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Abstract 

The Structural Asymmetry and Scaling of Phylogenetic Trees 

By Hua Fang 

 Understanding the patterns and processes of evolution is very challenging. Because they 

carry inherent information about evolution, phylogenetic trees become a prevalent tool in 

evolutionary biology. In this work, we studied large-scale phylogenetic trees in terms of tree 

asymmetry and distribution of branch length. We used two indicators: the ratio of the size of 

smaller child clade to the size of parent clade and the ultrametric distances between two 

consecutive nodes. By comparing with a random null model and a critical model, we found that 

both the topology and timing of trees are scale-invariant and could be described by a power law 

distribution. This scale-invariance suggests that similar forces drive the evolution over a large 

range of scales. However, the observed patterns of several trees are better described by the null 

tree from the Markov process. Future works could attempt to explain this deviation. 
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1.Introduction  

One important aim of evolutionary studies is to explore the mechanism that leads 

to the current evolution’s results. While there are a bunch of different theories, it is hard 

to get empirical or experimental evidences to resolve the chaos because the evolutionary 

process is very difficult to observe in real time. Phylogenetic trees, the tree diagram 

describing relationships among species based on their physical and genetic properties, are 

central to approach this issue. Because of the development of genetic sequencing, 

statistical tools, and databases over the recent decade, the quantity, size, and detail of 

available phylogenetic trees are surging, which in turn facilitate more sophisticated 

models. Analyzing the phylogenetic structure helps to draw inference on underlying 

principles such as detection of adaptive radiation and mass extinction, speciation and 

extinction rates, and ecological causes that lead to diversity of life (Mooers & Heard, 

1997). Phylogenetic trees might also be interesting for physicists to study. For example, 

studies have investigated the percolation of fractal trees (Vandewalle & Ausloos, 1997) 

and phase transitions in tree reconstruction in terms of a random cluster model (Mossel & 

Steel, 2004) and by making an analogy to simulated annealing (Strobl & Barker, 2016). 

In this paper, we analyzed the topology of phylogenetic trees in hope that it may 

shed light on inferring the macroevolutionary process. A key observation is that the 

structure of phylogenetic trees is more asymmetric than expected. It leads to questions 

such as whether this asymmetry is caused by pure chance or by some mechanisms, and 

by which mechanisms if any. To answer this question, various studies have attempted to 

develop metrics for measuring asymmetry (Blum & Francois, 2005; Colijn & Plazzotta, 

2018; Liu et al., 2020), compare random models with phylogenetic trees (Matsen, 2006), 
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determine factors contributing to the tree shape (case study of historical time periods: 

Bernardi et al., 2016; ecological saturation and landscape: Gascuel et al., 2015; tree size 

and depth: Purvis & Agapow, 2002), and build evolutionary models to reproduce tree 

asymmetry (neutral biodiversity theory: Davis et al., 2011; niche construction: Xue et al., 

2020). There are two aspects in studying tree shapes: topological balance and distribution 

of branch length (Mooers & Heard, 1997). Many studies have supported a scale-invariant 

relation in the topologies and metrics of trees (Herreda et al., 2008; Hernandez-Garcia et 

al., 2010). Theoretical studies and critical models of evolution have discussed the long-

term memory effect as well (Bak & Sneppen, 1993; Boettcher & Paczuski, 1996). Here, 

we aimed to study the scale-invariant behavior of tree topology and branch length of 11 

reconstructed phylogenies. We would compare the 11 trees to a tree generated by the 

Markov process and a tree generated by the critical model of Boettcher and Paczuski 

(1996). 

