 This has 

the potential to bias CD4 models and therefore estimates of HIV incidence obtained from these 

models. 

Even if the above methods were methodologically valid and produced reliable estimates 

of HIV incidence, they are limited in that they calculate incidence retroactively and estimates 

can be delayed. If estimates are not current, many of the benefits of measuring incidence 

instead of prevalence, such as targeting prevention efforts, are lost. New methods that can 

produce up-to-date incidence estimates are thus needed. 

Innovative methods incorporating mathematical models may produce timelier incidence 

estimates. In influenza surveillance, for example, models have been used alongside 

surveillance data to estimate real-time and future estimates of flu activity.122,123 Development of 

model-based methods to track HIV incidence may also be useful as a supplement to existing 

HIV surveillance methods. 
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Dissertation Aims 

The purpose of this dissertation is to understand the epidemiologic impact of disruptions to 

sexual risk behavior and HIV prevention and clinical care on HIV incidence during and after the 

COVID-19 pandemic. This dissertation advances knowledge of how US MSM change health 

behaviors during pandemic restrictions, how these changes ultimately affect short- and long-

term HIV transmission, and how innovations in HIV prevention interventions could reduce 

transmission in this context. The findings of this dissertation have implications for both HIV 

surveillance and the implementation of HIV prevention and treatment programs. These findings 

may help support the EHE goals of reducing new HIV infections in the US. The specific aims of 

this dissertation are: 

Aim 1: Describe the magnitude, timing, and variation of sexual distancing and HIV 

service utilization changes among MSM in the US during the COVID-19 pandemic. 

Hypotheses: We expected that sexual distancing and service interruptions will vary in 

magnitude and timing by demographic, clinical, and behavioral factors. We also anticipate that 

HIV service interruptions will outlast sexual distancing. 

Aim 2: Estimate the incidence of HIV among US MSM during the COVID-19 pandemic in 

the presence of competing forces of sexual distancing and clinical service interruptions. 

Hypotheses: We expected that sexual distancing (including reductions in sexual risk behavior) 

and service reductions will alter the incidence of HIV across the pandemic era. We also 

anticipated that changes in HIV service utilization will increase HIV incidence to such an extent 

that EHE goals for 2030 may be unattainable. 

Aim 3: Assessing the epidemiologic impact of home-based HIV prevention interventions 

during the COVID-19 pandemic. 

Hypotheses: We expected that because targeted home-based HIV prevention interventions may 
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curtail the impact of COVID-19-related service interruptions, increased coverage, length, and 

persistence of key HIV prevention interventions will result in reductions in HIV transmission, and 

thus lower HIV morbidity and mortality. 
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Data Sources 

The data for this dissertation came from multiple sources: (1.) the American Men’s 

Internet Survey (AMIS) COVID-19 impact survey, (2.) the Love and Sex in the Time of COVID-

19 survey, (3.) the ARTnet study, and (4.) published literature and publicly available data. The 

AMIS COVID-19 impact survey collected data on sexual distancing and HIV service 

utilization/care engagement during the COVID-19 pandemic experienced by US MSM at three 

time points: April, July, and September–December 2020. The Love and Sex in the Time of 

COVID-19 survey also collected data from US MSM on sexual distancing and HIV service 

utilization/care engagement during the COVID-19 pandemic, but at two time points: April/May 

2020 and November 2020–January 2021. The ARTnet study collected data from US MSM 

during 2017–2019 on HIV-related risk behaviors, testing, and use of prevention services. It 

implemented a population-based egocentric network study design that sampled individuals and 

collected data on the number, attributes, and timing of their sexual partnerships. Data from the 

AMIS COVID-19 impact survey and the Love and Sex in the Time of COVID-19 survey was 

used in Aim 1 to examine the magnitude, timing, and variation of sexual distancing and clinical 

service disruptions at various time points during the COVID-19 pandemic. ARTnet data will 

provide the foundation of the network-based HIV transmission models used in Aims 2 and 3. 

The results obtained from Aim 1, published literature, and publicly available data were also used 

to parameterize the models used in Aims 2 and 3. 

 

AMIS COVID-19 Impact Survey 

One of the two data sources that was used to assess sexual distancing and HIV service 

utilization changes among MSM in the US during the COVID-19 pandemic is the AMIS COVID-

19 impact survey. AMIS and the AMIS COVID-19 impact survey were led by Dr. Travis Sanchez 

(dissertation committee member). This survey collected data from a cohort of US MSM at three 
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time points during the COVID-19 pandemic: April, July, and September–December 2020. 

Participants were recruited via participation in the August–December 2019 annual AMIS study; 

COVID-19 impact survey responses can be linked to 2019 AMIS responses. AMIS study 

participants were recruited through convenience sampling from a variety of websites and 

through social media applications using banner ads and email blasts to members. AMIS targets 

hard-to-reach subpopulations of MSM (based on age, race, and geographic areas). Participants 

were eligible to participate in the AMIS study if they were 15 years or older, male sex at birth, 

resided in the US, and reported oral or anal sex with a man at least once at any time in the past. 

Invited participants for the COVID-19 impact survey were those who participated in the 2019 

AMIS study and provided their email address for future study invitations. These individuals were 

sent a link to a special COVID-19 impact survey screener where AMIS eligibility was 

reassessed. Those who still met AMIS eligibility and consented to participation comprised the 

COVID-19 impact survey participants.  

The goal of the COVID-19 impact survey was to measure COVID-19 related impacts on 

several areas: general wellbeing, sexual and substance use behavior, HIV and STI prevention, 

and HIV treatment. The survey collected data on reported changes in the above categories as 

well as standard demographic information, self-reported HIV status, and COVID-19 mitigation 

measures in an individual’s local area (additional information about the study’s measures of 

interest that was used in this dissertation is included in Section D.1). Total enrollment in the first 

COVID-19 study was 1,051 men, but enrollment decreased over the three survey cycles (Table 

1). Participants ranged in age and US region. Approximately 70% of the study sample was non-

Hispanic white, and approximately 90% were not known to be living with HIV. 

The September–December COVID-19 impact survey took place within the 2020 annual 

AMIS study. Study participants were recruited in the same manner as the 2019 annual study, as 

described above. The analyses in this dissertation will focus on the men from the September–
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December cycle that also participated in the April and/or July survey (as described in Section 

D.1). However, an additional 6,549 men completed the COVID-19 impact survey in September–

December and their responses was examined and compared. 

Table 1.1. AMIS COVID Impact Survey Sample Characteristics 

  April 2020 July 2020 September–December 2020 

 n (%) n (%) n (%) 

Total Sample 1,051 572 373 

Race/Ethnicity    

Non-Hispanic Black 89 (8.5) 35 (6.1) 24 (6.5) 

Hispanic or Latino 146 (13.9) 74 (12.9) 40 (10.8) 

Non-Hispanic White 740 (70.4) 425 (74.3) 278 (75.3) 

Other or multiple races 62 (6.2) 33 (5.8) 27 (7.3) 

Age    

15–24 214 (20.4) 83 (14.5) 49 (13.1) 

25–29 179 (17.0) 89 (15.6) 57 (15.3) 

30–39 210 (20.0) 118 (20.6) 94 (25.2) 

≥40 448 (42.6) 282 (49.3) 173 (46.4) 

HIV Status    

Positive 122 (11.6) 59 (10.3) 32 (8.6) 

Negative 809 (77.0) 466 (81.5) 327 (87.7) 

Unknown 120 (11.4) 47 (8.2) 14 (3.8) 

Region    

Northeast 187 (17.8) 98 (17.1) 68 (18.2) 

Midwest 194 (18.5) 107 (18.7) 65 (17.4) 

South 427 (40.6) 223 (39) 154 (41.3) 

West 241 (22.9) 143 (25) 85 (22.8) 

US Territories 2 (0.2) 1 (0.2) 1 (0.3) 

 

Love and Sex in the Time of COVID-19 Survey 

The second data source that was used to assess and parameterize sexual distancing 

and HIV service utilization changes among MSM in the US during the COVID-19 pandemic is 

the Love and Sex in the Time of COVID-19 survey. This survey collected data from US MSM at 

two time points during the COVID-19 pandemic: April/May 2020 and November 2020–January 

2021. Participants were recruited through paid banner advertisements featured on the social 

networking platforms Facebook and Instagram, and on the Grindr app. Eligibility criteria 
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included being over the age of 18, current residency in the US and its dependent areas, 

assigned male sex at birth and currently identifying as a cis man, and reporting any type of sex 

in the past 12 months. The Love and Sex in the Time of COVID-19 survey collected data on the 

impact of the COVID-19 pandemic on sexual behavior, HIV prevention behaviors, substance 

use, and economic and structural instability (e.g., unemployment, housing instability) (additional 

information about the study’s measures of interest that was used in this dissertation is included 

in Section D.1). 

Approximately 700 individuals completed the survey (Table 2). Participants ranged in 

age and US region. Approximately 75% of the study sample was non-Hispanic white, and 

approximately 90% were not known to be living with HIV. 

Table 1.2. Love and Sex in the Time of COVID-19 Survey Sample Characteristics 

  April/May 2020 November 2020–January 2021 

 n (%) n (%) 

Total Sample 696 279 

Race/Ethnicity   

Black 35 (5.0) 11 (3.9) 

White 518 (74.4) 226 (81.0) 

Other 143 (20.5) 42 (15.1) 

Age   

18–24 140 (20.1) 40 (14.3) 

25–34 317 (45.5) 129 (46.2) 

35–44 171 (24.6) 78 (28.0) 

≥45 68 (9.8) 32 (11.5) 

HIV Status   

Positive 56 (8.0) 23 (8.2) 

Negative 550 (79.0) 238 (85.3) 

Unknown 90 (12.9) 18 (6.5) 

Region   

Northeast 117 (16.8) 45 (16.1) 

Midwest 194 (27.9) 84 (30.1) 

South 195 (28.0) 64 (22.9) 

West 190 (27.3) 85 (30.5) 

Puerto Rico 0 (0.0) 1 (0.4) 
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ARTnet Study 

Data from the ARTnet study was used to create the network-based HIV transmission 

models used in Aims 2 and 3. ARTnet was led by Dr. Samuel Jenness (dissertation chair). 

ARTnet is a cross-sectional web-based study of US MSM conducted between 2017 and 2019. It 

collected data in two waves: during July 2017–February 2018 and September 2018–January 

2019. Participants were recruited through the annual AMIS study (described in Section C.1).124 

ARTnet eligibility criteria included male sex at birth, current male cisgender identity, lifetime 

history of sexual activity with another man, and age between 15 and 65 years. 

ARTnet collected data on demographic and clinical information (including HIV status), 

sexual and HIV prevention behaviors, and egocentric network structures. It had an egocentric 

network sampling design (described in Section B.3). Participants were asked summary 

questions about their overall number of partnerships within three types in the past year: main (a 

“boyfriend, significant other, or life partner”), casual (someone they have had sex with more than 

once, but not a main partner), and one-time. Persistent partnerships include both main and 

casual partnerships. They were then asked detailed partner-specific questions for up to their 

most recent five partners. These questions included attributes of the partner (e.g., 

demographics) and about the partnership itself (e.g., start and end dates, frequency of sexual 

activity). 

ARTnet enrolled 4,904 men and collected data on 16,198 partnerships (Table 3, Table 

4). Participants ranged in age and US region. Approximately 72% of the study sample was non-

Hispanic white and approximately 90% were not known to be living with HIV. 

Table 1.3. ARTnet Study Sample Characteristics 

  n (%) 

Total Sample 4,904 

Race/Ethnicity  

Non-Hispanic Black 266 (5.4) 
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Hispanic 676 (13.8) 

Non-Hispanic White 3,523 (71.8) 

Non-Hispanic Other 439 (9.0) 

Age  

15–24 1324 (27.0) 

25–34 1,268 (25.9) 

35–44 694 (14.2) 

45–54 833 (17.0) 

55–65 785 (16.0) 

HIV Status  

Positive 428 (8.7) 

Negative 3,726 (76.0) 

Unknown 750 (15.3) 

Region  

Northeast 882 (18) 

Midwest 994 (20.3) 

South 1,782 (36.3) 

West 1,246 (25.4) 

 

 

 

Table 1.4. ARTnet Study Partnership Characteristics 

  n (%) 

Total Sexual Partnerships 16,198 (100.0) 

Main Partners 2,618 (16.2) 

Casual Partners 5,978 (36.9) 

One-time Partnerships 7,602 (46.9) 

Race/Ethnicity of Partners 

Black-Black 369 (2.4) 

Black-Hispanic 308 (2.0) 

Black-Other 181 (1.2) 

Black-White 1,341 (8.8) 

Hispanic-Hispanic 796 (5.2) 

Hispanic-Other 453 (3.0) 

Hispanic-White 2,792 (18.3) 

Other-Other 233 (1.5) 

Other-White 1,684 (11.0) 

White-White 7,094 (46.5) 

HIV Status of Partners 

Negative-Negative 8,752 (54.1) 

Negative-Positive 1,013 (6.3) 

Negative-Unknown 4,632 (28.6) 

Positive-Positive 367 (2.3) 

Positive-Unknown 551 (3.4) 

Unknown-Unknown 863 (5.3) 

Age (Both Partners) 

15–24 2,289 (14.7) 

25–34 2,116 (13.6) 

35–44 685 (4.4) 
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45–54 747 (4.8) 

55–65 489 (3.1) 

Different Age Groups 9,229 (59.3) 

 

External Sources 

Additional Sources for Model Parameterization. Models used in Aims 2 and 3 were 

additionally parameterized by estimates from external literature and publicly available data 

(Table 5). Parameters included population-level information about demography, HIV clinical 

epidemiology, HIV intrahost epidemiology, and HIV transmission probability. Reported estimates 

were obtained in the pre-COVID era. Where applicable, parameters were updated during the 

COVID-19 pandemic as indicated by Aim 1 results (e.g., clinical parameters such as HIV 

testing, PrEP discontinuation, etc.). We assumed that certain parameters, in particular those 

related to HIV intrahost epidemiology and HIV transmission probability, remained the same 

throughout the COVID-19 pandemic. 

 

Table 1.5. Key External Data Sources for Model Parameterization 

Parameter Potential Source Aim 

Demography    

Race/ethnicity distribution (US) US Census Bureau9 2 

Race/ethnicity distribution (Atlanta) US Census Bureau9 3 

Age distribution (US) US Census Bureau9 2 

Age distribution (Atlanta) US Census Bureau9 3 

All-cause mortality National Vital Statistics125 2, 3 
Proportion households headed by a male who lived 

with a male partner ACS126 2 

Urbanicity distribution NHANES127 2 
HIV Prevention & Clinical Epidemiology (pre-COVID 
Era)   

HIV screening ARTnet91 2, 3 

ART initiation Rosenberg8 2, 3 

ART adherence and viral suppression Rosenberg8 2, 3 

Disease progression after ART initiation Chu128 2, 3 

PrEP coverage (US) ARTnet91, NHBS26, AIDSVu129 2 

PrEP coverage (Atlanta) ARTnet91, NHBS26, AIDSVu129 3 

PrEP adherence Liu130 2, 3 

PrEP discontinuation Chan131 2, 3 
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ART initiation, adherence, viral suppression in Georgia GA DPH132 3 

HIV Intrahost Epidemiology   

Time to peak viremia Little133 2, 3 

Viral load at peak viremia Little133 2, 3 

Time from peak viremia to viral set point Little133, Leynaert134 2, 3 

Level of set point Little133 2, 3 

Duration of chronic stage infection Buchbinder135 2, 3 

Duration of AIDS Buchbinder135 2, 3 

HIV Transmission Probability   

By sexual role Vittinghoff136 2, 3 

By viral suppression status of HIV Wilson137, Supervie138 2, 3 

By acute stage Leynaert134 2, 3 

By condom use Varghese139 2, 3 

By circumcision status Gray140 2, 3 

By PrEP adherence Grant141 2, 3 

 

Reported HIV Diagnoses. Case-based surveillance estimates of HIV diagnoses were used to 

compare estimated incidence to reported diagnoses to examine the pattern between reported 

cases and actual HIV transmission. 

Multiple jurisdictions have noted less overall HIV diagnoses than expected during 2020. 

For example, in North Carolina, there were 1,085 diagnoses in 2020, down from 1,379 in 2019 

and 1,205 in 2018.142 For jurisdictions releasing quarterly data, the reductions in HIV diagnoses 

(relative to previous quarters) appear to be more pronounced in quarter 2 or 3 (i.e., April–June 

or July–September 2020).142–144 Other jurisdictions have noticed a similar drop in HIV diagnoses 

in early 2020: in New York City, there were 56 HIV diagnoses during March 23–June 7, 2019 

but only 23 during March 23–June 7, 2020 (a 59% decrease).145 Similar trends have also been 

observed in reported STI diagnoses by local jurisdictions.145,146 

Although local data were available, we used national HIV diagnoses data of HIV 

infections that are attributed to male-to-male sexual contact transmission from the National HIV 

Surveillance System (NHSS).147 These data were available quarterly from January 2019–

December 2021. Although NHSS represents HIV diagnoses, whereas our models estimated 
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incidence, we used these data to understand how closely, if at all, model-based incidence may 

line up with real-world diagnoses. 
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Chapter 2. The Magnitude, Timing, and Variation of Sexual Distancing and 

HIV Service Utilization Changes among MSM in the US During the COVID-

19 Pandemic 

 

ABSTRACT 

Early in the COVID-19 pandemic, disruptions to sexual health services and changes to sexual 

behavior due to the first COVID-19 lockdowns were common among US gay, bisexual, and 

other men who have sex with men (GBMSM). Less is known about the persistence of these 

changes after this initial lockdown period. These changes have long-term implications for HIV 

prevention for current and future pandemic periods. This study collected information on COVID-

related impacts on sexual behavior and HIV-related health service disruptions from a cohort of 

US GBMSM at three time points during the COVID-19 pandemic. We observed that COVID-

related disruptions to sexual behavior continued from early lockdown periods through December 

2020. Though early interruptions to PrEP access resolved in later 2020 and interruptions to ART 

adherence were minimal, extended disruptions were observed in HIV testing, STI testing, HIV 

care clinical visits, and HIV viral load testing. Although sexual behavior did not return to pre-

pandemic levels in late 2020, the reduced access to HIV prevention, testing, and treatment 

services during this period could result in an overall increased HIV transmission rate, with long-

term impacts to the trajectory of the US HIV epidemic. Additional resources and programs are 

needed to address challenges created by the COVID-19 pandemic, as well as prepare for future 

potential pandemics and other disruptive events. 

 

INTRODUCTION 
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International restrictions to social contact and mobility (“lockdowns”), spurred by the spread of 

SARS-CoV-2, have caused social and economic disruptions since March 2020. In the United 

States (US), reports from early 2020 have identified that COVID-19 has prompted major 

behavioral changes related to the prevention and control of HIV 44,45,49,50,148,149. These changes 

include reductions in sexual activity (“sexual distancing”) as well as disruptions to patient access 

to HIV prevention, screening, and clinical care services 44,45,49,50,148,149. 

Present-day HIV prevention efforts for gay, bisexual, and other men who have sex with 

men (GBMSM) focus on reducing HIV acquisition and transmission through promoting safer 

sexual behaviors, increasing the availability and use of preexposure prophylaxis (PrEP), and 

promoting the consistent and correct use of antiretroviral therapy (ART) so persons living with 

diagnosed HIV can maintain a suppressed HIV viral load 16,24,150. The latter two strategies 

require ongoing access to clinical services 24,32; HIV transmission remains high partly due to 

gaps in access to these tools 37.  

COVID-related disruptions have the potential to impact the trajectory of the US HIV 

epidemic. For example, clinical interruptions that lead to decreased HIV and sexually 

transmitted infection (STI) testing, PrEP use, STI treatment, and HIV care may increase HIV 

incidence – decreasing the proportions of GBMSM who know their status, have access to PrEP, 

or are virally suppressed. Conversely, reductions in sexual risk behaviors may decrease the 

spread of HIV. The impact of COVID-related disruptions firstly depends on the demographic 

distribution of disruptions. Like HIV burden, disruptions have not been uniform across the US 

3,151. For example, Black individuals experience a higher risk of HIV and may also experience 

more COVID-related disruptions in HIV prevention and care (due to disproportionate impacts of 

COVID-19 on Black communities in addition to existent decreased access to HIV prevention 

and care programs) 3,151–153. In addition to demographic variations, the impact of pandemic-

related disruptions on the HIV epidemic depends on the relative extent and timing of changes in 
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sexual behavior and clinical interruptions. A 2021 modeling study assessing the impact of the 

COVID pandemic on HIV incidence identified that if sexual behavior rebounded while clinical 

interruptions persisted, excess HIV infections would be expected because clinical interruptions 

outweighed transmission-reducing impacts of sexual distancing 67. 

Short-term COVID-related changes can alter the US HIV epidemic in the long term 

because HIV incidence and prevalence are affected by changes in HIV risk behavior and HIV 

care engagement. It is necessary to understand the demographic distribution, magnitude, and 

timing of COVID-related changes to sexual behavior and disruptions to HIV-related health 

services in order to predict their long-term impact on HIV dynamics. Early data have 

documented changes in early 2020 44,45,50,148,149, but the persistence of these changes remains 

unclear. It is possible that with increased social mobility following easing of lockdown restrictions 

in the later months of 2020 (the “post-lockdown” period) 154, sexual behavior and access to 

clinical services may have returned to pre-pandemic levels. Data on sexual behavior and clinical 

service disruptions in the post-lockdown period are needed to inform how HIV transmission may 

have changed at later stages of the COVID-19 pandemic. 

In this study, we present the prevalence and trends of COVID-related sexual distancing 

and clinical service disruptions among a cohort of US GBMSM through December 2020. 

Outcomes include information on how the COVID-19 pandemic has impacted sexual behavior, 

HIV testing, PrEP use, HIV clinical care, and ART adherence during the first year of the 

pandemic. Characterizing the impact of the COVID-19 pandemic on HIV-related behaviors of 

US GBMSM may help guide HIV prevention programs in the post-lockdown era, for example 

through highlighting the need for targeted HIV testing, targeted PrEP programs, and home-

based HIV care approaches. Further, understanding the impact of the COVID-19 pandemic on 

GBMSM HIV-related behavior can provide insight on how behavior may alter in future 

pandemics, and thus aid in pandemic preparedness. 
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METHODS 

Participants. This study used data from the American Men’s Internet Survey (AMIS) COVID-19 

impact survey, collected from a cohort of US GBMSM at three time points during the COVID-19 

pandemic: April 2020, July 2020, and September–December 2020. Participants were recruited 

via participation in the August–December 2019 annual AMIS study 155; COVID-19 impact survey 

responses were linked to 2019 AMIS responses. AMIS study participants were recruited through 

convenience sampling from websites and through social media applications using banner ads 

and email messages to members. AMIS targets subpopulations of GBMSM that are 

underserved (with respect to age, race, and geographic area). Participants were eligible to 

participate in the AMIS study if they were 15 years or older (participants 15–17 years had a 

waiver of parental permission), male sex at birth, resided in the US (including US territories), 

and reported oral or anal sex with a man at least once. For the April 2020 COVID-19 impact 

survey, individuals from the 2019 AMIS study were sent a link to a special COVID-19 impact 

survey screener where AMIS eligibility was reassessed. Those who were still eligible and 

consented to participation (provided online written consent) comprised the COVID-19 impact 

survey participants. The analyses in this study include only on the men that completed the April 

2020 survey and at least one of the follow-up surveys (either the July and/or September–

December follow-up surveys) (Figure 2.2). The study was conducted in compliance with federal 

regulations governing protection of human subjects and was reviewed and approved by Emory 

Univeristy’s institutional review board. 

Measures. The goal of the COVID-19 impact survey was to measure COVID-19 related impacts 

on several areas: general wellbeing, sexual and substance use behavior, HIV and STI 

prevention, and HIV treatment. The survey collected data on reported changes in the above 

categories as well as standard demographic information, self-reported HIV status, and COVID-
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19 mitigation measures in an individual’s local area. This analysis focuses on outcomes related 

to sexual behavior, HIV and STI prevention, and HIV treatment in order to assess the impact 

that the COVID pandemic had on HIV-related behaviors. At each time point, participants were 

asked if the COVID-19 pandemic has impacted various behaviors/experiences related to sexual 

health and substance use. Specifically, participants were asked, “compared to the time before 

COVID-19/Coronavirus, please tell us if COVID-19 and the plans used to manage COVID-19 

have impacted these things related to related to sexual health and substance use. Please tell us 

only if it has changed because of COVID-19.” These behaviors/items included number of sexual 

partners, opportunities to have sex, access to STI testing or treatment, use of condoms, getting 

HIV tested, access to HIV medications, taking HIV medications every day as prescribed, getting 

HIV care clinical visits, and getting viral loads or other labs done. Participants were asked to 

select if the behavior/item “has decreased/less because of COVID-19, has not changed or 

changed for reasons other than COVID-19, or has increased/more because of COVID-19.” 

Participants also were asked a series of questions related to service interruptions: “Have you 

had trouble getting [a given service] because of COVID-19 or the public health efforts to 

manage it?” Clinical services included getting an HIV test, getting PrEP prescription from your 

doctor, and getting your PrEP prescription filled at the pharmacy.  

Analyses. The prevalence of COVID-19 related impacts were calculated overall and stratified by 

age category and race/ethnicity category. In order to represent the full US GBMSM population, 

demographic standardization using 2019 US Census age and race/ethnicity distribution weights 

9 was used to obtain standardized estimates with 95% confidence intervals of sexual distancing 

and HIV clinical care interruptions for all US GBMSM. Chi-squared tests or Fisher’s exact tests, 

where applicable, were used to determine if differences by race/ethnicity were statistically 

significant (with a p-value of 0.05). To examine the impacts of attrition on the study results, a 

sensitivity analysis that examined the prevalence of COVID-19 related impacts only on the men 

who completed each of the three study cycles was completed. 
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RESULTS 

Total enrollment in the first COVID-19 impact survey was 1,051 men, but enrollment decreased 

over the three survey cycles (Table 1). Participants ranged in age from 15–82 years, with a 

median age of 35 years (SD=15.7 years). Participants were from across the US, with the most 

represented regions being the South (n=427, 40.6%). Approximately 70% of participants 

(n=740) were non-Hispanic White in the first cycle, but this increased to 75% (n=278) by the 

third cycle. Approximately 10% (n=122) of participants self-reported as HIV-positive. 

Over half of participants (n=542, 51.5%) reported a decrease in the number of sexual 

partners in April 2020, relative to sexual partners at any time before the pandemic (Table 2.2). 

This continues through 2020. Approximately 5% of participants (n=57, 5.5%) reported a 

decrease in condom use because of COVID-19 through December 2020. Reported decreases 

in the number of sexual partners did not vary by race/ethnicity at any study cycle (Figure 2.1, 

Supplemental Table 2.1), although change in use of condoms did vary (p=0.02, 0.01, 0.02 for 

April, July, September–December, respectively): at each study cycle, non-Hispanic Black 

participants reported both more increases in condom use (n=7, 7.8%; n=3, 9.1%; and n=3, 

14.3%; respectively) and decreases in condom use (n=3, 3.3%; n=2, 6.1%; and n=3, 14.3%; 

respectively) (e.g., reported the least amount of no change in condom use) relative to other 

race/ethnicity groups. 

Among men self-reporting as HIV-negative or with unknown HIV status, about 15% of 

participants reported a decrease in HIV testing in both early and late 2020 (n=142, n=47, 

respectively) (Table 2.2). In April 2020, approximately 9% of men (n=18) currently on PrEP 

reported trouble getting PrEP prescription from their doctor because of the COVID-19 

pandemic; by the end of the year, 7% of participants (n=6) reported trouble getting a PrEP 

prescription. Although point estimates of the proportion of Hispanic men and non-Hispanic Black 
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men reporting a decrease in HIV testing were higher relative to non-Hispanic White men in the 

first two study cycles (n=25, 19.8%; n=8, 16.3%; and n=94, 14.7%; respectively in April 2020; 

n=10, 16.4%; n=3, 15.8%; and n=44, 11.9% in July 2020), differences were not statistically 

significantly different by race/ethnicity at any study cycle (p=0.12, 0.67, and 0.10, respectively). 

Differences in trouble getting an HIV test or getting a PrEP prescription also were not 

statistically significantly different by race/ethnicity at any study cycle. 

Among men self-reporting as living with HIV, 28% of men (n=33) reported a decrease in 

getting HIV care clinical visits because of the COVID-19 pandemic in April 2020, decreasing to 

19% (n=6) by the end of the year (Table 2.2). Few participants reported disruptions in their 

access to antiretroviral therapy: only 5% (n=6) of participants living with HIV reported a 

decrease in taking HIV medication every day as prescribed in April 2020, although this 

increased to 6.7% (n=2) in late 2020. Although participants reported decreases in access to HIV 

medication, taking HIV medication every day as prescribed, getting HIV care clinical visits, 

getting viral loads or other labs are higher among minority race/ethnic groups relative to non-

Hispanic White men, differences were not statistically significantly different by race/ethnicity at 

any study cycle. 

Standardization by Census-derived age and race/ethnicity weights did not greatly impact 

our results (Table 2.3). For example, the percent of men who reported a decrease in sexual 

partners in April 2020 changed from a crude percent of 52% to a standardized percent of 54%. 

However, the 95% confidence intervals for some standardized estimates are wide due to limited 

sample size within strata. 

We observed similar results when restricting the study participants to only those who 

participated in all three study cycles (n=265) (Table 2.4). Overall, approximately 55% (n=143) of 

these participants reported a decrease in the number of sexual partners through the study 

period. Among these HIV-negative participants, approximately 14% reported a decrease in HIV 
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testing in both early and late 2020 (n=34 and n=39, respectively), and 9% (n=5) of these 

participants on PrEP reported trouble getting a PrEP prescription in late 2020. Among these 

HIV-positive participants, 32% of men (n=7) reported a decrease in getting HIV care clinical 

visits because of the COVID-19 pandemic in April 2020, decreasing to 10% (n=2) by the end of 

the year. Only one participant (5%) that participated in all three study cycles reported a 

disruption in antiretroviral therapy adherence, which occurred in April 2020 only. 

 

DISCUSSION 

In this study, we observed that COVID-related disruptions to HIV prevention and treatment 

services and changes in sexual behavior continued from early lockdown periods through 

December 2020. Extended disruptions were observed in HIV testing, STI testing, HIV care 

clinical visits, and HIV viral load testing, with only small improvements over time. Although 

sexual behaviors including number of sexual partners and opportunities to have sex remained 

below pre-pandemic levels in later 2020 for many GBMSM, reduced access to HIV prevention, 

testing, and treatment services that lasted through the year created additional challenges for the 

control of HIV, which could result in an overall increased HIV transmission rate. 

 Consistent with other studies and as previously reported,44,148 we observed that 

measures of sexual behavior decreased in early 2020. In our study, GBMSM reported both a 

decrease in sexual partners and opportunities to have sex in April–May 2020. This aligns with 

the findings of Pampati et al, who observed that among a cohort of PrEP-using MSM in the 

southern US, MSM had a decrease in number of sexual partners during February–April 2020 44. 

A study by McKay et al of US gay and bisexual men also noted a decrease in sexual partners 

during April–May 2020 148. Our results expand upon these early findings in finding that changes 

in sexual behavior persisted through the end of the year: most participants reported both a 
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decrease in number of sexual partners and opportunities to have sex in both July 2020 and 

September–December 2020.  

Our results additionally complement the early reports that document decreased 

utilization of/access to HIV prevention and treatment services in the initial stages of the COVID-

19 pandemic 49,149; our study observed that US GBMSM experienced HIV prevention and 

service disruptions because of the pandemic. For GBMSM not living with HIV, initial disruptions 

to HIV testing and PrEP prescriptions continued in late 2020 for 15% and 7% of participants, 

respectively. For GBMSM living with HIV, care access was reduced throughout 2020; in late 

2020, approximately 19% of participants reported a decrease in HIV medical care visits, down 

from 28% in April 2020. As others have reported, we observed that few participants reported 

disruptions in their access to antiretroviral therapy in early 2020, and this continued through the 

year. Although interruptions to HIV clinical care were not widespread and decreased by the end 

of 2020, these findings highlight the opportunity for new and targeted HIV clinical care 

interventions, such as home-based HIV care initiation and retention approaches, including 

telehealth services and multi-month ART prescriptions. 

 We observed that most sexual behavior and clinical service disruption measures did not 

vary significantly by race/ethnicity. Due to the vast racial/ethnic inequities in HIV infection and 

HIV prevention in the US that pre-date the COVID pandemic, we would expect HIV transmission 

to increase most dramatically as a result of the COVID pandemic in a scenario in which clinical 

service disruptions are more experienced by Black and Hispanic/Latino GBMSM. Historically 

and in present day, Black and Hispanic/Latino GBMSM have been the most disproportionately 

affected populations in the US 3. This is a result of social and structural factors, including but not 

limited to structural racism, lack of access to quality health care, provider bias, discrimination, 

and poverty, which exist in the environments in which sexual risk behaviors occur 12,156. In our 

study, we observed that non-Hispanic White men reported less trouble accessing HIV testing, 
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PrEP, and HIV clinical care services, but these differences were not statistically significant for 

any measure at any study cycle. However, small population-level changes in health care access 

and/or behavior might still affect the HIV epidemic since HIV transmission in a community can 

be driven by a small number of individuals,157 so even non-significant differences are of note. 

Targeted HIV prevention efforts among marginalized communities remain essential due to the 

historically higher burden of HIV experienced by Black and Hispanic GBMSM populations. 

 Data that assess the temporal changes of sexual risk behaviors and HIV prevention and 

treatment service utilization are necessary to determine the impact of the COVID-19 pandemic 

on HIV transmission. The impact of decreased HIV screening, for example, could be offset by 

concurrent reductions in sexual risk behavior, but the timing and demographic distribution of 

changes are important. If service interruptions occur in populations with the highest burden of 

HIV, for example, there may be greater effects on HIV transmission. Modeling studies that use 

demographically stratified empirical reports of sexual distancing and HIV clinical service 

disruptions, such as the data presented in our study, can help examine how pandemic 

disruptions will impact the trajectory of the US HIV epidemic.  

This analysis has several limitations. First, study data were obtained from convenience 

sampling and may not generalizable to all US GBMSM even after demographic standardization. 

Study participants were more likely to be of non-Hispanic White race/ethnicity, of higher 

socioeconomic status, and more likely to be insured than the general US GBMSM population. 

This was particularly true in the later cycles of this study because there was significant loss to 

follow-up. Although our sensitivity analysis findings demonstrate that attrition did not affect the 

overall results (the prevalence of sexual behavior and clinical services disruptions experienced 

by the subset of men who participated in all three study cycles were similar to those 

experienced by the full study population), participants in the third study cycle were more likely to 

be non-Hispanic white, older, and not known to be living with HIV. Lack of generalizability may 
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be particularly important for our race/ethnicity findings, given that minority race/ethnicity 

participants may be more likely to be insured and of higher SES than minority race/ethnicity 

GBMSM populations, skewing our results to appear to have less racial/ethnic disparities.  

Further, the surveys only involved self-report of COVID-related impacts. Participants 

might have misreported the impacts that the COVID-19 pandemic have had on their sexual 

behaviors or service utilization/access or misreported the timing of changes. For example, 

although all participants in this study participated at each study cycle, participants may have 

been referring to any time during the COVID-19 pandemic when they complete the impact 

questions (e.g., referring to a decrease in partners during August when they complete the 

survey in September). However, this concern is somewhat mitigated in seeing that clear 

temporal decreases in some outcomes are observed (e.g., trouble getting an HIV test, trouble in 

getting a PrEP prescription). Further, COVID-19 impact survey measures are primarily 

categorical (e.g., behavior increased, decreased, no change); continuous measures such as the 

exact number of sexual partners would be useful to identify more specific changes in sexual 

behavior. For example, a fraction of participants may have reduced their partners by only one 

partner, whereas others may have reduced their partners by several partners. The impact of 

these reductions on population-level transmission dynamics are difficult to predict without data 

on these nuances. Lastly, our findings have limited temporal generalizability, given the ongoing 

changing nature of the COVID-19 pandemic and local restrictions and social behavior patterns. 

