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Abstract

Neural Networks for Cancer Survival Analysis Using High-Dimensional Data
By Safoora Yousefi

Since the emergence of high throughput experiments such as Next Generation Se-
quencing, the volume of genomic data produced has been increasing exponentially.
This data holds the key to accurate predictions of clinical outcomes and mapping
patients to the optimal treatment. However, analyzing genomic data is challenged by
its high-dimensionality. Many prediction methods face limitations in learning from
high-dimensional data generated by these platforms, and rely on experts to hand-
select a small number of features for training prediction models. In this thesis, we
demonstrate how the latest advances in neural networks methods that have been re-
markably successful in general high-dimensional prediction tasks can be leveraged to
the problem of predicting cancer outcomes. We perform an extensive comparison of
deep survival models and other state of the art machine learning methods for survival
analysis. We appreciate that interpretability is of great importance in adapting neural
networks in bioinformatics, and propose a framework for interpreting deep survival
models using a risk back-propagation technique that can lead to new understanding
of diseases. Finally, we illustrate that deep survival models can successfully transfer
information across heterogeneous data sources to improve prognostic accuracy, and
describe an adversarial multi-task learning approach that outperforms traditional
multi-task learning methods. We provide an open-source software implementation of
these frameworks that enables automatic training, evaluation and interpretation of
deep survival models.
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Chapter 1

Introduction

This dissertation focuses on improving survival analysis as applied to the prediction

of cancer outcomes from high dimensional genomic data, by leveraging the ability

of neural networks to map high-dimensional inputs such as gene expression data to

outputs, in this case, risk of death or disease progression. In the following sections,

we introduce survival analysis, and genomic data and the unique challenges it poses

to prediction models. In section 1.1, we introduce survival analysis and some tradi-

tional approaches to modeling survival. In section 1.2, an overview is given of the

promises and challenges of learning from high dimensional genomic data, including

dimensionality, data insufficiency and the difficulty of interpretation of complex mod-

els that work well in high dimensional settings. In order to set the stage to compare

existing survival analysis models with our proposed models, in section 1.3, we intro-

duce performance metrics and model selection procedures. In chapter 2, we provide

background and previous work in areas related to this dissertation, including ma-

chine learning in survival analysis, deep learning, and multi-task learning. Finally,

our contributions are presented in chapters 3, 4, and 5.
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1.1 Survival Analysis

Survival analysis involves predicting the time to some event of interest, such as the

time until cardiovascular death, time until failure of a light bulb, or time until death

or progression of disease in cancer. Survival analysis problems differ from binary

classification of events in that the time until the occurrence of the event, also known

as survival time, event time, or failure time, is important to us. It differs from

ordinary regression due to a missing data issue known as incomplete followup or

censoring, described in the following section.

1.1.1 Censoring

Survival analysis allows for outcomes to be incompletely determined. For example,

consider the case where after a five-year follow-up study of survival after surgery,

some patients are still alive. All that is known about the survival time of these

cases is that they exceed five years. Another cause of censoring is loss to follow-up,

for instance, due to subjects moving out of town (See Figure 1.1). Incomplete or

censored observations could provide critical information about long-term survivors

and are therefore important to incorporate into the model. In survival analysis,

it is usually assumed that censoring is random and non-informative, meaning that

it is statistically independent of risk of event. Censoring is non-informative when

caused by planned follow-up termination, or by patients moving out of town and lost

to follow-up. If patients are removed from follow-up due to factors related to risk

of event, such as worsening conditions, then censoring is informative and assuming

otherwise would lead to inaccurate statistical inference about survival.

The type of censoring described here is known as random right censoring and is the

only type of censoring we deal with in this dissertation. Other types of censoring can

be observed in survival data, such as interval censoring which happens in presence
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Figure 1.1: Right censoring in time-to-event data. x indicates event occurrence while
o marks either loss to follow-up or long term survival, resulting in censoring. Subject
4 is censored due to follow-up termination while other censored subjects are lost to
follow-up.

of periodic exams, or left censoring which means the event is only known to have

happened before a certain point in time. Censoring is the reason we need models

specifically designed to handle time-to-event data and is what differentiates survival

regression from regular regression.

1.1.2 Survival and Hazard Functions

Let T be the random variable of waiting time until outcome of interest, and t a specific

value of this random variable. The survival function is given by:

S(t) = 1− F (t) = P{T > t} (1.1)

where F (t) is the cumulative distribution function of T . The survival function is

the probability that the event of interest occurs after a certain point in time. The

hazard function λ(t) on the other hand, is the instantaneous probability of event at

any time t given that the event has not happened up to time t:
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Figure 1.2: Example of Kaplan-Meier curves on random synthetically generated data
comparing survival in two groups.
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λ(t) = lim
∆t→0

P{t < T < t+ ∆t|T > t}
∆t

(1.2)

The true form of S(t) is almost always unknown and various assumptions have

been used in the literature to describe the distribution of event times. The exponential

and Weibull distributions are the two most popular parametric survival distributions,

assuming specific shapes for the distribution of survival times T . The hazard function

for exponentially distributed T is simply a constant γ, and the Weibull hazard function

is a generalization of the exponential case:

λ(t) = αγtγ−1 (1.3)

Unlike the exponential and Weibull distributions that make strong assumptions

about the form of the survival function, non-parametric models like Kaplan-Meier

estimate the distribution without making any assumptions. Kaplan-Meier product-

limit estimator estimates S(t) by calculating the probability of surviving at time t

as the product of the probability of surviving up to time t and the probability of

surviving at time t after surviving t − 1 days. Let k denote number of unique event

times, t1, t2, ..., tk denote unique event times, di denote the number of events at ti and

ni the number of at-risk subjects at time ti (that is subjects with event or censoring

times greater than ti). Then the Kaplan Meier estimator is:

SKM =
∏

i:ti<t

(1− di/ni) (1.4)

The above traditional parametric and non-parametric models do not differentiate

between subjects based on predictors x = x1, x2, ..., xp and assume the same hazard

function for all subjects. x can be a combination of p continuous, binary and categori-

cal predictors for a subject that affects survival. In order to take these predictors into

account, we need to generalize survival models to survival regression models. One



6

way to do so is the proportional hazards model that multiplies the hazard function

by exp(xβ), generalizing from a hazard function for a time t to a hazard function for

a time t given predictors x:

λ(t|x) = λ(t)exp(xβ) (1.5)

The proportional hazards assumption implies no interaction between t and x, in

other words, the predictors have the same effect on the hazard at all points in time.

Specific survival models such as the exponential model can be used in the above

proportional hazards formulation to create specific survival regression models.

1.1.3 Cox’s Proportional Hazards Model

The most widely used approach to survival analysis is the semi-parametric Cox pro-

portional hazards model (Cox, 1972). Unlike the exponential or Weibull models, it

makes no assumptions about λ(t) but assumes a parametric relationship between the

predictors and the hazard function. It is considered a linear model since the predictors

are linearly related to the log hazard. In cases where λ(t) is not primarily interest-

ing to one’s research purposes, the Cox model allows one to completely ignore it by

showing how to estimate parameters β without knowledge of λ(t). The parameters

of the model are estimated by optimizing Cox’s partial log-likelihood. Note that λ(t)

is dropped out of the likelihood function:

l(fβ(X), Y ) = −
∑

xi∈U

(
fβ(xi)− log

∑

j∈Ri
efβ(xj)

)
(1.6)

where X = {x1, ..., xN} are the samples, and Y = {e, t} represents label vectors

of overall survival t = {t1, ..., tN} and event status e = {e1, ..., eN}. Function f is a

linear function with parameters β, U is the set of uncensored samples, and Ri is the

set of at-risk samples with survival or follow-up times tj ≥ ti. The above notation for
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Cox’s partial log-likelihood inherently uses Breslow’s approximation (Breslow, 1974)

in cases with tied event times.

1.2 Machine Learning and Genomic Data: Chal-

lenges

Since the emergence of high throughput experiments such as Next Generation Se-

quencing, the volume of genomic data produced has been increasing exponentially,

with the volume of sequence data doubling every seven months over the last decade

(Stephens et al., 2015). A single biopsy can generate tens of thousands of tran-

scriptomic, genetic, proteomic, or epigenetic features. This fascinating growth rate

poses challenges to the storage, distribution, and analysis of genomic data (Kahn,

2011). One of the technological needs for this exponentially growing genomic data

is the development of large-scale machine learning methods to translate these data

into clinically actionable information. So far, the rate of genomic data generation has

far exceeded the ability to design predictive machine learning models that can map

this high-dimensional data to optimal treatment options, as usually only a handful

of known genetic features are used in clinical decision making.

Machine-learning has emerged as a powerful tool for analyzing high-dimensional

data, with open software tools such as Tensorflow (Abadi et al., 2015) that enable

scalable and distributed data analysis. A sub-field of machine learning, known as deep

learning, has recently achieved remarkable success in learning from high dimensional

images and sequences (LeCun et al., 2015). Some machine learning approaches have

been employed for genomic applications and survival analysis (Wang et al., 2017b;

Leung et al., 2015). Additional research is needed to recognize and address the specific

challenges of applying the quickly growing techniques of deep learning to survival

analysis, and to develop interpretable models that can improve understanding of
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patient outcomes and disease biology.

1.2.1 Genomic Data, Dimensionality, and Heterogeneity

A major challenge in applying machine learning to genomic data is curse of dimen-

sionality (Bellman, 1961). Curse of dimensionality in machine learning refers to the

fact that the feature space expands exponentially with the dimensionality of the space,

leading to the need for an exponentially larger training set in order train a model that

can generalize. One way to demonstrate this is in terms of sample density. If N is

a dense sample of a single-dimensional space (d = 1), then we need Nd samples to

densely represent a d-dimensional space. This renders all feasible datasets sparse in

high dimensions.

Another way to look at this is that when the number of features exceeds the

number of observations (p greater than n scenario), we are dealing with an under-

determined system that has many solutions, not all of which will generalize to unseen

data. This becomes an issue particularly in complex models like neural networks that

have great representation power (large hypothesis sets) and are prone to over-fitting

in such scenarios. Generally, the more parameters a machine learning model has,

the more independent samples it requires for being able to differentiate meaningful

patterns from noise in data (Abu-Mostafa, 1989) in order to avoid over-fitting. Deep

learning models have many parameters due to their layered nature. Cancer genomic

datasets, on the other hand, usually consist of only hundreds of samples compared to,

for instance, 23K features in the case of gene expression data. This data insufficiency

issue is further pronounced in survival analysis, where large fractions (e.g. 90% in

TCGA breast cancer data) of available samples have incomplete labels (see section

1.1.1).

Several approaches have been employed to alleviate this data insufficiency includ-

ing data augmentation and transfer learning (Ching et al., 2018). Data augmentation,
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although very helpful in image recognition tasks and successfully applied to mammo-

grams (Dhungel et al., 2015) and histopathology images (Litjens et al., 2016), cannot

be trivially applied to gene expression data. Augmented samples are generated by

introducing small changes to training samples that do not change the underlying

meaning, such as mirroring in images. This requires domain expertise of gene regu-

latory pathways in the case of gene expression data.

In Chapter 4, we use multi-task learning (a type of transfer learning) and adver-

sarial representation learning to tackle this challenge by enabling learning from pools

of several datasets, increasing training set size for each individual problem. Pooling

data from multiple studies and hospitals is indeed a promising solution to the problem

of sample size limitation. But the heterogeneity of available genomic datasets due

to technical and sample biases poses challenges to integrating multiple data sources,

and ignoring this heterogeneity can lead to incorrect conclusions. Cohorts from mul-

tiple sources typically have different demographic or disease stage distributions, may

be subject to different signal capture calibration, post-processing artifacts, and nam-

ing conventions. This problem is also referred to as batch effects in the literature

and means that naively combining heterogeneous cohorts is both difficult and may

degrade model accuracy (Tom et al., 2017). Batch effects are a common challenge

in high throughput experiments and are caused by laboratory conditions, personnel

differences, and other factors that are not of clinical interest but could mislead us to

incorrect conclusions if they are confounded with the outcome of interest.

A significant amount of work has been done in the area of normalizing datasets for

integration and removing batch effects. Many of these methods are based on linear

regression and singular value decomposition, and make numerous assumptions such

as orthogonality of the batch effect and biological variation, the ability of humans

to distinguish between batch effects and biological effects, and assumptions on the

batch structure (see for example Leek et al. (2010); Haghverdi et al. (2018)). Another
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limitation of such methods is that they do not take a learning objective into account

to distinguish between relevant variations and batch effects. In chapter 4, we propose

two multi-task learning solutions to handle learning from heterogeneous genomic data

sources without letting generalization suffer from batch effects.

1.2.2 Interpretability

The most important challenge in employing complex machine learning methods such

as deep learning in critical decision-making problems is interpretability. Despite the

recent success of such models, we still have little understanding of how decisions are

made by them. The concerns about lack of transparency behind these models have

hindered their wide application to critical decision-making applications such as cancer

care. Interpretability and explainability can be used to validate and gain confidence

in machine learning systems and encourage wider adaptation of them. Moreover, they

help researchers and developers understand the problem better, and discover causes

of failure, eventually leading to better models.

Specifically, by interpreting survival neural networks, we could validate them by

comparing what we already know about important factors in survival and what the

model finds important. Moreover, highly ranked biomarkers in our model could be

investigated by biologists to understand their role or function, or could be targeted

in therapies. In our work described in section 3.3, novel patterns that are suggested

by the network could be incorporated into diagnostic criteria, and we could train

pathologists to recognize these novel patterns.

In this dissertation, we design and implement techniques to explain the predictions

made by neural networks about disease outcomes in both single task (chapter 3) and

multi-task (chapter 4) settings. This approach is based on the calculation of partial

derivatives of the risk prediction with respect to the input features as first proposed

by Dimopoulos et al. (1995), and provides a ranking of input features with respect
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to their importance in the predictions made by the model. Since the outputs of our

models are always risk predictions, we refer to the partial derivative of the model

predictions with respect to features as the risk scores of the features. In order to

motivate the use of partial derivatives as a measure of feature importance, let us

start by looking at a linear model of risk:

fβ(x) = x>β (1.7)

In the case of the above linear model, it is easy to take elements of the parameter

vector β corresponding to each feature in x as a measure of the importance of that fea-

ture. In a neural network, however, we are dealing with a highly non-linear function,

which we can approximate using the first-order Taylor expansion in the neighborhood

of a given sample x0:

gW (x) = gW (x0) +
∂gw(x)

∂x

∣∣∣∣
x=x0

(x− x0)

gW (x) =
∂gw(x)

∂x

∣∣∣∣
x=x0

x+ c

Where c is a constant with respect to x. The partial derivative of the neural

network predictions with respect to the input act as the feature coefficients in the

linear function fβ.

The risk scores of transcriptional features are later used in Gene Set Enrichment

Analysis (GSEA) (Subramanian et al., 2005) to identify pre-specified gene sets en-

riched with genes that highly contribute to model predictions. Gene Set Enrichment

Analyses analyses the risk scores of genes on the gene-set level, by taking into account

domain knowledge of genetic pathways and previously discovered co-expressions, and

determines whether members of each gene set occur at the top or bottom of the gene

ranking as opposed to being randomly distributed. If a gene set S is enriched, then
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Figure 1.4: Interpretation of survival neural networks using back-propagation and
gene set enrichment analysis.

we can conclude that the model is basing its predictions on the biological phenotype

represented by S.

An enrichment score for S is calculated by walking down the list L, increasing the

score when we encounter genes in S and decreasing it when we encounter genes that

are not in S. The enrichment score is the maximum deviation from zero encountered

in the walk. After calculating an enrichment score for each gene set, a permutation

test is performed to determine the statistical significance of the score. Importantly,

in the original GSEA method, the permutation is performed on the phenotype level

as opposed to the individual gene level to preserve the correlation structure of gene

expression data. But in our application, since we are not dealing with different pheno-

types, we use pre-ranked GSEA that uses gene-set level permutations for significance

analysis. We use this interpretation procedure in sections 3.2, 3.4 and 4.2. In order

to make comparisons between the decision-making mechanisms of two models, Gene

Set Enrichment Analyses were performed on the risk scores for each model to identify

differences in pathway enrichment between the two models.
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1.3 Model Selection and Evaluation

1.3.1 Performance Metrics

For survival models, discrimination means separation between survival curves for

individuals groups. Kaplan Meier curves of different prognostic groups have been

used to provide an informal and visual measure of discrimination, but the use of

this analysis is challenged by possible residual confounding when the categorization

of samples into prognostic groups does not exactly capture the relationship between

input and outcomes. Several measures of discrimination have been proposed (Royston

and Altman, 2013), including but not limited to Harrell’s concordance index (c-index)

(Harrell Jr et al., 1982).

Concordance Index

Throughout this dissertation, we measure model performance using Harrell’s concor-

dance index (CI) that captures the rank correlation of predicted and actual survival.

Denoting the ith patient with Xi and the set of all patients with X, where ti repre-

sents either the time of death or the time of last follow-up of the ith patient, CI was

calculated in the following way:

CI(β,X) =
∑

P

I(i,j)
|P | (1.8)

I(i, j) =





1, if Riskj > Riski and tj > ti

0, otherwise

(1.9)

Where P is the set of orderable pairs. A pair of samples (Xi, Xj) is orderable

if either the event is observed for both Xi and Xj, or Xj is censored and tj > ti.

In other words, CI measures the proportion of all orderable pairs of samples i and

j where the prognostic scores Riski, Riskj predicted by the model and the actual
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times of death ti and tj are concordant. Due to the censoring of event times, not all

possible pairs are orderable. A pair of samples is orderable only if the sample with

smaller t is not censored.

Attempts have been made to propose differentiable versions of CI based on sigmoid

and exponential functions and optimize it directly. But recent studies show that

optimizing the cox partial likelihood is equivalent to optimizing CI (Steck et al.,

2008). In order to evaluate the performance during a follow-up period, Heagerty and

Zheng (2005) defined a time-dependent version of CI for a fixed follow-up time period

as the weighted average of AUC values at all possible observation time points.

1.3.2 Hyper-parameter Optimization

The use of deep learning techniques requires tuning of several hyper-parameters;

parameters that are not learned during training but are configuration decisions made

by the developer. The number of layers, regularization rate, learning rate, size of

layers, and type of non-linearity used in hidden units are examples of such hyper-

parameters.

Deep learning researchers typically use a mixture of random search, grid search,

and expert knowledge to pick values for hyper-parameters, which emphasizes the

lack of a systematic scalable method of hyper-parameter tuning. The difficulty of

finding the optimal configuration, makes parameter-free machine learning models

appealing. A more flexible approach to this issue is to automate the hyper-parameter

optimization procedure.

Random Search and Grid Search

Random search and grid search are common alternatives to manual search. In grid-

search, all possible values within a predefined range of each hyperparameter are eval-

uated on a validation set, and the set of hyper-parameters with the smallest loss on
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the validation set is selected for final model evaluation. In random search, a pre-

defined number of random hyperparameter values are evaluated. It has been shown

that random search is often able to reach similar or close local minima in a fraction

of loss function evaluations required with grid search (Bergstra and Bengio, 2012).

For smaller models that can be evaluated in seconds, grid search could still be a

reasonable hyper-parameter search method.

We use grid search for model selection in Chapter 4. Only a couple of hyper-

parameters (learning rate, `2 regularization rate) proved to be of significant effect so

a smaller grid would lead to the same loss function value as a larger one. We selected

a smaller grid in exchange for more randomized experiments in order to be able to

measure the statistical significance of the results.

Bayesian Optimization

Bayesian Optimization is an Estimation of Distribution Algorithm (ADE) that was

proposed as a method of globally optimizing expensive black-box functions (Kush-

ner, 1964; Močkus, 1975) and was later applied to hyperparameter tuning of neural

networks. It works by assuming the cost function is a sample of a Gaussian process

and maintaining the posterior distribution of the assumed distribution as it makes

function evaluations. Nearly all previous Bayesian optimization approaches make one

evaluation at a time. This is one of the major reasons Bayesian Optimization was

mainly ignored by the machine learning community.

Let’s use f to denote a prior measure of possible functions that describe how the

neural network cost function changes with hyper-parameters. Mathematically we are

considering the problem of finding a global maximizer (or minimizer) of an unknown

objective function f .

x∗ = argmax(f(x))

Where x belongs to Rd, and d denotes the number of hyperparameters to tune.
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The Bayesian optimization framework has two components. The first component is

a probabilistic surrogate model, which consists of a prior distribution that captures

our beliefs about the behavior of the unknown objective function, and a likelihood

model that describes the data generation mechanism. The second ingredient is a

loss function that describes how optimal a sequence of queries is. The expected

loss, or acquisition function as we will call it from now on to be consistent with the

literature, is then minimized to select an optimal sequence of queries. After observing

the output of each query of the objective, the prior is updated to produce a more

informative posterior distribution over the space of objective functions. Acquisition

functions trade-off between exploration (evaluate in places where variance is high.)

and exploitation (evaluate in places where mean is low) in order to decide where to

evaluate next.

Expected improvement (Jones et al., 1998) is an acquisition function that we will

define shortly. Let

f ∗n = min[y(1), ..., y(n)]

denote the current best value of the cost function value. Before we evaluate point xn+1,

we do not know what y(xn+1) is. But we can model the uncertainty around y(xn+1)

by treating it as the realization of a normally distributed random variable Y with

mean and standard deviation given by a stochastic process model. The improvement

at the point xn+1 is

I = max(f ∗n − Y, 0).

This expression is a random variable because Y is a random variable. To obtain the

expected improvement we simply take the expected value

EI(x) = E[max(f ∗n − Y, 0)].

The above acquisition function can be written in closed form in terms of standard
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normal density and cumulative distribution function and can be optimized using

any gradient-based optimization to find the most promising point to evaluate next.

We can use any optimization method for the acquisition function since it is not as

expensive to evaluate as our original cost function.

A parallel formulation of this problem, called q-point EI or q-EI is introduced in

Ginsbourger et al. (2007), where expected improvement (EI) is measured based on a

set of observations, and the next samples are selected to maximize the EI:

q − EI(x1, ..., xq) = E[max(f ∗n −max
i:1..q

f(xi), 0)], (1.10)

where f ∗n is the best evaluation so far. One of the challenges involved with parallel

hyperparameter tuning of deep learning models is the variable time of cost function

evaluations; it takes longer to evaluate a model with 1000 hidden units than a model

with 10 hidden units. Snoek et al. (2012) propose a parallelization scheme that takes

this variable evaluation time into account.

In sections 3.1 and 3.2 we use Bayesian optimization as implemented in (Martinez-

Cantin, 2014) for systematic and unbiased model selection.
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Chapter 2

Previous Work

2.1 Machine Learning for Survival Analysis

High-dimensional learning problems are commonly dealt with in machine-learning,

but survival analysis has been largely overlooked by the community. Some machine-

learning approaches have been applied to predicting survival or time to progression

(Kourou et al., 2015; Wang et al., 2017b). Feature engineering solutions such as

dimensionality reduction based on prior knowledge have been used by learning gene

signatures of cancer hallmarks to generate intermediate features that successfully

predict outcomes (Li et al., 2010; Gao et al., 2016). Regularization methods for Cox

models like elastic net have been developed to perform objective and data-driven

feature selection with time-to-event data (Park and Hastie, 2007; Simon et al., 2011).

Support Vector Machine (SVM) (Cortes and Vapnik, 1995) is a very successful

supervised learning algorithm used mostly for classification. It can be efficiently ap-

plied to problems of non-linearly separable classes using the kernel method. Although

originally proposed to solve classification problems, SVM can be modified for regres-

sion problems (SVR) (Drucker et al., 1997) and has also been successfully adapted

in survival analysis (Van Belle et al., 2011). Incorporating censored observations has
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been done via updating the SVR loss function and constraints as in Khan and Zubek

(2008); Shivaswamy et al. (2007). The difference between these two models lies in

the penalty for incorrect predictions. In citepshivaswamy2007support, incorrect pre-

dictions are penalized irrespective of whether the prediction was sooner or later than

the observed failure time, and whether the sample is censored or observed. Incorrect

predictions for right-censored data are penalized only if the prediction is sooner than

the observed censoring time. On the contrary, citepkhan2008support applies differ-

ent penalties for the four possible cases. A major drawback of the latter method is

the large number of hyper-parameters. The time complexity of SVM-based survival

models usually follows the complexity of the original SVM and is another drawback

of such models.