1.1 Definitions about phylogenetic trees 

 

Figure 1. A time-scaled phylogenetic tree. The root is the small tick on the left and the 

five leaves are on the right. The horizontal axis is the age of each node. The branch 

length is the time elapsed since speciation. 
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 Phylogenetic trees are usually represented by tree-like diagrams consisting of 

nodes and branches. The root, internal nodes, leaves, branch lengths, and clade are terms 

to describe a tree. There are also different types of trees. The type of trees used in this 

study is rooted, binary, and labeled, with branch length scaled by time. Figure 1 is an 

example of this type and it shows the phylogenetic relation between the root and five 

currently living organisms. First, a rooted tree is a tree with a root, which is represented 

by a single branch at the left. The root is the common ancestor, or the parent, of all the 

nodes in this tree. Its descendants are at the right. The tree is directional that from left to 

right, the time evolves from ancient to current. There are two kinds of nodes: internal and 

terminal. Terminal nodes are nodes without descendants, such as A, B, C, D, and E, and 

are often called leaf. Nodes with descendants are called internal nodes. They are the 

ancestors of current living species. Second, at each node, there are exactly two immediate 

descendants, which makes it a binary tree. Third, in a labelled tree, usually only the 

leaves are labelled with the name of the species. Fourth, the branches, shown by the 

horizontal lines, indicate the proximity of a node to its ancestor. Branch lengths are 

proportional to the time elapsed since the nodes branched off from the ancestor. A longer 

branch means a node is more distant in time from its ancestor. The distance from one 

node to the root can be obtained by summing all the branches from the node to the root. 

A clade is defined as a subtree rooted at an internal node. The size of a clade is the 

number of all the nodes in the subtree. 
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1.2 The critical model by Boettcher and Paczuski 

 

Figure 2. A tree generated by the model of Boettcher and Paczuski.  

Based upon the self-organized critical model by Bak and Sneppen (1993), 

Boettcher and Paczuski (1996) developed a multi-trait evolution model where the species 

with the least fit mutate and may cause a chain reaction of coevolution. This model will 

be referred as the simulation model. Figure 2 is a visualization of a tree generated by this 

model, which is highly asymmetric. 

The model consists of a lattice of species. Each species is assigned with multiple 

values. Those values represent their traits and how those traits help them to survive. A 

small value means the species is less fit to the environment and susceptible to mutation. 

In their multi-trait evolution model, each time, an individual species with the lowest 

fitness mutates. Taking inter-species interaction into account, this mutation will change 

one of the traits of two neighboring species with the potential of undermining their 

fitness. It reflects the idea of a feedback system between organisms and the environment. 
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Organisms are changed by the environment, but they can also modify the environment 

through mechanisms like food chains.  

This system evolves by itself to critical states where intermittent avalanches of 

mutation happen between long periods of quiescence. This system supports punctuated 

equilibrium against phyletic gradualism. Phyletic gradualism argues that species evolve 

and diversify slowly and gradually with time. In punctuated equilibrium, long periods of 

equilibrium are interrupted by intermittent large-scale events that are called avalanches. 

Fossil records show that the traits of a particular species remain the same for long periods 

of time, but may experience drastic changes in relatively short periods.  

In this model, activities during each avalanche are represented by a tree structure. 

The parent of a mutated species is the one that introduces a change on the specie’s trait 

and makes the species the lowest fit. 

1.3 The Markov model 

 

Figure 3. Visualization of a section of a large Markov tree used in this study. The blue 

dots correspond to leaves.  

Our null model is generated by the Markov process and it is called as the Markov 

model. A Markov process is a stochastic process that the probability of an event only 

depends on its current state. Therefore, the future is independent of the past. An example 
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is the Brownian motion. The branch lengths are assigned according to a Poisson 

distribution. This process is a memoryless process, so the distribution of branch lengths 

should exhibit an exponential tail rather than a long-tailed power law. In addition, a 

visualization of the Markov tree in figure 3 shows that it is relatively symmetric. 

1.4 Asymmetric tree structure 

  

Figure 4. (Figure 1 in Jones, 2011) The two possible topologies to arrange a clade (C) 

with n tips and two tips (x, y) that do not belong to C. Left: a more balanced structure. 

Right: a less balanced structure. The ratio of probability of left to right is n under the 

ERM model and 1 under the PDA model.  

The shape of phylogenetic trees refers to the connectivity of nodes without taking 

the branch lengths into account. The shape of phylogenetic trees carries information 

about the evolutionary process. An interesting phenomenon that draws a lot of attention is 

the asymmetry of tree structures. Figure 4 is a graph by Jones (2011). In a rooted tree 

with n+2 tips, there is a clade (C) containing n tips and two tips (x, y) sitting outside C. 