A major strength of this study is its longitudinal nature, but even within one study cycle there 

could be short-term temporal fluctuations. 

 This study is the first to examine the impact of the COVID-19 pandemic on both sexual 

behavior and clinical services disruptions among US GBMSM through December 2020. 

Although our findings demonstrated that GBMSM had continued reductions in sexual behavior 

in late 2020, that access to PrEP was returned to normal in late 2020, interruptions to ART 
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adherence were minimal, and interruptions did not significantly vary by race/ethnicity, our 

findings highlight the gaps in HIV prevention and treatment that have worsened in the pandemic 

era. In addition to elucidating behavioral patterns that may occur during future pandemics (and 

thus aiding in pandemic preparedness), our findings highlight that additional resources and 

programs will be needed to address existing disparities in HIV prevention and treatment (such 

as those increasing uptake of PrEP among indicated GBMSM), in addition to solving the new 

challenges created by the COVID-19 pandemic (such as decreases in HIV testing). 

 

  



TABLES 

Table 2.1. Characteristics of GBMSM Who Participated in All Three Cycles of the 2020 AMIS COVID-19 Impact Survey, United States, April–
December 2020 

  

April 2020 

n (%) 

July 2020 

n (%) 

September–
December 2020 

n (%) 

Total Sample 1,051 572 373 

Race/Ethnicity      

Non-Hispanic Black 89 (8.5) 36 (6.3) 24 (6.5) 

Non-Hispanic White 740 (70.4) 428 (75.0) 278 (75.3) 

Hispanic or Latino 146 (13.9) 74 (13.0) 42 (11.4) 

Other or multiple races 65 (6.2) 33 (5.8) 25 (6.8) 

Age (years)      

15–24 214 (20.4) 83 (14.5) 49 (13.1) 

25–29 179 (17.0) 89 (15.6) 57 (15.3) 

30–39 210 (20.0) 118 (20.6) 94 (25.2) 

≥40 448 (42.6) 282 (49.3) 173 (46.4) 

HIV Status      

Positive 122 (11.6) 59 (10.3) 32 (8.6) 

Negative 809 (77.0) 466 (81.5) 327 (87.7) 

Unknown 120 (11.4) 47 (8.2) 14 (3.8) 

Region      

Northeast 187 (17.8) 98 (17.1) 68 (18.2) 

Midwest 194 (18.5) 107 (18.7) 65 (17.4) 

South 427 (40.6) 223 (39) 154 (41.3) 

West 241 (22.9) 143 (25) 85 (22.8) 

US Territories 2 (0.2) 1 (0.2) 1 (0.3) 
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Table 2.2. Frequency of Selected AMIS COVID-19 Impact Survey Outcomes, United States, April–December 2020 

   Not Changed 

n (%) 

Decreased 

n (%) 

Increased 

n (%) 

Number of sexual 
partners 

April 501 (47.6) 542 (51.5) 9 (0.9) 

July 219 (40) 320 (58.4) 9 (1.6) 

Sept–Dec 158 (44.8) 189 (53.5) 6 (1.7) 

Opportunities to have 
sex 

April 283 (27.1) 718 (68.6) 45 (4.3) 

July 151 (27.6) 381 (69.5) 16 (2.9) 

Sept–Dec 104 (29.8) 237 (67.9) 8 (2.3) 

Use of condoms 

April 980 (93.8) 57 (5.5) 8 (0.8) 

July 515 (94.3) 23 (4.2) 8 (1.5) 

Sept–Dec 322 (92.3) 19 (5.4) 8 (2.3) 

Getting HIV testeda 

April 737 (83.4) 142 (16.1) 5 (0.6) 

July 415 (86.8) 62 (13.0) 1 (0.2) 

Sept–Dec 261 (84.5) 47 (15.2) 1 (0.3) 

Access to STI testing 
or treatment 

April 775 (74.2) 267 (25.6) 3 (0.3) 

July 438 (80.4) 106 (19.4) 1 (0.2) 

Sept–Dec 281 (80.5) 66 (18.9) 2 (0.6) 

Access to HIV medsb 

April 112 (92.6) 7 (5.8) 2 (1.7) 

July 53 (93) 3 (5.3) 1 (1.8) 

Sept–Dec 28 (90.3) 2 (6.5) 1 (3.2) 

Taking HIV meds every 
day as prescribedb 

April 111 (91.7) 6 (5) 4 (3.3) 

July 55 (96.5) 1 (1.8) 1 (1.8) 

Sept–Dec 28 (93.3) 2 (6.7) 0 (0) 

Getting HIV care 
clinical visitsb 

April 86 (71.7) 33 (27.5) 1 (0.8) 

July 38 (66.7) 19 (33.3) 0 (0) 

Sept–Dec 25 (80.6) 6 (19.4) 0 (0) 

Getting viral loads or 
other labs doneb 

April 88 (73.3) 29 (24.2) 3 (2.5) 

July 41 (71.9) 16 (28.1) 0 (0) 
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Sept–Dec 25 (83.3) 5 (16.7) 0 (0) 

  
  

No 

n (%) 

Yes 

n (%) 

I haven’t tried to get 

n (%) 

Trouble getting an HIV 
testa 

April 236 (25.8) 52 (5.7) 628 (68.6) 

July 244 (50.4) 39 (8.1) 201 (41.5) 

Sept–Dec 207 (65.1) 31 (9.7) 80 (25.2) 

Trouble getting PrEP 
prescription from your 
doctorc 

April 140 (68.6) 18 (8.8) 46 (22.5) 

July 84 (88.4) 8 (8.4) 3 (3.2) 

Sept–Dec 76 (92.7) 6 (7.3) 0 (0) 

Trouble getting your 
PrEP prescription filled 
at the pharmacyc 

April 138 (67.6) 12 (5.9) 54 (26.5) 

July 87 (91.6) 5 (5.3) 3 (3.2) 

Sept–Dec 72 (87.8) 7 (8.5) 3 (3.7) 

STI, sexually transmitted infection; PrEP, pre-exposure prophylaxis 
aFor men self-reporting as HIV-negative or with unknown HIV status 
bFor men self-reporting as living with HIV 
cFor men self-reporting as HIV-negative or with unknown HIV status and currently using PrEP 

 
Table 2.3. Age and Race/Ethnicity Standardization of Selected AMIS COVID-19 Impact Survey Outcomes, United States, April–December 2020 

  
  

No Change 

% (95% CI) 

Decreased 

% (95% CI) 

Increased 

% (95% CI) 

Number of sexual 
partners 

April 0.45 (0.4, 0.49) 0.54 (0.49, 0.59) 0.01 (0, 0.02) 

July 0.39 (0.33, 0.44) 0.6 (0.52, 0.68) 0.02 (0.01, 0.03) 

Sept–Dec 0.43 (0.35, 0.51) 0.56 (0.46, 0.65) 0.01 (0, 0.03) 

Opportunities to 
have sex 

April 0.27 (0.23, 0.3) 0.69 (0.64, 0.75) 0.04 (0.03, 0.05) 

July 0.25 (0.21, 0.3) 0.72 (0.63, 0.8) 0.03 (0.01, 0.04) 

Sept–Dec 0.28 (0.21, 0.34) 0.7 (0.6, 0.81) 0.02 (0.01, 0.04) 

Use of condoms 

April 0.93 (0.87, 1) 0.06 (0.04, 0.07) 0.01 (0, 0.02) 

July 0.93 (0.84, 1) 0.05 (0.03, 0.07) 0.02 (0, 0.04) 

Sept–Dec 0.91 (0.79, 1) 0.06 (0.03, 0.1) 0.03 (0.01, 0.05) 

Getting HIV testeda April 0.83 (0.76, 0.91) 0.16 (0.13, 0.19) 0.01 (0, 0.01) 
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July 0.87 (0.77, 0.98) 0.13 (0.09, 0.16) 0 (0, 0.01) 

Sept–Dec 0.86 (0.73, 0.99) 0.14 (0.09, 0.2) 0 (0, 0.01) 

Access to STI 
testing or 
treatment 

April 0.74 (0.69, 0.8) 0.25 (0.22, 0.29) 0 (0, 0.01) 

July 0.81 (0.72, 0.9) 0.19 (0.15, 0.23) 0 (0, 0) 

Sept–Dec 0.8 (0.69, 0.91) 0.19 (0.14, 0.24) 0.01 (0, 0.02) 

Access to HIV 
medsb 

April 0.87 (0.67, 1) 0.07 (0.01, 0.13) 0.03 (0, 0.09) 

July 0.76 (0.53, 0.98) 0.04 (0, 0.08) 0.02 (0, 0.05) 

Sept–Dec 0.6 (0.37, 0.83) 0.04 (0, 0.09) 0.02 (0, 0.05) 

Taking HIV meds 
every day as 
prescribedb 

April 0.88 (0.68, 1) 0.06 (0.01, 0.11) 0.04 (0, 0.08) 

July 0.78 (0.56, 1) 0.01 (0, 0.04) 0.02 (0, 0.05) 

Sept–Dec 0.6 (0.37, 0.83) 0.06 (0, 0.14) 0 (0, 0) 

Getting HIV care 
clinical visitsb 

April 0.74 (0.54, 0.93) 0.24 (0.14, 0.33) 0 (0, 0.01) 

July 0.51 (0.34, 0.68) 0.3 (0.15, 0.45) 0 (0, 0) 

Sept–Dec 0.52 (0.31, 0.74) 0.13 (0.02, 0.25) 0 (0, 0) 

Getting viral loads 
or other labs doneb 

April 0.71 (0.53, 0.89) 0.25 (0.14, 0.36) 0.02 (0, 0.04) 

July 0.56 (0.38, 0.75) 0.25 (0.11, 0.39) 0 (0, 0) 

Sept–Dec 0.54 (0.32, 0.76) 0.12 (0.01, 0.23) 0 (0, 0) 

  

No 

% (95% CI) 

Yes 

% (95% CI) 

I haven’t tried to get 
% (95% CI) 

Trouble getting an 
HIV testa 

April 0.27 (0.23, 0.31) 0.06 (0.04, 0.08) 0.67 (0.6, 0.73) 

July 0.52 (0.43, 0.6) 0.08 (0.05, 0.11) 0.4 (0.33, 0.46) 

Sept–Dec 0.64 (0.53, 0.74) 0.1 (0.05, 0.15) 0.27 (0.19, 0.34) 

Trouble getting 
PrEP prescription 
from your doctorc 

April 0.73 (0.59, 0.87) 0.07 (0.03, 0.1) 0.2 (0.13, 0.28) 

July 0.84 (0.61, 1) 0.1 (0.02, 0.19) 0.02 (0, 0.04) 

Sept–Dec 0.87 (0.63, 1) 0.08 (0, 0.17) 0 (0, 0) 

Trouble getting 
your PrEP 
prescription filled 
at the pharmacyc 

April 0.7 (0.56, 0.83) 0.04 (0.01, 0.06) 0.27 (0.18, 0.35) 

July 0.88 (0.64, 1) 0.05 (0, 0.11) 0.03 (0, 0.06) 

Sept–Dec 0.83 (0.59, 1) 0.09 (0, 0.17) 0.03 (0, 0.07) 

Standardized by age (15–24, 25–29, 30–39, ≥40 years) and race (NH Black, NH White, Hispanic, Other). 

CI: confidence interval; STI, sexually transmitted infection; PrEP, pre-exposure prophylaxis 
aFor men self-reporting as HIV-negative or with unknown HIV status 
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bFor men self-reporting as living with HIV 
cFor men self-reporting as HIV-negative or with unknown HIV status and currently using PrEP 

 

Table 2.4. Frequency of Selected AMIS COVID Impact Survey Outcomes Where Participant Participated in All Three Survey Cycles (n=265) 

   Not Changed 

n (%) 

Decreased 

n (%) 

Increased 

n (%) 

Number of sexual 
partners 

April 120 (45.6) 143 (54.4) 0 (0.0) 

July 106 (42.7) 137 (55.2) 5 (2.0) 

Sept–Dec 107 (42.8) 137 (54.8) 6 (2.4) 

Opportunities to 
have sex 

April 67 (25.5) 185 (70.3) 11 (4.2) 

July 68 (27.4) 171 (69.0) 9 (3.6) 

Sept–Dec 68 (27.6) 173 (70.3) 5 (2.0) 

Use of condoms 

April 248 (94.3) 13 (4.9) 2 (0.8) 

July 232 (93.5) 11 (4.4) 5 (2.0) 

Sept–Dec 227 (91.2) 15 (6.0) 7 (2.8) 

Getting HIV 
testeda 

April 195 (84.4) 34 (14.7) 2 (0.9) 

July 195 (86.7) 30 (13.3) 0 (0.0) 

Sept–Dec 190 (86.4) 29 (13.2) 1 (0.5) 

Access to STI 
testing or 
treatment 

April 202 (76.8) 61 (23.2) 0 (0.0) 

July 201 (81.0) 46 (18.5) 1 (0.4) 

Sept–Dec 207 (83.1) 41 (16.5) 1 (0.4) 

Access to HIV 
medsb 

April 22 (100.0) 0 (0.0) 0 (0.0) 

July 15 (88.2) 1 (5.9) 1 (5.9) 

Sept–Dec 18 (90.0) 1 (5.0) 1 (5.0) 

Taking HIV meds 
every day as 
prescribedb 

April 21 (95.5) 1 (4.5) 0 (0.0) 

July 16 (94.1) 0 (0.0) 1 (5.9) 

Sept–Dec 20 (100.0) 0 (0.0) 0 (0.0) 

Getting HIV care 
clinical visitsb 

April 15 (68.2) 7 (31.8) 0 (0.0) 

July 14 (82.4) 3 (17.6) 0 (0.0) 
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Sept–Dec 18 (90.0) 2 (10.0) 0 (0.0) 

Getting viral 
loads or other 
labs doneb 

April 17 (77.3) 5 (22.7) 0 (0.0) 

July 15 (88.2) 2 (11.8) 0 (0.0) 

Sept–Dec 16 (84.2) 3 (15.8) 0 (0.0) 

   No 

n (%) 

Yes 

n (%) 

I haven’t tried to get 

n (%) 

Trouble getting 
an HIV testa 

April 69 (28.9) 16 (6.7) 154 (34.4) 

July 128 (56.1) 20 (8.8) 80 (35.1) 

Sept–Dec 149 (65.6) 22 (9.7) 56 (24.7) 

Trouble getting 
PrEP prescription 
from your doctorc 

April 39 (69.6) 2 (3.6) 15 (26.8) 

July 52 (89.7) 5 (8.6) 1 (1.7) 

Sept–Dec 52 (91.2) 5 (8.8) 0 (0.0) 

Trouble getting 
your PrEP 
prescription filled 
at the pharmacyc 

April 39 (69.6) 3 (5.4) 14 (25.0) 

July 53 (91.4) 3 (5.2) 2 (3.4) 

Sept–Dec 50 (87.7) 5 (8.8) 2 (3.5) 

STI, sexually transmitted infection; PrEP, pre-exposure prophylaxis 
aFor men self-reporting as HIV-negative or with unknown HIV status 
bFor men self-reporting as living with HIV 
cFor men self-reporting as HIV-negative or with unknown HIV status and currently using PrEP 

 

Table 2.5. Frequency of Selected AMIS COVID-19 Impact Survey Outcomes Stratified by Race/Ethnicity  

    Hispanic Non-Hispanic Black Non-Hispanic White Other 
P-

valu
e 

    

Decrease
d 

n (%) 

Increase
d 

n (%) 

Not 
Change

d 

n (%) 

Decrease
d 

n (%) 

Increase
d 

n (%) 

Not 
Change

d 

n (%) 

Decrease
d 

n (%) 

Increase
d 

n (%) 

Not 
Change

d 

n (%) 

Decrease
d 

n (%) 

Increase
d 

n (%) 

Not 
Change

d 

n (%) 

 

Number of 
sexual 
partners 

April 74 (51.0)   2 (1.4)  69 (47.6)   49 (54.4)   1 (1.1)  
40 

(44.4)   
380 

(51.3)  
6 (0.8)  

355 
(47.9)  

33 (50.8)   0 (0.0)  32 (49.2)   0.94 

July 43 (63.2)   0 (0.0)  25 (36.8)   18 (54.5)   1 (3.0)  
14 

(42.4)   
241 

(58.2)  
8 (1.9)  

165 
(39.9)  

16 (57.1)   0 (0.0)  12 (42.9)   0.86 

Sept
–Dec 

17 (45.9)   0 (0.0)  20 (54.1)   13 (61.9)   1 (4.8)  7 (33.3)    
144 

(53.9)  
5 (1.9)  

118 
(44.2)  

14 (56.0)   0 (0.0)  11 (44.0)   0.61 
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Use of 
condoms 

April 9 (6.3)   0 (0.0)  
134 

(93.7)  
7 (7.8)   3 (3.3)  

80 
(88.9)   

36 (4.9)  3 (0.4)  
699 

(94.7)  
3 (4.7)   2 (3.1)  59 (92.2)   0.02 

July 4 (5.9)   3 (4.4)  61 (89.7)   3 (9.1)   2 (6.1)  
28 

(84.8)   
14 (3.4)  3 (0.7)  

395 
(95.9)  

2 (7.1)   0 (0.0)  26 (92.9)   0.01 

Sept
–Dec 

2 (5.4)   0 (0.0)  35 (94.6)   3 (14.3)   3 (14.3)  
15 

(71.4)   
14 (5.3)  5 (1.9)  

244 
(92.8)  

0 (0.0)   0 (0.0)  
25 

(100.0) 
0.02 

Getting 
HIV 
testeda 

April 25 (19.8)  2 (1.6%)  99 (78.6)   8 (16.3)   1 (2.0)  
40 

(81.6)   
94 (14.7)  2 (0.3)  

545 
(85.0)  

12 (21.1)  0 (0.0)  45 (78.9) 0.12 

July 10 (16.4)  0 (0.0%)  51 (83.6)   3 (15.8)   0 (0.0)  
16 

(84.2)   
44 (11.9)  1 (0.3)  

324 
(87.8)  

4 (16.7)   0 (0.0)  20 (83.3) 0.67 

Sept
–Dec 

4 (12.1)   0 (0.0%)  29 (87.9)   4 (26.7)   1 (6.7)  
10 

(66.7)   
37 (15.6)  0 (0.0)  

200 
(84.4)  

2 (9.5)   0 (0.0)  19 (90.5) 0.10 

Access to 
HIV medsb 

April 1 (7.7)   0 (0.0)  12 (92.3)  2 (5.3)   1 (2.6)  
35 

(92.1)  
4 (6.2)   1 (1.5)  60 (92.3)  0 (0.0)   0 (0.0)  5 (100.0)   1.00 

July 0 (0.0)   0 (0.0)  7 (100.0)   1 (9.1)   0 (0.0)  
10 

(90.9)  
2 (5.6)   1 (2.8)  33 (91.7)  0 (0.0)   0 (0.0)  3 (100.0)   1.00 

Sept
–Dec 

0 (0.0)   0 (0.0)  2 (100.0)   0 (0.0)   0 (0.0)  
6 

(100.0)   
2 (9.5)   1 (4.8)  18 (85.7)  0 (0.0)   0 (0.0)  2 (100.0)   1.00 

Taking 
HIV meds 
every day 
as 
prescribed
b 

April 2 (15.4)  1 (7.7)  10 (76.9)  1 (2.6)  3 (7.9)  
34 

(89.5)  
3 (4.6)  0 (0.0)  62 (95.4)  0 (0.0)  0 (0.0)  5 (100.0)   0.08 

July 0 (0.0)   0 (0.0)  7 (100.0)   1 (9.1)   0 (0.0)  
10 

(90.9)  
0 (0.0)   1 (2.8)  35 (97.2)  0 (0.0)   0 (0.0)  3 (100.0)   0.61 

Sept
–Dec 

1 (50.0)  0 (0.0)  1 (50.0)   0 (0.0)  0 (0.0)  
5 

(100.0)   
1 (4.8)  0 (0.0)  20 (95.2)  0 (0.0)  0 (0.0)  2 (100.0)   0.28 

Getting 
HIV care 
clinical 
visitsb 

April 4 (30.8)   0 (0.0)  9 (69.2)   14 (36.8)  1 (2.6)  
23 

(60.5)  
15 (23.4)  0 (0.0)  49 (76.6)  0 (0.0)   0 (0.0)  5 (100.0)   0.26 

July 4 (57.1)  0 (0.0)  3 (42.9)   6 (54.5)  0 (0.0)  5 (45.5)   8 (22.2)  0 (0.0)  28 (77.8)  1 (33.3)  0 (0.0)  2 (66.7)   0.09 

Sept
–Dec 

1 (50.0)  0 (0.0)  1 (50.0)   1 (16.7)  0 (0.0)  5 (83.3)   4 (19.0)  0 (0.0)  17 (81.0)  0 (0.0)  0 (0.0)  2 (100.0)   0.71 

Getting 
viral loads 
or other 
labs doneb 

April 4 (30.8)   1 (7.7)  8 (61.5)   10 (26.3)  2 (5.3)  
26 

(68.4)  
15 (23.4)  0 (0.0)  49 (76.6)  0 (0.0)   0 (0.0)  5 (100.0)   0.25 

July 2 (28.6)  0 (0.0)  5 (71.4)   6 (54.5)  0 (0.0)  5 (45.5)   7 (19.4)  0 (0.0)  29 (80.6)  1 (33.3)  0 (0.0)  2 (66.7)   0.11 

Sept
–Dec 

1 (50.0)  0 (0.0)  1 (50.0)   0 (0.0)  0 (0.0)  
6 

(100.0)   
4 (20.0)  0 (0.0)  16 (80.0)  0 (0.0)  0 (0.0)  2 (100.0)   0.38 

   

I haven’t 
tried to 

get 

n (%) 

No 

n (%) 

Yes 

n (%) 

I haven’t 
tried to 

get 

n (%) 

No 
n (%) 

Yes 
n (%) 

I haven’t 
tried to 

get 
n (%) 

No 
n (%) 

Yes 
n (%) 

I haven’t 
tried to 

get 
n (%) 

No 
n (%) 

Yes 
n (%) 

  

Had 
trouble 
getting an 
HIV testa 

April 83 (63.4) 38 (29.0) 10 (7.6)  
34 

(68.0)            
13 (26.0)   3 (6.0)   

466 
(70.1) 

167 
(25.1)  

32 (4.8)  
38 

(64.4)            
16 (27.1)   5 (8.5)   0.56 

July 25 (41.0) 29 (47.5) 7 (11.5)   4 (20.0)             12 (60.0)   4 (20.0)   
159 

(42.6) 
189 

(50.7)  
25 (6.7)  

10 
(40.0)            

12 (48.0)   3 (12.0)   0.15 

Sept
–Dec 

8 (22.9) 25 (71.4) 2 (5.7)   5 (33.3)             7 (46.7)    3 (20.0)   62 (25.6) 
157 

(64.9)  
23 (9.5)  5 (21.7)             15 (65.2)   3 (13.0)   0.62 

April 4 (14.3) 20 (71.4) 4 (14.3)   4 (25.0)             12 (75.0)  0 (0.0)   34 (23.3) 98 (67.1)  14 (9.6)  3 (25.0)             9 (75.0)   0 (0.0)   0.69 
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Had 
trouble 
getting 
PrEP 
prescripti
on from 
doctorc 

July 1 (7.1) 11 (78.6) 2 (14.3)  0 (0.0)              6 (100.0)   0 (0.0)  2 (2.9) 62 (89.9)  5 (7.2)  0 (0.0)              5 (83.3)   1 (16.7)  0.56 

Sept
–Dec 

0 (0.0) 11 (91.7) 1 (8.3)  0 (0.0)              4 (100.0)   0 (0.0)  0 (0.0) 57 (91.9)  5 (8.1)  0 (0.0)              4 (100.0)   0 (0.0)  1.00 

PrEP, pre-exposure prophylaxis 
aFor men self-reporting as HIV-negative or with unknown HIV status 
bFor men self-reporting as living with HIV 
cFor men self-reporting as HIV-negative or with unknown HIV status and currently using PrEP 

 

 

  



FIGURES 

Figure 2.1. Prevalence of Selected AMIS COVID-19 Impact Survey Outcomes Stratified by 
Race/Ethnicity during April–December 2020 
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Figure 2.2. Flow Diagram Linking AMIS 2019, AMIS 2020, AMIS COVID-19 Impact Survey Cycles, and 
Study Population 
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Chapter 3. Estimation of the Incidence of HIV among US MSM During the 

COVID-19 Pandemic in the Presence of Competing Forces of Sexual 

Distancing and Clinical Service Interruptions 

ABSTRACT 

BACKGROUND 

HIV is a major public health challenge that has become more complex because of the COVID-

19 pandemic. It is unclear what the long-term impacts of temporary COVID-19-related social 

distancing and clinical service disruptions will be on HIV transmission and dynamics. This study 

uses empirical behavioral data in a mathematical model to estimate the incidence of HIV among 

US MSM during the COVID-19 pandemic up to mid-2021. 

METHODS 

Parameterized by multiple nationally representative data sources of COVID-era sexual 

behavior, HIV prevention services, and/or HIV clinical service disruptions, we used a network-

based model of HIV transmission dynamics to estimate HIV incidence during the COVID 

pandemic among all US MSM. Model scenarios were used to simulate the combined effect of 

COVID-era changes in sexual behavior, condom use, HIV testing, and PrEP use; the individual 

isolated effects of these changes; and to represent a counterfactual scenario in which the 

COVID pandemic did not take place and affect HIV-related behaviors and services. 

RESULTS 

When incorporating reported sexual behavior and service disruption changes through the Spring 

of 2021, a decrease in HIV incidence was observed from March 2020 and is sustained until mid-

2021. The largest decrease in incidence occurred in May 2020, representing a 36% decrease in 
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HIV incidence compared to the base (no pandemic) scenario. Driven mainly by reductions in 

sexual behavior, the COVID pandemic is projected to have prevented 2,227 new HIV infections 

among all US MSM over a five year period. Despite the temporary reductions in HIV 

transmission, by 2022, HIV incidence returned to the counterfactual HIV incidence of our base 

(no pandemic) scenario. 

CONCLUSIONS 

Although temporary decreases in HIV transmission may have occurred during the COVID 

pandemic, they were not sufficient to alter the long-term trajectory of the US HIV epidemic. HIV 

prevention efforts remain important, both in and out of a pandemic context. 

 

INTRODUCTION 

Human immunodeficiency virus (HIV) remains a major public health challenge in the 

United States (US) and has become more complex because of the COVID-19 pandemic. 

Current public health efforts to prevent HIV among gay, bisexual, and other men who have sex 

with men (MSM) focus on reducing HIV acquisition and transmission by promoting safer sexual 

behaviors,16 increasing the availability and use of pre-exposure prophylaxis (PrEP),24 and 

increasing the consistent use of antiretroviral therapy (ART).150 These strategies are a part of 

the US Ending the HIV Epidemic: A Plan for America (EHE) initiative.38 Announced in early 

2019, EHE aims to reduce new HIV infections in the US by 75% by 2025 and 90% by 2030 by 

expanding HIV prevention and treatment efforts.38 EHE was developed and initiated in the pre-

COVID era, however, and did not anticipate mass pandemic-related impacts. But since its 

inception, economic and social disruptions in response to the COVID-19 global pandemic have 

interrupted HIV prevention and treatment services, reducing access to HIV testing, PrEP visits, 

and HIV care retention.44,45,49,50,158,159  
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These COVID-19-related interruptions to HIV prevention and clinical care may increase 

the rate of HIV acquisition and transmission. For example, reduced access to PrEP for indicated 

persons can lead to additional risk of HIV acquisition, and reduced HIV testing can lead to more 

undiagnosed HIV, and therefore more population-level risk of HIV transmission as newly 

infected individuals do not know their HIV status (but may not take precautions to prevent 

transmitting it to others). Reduced access to HIV care retention can lead to less viral 

suppression, and a higher risk for HIV transmission. At a population level, these factors can 

increase HIV transmission and alter the trajectory of the HIV epidemic. 

COVID-19 disruptions have also prompted major behavioral changes to social 

interaction, including reductions in sexual activity (“sexual distancing”) and reductions in number 

of sexual partners.41,160 Such reductions in sexual activity may counterbalance the effects of 

clinical service interruptions with respect to HIV transmission. Disruptions to HIV prevention and 

clinical care can increase the rate of HIV acquisition and transmission, while reductions in 

sexual risk activity can decrease it. The impact of this balance depends on the relative extent 

and timing of such changes.67,69 Studies of the magnitude of clinical interruptions and sexual 

behavior changes among US MSM44,45,49,158,161–168 suggest that COVID impacts may be 

detrimental to HIV prevention efforts. For example, in a cohort of PrEP-using MSM in the south, 

Pampati et al. found that a quarter of the cohort documented challenges when attempting to 

access PrEP, HIV testing, or STI testing.44 Using data from 60 state and local health 

departments, Patel et al. found that there was a 46.0% reduction in the number of HIV tests 

conducted in 2020 compared to 2019.167 On the other hand, in a study of US MSM, McKay et al. 

found that there were decreases to number of reported sexual partners in April and May 2020 

compared to before the pandemic.158 

However, the actual combined effect of these changes (based on empirical data, not 

theoretical data) on HIV transmission among US MSM during the COVID-19 pandemic has not 
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yet been quantified. Some modeling studies have examined how certain theoretical levels of 

COVID-related changes may potentially impact HIV transmission,67,69 but to our knowledge 

none have examined actual HIV transmission using empirical data. The Centers for Disease 

Control and Prevention (CDC) has released HIV incidence estimates during the pandemic 

period, but have noted that these data are not reliable due to pandemic impacts to HIV 

services.169,170 Studies which determine the actual impact of COVID-related disruptions to 

clinical care services and sexual behavior on HIV transmission among US MSM are needed. 

These studies can help fill the gap in the literature regarding unknown COVID-era HIV 

transmission (caused both by theoretical COVID impact studies, and by the unreliability of case-

based HIV surveillance-based incidence estimates during the COVID pandemic). 

This study uses empirical data to parameterize a network-based mathematical model in 

order to estimate the incidence of HIV among US MSM during the COVID-19 pandemic. We 

hypothesized that sexual distancing and service reductions would alter the incidence of HIV 

across the pandemic era, with long-term effects/consequences on control of HIV transmission. 

We also hypothesized that changes in HIV service utilization would increase HIV incidence to 

such an extent that EHE goals for 2030 would be unattainable. This study represents a novel 

approach to estimating the actual impact of COVID-19 on HIV transmission among US MSM. 

 

METHODS 

Study Design. This model of HIV transmission dynamics for US MSM was built on the EpiModel 

software platform.171 EpiModel simulates HIV epidemics over dynamic contact networks of US 

MSM using temporal exponential random graph models (TERGMs).172 Specific model 

extensions were built to simulate HIV transmission among US MSM from 2018 to 2030 to 

estimate the impact of reported COVID-related changes in sexual behavior and HIV clinical 
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services on HIV transmission during the COVID pandemic period. Our goal was to project the 

long-term impact of these pandemic changes on HIV incidence. 

Network Model. Components of the model representing sexual network structure were fit using 

data from ARTnet, a cross-sectional web-based study of US MSM conducted between 2017 

and 2019.91 ARTnet participants were recruited through the annual American Men’s Internet 

Survey (AMIS) study.124 ARTnet eligibility criteria included male sex at birth, current male 

cisgender identity, lifetime history of sexual activity with another man, and age between 15 and 

65 years. The use of ARTnet data in EpiModel network models has been described 

previously.67,173 

Our model represented main, casual, and one-time sexual partnerships. Age and 

race/ethnicity mixing, the formation and dissolution of persistent partnerships, and the rate of 

one-time partnership formation were represented as estimated from ARTnet data. Behavior 

within sexual partnerships, including the rate of intercourse per partnership per time step, 

condom use per sexual act, and sexual role were modeled based on individual and partnership 

characteristics, with probabilities estimated from ARTnet data. 

The model also represented demography of the population, HIV interhost epidemiology 

(disease transmission), HIV intrahost epidemiology (disease progression), and HIV clinical 

epidemiology.91 Demography included aging, entries, and exits. HIV interhost epidemiology 

included HIV transmission (per-act transmission probability). HIV intrahost epidemiology 

represented HIV disease progression, including viral load progression, within HIV-positive 

individuals. HIV clinical epidemiology included disease diagnosis, ART initiation, ART 

adherence and viral load suppression, and AIDS disease progression and mortality.  

The HIV prevention care cascade and HIV care continuum were both represented in the 

model. The HIV prevention continuum consisted of HIV testing, PrEP initiation, PrEP 
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adherence, and persistence in PrEP care for daily oral tenofovir/emtricitabine.23 Weekly pre-

COVID HIV testing rates were race-stratified and determined by ARTnet HIV testing rates, 

surveillance data on diagnosed fraction of HIV-infected MSM, and model calibration.33,91 After 

testing negative for HIV, MSM who met indications for PrEP based on CDC guidelines were 

eligible to start PrEP.18 They then started PrEP based on an initiation probability generating a 

coverage level of approximately 30%, which approximates US estimates of PrEP coverage.33 

Heterogeneous PrEP adherence was modeled, with 78% of PrEP users reaching a high-

adherence level that resulted in a 99% relative reduction in HIV acquisition risk. Pre-COVID 

PrEP discontinuation was based on estimates of the proportion of MSM who were retained in 

PrEP care at 6 months,141 and weekly pre-COVID PrEP discontinuation rates were 0.021, 0.012, 

and 0.012, for Black, Hispanic, and White/other MSM, respectively. COVID and post-COVID 

PrEP discontinuation was based on the number of PrEP prescriptions over time in a national 

pharmacy database (IQVIA Real World Data—Longitudinal Prescriptions Database).174 PrEP 

care consisted of routine HIV and STI screening. For the HIV care continuum, MSM initiated 

ART after testing positive for HIV. ART lowered their HIV viral load and increased their 

longevity. MSM progressed through HIV disease with viral loads represented continuously. 

Lower viral load with sustained ART use was associated with a reduced probability of HIV 

transmission per act. HIV transmission probability was also modified by PrEP use, condom use, 

sexual position, and circumcision. Additional full methodological details of HIV interhost, 

intrahost, and clinical epidemiology; network generation; parameter selection; calibration; and 

modeling are provided in the Supplemental Appendix.  

Modeling COVID-19-Related Impacts. Changes in sexual behavior and condom use 

representing from March 2020–January 2021 were included in the model. These changes were 

parameterized based on behavioral data from the AMIS COVID Impact Survey and the Love 

and Sex in the Time of COVID studies. The AMIS COVID-19 Impact Survey collected data on 
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sexual distancing and HIV service utilization/care engagement from 1,051 US MSM at three 

time points during the COVID-19 pandemic: April, July, and September–December 2020.45 The 

Love and Sex in the Time of COVID-19 survey also collected data from 696 US MSM on sexual 

distancing and HIV service utilization/care engagement during the COVID-19 pandemic, at two 

time points: April–May 2020 and November 2020–January 2021.49  Where applicable, such as 

for sexual behavior by partnership type, sexual behavior parameters were standardized using 

the proportions of partnership types obtained from the ARTnet study. This approach allowed us 

to stratify COVID-era sexual behavior results to best map to EpiModelHIV partnership-stratified 

parameters. Because these surveys did not collect data in all months of the COVID pandemic 

(e.g., in August 2020, between July 2020 and September 2020 AMIS COVID-19 Impact Survey 

time points), we assumed that during these periods, changes in outcomes were steady and 

continuous. Therefore, where applicable between survey points, we implemented weekly 

gradual changes in model parameters (e.g., to fill the gap in COVID-19 Impact Survey data, 

outcomes steadily changed in magnitude by week in August 2020). Full details on all parameter 

estimates, ranges, sources, and calculations (where applicable) are included in the 

Supplemental Appendix. 