Decision tree algorithms have been adapted to censored data. Tree models work

by recursively partitioning the data based on a splitting criterion so that similar

samples will be placed under the same leaf node. By treating time as a covariate, we

can convert the survival analysis problem to a classification problem and solve it with

decision trees. Regression trees have been adapted to censored data using different

splitting and pruning techniques. In Gordon and Olshen (1985), the Wasserstein

distance between Kaplan Meier curves was used as a splitting criterion and CART

pruning was used. Segal (1988) propose a new goodness-of-split measure based on

two-sample statistics for censored data. In Ture et al. (2009) bagging was applied

to survival trees. Random forests, a variation on bagged decision trees, have been

adapted to survival modeling (Ishwaran et al., 2008). There are mainly four steps in

RSF: (i) Draw several random bootstrap samples from the data. (ii) For each sample,

build a survival tree by splitting each node using the best candidate feature from a

random subset of features (iii) continue until every terminal node has greater than

or equal to a certain number of events. (iv) Using the non-parametric Nelson-Aalen

estimator, calculate the ensemble cumulative hazard function (CHF) of out-of-bag
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data by taking the average of the CHF of each tree.

Neural network-based approaches have been used in low-dimensional survival pre-

diction problems (Faraggi and Simon, 1995) using a neural network with a linear

output layer and a single logistic hidden layer, but subsequent evaluation of these

methods found no performance improvement over linear Cox regression (Xiang et al.,

2000). With the goal of exploiting complex feature interactions, authors in (De Lau-

rentiis and Ravdin, 1994) propose three neural network models: a network that uses

time as an input variable and is trained on the status of the patient at that time,

with several training points for each patient at different follow-up times; a single time

point model that produces predictions at only one specific time; and a multiple time

point model that essentially consists of multiple single time point models running in

parallel. The authors in (Biganzoli et al., 1998) propose the partial logistic artificial

neural network (PLANN), a single hidden layer neural network with logistic activa-

tion for grouped discrete hazard prediction that takes time as one of its inputs. In

(Lisboa et al., 2003), the PLANN was extended to a Bayesian neural framework with

covariate-specific regularization to carry model selection using automatic relevance

determination.

2.2 Deep Learning

2.2.1 Background

Since it was demonstrated in 1969 that the 2-layer perceptron is incapable of rep-

resenting functions outside a very special class, researchers have been exploring the

theoretical capability of multi-layer neural networks to represent general functions.

In (Hornik et al., 1989), the authors establish that multi-layer feed-forward neural

networks are capable of approximating any measurable function to any desired de-

gree of accuracy, and lack of success in applications must be due to insufficient model
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complexity and lack of deterministic input-output relationship. Authors in (Blum

and Rivest, 1988) also address the question of computational complexity and show

that for a 3 node neural network, the training problem is NP-complete. They define

the training problem as a decision problem of whether weights exist for a given neural

net and training sample to always output the correct label. They extend their proof

to several other classes of networks including 2 layer networks with more than two

hidden nodes. They show that one way to get around this intractability is to expand

input representation.

Recently, deep neural networks have been successfully applied to various domains

and have shattered performance benchmarks. One of the remarkable successes of deep

learning was to achieve one of AI’s grand challenges by beating the human expert in

the full-sized game of Go (Silver et al., 2016). The difficulty of Go lies in the evaluation

of board positions and the enormous search space. Traditional search space reduction

(approximate position evaluation and action sampling) approaches do not help much

with Go. Most successful previous works regarding Go rely on Monte Carlo Tree

Search using shallow policies or value functions. Based on recent successes of deep

reinforcement learning, the authors train a supervised 13-layer convolutional network

with SGD to predict expert moves. The input to this network is the 19× 19 image of

board positions. They then train a fast policy that can rapidly sample actions during

MC roll-outs, a reinforcement learning policy network to adjust the fast policy network

toward the goal of winning rather than predicting, and a reinforcement learning value

network that predicts the winner of self-play.

Another work that showed the potential of deep learning was image caption gen-

eration. Vinyals et al. (2015) combine convolutional neural networks and LSTMs to

learn image representations, and generate each word of the image caption given the

image representation and all previously generated words. The authors employ a va-

riety of methods such as Inception (Szegedy et al., 2015), batch normalization (Ioffe
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and Szegedy, 2015), and encoder-decoder networks (Cho et al., 2014).

The influence of initialization and saturating and non-saturating activation func-

tions on the behavior of feedforward neural networks (FFNNs) is studied in (Glorot

and Bengio, 2010), mainly by monitoring activations and gradients. Experiments

show that random initialization with gradient descent performs poorly in deep nets,

so the authors propose a novel initialization scheme, normalized initialization, to

tackle this issue by maintaining the flow of activations (forward) and gradients (back-

ward). They experiment on several datasets with the goal of detecting saturation and

overly linear units and discover that with sigmoid units, saturation in the final layer

happens quickly but can be escaped if the network is not too deep as apposed to tanh

units where saturation start from the first layer and propagates up to the top layer.

The proposed initialization technique maintains the forward and backward flow and

successfully prevents saturation. Normalized initialization and both saturating and

non-saturating activation functions are used in this dissertation.

Overfitting is a common concern with neural networks and is defined as the prob-

lem of learning complicated relationships between input and output due to sampling

noise. Deep neural networks are particularly prone to overfitting when training data

is limited, because of their great expressiveness. Many methods have been proposed

to reduce overfitting in learning in general, including early stopping and `1 and `2

norms. A couple of more recent regularization methods proposed specifically for

neural networks are described here.

Dropout is a technique for both regularization and bagging (Srivastava et al.,

2014). Dropping a unit out means temporarily removing it from the network along

with its input and output connections. At training time, each unit is dropped with

a probability p which should be determined using a validation set. At test time, an

approximate averaging method is employed to use a single model without dropout;

the outputs of all the units are multiplied by 1−p to ensure that the expected output
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is the same as it was at training time. By doing this 2n networks are integrated into

a single one.

Dropout can be used to fine-tune networks that have been pre-trained unsuper-

vised. After pre-training, the weights of the network should be multiplied by 1/(1−p)

to maintain the expected outputs. The learning rate for fine-tuning should be picked

carefully in order not to wipe out the information obtained from unlabeled data during

pre-training. One reason offered by the authors on why dropout leads to performance

improvements is that it prevents co-adaptation of features: each hidden unit is en-

couraged to learn a meaningful feature without relying on other units (Hinton et al.,

2012).

DropConnect is a generalization of Dropout where weights are dropped instead

of hidden units. The authors in (Wan et al., 2013) derive an upper bound on the

complexity of the model and show that it is a linear function of the dropout rate

p. They demonstrate on four datasets that sometimes DropConnect outperforms

Dropout. We use a combination of Dropout and ` norms is this dissertation.

2.2.2 Representation Learning

The idea of representation learning comes up frequently in this dissertation. Repre-

sentation learning is the idea of moving from the engineering of hand-crafted features

to letting the AI decide what features are explanatory of the data. In his review

of deep representation learning (Bengio, 2013), Bengio explains the importance of

representation learning to the success of machine learning algorithms, and how re-

cent successes in training deep network promise advances in learning good represen-

tations. Computational scalability, optimization, and feature disentanglement are

named as challenges facing representation learning, and current approaches to these

challenges are reviewed. In chapter 3, we train neural networks to transform raw high-

dimensional genomic and histology data into predictive features of survival, guided
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only by the objective function as opposed to pre-processing, feature-engineering or

explicit feature selection. In Chapter 4, we focus on learning a shared representation

that is predictive for multiple tasks.

2.2.3 Convolutional Networks

One of the major breakthroughs in applying neural networks to images is the idea

of convolutional networks, first applied to handwritten digit classification (Le Cun,

1989). Since their introduction, convolutional networks have been applied to many

computer vision applications such as image classification (Krizhevsky et al., 2012),

general object detection (Ren et al., 2015), object segmentation (Long et al., 2015),

facial recognition (Lawrence et al., 1997), nucleus detection (Xie et al., 2018), cancer

diagnosis (Esteva et al., 2017; Cruz-Roa et al., 2014), genetic variant calling (Poplin

et al., 2018), and many more applications.

In section 3.3, we demonstrate the utility of convolutional neural networks in

cancer prognosis from a combination of histopathology and genomic data. In chapter

5, we use general-purpose object detection convolutional neural networks for detecting

and clustering nuclei in histopathology images. In the rest of this subsection, we

provide some background on convolutional networks and the theory and assumptions

behind them.

Le Cun (1989) introduces the motivation and technique for using local convo-

lutional feature maps. Minimal preprocessing i.e. size normalization, removal of

extraneous marks, and scaling of grayscale images are done and the remainder of the

recognition is done by the adaptive layers of the network. To avoid dealing with a lot

of parameters, they use the following prior knowledge from shape recognition:

• Parameter sharing based on statistical stability: if a feature detector (filter)

is useful in one location of the image, it is probably useful in other locations

as well. So we apply the same filter with the same parameters over all of the
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image.

• Learning local features: instead of looking at the whole picture they look at

local blocks and combine them later.

The first application of a large and deep convolutional to the Imagenet dataset was

by Krizhevsky et al. (2012). They used ReLU activation units along with dropout to

stack and train 5 convolutional layers and 1 feedforward layer and achieved winning

top-1 and top-5 performance in the ILSVRC 2010 task.

Long et al. (2015) use fully convolutional classification networks (with no fully con-

nected layers) with skip connections for semantic image segmentation. The output

of their model is a heatmap for each possible object which is normally very low reso-

lution because of pooling in the intermediate layers, but they develop their network

further by using skip connections from intermediate layers to capture high-resolution

edges while preserving the big picture obtained at the final layer.

Typically, researchers have used multiple layers of convolutional layers, increasing

the number of filters in each layer, topped with one or more fully connected layers. In

order to build deeper models from larger datasets such as the Imagenet, we need to

move toward sparse designs to avoid computational intractability. Inception (Szegedy

et al., 2015) is a successful architecture proposed to participate in the ILSVRC 2014.

The main idea of Inception is to approximate the local sparse structure of human

vision with regularly used dense components. They use a concatenation of outputs

from different resolution filters and apply 1× 1 convolutions to before applying their

3× 3 or 5× 5 filters in order to reduce the dimensionality. This allows us to increase

the number of filters as we go deeper, without facing a computational complexity

blow-up.



26

2.2.4 Adversarial Learning

It was discovered in 2014 (Szegedy et al., 2013) that neural networks are vulnerable

to examples that are only slightly different from examples from the data distribu-

tion that the model correctly labels. The fact that many different machine learning

models fail on these adversarial examples is an intriguing discovery. Goodfellow et

al.(Goodfellow et al., 2014b) show that linear behavior in high dimensional spaces is

a sufficient explanation of vulnerability to adversarial examples, and propose the fast

gradient sign method to generate adversarial training samples for additional regular-

ization. The adversarial examples generated by this method cause the error rate to

increase dramatically, supporting the linearity explanation. They argue that although

all machine learning models are vulnerable to adversarial examples, the universal ap-

proximator theorem (Hornik et al., 1989) guarantees that deep neural networks are at

least capable of representing functions that are robust to adversarial perturbations.

Other machine learning methods including linear methods such as SVM and logistic

regression were later found to be vulnerable to adversarial examples, but deep neural

networks benefit the most from training on adversarial examples. Adversarial training

acts as a regularizer and mitigates overfitting in deep neural networks.

Generative adversarial neural networks (GANs) (Goodfellow et al., 2014a) were

proposed to generate data that resembles the training data. GANs consist of a genera-

tor (G with parameters θG) and a discriminator (D with parameters θD) component.

The discriminator’s job is to tell between synthesized samples from the generator

and real samples from the training data, while the generator’s objective is to deceive

the discriminator. As a result of this competition, the generator learns to match its

representation with the real data representation leading to realistic generated data.

The generator maps random noise z drawn from a distribution pz(z) to the training

data space. Let’s call the generated data space pg.The discriminator takes a vector x

that is either sampled from the real data distribution pdata(x) or the generated data
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distribution pz(z), and outputs a probability prediction of the input coming from the

real data distribution. The objective function of a GAN is, therefore, a min-max

game between the generator and discriminator with the value function V (θD, θG):

V (θD, θG) = Ex∼pdata(x,θD)log(D(x)) + Ez∼pz(z))[log(1−D(G(z, θG), θD))] (2.1)

Ideally, we want D to output 0.5 for every input at the equilibrium point, meaning

that it can not distinguish between real and generated data. (Goodfellow et al., 2014a)

proves that if G and D have enough capacity and D is allowed to reach its optimal

point at every step of training G, then convergence to pg = pdata is theoretically

guaranteed.

In practice, however, the main practical challenge in training adversarial networks

is convergence. Unlike optimizing a single loss function, optimizing two agents that

are playing a game against each other may never converge. An example of this non-

convergence challenge is mode collapse, where the generator visits isolated modes of

the distribution that maximize discriminator’s loss, instead of visiting multiple modes

(Metz et al., 2017). Solving the mode-collapse issue is an active area of research

(Salimans et al., 2016).

Adversarial training has found many applications and extensions since its intro-

duction. (Abadi and Andersen, 2016), for instance, train a multi-agent adversarial

system where the objective of two agents (Alice and Bob) is to communicate clearly

and confidentially, and the objective of a third agent (Eve) is to eavesdrop. They

show that with sufficient training, Alice and Bob learn to counter the objective of not

a fixed Eve, but the best possible version of Eve.

Adversarial learning of deep domain-invariant features has been used for domain

adaptation in recent years (Ganin et al., 2016; Hoffman et al., 2017; Tzeng et al.,

2017, 2015). In this direction of research, a domain confusion loss is maximized
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by the model, while at the same time a domain discriminator tries to differentiate

between samples from different domains. Minimization is done with respect to param-

eters of the domain classifier, while maximization updates parameters of the learned

representation. All this is done simultaneously with training for the original purpose

of the model, so a useful task-related domain-invariant representation is learned. For

example in (Ganin et al., 2016), an adversarial discrimination loss is used in a neural

network for domain adaptation in document sentiment analysis and image classifica-

tion. In (Bousmalis et al., 2017) a similar model with a generative base is used for

pixel-level domain adaptation, which changes images of the source domain to look

like they come from the target domain. In (Kamnitsas et al., 2017) the same idea is

used in domain adaptation for brain lesion segmentation. The same idea has been

applied to biomedical relation extraction from text (Rios et al., 2018). Authors in

(Tzeng et al., 2017) present a unified framework to describe a wide range of domain-

adversarial approaches, and proposed a novel adversarial domain-adaptation method

with untied source and domain weights. In chapter 4, we describe a similar model to

learn from heterogeneous genomic data sources without suffering from batch effects

that are common in high-throughput experiments.

2.2.5 Interpretable Deep Learning

As discussed in section 1.2.2, the most important challenge in employing complex

machine learning methods such as deep learning is interpretability. A recent survey

(Du et al., 2018) summarized the progress in achieving interpretable machine learning

and categorized proposed interpretable models into two main categories: intrinsic

interpretability and post-hoc interpretability.

Intrinsic interpretability refers to self-explanatory models that incorporate inter-

pretability directly into the model structure, such as linear regression and decision

trees. Cox’s proportional hazards model provides a representative example for this
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category, as the coefficient of each feature in the trained model indicates the prog-

nostic value of that feature. An example of intrinsic interpretability in deep learning

is the use of attention mechanisms in sequential models (Xu et al., 2015).

Post-hoc interpretability aims to shed light on the mechanisms of prediction after

the model is trained. Permutation feature importance is a traditional model-agnostic

approach to post-hoc interpretation of machine learning models which was originally

proposed to explain the prediction mechanism of random forests (Breiman, 2001).

In this approach, the performance of the model is re-measured after shuffling the

values of each feature. The difference between the original performance and the new

performance achieved after shuffling the values of a feature provides a measure of the

importance of that feature.

Modern neural networks are commonly explained using gradient-based methods

after training, where the gradient of the model predictions (or some variant of the

gradient) is back-propagated to the feature space (Dimopoulos et al., 1995; Simonyan

et al., 2013; Zeiler and Fergus, 2014). The magnitude of the gradient then provides

a measure of importance for each feature. In our application, in addition to the

magnitude of the gradient of risk with respect to features, the sign of the gradient is

also important, with negative gradients indicating genes that have a positive effect

on survival, and vice versa.

2.3 Multi-task Learning

Every time we are optimizing more than one loss function, we are doing multi-task

learning. Learning multiple related tasks simultaneously has been both empirically

and theoretically shown to significantly improve performance relative to learning each

task independently (Argyriou et al., 2007). In his presentation at the Constructive

Induction Workshop at the 1994 International Conference on Machine Learning, Rich
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Sutton emphasizes the importance of multi-task learning:

”The standard machine learning methodology is to consider a single con-

cept to be learned. That itself is the crux of the problem... Instead we

should look to natural learning systems, such as people, to get a better

sense of the real task facing them. When we do this, I think we find the

key difference that, for all practical purposes, people face not one task,

but a series of tasks. The different tasks have different solutions, but they

often share the same useful representations.”

Multi-task learning is particularly helpful when only a few data per task are

available and with multi-task learning, each task has more data to learn from. In

high-dimensional problems where it is particularly difficult to find relevant features,

additional tasks provide additional evidence for the relevance of certain features help-

ing focus the model’s attention on meaningful patterns in data. Another way to

explain why multi-task learning works is in terms of inductive bias. Just as `1 induc-

tive bias constraints learning to the hypotheses that are sparse, multi-task learning

constraints it to the hypotheses that can explain more than one task (Ruder, 2017).

One of the earliest examples of multi-task learning was the use of hints by Abu-

Mustafa (Abu-Mostafa, 1990) where invariance hints were used to incorporate in

learning any information we already have about the predictive function. Caruana

argues that when it is impractical to include some features as input to the model

(such as in-hospital measurements for predicting hospital admittance), it may still be

useful to include those features as outputs in a multi-task learning setting (Caruana

and De Sa, 1997). Caruana takes multi-task learning to an extreme by arguing that

even multi-task learning of small variations of the exact same task can be helpful

empirically (Montavon et al., 2012). Since then, multi-task learning has developed

and been used across all applications of machine learning including computer vision
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(Zhang et al., 2014), natural language processing (Collobert and Weston, 2008), and

survival analysis (Wang et al., 2017a; Li et al., 2016).

Following Pan and Yang (2010), we provide a classification of multi-task learning

problem settings in cancer survival analysis. Let us first define the terms domain and

task. A domain is a pair {X , P (X)} which includes a feature space and a marginal

probability distribution where X = {x1, ..., xn} ∈ X . A task {Y , P (Y |X)} consists of

a label space and a conditional probability distribution function. P (Y |X) is the ulti-

mate predictive function that is not observed but can be learned from training data.

Multi-task learning, by definition, involves different tasks, i.e. different P (Y |X), or

even different label spaces. With that in mind, we classify multi-task survival analysis

problems as follows:

1. Different P (X): Data for the tasks come from different distributions. Examples

include:

- Standard gene expression data and progression-free survival labels are

available for all cohorts, but the cohorts are diagnosed with different cancer

types.

- Standard gene expression data and progression-free survival labels are

available for all cohorts, and the cohorts are diagnosed with the same

cancer types but belong to different studies/hospitals.

2 Different X : Data for the tasks come from different feature spaces. Note that

this automatically leads to different P (X). An example of different feature

spaces is gene expression data and mutation data.

3. Different P (Y |X): All tasks are the same in nature, but the conditional dis-

tribution of labels are different. For example, learning overall survival and

progression-free survival simultaneously for the same cohort of patients falls

under this category.
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4 Different Y : This class of multi-task problems involves different prediction tasks

(such as survival analysis and classification).

The general form of the loss function when learning T tasks simultaneously is:

L(Y,X,W ) =
T∑

t=1

Lt(y
t, gt(W t, X t)) + γλ(Y,X,W ) (2.2)

lt and W t, respectively, are the loss function and the parameters of task t. Y =

{Y 1, ..., Y T} and X = {X1, ..., XT} are the combined input data of all t tasks. gt

indicates the prediction function corresponding to task t, and λ is a regularization

or auxiliary function that captures task relatedness assumptions, examples of which

include cluster norm (Jacob et al., 2009), and `2,1 norm (Argyriou et al., 2007). γ is

a weight parameter controlling the importance of the auxiliary function.

One of the main ideas in the literature is enforcing sparsity across tasks through

regularization. Argyriou et al. (2007) assume only a small subset of features are

shared across tasks and enforces this assumption via `q,1 norm. The `q norm of each

feature across tasks is computed first, and the `1 norm of the result is then minimized,

leading to all but a few features to have `q norms close to zero.

The above approach assumes all tasks are related. In order to exploit task relation-

ships in cases where this assumption does not hold, Evgeniou et al. (2005) propose

to enforce a clustering constraint among tasks, by penalizing the variance of task

parameters from the mean task parameter in each cluster.

Previous work involving multi-task learning in deep neural networks can be cate-

gorized into two main categories: soft and hard parameter sharing (Ruder, 2017). It

has been shown that hard parameter sharing reduces the risk of overfitting by an order

of T , T being the number of tasks, compared to overfitting in task-specific parameters

(Baxter, 1997). In soft parameter sharing, each model has its own parameters while

the distance between model parameters is regularized by different methods, mostly
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inspired by the same regularization methods used in traditional multi-task learning.

In chapter 4, we train a multitask neural network with hard parameter sharing to

predict survival in cancer, specifically addressing scenarios 1 and 3 listed above.
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Chapter 3

Learning Genomic Representations

to Predict Clinical Outcomes in

Cancer

This chapter is a collection of articles on adapting artificial neural networks to survival
analysis from high dimensional genomic data. All articles included in this chapter
are open access and available online.

Sections 3.1 and 3.2 present SurvivalNet, a software framework that enables pre-
dicting risk of event using a fully-connected artificial neural network that is trained
by maximizing Cox’s proportional hazards model likelihood. A method for interpret-
ing SurvivalNet based on partial derivatives of risk with respect to input features is
introduced that enables the extraction of biological insights from the trained neu-
ral networks. A rigorous comparison of SurvivalNet with state-of-the-art survival
analysis models is performed. Finally, preliminary experiments with combinations of
cohorts with different cancer types lead to mixed but promising results and inspire a
line of research that we pursue in Chapter 4.

Section 3.3 presents an article that describes the application of Cox’s proportional
hazards model likelihood to a different type of artificial neural network known as
convolutional networks. The proposed framework enables the integration of histology
and genomic data for prediction of outcomes in cancer, and is shown to outperform
the WHO standard used in the classification of gliomas.

Finally, in section 3.4, SurvivalNet and its interpretation mechanism are applied
to investigating markers of progression in oligodendrogliomas, specifically the role of
the Notch signaling pathway.
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demonstrate the advantages of this approach over existing survival analysis methods
using brain tumor data.
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ABSTRACT

Genomics are rapidly transforming medical practice and basic biomedical re-
search, providing insights into disease mechanisms and improving therapeutic
strategies, particularly in cancer. The ability to predict the future course of a
patient’s disease from high-dimensional genomic profiling will be essential in re-
alizing the promise of genomic medicine, but presents significant challenges for
state-of-the-art survival analysis methods. In this abstract we present an investi-
gation in learning genomic representations with neural networks to predict patient
survival in cancer. We demonstrate the advantages of this approach over existing
survival analysis methods using brain tumor data.