Figure 4 shows the two possible topologies of such a tree, where the left topology is more 

balanced than the right one. The simplest model of branching process with continuous 

time was proposed by Yule in 1925. The Yule model is an equal-rate Markov (ERM) 

branching process, where each branch has an equal probability of splitting. Under ERM, 
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the ratio of the probability of the left to the right topology is n. Since ERM usually gives 

more balanced trees, it is often used as a null hypothesis in current studies. Another early 

model is the proportional-to-distinguishable-arrangements model (PDA). It makes all tree 

topologies equally likely, resulting in a less balanced tree. Both models have received 

interpretations and justifications from evolutionary perspectives.  

The two models were integrated into a more generalized model of cladogram 

distributions developed by Aldous (2001). In a one-parameter beta-splitting family with 

−2 < 𝛽 ≤ ∞, the ERM and the PDA model are special cases corresponding to 𝛽 = 0 and 

𝛽 = −1.5, respectively. Higher 𝛽 corresponds to greater balance. Aldous and early 

studies agreed that reconstructed phylogenies are more balanced than trees predicted by 

PDA, and less balanced than trees predicted by the ERM model. This tendency is 

independent of “methodological details of the trees’ estimation” (Heard 1996), meaning 

that the different ways to reconstruct trees from evolutionary data cannot cause or remove 

this tendency.  

 Over the recent years, there are numerous models attempting to establish links 

between tree asymmetry and various factors such as geographical factors, access to 

resources, and rate of diversification (Morlon, 2014). Many different metrics have also 

been developed to characterize and compare tree structures. Given the increasing size of 

trees, a particular parameter can hardly give a comprehensive description. Although there 

is a sizeable literature of statistics measuring tree balance and distribution by using the 

Markov model as a null hypothesis, it is unsatisfactory for the overall properties of a 

collection of trees with different size (Aldous 2011). In this paper, we studied a collection 

of large trees by applying a less arbitrary but powerful method proposed by Aldous 
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(2001), who was unable to analyze large phylogenetic trees then. This method uses the 

ratio of size of smaller child clade to size of parent clade as an indicator.  

 A clade can be understood as a subtree rooted at an internal node. The basic idea 

of this method is to count the number of nodes for a subtree rooted at an internal node i 

(the count includes node i itself). For a binary tree, each internal node specifies the split 

of a parent clade into two child clades. Figure 5 is a graph by Xue et al. (2020) to 

demonstrate the symmetry of binary trees. On the left of figure 5 is a balanced tree, where 

two child clades of any parent clade are equal in size. The child clade size in a balanced 

tree determines the upper limit of a smaller child clade size. On the right is a maximally 

unbalanced tree, which gives the lower limit of the smaller child clade size as the smaller 

of the two child clades always has a size of one. Let the size of the parent clade (number 

of nodes within the subtree rooted at the parent node i) be 𝑃(𝑖), and let the size of the 

smaller child clade be 𝑆(𝑖), then 1 ≤ 𝑆(𝑖) ≤
𝑃(𝑖)−1

2
. There is a -1 because the parent node 

i is counted, but it does not belong to any child clade. 

  

Figure 5. (Fig. 1 by Xue et al., 2020) Left: 1. A balanced tree. Each parent splits into two 

child clades with equal sizes. Right: 2. A maximally unbalanced tree. Each smaller child 

clade has a size of one regardless of the size of the parent.  
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A scatter plot of smaller child clade size over parent clade size is graphed for each 

internal node. A flatter slope indicates a higher degree of asymmetry. The slope can be 

compared with graphs generated by the two models to infer the underlying evolutionary 

process. As shown in figure 2 and figure 3, the Markov tree is more balanced than the 

simulation tree. We predicted that in the scatter plot, a Markov tree would have a steeper 

slope than the simulation tree. The Markov tree should also be steeper than most natural 

trees because it is shown to be more balanced than natural trees by various studies.  