Before implementing COVID-related changes, we first ran a base scenario in which we 

assumed model parameters remained at their 2019 levels for the full model simulation. Changes 

in HIV prevention and clinical care services, including race-stratified HIV testing and PrEP use 

rates, were incorporated from March 2020–April 2021 as indicated by national estimates of HIV 

screening tests from three overlapping data sources (Health Resources and Services 

Administration’s Uniform Data System, CDC’s National HIV Prevention Program Monitoring and 

Evaluation system, National Syndromic Surveillance Program’s commercial laboratory data)175 

and PrEP prescriptions and new PrEP users in national pharmacy database (IQVIA Real World 

Data—Longitudinal Prescriptions Database).174 Changes in ART initiation, ART adherence and 
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viral load suppression, and AIDS disease progression were not incorporated during the 

pandemic, since meaningful changes in ART use among men living with diagnosed HIV were 

not observed in either the AMIS COVID Impact Survey nor the Love and Sex in the Time of 

COVID study, nor in external reports examining ART prescriptions during the COVID 

pandemic.176–178 

Because we found that in a subset of individuals (in both the AMIS COVID Impact 

Survey and the Love and Sex in the Time of COVID study) decreases in sexual behavior 

occurred alongside decreases in HIV testing and/or PrEP use, we introduced a behavior 

changer feature/attribute into our model. This feature allowed us to modify persistent 

partnership act rates and one-time partnership formation rates alongside HIV testing and PrEP 

use in the same group of individuals. Modification rates were set as determined from our 

primary data sources. 

Because our primary data sources and other studies161,176,177,179 did not observe 

significant decreases in ART use or viral load suppression, we did not incorporate these 

changes into our models and examine their isolated impact. 

Sexual distancing and clinical care interruptions were integrated into the model by 

changing the appropriate parameters for behavior and HIV prevention and clinical services use. 

Because at the time of this study, data on the sexual behavior and HIV testing of US MSM was 

not available after April 2021, we assumed parameters reverted to their pre-pandemic value in 

the latter half of 2021 and did not change after 2021 (though for PrEP and HIV testing, data has 

shown that PrEP use and HIV testing have returned to and/or exceeded pre-pandemic 

levels).180 Full details of parameter selection and source are available in the Supplemental 

Technical Appendix. Sensitivity analyses regarding the magnitude and timing of sexual behavior 

and clinical care changes were additionally completed (Supplementary Figure 1) to explore the 

impact of some of the uncertainty in our parameterization. Our modeling and analytic code is 
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available in a git repository at https://github.com/EpiModel/COVIDHIVAim2 [to be 

renamed/made public]. 

Calibration and Simulation. The model spanned 2018 to 2030. This timespan was chosen to 

demonstrate HIV incidence before, during, and after the COVID-19 pandemic, and up to the 

EHE target of 2030.  

The model was calibrated with a Bayesian approach that defined prior distributions for 

parameters and fit the model to empirical surveillance-based estimates of diagnosed HIV for all 

US MSM in 2019. After calibration, we simulated the model 500 times and summarized the 

distribution of results with medians and 95% simulation intervals. COVID-related model 

scenarios were compared to the baseline (no COVID) scenario in order to assess how the 

COVID pandemic affected HIV transmission, relative to a no pandemic state. 

The primary outcomes were HIV incidence per 100 person-years at risk (PYAR), five-

year cumulative incidence during March 2020–March 2025, and population impact. Population 

impact was calculated in two steps: first, we adjusted the 5-year cumulative incidence to 

represent the full US MSM population (approximately 4,503,080 MSM),181 then we subtracted 

this total US MSM population cumulative incidence for each scenario from the value of the base 

scenario to obtain the difference. Because of the stochastic framework of our model, 95% 

simulation intervals were calculated for all primary outcome measures along with simulation 

medians. 

Comparison to Surveillance-Based Diagnoses. In order to determine how closely our model-

based estimates of HIV incidence and HIV positive tests track with case-based surveillance 

estimates, we used HIV diagnoses data that are attributed to male-to-male sexual contact 

transmission from the National HIV Surveillance System (NHSS).147 These data were available 

quarterly from January 2019–December 2021. Although NHSS represents HIV diagnoses, 
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whereas our model estimates incidence, we wanted to track how closely model-based incidence 

may line up with real world diagnoses data. 

 

RESULTS 

Figure 3.1 depicts HIV incidence among US MSM from 2019 to 2022. A decrease in HIV 

incidence was observed from March 2020 and was sustained through March 2021. At its lowest 

point in May 2020, simulated HIV incidence was 0.25 per 100 person-years at risk (PYAR) (95% 

simulation interval (SI): 0.05, 0.49), 36% lower than the base (no COVID pandemic) scenario 

(HIV incidence of 0.39 per 100 PYAR; 95% SI: 0.15, 0.64) (Table 3.1). Slight increases in HIV 

incidence are noted in mid-2021, but they neither persist nor affect the trajectory of the epidemic 

later in the year. In a sensitivity analysis with more conservative estimates of behavior changes, 

the overall decrease in HIV incidence during 2020 is still observed (Figure 3.6). From the period 

of March 2020 to March 2025, the simulated 5-year cumulative incidence was 1,661.5 (95% SI: 

1,547.4, 1,773.4) per 100,000 MSM. Compared to the base scenario, this represents a 3% 

reduction in 5-year cumulative incidence (cumulative incidence of 1,710.9; 95% SI: 1,600.3, 

1,820.5), but for all US MSM, represents a five-year population impact of 2,227 (95% SI: -

2,382.5, -2,121.4) less HIV infections. 

When the effects of reported changes in sexual behavior, condom use, HIV testing, and 

PrEP use are isolated (Figure 3.2), the decrease in HIV incidence observed in the pandemic 

period is most attributable to changes in sexual behavior: over five years and in isolation, the 

decreases in sexual behavior during 2020–2021 would have prevented -4,341.8 (95% SI: -

4,192.8, -4,345.0) HIV infections among US MSM compared to the base scenario. In isolation, 

the 2020–2021 changes in condom use, HIV testing, and PrEP use, would have increased new 
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HIV infections by 186.2 (95% SI: 184.5, 523.6), 475.2 (95% SI: 564.7, 599.4), and 2,360.3 (95% 

SI: 2,683.2, 2,794.6), respectively. 

When compared to NHSS-sourced quarterly HIV diagnoses (attributed to male-to-male 

sexual contact transmission) data,147 although comparing two separate things (diagnoses vs. 

incidence) our model-based estimates of HIV incidence and HIV positive tests follow a similar 

trend, with the largest decreases occurring in the second quarter of 2020 (Figure 3.3). In our 

model, HIV test positivity (the proportion of all HIV tests that are positive) dips during the 

pandemic period, from 0.0036 before March 2020 to 0.0017 at its lowest point in 2020 (Figure 

4). Our model-based PrEP coverage estimate decreases from 32% in January 2020 to 22% in 

March 2021, and only reverts to 27% by December 2021, nine months after COVID-era PrEP 

changes are discontinued (Figure 3.7). By 2030, PrEP coverage returns to 31%, aligning with 

the base (no COVID) scenario of a PrEP coverage of 31% in 2030 (Figure 3.8). 

Figure 3.5 visualizes the long-term trajectory of the HIV epidemic in our model-based 

population, assuming parameters remain stable and no other HIV prevention or treatment 

interventions or disruptions occur between 2022 and 2030. Between 2022 and 2030, the 

median HIV incidence from our simulations decreased by 14%, from 0.389 to 0.336 per 100 

PYAR, though with a wide simulation interval (Figure 3.5). In the base (no COVID) scenario, 

HIV incidence was similarly 0.388 in 2022 and 0.336 per 100 PYAR in 2030; we did not observe 

long-term effects of the COVID pandemic on HIV incidence. 

 

DISCUSSION 

This study represents a novel approach that uses empirical data within a network-based 

mathematical model to estimate HIV incidence among US MSM in a period of both HIV-related 

behavior changes and clinical service disruptions. Using multiple nationally representative data 
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sources on pandemic-era sexual behavior, HIV prevention, and HIV clinical care services, we 

found that HIV incidence among US MSM decreased during 2020, and that COVID-related 

impacts did not generate long-term increases in HIV transmission in the post-pandemic period. 

Although we observed temporary decreases in HIV incidence compared to a no pandemic 

scenario, these reductions were not significant enough to sustain lasting decreases to HIV 

transmission that will affect the trajectory of the US HIV epidemic. Our results draw attention to 

the ongoing need for HIV prevention programs for MSM at risk of HIV infection, HIV testing for 

those with newly acquired HIV, and for HIV treatment services for men living with diagnosed 

HIV, both within and outside of a pandemic context. 

Consistent with prior studies,67,69 we found that the magnitude and timing of pandemic-

related changes drives changes in HIV transmission. We also found that the widespread 

changes in sexual behavior can be a significant driver of changes in HIV transmission.67 

However, unlike other US-based modeling studies that found that changes in sexual behavior 

would effectively offset changes in HIV services, resulting in minimal differences compared to a 

no COVID scenario,67,69 we found that the combined effects of COVID-related behavior changes 

resulted in an overall decrease in HIV transmission. Our findings likely diverge from previous 

studies because we used actual reported data from US MSM to parameterize our models, 

whereas previous studies relied only on predicted or hypothetical patterns of pandemic-era HIV-

related behavior.67,69 

When comparing our results to nationally available estimates of quarterly HIV 

diagnoses,147 our observed changes in HIV incidence and positive HIV tests closely follows the 

trend of new HIV cases. This is a notable finding, because US HIV diagnosis data in 2020 have 

been largely considered to be unreliable and recommended to be interpreted with caution.169 

Although it is important to interpret diagnostic data during 2020 in the context of widespread 

decreases in HIV testing with appropriate skepticism, our findings suggest that decreasing new 
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cases of HIV in 2020 may reflect an overall trend of decreased incidence during this period. 

However, because it can take weeks to months for antibodies to become detectable182 and the 

average time from HIV infection to HIV diagnosis may be several years,183 immediate decreases 

in diagnoses following the onset of the COVID pandemic might be a result of decreased testing 

and not simply changes in underlying transmission. Yet, because an increase in HIV diagnoses 

in 2021 (compared to 2019) was not observed170,184 even after testing returned to pre-pandemic 

levels in 2021,147 the decrease in incidence that our model estimated in 2020 seems to 

accurately reflect the overall trend. Even with a lag between infection and diagnosis, if there 

were many undiagnosed HIV cases in 2020, then 2021 data should have reflected a sharp 

increase in new diagnoses—which it does not.170,184 In our model, we found that decreases in 

HIV testing (and other HIV services) during the COVID pandemic were not severe enough to 

overcome the decreased risk of HIV transmission resulting from population-level decreases in 

sexual risk behaviors. 

Our findings demonstrate that although we may expect long-term marginal/slight 

decreases in HIV incidence, the trajectory of the US HIV epidemic is still far from the EHE goal 

of reducing new HIV infections in the US by 90% by 2030.38 In our model, we noted a decrease 

in HIV incidence from 2019 to 2030 by only 14%. Similarly, in a no COVID scenario, HIV 

incidence also decreased from 2019 to 2030 only by 14%. However, these base scenario and 

projected results should be interpreted with caution because they do not include counterfactual 

increases in HIV prevention and care services that may have occurred in the absence of 

COVID, nor those that may occur between now and 2030. However, our findings support that 

targeted and immediate HIV prevention services are needed in high burden areas to better 

approach EHE goals.173,185 Even without pandemic disruptions, significant investments are 

required to scale up EHE’s core strategies, particularly because approved federal funding for 

EHE during fiscal year (FY) 2019–FY 2023 has fell short of proposed funding.186 
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Beyond overall HIV prevention needs, our results demonstrate some key weaknesses in 

HIV testing provisioning. Our model found decreases in HIV test positivity during the COVID 

period, suggesting that provision of HIV testing could be improved; in the context of less HIV 

testing, we would expect positivity to increase if testing was targeted to those most likely to test 

positive. However, a limitation of our positivity results is that we did not model changes related 

to testing behaviors during the pandemic; in our model, we are still using the same criteria to 

drive/predict testing behavior in the model before and after the onset of the COVID pandemic. 

Because we only modeled decreases in the rate of HIV testing, but not changes in the 

processes that drive HIV testing in a pandemic context (such as testing only if one had a recent 

high risk behavior), our positivity results may not be appropriate to use as a guideline of 

positivity during the pandemic. Real-world data on the positivity of HIV tests administered to 

MSM during the COVID pandemic are needed to support our findings and their interpretations. 

For PrEP, although many reductions in PrEP during the COVID pandemic might  

correspond to reductions in sexual risk behavior (and, therefore loss of PrEP indication), 

decreases in PrEP coverage from pre-pandemic limits still remained at the onset of 2022, and 

the overall PrEP coverage levels before and after the pandemic remained lower than ideal 

targets.187 PrEP coverage varies significantly between US cities and communities,26 and 

resulting risk behavior188,189 and HIV risk190 can lead to disparities in HIV transmission between 

US communities. Additionally, during the pandemic, MSM who reported pandemic-related 

changes to PrEP access had significantly higher odds of HIV seroconversion.191 Increased 

provision of HIV testing and PrEP to those at highest risk of HIV infection, and who have 

challenges with access to HIV prevention services, should be prioritized regardless of pandemic 

context. 

A major limitation of this study is the uncertainty surrounding our model parameters, 

particularly those that control the magnitude and timing of COVID-era HIV-related behavior 
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changes. A strength of our approach is that we triangulated data from multiple primary data 

sources to parameterize these processes; however, many of the data sources did not include 

granular information that would allow for better accuracy and precision of model estimates. For 

example, HIV testing and PrEP use data were available by week through December 2020 and 

by month through March 2021, respectively.174,175 These data allowed for stratification by race or 

age, but not transmission category. Ideally, we would have had access to data available by 

week for MSM only and available through present day, by both race and age sub-strata. For 

sexual behavior parameters, our data spanned only through January 2021, and these data were 

grouped into multi-month time periods (though we implemented weekly gradual changes where 

possible). A previous study found that many of the key patterns in sexual behavior, such as 

change in the number of sexual partners during various stages of the pandemic, did not 

significantly vary by age, race, or US geography,161 However, the most accurate models would 

represent variations in changes at the most granular scale, because small but well-linked sub-

networks can drive epidemics.192 Further, like all modeling studies, our results are subject to 

limitations of the studies from which model parameters were sourced (e.g., limited 

generalizability or selection biases). For example, there could be selection bias present in our 

sexual behavior data sources if MSM with less risky sexual behavior may be more likely to 

participate in the survey. The purpose of our sensitivity analyses assuming the most 

conservative decreases in sexual behavior changes was to explore the effect of this potential 

bias; even with smaller decreases in sexual risk behavior, an overall trend of decreases HIV 

incidence during COVID was observed. Therefore, this bias is unlikely to affect our overall study 

conclusions. 

There are several other limitations to this study. First, this study is focused on all US 

MSM, and does not represent city or regional variations. Therefore, this study does not capture 

city- or community-level differences in HIV-related behavior, nor differences in COVID 



79 
 

 

 

responses (and ensuing changes to social and health behaviors) among different geographic 

areas. Additionally, although many of the model parameters were race-stratified (capturing 

differences in HIV prevention services, HIV treatment, and behavior by race/ethnic group), this 

model does not explore how the COVID pandemic affected different racial/ethnic groups. Future 

studies should explore how the pandemic affected HIV sub-epidemics in specific racial/ethnic 

populations, particularly because certain groups, such as Black MSM, are at disproportionately 

high risk of contracting HIV and may be less likely to have access to or receive key HIV 

prevention services like PrEP.169,193,194 This additionally model also fails to represent network 

structure related to geographic clustering, which can play a role in the dynamics of local HIV 

epidemics. However, by using a target population of all US MSM, we are able to draw 

inferences on a wider population, and also compare our results to estimates of HIV diagnoses 

that are only available on the national scale. 

This is the first study to use empirical sexual behavior and clinical data to estimate the 

impact of the COVID pandemic on the HIV epidemic among US MSM. Using a network-based 

transmission model, we provide evidence that HIV incidence among US MSM temporarily 

decreased during 2020, and did not generate long-term increases in HIV transmission in the 

post-pandemic period. Ongoing assessment of the effect of COVID-related changes on HIV 

transmission are needed at the local, state, and national level to guide effective post-pandemic 

HIV mitigation recommendations, and to contribute to the development of future pandemic 

preparedness strategies.  

 

TABLES 

 
Table 3.1. Effect of COVID-Related Sexual Behavior and Service Utilization Changes on 
Incidence Rate, Cumulative Incidence, and Population Impact, over 500 Simulations 
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Scenario 
Incidence Rate, 

May 2020 
(95% SI)* 

Cumulative Incidence 
(95% SI)** 

Population Impact 
(95% SI)† 

Base Scenario (No COVID) 0.39 (0.15, 0.64) 1710.9 (1600.3, 1820.5) — 

Combined Impact of COVID-Related Changes 

Lower Estimate 0.13 (0, 0.29) 1634.5 (1533.8, 1743.9) -3438.9 (-3452.0, 2994.5) 

Estimate 0.25 (0.05, 0.49) 1661.5 (1547.4, 1773.4) -2226.5 (-2382.5, -2121.4) 

Upper Estimate 0.33 (0.10, 0.59) 1717.4 (1608, 1823.9) 292.7 (344.5, 152.2) 

Isolated Impact of COVID-Related Changes 

Sexual Acts 0.24 (0.05, 0.49) 1614.5 (1507.2, 1724) -4341.8 (-4192.8, -4345.0) 

Condom Use 0.4 (0.15, 0.69) 1715 (1604.4, 1832.1) 186.2 (184.5, 523.6) 

HIV Testing 0.39 (0.15, 0.68) 1721.5 (1612.9, 1833.8) 475.2 (564.7, 599.4) 

PrEP Use 0.4 (0.15, 0.69) 1763.3 (1659.9, 1882.6) 2360.3 (2683.2, 2794.6) 

*Rate per 100 person-years at risk during May 2020. 

**Cumulative incidence over 5 year period (from March 2020–March 2025) per 100,000 MSM. 
†Difference, compared to base scenario, in 5-year cumulative incidence (March 2020–March 2025) for full 
US MSM population (approximately 4,503,080 MSM).181 

 

Figure 3.1. Estimated HIV Incidence among US MSM over 500 Simulations, Compared to Base 

(No COVID Pandemic) Scenario, 2019–2021. 

 

 
Abbreviations: MSM, gay, bisexual, and other men who have sex with men; PYAR, person-years at risk 
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Figure 3.2. Isolated and Combined Impacts of Sexual Acts, Condom Use, PrEP Use, and HIV 
Testing Changes on HIV Incidence among US MSM, Compared to Base (No COVID Pandemic) 
Scenario, Over 500 Simulations, 2019–2021 

 

Abbreviations: PrEP, pre-exposure prophylaxis; MSM, gay, bisexual, and other men who have sex with men; PYAR, person-years at 
risk 
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Figure 3.3. Comparison of Model-Based HIV Incidence Estimation and Quarterly HIV 
Diagnoses with Male-to-Male Sexual Contact Transmission,147 2019–2021 

 

 
Abbreviations: MSM, gay, bisexual, and other men who have sex with men; PYAR, person-years at risk 
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Figure 3.4. Comparison of HIV Tests, Positive HIV Tests, and HIV Test Positivity, Over 500 
Simulations, January 2020–April 2021 

 
Note: The sudden sharp drops/spikes in all HIV tests are due to PrEP-based testing patterns. The model uses an 
interval-based approach where it is retesting with a testing interval of 12.86 weeks. This follows from PrEP guidance 
that individuals who are HIV-negative and take PrEP to prevent HIV acquisition should test quarterly. 
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Figure 3.5. Estimated HIV Incidence among US MSM, Incorporating COVID-Related Changes 
Through Mid-2021, Compared to Base (No COVID Pandemic) Scenario, over 500 Simulations, 
2019–2030 

 

 
Abbreviations: MSM, gay, bisexual, and other men who have sex with men; PYAR, person-years at risk 
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Figure 3.6. Range of Estimated HIV Incidence Generated from Upper, Middle, and Lower 
Estimates of Sexual Behavior and Service Utilization Changes among US MSM, Over 500 
Simulations, 2019–2021 

 

 
Abbreviations: MSM, gay, bisexual, and other men who have sex with men; PYAR, person-years at risk 
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Figure 3.7. Estimated PrEP Coverage among Eligible US MSM Resulting from Incorporating 
COVID-Related Changes Through Mid-2021, Over 500 Simulations, 2019–2021 

 

 
PrEP coverage is calculated as the proportion of PrEP eligible MSM not known to be living with HIV with current PrEP 
use. 
Abbreviations: PrEP, pre-exposure prophylaxis; MSM, gay, bisexual, and other men who have sex with men; PYAR, person-years at 
risk  
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Figure 3.8. Estimated PrEP Coverage among Eligible US MSM Resulting from Incorporating 
COVID-Related Changes Through Mid-2021, Over 500 Simulations, 2019–2021 

 
PrEP coverage is calculated as the proportion of PrEP eligible MSM not known to be living with HIV with current PrEP 
use. 
Abbreviations: PrEP, pre-exposure prophylaxis; MSM, gay, bisexual, and other men who have sex with men; PYAR, person-years at 
risk 
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Chapter 4. Assessing the Epidemiologic Impact of Home-Based HIV 

Prevention Interventions During the COVID-19 Pandemic 

 

ABSTRACT 

BACKGROUND 

Home-based HIV prevention interventions may help address reductions in HIV prevention 

services caused by the COVID pandemic. Several home-based interventions focused on PrEP 

use and HIV testing have recently been developed outside of a pandemic context. However, 

their potential population-level impact within a pandemic context has not yet been assessed. 

METHODS 

In our review of CDC’s Compendium of Evidence-Based Interventions and Best Practices for 

HIV Prevention: Prevention Research Synthesis we identified two interventions for MSM with a 

PrEP retention component and two with an HIV testing component designed that were not 

delivered in in-person clinics. We used intervention efficacy estimates and data on changes of 

HIV-related behaviors during the COVID pandemic to parameterize a network-based model of 

HIV transmission among Atlanta MSM. Model scenarios were designed to represent COVID-era 

changes in sexual behavior and service utilization, and investigate the isolated epidemiologic 

impact of these home-based HIV testing and PrEP retention interventions with varying levels of 

intervention coverage, length, persistence, and efficacy. 

RESULTS 

Decreases in rates of HIV testing and PrEP use resulting from the COVID pandemic disruptions 

could be partially offset by the HIV testing and PrEP retention interventions when interventions 

had 20% coverage of the eligible population and lasted for one year. However, these 
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interventions had minimal impact on overall HIV incidence when examined in isolation. In order 

for a single intervention to yield meaningful reductions in HIV transmission in a pandemic 

context, an intervention would need to be significantly scaled up in terms of coverage, length, 

and post-intervention persistence, or its efficacy would need to improve. 

CONCLUSIONS 

Home-based interventions can play a role in offsetting pandemic-related changes to HIV 

prevention services. However, because in isolation interventions do not have a major impact on 

population-level HIV transmission in the context of reduced population-level sexual activity, 

interventions may need to be combined and/or scaled up to translate to meaningful impacts in 

pandemic-era transmission. 

 

INTRODUCTION 

The COVID-19 pandemic has created new challenges to the control and prevention of 

HIV. Alongside behavioral changes to sexual behavior resulting from more general patterns of 

social distancing during the early COVID era, widespread interruptions to HIV prevention 

services have been noted. The impact of the COVID pandemic on HIV clinical care and viral 

load suppression was a concern early in the pandemic,50 but several reports have shown that 

HIV viral load was not greatly impacted by the pandemic due to limited impacts on HIV clinical 

care and treatment.161,176,177,179 However, some HIV prevention services were interrupted. 

For HIV testing, several reports documented MSM not being able to access HIV testing 

services during the COVID pandemic.45,49,161 In one study, an estimated 67% of MSM not known 

to be living with diagnosed HIV reported barriers to obtaining an HIV test in April 2020.161 In 

another study that used data from 60 state and local health departments, a 46% reduction in the 

number of HIV tests conducted in 2020 compared to 2019 was observed.167 Overall across the 
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US, it is estimated that hundreds of thousands of HIV screening tests were either delayed or 

skipped during 2020.195 

Regarding PrEP, there were reports of MSM experiencing trouble accessing PrEP: in 

one study in April 2020, 20% of PrEP-using MSM reported trouble getting PrEP prescription and 

27% reported trouble getting their PrEP prescription filled at the pharmacy.45,161 Both new PrEP 

users and PrEP prescriptions decreased during the COVID pandemic.174 These interruptions 

are of particular concern in US areas with a high burden of HIV. In 2019, among all US states 

(not including the District of Columbia), Georgia had the highest rate of HIV diagnoses in the 

US, with the majority of these diagnoses occurring in the Atlanta metropolitan area.3,132 

COVID-19-related interruptions to HIV prevention and clinical care may increase the rate 

of HIV acquisition and transmission. For example, reduced access to PrEP for indicated 

persons can lead to additional risk of HIV acquisition, and reduced HIV testing can lead to more 

undiagnosed HIV, and therefore more population-level risk of HIV transmission as newly 

infected individuals do not know their HIV status (and therefore may not take precautions to 

prevent transmitting it to others) and cannot then seek treatment to become virally suppressed 

(and are therefore infectious). 

Home-based HIV prevention approaches may have curtailed the impact of the pandemic 

on HIV transmission. Such approaches could include home-based HIV testing and telehealth 

services for PrEP initiation or retention.196,197 Home-based self-testing is an effective HIV 

screening method for MSM that can facilitate access to PrEP, antiretroviral treatment, and other 

prevention services.38,198 Currently, the only FDA-approved HIV self-test currently available in 

the United States is an oral fluid test.80 Home-based PrEP services may include home-based 

PrEP eligibility screening, telehealth visits for PrEP care, HIV prevention counseling, PrEP 

education, support for PrEP adherence, or home-based HIV self-testing.196 These home-based 
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interventions could potentially be used to offset decreased access or availability of clinic-based 

HIV prevention services. 

However, because resources are finite, population-level projection modeling is needed 

to estimate the impact of home-based HIV prevention interventions on the HIV epidemic. This 

information may be used in order deploy the most impactful interventions. Randomized 

controlled trials (RCTs) have been completed on several home-based HIV prevention 

interventions outside of a pandemic context to assess home-based intervention efficacy,196 but 

the impact of these interventions in a real-world pandemic setting has not yet been quantified. 

Studies which determine the impact of certain home-based HIV prevention services on HIV 

transmission among MSM are needed. These studies can help fill the gap in the literature 

regarding the unknown effectiveness of home-based HIV prevention approaches on HIV 

transmission in pandemic settings. 

 In this study, we use efficacy data from home-based RCTs of HIV testing and PrEP 

retention interventions to parameterize a network-based mathematical model to estimate the 

population impact of these interventions among Atlanta MSM in the context of the COVID-19 

pandemic. Empirical data were used in order to represent COVID-related changes to HIV 

prevention behaviors; home-based interventions were introduced within this setting. This 

allowed us to assess the epidemiologic impact of individual home-based HIV prevention 

interventions on HIV transmission during the COVID-19 pandemic. 

 

METHODS 

Study Design. This model of HIV transmission dynamics for US MSM was built on the EpiModel 

software platform.171 EpiModel simulates HIV epidemics over dynamic contact networks of US 

MSM using temporal exponential random graph models (TERGMs).172 Specific model 
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extensions were built to: 1) simulate HIV transmission among MSM during the COVID pandemic 

to estimate the impact of reported COVID-related changes in sexual behavior and HIV clinical 

services on HIV transmission during the COVID pandemic period (March 2020–January 2021); 

and 2) simulate the selected home-based HIV prevention interventions. Our goal was to 

represent COVID-related changes to HIV prevention behaviors, so that the effectiveness of 

home-based HIV prevention interventions could be assessed in this setting. 

Network Model. Components of the model representing sexual network structure were fit using 

data from ARTnet, a cross-sectional web-based study of US MSM conducted between 2017 

and 2019.91 ARTnet participants were recruited through the annual American Men’s Internet 

Survey (AMIS) study.124 ARTnet eligibility criteria included male sex at birth, current male 

cisgender identity, lifetime history of sexual activity with another man, and age between 15 and 

65 years. The use of ARTnet data in EpiModel network models has been described 

previously.67,173 

Our model represented main, casual, and one-time sexual partnerships. Age and 

race/ethnicity mixing, the formation and dissolution of persistent partnerships, and the rate of 

one-time partnership formation were represented based on ARTnet data. Behavior within sexual 

partnerships, including the rate of intercourse per partnership per time step, condom use per 

sexual act, and sexual role were modeled based on individual and partnership characteristics, 

with probabilities estimated from ARTnet data. 

The model also represented demography of the population, HIV interhost epidemiology 

(disease transmission), HIV intrahost epidemiology (disease progression), and HIV clinical 

epidemiology.91 Demography included aging, entries, and exits. HIV interhost epidemiology 

included HIV transmission (per-act transmission probability). HIV intrahost epidemiology 

represented HIV disease progression, including HIV viral load progression, within HIV-positive 
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individuals. HIV clinical epidemiology included disease diagnosis, ART initiation, ART 

adherence and viral load suppression, and AIDS disease progression and mortality.  

The HIV prevention care cascade and HIV care continuum were both represented in the 

model. The HIV prevention continuum consisted of HIV testing, PrEP initiation, PrEP 

adherence, and persistence in PrEP care for daily oral tenofovir/emtricitabine.23 Weekly pre-

COVID HIV testing rates were race-stratified and determined by ARTnet HIV testing rates, 

surveillance data on diagnosed fraction of HIV-infected MSM, and model calibration.33,91 After 

testing negative for HIV, MSM who met indications for PrEP based on CDC guidelines were 

eligible to start PrEP.18 They then started PrEP based on an initiation probability generating a 

coverage level of approximately 30%, which approximates Atlanta estimates of PrEP 

coverage.33 Heterogeneity in PrEP adherence was modeled, with 78% of PrEP users reaching a 

high-adherence level that resulted in a 99% relative reduction in HIV acquisition risk. Pre-

COVID PrEP discontinuation was based on estimates of the proportion of MSM who were 

retained in PrEP care at 6 months,141 and weekly pre-COVID PrEP discontinuation rates were 

0.0048, 0.0041, 0.0058, for Black, Hispanic, and White/other MSM in Atlanta, respectively.  

COVID-era and post-COVID-era PrEP discontinuation was based on the number of 

PrEP prescriptions over time in a national pharmacy database (IQVIA Real World Data—

Longitudinal Prescriptions Database).174 PrEP care consisted of routine HIV and STI screening. 

For the HIV care continuum, MSM initiated ART after testing positive for HIV. ART lowered their 

HIV viral load and increased their longevity. Lower viral load with sustained ART use was 

associated with a reduced probability of HIV transmission per act. HIV transmission probability 

was also modified by PrEP use, condom use, sexual position, and circumcision. Additional full 

methodological details of HIV interhost, intrahost, and clinical epidemiology; network generation; 

parameter selection; calibration; and modeling are provided in the Supplemental Appendix.  
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Modeling COVID-19-Related Impacts. Changes in sexual behavior and condom use among 

MSM during March 2020–January 2021 were included in the model. These changes were 

parameterized based on behavioral data from the AMIS COVID Impact Survey and the Love 

and Sex in the Time of COVID studies. Although these were national surveys, we assumed that 

they approximated Atlanta MSM behavior. The AMIS COVID-19 Impact Survey collected data 

on sexual distancing and HIV service utilization/care engagement from 1,051 US MSM at three 

time points during the COVID-19 pandemic: April, July, and September–December 2020.45 The 

Love and Sex in the Time of COVID-19 survey also collected data from 696 US MSM on sexual 

distancing and HIV service utilization/care engagement during the COVID-19 pandemic, at two 

time points: April–May 2020 and November 2020–January 2021.49  Where applicable, such as 

for sexual behavior by partnership type, sexual behavior parameters were standardized using 

the proportions of partnership types obtained from the ARTnet study. This approach allowed us 

to stratify COVID-era sexual behavior results to best map to EpiModelHIV partnership-stratified 

parameters. Because these surveys did not collect data in all months of the COVID pandemic 

(e.g., in August 2020, between July 2020 and September 2020 AMIS COVID-19 Impact Survey 

time points), we assumed that during these periods, changes in outcomes were steady and 

continuous. Therefore, where applicable between survey points, we implemented weekly 

gradual changes in model parameters (e.g., to fill the gap in COVID-19 Impact Survey data, 

outcomes steadily changed in magnitude by week in August 2020). Full details on all parameter 

estimates, ranges, sources, and calculations (where applicable) are included in the 

Supplemental Appendix. 

Before implementing COVID-related changes, we first ran a base scenario in which we 

assumed model parameters remained at their 2019 levels for the full model simulation period. 

Changes in HIV prevention and clinical care services, including race-stratified HIV testing and 

PrEP use rates, were incorporated from March 2020–April 2021 as indicated by national 
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estimates of HIV screening tests from three overlapping data sources (Health Resources and 

Services Administration’s Uniform Data System, CDC’s National HIV Prevention Program 

Monitoring and Evaluation system, National Syndromic Surveillance Program’s commercial 

laboratory data)175 and PrEP prescriptions and new PrEP users in national pharmacy database 

(IQVIA Real World Data—Longitudinal Prescriptions Database).174 Changes in ART initiation, 

ART adherence and viral load suppression, and AIDS disease progression were not 

incorporated during the pandemic, since meaningful changes in ART use among men living with 

diagnosed HIV were not observed in either the AMIS COVID Impact Survey nor the Love and 

Sex in the Time of COVID study, nor in external reports examining ART prescriptions during the 

COVID pandemic.176–178 

Because we found that in a subset of individuals (in both the AMIS COVID Impact 

Survey and the Love and Sex in the Time of COVID study), decreases in sexual behavior 

occurred alongside decreases in HIV testing and/or PrEP use, we introduced a behavior 

changer feature/attribute into our model. This feature allowed us to modify persistent 

partnership act rates and one-time partnership formation rates alongside HIV testing and PrEP 

use in the same group of individuals. Modification rates were determined from our primary data 

sources (additional details are in the Supplemental Appendix). 

Sexual distancing and clinical care interruptions were integrated into the model by 

changing the appropriate parameters for behavior and HIV prevention and clinical services use. 

Because at the time of this study, data on the sexual behavior and HIV testing of US MSM was 

not available after April 2021, we assumed parameters reverted to their pre-pandemic value in 

the latter half of 2021 and did not change after 2021 (though for PrEP and HIV testing, data has 

shown that PrEP use and HIV testing have returned to and/or exceeded pre-pandemic 

levels).180 Our modeling and analytic code is available in a Github repository at 

https://github.com/EpiModel/COVIDHIVAim3 [to be renamed/made public]. 