1 INTRODUCTION

Genomics provide a window into the complex molecular workings of disease. In the treatment of
cancer, genomic analysis of a tissue biopsy can reveal specific molecular vulnerabilities that can
be matched to targeted therapies, or to prognosticate the future behavior of a patient’s disease and
expected survival in order to better inform clinical interventions including surgery and radiation
therapy. Although genomic analysis generates rich high-dimensional signals that contain hundreds
to hundreds-of-thousands of variables, typically only several variables are used for prognostication
for any given cancer type. Typically, these variables are used to assign patients into discrete disease
classes or ”subtypes” that associate with response to specific therapies, or with varying degrees of
disease aggressiveness. Learning the underlying latent prognostic variables from high-dimensional
genomic profiles can extract additional prognostic value from unused variables, and is critical in
realizing the promise of genomic medicine. This problem presents significant challenges, ranging
from the familiar ”large p small N”, to how to adapt developments in the machine learning domain
to the analysis of time-to-event survival data.

In this abstract we present an investigation in building survival prediction neural networks to learn
representations from genomic data for survival prediction. We use backpropagation to train neural
networks to maximize the Cox proportional hazards likelihood of time-to-event data, and apply
these predictive models to molecular profiles of brain tumor patients from The Cancer Genome
Atlas where survival ranges from 6 months to 10+ years. We compare our methods to state-of-the-
art survival analysis algorithms based on elastic-net (linear combination of L1 and L2) regularization
of Cox hazard models and random forest based methods, and demonstrate improvements in survival
prediction accuracy for neural network approaches.

2 BACKGROUND AND RELATED WORK

2.1 HAZARD MODELS AND LIKELIHOOD FUNCTIONS

Survival analysis involves predicting the time to some event of interest, which in cancer is often
death or progression of disease. It differs from ordinary regression due to incomplete followup,
where a death or relapse event is not observed at or before the final encounter with the patient. These
censored observations provide critical information, and often represent an important population of
long-term survivors or treatment responders that are very important to incorporate into the model.
The most commonly used regression approach to survival analysis is the Cox proportional hazards
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model proposed by Cox (1972). At time t, the hazard for a sample with covariates x is given by the
following hazard function:

λ(t|x) = λ0(t)e
βx, (1)

where λ0(t) is baseline hazard. The hazard function is an exponential linear function of the covari-
ates x and model coefficients β, with the effect of any covariate x(i) assumed to be the same over
time. Since the evaluation criteria of the models in this paper is based on ranking predicted survival
times, the baseline hazard is left unspecified and we maximize the partial likelihood function during
training:

l(β,X) = −
∑

i∈U

(
Xiβ − log

∑

j⊂Ri

eXjβ
)

(2)

where U is the set of all uncensored patients, and Ri is the set of patients whose time of death or
last follow-up is later than time of death of i.

We measured model performance using concordance index (CI) that captures the rank correlation
of predicted and actual survival. Denoting the ith patient with Xi and the set of all patients with X ,
where ti represents either the time of death or the time of last follow-up of the ith patient, CI was
calculated in the following way:

CI(β,X) =
∑

P

I(i,j)
|P | (3)

I(i, j) =

{
1, if Riskj > Riski and tj > ti
0, otherwise

(4)

Where P is the set of orderable pairs. A pair of samples (Xi, Xj) is orderable if either the event is
observed for both Xi and Xj , or Xj is censored and tj > ti. Intuitively, CI measures the pairwise
agreement of the prognostic scoresRiski,Riskj predicted by the model and the actual time of death
for all orderable pairs. Attempts have been made to propose differentiable versions of CI based on
sigmoid and exponential functions and optimize it directly. But recent studies show that optimizing
the cox partial likelihood is equivalent to optimizing CI (Steck et al., 2008).

2.2 RELATED WORKS

Regularization techniques have been proposed for feature selection in survival analysis of high di-
mensional data (Zou & Hastie, 2005). Efforts have been made to introduce successful machine
learning algorithms such as random forests to survival analysis (Ishwaran et al., 2008). Deep learn-
ing techniques have been employed for cancer diagnosis using genomic data and medical images,
such as Fakoor et al. (2013) and Esteva et al. To the best of our knowledge, representation learning
techniques have not been applied to survival prediction from genomic data, and the previous work
investigating neural networks for survival analysis dealt with low dimensional data and different cost
functions (Lisboa et al., 2003).

3 SURVIVAL PREDICTION NEURAL NETWORK

3.1 PRETRAINING AND FINE-TUNING

In this work we trained an autoencoder to represent genomic data and fine tune this representation
using partial log Cox likelihood. In training, we employ stacked denoising autoencoders proposed
in Vincent et al. (2008). We train the auto-encoders using 183-dimensional genomic features, then
we add a risk prediction output layer as shown in Figure 1-a.

We use survival times and censoring status to calculate the Cox partial log likelihood given by
equation 2 and differentiate it with respect to X:

∂l(β,X)

∂Xi
= ciβ −

∑

j∈U :i∈Rj

βeXiβ

∑
k∈Rj

eXkβ
(5)

where ci is 1 if sample i is not censored, and is 0 otherwise, and β denotes the parameters of the
risk prediction layer. This derivative is then back-propagated through the network to fine tune the
learned representation specifically for the task of survival analysis.
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Figure 1: a) Survival network model. b) Comparison of the proposed survival prediction neural network to
two competing methods: Elastic-net (L1 and L2 combined) regularized Cox regression and Random Survival
Forest(RSF). Average testing CI trends are shown for neural networks with two different activation functions:
sigmoid and rectified linear units. The error bars and shaded areas indicate standard deviation of CI over 10
cross validation sets (See section 3.3 for details.)

3.2 MODEL SELECTION

The training of a neural network involves many hyperparameters: type of nonlinearities used, num-
ber of layers, number of hidden units in each layer, learning rates for pretraining and fine tuning and
regularization parameters. Since this is the first work where deep neural networks are used to address
survival analysis, we could not look at existing literature for a conventional choice of hyperparam-
eters. Unlike areas such as image classification, no rule of thumb has been developed for setting
hyper-parameters in survival analysis. Therefore we employed bayesian optimization (Martinez-
Cantin, 2014) with Gaussian prior to decrease the number of objective function evaluations needed
to reach a decent choice of hyperparameters. More shallow networks demonstrate superior perfor-
mance over deeper architectures in our experiments. This could be justified considering the small
number of training samples (628) and the scarcity of labels within the available samples. Our aver-
age choice of configuration is 2 fully connected layers of 250 hidden units each. On average, we use
a learning rate .001 for pre-training and .0009 for fine-tuning.

3.3 EVALUATION

Due to the small size of available training data, performance of the model might considerably de-
pend on the partitioning of the data into testing and training. To mitigate this, we randomly sampled
from the data set 10 times without replacement to have 10 permutations of the same data set. Then
in each of the 10 sets, we used the first %70 of the data for training, half of the remaining %30 of
data for model selection and the other half for model assessment. We performed training, model
selection and testing on these 10 permutation datasets separately. The reported CI in Figure1-b
is averaged over these 10 experiments to represent the generalization error of the model. The ex-
act same setting was used for hyper-parameter tuning and assessment for competing methods. We
picked the learning rate and elastic-net mixture coefficient for regularized Cox regression (Hastie &
Qian (2014)) based on performance on the same validation sets we used for the neural networks. We
tuned number of trees, leaf size, and number of split points for random survival forest in the same
fashion. Our experiments reveal that Random Survival Forests do not adapt well to high dimension-
ality and are markedly outperformed by survival neural networks (See Figure 1-b). Neural networks
also achieve %5 absolute improvement over regularized Cox regression with ReLU activation and
%3 with sigmoid activation.

ACKNOWLEDGMENTS

This work was supported by US Public Health Service National Institutes of Health (NIH) grants
K22LM011576-03 and U24CA194362-01.

3



Workshop track - ICLR 2016

REFERENCES

David R Cox. Regression models and life tables (with discussion). Journal of the Royal Statistical
Society, 34:187–220, 1972.

Andre Esteva, Brett Kuprel, and Sebastian Thrun. Deep networks for early stage skin disease and
skin cancer classification.

Rasool Fakoor, Faisal Ladhak, Azade Nazi, and Manfred Huber. Using deep learning to enhance
cancer diagnosis and classification. In The 30th International Conference on Machine Learning
(ICML 2013),WHEALTH workshop, 2013.

Trevor Hastie and Junyang Qian. Glmnet vignette. Technical report, Technical report, Stanford,
2014.

Hemant Ishwaran, Udaya B Kogalur, Eugene H Blackstone, and Michael S Lauer. Random survival
forests. The annals of applied statistics, pp. 841–860, 2008.

Paulo JG Lisboa, H Wong, P Harris, and Ric Swindell. A bayesian neural network approach for
modelling censored data with an application to prognosis after surgery for breast cancer. Artificial
intelligence in medicine, 28(1):1–25, 2003.

Ruben Martinez-Cantin. Bayesopt: A bayesian optimization library for nonlinear optimization,
experimental design and bandits. The Journal of Machine Learning Research, 15(1):3735–3739,
2014.

Harald Steck, Balaji Krishnapuram, Cary Dehing-oberije, Philippe Lambin, and Vikas C Raykar. On
ranking in survival analysis: Bounds on the concordance index. In Advances in neural information
processing systems, pp. 1209–1216, 2008.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103. ACM, 2008.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.

4



40

3.2 Predicting clinical outcomes from large scale

cancer genomic profiles with deep survival mod-

els, Nature Scientific Reports, 2017

This section is an exact copy of the following open-access journal paper:

Safoora Yousefi, Fatemeh Amrollahi, Mohamed Amgad, Chengliang
Dong, Joshua E Lewis, Congzheng Song, David A Gutman, Sameer H
Halani, Jose Enrique Velazquez Vega, Daniel J Brat, and Lee AD Cooper.
Predicting clinical outcomes from large scale cancer genomic profiles with
deep survival models. Scientific Reports, 7(1):11707, 2017.

Abstract. Translating the vast data generated by genomic platforms into accu-
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Many prediction methods face limitations in learning from the high-dimensional pro-
files generated by these platforms, and rely on experts to hand-select a small number
of features for training prediction models. In this paper, we demonstrate how deep
learning and Bayesian optimization methods that have been remarkably successful
in general high-dimensional prediction tasks can be adapted to the problem of pre-
dicting cancer outcomes. We perform an extensive comparison of Bayesian optimized
deep survival models and other state-of-the-art machine learning methods for sur-
vival analysis, and describe a framework for interpreting deep survival models using a
risk backpropagation technique. Finally, we illustrate that deep survival models can
successfully transfer information across diseases to improve prognostic accuracy. We
provide an open-source software implementation of this framework called Survival-
Net that enables automatic training, evaluation, and interpretation of deep survival
models.
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Predicting clinical outcomes from 
large scale cancer genomic profiles 
with deep survival models
Safoora Yousefi1, Fatemeh Amrollahi1, Mohamed Amgad1, Chengliang Dong2, Joshua E. 
Lewis3, Congzheng Song4, David A. Gutman5, Sameer H. Halani6, Jose Enrique Velazquez 
Vega7, Daniel J. Brat7,8 & Lee A. D. Cooper  1,3,8

Translating the vast data generated by genomic platforms into accurate predictions of clinical outcomes 
is a fundamental challenge in genomic medicine. Many prediction methods face limitations in learning 
from the high-dimensional profiles generated by these platforms, and rely on experts to hand-select 
a small number of features for training prediction models. In this paper, we demonstrate how deep 
learning and Bayesian optimization methods that have been remarkably successful in general high-
dimensional prediction tasks can be adapted to the problem of predicting cancer outcomes. We 
perform an extensive comparison of Bayesian optimized deep survival models and other state of the art 
machine learning methods for survival analysis, and describe a framework for interpreting deep survival 
models using a risk backpropagation technique. Finally, we illustrate that deep survival models can 
successfully transfer information across diseases to improve prognostic accuracy. We provide an open-
source software implementation of this framework called SurvivalNet that enables automatic training, 
evaluation and interpretation of deep survival models.

Advanced molecular platforms can generate rich descriptions of the genetic, transcriptional, epigenetic and pro-
teomic profiles of cancer specimens, and data from these platforms are increasingly utilized to guide clinical 
decision-making. Although contemporary platforms like sequencing can provide thousands to millions of fea-
tures describing the molecular states of neoplastic cells, only a small number of these features have established 
clinical significance and are used in prognostication1–4. Making reliable and accurate predictions of clinical out-
comes from high-dimensional molecular data remains a major challenge in realizing the potential of precision 
genomic medicine.

Traditional Cox proportional hazards models require enormous cohorts for training models on 
high-dimensional datasets containing large numbers of features. Consequently, a small set of features is 
selected in a subjective process that is prone to bias and limited by imperfect understanding of disease biol-
ogy. High-dimensional learning problems are common in the machine-learning community, and many 
machine-learning approaches have been adapted to predicting survival or time to progression5. Prior knowledge 
has been used to reduce dimensionality by learning gene signatures of cancer hallmarks to generate intermediate 
features that successfully predict outcomes6,7. Regularization methods for Cox models like elastic net have been 
developed to perform objective and data-driven feature selection with time-to-event data8. Random forests are 
reputed to resist overfitting in high-dimensional prediction problems, and have been adapted to survival mode-
ling9. Neural network based approaches have been used in low-dimensional survival prediction problems10, but 
subsequent evaluation of these methods found no performance improvement over ordinary Cox regression11. The 
difficulty of deconstructing these black-box models to gain insights into disease progression or biology remains 
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a key challenge in their adoption. Deep neural networks were combined with input-level feature selection to 
identify promoters and enhancers of gene regulation, with the goal of creating interpretable nonlinear models12.

Advances in neural networks broadly described as deep learning have shattered performance benchmarks 
in general machine-learning tasks, enabled by improvements in methodology, computing hardware, and data-
sets13. These networks are composed of densely interconnected layers that sequentially transform the inputs into 
more predictive features through adaptive learning of the interconnection parameters (see Fig. 1). Deep networks 
composed of many layers perform feature-learning on high dimensional datasets to extract latent explanatory fea-
tures14, and have been successfully applied to biomedical problems including image classification15, transcription 
factor binding site prediction16, and medication dosing control17. A fundamental challenge in deep learning is 
determining the network design that provides the best prediction accuracy, a process that involves choosing net-
work hyperparameters including the number of layers, transformation types, and training parameters. Searching 
the vast space of network designs quickly becomes intractable, given the considerable time required to train a 
single deep network. Bayesian optimization techniques have been developed to automate the search of the hyper-
parameter space, and provide measurable gains in accuracy over expert tuning18 or random search19, and identify 
optimal models with fewer experiments19,20. Advanced deep learning techniques including dropout regulariza-
tion, unsupervised pre-training, and Bayesian optimization were first applied to build unbiased deep models from 
high-dimensional genomic data in ref.21 where deep networks were trained to optimize proportional hazards 
likelihood. A subsequent study applied deep networks to model survival in breast cancer using a low-dimensional 
dataset (14 features) that were selected with a priori disease knowledge22. This study did not evaluate prediction 
using high-dimensional data or compare to state-of-the-art methods like regularized Cox regression that perform 
unbiased feature selection.

This paper extends the preliminary studies exploring deep learning for survival modeling, and presents a soft-
ware package called SurvivalNet (SN) that enables users to train and interpret deep survival models. SurvivalNet 
uses Bayesian optimization to identify optimal hyperparameter settings, saving users considerable time and effort 
in choosing model parameters. We also illustrate how backpropagation methods can be modified to interpret deep 
survival models, scoring individual features for their contribution to risk, and show how feature risk scores can 
be used with pathway analysis tools to uncover higher-order biological themes associated with patient survival. 
Using clinical and molecular data from The Cancer Genome Atlas (TCGA), we show that Bayesian-optimized 

Figure 1. Overview of the SurvivalNet framework. (A) Accurate prognostication is crucial to clinical decision 
making in cancer treatment. Molecular platforms produce data that can be used for precision prognostication 
with learning algorithms. (B) Deep survival models are neural networks composed of layers of non-linear 
transformations, driven by a Cox survival model at the output layer. Model likelihood is used to adaptively 
train the network to improve the statistical likelihood of the overall survival prediction. (C) The SurvivalNet 
framework enables automatic design optimization and validation of deep survival models. Molecular profiles 
obtained from TCGA datasets are randomized, assigning patients to training, testing and validation sets. 
Bayesian optimization searches the space of hyperparameters like the number of network layers to optimize 
the model design. Each selected design is trained and evaluated using validation samples to update the 
Bayesian optimizer. The best model design is then evaluated on the independent testing set to measure the final 
optimized model accuracy.
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deep survival models provide comparable performance to Cox elastic net regression, and superior performance 
to random survival forests when analyzing high-dimensional genomic data. Finally, we show how deep survival 
models can learn prognostic information from multi-cancer datasets to improve prognostication through transfer 
learning.

Results
Automatic training and validation of deep survival models. An overview of the SurvivalNet frame-
work is presented in Fig. 1. SurvivalNet is implemented as an open-source Python module (https://github.com/
CancerDataScience/SurvivalNet) using Theano and is available as a pre-built Docker software container. A deep 
survival model uses the Cox partial log likelihood to train the weights of neural network to transform molec-
ular features into explanatory factors that explain survival. The partial log likelihood serves as a feedback sig-
nal to train the model weights using backpropagation. Deep neural networks have many hyperparameters that 
impact prediction accuracy including the number of layers, number and type of activation functions in each 
layer, and choices for optimization/regularization procedures. The time needed to train a deep survival model 
prohibits exhaustive hyperparameter search, and so SurvivalNet employs a Bayesian optimization strategy to 
identify hyperparameters that optimize prediction accuracy including the number of network layers, the number 
of elements in each layer, the activation function, and the dropout fraction. Bayesian optimization enables users 
who lack experience tuning neural networks to optimize model designs automatically, and results in considerable 
savings in time and effort as previously reported19. Data is first split into training (60%), validation (20%), and 
testing (20%) sets. Training samples are used to train the model weights with backpropagation using the network 
design suggested by Bayesian optimization. The prediction accuracy of the trained deep survival model is then 
estimated using the validation samples, and is used to maintain a probabilistic model of performance as a func-
tion of hyperparamters. Based on the probabilistic model, the design with the best expected accuracy is inferred 
as the next design to test. After the Bayesian optimization process is finished (typically after a prescribed number 
of experiments), the best network design is used to re-train a deep survival model using the training and  valida-
tion samples, and the accuracy of this best model is reported using the held-out testing samples.

Comparing deep survival networks with Cox elastic net and random survival forests. We com-
pared the performance of SurvivalNet models with Cox elastic net (CEN) and random survival forest (RSF) mod-
els using data from multiple TCGA projects: pan-glioma (LGG/GBM), breast (BRCA), and pan-kidney (KIPAN) 
which consists of chromophobe, clear cell, and papillary carcinomas. Datasets were selected based on the avail-
ability of molecular and clinical data and for extent of complete clinical follow up. Performance was evaluated 
with two feature-sets: 1) a “transcriptional” feature set containing 17,000 + gene expression features obtained 
by RNA-sequencing, and 2) an “integrated” feature set containing 3–400 features describing clinical features, 
mutations, gene and chromosome arm-level copy number variations, and protein expression features. Details of 
these datasets are presented in Methods and Tables S1 and S2. Optimization procedures for CEN and RSF hyper-
parameters are described in Methods.

In each experiment, samples were randomized to training (60%), validation (20%), and testing (20%) sets, and 
the performance of optimized SN, CEN, and RSF models was assessed. Performance was calculated using Harrell’s 
c-index, a non-parametric statistic that measures concordance between predicted risks and actual survival23. A 
c-index of 1 indicates perfect concordance, and a c-index of 0.5 corresponds to random chance. Experiments were 
repeated for 20 randomizations to account for variations due to sample assignment. Differences in performance 
between methods were evaluated through rank-sum statistical testing of c-index values. Results are presented in 
Fig. 2 (extended results are presented in Table S3).

Both SN and CEN significantly outperform RSF models in most experiments. All methods perform markedly 
better than random, with median c-index scores ranging from: 0.75–0.84 in LGG/GBM; 0.52–0.68 in BRCA; and 
0.73–0.79 in KIPAN. In the transcriptional feature set (Fig. 2B), SN models have a slight advantage over CEN 
models in LGG/GBM (Wilcoxon rank-sum p = 2.39e-2) and KIPAN (p = 0.0565). In the integrated feature set 
(Fig. 2A), SN and CEN performance were indistinguishable in the BRCA dataset (p = 0.770), but CEN mod-
els have a slight advantage over SN models in the LGG/GBM (p = 1.78e-3) and KIPAN (p = 0.0699) datasets. 
Performance is generally better on the integrated feature set than the transcriptional feature set for all meth-
ods. One exception to this is the performance of SN on the LGG/GBM feature sets, where performance on the 
transcriptional feature set exceeds the integrated feature set (c-index 0.841 versus 0.818). RSF models have the 
worst performance generally, and are severely challenged in learning from the BRCA transcriptional feature set, 
with a median c-index of 0.520 (slightly better than random guess). Comparing performance across diseases, 
we noticed that prediction accuracy generally decreases as the proportion of right-censored samples in a dataset 
increases. This pattern holds for all prediction methods. Glioma had the highest overall prediction accuracy, 
being a uniformly fatal disease that has relatively fewer long-term survivors and incomplete follow-up (62–64%). 
Breast carcinoma had the lowest overall prediction accuracy with more than 86–91% of BRCA samples being 
right-censored.

Finally, we observed that CEN model execution routinely fails with some randomizations, producing a seg-
mentation fault software error. In these instances, we generated a new randomization for CEN and repeated the 
experiments. The performance accuracy of SN and RSF models on these failed randomizations does not suggest 
that they present particularly difficult learning problems, but we cannot exclude the possibility of introducing a 
performance bias for CEN by generating new randomizations when CEN execution fails.

Interpreting deep survival models with risk backpropagation. Linear survival models weight indi-
vidual features based on their contribution to overall risk, providing a clear interpretation of the prognostic sig-
nificance of individual features, and insights into the biology of disease progression. The complex transformations 
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that machine-learning methods apply to input features makes interpreting these models more difficult. This is 
especially true for deep learning where the input features are subjected to multiple sequential nonlinear trans-
formations. To enable interpretation of deep survival models, we implemented a technique that we describe as 
risk backpropagation. In the same way that backpropagation can propagate prediction errors back through the 
layers of a deep model for training, backpropagation can also propagate predicted risks back to the input layer to 
assess how individual features contribute to risk (see Fig. 3). Partial derivatives were first used to analyze variable 
importance in ref.24.

A linear survival model is defined by a static set of weights that represent the importance of features in pre-
dicting patient risk. In the linear model the predicted risk can be conceptualized as a plane that has a uniform 
gradient for any input feature values. The slope of this plane is defined by the model weights and represents the 
rate of change of risk with respect to each feature. Partial derivatives in SurvivalNet are directly analogous to 
model weights in a linear model, yet the weights differ depending on the values of the features. In the nonlinear 
SurvivalNet, the prediction can be conceptualized instead as a nonlinear surface where the risk gradients change 
depending on a patient’s feature values, and so these feature weights are calculated separately for each patient.

We applied risk backpropagation to our LGG/GBM integrated feature set model to investigate the prognostic 
significance of features (see Fig. 4). Risk backpropagation was applied to each patient to generate feature risk 
scores, and then each feature was ranked using its median score across patients as a measure of overall prognostic 
significance (see Fig. 4A). Among the top-ranked features indicative of poor prognosis are: increased age at diag-
nosis (rank 3); histologic classification as de novo grade IV glioblastoma (rank 5); loss of chromosome arms 10p 
and 10q (ranks 2, 4); and deletions of tumor suppressor genes CDKN2A and PTEN (ranks 1, 8). The top-ranked 
features associated with better prognosis included mutations in SMARCA4 (rank 6), IDH1/IDH2 (ranks 9, 10) 
and in CIC (rank 17). We note that many of these features are either incorporated or highly correlated with the 
recently published World Health Organization genomic classification of gliomas25.