1.5 Ultrametricity 

A metric is a function that defines the distance between any two points in a given 

set of objects M. A metric d on M maps the set to a real number 𝑑(𝑥, 𝑦) such that for any 

𝑥, 𝑦, 𝑧 ∈ 𝑀: 

𝑑(𝑥, 𝑦) > 0 for 𝑥 ≠ 𝑦, 

𝑑(𝑥, 𝑦) = 0 for 𝑥 = 𝑦, 

𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), 

𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧), 

where the last condition is called the triangle inequality. An ultrametric satisfies the 

ultrametric inequality, which can be seen as a strengthened triangle inequality: 

𝑑(𝑥, 𝑦) ≤ max{𝑑(𝑥, 𝑧), 𝑑(𝑦, 𝑧)}. 
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Figure 6. (“Ultrametric space”, n.d., sec. “Properties”) A graphical illustration of 

ultrametric inequality. The ultrametric inequality is satisfied by an isosceles triangle with 

a shorter base (the left) and an equilateral triangle (the middle), but not an isosceles 

triangle with a longer base (the right). 

Figure 6 shows graphical examples of the ultrametric relations. The ultrametric 

inequality is satisfied by triangles in the left and in the middle while it is not satisfied by 

the triangle in the right. For three arbitrary points, there are three distances between them. 

The ultrametric inequality demonstrates that one of the three distances must be smaller or 

equal to the remaining two distances. For example, when at least two distances are equal, 

it is an isosceles triangle with a shorter unequal side (figure 6, left). When all three 

distances are equal, it is an equilateral triangle (figure 6, middle). In the right of figure 6, 

the isosceles triangle with a longer base than its sides does not satisfy the inequality. 

Distance satisfying the ultrametric inequality is ultrametric distance. 

 There is a wide range of applications of ultrametricity. Rammal et al. (1986) gives 

a comprehensive review of ultrametricity from a physicist’s perspective, which discusses 

applications in taxonomy, spin glasses, random walk, simulated annealing, neural 

networks, and protein freezing and folding. Since phylogenies are issues of biological 

taxonomy with the use of hierarchical trees, it is natural to consider ultrametricity for 

phylogenetic analysis. 
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 For a rooted tree with a time axis, all the nodes that live at the same time moment 

satisfy the ultrametric inequality because the time elapsed (i.e. the distance) from the root 

to those nodes is the same (Rammal et al., 1986). The distance between two nodes is 

determined by their lowest common ancestor (LCA), which is their first common 

ancestor back in time. For any three nodes (A, B, C), two nodes, say A and B, that share a 

younger LCA (M) can be seen as a cluster. The distance between M and the cluster is the 

shorter base (d (A, M) = d (B, M)). If the LCA of C and the cluster is N, then the distance 

from C to N or the cluster to N forms the isosceles sides (d (A, N) = d (B, N) = d (C, N)). 

Finally, as M is closer to A and B, d (A, N) = d (B, N) = d (C, N) > d (A, M) = d (B, M). 

Thus, for two nodes that have the same distance to root, the distance is ultrametric. If M 

and N is the same node, then the three nodes A, B, and C have the same LCA and their 

distances are equal. 

Boettcher and Paczuski (1996) developed a multitrait evolution model where the 

species with the least fit mutate and may cause a chain reaction of coevolution. Because 

this simulation used equal time steps, the distance between any two nodes in this tree at a 

given time is ultrametric. They demonstrated that the ultrametric tree structure of 

avalanches, which measures the ultrametric distance between successive events in the 

chain reaction, follows a power law distribution at large times. It revealed the history-

dependent property of avalanches, meaning that the events further away from the root of 

tree correlate with the events happened a long time ago. In contrary, for the null tree from 

the memoryless Markov process, its ultrametric distribution should be Poisson instead of 

a power law. 



12 
 

Other studies have directly introduced a long-term memory into the branching 

process by requiring the branching probabilities to be a power law function of branching 

age (Keller-Schmidt et al., 2015). Through this way, the same power-law scaling could 

be observed. However, it could not provide an evolutionary interpretation of the observed 

pattern because it is forcing the simulation to produce expected or known results.  