96 
 

 

 

Home-Based HIV Prevention Interventions. We searched the CDC’s Compendium of Evidence-

Based Interventions and Best Practices for HIV Prevention: Prevention Research Synthesis 

(PRS) Compendium Intervention199 for HIV testing and PrEP interventions that were intended 

for MSM that were not delivered in in-person clinics. We identified three interventions that met 

our search parameters that were solely home-based: M-CUBED (Mobile Messaging for Men) 

(PrEP retention and HIV testing only),200 DOT Mobile App (PrEP retention only),201 and eSTAMP 

(Evaluation of Rapid HIV Self-testing Among MSM Project) (HIV testing only).202 A full 

description of each intervention is available in Table 4.1. M-CUBED did have addition clinic-

based components, such as PrEP initiation, so we only focused on its PrEP retention and HIV 

testing components for this model. Since there were two interventions for both the testing and 

PrEP retention, this allowed us to give a range of effectiveness estimates for both HIV testing 

and PrEP. We did not focus on PrEP adherence because previous studies have found that 

PrEP adherence and persistence are interlinked, such that those who persist generally have 

high adherence.203 

We translated the efficacy of the intervention RCT data into model parameters for HIV 

testing and PrEP retention by adjusting race/ethnicity-stratified HIV testing rates and PrEP 

discontinuation rates, respectively, by an RCT-sourced modifier. The details of these 

modifiers/calculations are shown in Table 4.2. Although the RCTs did not provide race-specific 

efficacy data, because we applied these modifiers to baseline race/ethnicity-stratified rates, we 

still were able to account for differences in HIV screening and PrEP retention by race/ethnicity 

(i.e., we did not have to assume rates were the same for all race/ethnic groups). Rates were 

adjusted weekly because HIV testing rates and PrEP discontinuation rates continuously 

changed through the COVID pandemic. Intervention discontinuation rates were incorporated 

based on RCT retention rates (as described in Table 4.2).200–202 
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For the standard scenarios, all interventions were assumed to be deployed for one year 

for 20% of the eligible population. For HIV testing, that was 20% of all HIV-negative MSM, and 

for PrEP retention, that was 20% of MSM currently using PrEP. Although in the DOT, M-

CUBED, and eSTAMP RCTs the interventions had a length of 6 weeks, 3 months, 12 months, 

respectively, but because we expect the real-world implementation of these interventions is not 

the same as the RCT length, we assumed a length of one year to better observe intervention 

effects. For PrEP retention interventions only, we assumed the intervention had a persistence of 

one year. This meant that after the intervention ended for any individual, PrEP discontinuation 

rates gradually returned to their pre-intervention levels for intervention participants after one 

year. We included this post-intervention persistence effect to represent retained PrEP education 

gained from the PrEP interventions. We did not assume any intervention persistence for HIV 

testing interventions because of the resource constraints that intervention participants would 

face post-intervention (i.e., they would have to buy home-based HIV testing kits since they were 

no longer mailed to them). For all scenarios, the interventions were assumed to start two weeks 

after the onset of the COVID pandemic in mid-March 2020. This was chosen so that we could 

model the lag time between pandemic-induced intervention need and intervention deployment. 

 Sensitivity analyses were used to determine how varying the population coverage, 

length of intervention, and persistence of intervention may impact the impact of the intervention 

on HIV testing, PrEP use/retention, and HIV incidence. In order to compare the epidemiologic 

impact of the interventions, we ran an additional base scenario (separate from the base 

scenario of no COVID pandemic) of no intervention. 

We additionally ran scenarios that explored how modification of HIV testing rates and 

PrEP discontinuation rates by set values could impact our outcomes. For this subset of 

analyses, we assumed that interventions had 50% coverage, a length of one year, and 

persistence of one year (for PrEP retention intervention only). This allowed us to determine what 



98 
 

 

 

level of effectiveness an HIV testing or PrEP retention intervention would need to have on HIV 

testing rates and PrEP discontinuation rates to approach a meaningful impact on HIV 

transmission. All intervention effects were run in isolation (i.e., we did not estimate the combined 

intervention effects). 

Calibration and Simulation. The model was calibrated with a Bayesian approach that defined 

prior distributions for parameters and fit the model to empirical surveillance-based estimates of 

diagnosed HIV for all Atlanta MSM in 2019. After calibration, we simulated the model 500 times 

and summarized the distribution of results with medians and 95% simulation intervals (SIs). 

COVID-related model scenarios were compared to the baseline (no COVID) scenario in order to 

assess how the COVID pandemic affected HIV transmission, relative to a no pandemic state. 

The primary outcomes were HIV incidence per 100 person-years at risk (PYAR), three-

year cumulative incidence per the total HIV-susceptible MSM population in Atlanta (sexually 

active HIV-negative MSM in Atlanta was approximately 87,723 MSM),6 the number of infections 

averted among the total HIV-susceptible MSM population in Atlanta (relative to a scenario in 

which there was no intervention), the total person-time on PrEP over a three-year period (per 

the HIV-susceptible MSM population of Atlanta), the excess (additional) person-time on PrEP 

(relative to a scenario in which there was no intervention), the total number of HIV tests over a 

three-year period (per the HIV-susceptible MSM population of Atlanta), and the excess 

(additional) number of HIV tests (relative to a scenario in which there was no intervention). 

Because of the stochastic framework of our model, 95% simulation intervals were calculated for 

all primary outcome measures along with simulation medians. 

 

RESULTS 
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Among Atlanta MSM, the COVID pandemic resulted in reductions in model-simulated 

HIV testing and PrEP coverage (Figures 4.1, 4.2, 4.3) during 2020–2023, consistent with 

empirical data used to parameterize the model. During March–December 2020, the COVID 

pandemic increased the number of MSM stopping PrEP, but it then decreased the number of 

MSM stopping PrEP during 2021–2023 (Figure 4.4). Overall, the COVID pandemic decreased 

HIV transmission among Atlanta MSM (Figure 4.5), with the largest relative decrease 

(compared to a no pandemic scenario) occurring in May 2020 (HIV incidence of 0.66 (95% SI: 

0.29, 1.09) and 1.01 (95% SI: 0.57, 1.55), respectively) (Table 4.3). 

Neither implementation of a PrEP retention intervention nor a HIV testing intervention 

resulted in reduced HIV incidence in a pandemic context. For HIV testing, both eSTAMP and M-

CUBED increased the number of HIV tests: over a three-year period following its start, eSTAMP 

generated 5,463 (95% SI: 3,440, 7,494) additional completed HIV tests among Atlanta MSM, 

whereas M-CUBED generated 2,238 (95% SI: 237, 4,058) (Figure 4.1). However, neither 

eSTAMP nor M-CUBED (HIV testing only) had meaningful impacts on HIV incidence, and only 

averted 19.6 (95% SI: -75.4, 118.0) (1.0% infections averted) and 13.2 (95% SI: -75.3, 107.5) 

(0.7% infections averted) HIV infections, respectively, over a three-year period. For PrEP, both 

DOT and M-CUBED increased the number of MSM currently on PrEP and PrEP coverage 

compared to a no intervention scenario. DOT and M-CUBED generated an additional 24,058 

(95% SI: 1,020, 46,745) and 7,552 (95% SI: -15,021, 29,005) person-years on PrEP among 

Atlanta MSM over a three-year period (Figure 4.2, 4.3, 4.4). However, neither DOT nor M-

CUBED (PrEP retention only) had meaningful impacts on HIV incidence, and only averted 7.8 

(95% SI: -89.8, 111.1) (0.4% infections averted) and 3.4 (95% SI: -94.4, 107.3) (0.2% infections 

averted) HIV infections, respectively, over a three-year period. 

Increasing the coverage, length, and persistence of the PrEP retention interventions only 

minimally increased the effectiveness of the interventions. While increasing the coverage of 
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DOT from 10% to 50% increased the total person-time on PrEP from 1,445,029 to 1,491,773 

over a three-year period, a 3.2% increase, this did not translate to a change in HIV incidence 

during the pandemic nor cumulative incidence over a three-year period (Figure 4.6). For M-

CUBED, increasing its coverage from 10% to 50% increased the total person-time on PrEP from 

1,435,609 to 1,451,002 over a three-year period, a 1.1% increase, but this did not ultimately 

affect HIV incidence during the pandemic nor cumulative incidence over a three-year period. 

The same was true for increasing the length or persistence of the interventions (Figure 4.7, 

Figure 4.8). 

Similarly, increasing the coverage and length of the HIV testing interventions did not 

have a meaningful impact on HIV transmission. These changes only minimally increased the 

effectiveness of the interventions. While increasing the coverage of eSTAMP and M-CUBED 

from 10% to 50% increased the number of HIV tests from 171,880 to 182,785 and 170,254 to 

174,766 over a three-year period (a 6.3% and 2.6% change), respectively, HIV incidence and 

cumulative incidence were not affected by these interventions (Figure 4.9). Increasing the length 

of the HIV testing interventions eSTAMP and M-CUBED from 6 weeks to 2 years did prevent 

32.3 and 12.0 HIV cumulative infections among Atlanta MSM, however simulations intervals 

were wide and overlapped (Figure 4.10). 

In exploring how intervention efficacy may impact HIV transmission in a meaningful way, 

we found that reducing PrEP discontinuation by 50% or more would avert infections, but only a 

few (12.9 (95% SI: -81.6, 109.5) over a three-year period). The number of infections averted 

increased in a stepwise fashion for further decreases in PrEP discontinuation (Figure 4.12). For 

HIV testing, increasing the weekly rate of HIV testing would avert HIV infections, but doubling it 

would only avert 1.1% of infections, and modifying it by 5, 10, and 25 would avert 3.4%, 5.4%, 

and 8.2% of infections only (Figure 4.11).  



101 
 

 

 

 Although the impact of the interventions was assessed in isolation, we did observe that 

the HIV testing intervention affected PrEP use, and vice versa. For example, increasing the 

coverage, length, and persistence of the PrEP interventions all independently increased the 

number of HIV tests completed. On the other hand, increasing the coverage and length of the 

HIV testing interventions actually decreased the total person-time on PrEP. However, these 

effects were all small with overlapping SIs. 

 

DISCUSSION 

In this study, we assessed the epidemiologic impact of the home-based HIV testing 

and/or PrEP retention interventions DOT, eSTAMP, and M-CUBED during the COVID 

pandemic. We found that although these home-based interventions were effective at increasing 

PrEP use and HIV testing, they had minimal impact on HIV incidence. In order for isolated 

intervention effects to translate into more meaningful reductions in HIV transmission in a 

pandemic context, they would need to be scaled up in terms of coverage, length, and post-

intervention persistence, and/or their efficacy would need to improve. 

Our results align with previous studies showing that changes in HIV prevention 

parameters (and therefore HIV prevention interventions) have very minimal impact on HIV 

transmission. For example, one study found that general reductions in ART adherence may 

have a more severe impact on HIV incidence than reductions in other HIV prevention measures, 

such as PrEP use.67 Additionally, in the context of the COVID pandemic, modeling studies have 

shown that changes to viral load may have the most impact on HIV incidence. One study based 

in China found that new HIV infections would be increased most by disruptions to viral 

suppression, compared to disruptions in HIV testing, ART initiation, and condom use.101 A study 

focused on Baltimore MSM found that maintaining access to ART and adherence support 
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should be the priority to minimize excess HIV-related mortality.69 These studies complement the 

findings of Jenness et al. that reductions in ART adherence during the COVID pandemic may 

have more relative impact on HIV incidence among Atlanta MSM than reductions in other HIV 

prevention measures.67 HIV viral load interventions could include telehealth services, multi-

month ART prescriptions, home-based HIV testing, and potential home-based HIV viral load 

tests. However, since there were not significant changes to HIV viral load during the pandemic, 

development of HIV care retention interventions would be unlikely to impact transmission in a 

pandemic context. The impact of such interventions should be studied however outside of a 

pandemic context. 

 In our sensitivity analyses, we explored how varying intervention coverage, length, or 

post-intervention persistence may increase the effectiveness of DOT, eSTAMP, and M-CUBED. 

We found that although differences in coverage, length, and persistence did slightly lower HIV 

incidence, it did not translate to meaningful changes in incidence. This is not necessarily 

surprising given that changes in HIV prevention services during a pandemic has only small 

impacts on HIV transmission, and that the interventions were examined in isolation. Although 

some of the interventions, for example M-CUBED, have multiple HIV prevention components to 

them, we chose to examine the effects independently in order to measure how important 

individual components are for home-based HIV prevention interventions. Future studies should 

examine how combined home-based interventions (e.g., interventions that provide a 

combination of home-based PrEP care, HIV testing, HIV care, etc.) may impact HIV 

transmission, both in and out of a pandemic context. 

We also explored how varying the efficacy of theoretical home-based PrEP retention and 

HIV testing interventions may impact HIV transmission. Even when the efficacy of such 

interventions was dramatically increased, for example increasing the HIV testing rate by 25 

times its baseline value, we still do not see major changes in HIV transmission. In order for 
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these interventions to have an effect on HIV transmission, they first must be effective in 

increasing PrEP/HIV testing. Then, the population-level increases in PrEP/HIV testing must 

translate into a decrease in HIV transmission. For PrEP, this can occur because PrEP is very 

effective at preventing HIV acquisition,18 and having more people on PrEP means that less 

people in a population are susceptible to HIV. However, for this to translate to a decrease in HIV 

transmission, these additional individuals remaining on PrEP (relative to not having the 

intervention and discontinuing PrEP) must actively be at risk of HIV transmission; that is, they 

need to have unprotected sex with a non-virally-suppressed sexual partner living with diagnosed 

or undiagnosed HIV.  

Because the COVID pandemic did not cause population-level changes to viral 

suppression,177,204 but did decrease sexual behavior,49,155,161,177 particularly with non-main 

partners (i.e., decreased sexual risk behavior), there was less likelihood during the COVID 

pandemic that an individual not on PrEP would acquire HIV. This may explain why we did not 

see reductions in PrEP discontinuation translate into reductions in HIV incidence.  

For HIV testing, increased HIV testing would impact HIV incidence if the increased 

testing diagnoses individuals who would otherwise go undiagnosed until and after their 

incubation period (to the point that their viral load causes them to be infectious), and then 

spread HIV to others via unprotected intercourse with HIV-negative partners not currently on 

PrEP. However, if increased HIV testing is mostly occurring in individuals who already undergo 

routine HIV screening, or who are not at risk of HIV (either by PrEP use or by a lack of sexual 

risk behavior), then this would not translate into meaningful changes in HIV incidence. Further, if 

undiagnosed individuals are experiencing a reduction in sexual activity, such as that 

experienced during the COVID pandemic by the majority of MSM,161 there is less of an 

opportunity to newly infect another individual. Therefore, even if HIV testing rates increase, this 

does not necessarily mean that it will translate to changes in transmission. 
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It is possible that if these interventions were targeted to those most at risk of HIV 

acquisition, they may have had more of a real-world impact. There are disparities in the risk of 

HIV across demographic groups of MSM: historically and in present day, Black and Hispanic 

MSM have been the populations most disproportionately impacted by HIV.3 This is a result of 

social and structural factors, including but not limited to structural racism, lack of access to 

quality health care, provider bias, discrimination, and poverty, which exist in the environments in 

which sexual risk behaviors occur.12,156 This is particularly relevant in the southern US, where 

there is a higher concentration of Black MSM. In a 2016 analysis of CDC-funded HIV testing 

data from 20 different Southern health department jurisdictions, Black MSM received only 6% of 

HIV tests provided at community-based facilities, despite making up 36% of new diagnoses at 

these non–health care facilities.205 However, this is not just an issue with HIV testing. For PrEP, 

MSM who are indicated for but not currently on PrEP are more likely to be Black.194 If home-

based interventions were targeted towards these groups, it is possible that they may have more 

impact on HIV transmission. 

One interesting finding from our analysis was that increasing the coverage, length, and 

persistence of the PrEP interventions all slightly increased the number of completed HIV tests. 

This is likely due to the increased HIV testing (reduction in HIV screening interval) required to 

maintain PrEP: the clinical guidelines is that HIV testing should be repeated at least every 3 

months after PrEP initiation.206 Further, we found that increasing the coverage and length of the 

HIV testing interventions actually decreased the total person-time on PrEP. This may be 

because with increased HIV testing, the time to HIV diagnosis is reduced, which means people 

may be on PrEP for less time. However, this would only impact individuals with low PrEP 

adherence, since those with high PrEP adherence have a 99% relative reduction in HIV 

acquisition risk in our model (and are therefore essentially immune to HIV infection), so 

additional mechanisms may explain this finding. Moreover, these effects were all small with 



105 
 

 

 

overlapping SIs, so these results should be interpreted with appropriate skepticism—we cannot 

deduce that HIV testing interventions would worsen PrEP outcomes. 

Limitations. This study has several limitations. First, the effectiveness of the interventions were 

drawn from individual RCTs, all with different study periods, populations, and outcomes. Most of 

the intervention effects did not perfectly map onto model parameters. For example, the M-

CUBED study measured current PrEP use in the intervention and control groups and presented 

it as an adjusted OR, but did not measure weekly PrEP discontinuation. For the DOT study, we 

used a measure of PrEP adherence to estimate PrEP discontinuation. Although adherence 

does not map directly to PrEP discontinuation, studies examining trends of adherence over time 

have found that initial adherence is somewhat predictive of the likelihood of 

discontinuation.207,208 If the RCTs had measured the outcomes of weekly PrEP discontinuation 

rate and weekly rate of HIV testing, for both the intervention and control groups, and also 

provided these outcomes stratified by race/ethnicity, better model parameterization would be 

possible. In addition, our study used data on COVID-related impacts from sources of all US 

MSM to parameterize a model of Atlanta MSM. It is possible that geographic differences in the 

COVID pandemic and associated lockdown policies, as well as behavioral adaptations to the 

pandemic, differed between studies. However, since changes in HIV-related behaviors during 

the COVID pandemic did not statistically differ by geographic region (Appendix A: Chapter 2 

Supplementary Results), this may not have biased our model. Lastly, like all modeling studies, 

our results are subject to the limitations of the studies from which model parameters were 

sourced (e.g., selection biases or limited generalizability). 

Conclusions. This is the first study that uses home-based HIV prevention efficacy data within a 

dynamic model of HIV transmission to estimate the effectiveness of isolated potential 

interventions on Atlanta MSM during the COVID-19 pandemic. We provide evidence that 

although PrEP retention and HIV testing interventions are effective at increasing PrEP use and 
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HIV testing, their use does not equate to meaningful changes in HIV transmission in a pandemic 

context when their effects are isolated. Additional HIV prevention interventions, combination HIV 

prevention interventions, and targeted deployment of interventions may be needed to more 

effectively decrease HIV incidence in this context. 
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Table 4.1. Description of Home-based Interventions 

Intervention Intervention Type Intervention Description Source 

M-CUBED (Mobile 
Messaging for Men) 

PrEP Retention 

M-CUBED is an individual-level digital health intervention that uses a status 
neutral approach via a mobile app to address multiple HIV prevention and care 
needs for GBMSM. The app delivers tailored prevention messaging through 
content and videos depending on whether participants have higher risk factors 
for HIV or lower risk factors. It offers a suite of prevention and care services, 
including: self-screening for HIV and STI risk factors, scheduling and reminder 
system for routine HIV and STI testing, PrEP eligibility screener, non-
occupational post-exposure prophylaxis (nPEP) risk factor assessment tool, 
ordering platform for delivery of home-based HIV- and STI-screening kits, 
condoms, and lubricants, and service locators for testing, PrEP, nPEP, and HIV 
treatment and care. The duration of the study intervention was 3 months. 
Participants were in Atlanta, GA; Detroit, MI; and New York City, NY. 

Sullivan et 

al.200 

HIV Testing 

DOT Mobile App PrEP Retention 

DOT is a PrEP adherence mobile app that combines personalized PrEP pill 
reminders with positive psychology-based texts to encourage PrEP adherence 
and provide PrEP information. The DOT app uses three different text messaging 
types: Daily pill reminders, Alternating daily educational or motivational texts, 
Weekly text: “It’s PrEP every day and condoms every time.” The duration of the 
study intervention was 6 weeks. Participants mostly resided in Boston, MA. 

Weitzman et 
al.201 

eSTAMP (Evaluation of 
Rapid HIV Self-testing 
Among MSM Project) 

HIV Testing 

eSTAMP examines the effectiveness of distributing HIV self-test kits via the 
internet to MSM in the United States. Intervention participants are mailed two 
oral fluid and two finger-stick HIV self-tests and can order additional HIV self-
tests. Online videos on how to use HIV testing materials are also provided. 
Additionally, intervention participants have phone access to speak with an HIV 
counselor to discuss their HIV test results. Finally, participants are provided a 
link to AIDSvu.org that includes HIV prevention information and locations of local 
HIV testing services. 

MacGowan 
et al.202 
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Table 4.2. Epidemiological Model Parameters and Pre-COVID, COVID Onset, and Intervention Values 

Parameter 
Description 
(Base) 

Description 
(Interventio
n) 

Unit 
Base Value (Pre-
COVID)* 

Base Value 
(COVID Onset)* 

M-
CUBED 
Value 

DOT 
Value 

eSTAMP 
Value 

PrEP 
Discontinuati
on Rate 

PrEP 
discontinuation 
rate for 
Black/Hispanic/W
hite MSM. 

The rate of 
spontaneous 
discontinuati
on from 
PrEP per 
time step for 
those in the 
PrEP 
intervention. 

Weekly 
probabili
ty 

0.0207, 0.012, 
0.012 for 
Black/Hispanic/W
hite MSM, 
respectively 

0.02120, 0.01267, 
0.01259 for 
Black/Hispanic/W
hite MSM, 
respectively, 
then changes 
through the 
pandemic weeks 
(based on 
pandemic PrEP 
data) 

Using 
expit for 
current 
PrEP use, 
immediate 
posttest 
after 
interventio
n: 1.26; 
using 
modifier of 
0.7794 

The 
mean 
percentag
e of 
participan
ts who 
reported 
perfect 
(100%) 
PrEP 
adherenc
e 
significant
ly 
increased 
from pre- 
to post-
interventi
on (0.39 
vs. 0.72); 
using 
modifier 
of 
0.541666
7 

— 

PrEP 
Retention 
Intervention 
Drop-off 

— 

The rate of 
drop-off from 
the PrEP 
retention 
intervention 
per time 
step for 
those in the 
intervention. 

Weekly 
probabili
ty 

— — 

Retention 
was 1065 
of 1226 
(86.87%) 
at 3 
months; 
weekly 
drop-off 
rate of 
1.25% 

No 
attrition 
reported 
in study 
(0 of 54 
drop-
offs); 
weekly 
drop-off 
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based on 
3-month 
length 

rate set to 
0% 

HIV Testing 
Rate 

Mean probability 
of HIV testing per 
time step for 
Black/Hispanic/W
hite MSM, 
respectively. 

Mean 
probability of 
HIV testing 
per time 
step for men 
in the HIV 
testing 
intervention. 

Weekly 
probabili
ty 

0.0048, 0.0041, 
0.0058 for 
Black/Hispanic/W
hite MSM, 
respectively 

0.00367, 0.0030, 
0.0043 for 
Black/Hispanic/W
hite MSM, 
respectively 
then changes 
through the 
pandemic weeks 
(based on 
pandemic HIV 
testing data) 

Report of 
HIV 
testing 
immediate
ly post-
interventio
n (aOR = 
2.02); 
using 
modifier of 
2.02 

— 

HIV testing 
(number of 
any type of 
testing over 
12 months) 
was 
significantly 
higher 
among 
intervention 
participants 
than 
comparison 
participants: 
5.29 vs. 1.50 
tests; using 
modifier of 
3.5267 

HIV Testing 
Intervention 
Drop-off 

— 

The rate of 
drop-off from 
the HIV 
testing 
intervention 
per time 
step for 
those in the 
HIV testing 
intervention. 

Weekly 
probabili
ty 

— — 

Retention 
was 1065 
of 1226 
(86.87%) 
at 3 
months; 
weekly 
drop-off 
rate of 
1.25% 

— 

Retention 
rate of 
Participants 
who initiated 
any follow-up 
survey: 
74.7%; 
weekly drop-
off rate for 12 
week is 2.6% 

* Values are set during model calibration. See supplemental appendix for full details on model calibration including sourcing of target 

model parameters. 

 

Table 4.3. The Effect of COVID-Related Changes and PrEP Retention and HIV Testing Interventions Set to Various Coverage, 

Length, and Persistence Levels on Epidemiologic Outcomes, Over 500 Simulations 
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Inter- 
vention 

Scenari
o 

Incidence 
Rate,  

May 2020  
(95% SI)* 

3-Year 
Cumulative 
Incidence 

(95% SI)**,† 

Number 
Infections 
Averted  

(95% SI)†,‡  

Percent 
Infections 
Averted†,‡  

Total Person-
Time on PrEP 

Over 3 Years (in 
Weeks)† 
(95% SI) 

Relative 
Excess 

Person-Time 
on PrEP (in 
Weeks)†,§ 
(95% SI) 

Number of 
HIV Tests 

Over 3 Years† 
(95% SI) 

Relative 
Excess 

Number of 
HIV Tests†,|| 

(95% SI) 

  

No 
Inter-
vention 

0.66 (0.29, 
1.09) 

1,971.0 (1,870.4, 
2,066.0) 

—   
1,432,327 

(1,408,967, 
1,453,985) 

— 
169,132 

(167,200, 
170,951) 

— 

DOT 

Coverage 

10% 
0.65 (0.29, 

1.09) 
1,963.2 (1,867.6, 

2,060.2) 
7.79 (-89.17, 

103.43) 
0.40% 

1,445,029 
(1,422,536, 
1,466,887) 

12,581 (-9,912, 
34,439) 

170,027 
(168,099, 
171,828) 

880 (-1,048, 
2,681) 

20% 
0.65 (0.29, 

1.03) 
1,963.2 (1,860.0, 

2,060.9) 
7.82 (-89.84, 

111.05) 
0.40% 

1,456,462 
(1,433,424, 
1,479,149) 

24,058 (1,020, 
46,745) 

170,839 
(168,893, 
172,688) 

1,698 (-249, 
3,547) 

30% 
0.65 (0.29, 

1.03) 
1,961.1 (1,860.6, 

2,061.4) 
9.92 (-90.40, 

110.46) 
0.50% 

1,468,108 
(1,447,025, 
1,490,802) 

35,842 
(14,760, 
58,536) 

171,663 
(169,921, 
173,513) 

2,538 (796, 
4,388) 

40% 
0.64 (0.34, 

1.03) 
1,959.6 (1,861.4, 

2,054.0) 
11.39 (-82.96, 

109.67) 
0.58% 

1,480,218 
(1,457,078, 
1,500,357) 

47,885 
(24,745, 
68,024) 

172,513 
(170,544, 
174,256) 

3,380 (1,411, 
5,123) 

50% 
0.66 (0.34, 

1.03) 
1,958.2 (1,865.9, 

2,053.2) 
12.83 (-82.19, 

105.12) 
0.65% 

1,491,773 
(1,470,434, 
1,513,278) 

59,468 
(38,129, 
80,973) 

173,344 
(171,502, 
175,169) 

4,215 (2,373, 
6,039) 

Length 

6 
weeks 

0.65 (0.29, 
1.03) 

1,961.6 (1,860.8, 
2,053.4) 

9.41 (-82.38, 
110.25) 

0.48% 
1,448,714 

(1,426,295, 
1,473,466) 

16,272 (-6,146, 
41,024) 

170,299 
(168,511, 
172,329) 

1,153 (-634, 
3,183) 

3 
months 

0.65 (0.29, 
1.08) 

1,961.6 (1,866.6, 
2,060.0) 

9.38 (-88.95, 
104.45) 

0.48% 
1,451,180 

(1,429,699, 
1,474,799) 

18,895 (-2,587, 
42,513) 

170,473 
(168,718, 
172,423) 

1,345 (-410, 
3,296) 

6 
months 

0.65 (0.29, 
1.03) 

1,964.6 (1,866.9, 
2,061.0) 

6.41 (-89.98, 
104.15) 

0.33% 
1,452,931 

(1,430,005, 
1,476,457) 

20,456 (-2,470, 
43,982) 

170,603 
(168,768, 
172,479) 

1,454 (-381, 
3,329) 

12 
months 

0.65 (0.29, 
1.03) 

1,963.2 (1,860.0, 
2,060.9) 

7.82 (-89.84, 
111.05) 

0.40% 
1,456,462 

(1,433,424, 
1,479,149) 

24,058 (1,020, 
46,745) 

170,839 
(168,893, 
172,688) 

1,698 (-249, 
3,547) 

24 
months 

0.65 (0.29, 
1.04) 

1,963.0 (1,866.1, 
2,061.7) 

8.07 (-90.66, 
104.93) 

0.41% 
1,465,864 

(1,444,468, 
1,487,300) 

33,413 
(12,017, 
54,848) 

171,486 
(169,634, 
173,335) 

2,339 (487, 
4,188) 

Persistence of Intervention Effects (PrEP Interventions Only) 
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0 
months 

0.65 (0.29, 
1.09) 

1,964.0 (1,868.4, 
2,059.4) 

6.99 (-88.41, 
102.65) 

0.35% 
1,453,499 

(1,429,609, 
1,476,002) 

21,037 (-2,854, 
43,540) 

170,648 
(168,673, 
172,495) 

1,500 (-475, 
3,347) 

6 
months 

0.65 (0.29, 
1.08) 

1,960.9 (1,867.3, 
2,056.8) 

10.14 (-85.77, 
103.75) 

0.51% 
1,454,859 

(1,430,271, 
1,478,548) 

22,658 (-1,930, 
46,346) 

170,744 
(168,754, 
172,607) 

1,626 (-363, 
3,489) 

12 
months 

0.65 (0.29, 
1.03) 

1,963.2 (1,860.0, 
2,060.9) 

7.82 (-89.84, 
111.05) 

0.40% 
1,456,462 

(1,433,424, 
1,479,149) 

24,058 (1,020, 
46,745) 

170,839 
(168,893, 
172,688) 

1,698 (-249, 
3,547) 

24 
months 

0.66 (0.34, 
1.09) 

1,964.7 (1,870.4, 
2,061.5) 

6.28 (-90.44, 
100.60) 

0.32% 
1,459,186 

(1,434,432, 
1,481,217) 

26,890 (2,136, 
48,921) 

171,021 
(168,998, 
172,886) 

1,893 (-131, 
3,758) 

M-
CUBED 
(PrEP 

Retention 
Only) 

Coverage 

10% 
0.65 (0.29, 

1.03) 
1,967.9 (1,866.6, 

2,061.5) 
3.11 (-90.47, 

104.39) 
0.16% 

1,435,609 
(1,412,537, 
1,458,559) 

3,304 (-19,768, 
26,254) 

169,375 
(167,627, 
171,231) 

245 (-1,502, 
2,101) 

20% 
0.66 (0.34, 

1.08) 
1,967.6 (1,863.7, 

2,065.4) 
3.44 (-94.41, 

107.28) 
0.17% 

1,439,982 
(1,417,409, 
1,461,435) 

7,552 (-15,021, 
29,005) 

169,679 
(167,804, 
171,478) 

535 (-1,341, 
2,334) 

30% 
0.66 (0.29, 

1.09) 
1,967.2 (1,868.2, 

2,065.3) 
3.87 (-94.30, 

102.83) 
0.20% 

1,443,683 
(1,422,234, 
1,465,952) 

11,326 (-
10,123, 
33,595) 

169,924 
(168,186, 
171,762) 

788 (-950, 
2,626) 

40% 
0.65 (0.29, 

1.09) 
1,965.2 (1,872.0, 

2,065.4) 
5.83 (-94.36, 

98.99) 
0.30% 

1,447,243 
(1,425,907, 
1,470,640) 

14,870 (-6,465, 
38,268) 

170,180 
(168,382, 
172,107) 

1,043 (-756, 
2,970) 

50% 
0.64 (0.29, 

1.03) 
1,966.8 (1,868.3, 

2,065.5) 
4.18 (-94.47, 

102.68) 
0.21% 

1,451,002 
(1,428,235, 
1,474,072) 

18,544 (-4,223, 
41,614) 

170,427 
(168,567, 
172,286) 

1,280 (-581, 
3,138) 

Length 

6 
weeks 

0.65 (0.29, 
1.03) 

1,969.5 (1,871.4, 
2,067.7) 

1.51 (-96.72, 
99.67) 

0.08% 
1,440,786 

(1,417,493, 
1,463,568) 

8,339 (-14,954, 
31,121) 

169,729 
(167,808, 
171,591) 

582 (-1,338, 
2,444) 

3 
months 

0.65 (0.29, 
1.03) 

1,965.5 (1,863.6, 
2,066.8) 

5.54 (-95.73, 
107.39) 

0.28% 
1,441,590 

(1,418,518, 
1,463,056) 

9,289 (-13,784, 
30,755) 

169,779 
(167,994, 
171,560) 

650 (-1,136, 
2,431) 

6 
months 

0.66 (0.34, 
1.08) 

1,968.8 (1,871.4, 
2,069.3) 

2.19 (-98.26, 
99.63) 

0.11% 
1,440,515 

(1,417,376, 
1,462,838) 

8,049 (-15,089, 
30,372) 

169,713 
(167,852, 
171,634) 

564 (-1,297, 
2,486) 

12 
months 

0.66 (0.34, 
1.08) 

1,967.6 (1,863.7, 
2,065.4) 

3.44 (-94.41, 
107.28) 

0.17% 
1,439,982 

(1,417,409, 
1,461,435) 

7,552 (-15,021, 
29,005) 

169,679 
(167,804, 
171,478) 

535 (-1,341, 
2,334) 
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24 
months 

0.65 (0.34, 
1.09) 

1,964.7 (1,865.9, 
2,069.1) 

6.29 (-98.03, 
105.13) 

0.32% 
1,447,223 

(1,425,196, 
1,469,180) 

14,898 (-7,128, 
36,856) 

170,191 
(168,343, 
171,919) 

1,059 (-789, 
2,787) 

Persistence of Intervention Effects (PrEP Interventions Only) 

0 
months 

0.66 (0.29, 
1.04) 

1,967.9 (1,870.3, 
2,067.4) 

3.13 (-96.38, 
100.73) 

0.16% 
1,439,765 

(1,417,604, 
1,461,572) 

7,554 (-14,608, 
29,360) 

169,664 
(167,844, 
171,473) 

545 (-1,275, 
2,354) 

6 
months 

0.66 (0.29, 
1.08) 

1,966.5 (1,872.1, 
2,068.5) 

4.53 (-97.45, 
98.92) 

0.23% 
1,440,122 

(1,418,092, 
1,462,375) 

7,679 (-14,351, 
29,933) 

169,670 
(167,816, 
171,472) 

524 (-1,330, 
2,326) 

12 
months 

0.66 (0.34, 
1.08) 

1,967.6 (1,863.7, 
2,065.4) 

3.44 (-94.41, 
107.28) 

0.17% 
1,439,982 

(1,417,409, 
1,461,435) 

7,552 (-15,021, 
29,005) 

169,679 
(167,804, 
171,478) 

535 (-1,341, 
2,334) 

24 
months 

0.65 (0.29, 
1.04) 

1,968.1 (1,873.6, 
2,066.9) 

2.92 (-95.88, 
97.46) 

0.15% 
1,439,840 

(1,416,605, 
1,461,848) 

7,449 (-15,785, 
29,458) 

169,648 
(167,713, 
171,534) 

508 (-1,427, 
2,394) 

eSTAMP 

Coverage 

10% 
0.65 (0.29, 

1.03) 
1,956.0 (1,862.9, 

2,057.1) 
14.98 (-86.03, 

108.09) 
0.76% 

1,430,953 
(1,409,467, 
1,453,901) 

-1,411 (-
22,897, 
21,537) 

171,880 
(170,001, 
173,769) 

2,744 (864, 
4,632) 

20% 
0.65 (0.29, 

1.03) 
1,951.4 (1,853.1, 

2,046.5) 
19.63 (-75.43, 

117.96) 
1.00% 

1,429,188 
(1,404,886, 
1,453,795) 

-3,132 (-
27,435, 
21,474) 

174,594 
(172,572, 
176,626) 

5,463 (3,440, 
7,494) 

30% 
0.66 (0.29, 

1.04) 
1,940.7 (1,842.6, 

2,035.2) 
30.30 (-64.15, 

128.43) 
1.54% 

1,428,071 
(1,405,124, 
1,450,256) 

-4,310 (-
27,257, 
17,875) 

177,343 
(175,389, 
179,282) 

8,204 (6,251, 
10,143) 

40% 
0.64 (0.29, 

1.03) 
1,931.0 (1,832.5, 

2,027.3) 
40.02 (-56.32, 

138.50) 
2.03% 

1,425,802 
(1,402,560, 
1,449,236) 

-6,383 (-
29,626, 
17,051) 

180,018 
(178,145, 
181,879) 