To investigate molecular pathways related to glioma prognosis, we also performed a risk backpropaga-
tion gene-set enrichment analysis of our LGG/GBM transcriptional model. Median risk scores from the 

Figure 2. Performance comparison of SurvivalNet, Cox elastic net, and random survival forest models. The 
prognostic accuracy of these methods was evaluated in different diseases/datasets (GBMLGG, BRCA, KIPAN) 
using a high-dimensional transcriptional feature set and a lower-dimensional integrated feature set that 
combines clinical, genetic, and protein expression features. Patients were randomized to 20 training/validation/
testing sets that were used to train, optimize, and evaluate models in each case. (A) SurvivalNet models have an 
advantage over Cox elastic net in predicting survival using high-dimensional transcriptional features. (B) Cox 
elastic net has an advantage in predicting survival using lower-dimensional integrated features. Dashed red lines 
corresponding to a random prediction (c-index = 0.5). Dashed blue lines corresponds to c-index of molecular 
classification of gliomas.
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Figure 3. Interpreting deep survival models with risk backpropagation. (A) Backpropagation was used to 
calculate the sensitivity of predicted risk to each input feature, generating feature risk scores for each feature and 
patient. (B) Feature risk scores can be analyzed to gain insights into the deep survival model. Risk scores can be 
used to evaluate the prognostic significance of individual features, or to identify gene sets or molecular pathways 
that are enriched with high-risk or low-risk features.

Figure 4. Interpretation of glioma deep survival models. (A) SurvivalNet learns features that are definitional 
(IDH mutation) or strongly associated (CDKN2A deletion, SMARCA4 mutation) with WHO genomic 
classification of diffuse gliomas. Feature risk scores for the top 10 of 399 features in the integrated model 
are shown here, in order. Each boxplot represents the risk scores for one feature across all patients. Features 
were ranked by median absolute risk score. (B) Kaplan-Meier plots for select features from (A). (C) A 
gene set enrichment analysis of transcriptional feature risk scores identified the TGF-Beta 1 signaling and 
epithelialmesenchymal transition (EMT) gene sets as enriched with features associated with poor prognosis. 
(D) Kaplan-Meier plots for select features from (C).
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transcriptional model were calculated for each transcript, and gene set enrichment analysis was performed on 
these scores to identify pathways enriched with prognosis-associated transcripts26 (See Table S4). Pathways and 
gene sets associated with poor-prognosis include cell cycle (G2M checkpoint, E2F targets), apoptosis, angiogen-
esis, inflammation (Interferon alpha, gamma responses) and epithelial to mesenchymal transition (EMT and 
TGF-Beta signaling). EMT has received significant attention in cancer27, and also specifically in glioma28–30 as 
being associated with aggressive phenotypes and poor clinical outcomes. The TGF-Beta signaling hallmark gene 
set was significantly enriched (p = 6e-3, FDR q = 2.7e-2) with genes having high risk scores including RHOA, 
TGFB1, TGFBR1, SERPINE1, JUNB1 and ARID4B. The Epithelial to Mesenchymal Transition gene set was also 
significantly enriched (p = 1.6e-1, FDR q = 1.55e-1) with genes having high risk scores including MMP1/2/3, 
IL6, ECM1, and VCAM1. TGF-Beta signaling is understood to be one of the main pathways involved in EMT, 
and our results support the importance of EMT in determining glioma patient outcomes. The feature risk scores 
of the EMT-related transcription factors TGF-Beta induced EMT signaling as described in ref.27 are visualized 
in Fig. 4C. Major TGF-Beta-EMT inducing factors (RHOA, RAC1, ROCK2, CDC43 and LIMK1) and EMT tran-
scription factors (TWIST1, SOX9, TRIM28 and SERP2) have among the highest risk scores in our glioma tran-
scriptional model.

Extended feature risk scores for the LGG/GBM integrated and transcriptional models are presented in 
Table S4. The procedure for obtaining models used for interpretation is described in Methods.

Transfer learning with multi-cancer datasets. We performed a series of transfer learning experi-
ments to evaluate the ability of deep survival models to benefit from training with data from multiple cancer 
types. The transfer learning paradigm is illustrated in Fig. 5A. Survival models were trained using three differ-
ent datasets: BRCA-only, BRCA + OV (ovarian serous carcinoma), and BRCA + OV + UCEC (corpus endome-
trial carcinoma), and were evaluated for their accuracy in predicting BRCA outcomes. The large proportion of 
right-censored cases in the BRCA dataset (90%) makes training accurate models difficult, and so we hypothesized 
that augmenting BRCA training data with samples from other hormone-driven cancers could improve BRCA 
prognostication. BRCA samples were randomized to training, validation, and testing and full Bayesian optimi-
zation was performed to measure c-index on BRCA testing samples for 20 randomizations. For the integrated 
feature set, we combined datasets by discarding disease-specific clinical features.

Adding samples from the OV and UCEC datasets provides measurable improvements in BRCA prognostic 
accuracy for both integrated and transcriptional feature set deep survival models (see Fig. 5B). For integrated 
models, training with BRCA + OV samples increases median c-index from 0.588 to 0.643 (rank-sum p = 2.92e-
3), and training with BRCA + OV + UCEC improves this further to 0.710 (p = 3.10e-5). For the transcrip-
tional feature set, training with BRCA + OV does not produce a measurable improvement over BRCA-alone 
(p = 0.978), but training with BRCA + OV + UCEC provides a marginal 3.5% improvement (p = 0.168).

We also evaluated the ability of Cox elastic net to benefit from transfer learning, and found significant perfor-
mance degradation with transfer learning in transcriptional feature set (see Figure 5 C). Training with BRCA + OV 
reduces the median c-index to from 0.664 to 0.599 (p = 0.0699), and training with BRCA + OV + UCEC reduces 
this further to 0.59335 (p = 0.0165). Performance improvements with the integrated feature set for CEN were 
similar to those observed with deep survival models.

Risk backpropagation analysis of transfer learning. To understand the information that OV 
and BRCA samples provide in predicting BRCA prognosis, we performed analysis of the BRCA and 
BRCA + OV + UCEC deep survival models using risk backpropagation. Risk backpropagation analysis was 
applied independently to the BRCA and BRCA + OV + UCEC transcriptional models to generate features risk 
scores, and gene set enrichment analyses were performed on these risk scores for each model to identify differ-
ences in pathway enrichment between the two models. Gene set enrichment scores for the BRCA + OV + UCEC 
model show increased emphasis on inflammatory pathways (particularly IL2-STAT5 signaling, IL6-JAK-STAT3 
signaling and Interferon gamma response) as well as the apical junction gene set (known for its relevance to 
cell adhesion and metastasis). KRAS signaling and MYC targets v1 gene sets were de-emphasized in the 
BRCA + OV + UCEC model, pointing to a less prominent role of these pathways in determining breast cancer 
disease progression (See Fig. 5D and Tables S5 and S6).

Discussion
We created a software framework for Bayesian optimization and interpretation of deep survival models, and eval-
uated the ability of optimized models to learn from high-dimensional and multi-cancer datasets. Our software 
enables investigators to efficiently construct deep survival models for their own applications without the need for 
expensive manual tuning of design hyperparameters, a process that is time consuming and that requires consider-
able technical expertise. We also provide methods for model interpretation, using the backpropagation of risk to 
assess the prognostic significance of features and to gain insights into disease biology. Our analysis shows the abil-
ity of deep learning to extract important prognostic features from high-dimensional genomic data, and to effec-
tively leverage multi-cancer datasets to improve prognostication. It also reveals limitations in deep learning for 
survival analysis and the value of complex and deeply layered survival models that need to be further investigated.

SN models have slightly better prognostic accuracy on two of three learning tasks using 17,000 + transcrip-
tional features (GBMLGG and KIPAN), where CEN performed better using the lower-dimensional 300–400 
integrated features. The high dimensionality of the transcriptional feature set presents a more challenging pre-
diction problem where algorithms are more likely to overfit training data noise. CEN models are regularized 
linear models that use data-driven feature selection to identify a core subset of informative features for linear 
prediction. Their linearity does not appear to limit performance in our experiments, as their accuracy is similar 
to deep learning models and surpasses RSF models. While the deep models can effectively learn survival from 
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high-dimensional data, the feature-learning capabilities of layered nonlinear transformations did not translate 
into significant gains as has been demonstrated in general image classification or language processing tasks13. 
Larger datasets may be needed to overcome overfitting issues and to reveal anticipated performance benefits 
of deep learning. Deep learning methods typically require large amounts of training data to effectively learn 
their many parameters31, although empirical results in some applications have demonstrated otherwise32. In our 
experiments data requirements were exacerbated by the need to allocate validation samples for hyperparameter 
optimization. Smaller testing sets also introduced considerable variance in performance measurements.

Risk backpropagation analysis of gliomas demonstrated that SurvivalNet models could identify key features 
in high-dimensional datasets, recovering important genetic alterations that currently used to classify gliomas 
in clinical practice. Survival of patients diagnosed with infiltrating glioma depends largely on age, histologic 
grade and classification into three molecular subtypes defined by mutations in the Krebs cycle enzyme isoc-
itrate dehydrogenase (IDH1/IDH2) and co-deletion of chromosome arms 1p and 19q1: 1. Gliomas with wild-type 
IDH (astrocytoma) have an expected survival of 18 months, and are overwhelmingly diagnosed as advanced 
grade IV glioblastoma 2. Gliomas with co-deletion of 1p and 19q and mutations in IDH (oligodendroglioma) 
have the best outcomes, with some patients surviving 10 years or more and 3. Gliomas with IDH mutations that 
lack co-deletions (IDH-mutant astrocytoma) have intermediate outcomes. Risk backpropagation analysis of our 
model identified IDH1 and IDH2 mutations (ranks 9, 10) as strongly associated with better prognosis, consistent 

Figure 5. Learning with data from multiple cancer types improves deep survival models. (A) Data from 
the BRCA dataset was partitioned into training, validation, and testing sets. The BRCA training set was 
augmented with samples from the OV and UCEC and used to construct models for BRCA survival prediction. 
(B) Augmented training sets significantly improve the performance of SurvivalNet models for the integrated 
feature set. For the transcriptional feature set, marginal improvement was observed when training with 
BRCA + OV + UCEC data, but training with BRCA + OV data provides no improvement. (C) For Cox elastic 
net, augmentation significantly degrades performance for the high-dimensional transcriptional feature set. (D) 
Gene set enrichment analysis of feature risk scores from the BRCA and BRCA + OV + UCEC transcriptional 
models. The model trained with BRCA + OV + UCEC samples emphasizes different biological concepts than 
the BRCA-only model.
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with the role of these mutations as the primary feature in classifying gliomas. While our analysis did not explic-
itly identify 1p and 19q deletions as strongly associated with better prognosis (ranks 45, 233), it did identify CIC 
mutations, a signature of oligodendrogliomas (CIC mutations occur in more than 50% of oligodendrogliomas), 
and SMARCA4 mutations, that occur frequently in both the less aggressive oligodendroglioma and IDH-mutant 
astrocytoma subtypes. The top-ranked feature associated with poor prognosis in our analysis was deletion of 
CDKN2A which is strongly associated with the aggressive astrocytomas, as well as with a subset of poor prognosis 
IDH-mutant astrocytomas that lack broad DNA hypermethylation (GCIMP-low)33. Loss of PTEN (rank 8) is also 
characteristic of astrocytomas, has been shown to be an early event in gliomagenesis, and related to the loss of 
its parent chromosome 10 (10q and 10p were ranked 2 and 4, respectively)34. Similarly, enrichment analysis of 
our transcriptional glioma model risk scores identified molecular pathways and processes related to epithelia to 
mesenchymal transition, a process that is associated with poor prognosis in cancers generally and specifically in 
gliomas.

Transfer learning experiments showed that deep survival models could benefit from training with 
multi-cancer datasets in the high-dimensional transcriptional feature set. Training with combined BRCA, OV 
and UCEC transcriptional data significantly degraded the accuracy of Cox elastic net models in predicting BRCA 
outcomes, but provided a small benefit to deep survival models (3.5% improvement). Both methods benefit sig-
nificantly from training on multi-cancer integrated feature sets. Given that the integrated feature sets contain a 
much smaller number of samples than the transcriptional datasets (see Figure S1), it is reasonable that they would 
benefit more from additional training data. A similar rationale could explain the performance difference between 
SurvivalNet and Cox elastic net on the transcriptional feature set: SurvivalNet likely requires more training data 
and so it would be more likely to benefit from additional cancer types. Additional experiments are needed to 
investigate if SurvivalNet has a real advantage in transfer learning common prognostic signals across cancer 
types. Although genetic alterations and expression patterns are often strongly associated with primary disease 
site, common mechanisms of progression are likely shared by many cancers, and deep survival models can ben-
efit from training with augmented datasets that provide additional evidence of these mechanisms. Enrichment 
analysis of risk scores from the BRCA-only and BRCA + OV + UCEC transcriptional models showed changes in 
the biological themes associated with highly prognostic transcripts, with increased emphasis on inflammatory 
response and cell adhesion in the BRCA + OV + UCEC model.

Although our study provides important insights into the use of deep learning for survival modeling, it has 
some limitations. Larger genomic datasets with clinical follow-up are needed to determine if the feature learning 
and nonlinearity of deep learning methods can provide substantial benefits in predicting survival. Secondly, our 
risk backpropagation analysis was simplified by averaging feature risk scores across patients. With nonlinear 
models, feature risk scores can vary significantly from patient to patient, and an in-depth analysis of these varia-
tions could yield insights into alternative paths for disease progression.

Methods
Data. All datasets were created using TCGAIntegrator (https://github.com/cooperlab/TCGAIntegrator), a 
Python module for assembling integrated TCGA genomic and clinical datasets with the Broad Institute Firehose 
(https://gdac.broadinstitute.org/). Datasets were filtered to remove patients lacking essential data platforms 
required in each experiment. Clinical variables including age and stage were required for each experiment, with 
missing radiation treatment status (binary) being mean-imputed to reflect prior likelihood in receiving radiation 
therapy. Features with categorical or ordinal values (i.e. stage) were expanded to a series of binary variables for 
model training. Copy number features were derived from the Affymetrix Genome-Wide Human SNP Array 6.0 
platform. Gene expression features were taken as RSEM values from the Illumina HiSeq. 2000 RNA Sequencing 
V2 platform. Protein expression measurements were taken from the MD Anderson Reverse Phase Protein Array 
(RPPA) Core platform that measures expression of cancer-relevant proteins and phosphoproteins. Sparse missing 
values in protein or gene expression features were 1nn-imputed (<20% missing values), where features exceeding 
this missing value threshold were discarded. Significant mutations were identified for inclusion in each dataset 
(LGG/GBM, KIPAN, BRCA) using a MutSig2CV<= 0.1 q-value threshold. Gene-level copy number features 
were filtered using a GISTIC<= 0.25 q-value threshold to identify focal events, and were further filtered using the 
Sanger Cancer Gene Census35. All clinical and molecular features were standardized to zero-mean unit-variance 
to comply with best practices for training deep-learning algorithms. All datasets used to create this paper, along 
with the TCGAIntegrator commands used to generate these datasets are available on request.

Software and hardware. All software used in training deep survival models, bayesian optimization, and 
model interpretation are provided as an installable python package at https://github.com/CancerDataScience/
SurvivalNet. We have also provided a Docker container containing an installation of the package and all depend-
encies that provides access to SurvivalNet functionality without the need for software installations. SurvivalNet 
is implemented on top of the Numpy (v1.11)/SciPy (v0.18) stack using Theano (v0.8.2). Bayesian optimization 
was performed using the BayesOpt package (https://github.com/rmcantin/bayesopt). Survival analysis statistics 
like Kaplan Meier analysis and logrank testing were performed using the Python lifelines package (v0.8.0.1). 
Cox elastic net models were trained using Glmnet for Matlab (http://web.stanford.edu/~hastie/glmnet_matlab/). 
Random survival forest models were trained using the RandomForestSRC (2.2.0) R package. Experiments were 
performed on a workstation equipped with two Intel Xeon E5–2620 v3 six-core processors, 64GB RAM, and two 
Titan-X GTX graphics processing units.
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Training, model selection and validation procedures. Deep survival models are multi-layer feed for-
ward artificial neural networks with a Cox proportional hazards output layer that calculates negative log partial 
likelihood
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where Xi are the inputs to the output layer, β are the Cox model parameters, U is the set of uncensored samples 
and Ri is the set of “at-risk” samples with survival or follow-up times Yj ≥ Yi.

This likelihood was optimized using backpropagation and line-search gradient descent. In each backpropaga-
tion iteration, the log partial likelihood is backpropagated throughout the network layers to update the intercon-
necting weights. The derivative used in backpropagation is
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where Xi is the input to the output/Cox layer. This derivative is multiplied by derivatives of the hidden layers 
using the chain rule to update all the network parameters back to the first network layer. Training was performed 
by combining all samples into a single batch, and updating the model once per epoch, due to the dependence 
between samples in calculating the Cox partial likelihood (Equations 1, 2). We note that mini-batch training can 
be performed with SurvivalNet by fitting the likelihood to smaller batches of samples, but this approach was not 
used in our experiments. Regularization of the network during training was performed using random dropout 
of network weights.

Bayesian optimization was performed by splitting samples into training (60%), validation (20%) and testing 
(20%) sets. The training and validation sets were used by Bayesian optimization to determine the optimal model 
hyperparameters, namely number of layers (1–5), layer width (10–1000), dropout fraction (0–0.9) and activation 
function (Rectified-linear or hyperbolic tangent). The optimal model architecture was then applied to the testing 
set to evaluate c-index of the selected model. We repeated this procedure on 20 randomized assignments of the 
samples to training/validation/testing.

Cox elastic net models contain two hyparparameters, λ which controls the overall degree of regularization and 
the mixture coefficient α that controls the balance between L2 and L1 norm penalties. Grid search over λ, α was 
performed to optimize the choice of these parameters. For each choice of α, a separate λ sequence was generated 
by Glmnet since the range of λ depends strongly on the α. A model was trained for each α/λ pair using the train-
ing set, and the model with the best performance on the validation set was then evaluated on the testing set. The 
same validation procedure was used to tune RSF hyperparameters including the number of trees (50, 100, 500, 
1000), node size (1, 3, 5, 7, 9), and random splitting based on the recommendations in the randomForestSRC R 
package.

Risk backpropagation and model interpretation. The models used for risk backpropagation and 
interpretation were created by identifying the best performing model configuration from the 20 randomized 
experiments. These configurations were then used to re-train a model using all available samples. Risk back-
propagation was implemented using Theano to calculate the partial derivatives of risk with respect to each input 
variable using the multivariable chain rule. Given a deep survival model with H hidden layers that operates on an 
N-dimensional feature vector f to predict risk R, the feature risk scores are calculated as the partial derivative of 
the model with respect to inputs
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where Jh is the Jacobian matrix of the h-th hidden layer with respect to its inputs, and β is the vector of parameters 
of the final layer that is a linear transformation (note the exponential is not applied since we are dealing with risk). 
This partial derivative is evaluated using the features of each patient fi to generate an N-dimensional feature risk 
score vector for each patient. Features were ranked by calculating the median risk score for each feature across 
all patients.

For transcriptional models, feature risk scores were analyzed using the Preranked Gene Set Enrichment 
Analysis (GSEAPrerankedv1) module in GenePattern. The Hallmark gene set36 from the MSigDB data-
base (http://software.broadinstitute.org/gsea/msigdb/) was used for enrichment analysis. The HUGO Gene 
Nomenclature Committee database was used to harmonize gene symbols between gene sets and model features 
prior to GSEA analysis (http://www.genenames.org/).

Transfer learning experiments. Datasets were combined using their shared features. For transcriptional 
and molecular features this merging is trivial, although many of the mutations and copy-number variations are 
dataset specific since they are filtered by GISTIC and MutSig to identify frequent alterations for each disease 
(integrated feature sets used in transfer learning are considerably smaller as a result). Pathologic stage and clin-
ical stage were merged as a single “stage” variable where necessary, since their definitions of stage are similar 
(although the method of determining this stage differs). No additional normalization measures were employed 
to remove disease-specific biases.
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Data availability. This paper was produced using large volumes of publicly available genomic data. The 
authors have made every effort to make available links to these resources as well as making publicly available the 
software methods used to produce the datasets, analyses, and summary information. All data not published in the 
tables and supplements of this article are available from the corresponding author on request.
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Cancer histology reflects underlying molecular processes and disease
progression and contains rich phenotypic information that is predictive
of patient outcomes. In this study, we show a computational approach
for learning patient outcomes from digital pathology images using
deep learning to combine the power of adaptive machine learning
algorithms with traditional survival models. We illustrate how these
survival convolutional neural networks (SCNNs) can integrate infor-
mation from both histology images and genomic biomarkers into a
single unified framework to predict time-to-event outcomes and show
prediction accuracy that surpasses the current clinical paradigm for
predicting the overall survival of patients diagnosed with glioma. We
use statistical sampling techniques to address challenges in learning
survival from histology images, including tumor heterogeneity and
the need for large training cohorts. We also provide insights into the
prediction mechanisms of SCNNs, using heat map visualization to
show that SCNNs recognize important structures, like microvascu-
lar proliferation, that are related to prognosis and that are used by
pathologists in grading. These results highlight the emerging role
of deep learning in precision medicine and suggest an expanding
utility for computational analysis of histology in the future practice
of pathology.