This study applies the idea in Boettcher and Paczuski to reconstructed 

phylogenetic trees. Generally, in natural trees, it is rare that internal nodes are at the same 

time moment because branching rarely happens at the exact same moment. Thus, the 

distances from internal nodes to their LCAs are not exactly ultrametric. In this study, 

given that the phylogenetic trees are relatively large, the time difference between 

consecutive nodes are relatively small. Thus, the distance between consecutive branching 

points is approximately ultrametric. In conclusion, the ultrametric distribution should be 

exponential for the Markov tree and power-law for the simulation tree. For the 

phylogenetic trees, if their evolutionary events have memories about the past, their 

ultrametric distances should also be described by power laws.  

 

2. Methods 

2.1 Newick Tree Format 

 The Newick format is a way of representing trees in computer-readable forms by 

using commas and nested parentheses. It resembles the high-level programming language 

Lisp. The Newick format is a minimal definition for phylogenetic trees, where only 

commas, parentheses, and a semicolon are needed to topographically represent a tree 
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structure. Besides, the name of nodes and edge lengths can be added into the basic 

structure by using characters, numbers, and colons. For example, the tree in figure 1 in 

Newick format is “(((E:1.0, D:1.0):2.0, (C:2.0, B:2.0):1.0):1.0, A:4.0):0.0;”. A colon is 

used to separate names and lengths. The characters preceding the colon are the names of 

nodes. The numbers following the colon are the edge lengths between a node and its 

parent. If a node is not labelled, there is no character before the colon. The semicolon 

indicates the root of tree. The root has length zero because it does not have a parent. 

Nodes inside a matched pair of brackets and separated by commas are siblings, the 

immediate descendants of the same parent node. Following the right bracket is the parent 

of nodes inside the bracket. For example, the unnamed internal node with length two is 

the parent of D and E. 

2.2 Data 

Two types of trees are analyzed here: phylogenetic trees reconstructed by biology 

tools and artificial trees simulated by the model of Boettcher and Paczuski. All the trees 

are binary and rooted. 11 reconstructed trees are downloaded from the online database 

TreeBASE (https://treebase.org), a repository of phylogenetic information in peer-

reviewed publications. The 11 trees are determined after looking for trees which are 

larger than 1000 taxa in TreeBASE and readable by our program. Table 1 in the appendix 

presents a description of the downloaded trees. 

Trees are downloaded as NEXUS format and converted to the Newick format. 

NEXUS is a file that consists of “separate blocks, each containing one particular kind of 

information”, such as information about “taxa, morphological and molecular characters, 

distances, genetic codes, assumptions, sets, trees, etc.” (Maddison, et al., 1997). 
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Basically, the Newick format can be seen as a block in the Nexus format that contains 

phylogenetic information.  

2.3 Implementation 

A program is developed in Spyder Python 3.7 that performs basic operations such 

as parsing and traversing, as well as statistical analysis such as calculating the ultrametric 

distances. Numpy, matplotlib, scipy.stats, and math are imported. For convenient parsing 

of trees, trees are converted to Newick format via the Python package Bio.Phylo. The 

Newick file is parsed iteratively. Each species is stored as a type Node with pointers to its 

parent and two immediate descendants. The root node is returned after parsing. For 

multiple trees in one file, a list of roots is returned. By supplying the root into the 

Preorder traversing function, all the nodes are returned in a list. 

2.4 Size of parent clade and child clade 

A method that implements stack is used to get the size of a subtree rooted at any 

input node. Then, while traversing over the entire tree, the size of the subtree at each 

internal node and the size of its smaller child subtrees are obtained. Two arrays storing 

the sizes are used to plot the original scatter plot. The vertical and horizontal axes are 

scaled to log of base 10. In addition, data points of parent clade size are grouped via log-

binning of base 2. Log2 is chosen because it is appropriate for the data value range and 

the number of data points. The number of bins depends on the maximum value of points 

and is approximately ten for trees studied. The mean and standard deviation of each bin 

are calculated. The estimated standard error (the standard deviation divided by the square 

root of frequency) is plotted on the original scatter plot.  
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2.5 Ultrametric distance 

To calculate the ultrametric distances, the lowest common ancestor (LCA) of any 

two nodes is found. Then, the distance from root to every node is calculated and the 

nodes are sorted in terms of increasing distance. For each pair of nodes that are 

consecutive in time, two distances from the two nodes to their LCA are recorded in an 

array of ultrametric distances. Log-binning of base 2 is applied to group the data into ten 

bins. Lastly, a probability density of ultrametric distances is plotted in base 10 

logarithmic scale.  