10,903 
(9,030, 
12,763) 

50% 
0.65 (0.34, 

1.03) 
1,927.3 (1,835.8, 

2,022.3) 
43.76 (-51.29, 

135.25) 
2.22% 

1,424,708 
(1,401,784, 
1,446,846) 

-7,669 (-
30,594, 
14,469) 

182,785 
(180,843, 
184,671) 

13,647 
(11,705, 
15,532) 

Length 

6 
weeks 

0.65 (0.29, 
1.09) 

1,966.6 (1,871.4, 
2,061.0) 

4.43 (-89.94, 
99.62) 

0.22% 
1,433,383 

(1,409,621, 
1,458,569) 

910 (-22,852, 
26,096) 

169,558 
(167,622, 
171,609) 

409 (-1,527, 
2,459) 

3 
months 

0.66 (0.29, 
1.03) 

1,962.4 (1,868.1, 
2,056.9) 

8.67 (-85.92, 
102.87) 

0.44% 
1,432,715 

(1,408,696, 
1,454,037) 

409 (-23,610, 
21,731) 

170,053 
(168,108, 
171,879) 

923 (-1,022, 
2,749) 

6 
months 

0.66 (0.34, 
1.04) 

1,956.3 (1,862.9, 
2,052.4) 

14.69 (-81.40, 
108.14) 

0.75% 
1,431,722 

(1,409,655, 
1,454,128) 

-585 (-22,652, 
21,821) 

171,564 
(169,703, 
173,448) 

2,434 (573, 
4,318) 
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12 
months 

0.65 (0.29, 
1.03) 

1,951.4 (1,853.1, 
2,046.5) 

19.63 (-75.43, 
117.96) 

1.00% 
1,429,188 

(1,404,886, 
1,453,795) 

-3,132 (-
27,435, 
21,474) 

174,594 
(172,572, 
176,626) 

5,463 (3,440, 
7,494) 

24 
months 

0.65 (0.29, 
1.09) 

1,934.3 (1,841.8, 
2,030.6) 

36.76 (-59.57, 
129.24) 

1.87% 
1,424,160 

(1,400,206, 
1,448,060) 

-8,197 (-
32,150, 
15,703) 

182,026 
(179,956, 
183,906) 

12,890 
(10,820, 
14,771) 

M-
CUBED 

(HIV 
Testing 
Only) 

Coverage 

10% 
0.65 (0.29, 

1.09) 
1,961.2 (1,861.3, 

2,063.7) 
9.80 (-92.64, 

109.75) 
0.50% 

1,431,925 
(1,408,160, 
1,454,636) 

-323 (-24,088, 
22,388) 

170,254 
(168,290, 
172,065) 

1,130 (-833, 
2,942) 

20% 
0.65 (0.29, 

1.04) 
1,957.8 (1,863.6, 

2,046.3) 
13.24 (-75.29, 

107.46) 
0.67% 

1,431,240 
(1,407,915, 
1,453,176) 

-1,012 (-
24,337, 
20,924) 

171,362 
(169,360, 
173,182) 

2,238 (237, 
4,058) 

30% 
0.66 (0.34, 

1.04) 
1,956.0 (1,858.4, 

2,058.6) 
15.03 (-87.60, 

112.59) 
0.76% 

1,430,923 
(1,407,693, 
1,454,402) 

-1,447 (-
24,676, 
22,032) 

172,508 
(170,573, 
174,438) 

3,371 (1,436, 
5,300) 

40% 
0.64 (0.29, 

1.04) 
1,951.8 (1,849.4, 

2,045.0) 
19.23 (-73.97, 

121.67) 
0.98% 

1,429,873 
(1,408,713, 
1,452,402) 

-2,524 (-
23,684, 
20,005) 

173,576 
(171,808, 
175,426) 

4,435 (2,668, 
6,286) 

50% 
0.64 (0.29, 

1.03) 
1,950.0 (1,857.7, 

2,048.1) 
21.03 (-77.11, 

113.33) 
1.07% 

1,430,152 
(1,407,007, 
1,452,918) 

-2,257 (-
25,402, 
20,508) 

174,766 
(172,862, 
176,703) 

5,624 (3,720, 
7,561) 

Length 

6 
weeks 

0.65 (0.29, 
1.08) 

1,964.4 (1,869.0, 
2,057.1) 

6.58 (-86.03, 
102.06) 

0.33% 
1,432,943 

(1,409,215, 
1,454,793) 

591 (-23,137, 
22,441) 

169,321 
(167,422, 
171,085) 

186 (-1,714, 
1,949) 

3 
months 

0.66 (0.29, 
1.04) 

1,966.1 (1,874.3, 
2,060.1) 

4.96 (-89.07, 
96.76) 

0.25% 
1,432,338 

(1,408,983, 
1,454,555) 

-52 (-23,407, 
22,165) 

169,498 
(167,596, 
171,316) 

358 (-1,543, 
2,177) 

6 
months 

0.65 (0.29, 
1.03) 

1,961.4 (1,866.6, 
2,063.7) 

9.64 (-92.69, 
104.44) 

0.49% 
1,433,032 

(1,410,664, 
1,454,488) 

771 (-21,597, 
22,228) 

170,201 
(168,415, 
171,950) 

1,077 (-709, 
2,825) 

12 
months 

0.65 (0.29, 
1.04) 

1,957.8 (1,863.6, 
2,046.3) 

13.24 (-75.29, 
107.46) 

0.67% 
1,431,240 

(1,407,915, 
1,453,176) 

-1,012 (-
24,337, 
20,924) 

171,362 
(169,360, 
173,182) 

2,238 (237, 
4,058) 

24 
months 

0.64 (0.29, 
1.04) 

1,952.5 (1,850.7, 
2,061.4) 

18.53 (-90.38, 
120.31) 

0.94% 
1,428,738 

(1,406,049, 
1,451,360) 

-3,518 (-
26,207, 
19,104) 

174,334 
(172,432, 
176,107) 

5,210 (3,308, 
6,983) 

  

No 
COVID 
Pandem
ic 

1.01 (0.57, 
1.55) 

2,076.2 (1,975.5, 
2,189.3) 

-105.16 (-
218.28, -4.51) 

-5.34% 
1,684,523 

(1,658,778, 
1,708,016) 

252,078 
(226,333, 
275,570) 

193,986 
(191,944, 
195,939) 

24,840 
(22,798, 
26,793) 
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*Rate per 100 person-years at risk during May 2020. 
**Cumulative incidence over 3 year period (from March 2020-March 2023) for full susceptible Atlanta MSM population. 
†For susceptible Atlanta MSM population (approximately 87,723 HIV-negative MSM).  
‡Difference in 3-year cumulative incidence compared to base scenario. 
§Difference in total person-time on PrEP between given scenario and base scenario. 
||Difference in all HIV tests between given scenario and base scenario. 

 

 

Table 4.4. The Effect of Modifying the Efficacy of Home-Based PrEP Retention and HIV Testing Interventions on Epidemiologic 
Outcomes in a COVID Pandemic Context, Over 500 Simulations 

Scenario 

Incidence 
Rate,  

May 2020  
(95% SI)* 

3-Year 
Cumulative 
Incidence 

(95% SI)**,† 

Number 
Infections 
Averted  

(95% SI)†,‡  

Total Person-Time 
on PrEP Over 3 

Years† 
(95% SI) 

Relative Excess 
Person-Time on 

PrEP†,§ 
(95% SI) 

Number of HIV 
Tests Over 3 

Years† 
(95% SI) 

Relative Excess 
Number of HIV 

Tests†,|| 
(95% SI) 

No Intervention 
0.66 (0.29, 

1.09) 

1,971.0 
(1,870.4, 
2,066.0) 

— 
1,432,327 

(1,408,967, 
1,453,985) 

— 
169,132 

(167,200, 
170,951) 

— 

Efficacy of PrEP Retention Intervention 

Modifier of 0.75 
(25% Change) 

0.64 (0.29, 
1.09) 

1,966.1 
(1,873.3, 
2,068.2) 

4.9 (-97.18, 
97.71) 

1,459,299 
(1,438,992, 
1,479,970) 

27,070 (6,764, 
47,741) 

171,023 
(169,258, 
172,768) 

1,902 (137, 
3,647) 

Modifier of 0.50 
(50% Change) 

0.66 (0.29, 
1.03) 

1,958.2 
(1,861.6, 
2,052.6) 

12.86 (-81.62, 
109.47) 

1,498,735 
(1,475,283, 
1,520,668) 

66,288 (42,836, 
88,220) 

173,808 
(171,845, 
175,639) 

4,661 (2,698, 
6,492) 

Modifier of 0.25 
(75% Change) 

0.64 (0.34, 
1.09) 

1,940.9 
(1,844.8, 
2,039.7) 

30.17 (-68.69, 
126.2) 

1,549,469 
(1,525,595, 
1,571,837) 

117,067 (93,193, 
139,434) 

177,428 
(175,535, 
179,276) 

8,287 (6,393, 
10,135) 

Modifier of 0 
(100% Change) 

0.64 (0.29, 
1.03) 

1,920.3 
(1,821.5, 
2,019.3) 

50.75 (-48.31, 
149.55) 

1,614,751 
(1,589,241, 
1,638,772) 

182,347 (156,837, 
206,368) 

182,066 
(180,080, 
184,014) 

12,925 (10,939, 
14,873) 

Efficacy of HIV Testing Intervention 

Modifier of 2.0 
(2x) 

0.65 (0.29, 
1.08) 

1,948.8 
(1,854.3, 
2,047.6) 

22.25 (-76.6, 
116.75) 

1,429,182 
(1,405,304, 
1,451,961) 

-2,937 (-26,816, 
19,841) 

174,533 
(172,604, 
176,376) 

5,425 (3,496, 
7,268) 

Modifier of 5.0 
(5x) 

0.65 (0.29, 
1.04) 

1,904.6 
(1,811.6, 
1,997.4) 

66.38 (-26.35, 
159.45) 

1,419,455 
(1,396,729, 
1,443,151) 

-12,897 (-35,622, 
10,800) 

190,616 
(188,606, 
192,619) 

21,480 (19,470, 
23,484) 
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Modifier of 10.0 
(10x) 

0.65 (0.29, 
1.03) 

1,863.6 
(1,767.1, 
1,955.2) 

107.39 (15.83, 
203.89) 

1,400,837 
(1,378,449, 
1,424,110) 

-31,589 (-53,977, -
8,316) 

217,083 
(215,113, 
219,092) 

47,939 (45,969, 
49,948) 

Modifier of 25.0 
(25x) 

0.64 (0.29, 
1.03) 

1,809.5 
(1,720.3, 
1,895.5) 

161.52 (75.51, 
250.73) 

1,357,208 
(1,335,901, 
1,380,088) 

-75,207 (-96,514, -
52,327) 

297,052 
(294,872, 
299,384) 

127,909 
(125,729, 
130,241) 

Modifier of 50.0 
(50x) 

0.64 (0.29, 
1.09) 

1,783.9 
(1,691.6, 
1,873.7) 

187.13 (97.35, 
279.41) 

1,322,718 
(1,300,210, 
1,343,936) 

-109,744 (-
132,251, -88,525) 

433,437 
(430,419, 
436,550) 

264,289 
(261,271, 
267,402) 

*Rate per 100 person-years at risk during May 2020. 

**Cumulative incidence over 3 year period (from March 2020-March 2023) for full susceptible Atlanta MSM population. 
†For susceptible Atlanta MSM population (approximately 87,723 HIV-negative MSM).  
‡Difference in 3-year cumulative incidence compared to base scenario. 
§Difference in total person-time on PrEP between given scenario and base scenario. 
||Difference in all HIV tests between given scenario and base scenario. 

 

  



FIGURES 

Figure 4.1. Number of HIV Tests by Home-Based HIV Testing Intervention,* Over 500 

Simulations  

 

*Assumes intervention length of 1 year, intervention coverage of 20% of eligible, intervention began 2 weeks into 
pandemic, with no intervention persistence 
Note: The sudden sharp drops/spikes in all HIV tests are due to PrEP-based testing patterns. The model uses an 
interval-based approach where it is retesting with a testing interval of 12.86 weeks. This follows from PrEP guidance 
that individuals who are HIV-negative and take PrEP to prevent HIV acquisition should test quarterly. 
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Figure 4.2. Current PrEP Use by Home-Based PrEP Retention Intervention,* Over 500 
Simulations 

 

*Assumes intervention length of 1 year, intervention coverage of 20% of eligible, intervention began 2 weeks into 
pandemic, with 1 intervention persistence of 1 year 
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Figure 4.3. PrEP Coverage among Atlanta MSM by Home-Based PrEP Retention Intervention,* 
Over 500 Simulations 

 

*Assumes intervention length of 1 year, intervention coverage of 20% of eligible, intervention began 2 weeks into 
pandemic, with 1 intervention persistence of 1 year 
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Figure 4.4. Number of PrEP Stops by Home-Based PrEP Retention Intervention,* Over 500 
Simulations 

 

 

*Assumes intervention length of 1 year, intervention coverage of 20% of eligible, intervention began 2 weeks into 
pandemic, with 1 intervention persistence of 1 year 
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Figure 4.5. Isolated Impact of Home-Based Interventions on Incidence among Atlanta MSM,* 
Over 500 Simulations, 2020–2023 

 
*Assumes intervention length of 1 year, intervention coverage of 20% of eligible, intervention began 2 weeks into 
pandemic, with 1 intervention persistence of 1 year for PrEP retention interventions and 0 years for HIV testing 
interventions. 

 

Figure 4.6. Current PrEP Use per week by coverage level of eligible population for (A) M-
CUBED and (B) DOT,* Over 500 Simulations 

 

*Assumes intervention length of 1 year, intervention coverage of 20% of eligible, intervention began 2 weeks into 
Pandemic, with 1 intervention persistence of 1 year  
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Figure 4.7. Current PrEP Use per week by length of intervention for (A) M-CUBED and (B) 
DOT,* Over 500 Simulations 

 

 

*Assumes intervention length of 1 year, intervention coverage of 20% of eligible, intervention began 2 weeks into 
pandemic, with 1 intervention persistence of 1 year 

 

Figure 4.8. Current PrEP Use per week by length of persistence for (A) M-CUBED and (B) 
DOT,* Over 500 Simulations 

 
*Assumes intervention length of 1 year, intervention coverage of 20% of eligible, intervention began 2 weeks into 
pandemic, with 1 intervention persistence of 1 year 
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Figure 4.9. Number of HIV Tests per week by coverage level of eligible population for (A) M-
CUBED and (B) eSTAMP,* Over 500 Simulations 

 

 
*Assumes intervention length of 1 year, intervention coverage of 20% of eligible, intervention began 2 weeks into 
Pandemic, with no intervention persistence 

 

 

 

Figure 4.10. Number of HIV Tests per week by length of intervention for (A) M-CUBED and (B) 

eSTAMP,* Over 500 Simulations 

 

*Assumes intervention length of 1 year, intervention coverage of 20% of eligible, intervention began 2 weeks into 
pandemic, with no intervention persistence 
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Figure 4.11. Impact of Increasing Efficacy of HIV Testing Intervention on (A) HIV Incidence 
During 2020-2022 and (B) 2020,* Over 500 Simulations 

 
*Assumes intervention length of 1 year, intervention coverage of 50% of eligible, intervention began 2 weeks into 

pandemic, with no intervention persistence 

 

Figure 4.12. Impact of Increasing Efficacy of PrEP Retention Intervention on (A) HIV Incidence 

During 2020-2022 and (B) 2020,* Over 500 Simulations 

 

 

*Assumes intervention length of 1 year, intervention coverage of 50% of eligible, intervention began 2 weeks into 

pandemic, with intervention persistence of 1 year  
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Chapter 5. Public Health Implications 

With over 1.2 million Americans currently living with HIV, and nearly 40,000 new 

infections every year,3,119 HIV remains a major public health challenge in the United States. To 

address this, the US Ending the HIV Epidemic (EHE) initiative aims to reduce new HIV 

infections in the US by 75% by 2025 and 90% by 2030 by addressing disparities and expanding 

HIV prevention and treatment efforts in high-need areas like the Southeast US.38 However, EHE 

strategies were developed before the pandemic-era changes. Economic and social disruptions 

from the COVID-19 global pandemic have created new challenges in the control of HIV, 

prompting major behavioral changes, but also disrupting access to HIV prevention, screening, 

and clinical care services. These changes have the potential to dramatically impact the 

trajectory of the US HIV epidemic. 

A better understanding of how the COVID-19 pandemic has affected and will continue to 

affect HIV dynamics in the US is required in order to shape future HIV prevention and care 

services and research. The goal of this dissertation was to elucidate pandemic-era HIV-related 

behaviors and HIV transmission dynamics and assess the potential impact of contextually 

relevant home-based HIV prevention interventions. 

 

Review of Major Findings 

In Chapter 2, we conducted an empirical analyses of a web-based survey of US MSM to 

assess the impact of the pandemic on HIV-related behaviors and service interruptions. We 

found that COVID-related disruptions to HIV prevention and treatment services and changes in 

sexual behavior continued from early lockdown periods through early 2021. Extended 

disruptions were observed in HIV testing, STI testing, HIV care clinical visits, and HIV viral load 

testing, with only small improvements over time. Although sexual behaviors including number of 
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sexual partners and opportunities to have sex remained below pre-pandemic levels in later 2020 

for many MSM, reduced access to HIV prevention, testing, and treatment services that lasted 

through the year created additional challenges for the control of HIV, which could result in an 

overall increased HIV transmission rate. 

 These findings demonstrate that some, though not all, HIV-related pandemic effects 

continued into early 2021. Our results suggest that the gaps in access to HIV prevention and 

treatment services have worsened in the pandemic era. In addition to elucidating behavioral 

patterns that may occur during future pandemics, and therefore aiding in pandemic 

preparedness, our findings highlight that additional resources and programs may be needed to 

address existing disparities in HIV prevention and treatment, in addition to solving the new 

challenges created by the COVID-19 pandemic. 

 In Chapter 3, we used a dynamic network-based HIV transmission model to estimate 

the incidence of HIV among US MSM during and after the COVID-19 pandemic. We found that 

HIV incidence among US MSM decreased during 2020, but that incidence returned to pre-

pandemic levels in subsequent years, and COVID-related impacts did not translate to long-term 

increases in HIV transmission in the post-pandemic period. Although we observed temporary 

decreases in HIV incidence (compared to if the COVID pandemic had not occurred), these 

reductions were not significant enough to sustain lasting decreases to HIV transmission that will 

affect the trajectory of the US HIV epidemic.  

Our results draw attention to the ongoing need for HIV prevention programs for MSM at 

risk of HIV infection, HIV testing for those with newly acquired HIV, and for HIV treatment 

services for men living with diagnosed HIV, both within and outside of a pandemic context. 

Although our findings demonstrate we may expect long-term marginal/slight decreases in HIV 

incidence, the trajectory of the US HIV epidemic is still far from the EHE goal of reducing new 

HIV infections in the US by 90% by 2030; in our study, we noted a decrease in HIV incidence 
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from 2019 to 2030 of only 14%. Our findings support that additional HIV prevention services are 

needed in high burden areas to better approach EHE goals.  

Lastly, in Chapter 4, we used a network-based mathematical model to estimate the 

effectiveness of at-home HIV testing and PrEP retention interventions among Atlanta MSM in 

the context of the COVID-19 pandemic. We found that although home-based PrEP retention 

and HIV testing interventions were effective at increasing PrEP use and/or HIV testing, in 

isolation they had minimal impact on HIV incidence during a period of decreased transmission. 

We found that for these individual interventions to translate into meaningful reductions in HIV 

transmission in a pandemic context, they would need to be scaled up in terms of coverage, 

length, and post-intervention persistence, or their efficacy and real-world effectiveness would 

need to improve. 

These results demonstrate firstly that home-based interventions can play a role in 

offsetting the impact of pandemic disruptions on HIV services. However, they also demonstrate 

that in a pandemic context where widespread decreases in sexual behavior are occurring, 

increases in HIV testing and PrEP use (non-discontinuation) may not translate into meaningful 

population-level public health impact. 

 

Strengths and Limitations 

A major strength of this dissertation is that is used several independent data sources to 

determine the impact that the COVID pandemic had on the US HIV epidemic among MSM. 

First, we used empirical data from the AMIS COVID Impact Survey on COVID-era HIV-related 

behavior change of US MSM. Then, we used this data alongside other data sources, including 

the Love and Sex in the Time of COVID study as well as surveillance-based national sources, in 

order to determine the combined impact of COVID-related change on HIV transmission. From 
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this, we were then able to combine these data sources to investigate the effect of COVID-

related changes on the HIV epidemic and HIV dynamics. If not for combining multiple data 

sources within a mathematical model, we would not have been able to determine the overall 

effect these changes had on the US HIV epidemic, nor investigate approaches to counteract 

their detrimental effects. 

 On the flipside, the main limitation of this dissertation is that it bears the limitations of all 

of the data sources it utilized. Our results for each Aim are therefore subject to limitations and 

biases of the studies from which their data were sourced. In addition, our results were limited by 

the availability of granular data that appropriately mapped to our study outcomes or model 

parameters. For example, in Aims 2 and 3, the data that were used to set model parameters did 

not always map perfectly. For all Aims, we were limited by a lack of granularity of primary data 

by temporal, demographic, and geographic stratification (because COVID impacts may have 

changed over short time periods, and impacts may have differed with certain demographic and 

geographic strata). Our results would be strengthened if data for model parameters, for 

example, were available at the very specific time points for each key demographic subgroup. 

 

Public Health Implications 

 Despite recent advancements in biomedical prevention and treatment, HIV risk still 

remains high for US MSM. Disruptions from the COVID-19 global pandemic created new 

challenges in the control of HIV, including reducing access to HIV prevention, screening, and 

clinical care services. However, the actual impact of COVID-related changes on HIV 

transmission had remained largely unclear. This dissertation investigated the impact and 

implications of the COVID pandemic on the US HIV epidemic. We demonstrated that the 

pandemic presented challenges in HIV prevention, but at a population-level, the epidemiologic 
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impact of behavioral changes resulting from the pandemic outweighed the impact of changes in 

HIV services to the extent that HIV transmission temporarily decreased because of the COVID 

pandemic. 

 This work aids in our understanding of the epidemiologic impact of disruptions to sexual 

behaviors and HIV prevention and clinical care on HIV incidence during and after the COVID-19 

pandemic. Our results advance knowledge of how US MSM change health behaviors during 

pandemic restrictions, how network-based mathematical models can be used to estimate HIV 

transmission in a period of service disruptions, and how home-based HIV prevention 

interventions may affect transmission in a pandemic context.  

Though this research is timely at present given its temporal proximity to the COVID 

pandemic, the questions it addressed will continue to be relevant for years to come. For 

example, information about how MSM alter their behaviors during periods of service 

interruptions have implications for HIV prevention outside of a pandemic context, such as in 

settings of decreasing funding to HIV clinics, which is an ongoing challenge. In addition, COVID-

19 is just one extreme example of a respiratory pandemic; inferences drawn from this project 

will be useful for future pandemic preparedness. 

 

Future Directions 

This dissertation has prompted several new research questions that merit investigation.  

1. This dissertation only explored the impact of the COVID pandemic on sexual behaviors 

and clinical services among US MSM through early 2021. Although there are some local 

US studies that have examined the impact beyond early 2021, large scale nationally 

representative studies are needed given that the COVID pandemic was still occurring in 

2021 and onward, even if most COVID lockdowns had elapsed by early 2021. 
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2. Although Aim 2 explored how simulated HIV incidence may track with the general trend 

of real-time HIV diagnoses, a study that disentangles HIV diagnoses from HIV 

infection/incidence would be useful. That is, a model-based study could incorporate HIV 

diagnosis data within it (beyond calibration) to assess if HIV diagnoses are a 

representation of fewer HIV infections or an artifact of reduced screening.  

3. Because home-based HIV prevention and HIV care are somewhat novel, there are many 

important research questions that should be investigated regarding their effectiveness 

and implementation. Studies are needed that (1.) examine the combined impact of 

interventions within a pandemic context, (2.) explore how targeted deployment of 

interventions based on demographic features (e.g., racial/ethnic, age, geography, etc.) 

or by HIV risk group (i.e., higher risk MSM based on behavior) could affect the 

epidemiologic impact of interventions, (3.) investigate the general impact that home-

based HIV prevention interventions can have outside of pandemic context (given that 

home-based care could transform HIV prevention and care in the coming years), and 

(4.) explore the possible impact that home-based event-driven PrEP209 and long-acting 

injectable PrEP210 (assuming it can be dispensed at home) interventions could have, 

both in and out of a pandemic context. 

4. Because our results demonstrated that the US is far from reaching 2030 EHE targets, 

implementation science studies that examine how we can get to EHE goals given what 

occurred during the COVID pandemic are needed. This is of particular importance given 

that approved federal funding for EHE during FY 2019–FY 2023 has fell short of 

proposed funding.186 
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Appendix A. Technical Appendix for Chapters 3 and 4 

 

Assessing the Impact of COVID-19-Related Behavioral Changes and Clinical Service 

Disruptions on the HIV Epidemic in the United States: Supplemental Appendix 

 

This supplemental technical appendix is based on a previous technical appendix written by Dr. 

Samuel Jenness (Dissertation Advisor). It has been modified and included in numerous studies 

that use the EpiModel software platform. It has been adapted and expanded here by Laura 

Mann to support Aims 2 and 3 of her dissertation.  
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1 Introduction 

This supplementary technical appendix describes the mathematical model structure, 

parameterization, and statistical analysis of dissertation Aims 2 and 3 in further detail. 

1.1  Model Framework 

The mathematical models for HIV transmission dynamics presented in this study are network-

based transmission models in which uniquely identifiable sexual partnership dyads were 

simulated and tracked over time. This partnership structure is represented using temporal 

exponential-family random graph models (TERGMs), described in Section 3. On top of this 

dynamic network simulation, the epidemic model represents demography (entries, exits, and 

aging), interhost epidemiology (disease transmission), intrahost epidemiology (disease 

progression), and clinical epidemiology (disease diagnosis and treatment and prevention 

interventions). Individual attributes related to these processes are stored and updated in 

discrete time over the course of each epidemic simulation. 

The modeling methods presented here utilize and extend the EpiModel software platform to 

incorporate HIV-specific epidemiology and transmission dynamics. The HIV extensions for gay, 

bisexual and other men who have sex with men (MSM) were originally developed by Goodreau 

et al. for use in prior modeling studies of MSM in the United States and South America,211–213 

and subsequently used for a model for HIV preexposure prophylaxis (PrEP) among US 

MSM.214–217 The most recent innovation in our modeling platform has been to incorporate 

primary data from the ARTnet study of MSM in the United States directly into the workflow for 

parameterizing the network and behavioral components.218  

1.2 Model Software 

The models in this study were programmed in the R and C++ software languages using the 

EpiModel [http://epimodel.org/] software platform for epidemic modeling. EpiModel was 
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developed by the authors for simulating complex network-based mathematical models of 

infectious diseases, with a primary focus on HIV and sexually transmitted infections (STIs).219 

EpiModel depends on Statnet [http://statnet.org/], a suite of software in R for the representation, 

visualization, and statistical analysis of complex network data.220 

EpiModel allows for a modular expansion of its built-in modeling tools to address novel research 

questions. We have developed a set of extension modules into a software package called 

EpiModelHIV. This software is available for download, along with the scripts used in the 

execution of these models. The tools and scripts to run these models are contained in two 

GitHub repositories: 

• [http://github.com/statnet/EpiModelHIV] contains the general extension software package. 

Installing this using the instructions listed at the repository homepage will also load in 

EpiModel and the other dependencies. We use a branching repository architecture on 

Github; the branch of the repository associated with this research project is CombPrevNet. 

• [http://github.com/EpiModel/CombPrevNet] contains the scripts to execute the models and 

to run the statistical analyses provided in the manuscript. 

1.3 Core Model Specifications 

For Aim 2, we started with a network size of 100,000 MSM aged 15 to 65 to represent the larger 

population of sexually active US MSM. For Aim 3, we started with a network size of 100,000 

MSM aged 15 to 65 to represent the larger population of sexually active MSM in the Atlanta 

metropolitan area. The population size was allowed to increase and decrease with arrivals into 

the sexually active population at age 15 and departures related to mortality or aging out of the 

sexually active population at age 65. MSM were stratified as Black, Hispanic/Latino (hereafter in 

the text called Hispanic), and White/Other (hereafter in the text, called White) race/ethnicity in 

proportions equivalent to Census-derived proportions. Further details on the demography (race 

and age) are provided in Section 5. We used a three-stage simulation framework, first 

http://github.com/EpiModel/CombPrevNet
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calibrating the model to HIV diagnosis rates and HIV care continuum parameters for 60 years of 

burn-in time (Stage 1), then calibrating the model to current estimated levels of PrEP coverage 

for 5 years of burn-in time (Stage 2), and then simulating the reference and counterfactual 

intervention scenarios for 10 years (Stage 3). The time unit used throughout the simulations was 

one week. Unless otherwise noted, all rate-based parameters listed below are to be interpreted 

as the rate per week and all duration-based estimates are to be interpreted as the duration in 

weeks. 

2 The ARTnet Study 

This model featured an innovative parameterization design in which primary individual-level and 

partnership-level data were used to fit statistical models for summary statistics that were then 

entered into the epidemic model. The primary data source for network structure and behavioral 

data was the ARTnet study, described below. Wherever possible, we used primary data from 

this study for model parameterization, and only relied on the secondary published literature for 

model parameters that could be generalized across target populations (e.g., HIV natural history 

or clinical response parameters). 

2.1 Study Design 

This analysis used data collected in the ARTnet study of MSM in the United States in 2017–

2019.218 MSM were recruited directly after participating in the American Men’s Internet Study 

(AMIS),221 a parent web-based study about MSM sexual health that recruited through banner 

ads placed on websites or social network applications. At the completion of AMIS, MSM were 

asked to participate in ARTnet, which focused on sexual network features. ARTnet data 

collection occurred in two waves (following AMIS): July 2017 to February 2018 and September 

2018 to January 2019. 



134 
 

 

 

Eligibility criteria for ARTnet were male sex at birth, current male cisgender identity, lifetime 

history of sexual activity with another man, and age between 15 and 65. Respondents were 

deduplicated within and across survey waves (based on IP and email addresses), resulting in a 

final sample of 4904 participants who reported on 16198 sexual partnerships. The Emory 

University Institutional Review Board approved the study. 

2.2 Primary Measures 

ARTnet participants were first asked about demographic and health-related information. 

Covariates used in this analysis included race/ethnicity, age, ZIP Code of residence, and current 

HIV status. ZIP Codes were transformed into Census regions/divisions and urbanicity levels by 

matching against county databases (using standardized methods for selecting county in the 

small number of cases when ZIP Codes crossed county lines). Participants reporting as never 

testing for HIV, having indeterminate test results, or never receiving test results were classified 

as having an unknown HIV status. 

Participants were then asked detailed partner-specific questions for up to most recent 5 

partners. The detailed partner-specific questions included attributes of the partner and details 

about the partnership itself. Partner attributes considered here included age, race/ethnicity, and 

HIV status. Participants were allowed to report any partner attribute as unknown. When partner 

age was unknown, age was imputed based on a response to a categorical question (e.g., 5–10 

years younger/older, 2–5 years younger/older). Partnerships were classified into three types: 

“main” (respondent reported they considered this partner a “boyfriend, significant other, or life 

partner”) casual (someone they have had sex with more than once, but not a main partner), and 

one-time.222 For one-time partners, we asked for the date that sexual activity occurred. For 

persistent (main and casual) partnerships, we asked for the date of most recent sex, the date 

first sex (which could have been prior to the past year), and whether the partnership was 

ongoing (if the participant expected sexual activity would occur in the future). For each 
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partnership, we asked whether (for one-time) or how frequently (for persistent) anal sex 

occurred. 

Outcome measures include descriptive statistics for characteristics of participants and their 

reported partnerships, and the aggregate network statistics used to estimate the TERGMs 

underlying epidemic simulations on dynamic networks. The network statistics include ego 

degree, attribute mixing in partnerships, and the current length of ongoing partnerships, 

stratified by the attributes of persons and partnerships. Degree is a property of individuals, 

whereas mixing and length are properties of partnerships. Degree was defined as the ongoing 

number of persistent partners measured on the day of the survey (includes main and casual 

partnerships). Degree is not defined for one-time partnerships, so for these we instead 

calculated a weekly rate of new contacts by subtracting the total main and casual partners from 

the total past-year partners, and dividing by 52. Partnership length for ongoing main and casual 

partnerships was calculated by taking the difference between the survey date and the 

partnership start date. The mean length of ongoing partnerships is the network statistic needed 

for TERGM estimation; the logic and derivation are explained here.219 Mixing was measured by 

the relative frequency of partnerships that occurred within and between groups defined by 

race/ethnicity, and age. 

2.3 Statistical Analysis  

We fit a series of generalized linear models (GLMs) to estimate summary statistics for features 

of the sexual network structure and the behavior within partnerships. Specific GLM 

parameterizations are detailed below in the discussion of each set of model parameters. 

Common across all models was the general approach of including geography of residence as a 

main effect with two levels (Atlanta versus all other areas). This allowed for the model 

coefficients and predicted summary statistics to vary by geography while ensuring stability of 

outcomes under the assumption of conditional exchangeability. 
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3 Networks of Sexual Partnerships 

We modeled networks of three interacting types of sexual relations: main partnerships, casual 

(but persistent) partnerships, and one-time anal intercourse contacts. We first describe the 

methods conceptually, including the parameters used to guide the model and their derivation, 

and then present the formal statistical modeling methods. Consistent with our parameter 

derivations, all relationships are defined as those in which anal intercourse is expected to occur 

at least once. 

3.1  Conceptual Representation of Sexual Networks 

Our modeling methods aim to preserve certain features of the cross-sectional and dynamic 

network structure as observed in our primary data, while also allowing for mean relational 

durations to be targeted to those reported for different groups and relational types. Our methods 

do so within the context of changing population size (due to births, deaths, arrivals, and 

departures from the population) and changing composition by attributes such as age. The 

broader motivation, methodological details, and link between models and primary data are 

described here.219 

The network features that we aim to preserve are as follows: 

• Persistent (Main and Casual) Partnerships 

o The mean degree (number of ongoing partners), stratified by main and casual 

partnership types, and the proportion of men with concurrency (2 or more ongoing 

partners) for each partnership type, at any time point. 

o Variations in the mean degree specific to each persistent partnership type by: 

▪ Race/ethnicity group (3 categories for Black, Hispanic, and White MSM). 

▪ Age group (5 categories for 15–24, 25–34, 35–44, 45–54, and 55–64). 



137 
 

 

 

▪ Cross-type degree: Degree in the other persistent partnership type (e.g., 

mean degree of MSM for main partnerships given current casual degree of 0, 

1, 2, 3). 

o Selection of partners within the same race/ethnicity group (mixing by race/ethnicity). 

o Selection of partners within the same age group (mixing by age). 

o Mean partnership durations, stratified by main and casual partnership types, and by 

mixing within age groups. 

• One-Time Partnerships 

o The overall rate of having one-time anal intercourse partnerships per week. 

o Variations in this contact rate by: 

▪ Race/ethnicity group. 

▪ Age group. 

▪ Total persistent degree (sum of main and casual partnerships ongoing). 

▪ Risk level heterogeneity above variations by these three factors (mean 

partnership rates for five quintiles of MSM stratified by mean one-time rates). 

o Selection of partners within the same race/ethnicity group (mixing by race/ethnicity). 

o Selection of partners within the same age group (mixing by age). 

• Common to Persistent and One-Time Partnership Types 

o Prohibitions against MSM with incompatible sexual positioning roles (e.g., no 

partnerships between exclusively receptive MSM). 