artificial intelligence | machine learning | digital pathology |
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Histology has been an important tool in cancer diagnosis and
prognostication for more than a century. Anatomic pathol-

ogists evaluate histology for characteristics, like nuclear atypia,
mitotic activity, cellular density, and tissue architecture, in-
corporating cytologic details and higher-order patterns to classify
and grade lesions. Although prognostication increasingly relies
on genomic biomarkers that measure genetic alterations, gene
expression, and epigenetic modifications, histology remains an
important tool in predicting the future course of a patient’s
disease. The phenotypic information present in histology reflects
the aggregate effect of molecular alterations on cancer cell be-
havior and provides a convenient visual readout of disease ag-
gressiveness. However, human assessments of histology are
highly subjective and are not repeatable; hence, computational
analysis of histology imaging has received significant attention.
Aided by advances in slide scanning microscopes and computing,
a number of image analysis algorithms have been developed for
grading (1–4), classification (5–10), and identification of lymph
node metastases (11) in multiple cancer types.
Deep convolutional neural networks (CNNs) have emerged as

an important image analysis tool and have shattered perfor-
mance benchmarks in many challenging applications (12). The
ability of CNNs to learn predictive features from raw image data
is a paradigm shift that presents exciting opportunities in medical
imaging (13–15). Medical image analysis applications have
heavily relied on feature engineering approaches, where algorithm
pipelines are used to explicitly delineate structures of interest
using segmentation algorithms to measure predefined features of

these structures that are believed to be predictive and to use
these features to train models that predict patient outcomes. In
contrast, the feature learning paradigm of CNNs adaptively
learns to transform images into highly predictive features for a
specific learning objective. The images and patient labels are
presented to a network composed of interconnected layers of
convolutional filters that highlight important patterns in the
images, and the filters and other parameters of this network are
mathematically adapted to minimize prediction error. Feature
learning avoids biased a priori definition of features and does not
require the use of segmentation algorithms that are often con-
founded by artifacts and natural variations in image color and
intensity. While feature learning has become the dominant
paradigm in general image analysis tasks, medical applications
pose unique challenges. Large amounts of labeled data are
needed to train CNNs, and medical applications often suffer
from data deficits that limit performance. As “black box” mod-
els, CNNs are also difficult to deconstruct, and therefore, their
prediction mechanisms are difficult to interpret. Despite these
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challenges, CNNs have been successfully used extensively for
medical image analysis (9, 11, 16–26).
Many important problems in the clinical management of

cancer involve time-to-event prediction, including accurate pre-
diction of overall survival and time to progression. Despite
overwhelming success in other applications, deep learning has
not been widely applied to these problems. Survival analysis has
often been approached as a binary classification problem by
predicting dichotomized outcomes at a specific time point (e.g.,
5-y survival) (27). The classification approach has important
limitations, as subjects with incomplete follow-up cannot be used
in training, and binary classifiers do not model the probability of
survival at other times. Time-to-event models, like Cox re-
gression, can utilize all subjects in training and model their
survival probabilities for a range of times with a single model.
Neural network-based Cox regression approaches were explored
in early machine learning work using datasets containing tens of
features, but subsequent analysis found no improvement over
basic linear Cox regression (28). More advanced “deep” neural
networks that are composed of many layers were recently
adapted to optimize Cox proportional hazard likelihood and
were shown to have equal or superior performance in predicting
survival using genomic profiles containing hundreds to tens of
thousands of features (29, 30) and using basic clinical profiles
containing 14 features (31).
Learning survival from histology is considerably more difficult,

and a similar approach that combined Cox regression with CNNs
to predict survival from lung cancer histology achieved only
marginally better than random accuracy (0.629 c index) (32).
Time-to-event prediction faces many of the same challenges as
other applications where CNNs are used to analyze histology.
Compared with genomic or clinical datasets, where features have
intrinsic meaning, a “feature” in an image is a pixel with meaning
that depends entirely on context. Convolution operations can
learn these contexts, but the resulting networks are complex,
often containing more than 100 million free parameters, and
thus, large cohorts are needed for training. This problem is in-
tensified in time-to-event prediction, as clinical follow-up is often
difficult to obtain for large cohorts. Data augmentation tech-
niques have been adopted to address this problem, where ran-
domized rotations and transformations of contrast and
brightness are used to synthesize additional training data (9, 11,
14, 15, 17, 19, 25, 26, 33). Intratumoral heterogeneity also pre-
sents a significant challenge in time-to-event prediction, as a
tissue biopsy often contains a range of histologic patterns that
correspond to varying degrees of disease progression or aggres-
siveness. The method for integrating information from hetero-
geneous regions within a sample is an important consideration in
predicting outcomes. Furthermore, risk is often reflected in
subtle changes in multiple histologic criteria that can require
years of specialized training for human pathologists to recognize
and interpret. Developing an algorithm that can learn the con-
tinuum of risks associated with histology can be more challenging
than for other learning tasks, like cell or region classification.
In this paper, we present an approach called survival con-

volutional neural networks (SCNNs), which provide highly ac-
curate prediction of time-to-event outcomes from histology
images. Using diffuse gliomas as a driving application, we show
how the predictive accuracy of SCNNs is comparable with
manual histologic grading by neuropathologists. We further ex-
tended this approach to integrate both histology images and
genomic biomarkers into a unified prediction framework that
surpasses the prognostic accuracy of the current WHO paradigm
based on genomic classification and histologic grading. Our
SCNN framework uses an image sampling and risk filtering
technique that significantly improves prediction accuracy by
mitigating the effects of intratumoral heterogeneity and deficits
in the availability of labeled data for training. Finally, we use

heat map visualization techniques applied to whole-slide images
to show how SCNNs learn to recognize important histologic
structures that neuropathologists use in grading diffuse gliomas
and suggest relevance for patterns with prognostic significance
that is not currently appreciated. We systematically validate our
approaches by predicting overall survival in gliomas using data
from The Cancer Genome Atlas (TCGA) Lower-Grade Glioma
(LGG) and Glioblastoma (GBM) projects.

Results
Learning Patient Outcomes with Deep Survival Convolutional Neural
Networks. The SCNN model architecture is depicted in Fig. 1
(Fig. S1 shows a detailed diagram). H&E-stained tissue sections are
first digitized to whole-slide images. These images are reviewed
using a web-based platform to identify regions of interest (ROIs)
that contain viable tumor with representative histologic character-
istics and that are free of artifacts (Methods) (34, 35). High-power
fields (HPFs) from these ROIs are then used to train a deep con-
volutional network that is seamlessly integrated with a Cox pro-
portional hazards model to predict patient outcomes. The network
is composed of interconnected layers of image processing opera-
tions and nonlinear functions that sequentially transform the HPF
image into highly predictive prognostic features. Convolutional
layers first extract visual features from the HPF at multiple scales
using convolutional kernels and pooling operations. These image-
derived features feed into fully connected layers that perform ad-
ditional transformations, and then, a final Cox model layer outputs
a prediction of patient risk. The interconnection weights and con-
volutional kernels are trained by comparing risk predicted by the
network with survival or other time-to-event outcomes using a
backpropagation technique to optimize the statistical likelihood of
the network (Methods).
To improve the performance of SCNN models, we developed

a sampling and risk filtering technique to address intratumoral
heterogeneity and the limited availability of training samples
(Fig. 2). In training, new HPFs are randomly sampled from each
ROI at the start of each training iteration, providing the SCNN
model with a fresh look at each patient’s histology and capturing
heterogeneity within the ROI. Each HPF is processed using
standard data augmentation techniques that randomly trans-
form the field to reinforce network robustness to tissue orien-
tation and variations in staining (33). The SCNN is trained
using multiple transformed HPFs for each patient (one for each
ROI) to further account for intratumoral heterogeneity across
ROIs. For prospective prediction, we first sample multiple
HPFs within each ROI to generate a representative collection
of fields for the patient. The median risk is calculated within
each ROI, and then, these median risks are sorted and filtered
to predict a robust patient-level risk that reflects the aggres-
siveness of their disease while rejecting any outlying risk pre-
dictions. These sampling and filtering procedures are described
in detail in Methods.

Assessing the Prognostic Accuracy of SCNN. To assess the prognostic
accuracy of SCNN, we assembled whole-slide image tissue sections
from formalin-fixed, paraffin-embedded specimens and clinical
follow-up for 769 gliomas from the TCGA (Dataset S1). This
dataset comprises lower-grade gliomas (WHO grades II and III)
and glioblastomas (WHO grade IV), contains both astrocytomas
and oligodendrogliomas, and has overall survivals ranging from
less than 1 to 14 y or more. A summary of demographics, grades,
survival, and molecular subtypes for this cohort is presented in
Table S1. The Digital Slide Archive was used to identify ROIs in
1,061 H&E-stained whole-slide images from these tumors.
The prognostic accuracy of SCNN models was assessed using

Monte Carlo cross-validation. We randomly split our cohort into
paired training (80%) and testing (20%) sets to generate
15 training/testing set pairs. We trained an SCNN model using
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each training set and then, evaluated the prognostic accuracy of
these models on the paired testing sets, generating a total of
15 accuracy measurements (Methods and Dataset S1). Accuracy was
measured using Harrell’s c index, a nonparametric statistic that
measures concordance between predicted risks and actual sur-
vival (36). A c index of 1 indicates perfect concordance between

predicted risk and overall survival, and a c index of 0.5 corresponds
to random concordance.
For comparison, we also assessed the prognostic accuracy of

baseline linear Cox models generated using the genomic bio-
markers and manual histologic grades from the WHO classifi-
cation of gliomas (Fig. 3A). The WHO assigns the diffuse gliomas
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to three genomic subtypes defined by mutations in the isocitrate
dehydrogenase (IDH) genes (IDH1/IDH2) and codeletion of

chromosomes 1p and 19q. Within these molecular subtypes, gliomas
are further assigned a histologic grade based on criteria that vary

Comparing histologic grade and SCNN-based risk categoriesD
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depending on cell of origin (either astrocytic or oligodendroglial).
These criteria include mitotic activity, nuclear atypia, the presence
of necrosis, and the characteristics of microvascular structures
(microvascular proliferation). Histologic grade remains a significant
determinant in planning treatment for gliomas, with grades III
and IV typically being treated aggressively with radiation and
concomitant chemotherapy.
SCNN models showed substantial prognostic power, achieving

a median c index of 0.754 (Fig. 3B). SCNN models also per-
formed comparably with manual histologic-grade baseline
models (median c index 0.745, P = 0.307) and with molecular
subtype baseline models (median c index 0.746, P = 4.68e-2).
Baseline models representing WHO classification that in-
tegrate both molecular subtype and manual histologic grade
performed slightly better than SCNN, with a median c index of
0.774 (Wilcoxon signed rank P = 2.61e-3).
We also evaluated the impact of the sampling and ranking

procedures shown in Fig. 2 in improving the performance of
SCNN models. Repeating the SCNN experiments without these
sampling techniques reduced the median c index of SCNN
models to 0.696, significantly worse than for models where
sampling was used (P = 6.55e-4).

SCNN Predictions Correlate with Molecular Subtypes and Manual
Histologic Grade. To further investigate the relationship between
SCNN predictions and the WHO paradigm, we visualized how
risks predicted by SCNN are distributed across molecular sub-
type and histologic grade (Fig. 3C). SCNN predictions were
highly correlated with both molecular subtype and grade and
were consistent with expected patient outcomes. First, within
each molecular subtype, the risks predicted by SCNN increase
with histologic grade. Second, predicted risks are consistent with
the published expected overall survivals associated with molec-
ular subtypes (37). IDH WT astrocytomas are, for the most part,
highly aggressive, having a median survival of 18 mo, and the
collective predicted risks for these patients are higher than for
patients from other subtypes. IDH mutant astrocytomas are an-
other subtype with considerably better overall survival ranging
from 3 to 8 y, and the predicted risks for patients in this subtype
are more moderate. Notably, SCNN risks for IDH mutant as-
trocytomas are not well-separated for grades II and III, consis-
tent with reports of histologic grade being an inadequate
predictor of outcome in this subtype (38). Infiltrating gliomas
with the combination of IDH mutations and codeletion of
chromosomes 1p/19q are classified as oligodendrogliomas in the
current WHO schema, and these have the lowest overall pre-
dicted risks consistent with overall survivals of 10+ y (37, 39).
Finally, we noted a significant difference in predicted risks when
comparing the IDH mutant and IDH WT grade III astrocytomas
(rank sum P = 6.56e-20). These subtypes share an astrocytic
lineage and are graded using identical histologic criteria. Al-
though some histologic features are more prevalent in IDH-
mutant astrocytomas, these features are not highly specific or
sensitive to IDH mutant tumors and cannot be used to reliably
predict IDH mutation status (40). Risks predicted by SCNN are
consistent with worse outcomes for IDHWT astrocytomas in this
case (median survival 1.7 vs. 6.3 y in the IDH mutant counter-
parts), suggesting that SCNN models can detect histologic dif-
ferences associated with IDH mutations in astrocytomas.
We also performed a Kaplan–Meier analysis to compare

manual histologic grading with “digital grades” based on SCNN
risk predictions (Fig. 3D). Low-, intermediate-, and high-risk
categories were established by setting thresholds on SCNN pre-
dictions to reflect the proportions of manual histologic grades in
each molecular subtype (Methods). We observed that, within
each subtype, the differences in survival captured by SCNN risk
categories are highly similar to manual histologic grading. SCNN
risk categories and manual histologic grades have similar prognostic

power in IDH WT astrocytomas (log rank P = 1.23e-12 vs. P =
7.56e-11, respectively). In IDHmutant astrocytomas, both SCNN
risk categories and manual histologic grades have difficulty
separating Kaplan–Meier curves for grades II and III, but both
clearly distinguish grade IV as being associated with worse out-
comes. Discrimination for oligodendroglioma survival is also
similar between SCNN risk categories and manual histologic
grades (log rank P = 9.73e-7 vs. P = 8.63e-4, respectively).

Improving Prognostic Accuracy by Integrating Genomic Biomarkers.
To integrate both histologic and genomic data into a single
unified prediction framework, we developed a genomic survival
convolutional neural network (GSCNN model). The GSCNN
learns from genomics and histology simultaneously by incorporating
genomic data into the fully connected layers of the SCNN (Fig. 4).
Both data are presented to the network during training, enabling
genomic variables to influence the patterns learned by the SCNN by
providing molecular subtype information.
We repeated our experiments using GSCNN models with

histology images, IDH mutation status, and 1p/19q codeletion as
inputs and found that the median c index improved from 0.754 to
0.801. The addition of genomic variables improved performance
by 5% on average, and GSCNN models significantly outperform
the baseline WHO subtype-grade model trained on equivalent
data (signed rank P = 1.06e-2). To assess the value of integrating
genomic variables directly into the network during training, we
compared GSCNN with a more superficial integration approach,
where an SCNN model was first trained using histology images,
and then, the risks from this model were combined with IDH and
1p/19q variables in a simple three-variable Cox model (Fig. S2).
Processing genomic variables in the fully connected layers and
including them in training provided a statistically significant
benefit; models trained using the superficial approach performed
worse than GSCNN models with median c index decreasing to
0.785 (signed rank P = 4.68e-2).
To evaluate the independent prognostic power of risks pre-

dicted by SCNN and GSCNN, we performed a multivariable Cox
regression analysis (Table 1). In a multivariable regression that
included SCNN risks, subtype, grade, age, and sex, SCNN risks
had a hazard ratio of 3.05 and were prognostic when correcting
for all other features, including manual grade and molecular
subtype (P = 2.71e-12). Molecular subtype was also significant in
the SCNN multivariable regression model, but histologic grade
was not. We also performed a multivariable regression with
GSCNN risks and found GSCNN to be significant (P = 9.69e-12)
with a hazard ratio of 8.83. In the GSCNN multivariable re-
gression model, molecular subtype was not significant, but his-
tologic grade was marginally significant. We also used Kaplan–
Meier analysis to compare risk categories generated from SCNN
and GSCNN (Fig. S3). Survival curves for SCNN and GSCNN
were very similar when evaluated on the entire cohort. In con-
trast, their abilities to discriminate survival within molecular
subtypes were notably different.

Visualizing Histologic Patterns Associated with Prognosis. Deep
learning networks are often criticized for being black box ap-
proaches that do not reveal insights into their prediction mech-
anisms. To investigate the visual patterns that SCNN models
associate with poor outcomes, we used heat map visualizations to
display the risks predicted by our network in different regions of
whole-slide images. Transparent heat map overlays are fre-
quently used for visualization in digital pathology, and in our
study, these overlays enable pathologists to correlate the pre-
dictions of highly accurate survival models with the underlying
histology over the expanse of a whole-slide image. Heat maps
were generated using a trained SCNN model to predict the risk
for each nonoverlapping HPF in a whole-slide image. The pre-
dicted risks were used to generate a color-coded transparent
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overlay, where red and blue indicate higher and lower SCNN
risk, respectively.
A selection of risk heat maps from three patients is presented

in Fig. 5, with inlays showing how SCNNs associate risk with
important pathologic phenomena. For TCGA-DB-5273 (WHO
grade III, IDH mutant astrocytoma), the SCNN heat map clearly
and specifically highlights regions of early microvascular pro-
liferation, an advanced form of angiogenesis that is a hallmark of
malignant progression, as being associated with high risk. Risk in
this heat map also increases with cellularity, heterogeneity in
nuclear shape and size (pleomorphism), and the presence of
abnormal microvascular structures. Regions in TCGA-S9-
A7J0 have varying extents of tumor infiltration ranging from
normal brain to sparsely infiltrated adjacent normal regions
exhibiting satellitosis (where neoplastic cells cluster around
neurons) to moderately and highly infiltrated regions. This heat
map correctly associates the lowest risks with normal brain re-
gions and can distinguish normal brain from adjacent regions
that are sparsely infiltrated. Interestingly, higher risks are
assigned to sparsely infiltrated regions (region 1, Top) than to
regions containing relatively more tumor infiltration (region 2,
Top). We observed a similar pattern in TCGA-TM-A84G, where
edematous regions (region 1, Bottom) adjacent to moderately
cellular tumor regions (region 1, Top) are also assigned higher
risks. These latter examples provide risk features embedded
within histologic sections that have been previously unrecognized
and could inform and improve pathology practice.

Discussion
We developed a deep learning approach for learning survival
directly from histological images and created a unified frame-
work for integrating histology and genomic biomarkers for pre-
dicting time-to-event outcomes. We systematically evaluated the
prognostic accuracy of our approaches in the context of the

current clinical standard based on genomic classification and
histologic grading of gliomas. In contrast to a previous study that
achieved only marginally better than random prediction accu-
racy, our approach rivals or exceeds the accuracy of highly
trained human experts in predicting survival. Our study provides
insights into applications of deep learning in medicine and the
integration of histology and genomic data and provides methods
for dealing with intratumoral heterogeneity and training data
deficits when using deep learning algorithms to predict survival
from histology images. Using visualization techniques to gain
insights into SCNN prediction mechanisms, we found that
SCNNs clearly recognize known and time-honored histologic
predictors of poor prognosis and that SCNN predictions suggest
prognostic relevance for histologic patterns with significance that
is not currently appreciated by neuropathologists.
Our study investigated the ability to predict overall survival in

diffuse gliomas, a disease with wide variations in outcomes and
an ideal test case where histologic grading and genomic classi-
fications have independent prognostic power. Treatment plan-
ning for gliomas is dependent on many factors, including patient
age and grade, but gliomas assigned to WHO grades III and IV
are typically treated very aggressively with radiation and con-
comitant chemotherapy, whereas WHO grade II gliomas may be
treated with chemotherapy or even followed in some cases (41).
Histologic diagnosis and grading of gliomas have been limited by
considerable intra- and interobserver variability (42). While the
emergence of molecular subtyping has resolved uncertainty re-
lated to lineage, criteria for grading need to be redefined in the
context of molecular subtyping. For example, some morphologic
features used to assess grade (e.g., mitotic activity) are no longer
prognostic in IDH mutant astrocytomas (38). The field of neuro-
oncology is currently awaiting features that can better discriminate
more aggressive gliomas from those that are more indolent. Im-
proving the accuracy and objectivity of grading will directly impact
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Table 1. Hazard ratios for single- and multiple-variable Cox regression models

Variable

Single variable Multivariable (SCNN) Multivariable (GSCNN)

c Index Hazard ratio 95% CI P value Hazard ratio 95% CI P value Hazard ratio 95% CI P value

SCNN 0.741 7.15 5.64, 9.07 2.08e-61 3.05 2.22, 4.19 2.71e-12 — — —

GSCNN 0.781 12.60 9.34, 17.0 3.08e-64 — — — 8.83 4.66, 16.74 9.69e-12
IDH WT astrocytoma 0.726 9.21 6.88, 12.34 3.48e-52 4.73 2.57, 8.70 3.49e-7 0.97 0.43, 2.17 0.93
IDH mutant astrocytoma — 0.23 0.170, 0.324 2.70e-19 2.35 1.27, 4.34 5.36e-3 1.67 0.90, 3.12 0.10
Histologic grade IV 0.721 7.25 5.58, 9.43 2.68e-51 1.52 0.839, 2.743 0.159 1.98 1.11, 3.51 0.017
Histologic grade III — 0.44 0.332, 0.591 1.66e-08 1.57 0.934, 2.638 0.0820 1.78 1.07, 2.97 0.024
Age 0.744 1.77 1.63, 1.93 2.52e-42 1.33 1.20, 1.47 9.57e-9 1.34 1.22, 1.48 9.30e-10
Sex, female 0.552 0.89 0.706, 1.112 0.29 0.85 0.67, 1.08 0.168 0.86 0.68, 1.08 0.18

Bold indicates statistical significance (P < 5e-2).
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patient care by identifying patients who can benefit from more
aggressive therapeutic regimens and by sparing those with less
aggressive disease from unnecessary treatment.
Remarkably, SCNN performed as well as manual histologic

grading or molecular subtyping in predicting overall survival in
our dataset, despite using only a very small portion of each his-
tology image for training and prediction. Additional investigation

of the associations between SCNN risk predictions, molecular
subtypes, and histologic grades revealed that SCNN can effec-
tively discriminate outcomes within each molecular subtype, ef-
fectively performing digital histologic grading. Furthermore,
SCNN can effectively recognize histologic differences associated
with IDH mutations in astrocytomas and predict outcomes for
these patients accordingly. SCNNs correctly predicted lower
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Fig. 5. Visualizing risk with whole-slide SCNN heat maps. We performed SCNN predictions exhaustively within whole-slide images to generate heat map overlays
of the risks that SCNN associates with different histologic patterns. Red indicates relatively higher risk, and blue indicates lower risk (the scale for each slide is
different). (Top) In TCGA-DB-5273, SCNN clearly and specifically predicts high risks for regions of early microvascular proliferation (region 1) and also, higher risks
with increasing tumor infiltration and cell density (region 2 vs. 3). (Middle) In TCGA-S9-A7J0, SCNN can appropriately discriminate between normal cortex (region
1 in Bottom) and adjacent regions infiltrated by tumor (region 1 in Top). Highly cellular regions containing prominent microvascular structures (region 3) are again
assigned higher risks than lower-density regions of tumor (region 2). Interestingly, low-density infiltrate in the cortex was associated with high risk (region 1 in
Top). (Bottom) In TCGA-TM-A84G, SCNN assigns high risks to edematous regions (region 1 in Bottom) that are adjacent to tumor (region 1 in Top).
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risks for WHO grade III IDH mutant astrocytomas compared
with WHO grade III IDH WT astrocytomas, consistent with the
considerably longer median survival for patients with IDH mu-
tant astrocytoma (6.3 vs. 1.7 y). While there are histologic fea-
tures of astrocytomas that are understood to be more prevalent
in IDH mutant astrocytomas, including the presence of micro-
cysts and the rounded nuclear morphology of neoplastic nuclei,
these are not reliable predictors of IDH mutations (40).
To integrate genomic information in prognostication, we de-

veloped a hybrid network that can learn simultaneously from
both histology images and genomic biomarkers. The GSCNN
presented in our study significantly outperforms the WHO
standard based on identical inputs. We compared the perfor-
mance of GSCNN and SCNN in several ways to evaluate their
ability to predict survival and to assess the relative importance of
histology and genomic data in GSCNN. GSCNN had signifi-
cantly higher c index scores due to the inclusion of genomic
variables in the training process. Performance significantly de-
clined when using a superficial integration method that combines
genomic biomarkers with a pretrained SCNN model.
In multivariable regression analyses, GSCNN has a much

higher hazard ratio than SCNN (8.83 vs. 3.05). Examining the
other variables in the regression models, we noticed an in-
teresting relationship between the significance of histologic-
grade and molecular subtype variables. In the SCNN regression
analysis, histologic-grade variables were not significant, but
molecular subtype variables were highly significant, indicating
that SCNN could capture histologic information from image data
but could not learn molecular subtype information entirely from
histology. In contrast, molecular subtype information was not
significant in the GSCNN regression analysis. Interestingly,
histologic-grade variables were marginally significant, suggesting
that some prognostic value in the histology images remained
untapped by GSCNN.
Kaplan–Meier analysis showed remarkable similarity in the

discriminative power of SCNN and GSCNN. Additional Kaplan–
Meier analysis of risk categories within molecular subtypes
revealed interesting trends that are consistent with the regression
analyses presented in Table 1. SCNN clearly separates outcomes
within each molecular subtype based on histology. Survival
curves for GSCNN risk categories, however, overlap significantly
in each subtype. Since SCNN models do not have access to ge-
nomic data when making predictions, their ability to discriminate
outcomes was worse in general when assessed by c index or
multivariable regression.
Integration of genomic and histology data into a single pre-

diction framework remains a challenge in the clinical implementa-
tion of computational pathology. Our previous work in developing
deep learning survival models from genomic data has shown that
accurate survival predictions can be learned from high-dimensional
genomic and protein expression signatures (29). Incorporating ad-
ditional genomic variables into GSCNNmodels is an area for future
research and requires larger datasets that combine histology images
with rich genomic and clinical annotations.
While deep learning methods frequently deliver outstanding

performance, the interpretability of black box deep learning
models is limited and remains a significant barrier in their vali-
dation and adoption. Heat map analysis provides insights into
the histologic patterns associated with increased risk and can also
serve as a practical tool to guide pathologists to tissue regions
associated with worse prognosis. The heat maps suggest that
SCNN can learn visual patterns known to be associated with
histologic features related to prognosis and used in grading, in-
cluding microvascular proliferation, cell density, and nuclear
morphology. Microvascular prominence and proliferation are
associated with disease progression in all forms of diffuse glioma,
and these features are clearly delineated as high risk in the heat
map presented for slide TCGA-DB-5273. Likewise, increases in

cell density and nuclear pleomorphism were also associated with
increased risk in all examples. SCNN also assigned high risks to
regions that do not contain well-recognized features associated
with a higher grade or poor prognosis. In region 1 of slide
TCGA-S9-A7J0, SCNN assigns higher risk to sparsely infiltrated
cerebral cortex than to region 2, which is infiltrated by a higher
density of tumor cells (normal cortex in region 1 is properly
assigned a very low risk). Widespread infiltration into distant
sites of the brain is a hallmark of gliomas and results in treatment
failure, since surgical resection of visible tumor often leaves re-
sidual neoplastic infiltrates. Similarly, region 1 of slide TCGA-
TM-A84G illustrates a high risk associated with low-cellularity
edematous regions compared with adjacent oligodendroglioma
with much higher cellularity. Edema is frequently observed
within gliomas and in adjacent brain, and its degree may be re-
lated to the rate of growth (43), but its histologic presence has
not been previously recognized as a feature of aggressive be-
havior or incorporated into grading paradigms. While it is not
entirely clear why SCNN assigns higher risks to the regions in the
sparsely infiltrated or edematous regions, these examples con-
firm that SCNN risks are not purely a function of cellular density
or nuclear atypia. Our human interpretations of these findings
provide possible explanations for why SCNN unexpectedly pre-
dicts high risks in these regions, but these findings need addi-
tional investigation to better understand what specific features
the SCNN network perceives in these regions. Nevertheless, this
shows that SCNN can be used to identify potentially practice-
changing features associated with increased risk that are em-
bedded within pathology images.
Although our study provides insights into the application of

deep learning in precision medicine, it has some important
limitations. A relatively small portion of each slide was used for
training and prediction, and the selection of ROIs within each
slide required expert guidance. Future studies will explore more
advanced methods for automatic selection of regions and for
incorporating a higher proportion of each slide in training and
prediction to better account for intratumoral heterogeneity. We
also plan to pursue the development of enhanced GSCNN models
that incorporate additional molecular features and to evaluate the
value added of histology in these more complex models. In our
Kaplan–Meier analysis, the thresholds used to define risk cate-
gories were determined in a subjective manner using the pro-
portion of manual histologic grades in the TCGA cohort, and a
larger dataset would permit a more rigorous definition of these
thresholds to optimize survival stratification. The interpretation of
risk heat maps was based on subjective evaluation by neuropa-
thologists, and we plan to pursue studies that evaluate heat maps
in a more objective manner to discover and validate histologic
features associated with poor outcomes. Finally, while we have
applied our techniques to gliomas, validation of these approaches
in other diseases is needed and could provide additional insights.
In fact, our methods are not specific to histology imaging or cancer
applications and could be adapted to other medical imaging mo-
dalities and biomedical applications.