 

3. Results and Discussion 

3.1 Tree topology 
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Figure 7. Log-log plots of the size of smaller child clade versus the size of parent clade. 

(1) Top left: a null tree generated by the Markov process. (2) Top right: a simulated tree 

generated by the program of Boettcher and Paczuski. (3) Bottom left: the tree of ferns is 

relatively balanced because its bin average has a relatively large slope. (4) Bottom right: 

a relatively unbalanced tree of apiaceae because a relatively small slope of bin averages. 

 Figure 7 shows the asymmetry information of two simulated trees and two natural 

trees. The size of smaller child clade was plotted over the size of parent clade with log-

log scale. The blue dots represent the original scatter plot of correspondence between the 

horizontal and the vertical axis. The blue dots were grouped by log-2 bins and the 

average of each bin was calculated and connected by the orange line. Centered at each 

average point, vertical error bars were plotted, but the standard error was too small to be 

seen on the graph because of the large number of data points.  

The slope indicates the level of symmetry. A steeper slope corresponds to a higher 

level of symmetry while a flatter slope corresponds to a lower level of symmetry. In 

figure 7, all data points are in the region between the diagonal and y = 1. In a log-log plot, 

the slope of a line is the exponent of a power law. As discussed before, the maximum 
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value of a smaller clade is 𝑆(𝑖) =
𝑃(𝑖)−1

2
, where P is the size of parent clade rooted at 

node i. Therefore, a balanced tree should be represented by approximately y = 0.5x on 

this graph, which means that the upper limit is the diagonal with a slope of one. The 

lower limit is a flat line y = 1. It is given by a maximally unbalanced tree where the size 

of the smaller child clade is always 1 regardless of the parent clade size.  

The tree in figure 7.1 is the null tree (referred as the Markov tree) generated by 

the Markov process. The tree in figure 7.2 is a very unbalanced tree (referred as the 

simulation tree) generated by the simulation algorithm in Boettcher and Paczuski (1996). 

We found the equations that fit the two lines of average bins are: 𝑦𝑜 = 4𝑥𝑜
0.8 for the 

Markov tree, and 𝑦𝑠 = 1.7𝑥𝑠
0.28 for the simulation tree. The slope of bin averages 

signifies how much asymmetry is present. A slope that is steeper and closer to the 

diagonal is more balanced. It is obvious that the slope of the Markov tree is steeper than 

that of the simulation tree, so the Markov tree is more balanced. In addition, we validated 

our Markov tree by finding that its slope is parallel to the slope of Aldous’s Markov tree 

(figure 12 in appendix). 

First, we found that all natural trees in our study fall in the region between the 

Markov tree and the simulated tree. Graphs for all the natural trees are attached in the 

appendix as figure 13. Figure 7.3 and 7.4 are two natural trees of ferns and apiaceae, 

respectively. The slopes of the Markov and simulated trees are represented by the red and 

green lines, respectively. In general, most natural trees in this study have more proximity 

to the Markov slope than the simulated slope. Fig. 4 and fig. 5 in Aldous (2001) provide a 

closer look (figure 12 in Appendix).  Roughly, all of our natural trees lie in the region 

between 𝛽 = 0  and 𝛽 = −1. The results show that the evolutionary conditions of the 
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simulated tree are too extreme for natural trees. For example, the ratio of speciation to 

extinction rates is too small or too large. Second, the level of asymmetry varies between 

trees. The fern tree is one of the most balanced trees used in our study. Its slope is 

roughly parallel or even greater than the Markov slope. The apiaceae tree in figure 7.4 is 

an example of a relatively unbalanced tree. The region of smaller x-values resembles the 

Markov slope more while the region of intermediate values resembles the simulated tree. 