3.1.1  Overall Mean Degree for Persistent Partnerships  

Ongoing persistent partnerships (whether main or casual) were defined from the partnership-

level ARTnet dataset as those in which sex had already occurred more than once, and in which 

the respondent anticipated having sex again. The momentary main or casual mean degree is 

then defined as the mean of the degree of all MSM for main or casual partnerships on the day of 
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study. We estimated this with a Poisson model with main or casual degree as the outcome and 

a dummy variable for Atlanta residence as the predictor and then exponentiating the 

coefficients, resulting in an estimated mean main degree of 0.396 and a mean casual degree of 

0.541.  

In addition, we modeled the proportion of MSM with concurrency (degree of 2 or more) by 

partnership type. This was estimated with logistic regression models for binary outcomes with a 

dummy variable for Atlanta residence as the predictor. Taking the inverse of the logit of the 

coefficient yielded the predicted probabilities of 0.9% for main concurrency and 14.5% for 

casual concurrency.  

3.1.2  Heterogeneity in Mean Degrees for Persistent Partnerships 

We estimated the heterogeneity in main and casual mean degree by fitting three Poisson 

regression models. For race/ethnicity, we estimated the mean degree for each group within the 

target population by including dummy variables for city and race/ethnicity. For age, we modeled 

the non-linear relationship between age and mean degrees by including city, age group, and 

square root of age group to allow for a non-linear relationship between age and the outcome. 

For cross type degree, we modeled the mean degree for main partnerships as a function of 

degree of casual partnerships, and vice versa, again with city also as a predictor. For each of 

the 6 models (2 partnership types times three predictors of interest), we fit the statistical models 

and then exponentiated the coefficients to obtain the rates for each stratum. Those are shown in 

the Table below.  

Supplemental Table A.1. Heterogeneity in Mean Main and 

Casual Degree by Race/Ethnicity, Age Group, and Cross 

Type Degree of Ego (Respondent)  Predictor Main Mean 

Degree 

Casual Mean 

Degree Race/Ethnicity   

Black 0.279 0.605 
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Hispanic 0.423 0.513 

White 0.412 0.534 

Age Group   

15–24 0.374 0.297 

25–34 0.469 0.479 

35–44 0.448 0.615 

45–54 0.372 0.701 

55–64 0.282 0.741 

Cross Type 

Degree 

  

0 0.440 0.632 

1 0.352 0.401 

2 0.282 0.255 

3 0.225 — 

 

3.1.3  Mixing by Race/Ethnicity and Age for Persistent Partnerships 

Respondents reported on their perception of the race and ethnicity (Hispanic/non-Hispanic) for 

each partner. We categorized the respondents’ and partners’ races into three mutually exclusive 

groups: Black, Hispanic, and White. Using logistic regression models, we estimated the 

proportion of partnerships between MSM of the same race (within-group mixing) by evaluating 

relationship between the respondent group and partner group as a binary outcome (using 

geography of residence predictor as a main effect with two levels, Atlanta versus all other 

areas). The inverse logit of the coefficients is then interpreted as the predicted probability of a 

same-race/ethnicity partnership. The values were 76.5% for main partnerships and 63.3% for 

casual partnerships. 

For mixing by age, we used a model parameterization for the 5-category age group that allowed 

for differences in the level of age mixing that could vary by age group (differential homophily). 

We fit a logistic regression model for partnerships, with being in a partnership of the same age 

group as the outcome and the age group of the respondent as the main predictor. With the 
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inverse logit transformation, the probabilities of partnerships within the same age group, 

stratified by partnership type are shown in the table below. 

Supplemental Table A.2. Proportion of Main and Casual 

Partnerships within the Same Age Group, by Age of Ego 

(Respondent) 
Age Group Main Within Group  Casual Within 

Group 15–24 78.1% 53.2% 

25–34 69.6% 42.4% 

35–44 59.4% 32.4% 

45–54 48.5% 23.7% 

55–64 37.6% 16.8% 

 

3.1.4  Duration of Persistent Partnerships 

We model partnership dissolution as a heterogenous, geometrically distributed process with 

unique parameters for each relational type. The geometric distribution for relational durations 

implies a “memoryless process,” which is a common assumption within ordinary differential 

equation modeling. Although this assumption implies that the rate of dissolution does not 

depend on the current age of the partnership, the overall exponential shape of the dissolution 

distribution matches reasonably well to empirical data on relational durations. The fit is improved 

considerably when the partnership types are stratified, as we do here, implying a mixture of 

geometric distributions. Once one-time contacts are removed, and longer-duration main 

partnerships are separated from shorter-term causal partnerships, the set of distributions fits the 

empirical data on partnership durations well.  

The fit is improved further by stratifying based on the interaction between partnership type and 

age of both members within the dyad. For this analysis, we explored how relationship duration 

varied by multiple demographic characteristics, and unsurprisingly age was most strongly 

associated with duration. For this model parameterization, we specifically elected to estimate 
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and input based on matched age groups (that is, partnerships between two persons of the same 

age). 

As detailed in previous work,211,219 for memoryless processes, the expected age of an extant 

(ongoing) relationship at any moment in time is an unbiased estimator of the expected 

uncensored duration of relationships, given the balancing effects of right-censoring and length 

bias for this distribution. Raw relational ages were calculated as the difference between first sex 

date and the study date for each dyad the ego reported sex with more than once in the interval. 

To derive our estimator of relational age, we take the median of the observed distribution and 

then calculate the mean for the geometric distributions associated with that median. To account 

for estimation within the Atlanta target population, we weighted this estimator by the inverse of 

the relative differences in Atlanta partnerships to non-Atlanta partnerships. 

The resulting expected relational ages are summarized in the table below. 

Supplemental Table A.3. Duration of Main and Casual Partnerships 

by Group of Ego (Respondent) and Alter (Partner) 

Dyadic Age Group 
Main Relational Age 

(Weeks) 

Casual Relational 

Age (Weeks) 

Both 15–24 71.2 50.5 

Both 25–34 253.5 72.5 

Both 35–44 523.3 112.1 

Both 45–54 637.1 161.3 

Both 55–64 903.1 147.4 

Different Groups 217.9 106.4 

 

3.1.6 Overall Mean One-Time Contact Rate 

In addition to persistent main and casual partnerships, we modeled one-time sexual contacts 

involving anal intercourse based on ARTnet reports on the number and variation in these types 
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of relations. As noted above, degree is not defined for one-time contacts, so for these we 

instead calculated a weekly rate of new contacts by subtracting the total main and casual 

partners from the total past-year partners. We estimated the weekly rate by fitting a Poisson 

regression model with the count of one-time contacts as a function of city, exponentiating the 

coefficient to get the predicted count, and dividing by 52 to get the week rate. The overall mean 

one-time contact rate was 0.076 AI contacts per week. 

3.1.7 Heterogeneity in One-Time Contact Rates  

Heterogeneity in one-time contact rates was modeled with four Poisson regression models to 

estimate the rates as a function of race/ethnicity, age group, risk level strata, and total persistent 

(main plus casual) degree. Similar to the one-time rate, we fit these models with geography of 

residence as a main effect (which had two levels, Atlanta versus all other areas, with the former 

level used for predictions) and exponentiated the coefficients and then divided by 52 to get the 

group-specific rates. For age group, similar to the estimation of degree, we modeled this non-

linearly by including age group and the square root of age group as the joint predictors (along 

with city). The results are shown in the table below. 

Supplemental Table A.4. Weekly One-Time 
Contact Rates by Race/Ethnicity, Age Group, 
Risk Level, and Total Persistent Degree of Ego 
(Respondent) 

Predictor Weekly Contact 

Rate Race/Ethnicity  

Black 0.062 

Hispanic 0.071 

White 0.079 

Age Group  

15–24 0.048 

25–34 0.075 

35–44 0.089 
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45–54 0.093 

55–64 0.087 

Risk Level Quintile  

1 0.000 

2 0.000 

3 0.012 

4 0.043 

5 0.326 

Total Persistent 

Degree 

 

0 0.049 

1 0.057 

2 0.121 

3+ 0.284 

 

3.1.8 Mixing by Race/Ethnicity and Age for One-Time Contacts 

We used a similar approach to within-group mixing by race/ethnicity and age group for one-time 

contacts to the one used for persistent contacts, with one difference that we did not model 

differential homophily by age group to improve model stability. Therefore, the overall proportion 

of one-time contacts that were within the same race/ethnic group was 67.6% and the proportion 

of one-time contacts that were within the same age group was 32.8%. 

3.1.9 Mixing by Sexual Role Across All Partnership Types 

We assign men a fixed sexual role preference (exclusively insertive, exclusively receptive, 

versatile). The model then includes an absolute prohibition, such that two exclusively insertive 

men cannot partner, nor can two exclusively receptive men. We estimated the proportion men 

were in each category (insertive, receptive, and versatile) by analyzing whether men had only 

insertive anal intercourse, only receptive anal intercourse, or both insertive and receptive anal 

intercourse (respectively) in their past five anal partnerships over the past year. These 
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proportions were stratified (restricted) by geography of residence to the city of Atlanta. The 

proportions were: 18.5% exclusively insertive, 27.1% exclusively receptive, and 54.4% versatile. 

3.2  Statistical Representation of Sexual Networks 

Exponential-family random graph models (ERGMs) and their dynamic extension temporal 

ERGMs (TERGMs) provide a foundation for statistically principled simulation of local and global 

network structure given a set of target statistics from empirical data. Main and casual 

relationships were modeled using TERGMs,223 since they persist for multiple time steps. One-

time contacts, on the other hand, were modeled using cross-sectional ERGMs.224 Formally, our 

statistical models for relational dynamics can be represented as five equations for the 

conditional log odds (logits) of relational formation and persistence at time t (for main and casual 

relationships) or for relational existence at time t (for one-time contacts): 

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑌𝑖𝑗,𝑡 = 1| 𝑌𝑖𝑗,𝑡−1 = 0, 𝑌𝑖𝑗,𝑡
𝐶 ))  = 𝜃𝑚

+ ′
𝜕(𝑔𝑚

+ (𝑦)) Main partnership formation 

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑌𝑖𝑗,𝑡 = 1| 𝑌𝑖𝑗,𝑡−1 = 0, 𝑌𝑖𝑗,𝑡
𝐶 ))  = 𝜃𝑐

+′
𝜕(𝑔𝑐

+(𝑦)) Casual partnership formation 

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑌𝑖𝑗,𝑡 = 1| 𝑌𝑖𝑗,𝑡−1 = 1, 𝑌𝑖𝑗,𝑡
𝐶 ))  = 𝜃𝑚

− ′𝜕(𝑔𝑚
− (𝑦)) Main partnership persistence 

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑌𝑖𝑗,𝑡 = 1| 𝑌𝑖𝑗,𝑡−1 = 1, 𝑌𝑖𝑗,𝑡
𝐶 ))  = 𝜃𝑐

−′𝜕(𝑔𝑐
−(𝑦)) Casual partnership persistence 

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑌𝑖𝑗,𝑡 = 1| 𝑌𝑖𝑗,𝑡
𝐶 ))  = 𝜃𝑜

′𝜕(𝑔𝑜(𝑦)) One-time contact existence 

where: 

• 𝑌𝑖𝑗,𝑡 = the relational status of persons i and j at time t (1 = in relationship/contact, 0 = 

not). 

• 𝑌𝑖𝑗,𝑡
𝐶  = the network complement of i,j at time t, i.e. all relations in the network other than 

i,j. 
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• 𝑔(𝑦) = vector of network statistics in each model (the empirical statistics defined in the 

tables above). 

• 𝜕(𝑔(𝑦)) = the change in 𝑔(𝑦) when Yij is toggled from 0 to 1 (for formation models) or 1 

to 0 (for persistence models).   

• 𝜃 = vector of parameters in the model. 

For 𝑔(𝑦) and 𝜃, the superscript distinguishes the formation model (+), persistence model (-) and 

existence models (neither). The subscript indicates the main (m), casual (c) and one-time (o) 

models. 

The recursive dependence among the relationships renders the model impossible to evaluate 

using standard techniques; we use MCMC in order to obtain the maximum likelihood estimates 

for the 𝜽 vectors given the 𝒈(𝒚) vectors. 

Our method of converting the statistics laid out in Section 3.1 into our fully specified network 

models consists of the following steps: 

1. Construct a cross-sectional network of 10,000 men with no relationships. 

2. Assign men demographics (race/ethnicity and age) based on Census data for Atlanta 

and assign men sexual roles based on frequencies listed above, as well as one-time risk 

quintiles (20% of the men in each race per quintile). 

3. Calculate the target statistics (i.e., the expected count of each statistic at any given 

moment in time) associated with the terms in the formation model (for the main and 

casual partnerships) and in the existence model (for one-time contacts). 

4. Assign each node a place-holder main and casual degree (number of on-going 

partnerships) that is consistent with the estimated distributions, and store these numbers 

as a nodal attribute. (Note: this does not actually require individuals to be paired up into 

the partnerships represented by those degrees). 



146 
 

 

 

5. For the main and casual networks, use the mean relational durations by age group 

combination to calculate the parameters of the persistence model, using closed-form 

solutions, given that the models are dyadic-independent (each relationship’s persistence 

probability is independent of all others). 

6. For the main and casual networks, estimate the coefficients for the formation model that 

represent the maximum likelihood estimates for the expected cross-sectional network 

structure. 

7. For the one-time network, estimate the coefficients for the existence model that 

represent the maximum likelihood estimates for the expected cross-sectional network 

structure. 

Steps 5–7 occur within the EpiModel software, and use the ERGM and STERGM methods 

therein. They are completed efficiently by the use of an approximation in Step 6.225 During the 

subsequent model simulation, we use the method of Krivitsky226 to adjust the coefficient for the 

edges term in each model at each time step, in order to preserve the same expected mean 

degree (relationships per person) over time in the face of changing network size and nodal 

composition. At all stages of the project, simulated partnership networks were checked to 

ensure that they indeed retained the expected cross-sectional structure and relational durations 

throughout the simulations. 

4 Behavior Within Sexual Partnerships 

In this study, we model three phenomena consecutively within relationships at each time step: 

the number of anal intercourse sex acts, condom use per sex act, and sexual role per sex act. 

We simulate these within all relationships regardless of HIV status (whether diagnosed or not).  

4.1  Anal Intercourse Acts Per Partnership 
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The rate of anal intercourse is applicable to persistent (main and casual) partnerships in which 

there are repeated AI acts between the start and end of the partnership. We use ARTnet data 

on the overall rate and predictors of variation in rates unique to each partnership type. For one-

time contacts, we assumed that the number of AI exposures was one, although there could 

have been multiple AI acts within an exposure due to role versatility (see Section 4.4). The 

modeling of act rates here is based on the expectation that changes in coital frequency depend 

on race/ethnicity, age, diagnosed HIV status, and partnership type. 

4.1.1  Measurement of Acts in ARTnet 

We measured the number of acts within each reported partnership within the ARTnet study by 

asking participants about the frequency of AI acts. Study participants could report on the 

average number of acts within the partnership over the past year by week, month, year, or total 

partnership duration. We then scaled this into a total weekly act rate. The final ARTnet 

partnership-level dataset on 16198 partnerships includes this weekly rate as the outcome and 

predictors at the individual and dyadic level that we used for statistical modeling as described 

below. 

4.1.2  Statistical Models of Act Rates 

With this partnership-level dataset, we then modeled the count of acts per year per partnership 

based on the Poisson regression formula:  

Yi ~ b0 + b1X1 + b2X1
2 + b3X2 + b4X3 + b5X1X3 + b6X4 + b7X4

2 + b8X5 + b9X6 

where: 

 Yi = Log of the count of acts per year. 

X1 = Duration of partnership in weeks at the survey date. 
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X2 = Racial/ethnic combination of the ego (respondent) and alter (partner), coded in 6 

categories to capture within and across group mixing: Black-Black, Black-

Hispanic/White, Hispanic-Black/White, Hispanic-Hispanic, White-Black/Hispanic, White-

White. 

X3 = Partnership type (0 = main; 1 = casual). 

X4 = The combined age of ego and alter in years. 

X5 = The concordant diagnosed HIV-positive status of both ego and alter, compared to 

all other combinations of dyadic HIV status (1 = concordant positive; 0 = all other 

combinations of dyadic HIV status). 

X6 = Residence (1 = Atlanta metropolitan area; 0 = all other areas). 

Note that we modeled the partnership duration and combined age of partners quadratically, and 

we modeled the interaction of partnership duration and partnership type. Terms within the 

prediction model were selection based on a combination of a priori theory and exploratory data 

analysis. The coefficients for the model, and their lower and upper 95% confidence intervals, 

are presented in the table below. Exponentiating any linear combination of coefficients will yield 

the yearly rates, which may be converted to weekly through division. 

Supplemental Table A.5. Statistical Model of Act Rates in Main and 

Casual Partnerships 

Model Parameter Estimate 
Lower 95% 

CI 

Upper 95% 

CI 

b0 (Intercept) 4.9615 4.9208 5.002 

b1 (Duration) -0.0013 -0.0013 -0.0012 

b2 (Duration2) 6.3197E-07 6.0598E-07 6.5781E-07 

b3 (B-H/W Combo) 0.5196 0.4888 0.5505 

b3 (H-B/W Combo) 0.2178 0.1908 0.2449 
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b3 (H-H Combo) 0.1967 0.1687 0.2250 

b3 (W-B/H Combo) 0.4758 0.4505 0.5013 

b3 (W-W Combo) 0.1765 0.1516 0.2016 

b4 (Casual Type) -1.0373 -1.0458 -1.0287 

b5 (Duration x Casual 

Type) 
-0.0009 -0.0010 -0.0009 

b6 (Combined Age) -0.0113 -0.0122 -0.0104 

b7 (Combined Age2) 5.6269E-05 5.0154E-05 6.2374E-05 

b8 (HIV+ Concordant) 0.3614 0.3452 0.3776 

b9 (Atlanta residence) -0.0229 -0.0396 -0.0063 

Abbreviations: CI, confidence interval; B-H/W, Black ego with either a 

Hispanic or White alter; H-B/W, Hispanic ego with either a Black or 

White alter; H-H, Hispanic ego with a Hispanic alter; W-B/H, White 

ego with either a Black or Hispanic alter; W-W, White ego with a 

White alter. 

 

4.1.3  Predicted Rates in Epidemic Model 

Predicted weekly rates of AI based on the combination of partnership and individual attributes is 

then obtained dynamically by predicting from the statistical model with inputs based on the 

current simulated population. EpiModel tracks the current age of partners, the duration of their 

partnership, their racial combination, and the partnership type. This set of predictors was input 

into a predict function in R to obtain the weekly mean rates in each strata. The size of the 

potential set of strata and corresponding predicted means is therefore nearly infinite based on 

all the potential combinations of input values. 

In Supplemental Figure A.1 below, we display some example weekly rates based on a subset of 

model inputs. This figure shows that rates decline in partnerships with a longer duration, that 

they are higher in partnerships in which both partners are younger, they are lower for casual 

partnerships (ptype = 2) compared to main partnerships, and that they are higher in White-

White partnerships compared to Black-Black partnerships. The act rates generally ranged from 
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0.5 acts per week to 2 acts per week. Other predicted rates may be obtained by exponentiating 

the coefficients in the table above and dividing by 52 (to convert from yearly rates to weekly 

rates).  

Based on these model predictions, which represent means for each linear combination, we then 

drew individual counts of acts per partnership per time step in EpiModel using the rpois function 

to draw randomly from the Poisson distribution with a vector of parameters, one value for each 

partnership.  

4.1.4  Cessation of Sexual Activity During Late-Stage AIDS 

In addition to these data-driven statistical calculations, we assumed that MSM in late stages of 

AIDS (HIV viral load above 5.75), had no acts due to active disease that would limit their sexual 

activity. This reflected the mid-point between set-point viral load of chronic stage infection (4.5 

log10) and peak viral load (7.0 log10, corresponding to the nadir of immunological function). We 

Supplemental Figure A.1. Predicted Weekly Act Rates from the Poisson Statistical Model, by Partnership 

Duration, Partnership Type (ptype: 1 = Main; 2 = Casual), Combined Partner Age (comb.age: 40 and 80 Years). 
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had no primary data in ARTnet on sexual partnerships in this late disease stage, but prior 

analysis and modeling studies support a large decline in sexual activity due to AIDS.227 

4.2  Condom Use Per Act 

We modeled condom use within all three partnership types (main, casual, and one-time 

contacts) based on ARTnet data on the frequency of condom use within reported partnerships. 

We followed the same general approach to measuring, fitting statistical models, and dynamically 

predicting condom use within EpiModel as we used for rates of AI. The modeling of condom 

here is based on the expectation that changes in condom use depend on race/ethnicity, age, 

diagnosed HIV status, current PrEP use, and partnership type. 

4.2.1  Measurement of Condom Use in ARTnet 

We measured condom use within partnerships in the ARTnet study by asking about the 

frequency of condom use (for persistent partnerships) or whether condom use occurred (for 

one-time partnerships) during anal intercourse. Study participants first reported on the number 

of AI acts that occurred in the time intervals described above, and then we followed-up with a 

question on the number of those total acts that involved condom use. We then transformed 

these subsetted counts into proportions of acts that were condom-protected. This resulted in a 

U-shaped distribution of proportions, with most persistent partnerships involving either always or 

never condom use. For this current study, we simplified the outcome variable to any condom 

use (yes, no) over the past year. 

4.2.2  Statistical Models of Condom Use Probabilities 

With the outcome described above, we used the partnership-level dataset to fit two logistic 

regression models for any condom use in the partnership, with one model for persistent (main 

and casual) and another model for one-time partnerships. The linear model formula for 

persistent partnerships was as follows: 
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Yi ~ b0 + b1X1 + b2X1
2 + b3X2 + b4X3 + b5X1X3 + b6X4 + b7X4

2 + b8X5 + b9X6 + b10X7 

where: 

 Yi = Log odds of the probability of condom use per act. 

X1 = Duration of partnership in weeks at the survey date. 

X2 = Racial/ethnic combination of the ego (respondent) and alter (partner), coded in 6 

categories to capture within and across group mixing: Black-Black, Black-

Hispanic/White, Hispanic-Black/White, Hispanic-Hispanic, White-Black/Hispanic, White-

White. 

X3 = Partnership type (0 = main; 1 = casual). 

X4 = The combined age of ego and alter in years. 

X5 = The concordant diagnosed HIV-positive status of both ego and alter, compared to 

all other combinations of dyadic HIV status (1 = concordant positive; 0 = all other 

combinations of dyadic HIV status). 

X6 = Current use of pre-exposure prophylaxis (PrEP) by the ego (respondent).  

X7 = Residence (1 = Atlanta metropolitan area; 0 = all other areas).  

Note that we modeled the partnership duration and combined age of partners quadratically, and 

we modeled the interaction of partnership duration and partnership type. Terms within the 

prediction model were selected based on a combination of a priori theory and exploratory data 

analysis. The coefficients for the model, and their lower and upper 95% confidence intervals, 

are presented in the table below. Taking the inverse logit of the linear combination of 

coefficients will yield to the strata-specific predicted probabilities of condom use within the 

partnership. 
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Supplemental Table A.6. Statistical Model of Per Act Condom Use 

Probability for Main and Casual Partnerships 

Model Parameter Estimate 
Lower 95% 

CI 

Upper 95% 

CI 

b0 (Intercept) 2.008 1.3020 2.7144 

b1 (Duration) -0.0031 -0.0040 -0.0023 

b2 (Duration2) 1.2561E-06 5.8878E-07 1.8614E-06 

b3 (B-H/W Combo) -0.3355 -0.8549 0.1802 

b3 (H-B/W Combo) -0.3692 -0.7798 0.04214 

b3 (H-H Combo) -0.3989 -0.8314 0.0336 

b3 (W-B/H Combo) -0.4402 -0.8235 -0.0557 

b3 (W-W Combo) -0.5031 -0.8738 -0.1310 

b4 (Casual Type) 0.5710 0.4084 0.7347 

b5 (Duration x Casual 

Type) 
-0.0467 -0.0638 -0.0294 

b6 (Combined Age) 0.0002 9.5502E-05 0.0003 

b7 (Combined Age2) -1.6150 -2.1624 -1.1322 

b8 (HIV+ Concordant) -0.5248 -0.6790 -0.3724 

b9 (PrEP Use) 0.1701 -0.1385 0.4743 

b10 (Atlanta residence) 0.0012 0.0005 0.0019 

Abbreviations: CI, confidence interval; B-H/W, Black ego with either a 

Hispanic or White alter; H-B/W, Hispanic ego with either a Black or White 

alter; H-H, Hispanic ego with a Hispanic alter; W-B/H, White ego with 

either a Black or Hispanic alter; W-W, White ego with a White alter; PrEP, 

preexposure prophylaxis. 
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For the logistic regression model of one-time partnerships, we used a similar logistic regression 

approach as for persistent partnerships but dropped the partnership duration and partnership 

type (since there was only one type for this model) predictor variables. The corresponding linear 

model formula for persistent partnerships was as follows: 

Yi ~ b0 + b1X1 + b2X2 + b3X2
2 + b4X3 + b5X4 + b6X5 

where: 

Yi = Log odds of the probability of condom use per one-time contact. 

X1 = Racial/ethnic combination of the ego (respondent) and alter (partner), coded in 6 

categories to capture within and across group mixing: Black-Black, Black-

Hispanic/White, Hispanic-Black/White, Hispanic-Hispanic, White-Black/Hispanic, White-

White. 

X2 = The combined age of ego and alter in years. 

X3 = The concordant diagnosed HIV-positive status of both ego and alter, compared to 

all other combinations of dyadic HIV status (1 = concordant positive; 0 = all other 

combinations of dyadic HIV status). 

X4 = Current use of pre-exposure prophylaxis (PrEP) by the ego (respondent) (1 = yes; 0 

= no) 

X5 = Residence (1 = Atlanta metropolitan area; 0 = all other areas).  

The coefficients for the model, and their lower and upper 95% confidence intervals, are 

presented in the table below. Taking the inverse logit of the linear combination of coefficients 

will yield to the strata-specific predicted probabilities of condom use within the partnership. 

Supplemental Table A.7. Statistical Model of Per-Act Condom Use 
Probability for One-Time Sexual Contacts 
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Model Parameter Estimate 
Lower 95% 

CI 
Upper 95% CI 

b0 (Intercept) 2.4287 1.6597 3.2007 

b1 (B-H/W Combo) 0.1526 -0.3728 0.6785 

b1 (H-B/W Combo) -0.1042 -0.5311 0.3221 

b1 (H-H Combo) -0.10538 -0.5617 0.3506 

b1 (W-B/H Combo) -0.1189 -0.5205 0.2825 

b1 (W-W Combo) -0.2507 -0.6414 0.1396 

b2 (Combined Age) -0.0542 -0.0733 -0.0351 

b2 (Combined Age2) 0.0003 0.0001 0.0004 

b3 (HIV+ Concordant) -1.8369 -2.6547 -1.1610 

b4 (PrEP Use) -0.7133 -0.8732 -0.5553 

b5 (Atlanta residence) 0.3102 0.0107 0.6095 

Abbreviations: CI, confidence interval; B-H/W, Black ego with either a 

Hispanic or White alter; H-B/W, Hispanic ego with either a Black or White 

alter; H-H, Hispanic ego with a Hispanic alter; W-B/H, White ego with either 

a Black or Hispanic alter; W-W, White ego with a White alter; PrEP, 

preexposure prophylaxis. 

 

4.2.3  Predicted Probabilities in Epidemic Model 

Predicted probabilities of condom use conditional on an AI act were calculated based on the 

linear combination of partnership and individual attributes obtained dynamically by predicting 

from the statistical model with inputs based on the current simulated population. This set of 

predictors was input into a predict function in R to obtain the expected mean probabilities.  
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In Supplemental Figure A.2 below, we display some example probabilities based on a subset of 

model inputs. This figure shows that condom use is lower in partnerships of a longer duration, 

higher in casual compared to main partnerships, higher when both partners are younger, and 

lower in partnerships in which the ego (respondent) reported currently using PrEP. Other 

predicted probabilities may be obtained from Supplemental Table A.6 by taking the inverse logit 

of the linear combination of coefficients of interest. 

Supplemental Figure 3 shows the predicted probabilities for the second logistic model, for 

condom use within one-time AI contacts. Here we display variation in condom use by combined 

age of the partners, current PrEP use, and racial combination of the partners. As the figure 

shows, condom use is higher within partners of a lower combined age, higher in partnerships 

involving Black MSM (race.combo = 1 or 2), and lower among current PrEP users. 

Supplemental Figure A.2. Predicted Probabilities of Condom Use Per AI Act in Persistent Partnerships from the 

Logistic Regression Model, by Partnership Duration, Partnership Type (ptype: 1 = Main; 2 = Casual), Combined 

Partner Age (comb.age: 40 or 80 years), and PrEP Use. 

 



157 
 

 

 

Based on these model predictions, which represent expected probabilities for each linear 

combination, we then drew individual probabilities of condom use per act in EpiModel using the 

rbinom function to draw randomly from the Bernoulli distribution with a vector of parameters, 

one value for each act. This generated a set of 0’s and 1’s for whether condom use occurred 

within the act as a function of the predictors in the statistical model. 

  

4.4  Sexual Role 

Men were assigned an individual sexual role preference (exclusively insertive, exclusively 

receptive, or versatile) as described in Section 3.1.9. Relationships between two exclusively 

insertive or two exclusively receptive men are prohibited via the TERGM models. Versatile men 

were further assigned a preference for being the insertive partner drawn from a uniform 

Supplemental Figure A.3. Predicted Probabilities of Condom Use in One-Time AI Contacts from the Logistic 

Regression Model, by Combined Partner Age, Current PrEP Use, and Racial Combination of Partners 

(race.combo: 1 = black ego-black alter; 2 = black ego-Hispanic or White alter; 3 = Hispanic ego-black or White 

alter; 4 = Hispanic ego-Hispanic alter; 5 = White ego-black or Hispanic alter; 6 = White ego-White alter. 
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distribution between 0 and 1 upon entry into the population; we refer to this proportion as the 

‘insertivity quotient’. When two versatile men are simulated to have an anal intercourse act, their 

sexual positions during that act must be determined (all other allowed combinations have only 

one direction). One option is for men to engage in intra-event versatility (IEV; i.e. both men 

engage in insertive and receptive anal intercourse during the act). The probability of this was 

derived from the partner-specific role data described in Section 3.1.9. If IEV does not occur, 

then each man’s probability of being the insertive partner equals his insertivity quotient divided 

by the sum of the two men’s insertivity quotients. 

5 Demography and Initial Conditions 

In this model, there are three demographic processes: entries, exits, and aging. Entries and 

exits are conceptualized as flows into and out of the sexually active population of interest: MSM 

aged 15 to 65 years old. Entry into this population represents the time at which persons become 

at risk of infection via male-to-male sexual intercourse, and we model these flows as starting at 

an age associated with sexual debut and ending at an age potentially before death (age 65). 

This age range also mapped directly on to the eligibility criteria of the ARTnet study.228 

5.1 Arrivals at Sexual Onset 

All persons enter the network at age 15, which was the lower age boundary of ARTnet. The 

number of new entries at each time step was based on a fixed rate (0.052 per 100 person-

weeks) that kept the overall network size in a relatively stable state. The model parameter 

governing this rate was tuned iteratively to generate simulations with a population size at 

equilibrium, given the inherent variability in population flows related to background mortality, 

sexual cessation (i.e., reaching the upper age limit of 65), and disease-induced mortality. At 

each time step, the exact number of men entering the population was simulated by drawing 

from a Poisson distribution with the rate parameter.  
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5.2  Initialization of Attributes 

Persons entering the population were assigned attributes in different categories. Some 

attributes remained fixed (e.g., race/ethnicity), others were fixed by assumption (e.g., insertive 

versus receptive sexual role), and others were allowed to vary over time (e.g., age and disease 

status). Here we describe attributes initialized at the outset in the model and for arrivals into the 

population at each time step: 

• Race/ethnicity. This model was based on a race/ethnic population composition 

categorized into three mutually exclusive groups: Black, Hispanic, and White. At the outset 

of the model simulations, individuals were randomly assigned into one of these three 

groups with a probability equal to the proportions each represented in the Atlanta 

metropolitan target population based on 2018 Census data estimates for men aged 15 to 

65. Those probabilities were: 51.5% Black, 4.6% Hispanic, and 43.9% white. Incoming 

nodes during the dynamic simulation were also randomly assigned a race/ethnicity in 

these proportions. 

• Age. In the dynamic simulation, as noted above, all incoming nodes were assigned an age 

of 15, which incrementally grew in weekly time steps. At the outset of the model 

simulations, we assigned nodes an age based on a uniform distribution, with ages from 15 

to 65. This population-level age distribution was expected to converge to a more realistic 

distribution during model burn-in and calibration (explained in Section 9.2). 

• HIV Status. In the dynamic simulation, all incoming nodes were assigned an HIV status of 

uninfected upon arrival into the population. This reflects the assumption that arrival 

corresponded with sexual debut, before which exposure to HIV would be very rare. At the 

outset of the model simulations, we randomly seeded the nodes with HIV infection by 

fitting and predicting from a logistic regression of diagnosed HIV status from the ARTnet 

data. This model incorporated city (residence in Atlanta), age, and race/ethnicity as the 
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primary predictors based on the self-reported diagnosed HIV status reported by ARTnet 

respondents. These initial infections were all assumed to be diagnosed based on this 

outcome. We did not expect that this initial condition of diagnosed HIV prevalence at the 

outset of the burn-in model to match the calibrated disease prevalence prior to 

experimental intervention models; instead, this statistical modeling approach allowed for a 

data-driven seeding of HIV infection in the population that was distributed according to 

known demographic and geographic heterogeneity. Further description of the transition 

from initial HIV conditions to calibrated levels are provided in Section 8.2. 

• Circumcision Status. Circumcision status was randomly assigned to incoming nodes at 

arrival and for all nodes as initial conditions in the simulations. Based on empirical data 

from Atlanta MSM,229 89.6% of men were circumcised before sexual onset. As described 

in Section 8, circumcision was associated with a 60% reduction in the per-act probability of 

infection for HIV- males for insertive anal intercourse only (i.e., circumcision did not lower 

the transmission probability if the HIV+ partner was insertive).212,230 

5.3 Departures from the Network 

All persons exited the network by age 65, either from mortality or by reaching the upper age 

bound of the MSM target population of interest. This upper limit of 65 was modeled 

deterministically (probability = 1), but other exits due to mortality were modeled stochastically. 

Departures included both natural (non-HIV) and disease-induced mortality causes before age 

65. Background mortality rates were based on US all-cause mortality rates specific to age and 

race/ethnicity from the National Vital Statistics life tables.231 Note that these rates include deaths 

due to HIV/AIDS; however, the relative fraction of those deaths to total deaths is small enough 

not to impact this background mortality process. Supplemental Table 8 shows the probability of 

mortality per year by age and race/ethnicity. 
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Supplemental Table A.8. Age- and Race/Ethnicity-

Specific Probabilities of Mortality among Men in the United 

States 

Age Black Hispanic White 

15–19 0.00166 0.00080 0.00065 

20–24 0.00299 0.00153 0.00127 

25–29 0.00329 0.00175 0.00174 

30–34 0.00396 0.00197 0.00226 

35–39 0.00473 0.00242 0.00274 

40–44 0.00590 0.00309 0.00332 

45–49 0.00799 0.00437 0.00444 

50–54 0.01130 0.00653 0.00653 

55–59 0.01699 0.01013 0.00990 

60–64 0.02553 0.01488 0.01443 

These yearly probabilities were transformed into weekly risks. Natural mortality was then 

applied to persons within the population at each time step stochastically by drawing from a 

Bernoulli distribution for each eligible person with a probability parameter corresponding to their 

age- and race-specific risk of death. Disease-related mortality, in contrast, was modeled based 

on clinical disease progression, as described in Section 6. 