Methods
Data and Image Curation. Whole-slide images and clinical and genomic data
were obtained from TCGA via the Genomic Data Commons (https://gdc.
cancer.gov/). Images of diagnostic H&E-stained, formalin-fixed, paraffin-
embedded sections from the Brain LGG and the GBM cohorts were
reviewed to remove images containing tissue-processing artifacts, including
bubbles, section folds, pen markings, and poor staining. Representative ROIs
containing primarily tumor nuclei were manually identified for each slide
that passed a quality control review. This review identified whole-slide im-
ages with poor image quality arising from imaging artifacts or tissue pro-
cessing (bubbles, significant tissue section folds, overstaining, understaining)
where suitable ROIs could not be selected. In the case of grade IV disease,
some regions include microvascular proliferation, as this feature was
exhibited throughout tumor regions. Regions containing geographic necrosis
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were excluded. A total of 1,061 whole-slide images from 769 unique patients
were analyzed.

ROI images (1,024 × 1,024 pixels) were cropped at 20× objective magni-
fication using OpenSlide and color-normalized to a gold standard H&E cal-
ibration image to improve consistency of color characteristics across slides.
HPFs at 256 × 256 pixels were sampled from these regions and used for
training and testing as described below.

Network Architecture and Training Procedures. The SCNN combines elements
of the 19-layer Visual Geometry Group (VGG) convolutional network archi-
tecture with a Cox proportional hazards model to predict time-to-event data
from images (Fig. S1) (44). Image feature extraction is achieved by four
groups of convolutional layers. (i) The first group contains two convolutional
layers with 64 3 × 3 kernels interleaved with local normalization layers and
then followed with a single maximum pooling layer. (ii) The second group
contains two convolutional layers (128 3 × 3 kernels) interleaved with two
local normalization layers followed by a single maximum pooling layer. (iii)
The third group interleaves four convolutional layers (256 3 × 3 kernels) with
four local normalization layers followed by a single maximum pooling layer.
(iv) The fourth group contains interleaves of eight convolutional (512 3 ×
3 kernels) and eight local normalization layers, with an intermediate pooling
layer and a terminal maximum pooling layer. These four groups are fol-
lowed by a sequence of three fully connected layers containing 1,000, 1,000,
and 256 nodes, respectively.

The terminal fully connected layer outputs a prediction of risk R= βTX

associated with the input image, where β∈R256×1 are the terminal layer

weights and X ∈R256×1 are the inputs to this layer. To provide an error signal
for backpropagation, these risks are input to a Cox proportional hazards
layer to calculate the negative partial log likelihood:

Lðβ,XÞ=−
X
i∈U

 
βTXi − log

X
j∈Ωi

e βT Xj

!
, [1]

where βTXi is the risk associated with HPF i, U is the set of right-censored
samples, and Ωi is the set of “at-risk” samples with event or follow-up times
Ωi = fjjYj ≥Yig (where Yi is the event or last follow-up time of patient i).

The adagrad algorithm was used to minimize the negative partial log
likelihood via backpropagation to optimize model weights, biases, and
convolutional kernels (45). Parameters to adagrad include the initial accu-
mulator value = 0.1, initial learning rate = 0.001, and an exponential
learning rate decay factor = 0.1. Model weights were initialized using the
variance scaling method (46), and a weight decay was applied to the fully
connected layers during training (decay rate = 4e-4). Models were trained for
100 epochs (1 epoch is one complete cycle through all training samples) using
minibatches consisting of 14 HPFs each. Each minibatch produces a model
update, resulting in multiple updates per epoch. Calculation of the Cox partial
likelihood requires access to the predicted risks of all samples, which are not
available within any single minibatch, and therefore, Cox likelihood was cal-
culated locally within each minibatch to perform updates (U and Ωi were re-
stricted to samples within each minibatch). Local likelihood calculation can be
very sensitive to how samples are assigned to minibatches, and therefore, we
randomize the minibatch sample assignments at the beginning of each epoch
to improve robustness. Mild regularization was applied during training by
randomly dropping out 5% of weights in the last fully connected layer in each
minibatch during training to mitigate overfitting.

Training Sampling. Each patient has possibly multiple slides and multiple
regions within each slide that can be used to sample HPFs. During training, a
single HPF was sampled from each region, and these HPFs were treated as
semiindependent training samples. Each HPF was paired with patient out-
come for training, duplicating outcomes for patients containing multiple
regions/HPFs. The HPFs are sampled at the beginning of each training epoch
to generate an entirely new set of HPFs. Randomized transforms were also
applied to these HPFs to improve robustness to tissue orientation and color
variations. Since the visual patterns in tissues can often be anisotropic, we
randomly apply a mirror transform to each HPF. We also generate random
transformations of contrast and brightness using the “random_contrast” and
“random_brightness” TensorFlow operations. The contrast factor was ran-
domly selected in the interval [0.2, 1.8], and the brightness was randomly
selected in the interval [−63, 63]. These sampling and transformation pro-
cedures along with the use of multiple HPFs for each patient have the effect
of augmenting the effective size of the labeled training data. In tissues with
pronounced anisotropy, including adenocarcinomas that exhibit prominent
glandular structures, these mirror transformations are intended to improve

the robustness of the network to tissue orientation. Similar approaches for
training data augmentation have shown considerable improvements in
general imaging applications (33).

Testing Sampling, Risk Filtering, and Model Averaging. Sampling was also
performed to increase the robustness and stability of predictions. (i) Nine
HPFs are first sampled from each region j corresponding to patient m. (ii)

The risk of the kth HPF in region j for patient m, denoted R j,k
m , is then cal-

culated using the trained SCNN model. (iii ) The median risk

R j
m =mediankfR j,k

m g is calculated for region j using the aforementioned HPFs
to reject outlying risks. (iv) These median risks are then sorted from highest

to lowest cR1
m > cR2

m > cR3
m . . . , where the superscript index now corresponds to

the risk rank. (v) The risk prediction for patient m is then selected as the

second highest risk R*m = cR2
m. This filtering procedure was designed to emu-

late how a pathologist integrates information from multiple areas within a
slide, determining prognosis based on the region associated with the worst
prognosis. Selection of the second highest risk (as opposed to the highest
risk) introduces robustness to outliers or high risks that may occur due to
some imaging or tissue-processing artifact.

Since the accuracy of our models can vary significantly from one epoch to
another, largely due to the training sampling and randomized minibatch
assignments, a model-averaging technique was used to reduce prediction
variance. To obtain final risk predictions for the testing patients that are
stable, we perform model averaging using the models from epochs 96 to
100 to smooth variations across epochs and increase stability. Formally, the
model-averaged risk for patient m is calculated as

R*m =
1
5

X100
γ=96

R*mðγÞ, [2]

where R*mðγÞ denotes the predicted risk for patient m in training epoch γ.

Validation Procedures. Patients were randomly assigned to nonoverlapping
training (80%) and test (20%) sets that were used to train models and evaluate
their performance. If a patient was assigned to training, then all slides corre-
sponding to that patient were assigned to the training set and likewise, for the
testing set. This ensures that no data from any one patient are represented in
both training and testing sets to avoid overfitting and optimistic estimates of
generalization accuracy. We repeated the randomized assignment of patients
training/testing sets 15 times and used each of these training/testing sets to
train and evaluate amodel. The same training/testing assignmentswere used in
eachmodel (SCNN, GSCNN, baseline) for comparability. Prediction accuracywas
measured using Harrell’s c index to measure the concordance between pre-
dicted risk and actual survival for testing samples (36).

Statistical Analyses. The c indices generated by Monte Carlo cross-validation
were performed using the Wilcoxon signed rank test. This paired test was
chosen, because each method was evaluated using identical training/testing
sets. Comparisons of SCNN risk values across grade were performed using the
Wilcoxon rank sum test. Cox univariable and multivariable regression analyses
were performed using predicted SCNN risk values for all training and testing
samples in randomized training/testing set 1. Analyses of the correlation of
grade, molecular subtype, and SCNN risk predictions were performed by
pooling predicted risks for testing samples across all experiments. SCNN risks
were normalized within each experiment by z score before pooling. Grade
analysis was performed by determining “digital”-grade thresholds for SCNN
risks in each subtype. Thresholds were objectively selected to match the pro-
portions of samples in each histologic grade in each subtype. Statistical analysis
of Kaplan–Meier plots was performed using the log rank test.

Hardware and Software. Prediction models were trained using TensorFlow
(v0.12.0) on servers equipped with dual Intel(R) Xeon(R) CPU E5-2630L v2 @
2.40 GHz CPUs, 128 GB RAM, and dual NVIDIA K80 graphics cards. Image data
were extracted from Aperio .svs whole-slide image formats using OpenSlide
(openslide.org/). Basic image analysis operations were performed using
HistomicsTK (https://github.com/DigitalSlideArchive/HistomicsTK), a Python
package for histology image analysis.

Data Availability. This paper was produced using large volumes of publicly
available genomic and imaging data. The authors have made every effort to
make available links to these resources as well as make publicly available the
software methods and information used to produce the datasets, analyses,
and summary information.
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Abstract. Oligodendrogliomas are diffusely infiltrative gliomas defined by IDH-
mutation and co-deletion of 1p/19q. They have highly variable clinical courses, with
survivals ranging from 6 months to over 20 years, but little is known regarding the
pathways involved with their progression or optimal markers for stratifying risk. We
utilized machine-learning approaches with genomic data from The Cancer Genome
Atlas to objectively identify molecular factors associated with clinical outcomes of
oligodendroglioma and extended these findings to study signaling pathways implicated
in oncogenesis and clinical endpoints associated with glioma progression. Our multi-
faceted computational approach uncovered key genetic alterations associated with
disease progression and shorter survival in oligodendroglioma and specifically identi-
fied Notch pathway inactivation and PI3K pathway activation as the most strongly
associated with MRI and pathology findings of advanced disease and poor clinical
outcome. Our findings that Notch pathway inactivation and PI3K pathway activa-
tion are associated with advanced disease and survival risk will pave the way for
clinically relevant markers of disease progression and therapeutic targets to improve
clinical outcomes. Furthermore, our approach demonstrates the strength of machine
learning and computational methods for identifying genetic events critical to disease
progression in the era of big data and precision medicine.

Candidate’s contribution. Training and interpretation of survival analysis neural
networks on the TCGA glioma subtypes including Oligodendrogliomas.
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Multi-faceted computational assessment of risk and
progression in oligodendroglioma implicates NOTCH and
PI3K pathways
Sameer H. Halani1, Safoora Yousefi2, Jose Velazquez Vega3, Michael R. Rossi3, Zheng Zhao4, Fatemeh Amrollahi2, Chad A. Holder5,
Amelia Baxter-Stoltzfus1, Jennifer Eschbacher6, Brent Griffith7,8, Jeffrey J. Olson1,9,10, Tao Jiang4, Joseph R. Yates11,
Charles G. Eberhart11, Laila M. Poisson8,12, Lee A. D. Cooper1,2,10,13 and Daniel J. Brat14

Oligodendrogliomas are diffusely infiltrative gliomas defined by IDH-mutation and co-deletion of 1p/19q. They have highly variable
clinical courses, with survivals ranging from 6 months to over 20 years, but little is known regarding the pathways involved with
their progression or optimal markers for stratifying risk. We utilized machine-learning approaches with genomic data from The
Cancer Genome Atlas to objectively identify molecular factors associated with clinical outcomes of oligodendroglioma and
extended these findings to study signaling pathways implicated in oncogenesis and clinical endpoints associated with glioma
progression. Our multi-faceted computational approach uncovered key genetic alterations associated with disease progression and
shorter survival in oligodendroglioma and specifically identified Notch pathway inactivation and PI3K pathway activation as the
most strongly associated with MRI and pathology findings of advanced disease and poor clinical outcome. Our findings that Notch
pathway inactivation and PI3K pathway activation are associated with advanced disease and survival risk will pave the way for
clinically relevant markers of disease progression and therapeutic targets to improve clinical outcomes. Furthermore, our approach
demonstrates the strength of machine learning and computational methods for identifying genetic events critical to disease
progression in the era of big data and precision medicine.

npj Precision Oncology            (2018) 2:24 ; doi:10.1038/s41698-018-0067-9

INTRODUCTION
Oligodendrogliomas are diffuse gliomas characterized by IDH-
mutation, co-deletion of 1p/19q and TERT promoter mutations.
They have the least aggressive clinical course among this group,
yet display widely variable outcomes—some patients survive
6 months while others live over 20 years.1–5 Aside from their
defining genetic alterations, oligodendrogliomas also harbor other
mutations, including: capicua transcriptional repressor (CIC) (62%),
far upstream element binding protein 1 (FUBP1) (27–29%),
NOTCH1 (18–31%), catalytic and regulatory subunits of
phosphoinositide-3-kinase (PI3K; PIK3CA (15–20%) and PIK3R1
(7–9%), respectively), and others.1,6,7 Now that lower-grade
gliomas are understood in objective, molecular terms, markers
of progression and targets of therapy are being evaluated in a
pure cohort, without the confounding contamination of dissimilar
tumor types. Recent investigations by Aoki et al.8 for example,
indicated that NOTCH1 mutations were associated with poor
clinical outcomes in patients with oligodendroglioma.
With the tremendous expansion of genomic data available for

both investigation and potential clinical care, a need has

developed for novel computational approaches to investigate risk
factors in a highly multidimensional and interdependent space.9

Machine-learning approaches are capable of using large genomic
datasets in a manner that adds value to traditional risk modeling
by identifying key prognostic factors among tens of thousands of
possible variables. We employed machine-learning to identify
molecular factors associated with clinical outcomes of oligoden-
droglioma using The Cancer Genome Atlas (TCGA) LGG dataset.
We advanced and translated these findings using neuroimaging
and pathology imaging features of progression to identify
molecular biomarkers most closely related to advanced disease
status, as defined by: (1) contrast-enhancement on magnetic
resonance imaging (MRI); (2) high cellular density in
digitized histopathologic images; and (3) increased cellular
proliferation.10–12 In addition, our approach enabled us to identify
key signaling pathways associated with more aggressive disease
in addition to individual biomarkers. Our approach confirmed the
association of NOTCH1 mutations with disease progression and
shorter survival in oligodendroglioma, and further uncovered
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aberrant regulation of Notch and PI3K pathways as most strongly
associated with advanced disease.

RESULTS
Patient and tumor characteristics
The clinical factors from the 169 oligodendroglioma patients
included in our study are presented in Table 1. TERT promoter
mutations were present in 98% (86 of 88).13

Neural network analyses identifies molecular factors associated
with outcomes
Analysis of the genetic-protein neural network model revealed
multiple mutations, CNAs, and proteins associated with overall
survival in oligodendrogliomas (see Fig. 1a). NOTCH1 (rank #5),
BCOR (rank #4), and ZBTB20 (rank #1) mutations were among the
most highly ranked factors associated with poor prognosis, along
with loss of 15q (rank #3). Both NOTCH1 mutations and 15q loss
occur in a substantial subset of oligodendrogliomas and have
previously been suggested as markers of poor prognosis in
traditional risk models,14 providing support for our model. The
complete list of ranked factors is in the Supplementary Materials
(Data file S1). Among these factors, we focused on the Notch
pathway since NOTCH1 mutations are relatively specific to

oligodendroglioma among diffuse gliomas; occur in a substantial
subset (18–31%) compared to BCOR and ZBTB20; and represent
one component of the Notch signaling network that could be
more generally relevant to disease progression. PI3K pathway
subunit mutations were also of interest since they were heavily
enriched among highly ranked negative prognostic factors
(PIK3R1, #30; PIK3CA, #193).
Similar analysis of the gene expression neural network model

was performed to determine the prognostic importance of mRNA
transcripts, and a gene-set-enrichment analysis (GSEA) was then
used to identify molecular pathways enriched with prognostic
transcripts. GSEA identified the NOTCH1 Intracellular Domain
Regulates Transcription pathway (P= 0.004) as highly enriched in
transcripts associated with better prognosis, suggesting that
Notch pathway inactivation is associated with poor outcomes
(Fig. 1b). Regulation of KIT Signaling was also significantly
enriched with positive prognosis transcripts (P= 0.002). The P38
/ MKK3 (P < 0.05) and SMAD2 / SMAD3 pathways (P= 0.002) were
also significantly enriched in transcripts associated with a poor
prognosis, and notably, both interface directly with the PI3K
pathway.15,16

The results of Monte-Carlo cross validation of the genetic-
protein and gene expression survival neural networks are
presented in Supplementary Figure S1. The median c-index of
the tested genetic-protein models was 0.8 (±0.124), while the
median c-index of the tested gene expression models was 0.752
(±0.196).

Radiographic and pathologic features are associated with
aggressive clinical behavior
We next focused on mutations and CNAs with a > 5% incidence to
assess their association with radiographic and pathologic mea-
sures of disease progression, including: mutations of CIC (ranked
#107; 61.5% incidence) NOTCH1 (ranked #5; 18.9%), FUBP1 (ranked
#20; 27.2%), both PIK3 subunits (PIK3R1 ranked #30 and PIK3CA
ranked #193; 23.1%), and CNA’s including gain of chromosomal
arms 7p (ranked #300; 8.9%) and 11p (ranked #153; 11.2%), as well
as loss of 14q (ranked #310; 11.8%) and 15q (ranked #3; 16.6%)
(Fig. S2 illustrates a waterfall plot of the most frequent genetic
alterations; Table S1).
Contrast-enhancement observed on MRI is a well-known marker

of higher-grade disease (Fig. 2a). Among 55 patients with MRI
images available, contrast-enhancing (CE+) tumors (n= 35) had
worse overall survival (OS) (median, 154.3 vs. 62.0 months; P=
0.10) and progression-free survival (PFS) (median, 97.3 vs.
63.8 months; P= 0.029) compared to those lacking enhancement
(CE−) (n= 20) (Figs. 2b, c). CE+ was highly enriched for histologic
grade III tumors; 24 of 25 grade III tumors were CE+ (P < 0.0001).
Since cell density increases with disease progression, we used a

computational nearest-neighbor analysis to quantify cellular
density in tissue sections from 142 cases (Fig. 2d). Higher cell
density trended towards worse OS (mean 152.8 vs. 126.1 months;
P= 0.076) and worse PFS (median 142.8 vs. 95.9 months; P= 0.14)
(Figs. 2e, f). High cell density cases were also enriched for
histologic grade III tumors; 44 of 58 high density tumors were
WHO grade III (P < 0.0001).
As a measure of proliferation, MKI67 mRNA expression was

analyzed for 169 tumors. MKI67 expression was strongly correlated
with Ki-67/MIB-1 proliferation indices based on immunohisto-
chemistry (IHC) and listed in TCGA pathology reports (P < 0.0001)
(Figs. 2g, h). Patients with high cellular proliferation (n= 31) had
worse OS (median 154.3 vs. 62.0 months; P= 0.001); no significant
difference was noted in PFS (P= 0.38) (Figs. 2i, j). Highly
proliferative tumors were also enriched for histologic grade III
tumors; 21 of 28 high proliferation tumors with grade information
available were WHO grade III (P= 0.001).

Table 1. Patient demographics

Characteristic Total (N= 169)

Original histologic diagnosis (WHO 2007)—no. (%)

Oligodendroglioma

Grade II 62 (36.7)

Grade III 55 (32.5)

Oligoastrocytoma

Grade II 17 (10.1)

Grade III 13 (7.7)

Astrocytoma

Grade II 2 (1.2)

Grade III 2 (1.2)

Age at diagnosis (yrs)

Mean ± SD 45.8 ± 12.8

Range 17–75

Male sex—no. (%) 84 (49.7)

White race—no./total no. (%) 155/164 (94.5)

Extent of resection—no./total no. (%)

Open biopsy 1/164 (0.6)

Subtotal resection 59/164 (36.0)

Gross total resection 104/164 (63.4)

Tumor location—no./total no. (%)

Frontal lobe 122/166 (73.5)

Occipital lobe 3/166 (1.8)

Parietal lobe 14/166 (8.4)

Temporal lobe 27/166 (16.3)

Laterality—no/total no. (%)

Left 79/168 (47.0)

Midline 3/168 (1.8)

Right 86/168 (51.2)

Clinical characteristics of patients from The Cancer Genome Atlas database
with confirmed diagnosis of oligodendroglioma (i.e., IDH-mutant, 1p19q
co-deleted glioma).
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Genetic alterations associated with radiographic contrast
enhancement, cellular density, and MKI67 expression
Among 55 patients with MR imaging (Table S2), NOTCH1
mutations were most strongly associated with CE+ tumors, with
13 of 14 NOTCH1 mutants being CE+ (P= 0.008) (Fig. 3a). The
combined PI3K group mutants were mostly CE+ (14 of 18; P=
0.054), and a similar trend was found among FUBP1mutants (14 of
17; P= 0.13). All 9 tumors with 11p gain were CE+ (P= 0.019).
Although 5 of 5 tumors demonstrating loss of 14q were CE+, this
did not reach statistical significance (P= 0.15). Similar trends were
found with 15q loss (9 of 10 CE+; P= 0.075) and 7p gain (6 of 6 CE
+; P= 0.076).
NOTCH1 mutant oligodendrogliomas (n= 26) had higher

cellular density than NOTCH1 wild-type tumors (n= 126) and this
difference was the most significant among all mutations and CNAs
(P= 0.0015) (Fig. 3b). FUBP1 mutants (n= 40) trended toward a
higher cellular density compared to wild-type (n= 102; P= 0.10),
and CIC (n= 88) and PIK3 (n= 33) mutants did not show increased
cell density (Fig. S3). Gains of 7p (n= 12) or 11p (n= 17) were
significantly associated with higher cell densities (P= 0.006 and
0.03, respectively), and loss of 15q (n= 21) trended towards
higher cellular density as well (P= 0.19) (Fig. 3b).
NOTCH1 mutants (n= 32) had higher MKI67 expression and this

association was the strongest among all mutations and CNAs
tested (P= 0.095) (Fig. 3c). FUBP1, CIC, and PIK3 mutations were
not strongly related to MKI67 expression (Fig. S4). Although gain of
7p and 11p, and loss of 14q and 15q trended towards higher
cellular proliferation, none reached statistical significance.