Besides, comparing to the computer-generated trees, connecting bin averages in natural 

trees does not give a perfect straight line. It is caused by factors such as different 

speciation-extinction rates between species or genera in natural trees (Aldous 2011). 

3.2 Ultrametric distance 

 

Figure 8. Log-log plots of distribution of normalized ultrametric distances for computer-

generated trees with 100 bins. Blue dots: a null tree generated by the Markov process. 

Orange dots: a simulated tree generated by the program of Boettcher and Paczuski. 

Figure 8 shows log-log plots of distribution of normalized ultrametric distances 

for two computer-generated trees. The ultrametric distances were binned by log 2 and 

there are 100 bins. A histogram was obtained and converted to the current dot-line style. 
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The dots represent the probability density in each bin. The blue and orange dots represent 

the Markov and simulation tree, respectively.  

A straight line in a log-log graph corresponds to a power law and its slope is the 

exponent of the power law. In the distribution of ultrametric distances, a less steep slope 

(i.e. a smaller absolute value, less negative value) indicates long-range correlations and 

strong memory effects. For a steep slope, the exponent of the power law is more negative, 

and the tail falls off rapidly, resulting in correlations in shorter range and weaker 

memories. We found the equations of the two fitting lines are: 𝑦𝑜 = 4𝑥𝑜
−0.6 for the 

Markov tree, and 𝑦𝑟 = 6.7 × 103𝑥𝑟
−1.85 for the simulated tree. 

It meets our expectation that the simulation gives a straight line while the Markov 

tree as a memoryless tree should not give a power law. On the log-log graph, a Poisson 

distribution should fall off exponentially and fall earlier than a power law. However, the 

Markov does not show this pattern as we expected for a memoryless process. The branch 

lengths were created from a Poisson distribution, but due to the interaction between 

lattice sites, a factor of “surface roughness” was added into their final distribution and 

disrupted the Poisson pattern (Krug & Spohn, 1988). 
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Figure 9. Log-log plots of the distribution of normalized ultrametric distances for eight 

natural trees that show a power law pattern. From top left to bottom right: (1) Armillaria. 

(2) Apiaceae. (3) Brophytes. (4) Lichen. (5) Ferns. (6) Solanaceae. (7) Fungus. (8) 

Oomycetes. 
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Figure 10. Distribution of normalized ultrametric distances for three natural trees with 

strongest memories (relatively flat slopes). (1) Amphibian. (2) Angiosperm. (3) British 

flora.  

We found that scale-invariance is present in all trees. The distribution of data 

points more or less follows a straight line rather than being scattered around, which 

shows a power law pattern. A property of power laws is the scale-invariance. It implies 

that relatively simple and consistent rules of evolution govern the diversification, 

although the driving forces may be different for each tree because of the different slops.  

We also found that a long-term memory effect exists in varying degrees. In 

evolutionary terms, the ultrametric distances represent how much time has elapsed 

between a lowest common ancestor and two consecutive speciation events. It speaks to 



22 
 

the timing information that the waiting time of later speciation events depends on the 

time of ancestral events (memory). The three trees in figure 10 have relatively flatter 

slope, indicating very strong memories. The Lichen tree in figure 9.4 has one of the 

weakest memories. Armillria, Apiaceae, Lichen, and Fungus (figure 9.1, 2, 4, 7) possess 

partial resemblance to the fitting line of simulated tree. For example, although the data 

points of Lichen do not form a perfect line and can be divided into three sectors, each 

sector is parallel to the line of simulated tree. Their evolutionary process may be 

described by the simulation model. In the introduction, we briefly discussed that the 

model incorporates the idea of fitness and as a result of this model, the evolutionary 

process of the simulated tree was described by punctuated equilibrium. Therefore, 

punctuated equilibrium rather than phyletic gradualism may play a more important role in 

evolution of the four trees here. 