5.4 Aging 

The aging process in the population was linear by time step for all persons. The unit of time step 

in these simulations was one week, and therefore, persons were aged in weekly steps between 

the minimum and maximum ages allow (15 and 65 years old). Evolving age impacted 

background mortality, age-based mixing in forming new partnerships, and other features of the 

epidemic model described below. Persons who exited the network were no longer active and 

their attributes such as age were no longer updated. 

6 Intrahost Epidemiology 
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Intrahost epidemiology includes features related to the natural disease progression within HIV+ 

persons in the absence of clinical intervention. The main component of progression that was 

explicitly modeled for this study was HIV viral load. In contrast to other modeling studies that 

model both CD4 and viral load, our study used viral load progression to control both interhost 

epidemiology (HIV transmission rates) and disease progression eventually leading to mortality. 

Following prior approaches,211,212,214,216,232 we modeled changes in HIV viral load to account for 

the heightened viremia during acute-stage infection, viral set point during the long chronic stage 

of infection, and subsequent rise of VL at clinical AIDS towards disease-related mortality. The 

HIV viral load has a direct impact on the rates of HIV transmission within serodiscordant pairs in 

the model, and this interaction is detailed in Section 8. A starting viral load of 0 is assigned to all 

persons upon infection. From there, the natural viral load curve is fit with the following 

parameters.  

Supplemental Table A.9. HIV Natural History Parameters 

Parameter Value Reference 

Time to peak viremia in acute stage 21 days Robb233 

Level of peak viremia 6.886 log10 Little234 

Time from peak viremia to viral set point 21 days Robb233 

Level of viral set point 4.5 log10 Little234 

Duration of chronic stage infection (no 

ART) 
3550 days Buchbinder,235 Katz236 

Duration of AIDS stage 728 days Buchbinder235 

Peak viral load during AIDS 7 log10 
Estimated from average duration of 

AIDS 

 

After infection, it takes 21 days to reach peak viremia, at a level of 6.886 log10. This was 

estimated as 13 days in Robb et al.,233 but we added an additional 8 days to account for less 

than perfect sensitivity of RNA testing in that study. From peak viremia, it takes another 21 days 
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to reach viral set point, which is set at a level of 4.5 log10. Changes occur linearly on the log 

scale. The total time of acute stage infection is therefore 3 months. The duration of chronic 

stage infection in the absence of clinical intervention is 3550 days, or 9.7 years. The total 

duration of pre-AIDS disease from infection is therefore approximately 10 years. At onset of 

AIDS, HIV viral load rises linearly on the log scale from 4.5 log10 to 7 log10. The time spent in the 

AIDS stage is 728 days, or 2 years; this duration is used to calculate the rate of viral load 

increase during the AIDS stage but does not determine AIDS-related mortality. This viral load 

trajectory is for ART-naïve persons only, and the influence of ART on disease progression is 

detailed in Section 7. These transitions are deterministic for all ART-naïve persons. For persons 

in the AIDS stage who are not currently on ART, disease-related mortality is imposed 

stochastically with a homogenous weekly risk of 0.0006. This is accomplished by drawing from 

a binomial (Bernoulli) distribution for all eligible individuals in the AIDS stage. Mortality risk 

values were sourced from Krebs et al.237 and calibrated to the HIV-related death rates in Atlanta 

reported by the Georgia Department of Public Health238. The risk of disease-related mortality is 

reduced for those on ART as detailed in Section 7. 

7 Clinical Epidemiology 

Clinical epidemiological processes in the model refer to all steps along the HIV care continuum 

after initial HIV infection: diagnosis, linkage to ART care, adherence to ART, and HIV viral load 

suppression. In this model, these clinical features have interactions with behavioral features 

detailed above, as well as impacts on the rates of HIV transmission, detailed in the next section. 

The features of our model’s clinical processes generally follow the steps of the HIV care 

continuum, in which persons transition across states from infection to diagnosis to ART initiation 

to HIV viral suppression.239 

7.1  HIV Diagnostic Screening 
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Both HIV-uninfected and HIV-infected persons in our model were exposed to regular interval-

based HIV screening that served as a common entry point for HIV prevention and HIV treatment 

services, respectively. Individuals screened at routine intervals first based on whether they were 

currently using PrEP or not. For HIV screening outside of PrEP care, based on exploratory 

analyses of behavioral and clinical data, and the research questions of this study, we elected to 

stratify these screening rates by race/ethnicity. 

Our approach to parameterization for HIV screening among PrEP non-users was first to start 

with priors based on ARTnet data for time since last HIV test for HIV-uninfected, and then use 

model calibration (the technical details of which are explained in Section 9) to fit these 

parameters to reproduce the race-stratified levels of the first step of the HIV care continuum (the 

fraction of HIV-infected persons who were diagnosed). For this and the following surveillance 

target statistics, we have used values specific to MSM. We used that approach because self-

reported HIV screening data alone may be biased, and this calibration approach allows for 

triangulation of diagnostic history based on more objective laboratory data. 

Supplemental Figure 4.1-4.2 shows the general results to this calibration. The model starts with 

all persons with HIV infection as undiagnosed, then the model is simulated for 60 years (x axis 

for plot time scale is in weeks) to establish stable equilibrium conditions for this and the other 

calibrated parameters. The target statistics are shown with dashed horizontal lines and the 

simulated statistics are shown with solid lines. 
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Each model calibration was simulated 1000 times, so the solid lines represent the median 

values across those simulations and the polygon bands are the interquartile ranges. The three 

model parameters for the weekly screening rates were calibrated to meet the target statistics, 

which were the fraction of HIV-infected MSM who were diagnosed. The numerical results from 

this parameterization are shown in Supplemental Table 10.  

Supplemental Figure A.4.1. Fraction of MSM with HIV Who Are Diagnosed, Simulations versus Target 

Statistics, Stratified by Race/Ethnicity (blue = White MSM, red = Black MSM, green = Hispanic MSM), for Aim 2 
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Supplemental Table A.10. Model Parameterization for HIV Screening 

 Black MSM 
Hispanic 

MSM 
White MSM 

Target Statistic: Diagnosed 

Fraction240,241 (Aim 3) 
84.7% 81.8% 86.2% 

Target Statistic: Diagnosed 

Fraction33 (Aim 2) 
86.6% 83.6% 89.2% 

Simulations: Diagnosed Fractions 80.1% 81.7% 88.3% 

Calibrated Rates (per Week) 0.00385 0.00380 0.00690 

Mean Inter-Test Interval (Years) 5.00 5.06 2.79 

Median Diagnostic Delay (Years) 2.50 2.52 1.70 

Abbreviation: MSM, men who have sex with men. 

The target statistics for the diagnosed fraction were calculated from a 2019 CDC HIV 

surveillance report that specified the diagnosed fraction among HIV-infected MSM nationally 

Supplemental Figure A.4.2. Fraction of MSM with HIV Who Are Diagnosed, Simulations versus Target 

Statistics, Stratified by Race/Ethnicity (blue = White MSM, red = Black MSM, green = Hispanic MSM), for Aim 3 
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and from AIDSVu demographic data on the HIV-positive population in Atlanta, by assuming that 

the national unstratified diagnosed fraction among MSM is equivalent to the corresponding 

fraction among MSM in Atlanta and that the ratios between race-specific diagnosed fractions in 

US adults are transportable to Atlanta MSM. The diagnosed fraction was higher for White MSM 

compared to Black and Hispanic MSM. After calibration, the simulated diagnosed fractions were 

nearly identical to those targets. The calibrated screening rates per week were higher among 

White MSM, and lower among Black and Hispanic MSM, consistent with producing the 

differentials in the diagnosed fractions across the groups. These weekly rates were consistent 

with average inter-test intervals, or the average time between HIV negative screening events, of 

2.8 to 5.1 years. Note that these intervals represent marginal averages across the target 

population; some MSM may screen more frequently while others screen very rarely.  

We also calculated the diagnostic delay as a validation of this calibration process. Whereas the 

inter-test interval is calculated for HIV-negative MSM in the model, the diagnostic delay is 

Supplemental Figure A.5. Median Years Delay Between Infection and Diagnosis, Stratified by Race/Ethnicity 

(blue = Black MSM, red = Hispanic MSM, green = White MSM)  
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calculated for HIV-infected MSM who are eventually diagnosed positive. This delay is the 

median number of years between HIV infection and HIV diagnosis. As shown in Supplemental 

Figure 5A, this time starts out low in the early part of the burn-in model, but converges to a 

stable equilibrium value by the end of the burn-in. The simulated median values were 2.5 years 

for Black and Hispanic MSM, and 1.7 years for White MSM. This is what would be expected 

given the differences in the calibrated screening rates. This is also consistent with forward 

projections of two external studies of national surveillance data. Hall et al. estimate race-

stratified median times between infection and diagnosis for 2003 and 2011,242 and Dailey et al. 

update these estimates for 2015.183  The median delays declined substantially over this period, 

from 5.4 years in 2003 to 3.0 years in 2015. To compare against our other target statistics, we fit 

a log-linear model to estimate the relative yearly declines in median delay times, with a 

prediction for 2017. The 2017 projections from this model were 2.44 years overall, 2.47 years 

for Blacks, 2.51 years for Hispanics, and 2.09 years for Whites. The corresponding estimates 

from our simulation model calibrated to the Georgia Department of Public Health HIV care 

continuum statistics resulted in median times of 2.32 years overall, 2.50 years for Blacks, 2.56 

years for Hispanics, and 1.71 years for Whites. So overall our simulations slightly (by 5%) 

underestimate the projected 2017 median time to diagnosis, but this gap was small (but larger 

for White MSM), and it captured the racial/ethnic differences. 

Diagnostic testing was simulated stochastically using draws from a binomial distribution with 

probability parameters equal to these stratified probabilities. This generated a population-level 

geometric distribution of times since last test. For PrEP users, we modeled HIV screening 

practice based on CDC clinical practice guidelines.243 The guidelines recommend ongoing 

screening at 3-month intervals for MSM actively using PrEP. This schedule was imposed for all 

PrEP users active in their PrEP use, regardless of PrEP adherence categories. We also 

assumed no racial/ethnic variation in HIV screening rates for PrEP users.  
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Finally, we also modeled a 21-day window period after infection during which the tests of the 

truly HIV+ persons would show as negative to account for the lack of antibody response 

immediately after infection.244 HIV+ persons who tested after this window period would be 

correctly diagnosed with 100% test sensitivity. MSM with recent but undetected infection were 

still eligible for PrEP initiation since PrEP eligibility was based diagnosed HIV status. This would 

have resulted in a period in which HIV-infected but undiagnosed persons were classified as on 

PrEP. This did not impact their HIV transmission potential (and could not impact their acquisition 

potential). This undetected infection would then be identified at the next quarterly PrEP clinical 

visit, at which point they would be transitioned off PrEP. 

7.2 Antiretroviral Therapy (ART) Initiation 

Following HIV diagnosis, individuals were linked to HIV care that provided ART. In the absence 

of quantitative data and based on current clinical practice guidelines for MSM in the U.S., we 

assumed no gap between treatment entry and ART initiation. Although the intermediate steps of 

the HIV care continuum are often characterized by any linkage to HIV care and/or ART, we 

selected a second HIV care continuum target of linkage to HIV care specifically within one 

month of diagnosis for two reasons. First, in the dynamic modeling context, the temporally 

defined threshold easily mapped on to the tracking implemented for simulated individuals in the 

model. Second, there were readily available surveillance estimates for this outcome. With 

respect to the latter, we used data from the Georgia Department of Public Health care 

continuum estimates for 2019, stratified by transmission risk level and race/ethnicity. We 

assume therefore that there is a statistical relationship between the proportion linked to care 

within one month and the average time to care entry following diagnosis: time-to-care entry is 

assumed to be exponentially distributed, where we use the data on proportion linked to care 

within one month to solve for the exponential rate parameter. This time-to-event estimate below 
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is generally consistent with recent cohort data that suggest relatively rapid ART initiation 

following diagnosis.245  

Supplemental Figure 6.1-6.2 shows the general results to this calibration. The approach was 

similar to calibration for HIV screening rates. Over the 60-year burn-in simulation period, 

persons were linked to HIV care with ART with initiation rates that were specific to 

race/ethnicity. The specific metric used within the simulations to compare against the target 

statistics was the period between diagnosis and first ART use, which were uniquely tracked for 

all individuals with HIV infection in the model. A group-specific proportion of persons whose 

difference between diagnosis and ART initiation was less than or equal to four weeks was 

calculated in the model. The target statistics are shown with dashed horizontal lines and the 

simulated statistics are shown with solid lines. Each model calibration was simulated 1000 

times, so the solid lines represent the median values across those simulations and the polygon 

bands are the interquartile ranges. 

Supplemental Figure A.6.1. Proportion of Diagnosed HIV-Infected MSM Linked to ART Care within One Month 

of Diagnosis, Stratified by Race/Ethnicity (blue = White MSM, red = Black MSM, green = Hispanic MSM), for Aim 

2 
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Supplemental Table 11 shows the numerical results of the calibration. The rate of care 

establishment was higher for White and Hispanic MSM than for Black MSM. With the calibrated 

rates, the model simulations matched these target statistics. The inverse of these rates implied 

that the average time to ART initiation after HIV diagnosis was between 4 to 6 weeks on 

average. 

Supplemental Table A.11. Model Parameterization for ART Linkage After 

Diagnosis 

 Black MSM 
Hispanic 

MSM 
White MSM 

Target Statistic: Fraction Linked 

within 1m246 (Aim 3) 
82.9% 89.8% 88.1% 

Target Statistic: Fraction Linked 

within 1m33 (Aim 2) 
78.2% 84.8% 84.5% 

Simulations: Fraction Linked 62.3% 65.1% 76.5% 

Supplemental Figure A.6.2. Proportion of Diagnosed HIV-Infected MSM Linked to ART Care within One Month 

of Diagnosis, Stratified by Race/Ethnicity (blue = White MSM, red = Black MSM, green = Hispanic MSM), for Aim 

3 
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Calibrated Rates (per Week) 0.1775 0.1900 0.2521 

Mean Time to ART (in Weeks) 5.6 5.3 4.0 

Abbreviations: ART, antiretroviral therapy; m, month; MSM, men who have sex with 

men. 

 

7.3 ART Adherence and HIV Viral Load Suppression 

MSM who initiated ART could cycle on and off treatment, where cycling off treatment resulted in 

an increase in the VL back up to the assumed set point of 4.5 log10. The slope of changes to VL 

were calculated such that it took a total of 3 months to transition between the set point and the 

on-treatment viral loads.247 Individuals on ART could reach full suppression with sustained ART 

use. The nadir HIV viral load level was assumed to be 1.5 log10 among those at full suppression 

levels.247 The latter corresponds to a rounded value (on the log10) scale of an absolute viral load 

below the standard levels of detection (viral load = 50).248 Viral load was tracked and updated 

continuously over time based on the natural history of HIV disease by stage, and current use of 

ART.  

The patterns of ART adherence (cycling on and off ART) leading to full HIV viral suppression 

were estimated based on an analysis of HIV care patterns among MSM in the United States249 

and model calibration similar to the first two HIV care continuum steps. The rates of cycling off 

ART after initially starting (the “halting rate”) and the rates of cycling back on after a period of 

stopping (the “reinitiation rate”) controlled overall levels of HIV viral suppression. Within the 

intervention component of the model, improvement to HIV care retention corresponded to 

reductions in the halting rate by relative amounts compared to the base calibrated rates.  

Because of the negative collinearity of the halting and reinitiation rates that would result in non-

identifiability issues with both were simultaneously estimated, we elected to keep the reinitiation 

rates fixed and fit the halting rates. We started with halting and reinitiation rates and their 
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uncertainty intervals based on an earlier model of the HIV care continuum in the U.S.250 These 

reinitiation rates were 0.1326 per year, corresponding to an average time spent off ART before 

reengagement of 7.5 years. With the reinitiation rates fixed there, we then allowed the halting 

rates to vary by race/ethnicity and fit them to generate simulations matching the race/ethnicity-

specific proportions of diagnosed MSM with a suppressed VL in the cross-section. We did not 

model a distinct clinical typology of ART users with a lower propensity for ART discontinuation, 

above and beyond the differences by race/ethnicity, for two reasons. First, the empirical data to 

support a distinct typology at the population-level are insufficient. Second, the retention 

interventions currently in the scenarios are designed to shift the overall population averages 

rather than focus on a subgroup who would be at higher risk of ART dropout. 

Supplemental Figure A.7.1-A.7.2 shows the general results of this calibration. The general 

approach was the same as for calibration of HIV screening rates and ART linkage rates. The 

specific metric used within the simulations to compare against the target statistics was the 

Supplemental Figure A.7.1. Proportion of Diagnosed HIV-Infected MSM with HIV Viral Load Suppression, 

Stratified by Race/Ethnicity (blue = White MSM, red = Black MSM, green = Hispanic MSM), for Aim 2 
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proportion of individuals who had a HIV VL below the detectable limit of 200 copies/mL. A 

group-specific proportion of persons was calculated at each time step in the model. The target 

statistics are shown with dashed horizontal lines and the simulated statistics are shown with 

solid lines. Each model calibration was simulated 1000 times, so the solid lines represent the 

median values across those simulations and the polygon bands are the interquartile ranges. 

 

Supplemental Table A.12 shows the numerical results of the calibration. Georgia Department of 

Public Health data for MSM in 2019 were our target statistics for the proportion of diagnosed 

MSM with a suppressed viral load in the cross-section. This mapped directly onto to our model 

simulations.  

  

Supplemental Figure A.7.2. Proportion of Diagnosed HIV-Infected MSM with HIV Viral Load Suppression, 

Stratified by Race/Ethnicity (blue = White MSM, red = Black MSM, green = Hispanic MSM), for Aim 3 
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Supplemental Table A.12. Model Parameterization for ART Retention Rates After 

Linkage 

 Black MSM 
Hispanic 

MSM 
White MSM 

Target Statistic: Fraction VL 

Suppressed246 (Aim 2) 
60.2% 62.0% 71.0% 

Target Statistic: Fraction VL 

Suppressed33 (Aim 3) 
61.6% 66.6% 73.5% 

Simulations: Fraction VL Suppressed 55.1% 60.9% 72.5% 

Calibrated Halting Rates (per Week) 0.0058 0.00475 0.0028 

Mean Time to First ART Stoppage (in 

Weeks) 
171.4 209.5 356.1 

Mean Time to First ART Stoppage (in 

Years) 
3.3 4.0 6.8 

Abbreviations: ART, antiretroviral therapy; MSM, men who have sex with men; VL, 

viral load. 

 

The corresponding halting rates were therefore lowest in White MSM and highest in Black MSM. 

The inverse of these rates implied a time to first stopping ART after initiation of 161 to 323 

weeks. 

7.4  AIDS Disease Progression and AIDS-Related Mortality  

Progression to AIDS after ART initiation was modeled based on the cumulative time on and off 

ART for individuals who had been linked to treatment (persons never linked to ART progressed 

according to the rates in Section 6). The maximum untreated time between infection and the 

start of AIDS for those who never initiate treatment was 9.7 years.235 For those with some 

treatment history, we assumed a slower progression time, with individuals who had ever 

initiated ART spending a maximum of 15 years off of ART over the life course before 

progression to AIDS, similar to previous models.211 Persons who had ever initiated ART 

progressed to AIDS at a similar rate as those who were ART-naïve, but ART use during the 
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AIDS stage was associated with the same declines in HIV viral load as in pre-AIDS stages. For 

persons within the AIDS stage who are currently on active ART, the probability of mortality per 

week is reduced to 0. This mortality risk value was calibrated to the HIV-related death rates in 

Atlanta reported by the Georgia Department of Public Health238. 

7.5  PrEP Initiation and Adherence 

In our models, we consider that PrEP initiation can only occur after a negative HIV test. This 

makes the PrEP initiation rate linked to the test rate. PrEP start and stop rate are thus calibrated 

after the other parameters (the technical details of which are explained in Section 13.2). 

 

8 Interhost Epidemiology 

Interhost epidemiological processes represent the HIV-1 disease transmission within the model. 

Disease transmission occurs between sexual partners who are active on a given time step. This 

section will describe how the overall rate is calculated as a function of the intrahost 

epidemiological profile of each member of a partnership, and behavioral features within the 

dyad. 

8.1  HIV-Discordant Dyads 

At each time step in the simulation, a list of active dyads was selected based on the current 

composition of the network. This was called an “edgelist.” Given the three types of partnerships 

detailed above, the full edgelist was a concatenation of the type-specific sublists. The complete 

edgelist reflects the work of the STERGM- and ERGM-based network simulations, wherein 

partnerships formed on the basis of nodal attributes and degree distributions (see Section 3). 

From the full edgelist, a disease-discordant subset was created by removing those dyads in 

which both members were HIV- or both were HIV+. This left dyads that were discordant with 
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respect to HIV status, which was the set of potential partnerships over which infection may be 

transmitted at that time step. 

8.2 HIV Transmission Rates 

Within HIV-discordant dyads, transmission was simulated stochastically across separate sexual 

acts at each timestep. The per-act probabilities were a combined function of attributes of the 

HIV-negative and HIV-positive partner; these probabilities were calibrated to reach the empirical 

HIV diagnosis rates. The final per-partnership transmission rates per time step were then a 

function of one minus these per-act transmission probabilities raised to the number of acts 

within the partnership during that time step. 

8.2.1  Per-Act Transmission Probabilities 

Within disease-discordant dyads, HIV transmission was modeled based on a sexual act-by-act 

basis, in which multiple acts of varying infectiousness could occur within one partnership within 

a weekly time step. Determination of the number of acts within each discordant dyad for the 

time step, as well as condom use and role for each of those acts, was described in Section 4. 

Transmission by act was then modeled as a stochastic process for each discordant sex act 

following a Bernoulli distribution with a probability parameter that is a multiplicative function of 

the following predictors of the HIV- and HIV+ partners within the dyad, as shown in 

Supplemental Table 13 below. 

For each act, the overall transmission probability was determined first based on sexual position 

and HIV viral suppression status of the infected partner. If the infected partner was virally 

suppressed and on ART, then the base probability was 2.2/100,000, which was derived from a 

model-based estimate of Supervie.251 This study estimated upper bound of the transmission 

probability of 4.4/100,000 for MSM; we used the mean between the observed number (zero) 
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and this upper bound as our base per-act transmission probability (so 2.2 transmissions per 

100,000 exposures) in our model.  

If the infected partner was not virally suppressed (at conditions of 200 copies/mL or higher) or 

not currently on ART, the base probability was a function of whether the HIV- partner was in the 

receptive or insertive role, with the former at a 2.6-fold infection risk compared to the latter. 

Then, following the parametric function of Wilson,252 the HIV+ partner’s viral load modifies this 

base probability in a non-linear formulation, upwards if the VL was above the VL set point during 

chronic stage infection in the absence of ART, and downwards if it was below the set point. 

Following others, we modeled an excess transmission risk in the acute stage of infection above 

that predicted by the heightened VL during that period.253 Three covariates could reduce the risk 

of infection: condom use within the act by either the HIV- or HIV+ partner, circumcision status of 

the HIV- partner (only if the HIV- partner was insertive in that act), and PrEP use at the time of 

the act by the HIV- partner. 
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For condom use, we updated our previous approach to explicitly represent condom failure that 

would result in a transmission event. Our previous models used estimates of HIV incidence 

Supplemental Table A.13. Per-Act Transmission Probabilities and Modifiers 

Predictor Partner Parameters References 

Sexual role 

(insertive or 

receptive) 

HIV- 

Receptive: 0.008938 base 

probability when HIV+ partner 

has 4.5 log10 viral load 

Vittinghoff254 

Insertive: 0.003379 base 

probability when HIV+ partner 

has 4.5 log10 viral load 

Vittinghoff254 

HIV viral load (VL) 

HIV+ (Not 

virally 

suppressed or 

not on ART) 

Multiplier of 2.45(VL - 4.5) on 

sexual-role specific base 

probabilities above 

Wilson252 

HIV+ (Virally 

suppressed 

and on ART) 

0.000022 base probability, 

regardless of sexual role 
Supervie251 

Acute stage  HIV+ Multiplier of 6 
Leynaert,255 

Bellan253 

Condom use Both 
Multiplier of 0.05 times (1 – 

0.25)  

Varghese,256 

Weller,257 Smith258 

Circumcision 

status 
HIV-, insertive Multiplier of 0.40 Gray230 

Preexposure 

Prophylaxis (PrEP) 
HIV- 

High adherence: Multiplier of 

0.01 

Medium adherence: Multiplier 

of 0.19 

Low adherence: Multiplier of 

0.69 

Grant259 

Current STI 

Urethral Multiplier of 1.73 
Fitted values (see 

Section 9.2 below) 
Rectal Multiplier of 2.78 
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comparing consistent condom users to occasional or non-condom users, resulting in a condom 

“efficacy” of 75–80%. However, this efficacy gap of 20–25% is the function of both the 

biological/physiological gaps in protection given perfect and consistent condom use during anal 

intercourse as well as the human error resulting in impact use. Such error could represent 

condom breakage, misapplication, incomplete use during sexual activity, and other related 

causes.258 For this model, we assumed a 95% efficacy for the former, and a 25% absolute 

reduction in that efficacy as a function of condom failure to arrive at the previous range of 71% 

total effectiveness. 

8.2.2  Calibration of Transmission Probabilities 

In addition to the calibration of the HIV care continuum parameters described in Section 7, we 

also calibrated the per-act transmission probabilities so that the rate of new HIV diagnoses was 

consistent with empirical data on HIV burden in this target population. Our target statistic for this 

calibration step was the number of new HIV diagnoses in 2019 by race/ethnicity as reported by 

Supplemental Figure A.8.1. New HIV diagnoses per 100 PY, Stratified by Race/Ethnicity (blue = White MSM, 

red = Black MSM, green = Hispanic MSM), For Aim 2 
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CDC,179 scaled to the MSM population size by race/ethnicity, which was estimated in 

Rosenberg.260 The target statistics of new HIV diagnoses per 100 person-years in the Atlanta 

area were 2.596 for Black MSM, 1.588 for Hispanic MSM, and 0.380 for White/Other MSM. We 

took this approach to calibration because there are no external data on the baseline estimated 

HIV incidence by race/ethnicity for our target population of MSM aged 15 to 65 of all 

race/ethnicities. There is some historical cohort data for younger (18 to 39 years old) Black and 

White MSM in Atlanta;222 these were used to calibrate our earlier modeling studies.214 But we 

are concerned that the cohort members may be higher risk than all demographically similar 

MSM in Atlanta due to selection biases. This was a main motivation to moving towards 

calibrating the model primarily based on population-level surveillance targets for the care 

continuum and diagnosis rate. 

The per-act transmission probabilities defined above were then multiplied by a factor unique to 

each race/ethnic group. For Aim 2, the final factor levels were 4.06 for Black MSM, 0.94 for 

Hispanic MSM, and 0.72 for White MSM. For Aim 3, the final factor levels were 3.08 for Black 

MSM, 0.52 for Hispanic MSM, and 0.39 for White MSM. These calibration factors represent the 

additional sources of potential error in the transmission parameters that would generate the 

current HIV epidemic. These include co-factors not included in this model, such as untreated 

sexually transmitted infections.261 The upweighting of the transmission probabilities for Black 

MSM and down-weighting for White and Hispanic MSM is due to the long-standing finding that 

race-stratified behavioral and network data do not, by themselves, explain the excess burden of 

HIV among Black MSM.262,263 

The results of the calibration are visualized in Supplemental Figure A.8.1-A.8.2. The HIV 

prevalence was initialized based on the statistical model of diagnosed HIV prevalence with 

ARTnet data but allowed to change over the 60-year burn-in period to reach the specified target 

statistics. In the calibrated model for Aim 2, the median diagnosis rate during the final year of 
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the calibration period was 24 new diagnoses per 100 person-years for Black MSM, 10 new 

diagnoses per 100 person-years for Hispanic MSM, and 8 new diagnoses per 100 person-years 

for White MSM. In the calibrated model for Aim 3, the median diagnosis rate during the final 

year of the calibration period was 31 new diagnoses per 100 person-years for Black MSM, 13 

new diagnoses per 100 person-years for Hispanic MSM, and 8 new diagnoses per 100 person-

years for White MSM. 

 

 

8.2.3  Final Per-Partnership-Week Transmission Rates 

The final transmission rate per partnership per weekly time step was a function of the per-act 

probability of transmission in each act and the number of acts per time step. The per-act 

transmission probability could be heterogeneous within a partnership due to various types of 

acts in each interval: for example, a HIV- man who is versatile in role may have both insertive 

Supplemental Figure A.8.2. New HIV diagnoses per 100 PY, Stratified by Race/Ethnicity (blue = White MSM, 

red = Black MSM, green = Hispanic MSM), For Aim 3 
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and receptive intercourse within a single partnership; some acts within a partnership may be 

protected by condom use while others are condomless. Transmission was simulated for each 

act within each serodiscordant dyad, based on draws from a Bernouli distribution with the 

probability parameter equal to the per-act transmission probabilities detailed above. 

 

9  COVID-Related Changes 

9.1 Addition of COVID-Era Parameters 

Several new parameters were created in order to allow for COVID-era changes in sexual 

behavior and clinical service utilization. Some parameters adapted existing EpiModelHIV 

parameters to allow for additional demographic stratification, such as stratifying HIV testing rate 

(by race/ethnicity) also by age category. In these models, the cutoff for binary age category 

(young/old) for age-stratified model parameters was 30 years. Below is a list of the new model 

parameters with their descriptions. 

• hiv.test.rate.young: Mean probability of HIV testing per time step for younger 

Black/Hispanic/White MSM (vector of length 3). 

• hiv.test.rate.old: Mean probability of HIV testing per time step for older 

Black/Hispanic/White MSM (vector of length 3). 

• prep.start.prob.young: Probability of a younger Black/Hispanic/White MSM starting PrEP 

given current indications. 

• prep.start.prob.old: Probability of an older Black/Hispanic/White MSM starting PrEP given 

current indications. 

• prep.discont.rate.young: PrEP discontinuation rate for younger Black/Hispanic/White 

MSM. 

• prep.discont.rate.old: PrEP discontinuation rate for older Black/Hispanic/White MSM. 
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• part.prep.start.prob.young: Probability of a younger Black/Hispanic/White MSM individual 

identified through partner identification starting PrEP given current indications at the 

current time step. 

• part.prep.start.prob.old: Probability of an older Black/Hispanic/White MSM individual 

identified through partner identification starting PrEP given current indications at the 

current time step. 

• tx.init.rate.young: Probability per time step that a younger Black/Hispanic/White MSM who 

has tested positive will initiate treatment (vector of length 3). 

• tx.init.rate.old: Probability per time step that an older Black/Hispanic/White MSM who has 

tested positive will initiate treatment (vector of length 3). 

• tx.halt.partial.rate.young: Probability per time step that a younger Black/Hispanic/White 

MSM who has started treatment and assigned to the partial VL suppression category will 

stop treatment (vector of length 3). 

• tx.halt.partial.rate.old: Probability per time step that an older Black/Hispanic/White MSM 

who has started treatment and assigned to the partial VL suppression category will stop 

treatment (vector of length 3). 

• tx.halt.full.or.young: Odds ratio comparing the odds of stopping treatment for a younger 

Black/Hispanic/White MSM in the full VL suppression category vs. in the partial VL 

suppression category (vector of length 3). 

• tx.halt.full.or.old: Odds ratio comparing the odds of stopping treatment for an older 

Black/Hispanic/White MSM in the full VL suppression category vs. in the partial VL 

suppression category (vector of length 3). 

• tx.halt.durable.or.young: Odds ratio comparing the odds of stopping treatment for a 

younger Black/Hispanic/White MSM in the durable VL suppression category vs. in the 

partial VL suppression category (vector of length 3). 
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• tx.halt.durable.or.old: Odds ratio comparing the odds of stopping treatment for an older 

Black/Hispanic/White MSM in the durable VL suppression category vs. in the partial VL 

suppression category (vector of length 3). 

• tx.reinit.partial.rate.young: Probability per time step that a younger Black/Hispanic/White 

MSM who has stopped treatment and assigned to the partial VL suppression category 

will restart treatment (vector of length 3). 

• tx.reinit.partial.rate.old: Probability per time step that an older Black/Hispanic/White MSM 

who has stopped treatment and assigned to the partial VL suppression category will 

restart treatment (vector of length 3). 

• tx.reinit.full.or.young: Odds ratio comparing the odds of re-starting treatment for a younger 

Black/Hispanic/White MSM in the full VL suppression category vs. in the partial VL 

suppression category (vector of length 3). 

• tx.reinit.full.or.old: Odds ratio comparing the odds of re-starting treatment for an older 

Black/Hispanic/White MSM in the full VL suppression category vs. in the partial VL 

suppression category (vector of length 3). 

• tx.reinit.durable.or.young: Odds ratio comparing the odds of re-starting treatment for a 

younger Black/Hispanic/White MSM in the durable VL suppression category vs. in the 

partial VL suppression category (vector of length 3). 

• tx.reinit.durable.or.old: Odds ratio comparing the odds of re-starting treatment for an older 

Black/Hispanic/White MSM in the durable VL suppression category vs. in the partial VL 

suppression category (vector of length 3). 

• part.tx.init.rate.young: Probability that a younger Black/Hispanic/White MSM who has been 

identified as the partner of an incident HIV+ MSM will initiate treatment during the current 

time step. 
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• part.tx.init.rate.old: Probability that an older Black/Hispanic/White MSM who has been 

identified as the partner of an incident HIV+ MSM will initiate treatment during the current 

time step. 

• part.tx.reinit.rate.young: Probability per time step that a younger Black/Hispanic/White 

MSM who has been identified through partner identification, stopped treatment will 

restart treatment (vector of length 3). 

• part.tx.reinit.rate.old: Probability per time step that an older Black/Hispanic/White MSM 

who has been identified through partner identification, stopped treatment will restart 

treatment (vector of length 3). 

• cond.modifier.mc: Modifier for condom usage for persistent partnerships (main and 

casual). 

• cond.modifier.oo: Modifier for condom usage for one-time partnerships. 

• pr.behav.changer: Probability that an individual is a "behavior changer," i.e., changes their 

sexual behavior (and subsequently, potentially their HIV service utilization) during the 

COVID pandemic. 

• seed.behav.changer: Parameter to turn on/off assigning behavior changers. The default is 

FALSE, then change to TRUE during the COVID pandemic (or when we want there to 

be behavior changers). If set to TRUE and pr.behav.changer is a non-zero probability 

(like 0.2), then this will set the proportion of behavior changers to pr.behav.changer. 

Once set, people can remain as behavior changers but the effect of behavior changers 

can be stopped (for example, at the end of the COVID pandemic) by changing the 

behavior changer effect parameters (such as behav.modifier.tests) back to their no-

effect/null values. 

• behav.modifier.casual: Modifier of sexual act rate of casual partnerships for behavior 

changers. 
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• behav.modifier.oo: Modifier of sexual act rate of one-time partnerships for behavior 

changers. 

• behav.modifier.tests: Modifier of HIV testing rate for behavior changers (i.e., if set to 0.7, 

then expect testing to be 0.7 of what it was for these people, the behavior changers, 

before COVID). 

• behav.modifier.prep: Modifier of PrEP initiation for behavior changers (includes general 

PrEP initiation indication and identified partners indication). I.e., If set to 0.25, then 

expect PrEP initiation to be 0.25 of what it was for these people (the behavior changers) 

before COVID; if set to 0.25, expect that 75% of behavior changers will NOT initiate 

PrEP. 

• acts.modifier.mc: Modifier of sexual act rate for persistent partnerships (main and casual). 

This precedes and is separate from modification of sexual act rate related to behavior 

changers. 

• acts.modifier.oo: Modifier of sexual act rate for one-time partnerships. This precedes and 

is separate from modification of one-time sexual acts related to behavior changers. 

9.2 Addition of COVID-Era Intervention Parameters 

Additional new model parameters were created to allow for the home-based HIV testing and 

PrEP retention interventions used in Aim 3, in addition to those added in the preceding section. 

is a list of the new intervention-related model parameters with their descriptions. 