Inactivation of the canonical Notch pathway is associated with
disease progression measures
Since NOTCH1 mutations were consistently and strongly asso-
ciated with radiologic, pathologic, and molecular measures of
progression, we investigated downstream targets of the canonical
Notch pathway, including family members of hairy/enhancer of
split 1 (HES) and hairy/enhancer of split with YRPW motif (HEY).
Since nearly all (93%) NOTCH1 mutations were located within the
epidermal growth factor (EGF) like region, where they inhibit
Notch activation, we hypothesized these targets would be down
regulated in NOTCH1 mutants.17,18 Expression of HES1, HEY1, and
HEY2 was reduced in CE+ tumors, with HES1 and HEY2 reaching

statistical significance (P= 0.016 and 0.050, respectively) (Fig. 4a
and Fig. S5). HEY2 (Pearson correlation= 0.230, P= 0.006) was
positively correlated with nearest-neighbor distance (Fig. 4b) and
negatively correlated with cellular proliferation as approximated
by MKI67 expression (Pearson correlation=−0.353, P < 0.0001)
(Fig. 4c). Negative correlations between MKI67 expression and
HES1 (Pearson correlation=−0.152, P= 0.048) and HEY1 (Pearson
correlation=−0.082, P= 0.288) were also observed. Thus, among
HES and HEY family members, HES1, HEY1 and HEY2 showed
reduced expression with advanced disease, with HEY2 showing
the most consistent and statistically significant reductions.

Alternate mechanisms of Notch pathway inactivation in
oligodendroglioma
Recombinant signal binding protein for immunoglobulin kappa-J
region (RBPJ), the nuclear binding partner of activated NOTCH1’s
intracellular binding domain (NICD), was mutated (n= 5) or
homodeleted (n= 1) in 3% (6 of 169) of oligodendrogliomas.
RBPJ aberrations were mutually exclusive with NOTCH1 mutations
and were not present in IDH mutant or IDH wild-type astro-
cytomas. RBPJ altered tumors had greater MKI67 expression
compared to wild-type (P= 0.001) and showed a trend toward
higher cell density (P= 0.20), but were not enriched in CE+
tumors (Fig. S6A). When RBPJ and NOTCH1 mutant tumors were
grouped (n= 38), MKI67 expression and 1/nearest-neighbor
distance showed stronger statistical significance in the combined
group than in the group with NOTCH1 mutants alone (P= 0.0030
and 0.00039 for combined groups, respectively vs. P= 0.095 and
0.002 for NOTCH1 mutants alone) (Fig. S6B). Thus, RBPJ mutation
likely represents an alternative mechanism for Notch pathway
inactivation in oligodendroglioma.

Survival analysis reveals PIK3 mutations and reduced Notch target
expression are associated with worse prognosis
A comprehensive analysis of clinical and genetic factors associated
with survival was performed using a Cox proportional hazards
models (Table 2 and Table S3). Univariable analysis revealed age
and grade as strong predictors of poor OS (Hazards ratio (HR) 3.64
per 10 years, P < 0.0001; HR 6.61, P= 0.013, respectively). After
adjusting for age and grade, the combination of PIK3 mutations

Fig. 1 a Neural network risk factors. A nonlinear Cox proportional hazards model was trained using a neural network to model survival in
oligodendrogliomas using clinical, genetic and proteomic factors. Prognostic significance of each feature was assessed by determining how its
changes impact prognosis. Positive scores indicate a negative impact on survival (red) while negative scores (blue) suggest a positive impact.
The boxplot contains the top 10 factors ranked by median prognostic importance; complete results in Datafile S1. b Gene set enrichment
analysis of Notch pathway members. A separate model based on mRNA expression weighed the prognostic significance of individual
transcripts and used this data in a gene-set-enrichment analysis to identify pathways associated with prognosis. The canonical Notch pathway
was highly enriched with significantly negatively scored transcripts (i.e., darker blue signifies negative scores). Increased expression of
downstream targets, including HES1, HES5, and HEY1, were associated with improved prognosis. This model demonstrates Notch signaling
inactivation is associated with poor prognosis
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were found to confer poor prognosis (HR 3.11, P= 0.045). Among
the downstream Notch target genes, increased HES5 expression
had a significant protective effect (HR 0.74, P= 0.024) after
accounting for age and grade.
Univariable analysis of PFS uncovered increased risk with grade

III relative to grade II (HR 2.24, P= 0.046). PIK3 (HR 1.98, P= 0.092)
mutations trended toward increased risk of progression after
accounting for tumor grade. Loss of 14q (HR 3.90 P= 0.0035)
predicted more rapid time to progression after adjusting for
grade. While NOTCH1 mutants were not individually predictive of
PFS, when combined with RBPJ altered tumors, the combined
mutants predicted shorter time to first progression (HR 2.47, P=
0.021). After adjusting for grade, reduced HEY1 (HR 0.48, P= 0.018)
expression had a negative impact on PFS, while HES5 trended in
this direction (HR 0.86, P= 0.120). Complete survival analysis
results in Table S3 and Fig. S7-S8.

Translation and validation in clinical cases
We investigated 51 newly diagnosed cases of oligodendroglioma,
grades II and III, from hospital archives. Pre-operative imaging was
available for 47. We focused our IHC analysis on HEY2, since its

gene expression showed greatest reduction in NOTCH1 mutants,
and pAkt, a downstream marker of PI3K activation (Figs. 4d, e).
Thirty-two tumors were WHO grade II and 19 were grade III; 21

tumors were CE− and 26 were CE+. By IHC analysis of HEY2, 20
tumors showed low expression and 31 showed high expression.
Fourteen of 19 (73.7%) tumors with low HEY2 were CE+. Tumors
with low HEY2 also had greater cell density (P= 0.014) and were
more proliferative (P= 0.0096) than those with increased
HEY2 staining (Fig. 4f). IHC investigation of pAkt found 27 tumors
had low expression; 22 showed high expression; 15 of 20 (75%)
tumors with pre-operative imaging and high pAkt expression were
CE+. Tumors with high pAkt expression had greater cell density
and were more proliferative (P < 0.0001, for both) (Fig. 4f).

DISCUSSION
We used a multi-faceted, technologically advanced, computational
approach to identify molecular events associated with aggressive
disease within molecularly defined oligodendroglioma (IDH
mutant, 1p/19q co-deleted) and uncovered Notch pathway
inactivation and PI3K activation as critical events. Our deep
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Fig. 2 Markers of disease progression in oligodendroglioma a T1-weighted axial MR images with gadolinium contrast demonstrating CE−
(left) and CE+ (right) features of oligodendroglioma from The Cancer Imaging Archive. b Kaplan–Meier plots of overall survival (OS) for CE- vs.
CE+ . c Progression-free survival (PFS) for CE− vs. CE+. d Visual representation of a tumor heatmap showing regions of interest of cell density,
with a schematic diagram of the nearest-neighbor algorithm. e OS for cellular density (less vs. more dense). f PFS for less vs. more dense. g.
High Ki-67 proliferation index visualized with IHC. h Linear regression of MKI67 expression and Ki-67 proliferation index approximated by IHC. i
OS for high vs. low MKI67. j PFS for high vs. low MKI67. P values for survival plots determined using log-rank tests

Multi-faceted computational assessment of risk and progression in. . .
S.H. Halani et al.

4

npj Precision Oncology (2018)    24 Published in partnership with The Hormel Institute, University of Minnesota



Fig. 3 Genetic alterations associated with advanced disease progression a Waterfall plot illustrating the mutational landscape of
oligodendrogliomas based on radiographic features of progression. b Boxplots demonstrating nearest-neighbor validation, and differential 1/
nearest-neighbor distances in key genetic alterations of oligodendroglioma. c Boxplots for differential MKI67 expression in key genetic
alterations of oligodendroglioma. P values determined using Wilcoxon rank sum tests
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learning neural network methods analyzed multiplatform TCGA
molecular data to generate protein-genetic and gene expression
models of overall survival, and provided an objective ranking of
clinical and molecular risk factors. In concordance with recent

investigations,8 NOTCH1 mutations were identified as one of the
most highly weighted risk factors in our deep learning prognostic
model, and was the genetic event most associated with disease
progression in each endpoint assessed (MRI contrast-

Fig. 4 HEY2 associations with advanced disease and validation cohort. a Boxplots demonstrating differential HEY2 gene expression in CE−
and CE+; P value determined using Wilcoxon rank-sum test. b Linear regression of HEY2 gene expression and nearest-neighbor distance,
demonstrating positive correlation. c Linear regression of HEY2 and MKI67 expression, demonstrating negative correlation. P values from
Pearson correlation. d IHC showing high Ki-67 proliferation index (25%) (bar, 250 μm), with corresponding absent HEY2 expression (bar,
100 μm) and high pAkt expression (bar 100 μm). e IHC showing low Ki-67 proliferation index (1%) (bar, 250 μm), with corresponding high HEY2
expression (bar, 100 μm) and absent pAkt expression (bar, 100 μm). f HEY2 and pAKT IHC intensity as related to cellular density and Ki-67
proliferation indices
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enhancement, cell density, and cellular proliferation). Therefore,
inactivating point mutations of NOTCH1 are one of the most
clinically meaningful alterations in oligodendroglioma progression
and might suggest that inactivation of the Notch pathway is more
generally responsible for poor clinical outcomes.
The NOTCH family is an evolutionarily conserved set of

transmembrane receptors that regulate numerous critical biologi-
cal functions. Notch pathway is activated by extracellular ligand
binding, followed by γ-secretase cleavage to release an active
intracellular domain (NICD), which localizes to the nucleus and
binds to its partner RBPJ to initiate transcription of downstream
targets, including HES and HEY family members.19,20 Both
activating and inactivating NOTCH1 mutations have been
described in cancer, including in oligodendroglioma.8,20–23 Inacti-
vating mutations, such as those noted in oligodendroglioma and
head and neck squamous cell carcinoma, are enriched within EGF-
like regions and interfere with ligand-mediated pathway activa-
tion.1,17,20,22,24–26

Our results suggest inactivation of Notch signaling may be more
relevant to oligodendroglioma progression than NOTCH1 muta-
tions alone. For example, reduced expression of Notch targets,
namely HES1, HEY1, and especially HEY2, was seen in clinically
progressed oligodendroglioma, while HES5 expression was most

associated with shorter survival on multivariable analysis. HEY2
showed a strong positive correlation with cellular density and
proliferation, beyond those of NOTCH1 mutations alone, suggest-
ing other Notch pathway members might be inactivated and lead
to reduced downstream target activation.
Furthermore, we found mutations and deletions of RBPJ, the

nuclear binding partner of NOTCH1 and a member of the
canonical Notch pathway, are linked to advanced disease,
providing additional evidence that Notch pathway inactivation
may be a general progression mechanism. RBPJ normally recruits
corepressor proteins and suppresses transcription of downstream
targets, whereas active NOTCH1 binds RBPJ and initiates
transcription.27 Genetic aberrations of RBPJ likely prevent active
NOTCH1 from binding to the transcriptional complex. However,
Notch-independent functions of RBPJ have also been described.27

RBPJ was mutated in 3% of our cohort and homozygously deleted
in another case, which is relatively low, but consistent with other
forms of cancer.18,28 Importantly, RBPJ alterations were mutually
exclusive from NOTCH1 mutations, showed strong trends of
association with features of disease progression, and had reduced
downstream target expression when considered independently.
When cases with either NOTCH1 mutations or RBPJ alterations
were considered together, the combined group was more strongly
associated with disease progression and pathway inactivation
than either one alone, and was strongly associated with worse
PFS, again raising the possibility that Notch pathway inactivation
by multiple mechanisms may be associated with oligodendro-
glioma progression.
Other prognostically-significant chromosomal aberrations asso-

ciated with disease progression uncovered by our analysis,
including losses of 14q and 15q and gains of 7p, also harbor
Notch pathway members, and may be mechanistically relevant to
pathway inactivation and disease progression, but will require
further investigation. Chromosome 14q contains genes that
encode presenilin-1 (PSEN1), a component of the γ-secretase that
activates Notch; NUMB, a Notch inhibitor; and jagged-2 (JAG2), a
NOTCH receptor ligand. 15q, whose loss was nearly mutually
exclusive with NOTCH1 and RBPJ aberrations, contains genes
coding for Delta-like 4 (DLL4), a NOTCH ligand; a disintegrin and
metalloproteinase domain-containing protein 10 (ADAM10), a
controller of NOTCH cleavage; and APH1B, a γ-secretase of
NOTCH.29 Chromosome 7 contains the gene encoding lunatic
fringe (LFNG), a key Notch signaling repressor, such that its
overexpression could suppress Notch signaling.29 The identifica-
tion of RBPJ mutations as a Notch pathway member associated
with a poor prognosis, our link between gene expression of Notch
pathway members to patient outcome, and the finding of
downstream effectors of the Notch pathway, such as Hes and
Hey family members, being downregulated in progressed
oligodendrogliomas collectively point in the direction of uncover-
ing other inactivating Notch family members, likely within
amplified or deleted loci and providing a platform for assessing
Notch pathway for predicting clinical behavior.
Mutations of PIK3 subunits were highly weighted negative

prognostic markers in our neural network analysis; were enriched
in a subset of our endpoints of advanced disease; and were
markers of shorter survival on multivariable analysis. Mutations of
PIK3CA are activating, while those of PIK3R are inactivating, and
both result in enhanced PI3K activity, with downstream activation
of Akt and mammalian target of rapamycin, which are associated
with aggressive clinical behavior in many cancers.30 Our neural
network identified INPP4B, a known suppressor of PI3K signal-
ing,31 as a protein whose increased expression was strongly
associated with improved outcome. The PI3K pathway also
strongly converges with SMAD2/3 and P38/MKK3 pathways,
which were identified as among the most enriched with negative
prognostic transcripts in our neural network.15,16 Lastly, our IHC

Table 2. Survival tables

Predictor OS hazard
ratio

P-value Adjusted OS
hazard ratio

P-value

aAge (per 10 yrs) 3.64 <0.0001 – –
aGrade III (vs. II) 6.61 0.013 – –
a, cMKI67 exp. 1.58 0.0029 1.12 0.42

NOTCH1 mut. 1.71 0.28 1.10 0.87
bPIK3 mut. 1.97 0.15 3.11 0.045

RBPJ+ NOTCH1
mut.

1.81 0.210 0.85 0.76

a15q loss 3.52 0.007 1.48 0.47
b, cHES5 exp. 0.82 0.086 0.74 0.024
a, cHEY1 exp. 0.34 0.0009 0.86 0.72
a, cHEY2 exp. 0.35 0.0001 0.79 0.54

PFS hazard
ratio

P-value Adjusted PFS
hazard ratio

P-value

Age (per 10 yrs) 1.12 0.28 – –
aGrade III (vs. II) 2.24 0.046 – –
cMKI67 exp. 1.04 0.71 0.97 0.81
aFUBP1 mut. 2.48 0.022 2.14 0.058

NOTCH1 mut. 2.07 0.091 1.52 0.33

PIK3 mut. 1.91 0.11 1.98 0.092
a RBPJ+ NOTCH1
mut.

2.47 0.021 1.86 0.13

a, b14q loss 3.70 0.010 3.90 0.0035
a, b, cHEY1 exp. 0.41 0.0022 0.48 0.018

Cox proportional hazard models for overall survival (OS) and progression-
free survival (PFS)
Multivariable OS adjusted for grade and age
Multivariable PFS adjusted for grade
Mut mutation
Exp. expression
aSignificant on univariate analysis
bSignificant after covariate adjustment
cGene expression on a log2 scale, such that the hazard ratio is for each
doubling of gene expression

Multi-faceted computational assessment of risk and progression in. . .
S.H. Halani et al.

7

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2018)    24 



analysis indicated pAkt expression was associated with higher-
grade features and may have utility as a prognostic marker.
Importantly, our identification of Notch and PI3K pathways’

association with survival risk and disease progression does not
demonstrate a causal or temporal relationship, and represents an
inherent limitation of our study. The use of a machine-learning
method does not resolve the issues of feature covariance that also
limit the interpretation of models generated by more conven-
tional approaches. We cannot prove NOTCH1 or PIK3 subunit
mutations evolved temporally from a lower grade tumor, causing
its progression. It is entirely possible oligodendrogliomas with
Notch inactivation and PI3K activation are in fact distinct genetic
subsets at their initiation and these tumors are more rapidly
progressive. Longitudinal investigation of patient cohorts with
primary and recurrent tumors is needed to identify temporal
evolution.32,33 Future investigation will also require the elucidation
of downstream targets of Notch and PI3K pathways that may drive
glioma progression.

METHODS
Study design
We used clinical and genomic data from the Open Access Data Tier of the
TCGA LGG dataset for 169 oligodendroglioma (IDH mutant, 1p/19q co-
deleted) (http://cancergenome.nih.gov/; last accessed September 7th,
2016). Clinical variables consisted of age, gender, extent of resection,
overall survival time, survival status, progression-free survival time, and
progression status; tumor characteristics included location and histologic
grade based on the 2007 WHO brain tumor classification.13

Deep learning survival model
We trained a Cox proportional hazards deep learning neural networks to
model OS.34 Two models were constructed: (1) a genetic-protein model
based on clinical factors (radiation therapy, histologic grade), age, gender,
mutations, focal and arm-level copy number events (CNAs), and reverse
phase protein array profiles, and 2) a transcriptional model based on mRNA
sequencing factors alone. Mutations and CNAs were filtered using MutSig
P-value threshold of 0.1, and Genomic Identification of Significant Targets
in Cancer (GISTIC) P-value threshold of 0.25.35,36 The prognostic
significance of each feature was assessed using mathematical derivatives
to evaluate the sensitivity of risk to changes in feature values. Prognostic
significance weights in the mRNA model were further used to perform
pathway analysis to identify pathways enriched with either good or poor
prognosis transcripts. Pathway analysis was performed with GSEA using
the Canonical Pathways gene set from the MSigDB curated gene sets.
The accuracy of these modeling approaches in the oligodendroglioma

cohort was evaluated using Monte-Carlo cross validation. We first
randomly assigned 80% of samples to a training set, and the remaining
20% of samples to a testing set. A predictive model was trained using the
training sample, and the accuracy of this model was evaluated using
Harrell’s concordance-index (c-index) on the testing samples. This process
was repeated for 20 randomized partitions of the dataset. For the genetic-
proteomic model, a three layer network consisting of 100 neurons per
layer was used. For the transcriptional model, a three layer network
consisting of 500 neurons per layer was used. In both cases, these models
were trained for 25 epochs using RMSprop optimization with a learning
rate of 1e-3 and a dropout rate of 10%. Further details of this modeling
approach are available in our previous work.34

Clinical data was obtained from the TCGA data portal (last accessed 22
January 2016). OS was defined as months from initial diagnosis to death.
Survival curves were estimated using the Kaplan-Meier method; log-rank
tests were used to compare curves between groups. Progression free
survival (PFS) was defined as months from initial diagnosis to disease
progression or death. PFS curves were estimated using the Kaplan–Meier
method; log-rank tests were used to compare curves between groups.
Single and multi-variable models (non machine-learning) were also fit
using Cox regression under the proportional hazards assumption for OS
and PFS.

Genomic data
Gene expression, mutation, and CNA data were obtained from the TCGA
portal (https://tcga-data.nci.nih.gov). Genetic alterations with at least 5%
frequency were included in the analysis (Table S1A). Variants were
considered as mutants if there was an amino acid change and genes were
filtered using q ≤ 0.05 in MutSig analysis. Mutations were then converted
into dichotomous variables (mutation and wild-type). Arm level copy
number data was obtained from GDAC GISTIC hosted analysis results
(https://gdac.broadinstitute.org/). Values of chromosomal arm gain or loss
were listed as a fraction of the chromosomal arm, where gains were
positive values and losses were negative values. A threshold absolute value
of 0.10 of the fraction of the chromosomal arm was used to signify
chromosomal gain or loss. Frequency of chromosomal gains and losses are
summarized in Table S1B.

Radiographic imaging review
Preoperative MR imaging studies for TCGA patients were obtained from
TCIA (http://www.cancerimagingarchive.net/; last accessed 8 February
2016) for 55 untreated patients. Institutional neuroradiologists and
neurosurgeons reviewed MR images for the presence of unequivocal
contrast-enhancement.

Quantification of cellular density and nearest-neighbor analysis
Whole-slide digital pathology images (n= 142) were obtained from the
CDSA (http://cancer.digitalslidearchive.net/; last accessed 11 August 2016).
Images (20×) were analyzed using an image analysis algorithm to identify
cell nuclei and to quantify cellular density in areas of tumor infiltration.37

The spacing between neighboring nuclei was calculated using KD-trees,
and these distances were modeled using a Poisson point process. The
densities of tumor and normal regions were deconvolved using a mixture
Poisson model to identify the density parameter in tumor regions, λtumor

−1.
The median tumor density across patients was used to define “less dense”
and “more dense” categories. Cell density was also analyzed visually by a
neuropathologist (JV), blinded to nearest neighbor analysis, and scored as:
“low”, “intermediate”, or “high”. Algorithm and human assessments of
density were highly concordant (Wilcoxon-rank sum < 0.05 level).

Gene expression of MKI67 as a marker for cellular proliferation
A “high” category for MKI67 expression was defined (≥700) to correspond
to 15% MIB-1/Ki-67 labeling index using a linear regression model.11

Samples with MKI67 < 700 were designated ‘low’.

Statistics
Associations between contrast-enhancement and mutational status were
calculated using the χ2 test for independence; for expected counts less
than 5, Fisher’s exact test was used. Statistical associations between 2
groups of continuous or ordinal variables, such as the cellular density calls,
were calculated using Wilcoxon rank-sum tests. The Pearson correlation
coefficient was used to measure the linear dependence between
continuous variables. All P-values reported are two-sided and regarded
as statistically significant if P < 0.05. The software used for statistical
analysis and graphical representations include: SPSS v23 (SPSS Statistics,
IBM Corp., NY) and R Studio v0.99. All boxplots have the median marked as
the center line, and whisker lines indicate the lower and upper quartiles
(25 and 75%, respectively).