 

Figure 11. Ultrametric distances for all trees in one plot. The blue line is the fitting line of 

the Markov tree; the orange line is the fitting line of the simulated tree; the dots 

correspond to data points of each reconstructed phylogenetic tree, respectively. 
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Trees in figure 9.3, 5, 6, 8 show proximity to the Markov tree. For example, 

almost all data points of fern tree in figure 9.5 follow the Markov line, making it the 

closest to the Markov process among trees in our study. It is contrary to our expectation 

and other studies using different measurements that natural trees are distinguishable from 

the Markov tree (Herrada et al., 2008; Xue et al., 2020). Moreover, as shown in figure 11, 

the overall trend of phylogenetic trees at large distances falls on the Markov line. It 

implies that when species difference is disregarded and the phylogenetic tree is talked as 

a non-specific and collective term, the overall evolutionary process seems to be 

memoryless. However, considering evolution in this way is unjustified by evolutionary 

theories as specific environmental factors deeply influence the evolution of a particular 

species. 

 We have detected the presence of universal scaling and long-term memory effects 

in the 11 trees we have studied. However, the exponents of natural trees are closer to the 

Markov tree. It opens room for future study. First, the finding that the topology and 

branch lengths distribution of some trees are closer to the Markov tree may arise from 

two possible reasons: first, their evolutionary processes do resemble the Markov process; 

second, the ratio of clade sizes and ultrametric distances may not be good indicators 

because other studies using different measurements found results distinguishable from 

their null models. For the first reason, future study could look deeper into the biological 

details of each species to identify certain factors that causes the particular memoryless 

process. We could also borrow the measuring tools from other studies to see whether our 

natural trees are still close to the null model. For the second reason, we could use our 

methods to analyze trees that are proved by other studies to be distinguishable from the 
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Markov process. Also, more theoretical works are needed to analyze why the clade size 

ratio and ultrametric distances are not good indicators.  

 Second, there are risks that the comparison between the natural trees and the 

models is not justified. In the two models, there are two types of leaves: those that extinct 

in the past and those that live in the present. The majority of leaves are extinct. However, 

some natural trees have the same mixture of leaves, but some natural trees such as fern 

only have current-living leaves. Extinction events are not recorded in the latter. If the data 

of all extinct leaves in the model were removed to ensure a fair comparison between a 

model and a natural tree with no extinction, the results would not be statistically 

significant. 

 Third, we didn’t explore the relation between the two indicators (the distribution 

of ultrametric distances and the ratio of clade size), which may be valuable to study in the 

future. Lastly, a potential systematic bias is present, as 10 out of 11 reconstructed trees 

are plants and fungi and only the amphibian tree belongs to animals. 
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5. Appendix 

Table 1. A list of phylogenetic trees downloaded from TreeBASE.  

No. Category Tree Type # taxa Tree ID Reference 

1 Amphibian Species Tree 2872 Tr48025 Pyron & Wiens (2011) 

2 Armillaria (Honey Fungus) Species Tree 1124 Tr96228 Coetzee et al. (2003) 

3 

Angiosperm (flowering 

plant) Species Tree 1284 Tr60915 Hermant et al. (2012) 

4 Apiaceae (Umbellifers) Species Tree 1194 Tr91597 Banasiak et al. (2013) 

5 British flora Species Tree 1653 Tr91679 Lim et al. (2014) 

6 Bryophytes Species Tree 2214 Tr121673 Bainard et al. (2019) 

7 Ferns Species Tree 4007 Tr100612 

Testo & Sundue 

(2016) 

8 Fungus Species Tree 1127 Tr110559 Burke et al. (2019) 

9 Lichen Species Tree 2356 Tr88158 Leavitt et al. (2015) 

10 Oomycetes Species Tree 1205 Tr46272 Robideau et al. (2011) 

11 Solanaceae (nightshade) Species Tree 1076 Tr100305 Särkinen et al. (2014) 
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Figure 12. The size of smaller daughter clade versus size of parent clade in Aldous 

(2001). The graph is copied here for a quick reference. The three lines are the simulations 

corresponding to three values of beta in the beta-splitting family. 
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Figure 13. The log-log plot of the size of smaller child clade over the size of parent clade 

for all phylogenetic trees. From top left to bottom right: (1) Armillaria. (2) Apiaceae. (3) 

Brophytes. (4) Lichen. (5) Ferns. (6) Solanaceae. (7) Fungus. (8) Oomycetes. (9) 

Amphibian. (10) Angiosperm. (11) British flora. 