• prep.interv.cov: The proportion of those eligible to start the PrEP retention intervention that 

will enter the intervention. 

• prep.discont.rate.interv: The rate of spontaneous discontinuation from PrEP per time step 

for Black/Hispanic/White MSM in the PrEP intervention. The effect of the intervention is 

changing the PrEP discontinuation rate from prep.discont.rate.young 
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prep.discont.rate.old (the default rate for those not on the intervention) to 

prep.discont.rate.interv. 

• prep.interv.dropoff: The rate of drop-off from the PrEP retention intervention per time step 

for those in the intervention. 

• hiv.test.interv.cov: The proportion of those eligible for the HIV testing intervention that 

become enrolled in the intervention (the coverage of the HIV testing intervention). 

• hiv.test.rate.interv: The updated HIV testing rate for Black/Hispanic/White MSM for those 

in the HIV testing intervention. 

• hiv.test.interv.dropoff: The rate of drop-off from the HIV testing intervention per time step 

for those in the HIV testing intervention. 

9.3 Parameterization of COVID-Era Parameters 

COVID-era sexual behavior and clinical service model parameters were set using data from a 

variety of sources. The Supplemental Table A.14 below explains the model parameters, data 

sources, and parameter calculations and related assumptions, where applicable, for these 

parameters. 

 

Supplemental Table A.14. Model Parameters, Data Sources, and Parameter Calculations and 
Related Assumptions, Where Applicable, for Parameters. 

Model 
Parameter 

Estimate/ 
Modifier and 

Time 
Information 

Information/Justification Source 

behav.modif
ier.casual 

April–May 
2020: 

Casual: 0.11 
(0.11-0.77) 

 

November 
2020–January 
2021: 

L&S Question  All 
Behavior 
Changers 

Only 

April–May 
2020: How 
many sex 
partners in 3 
months before 
COVID19? 

Mean 4.26 5.96 

Median 2 5 

April–May 
2020: How 
many times 
anal sex in 3 

Mean 8.29 6.57 

Median 4 5 

Stephens
on et al 
2021;264 
Stephens
on et al 
2022165; 
Weiss et 
al 2020218 
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Casual: 1.0 
(0.95-1.0) 

 

 

 

Between May 
and November 
2020: Gradual 
slope  

between time 
steps 4026–
4045 (the last 
week of May 
and first week 
of October 
2020) and then 
4056 and 4069 
(January–
March 2021) 

 

A gradual slope 
approach was 
also utilized for 
behav.modifier, 
acts, and 
condom use 
weekly 
parameters 
between time 
steps 4026–
4045 (last 
week of May 
and first week 
of October 
2020) and then 
4056 and 4069 
(January 2021 
through March 
2021). 

 

 

 

 

months before 
COVID19? 

April–May 
2020: How 
many sex 
partners during 
COVID19 
pandemic? 

Mean 1.83 1.50 

Median 1 1 

April–May 
2020: How 
many times 
anal sex during 
COVID19? 

Mean 6.99 3.81 

Median 3 2 

November 
2020–January 
2021: How 
many sex 
partners in 
past 3 
months? 

Mean 2.55 4.07 

Median 1 3 

November 
2020–January 
2021: How 
many times 
anal sex in 
past 3 
months? 

Mean 8.45 8.15 

Median 4 5 

 

In Love & Sex in the Time of COVID (L&S) dataset, in April–May 
2020, the median number of sex partners for behavior changers 
decreases from 5 (pre-COVID) to 1 (COVID); the average 
decreases from 6.0 to 1.5). In L&S dataset, in November 2020–
January 2021, the median number of sex partners for behavior 
changers decreases from 5 (pre-COVID) to 3 (COVID); the average 
decreases from 6.0 to 4.1. From this, we make the following 
calculations: 

 

Network degree and partnership type data, from Weiss et al 
2020:218
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Before COVID, the median number of sex partners is 5. 

From distribution of partner types from ARTnet, then: 

5 𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠 ∗ (
2618

2618 + 5678 + 7602
) = 5 ∗ 0.165 = 0.82 𝑚𝑎𝑖𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠

5 ∗ 0.357 = 1.79 𝑐𝑎𝑠𝑢𝑎𝑙 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠
5 ∗ 0.478 = 2.39 𝑜𝑜 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠

 

 

For April/May 2020:  

Reduces to 1 partner. 
If we assume main partners are not affected and one-time are 
100% reduced (most likely scenario): 

0.82 𝑚𝑎𝑖𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠 (0% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

1 − 0.82 = 0.18 𝑐𝑎𝑠𝑢𝑎𝑙 → (
1.79 − 0.18

1.79
) = 89.9% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

0 𝑜𝑜 (100% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

 

 

If we assume there is an even split between main and casual 
partner reduction, and one-time (oo) are 100% reduced: 

2618

2618 + 5678
∗ 1 𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟 = 0.316 𝑚𝑎𝑖𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠 → (

0.82 − 0.316

0.82
) = 61.5% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

5678

2618 + 5678
∗ 1 = 0.684 𝑐𝑎𝑠𝑢𝑎𝑙 → (

1.79 − 0.684

1.79
) = 61.8% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

0 𝑜𝑜 → (100% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

 

 

If assume even split between main, casual, and one-time partner 
reduction: 

(
2618

2618 + 5678 + 7602
) ∗ 1 = 0.165 𝑚𝑎𝑖𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠 → (

0.82 − 0.165

0.82
) = 79.9% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

(
5678

2618 + 5678 + 7602
) ∗ 1 = 0.357 𝑐𝑎𝑠𝑢𝑎𝑙 →  (

1.79 − 0.357

1.79
) = 80.1% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

(
7602

2618 + 5678 + 7602
) ∗ 1 = 0.478 𝑜𝑜 →  (

2.39 − 0.478

2.39
) = 80.0% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 

All experience 80% reduction. But this is unlikely to be what is 
actually happening.  

It is not logical to assume that all changes are in casual 
partnerships (and none in one-time partnerships). 
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For November 2020–January 2021:  

Reduces to 3 partners. 
If we assume main partners are not affected and one-time are 
100% reduced, this would result in an increase in casual partners 
(2.18 casual partners vs 1.79 pre-COVID). So instead, we assume 
that main partners are not affected, casual are not affected, and 
one-time partnership absorb the decrease: 

0.82 𝑚𝑎𝑖𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠 (0% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)
1.79 𝑐𝑎𝑠𝑢𝑎𝑙 (0% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛) 

3 − 0.82 − 1.79 = 0.39 𝑜𝑜 → (
2.39 − 0.39

2.39
) = 83.7% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 

 

If we assume there is a even split between casual and one-time 
partner reduction, and main partners are not affected, then both 
experience a 40% reduction. 

 

Ranges for April/May 2020 (from partner numbers): 

Main: Decrease by 0%-80% = modifier of 0.2-1.0; 1.0 most likely 

Casual: Decrease by 61%-89%; modifier of 0.11-0.39; 0.11 most 
likely 

OO: Decrease by 80%-100%=modifier of 0.0-0.2; 0.0 most likely 

 

Ranges for November 2020–January 2021 (from partner numbers): 

Main: Decrease by 0%; modifier of 1.0; 1.0 most likely 

Casual: Decrease by 0%-40%; modifier of 1.0 most likely 

OO: Decrease by 40%-83.7%-100%; modifier of 0.16 most likely 

 

However, the number of causal partners ≠ number of casual acts. 
To translate from partners to acts, we could assume that the 
change in number of partners directly approximates the change in 
number of acts (that is, assume the act rate is the same for each 
persistent partner an individual has). If assuming all changes are 
within one-off partnerships, the maximum modifier for both main 
and casual could be 1.0. 

 

Or, alternatively, can use act rate data: 

 

Before COVID, the median number of sexual acts is 5. 

From distribution of partner types from ARTnet, then:  

5 𝑚𝑒𝑑𝑖𝑎𝑛 𝑎𝑐𝑡𝑠 ∗ (
2618

2618 + 5678 + 7602
) = 5 ∗ 0.165 = 0.82 𝑎𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠

5 ∗ 0.357 = 1.79 𝑎𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑐𝑎𝑠𝑢𝑎𝑙 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠
5 ∗ 0.478 = 2.39 𝑎𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑜𝑜 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠
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For April/May 2020: Reduces to 2 acts. 

If assume main partner acts are not affected and one-time are 
100% reduced: 

0.82 𝑚𝑎𝑖𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟 𝑎𝑐𝑡𝑠 → (0% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

2 𝑎𝑐𝑡𝑠 − 0.82 = 1.18 𝑐𝑎𝑠𝑢𝑎𝑙 𝑎𝑐𝑡𝑠 → (
1.79 − 1.18

1.79
) = 34.0% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

0 𝑜𝑜 𝑎𝑐𝑡𝑠 →  (100% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

 

 

If assume even split between main and casual partner reduction, 
and one-time are 100% reduced: 

2618

2618+5678
∗ 2 𝑚𝑒𝑑𝑖𝑎𝑛 𝑎𝑐𝑡𝑠 = 0.631 𝑚𝑎𝑖𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟 𝑎𝑐𝑡𝑠 → (

0.82−0.631

0.82
) = 23.0% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

5678

2618+5678
∗ 2 = 1.37 𝑐𝑎𝑠𝑢𝑎𝑙 𝑎𝑐𝑡𝑠 → (

1.79−1.37

1.79
) = 23.5% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

0 𝑜𝑜 → (100% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

  

 

If assume even split between main, casual, and one-time acts 
reduction: 

(
2618

2618 + 5678 + 7602
) ∗ 2 = 0.329 𝑚𝑎𝑖𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠 𝑎𝑐𝑡𝑠 → (

0.82 − 0.329

0.82
) = 59.9% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

(
5678

2618 + 5678 + 7602
) ∗ 2 = 0.714 𝑐𝑎𝑠𝑢𝑎𝑙 𝑎𝑐𝑡𝑠 →  (

1.79 − 0.714

1.79
) = 60.1% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

(
7602

2618 + 5678 + 7602
) ∗ 2 = 0.956 𝑜𝑜 →  (

2.39 − 0.956

2.39
) = 60.0% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 

All experience 60% reduction. 

 

For November 2020–January 2021: 

Maintains at 5 acts=modifier of 1.0 for all (if assuming that all 5 acts 
weren’t shifted to main partner, for example). We could also 
assume, for example, that there were 3 one-time partners and 1 
persistent partner with 2 acts (because 3 partners reported). This is 
unlikely however, though not impossible. 

 

Ranges for April/May 2020 (from acts): 

Main: Decrease by 0%-60% = modifier of 0.4-1.0; 1.0 most likely 

Casual: Decrease by 23%-60%=modifier of 0.4-0.77; 0.66 most 
likely 

OO: Decrease by 60%-100%=modifier of 0.0-0.2; 0.0 most likely 

 

Ranges for November 2020–January 2021 (from acts): 

All: 1.0; but with uncertainty 
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Overall ranges for April/May 2020 (combining partner and act 
approach): 

Main: 1.0 (0.2-1.0) 
Casual: 0.11 (0.11-0.77) 
OO: 0.0 (0.0-0.2) 

 

Overall ranges for November 2020–January 2021 (combining 
partner and act approach): 

Main: 1.0 (0.95-1.0); 0.95 to introduce uncertainty 
Casual: 1.0 (0.95-1.0); 0.95 to introduce uncertainty 
OO: 0.16 (0.0-1.0) 

 

Modifiers are then applied to weekly rates. 

behav.modif
ier.oo 

April–May 
2020: 

OO: 0.0 (0.0-
0.2) 

 

November 
2020–January 
2021: 

OO: 0.16 (0.0-
1.0) 

See above for calculations. Stephens
on et al 
2021;264 
Stephens
on et al 
2022165; 
Weiss et 
al 2020218 

acts.modifie
r.mc 

April–May 
2020: 

Main: 1.0 (0.5-
1.0) 
Casual: 0.94 
(0.5-1.0)  

 

November 
2020–January 
2021: 

Main: 1.0 (0.5-
1.0) 
Casual: 0.94 
(0.5-1.0) 

L&S Question  All 
Behavior 
Changers 

Only 

April–May 2020: 
How many sex 
partners in 3 
months before 
COVID19? 

Mean 4.26 5.96 

Median 2 5 

April–May 2020: 
How many times 
anal sex in 3 
months before 
COVID19? 

Mean 8.29 6.57 

Median 4 5 

April–May 2020: 
How many sex 
partners during 
COVID19 
pandemic? 

Mean 1.83 1.50 

Median 1 1 

April–May 2020: 
How many times 
anal sex during 
COVID19? 

Mean 6.99 3.81 

Median 3 2 

November 2020–
January 2021: 
How many sex 
partners in past 3 
months? 

Mean 2.55 4.07 

Median 1 3 

November 2020–
January 2021: 

Mean 8.45 8.15 

Median 4 5 

Stephens
on et al 
2021;264 
Stephens
on et al 
2022165; 
Weiss et 
al 2020218 
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How many times 
anal sex in past 3 
months? 

 

In Love & Sex in the Time of COVID (L&S) dataset, in April–May 
2020, the median number of sex partners for decreases from 2 
(pre-COVID) to 1 (COVID). In L&S dataset, in November 2020–
January 2021, the median number of sex partners also decreases 
from 2 (pre-COVID) to 1 (COVID). From this, we make the following 
calculations: 

 

Before COVID, the median number of sex partners is 2. 

From distribution of partner types from ARTnet, then: 

2 𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠 ∗ (
2618

2618 + 5678 + 7602
) = 0.329 𝑚𝑎𝑖𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠

2 ∗ 0.357 = 0.714 𝑐𝑎𝑠𝑢𝑎𝑙 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠
2 ∗ 0.478 = 0.956 𝑜𝑜 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠

 

 

For April–May 2020:  

Reduces to 1 partner. 
If we assume main partners are not affected and one-time are 
100% reduced (most likely scenario): 

0.329 𝑚𝑎𝑖𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠 (0% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

1 − 0.329 = 0.671 𝑐𝑎𝑠𝑢𝑎𝑙 → (
0.714 − 0.671

0.714
) = 6.0% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

0 𝑜𝑜 (100% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

 

 

If we assume there is an even split between main and casual 
partner reduction, and one-time are 100% reduced: 

2618

2618 + 5678
∗ 1 𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟 = 0.316 𝑚𝑎𝑖𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠 → (

0.329 − 0.316

0.329
) = 4.0% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

5678

2618 + 5678
∗ 1 = 0.684 𝑐𝑎𝑠𝑢𝑎𝑙 → (

0.714 − 0.684

0.714
) = 4.2% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

0 𝑜𝑜 → (100% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

 

 

If assume weighted split between main, casual, and one-time 
partner reduction: 

(
2618

2618 + 5678 + 7602
) ∗ 1 = 0.165 𝑚𝑎𝑖𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠 → (

0.329 − 0.165

0.329
) = 49.8% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

(
5678

2618 + 5678 + 7602
) ∗ 1 = 0.357 𝑐𝑎𝑠𝑢𝑎𝑙 →  (

0.714 − 0.357

0.714
) = 50.0% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

(
7602

2618 + 5678 + 7602
) ∗ 1 = 0.478 𝑜𝑜 →  (

0.956 − 0.478

0.956
) = 50.0% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 

In this approach, all experience 50% reduction. But this doesn’t 
really make sense. 
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It is not logical to assume that all changes are in casual (and none 
in one-time partnerships). 

 

For November 2020–January 2021:  

Also reduces to 1 partner. So same calculations as April/May can 
be used. 

 

Ranges for April–May 2020and November 2020–January 2021 
(from partner numbers): 

Main: Decrease by 0%-50% = modifier of 0.5-1.0; 1.0 most likely 

Casual: Decrease by 4%-50%; modifier of 0.5-0.96; 0.94 most 
likely 

OO: Decrease by 50%-100%=modifier of 0.0-0.5; 0.0 most likely 

 

However, the number of causal partners ≠ number of casual acts. 
To translate from partners to acts, we could assume that the 
change in number of partners directly approximates the change in 
number of acts (that is, assume the act rate is the same for each 
persistent partner an individual has). If assuming all changes are 
within one-off partnerships, the maximum modifier for both main 
and casual could be 1.0. 

 

Alternatively, using act rate data: 

Before COVID, the median number of sexual acts is 4. 

From distribution of partner types from ARTnet, then:  

4 𝑚𝑒𝑑𝑖𝑎𝑛 𝑎𝑐𝑡𝑠 ∗ (
2618

2618 + 5678 + 7602
) = 0.659 𝑎𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑚𝑎𝑖𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠

4 ∗ 0.357 = 1.428 𝑎𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑐𝑎𝑠𝑢𝑎𝑙 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠
4 ∗ 0.478 = 1.912 𝑎𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑜𝑜 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠

 

 

For April–May 2020: Reduces to 3 acts 

If we assume main partner acts are not affected and one-time are 
100% reduced, this would result in an increase in casual partner 
acts. So instead, we assume that main partner acts are not 
affected, casual acts are not affected, and one-time partnership 
acts absorb the decrease: 

0.66 𝑚𝑎𝑖𝑛 𝑝𝑎𝑟𝑡𝑛𝑒𝑟 𝑎𝑐𝑡𝑠 (0% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)
1.43 𝑐𝑎𝑠𝑢𝑎𝑙 𝑎𝑐𝑡𝑠 (0% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛) 

3 − 0.66 − 1.43 = 0.91 𝑜𝑜 → (
1.912 − 0.91

1.912
) = 52.4% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 

For November 2020–January 2021: Maintains at 4 acts=modifier 
of 1.0 for all 

 

Ranges for April-May (from acts): 
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Main: Decrease by 0% = modifier of 1.0 most likely 

Casual: Decrease by 0% = modifier of 1.0 most likely 

OO: Decrease by 52.4%=modifier of 0.48 most likely 

 

Ranges for November 2020–January 2021 (from acts): 

All: 1.0; but with uncertainty 

 

Overall ranges for April–May 2020 (combining partner and act 
approach): 

Main: 1.0 (0.5-1.0) 
Casual: 0.94 (0.5-1.0)  
OO: 0.0 (0.0-0.48) 

 

Overall ranges for November 2020–January 2021 (combining 
partner and act approach): 

Main: 1.0 (0.5-1.0) 
Casual: 0.94 (0.5-1.0)  
OO: 0.5 (0.0-1.0) 

acts.modifie
r.oo 

April–May 
2020: 

OO: 0.0 (0.0-
0.48) 

 

November 
2020–January 
2021: 
OO: 0.5 (0.0-
1.0) 

See above for calculations. Stephens
on et al 
2021;264 
Stephens
on et al 
2022165; 
Weiss et 
al 2020218 

cond.modifi
er.mc 

April 2020: 
0.95 (0.93-1.0) 

September–
December 
2020: 0.93 
(0.92-1.0) 

In AMIS, in April and July, 94% of participants reported no change 
in condom use; 4-5% reported decrease in use. In September–
December 2020, this changed to 92% and 5%, respectively, with 
2% reporting increased use. We assume this is same for main & 
causal and one-time partners (though with decreases in one-time 
rate, this will have less of an effect there). For calculating, we 
looked at distribution of increase/decrease/no change. Since 
majority was no change we used these values. 

Sanchez 
et al 
2020;265 
Mann et 
al 2023161 

cond.modifi
er.oo 

April 2020: 
0.95 (0.93-1.0) 

September–
December 
2020: 0.93 
(0.92-1.0) 

In AMIS, in April and July 2020, 94% of participants reported no 
change in condom use; 4-5% reported decrease in use. In 
September–December 2020, this changed to 92% and 5%, 
respectively, with 2% reporting increased use. We assume this is 
same for main & causal and one-time partners (though with 
decreases in one-time rate, this will have less of an effect there). 
For calculating, we looked at distribution of increase/decrease/no 
change. Since majority was no change we used these values. 

Sanchez 
et al 
2020;265 
Mann et 
al 2023161 

pr.behav.ch
anger 

0.185 L&S: In April–May 2020, 18.5% of people stopped PrEP and 
reduced sexual partners. 

Sanchez 
et al 
2020;265 
Mann et 
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AMIS: In April, 11.4% decreased sexual partners and decreased 
HIV testing (no PrEP stoppage data in AMIS COVID survey). 

We will keep the parameter at 0.185 the whole time, but dilute the 
behavior changer modifier parameters over time since we see less 
behavior changers over time (to weaken its effect). 

 

We cannot really change the rate (create a range) without re-
calibrating model (given that the probability is set at initialization 
and arrivals), so we will keep the value at 0.185. 

al 
2023;161 
Stephens
on et al 
2021264 

hiv.test.rate.
young_1 

hiv.test.rate.
young_2 

hiv.test.rate.
young_3 

hiv.test.rate.
old_1 

hiv.test.rate.
old_2 

hiv.test.rate.
old_3 

Week- and 
race- specific 
modifiers 

The number of HIV screening tests, from DiNenno et al 2022:175 

 

 

 

DiNenno 
et al 
2022;175 
Goodreau 
et al 
2023177 
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The number of HIV tests in NYC and Atlanta, from Goodreau et al 
2023:177

 

 

Data on weekly HIV screening tests reported by two commercial 
laboratories from the National Syndromic Surveillance Program 
were used to estimate the weekly decrease in HIV testing between 
2019 and 2020. A week-specific modifier was created that was 
adjusted for by race: In 2020, the total number of HIV tests funded 
by CDC that were distributed in health care and non–health care 
settings decreased by 44.1% for Black individuals, 46.3% for 
Hispanic individuals, and 45.1% for White individuals. For example, 
the week-specific Black modifier was calculated by month-specific 
modifier*(1-0.441))/(1-0.451)=week-specific modifier for Black 
individuals. 

 

The COVID-era data stop in December 2020, so these modifiers 
were generated through December 2020. 
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We are not stratifying by young/old age category because data are 
very similar, especially when splitting into two binary categories 
(<30, ≥30 years); the differences more so are in very old, very 
young, but are lost in the large binary categories. Also no weekly 
HIV screening data divided by age are available the time of this 
analysis. 

behav.modif
ier.tests 

0.0 We don't know the number of HIV tests for behavior changers in 
AMIS, just that they experienced a decrease in their HIV testing. 
Since the average HIV testing interval is already >1 year, we will 
assume if behavior modifiers are changing their testing this means 
they will not have any tests in COVID period, so modify their testing 
by 100% (modifier of 0). 

Sanchez 
et al 
2020;265 
Mann et 
al 2023161 

tx.init.rate.y
oung_1 

tx.init.rate.y
oung_2 

tx.init.rate.y
oung_3 

tx.init.rate.ol
d__1 

tx.init.rate.ol
d__2 

tx.init.rate.ol
d__3 

Same as base There was no change in HIV treatment linkage from 2019 to 2020 
(there was actually an increase), so we assume no change in 
treatment initiation rate. 

 

Linkage to HIV Medical Care in 30 days in 2019 (CDC-funded HIV 
testing and linkage to HIV medical care among persons newly 
diagnosed with HIV, 60 jurisdictions in the United States, Puerto 
Rico, and the U.S. Virgin Islands, 2019): 71.4%. For Black: 68.3%, 
for Hispanic: 76.3%, for White: 72.9%. 

Linkage to HIV Medical Care in 30 days in 2020: 76.4%. For Black: 
74.2%, for Hispanic: 82.4%, for White: 73.9%. 

CDC 
2019;266 
CDC 
2020267 

tx.halt.partia
l.rate.young
_1 

tx.halt.partia
l.rate.young
_2 

tx.halt.partia
l.rate.young
_3 

tx.halt.partia
l.rate.old_1 

tx.halt.partia
l.rate.old_2 

tx.halt.partia
l.rate.old_3 

Same as base No significant difference in results between 2019 and 2020 for the 
following: ART adherence in the past 30 days: How many days did 
you miss at least 1 dose of any of your HIV medicines? How well 
did you do at taking your HIV medicines in the way you were 
supposed to? How often did you take your HIV medicines in the 
way you were supposed to? 

ART outcomes for NYC and Atlanta, from Goodreau et al 2023:177 

 

CDC 
2021;268 
CDC 
2022;204 
Goodreau 
et al 
2023177 
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Also, when looking at ART data in New York City and Atlanta, we 
do not see notable changes in adherence: 

 

tx.halt.full.or
.young_1 

tx.halt.full.or
.young_2 

tx.halt.full.or
.young_3 

tx.halt.full.or
.old_1 

tx.halt.full.or
.old_2 

tx.halt.full.or
.old_3 

Same as base No significant difference in results between 2019 and 2020 for the 
following: ART adherence in the past 30 days: How many days did 
you miss at least 1 dose of any of your HIV medicines? How well 
did you do at taking your HIV medicines in the way you were 
supposed to? How often did you take your HIV medicines in the 
way you were supposed to? 

 
Also, when looking at ART data in New York City and Atlanta, we 
do not see notable changes in adherence. 

CDC 
2021;268 
CDC 
2022;204 
Goodreau 
et al 
2023177 
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tx.halt.durab
le.or.young_
1 

tx.halt.durab
le.or.young_
2 

tx.halt.durab
le.or.young_
3 

tx.halt.durab
le.or.old_1 

tx.halt.durab
le.or.old_2 

tx.halt.durab
le.or.old_3 

Same as base No significant difference in results between 2019 and 2020 for the 
following: ART adherence in the past 30 days: How many days did 
you miss at least 1 dose of any of your HIV medicines? How well 
did you do at taking your HIV medicines in the way you were 
supposed to? How often did you take your HIV medicines in the 
way you were supposed to? 

 
Also, when looking at ART data in New York City and Atlanta, we 
do not see meaningful changes in adherence. 

CDC 
2021;268 
CDC 
2022;204 
Goodreau 
et al 
2023177 

tx.reinit.parti
al.rate.youn
g_1 

tx.reinit.parti
al.rate.youn
g_2 

tx.reinit.parti
al.rate.youn
g_3 

tx.reinit.parti
al.rate.old_1 

tx.reinit.parti
al.rate.old_2 

tx.reinit.parti
al.rate.old_3 

Same as base No significant difference in results between 2019 and 2020 for the 
following: ART adherence in the past 30 days: How many days did 
you miss at least 1 dose of any of your HIV medicines? How well 
did you do at taking your HIV medicines in the way you were 
supposed to? How often did you take your HIV medicines in the 
way you were supposed to? 

 
Also, when looking at ART data in New York City and Atlanta, we 
do not see notable changes in adherence. 

CDC 
2021;268 
CDC 
2022;204 
Goodreau 
et al 
2023177 

tx.reinit.full.
or.young_1 

tx.reinit.full.
or.young_2 

tx.reinit.full.
or.young_3 

tx.reinit.full.
or.old_1 

tx.reinit.full.
or.old_2 

tx.reinit.full.
or.old_3 

Same as base No significant difference in results between 2019 and 2020 for the 
following: ART adherence in the past 30 days: How many days did 
you miss at least 1 dose of any of your HIV medicines? How well 
did you do at taking your HIV medicines in the way you were 
supposed to? How often did you take your HIV medicines in the 
way you were supposed to? 

 
Also, when looking at ART data in New York City and Atlanta, we 
do not see notable changes in adherence. 

CDC 
2021;268 
CDC 
2022;204 
Goodreau 
et al 
2023177 
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tx.reinit.dura
ble.or.young
_1 

tx.reinit.dura
ble.or.young
_2 

tx.reinit.dura
ble.or.young
_3 

tx.reinit.dura
ble.or.old_1 

tx.reinit.dura
ble.or.old_2 

tx.reinit.dura
ble.or.old_3 

Same as base No significant difference in results between 2019 and 2020 for the 
following: ART adherence in the past 30 days: How many days did 
you miss at least 1 dose of any of your HIV medicines? How well 
did you do at taking your HIV medicines in the way you were 
supposed to? How often did you take your HIV medicines in the 
way you were supposed to? 

 
Also, when looking at ART data in New York City and Atlanta, we 
do not see notable changes in adherence. 

CDC 
2021;268 
CDC 
2022;204 
Goodreau 
et al 
2023177 

part.tx.init.ra
te.young_1 

part.tx.init.ra
te.young_2 

part.tx.init.ra
te.young_3 

part.tx.init.ra
te.old_1 

part.tx.init.ra
te.old_2 

part.tx.init.ra
te.old_3 

Same as base There was no change in HIV treatment linkage from 2019 to 2020 
(there was actually an increase), so we assume no change in 
treatment initiation rate. 

 

Linkage to HIV Medical Care in 30 days in 2019 (CDC-funded HIV 
testing and linkage to HIV medical care among persons newly 
diagnosed with HIV, 60 jurisdictions in the United States, Puerto 
Rico, and the U.S. Virgin Islands, 2019): 71.4%. For Black: 68.3%, 
for Hispanic: 76.3%, for White: 72.9%. 

Linkage to HIV Medical Care in 30 days in 2020: 76.4%. For Black: 
74.2%, for Hispanic: 82.4%, for White: 73.9%. 

CDC 
2019;266 
CDC 
2020267 

part.tx.reinit.
rate.young_
1 

part.tx.reinit.
rate.young_
2 

part.tx.reinit.
rate.young_
3 

part.tx.reinit.
rate.old_1 

part.tx.reinit.
rate.old_2 

part.tx.reinit.
rate.old_3 

Same as base No significant difference in results between 2019 and 2020 for the 
following: ART adherence in the past 30 days: How many days did 
you miss at least 1 dose of any of your HIV medicines? How well 
did you do at taking your HIV medicines in the way you were 
supposed to? How often did you take your HIV medicines in the 
way you were supposed to? 

 
Also, when looking at ART data in New York City and Atlanta, we 
do not see notable changes in adherence. 

CDC 
2021;268 
CDC 
2022;204 
Goodreau 
et al 
2023177 
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prep.start.pr
ob.young_1 

prep.start.pr
ob.young_2 

prep.start.pr
ob.young_3 

prep.start.pr
ob.old_1 

prep.start.pr
ob.old_2 

prep.start.pr
ob.old_3 

Month- and 
race- specific 
modifiers 

Calculated from monthly data on new PrEP users. Data are from a 
national pharmacy database from January 2017 through March 
2021, and from an interrupted time-series model that predicted 
PrEP prescriptions and new PrEP users had the pandemic not 
occurred. 

Huang et 
al 2022174 



204 
 

 

 

PrEP prescriptions, from Huang et al 2022:174
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To calculate the time- and race-specific modifier, first a month-
specific modifier was generated from the percent reduction in new 
PrEP users. Then, these modifiers were adjusted for race (for 
example, the month-specific Black modifier was calculated by 
month-specific modifier*(1-0.229))/(1-0.2584)=month-specific 
modifier for Black individuals. 

 

The COVID-era data stop in March 2021, so these modifiers were 
generated through March 2021. 

part.prep.st
art.prob.you
ng_1 

part.prep.st
art.prob.you
ng_2 

part.prep.st
art.prob.you
ng_3 

Same as base/ We are not modifying partner starts and instead focusing on other 
PrEP initiation. 
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part.prep.st
art.prob.old
_1 

part.prep.st
art.prob.old
_2 

part.prep.st
art.prob.old
_3 

prep.adhr.di
st_1 

prep.adhr.di
st_2 

prep.adhr.di
st_3 

Same as base Not focusing on adherence but instead persistence/discontinuation. 
Adherence trajectory has been found to be closely associated with 
PrEP continuation, and retention may be a bigger challenge with 
more impact on PrEP effectiveness than adherence. 

Jin et al 
2021;269 
Chan et al 
2016270 

prep.discont
.rate.young_
1 

prep.discont
.rate.young_
2 

prep.discont
.rate.young_
3 

prep.discont
.rate.old_1 

prep.discont
.rate.old_2 

prep.discont
.rate.old_3 

Month- and 
race- specific 
modifiers 

Calculated from monthly data on PrEP prescriptions. This assumes 
PrEP prescriptions approximates PrEP discontinuation. 

Data are from a national pharmacy database from January 2017 
through March 2021, and from an interrupted time-series model 
that predicted PrEP prescriptions and new PrEP users had the 
pandemic not occurred. 

 

To calculate the time- and race-specific modifier, first a month-
specific modifier was generated from the percent reduction in PrEP 
prescriptions. For example, a reduction by 4% translated to a 
modifier of 1.04. Then, these modifiers were adjusted for race (for 
example, the month-specific Black modifier was calculated by 
month-specific modifier*(1.165))/(1.1867)=month-specific modifier 
for Black individuals. 
 

The COVID-era data stop in March 2021, so these modifiers were 
generated through March 2021. 

Sanchez 
et al 
2020;265 
Mann et 
al 
2023;161 
Stephens
on et al 
2021264 

behav.modif
ier.prep 

0.0 By our definition (and set from L&S and AMIS data), these 
represent people that discontinue PrEP alongside sexual behavior 
change. It is illogical for them to have PrEP initiation, so we can 
assume the modifier is 0. 

Sanchez 
et al 
2020;265 
Stephens
on et al 
2021264 

 

10 Model Calibration 

This section describes the methods for executing the simulations and conducting the data 

analysis on the outcomes in further detail. 

Even though our model uses around 20 parameters with uncertain values, most of them have a 

monotonic direct relationship with a single target. (e.g. HIV test rate and proportion of the HIV 

positive being diagnosed). 
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Our calibration methodology employs a two-step process, utilizing various techniques to 

optimize the model parameters based on target statistics. In the initial step, we focused on 

calibrating the model to accurately reproduce the target statistics pertaining to the HIV care 

continuum and HIV diagnosis rates. To achieve this, we conducted simulations of the model 

over a 60-year period. 

We did not include STIs in our models. 

To calibrate the model, we employed polynomial regression surrogates to optimize the 

parameters. Through the process of fitting these regression models, we obtained the most 

optimal estimates for each parameter. Subsequently, we conducted additional simulations, 

narrowing down the parameter range to values centered around the estimated optimal values. 

This iterative process continued until further improvement in the surrogate's prediction was no 

longer observed, signifying the successful calibration of the parameters. 

The selection of the polynomial regression degree, the rate at which the parameter range was 

reduced, and the improvement threshold were determined as hyperparameters, tuned to 

enhance the calibration process. 

Given that certain parameters exhibited conditional dependencies on the values of other 

parameters, they were calibrated in a subsequent step. For example, the HIV prevalence 

parameter relied on a fixed value of the HIV test rate.  

For the HIV prevalence, 3 transmission scale parameters govern 3 race stratified HIV 

prevalence target. In this case, we employed a shrinking grid search approach, aiming to 

minimize the root mean squared error (RMSE). At each iteration, the search space was 

narrowed down to the parameter space of the top-performing P simulations. Calibration 

concluded once we attained N simulations wherein the target statistics deviated from the 

desired targets by less than a threshold T. The calibrated values were determined by computing 

the median of each parameter among the qualifying simulations. 

Once the HIV care continuum calibration was complete, we simulated 20,000 replicates of the 

fitted model and selected the single simulation with values of the target statistics closest to the 

targets (with total absolute deviance). 

In the second step of our calibration process, we conducted additional model simulations over a 

5-year period to introduce entropy into the system. Subsequently, we extended the simulation 

for an additional 10 years to incorporate the PrEP continuum. 
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 Similar to the first step, the parameters in this stage were optimized using a polynomial 

regression surrogate. We then calibrated the PrEP parameters. 

For each candidate parameter, 𝜃, to be estimated, we: 

1. Sampled a candidate 𝜃𝑖 from a prior distribution 𝜋(𝜃) 

2. Simulated the epidemic model with candidate value, 𝜃𝑖.  

3. Tested if a distance statistic, 𝑑 (e.g., the difference between observed HIV diagnosis rate 

and model simulated diagnosis rate) was greater than a tolerance threshold, 𝜖. 

a. If 𝑑 >  𝜖 then discard 

b. If 𝑑 <  𝜖 then add the candidate 𝜃𝑖 to the posterior distribution of 𝜃.  

4. Sample the next sequential candidate, 𝜃𝑖+1, either independently from 𝜋(𝜃) (if 3a) or 

from 𝜃𝑖 plus a perturbation kernel with a weight based on the current posterior 

distribution (if 3b). 
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