Validation set
Fifty-one patients with primary oligodendroglioma (IDH mutant, 1p/19q co-
deleted) were identified at Emory University Hospital with approval from the
institution’s IRB committee and with a waiver of consent (IRB 00088647). MRIs
were reviewed by a neuroradiologist (CAH) for contrast enhancement.
Histologic slides were reviewed by two neuropathologists (DJB and JV). IHC
staining was performed for Ki-67; a proliferation index was calculated using
digital image analysis (Aperio Positive Pixel Count). Cell density was
calculated by dividing cell count by area in regions of interest (mm2). IHC
for Notch signaling was assessed using anti-HEY2 rabbit polyclonal antibody
(catalog #AB5716, Millipore, 1:100) and for PI3K using anti-pAkt (S473) rabbit
monoclonal antibody (#EP2109Y, Abcam, 1:100). HEY2 and pAkt IHC slides
were reviewed and scored based on staining intensity. Selected samples
underwent DNA isolation and focused sequencing of the NOTCH1 gene
using Sanger sequencing, included the epidermal-growth-factor-like domain
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(EGF-like) spanning amino acids 300 to 500. Targeted sequencing was
performed using a glioma gene panel on the Fluidigm platform.
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Chapter 4

Learning Clinical Outcomes from

Heterogeneous Data Sources

This chapter is a collection of articles on learning from combinations of heterogeneous

data sources. All articles included in this chapter are open access and available online.

Heterogeneity is a common challenge is combining clinical and genomic data from

different studies, hospitals, etc. due to demographical and technological differences

and batch effects. In this chapter, we introduce multi-task learning models that can

learn similarities between heterogeneous cohorts without being misled by such differ-

ences and consequently achieve better performance in predicting outcomes. We use

an adversarial classification in the multi-task learning framework to further encourage

the learning of a shared representation among all data sources. Our proposed meth-

ods are shown to outperform existing multi-task learning algorithms and single-task

baselines. Chapter 4.1 includes a short conference paper on this topic, and chapter

4.2 expands on the former by more extensive experiments and offering a comparative

interpretation of some of the models.
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4.1 Learning Clinical Outcomes from Heterogeneous

Genomic Data Sources: An Adversarial Multi-

task Learning Approach, ICML, 2019 Adap-

tive and Multitask Learning Workshop

This section is an exact copy of the following open-access conference paper:

Safoora Yousefi, Amirreza Shaban, Mohamed Amgad, and Lee AD

Cooper. Predicting clinical outcomes from large scale cancer genomic

profiles with deep survival models. International Conference on Machine

Learning, Adaptive and Multitask Learning Workshop 2019.

Abstract. Translating the high-dimensional data generated by genomic platforms

into reliable predictions of clinical outcomes remains a critical challenge in realizing

the promise of genomic medicine largely due to the small number of independent

samples. We show that neural networks can be trained to predict clinical outcomes

using heterogeneous genomic data sources via multi-task learning and adversarial

representation learning, allowing one to combine multiple cohorts and outcomes in

training. Experiments demonstrate that the proposed method helps mitigate data

scarcity and outcome censorship in cancer genomics learning problems.



Learning Cancer Outcomes from Heterogeneous Genomic Data Sources: An
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Abstract
Translating the high-dimensional data generated
by genomic platforms into reliable predictions of
clinical outcomes remains a critical challenge in
realizing the promise of genomic medicine largely
due to small number of independent samples. We
show that neural networks can be trained to pre-
dict clinical outcomes using heterogeneous ge-
nomic data sources via multi-task learning and ad-
versarial representation learning, allowing one to
combine multiple cohorts and outcomes in train-
ing. Experiments demonstrate that the proposed
method helps mitigate data scarcity and outcome
censorship in cancer genomics learning problems.

1. Introduction
Since the emergence of high throughput experiments such
as Next Generation Sequencing, the volume of genomic
data produced has been increasing exponentially (Stephens
et al., 2015). A single biopsy can generate tens of thousands
of transcriptomic, proteomic, or epigenetic features. The
ability to generate genomic data has far outpaced the ability
to translate these data into clinically-actionable information,
as typically only a handful of molecular features are used in
diagnostics or in determining prognosis (Bailey et al., 2018;
Van De Vijver et al., 2002; Network, 2015).

Cancer genomic datasets often have small sample size (hun-
dreds of samples), and much larger dimensionality (tens
of thousands of features), making it difficult to train com-
plex models such as neural networks (Abu-Mostafa, 1989).
Furthermore, of those available samples, often large pro-
portions have censored outcomes. Several approaches have
been employed to alleviate this data insufficiency including
dimensionality reduction, feature selection, data augmenta-
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GA, USA 2College of Computing, Georgia Institute of Technology,
Atlanta, GA, USA 3Department of Biomedical Informatics, Emory
University School of Medicine, Atlanta, GA, USA. Correspon-
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tion, and transfer learning (Ching et al., 2018).

An alternative approach is to integrate genomic data from
multiple studies and hospitals to increase training set size.
Heterogeneity of available genomic datasets due to tech-
nical and sample biases poses challenges to this approach.
Cohorts from different sources typically have difference
demographic or disease stage distributions, may be subject
to different signal capture calibration and post-processing
artifacts. This means that naively combining heterogeneous
cohorts is both difficult and may degrade model accuracy
due to batch effects (Tom et al., 2017).

Building upon SurvivalNet (Yousefi et al., 2016; 2017) -
a neural network model for survival prediction- we pro-
pose a multi-task learning approach that enables: a) train-
ing SurvivalNet on multiple heterogeneous data sources
while avoiding the issues that arise from naively combining
datasets, and b) training on multiple clinical outcomes from
the same cohort, thus helping to address the issue of cen-
sorship often encountered in clinical datasets. We further
enhance our proposed method by introducing an adversar-
ial cohort classification loss that prevents the model from
learning cohort-specific noise, thus enabling task-invariant
representation learning. Experiments demonstrate that our
proposed methods can be used to alleviate data scarcity and
outcome censorship in several cancer genomics learning
problems, leading to superior performance on target cohorts
and outperforming previous multi-task survival analysis
methods.

2. Background and Related Work
Survival analysis with Cox proportional hazards model:
Survival analysis refers to any problem where the variable
of interest is time to some event, which in cancer is often
death or progression of disease. Time-to-event modelling is
different from ordinary regression due to a specific type of
missing data problem known as censoring. Incomplete or
censored observations are important to incorporate into the
model since they could provide critical information about
long-term survivors (Harrell Jr, 2015). The most widely
used approach to survival analysis is the semi-parametric
Cox proportional hazards model (Cox, 1972). It models the
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hazard function at time s given the predictors xi of the ith
sample as:

h(s|xi, β) = h0(s)e
β>xi (1)

The model parameters β are estimated by minimizing Cox’s
negative partial log-likelihood:

Lcox(X,Y, β) = −
∑

xi∈U

(
β>xi − log

∑

j∈Ri
eβ

>xj
)

(2)

where X = {x1, ..., xN} are the samples, and Y = {E,S}
represents label vectors of event or last follow-up times
S = {s1, ..., sN} and event status E = {e1, ..., eN}. For
censored samples (e = 0), s represents time of last follow-
up while for observed samples (e = 1), it represents event
time. The outer sum is over the set of uncensored samples
U and Ri is the set of at-risk samples with sj ≥ si. The
baseline hazard h0(t) is cancelled out of the likelihood and
can remain unspecified.

A non-linear alternative to Cox regression is SurvivalNet
(Yousefi et al., 2016; 2017), a fully connected artificial
neural network fW with parameters W that replaces X
in Equation 2 with its non-linear transformation fW (X).
SurvivalNet has been shown to outperform other common
survival analysis techniques such as random survival forests
(Ishwaran et al., 2008) and Cox-ElasticNet (Park & Hastie,
2007) in learning from high-dimensional genomic data.

Multi-task learning for survival analysis: Both theoreti-
cal and empirical studies show that learning multiple related
tasks simultaneously often significantly improves perfor-
mance relative to learning each task independently (Baxter,
2000; Ben-David & Schuller, 2003; Caruana, 1997). This is
particularly the case when only a few samples per task are
available, since with multi-task learning, each task has more
data to learn from.

The general form of the loss function when learning T tasks
simultaneously is:

L(Y,X,W ) =

T∑

t=1

Lt(y
t, gt(W t, Xt)) + γλ(Y,X,W ) (3)

Lt andW t, respectively, are the loss function and the param-
eters of task t. Y = {Y 1, ..., Y T } and X = {X1, ..., XT }
are the combined input data of all t tasks. gt indicates
the prediction function corresponding to task t, and λ is a
regularization or auxiliary function that captures task relat-
edness assumptions, examples of which include `2,1 norm
(Argyriou et al., 2007), and cluster norm (Jacob et al., 2009).
γ is a weight parameter controlling the importance of the
auxiliary function.

Previous work has applied multi-task learning under differ-
ent task relatedness assumptions to train Cox’s proportional
hazards model using multiple genomic data sources (Wang
et al., 2017; Li et al., 2016).

In this paper, our main assumption is that gene expression
data lies on a lower dimensional subspace that can be uti-
lized in several prognostic tasks. We will enforce this as-
sumption via hard parameter sharing among tasks and the
bottleneck architecture of our models. Moreover, In section
3 we describe how an adversarial classification objective can
be used as auxiliary function λ to encourage task-invariant
representation learning. We compare our proposed method
to multi-task Cox model with `2,1 regularization (Li et al.,
2016).

Adversarial representation learning: The idea of using
adversarial learning to match two distributions was first pro-
posed by (Goodfellow et al., 2014) for training generative
models. This idea has been applied to unsupervised domain
adaptation for natural language processing and computer
vision, with varying design choices including parameter
sharing, type of adversarial loss, and discriminative vs. gen-
erative base model (Ganin & Lempitsky, 2015; Ganin et al.,
2016; Tzeng et al., 2015; Liu & Tuzel, 2016; Tzeng et al.,
2017).

We adapt this idea to multi-task learning to encourage our
proposed model to learn task-invariant genomic representa-
tions. A cohort discriminator is trained to assign samples to
their cohort. Simultaneously, a SurvivalNet is adversarially
trained to confuse the discriminator by learning a repre-
sentation of data where samples from different cohorts are
indistinguishable (in addition to learning to predict survival).

3. Methods
In cases where all tasks are similar and their corresponding
samples come from similar distributions, a natural approach
is to simply combine the datasets and train a single-task
model on the combined training data, as done in (Yousefi
et al., 2017). We implement this approach using SurvivalNet
to provide a performance baseline.

But the assumption that the datasets come from the same dis-
tribution rarely holds and this could be problematic in train-
ing a Cox-based model. Comparisons of survival time be-
tween pairs of samples are integral to the Cox log-likelihood
loss function. When one naively combines datasets to train
a model with a single Cox loss, in addition to comparisons
within each cohort, comparisons between these cohorts con-
tribute to the loss. Since the difference between distributions
of these cohorts could be due to clinically insignificant fac-
tors such as batch effects, these between-cohort comparisons
could be misleading in training. Our first proposed model
aims to eliminate this potentially misleading signal from the
training process via multi-task learning:

Multi-task learning (MTL): This proposed extension of
SurvivalNet model comprises one Cox loss node per each
task, so that only within-cohort comparisons contribute to
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the loss. The objective function of the MTL model is the
sum of all Cox losses:

LMTL =
T∑

t=1

LCox(fW (Xt), Y t, β) (4)

where fW is the SurvivalNet model. All parameters of MTL,
β and W , are shared among tasks.

Although we are encouraging sparse representation learning
via the bottleneck architecture of the MTL model, that does
not force the model to learn a task invariant representation.
The model may learn a sparse representation, but still have
enough parameters to be able to discriminate between sam-
ples from different cohorts and process them differently. The
adversarial model described below addresses this limitation.

Adversarial multi-task model (ADV-MTL): This mod-
els extends SurvivalNet by addition of an adversarial co-
hort classification loss. Let Xcomb = {x1, ..., xM} and
Ycomb = {y1, ..., yM} denote the combination of all Xt

and Y t, respectively, including M samples in total. A set
of one-hot vectors YD = {d1, ..., dM} indicate cohort mem-
bership, so that dit = 1 means that the ith sample belongs to
the tth cohort. A cohort discriminator is trained to assign the
transformed samples zi = fW (xi) to the cohort they belong
to. This component of the model is a multi-class logistic
regression with a softmax cross-entropy loss. It comprises
a simple neural network gθ mapping zi to a T-dimensional
vector, where T is the number of tasks, and a softmax func-
tion that transforms the result to a T-dimensional vector
of probabilities. The predicted probability that sample i
belongs to cohort t is given by:

d̂it =
egθ(zi)t

∑T
k=1(e

gθ(zi)k)
,

and the objective function of the discriminator LD is the
cross-entropy between predicted probabilities and cohort
labels:

LD(fW (Xcomb), YD, θ) = γ
M∑

i=1

T∑

t=1

−dit log d̂it (5)

This loss function only trains the parameters of the discrimi-
nator, namely θ the parameters of the function gθ.

Simultaneously, a multi-task risk predictor component is
adversarially trained with the following objective:

LR =

T∑

t=1

LCox(fW (Xt), Y t, β)−γLD(fW (XC), YD, θ) (6)

LR trains the parameters of the risk predictor β as well as
W . By updating W with an objective function that is the
opposite of that of the discriminator, we encourage learning
a representation of data in which samples from different
cohorts are indistinguishable. γ controls the contribution of
the adversarial loss to representation learning.

4. Results
Datasets: We use several publicly available benchmark
survival analysis datasets from The Cancer Genome Atlas
(TCGA) and METABRIC (Molecular Taxonomy of Breast
Cancer International Consortium) (Curtis et al., 2012). Both
of these sources provide gene expression data (over 20K
features) and clinical outcome labels. TCGA clinical data
contains overall survival (OS) and progression free interval
(PFI) outcome labels (Liu et al., 2018) while METABRIC
only contains OS labels. For details about datasets and
preprocessing, refer to supplementary materials.

Model selection and training: In each experiment, we pick
a target task and use auxiliary tasks to improve performance
on the target task. We use random stratified sampling to
sample 60% of target data as training and use the remaining
40% as hold-out testing data. Stratified sampling ensures
similar event rates in training and testing sets. Training set
is augmented with any auxiliary data at this stage if the
experiment calls for it. For model selection, grid search
with 5–fold cross validation is performed on the training
set and the selected model is then evaluated on the hold-
out testing data. We repeat this procedure on 30 randomly
sampled training and testing sets and use re-sampled t-test
and paired re-sampled t-test (Dietterich, 1998) to provide
confidence intervals and significance analysis. In visualizing
the results, we use shaded areas or error bars to depict the
95% confidence intervals of the mean c-index.

A single hidden layer with 50 ReLU hidden units was used
in all risk prediction neural networks. Discriminators were
fixed to a single-layer design with 20 ReLU hidden units.
Learning rate, drop-out regularization rate, and L2 regular-
ization rate of neural network parametersW , and the weight
of the discriminator loss γ were tuned via grid search.

The same sampling, training, model selection and evaluation
procedures was used in all experiments with all methods.
All software to reproduce the results presented in this section
is available at [GITHUB LINK]. For Cox-`2,1, we used the
authors’ open-source implementation (Li et al., 2016).

Evaluation Metric: We measured model performance us-
ing concordance index (c–index) that captures the rank cor-
relation of predicted and actual survival (Harrell Jr et al.,
1982), and is given by:

CI(β,X) =
∑

P

I(i,j)
|P | (7)

I(i, j) =

{
1, if rj > ri and tj > ti

0, otherwise
(8)

Where P is the set of orderable pairs. A pair of samples (xi,
xj) is orderable if either the event is observed for both xi and
xj , or xj is censored and tj > ti. Optimizing Cox’s partial
likelihood (Equation 2) has been shown to be equivalent to
optimizing c–index (Steck et al., 2008).
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** ** *

Figure 1. METABRIC and TCGA breast cancer datasets were combined to im-

prove performance on TCGA, using the proposed and baseline methods. ?? indi-

cates significant improvement over both Cox–`2,1 and single–task models. ? indi-

cates significant improvement over single–task models.

4.1. Combining two breast cancer cohorts

This section investigates the integration of two breast cancer
cohorts from independent studies. We use TCGA BRCA as
target, and METABRIC as auxiliary cohort. Both cohorts
are diagnosed with breast cancer. In such cases where simi-
lar biological processes determine the outcomes, one would
expect naively pooling cohorts together to lead to better
predictions on each of the cohorts. This is the expectation
particularly in this case where the auxiliary cohort has twice
the number of samples as almost the target cohort (1903 vs.
1094) and three times the event rate (33% vs. 13%).

Surprisingly, we observe that simply adding METABRIC
to training data (SurvivalNet TCGA+MB) does not im-
prove prediction of c-index on TCGA (p=0.1). See Fig-
ure 1. MTL model achieves a significant improvement
(p=3e-4) over SurvivalNet trained on target data only
(SurvivalNet TCGA-only), and ADV-MTL signifi-
cantly outperforms all other methods. Cox-`2,1 achieves a
significant improvement over single-task SurvivalNet meth-
ods, but is significantly outperformed by ADV-MTL (p=1e-
6) and MTL (p=0.01).

4.2. Combining multiple outcome labels

As shown in Table 1, for some patients, a progression event
is never observed (or recorded) during the study (censored
PFI), while their overall survival outcome is observed (de-
ceased by end of study). In such cases, overall survival could
provide an extra supervision signal in training a predictive
model that originally targets PFI prediction.

We use the MTL model to simultaneously use PFI and OS
outcomes in training. In our experiments with five differ-
ent TCGA cancer types, multi-task learning with PFI and
OS always leads to improved PFI prediction performance
compared to single-task SurvivalNet trained with PFI labels
only (see Table 1 and Figure 2).

CESC LGG KIRP KIRC PAAD

Figure 2. Progression-free interval (PFI) prediction performance with and without

multi-task learning with overall survival (OS) labels.

Cancer type Number of
Samples

PFI+OS
c-index

Improvement
on PFI-only

Censored PFI
Observed OS

CESC 304 65.83 1.69% 5.26%
KIRC 533 76.55 2.12% 11.81%
KIRP 514 76.55 1.35% 5.19%
LGG 288 72.15 1.75% 1.75%

PAAD 178 65.12 1.34% 9.55%

Table 1. Progression-free survival (PFI) prediction performance with multi-task

learning with overall survival (OS). Percent of samples in each cohort with censored

PFI and observed OS is given in the last column.

4.3. Discussion

To provide an insight into the significance of the improve-
ment achieved by our models, we look at the learning curves
of SurvivalNet and ADV–MTL evaluated on TCGA-BRCA.
Learning curves were obtained by training the models on
incrementally more training samples from the target task,
and testing on a fixed sized test set (40% of target data, con-
sistent with the rest of experiments). As shown in Figure 3,
the performance improvement achieved by ADV-MTL over
SurvivalNet (a 10% improvement, see Fig. 1) exceeds the
improvement resulting from tripling the size of target train-
ing data from 30% to 100% in SurvivalNet. This shows that
the integration of heterogeneous datasets using the proposed
method is a reasonable alternative to acquisition of new train-
ing data from the target distribution which may be expensive
or impossible. The ideal solution to any data insufficiency
issue is enhanced data collection and standardization efforts.
However, in settings where this is impractical, employing
techniques like ADV-MTL and MTL can help address this
at no extra cost.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Amount of Training Data

50

55
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TCGA+MB ADV_MTL
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Figure 3. Learning curves of SurvivalNet and ADV–MTL (target: TCGA BRCA.
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Supplementary Materials

1. Data Description
The Cancer Genome Atlas (TCGA) provides publicly avail-
able clinical and molecular data for 33 cancer types. TCGA
gene expression features were taken from the Illumina
HiSeq 2000 RNA Sequencing V2 platform. TCGA clin-
ical data contains overall survival (OS) and progression free
interval (PFI) labels, with varying degrees of availability for
different primary cancer sites (Liu et al., 2018). This data
has been obtained from multiple hospitals and health-care
centers, so a considerable degree of heterogeneity exists
within the TCGA.

PFI is defined as the period from the date of diagnosis until
the date of the first occurrence of a new tumor-related event,
which includes progression of the disease, locoregional re-
currence, distant metastasis, new primary tumor, or death
with tumor. OS is the period from the date of diagnosis until
the date of death from any cause. Since patients generally
suffer from disease progression or recurrence before dying,
PFI requires shorter follow-up times and has higher event
rate. Additionally, OS is a noisy signal due to deaths from
non-cancer causes. Therefore, wherever possible, PFI is
used as the outcome variable.

We used METABRIC (Molecular Taxonomy of Breast Can-
cer International Consortium) (Curtis et al., 2012) gene ex-
pression and clinical data in section 4.1. Since METABRIC
comes with OS labels only, OS was used as the outcome
variable in this section. TCGA breast invasive carcinoma
(BRCA) was used in this section as target cohort.

In section 4.2 of the main paper and section 2 of supple-
mentary materials, we perform experiments on a subset of
TCGA cancer types. Out of the 33 TCGA cancer types, we
selected those with PFI event rate higher than 20%. We used
the performance of Cox-ElasticNet (Park & Hastie, 2007)
on each of these cancer types as a measure of outcome
label quality, and used only those cancer types where Cox-
ElasticNet achieved a c-index of 60% and higher, leaving us
with adrenocortical carcinoma (ACC), cervical squamous
cell carcinoma (CESC), lower-grade glioma (LGG), kidney
renal clear cell carcinoma (KIRC), kidney renal papillary
cell carcinoma (KIRP), mesothelioma (MESO), and pancre-
atic adenocarcinoma (PAAD). ACC and MESO could not be
used as target cohorts since their small sample sizes did not
allow for reliable model evaluation. All of the mentioned
cancer types were used as auxiliary cohorts in section 2 of
supplemental materials.

We discarded samples that did not have gene expression
data or outcome labels. A summary of sample sizes and
event rates of datasets after this preprocessing step is given
in Table S1. Z-score normalization and 3-NN missing data

Dataset Name Number of
Samples

Number of
Features

Event
Rate

Event
Type

ACC 79 20531 52% PFI
CESC 304 20531 23% PFI
KIRC 533 20531 30% PFI
KIRP 514 20531 37% PFI
LGG 288 20531 20% PFI

MESO 84 20531 70% PFI
PAAD 178 20531 58% PFI
BRCA 1094 20531 13% OS

METABRIC 1903 24368 33% OS

Table S1. Summary of datasets.

imputation were performed on gene expression data. No
further feature selection or dimensionality reduction was
performed. In section 4.1, we found the intersection of
Hugo IDs present in both BRCA and METABRIC datasets
(17272 genes), and discarded the genes that were absent in
either dataset.

2. Additional Experiments
In addition to integrating data from studies involving the
same primary cancer site as in section 4.1, we may ben-
efit from pooling cohorts diagnosed with different cancer
types together to increase training size. Cancers that orig-
inate from different primary sites are known to have large
differences in genetic markup, although there are some
remarkable similarities that seem to play a fundamental
role in carcinogenesis (Hoadley et al., 2018; Bailey et al.,
2018; Hanahan & Weinberg, 2011). The idea of combin-
ing multiple cancer types relies on the premise that models
of sufficient complexity and constraints can exploit these
similarities to improve outcome prediction.

We repeat the experiments of section 4.1 this time using
TCGA cohorts diagnosed with different cancer types. In
each experiment, one cancer type is chosen as target and all
others are used as auxiliary data. Results of these experi-
ments are shown in Figure S1 in terms of c-index achieved
on target test set. In 3 out of five 5, training on the com-
bination of heterogeneous TCGA datasets with ADV-MTL
model leads to significant improvement over single-task
training of SurvivalNet with target training data only. Cox-
`2,1 achieves the same in 2 out of 5 cases. We did not
observe any significant difference between ADV-MTL and
Cox-`2,1 in this set of experiments, except in experiments
with PAAD where ADV-MTL significantly outperforms
Cox-`2,1 (p=7e-3).
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** * * *

CESC LGG KIRP KIRC PAAD

Figure S1. Survival prediction accuracy was improved by multi-task learning and adversarial representation learning on several benchmark
datasets. ? indicate significant improvement (p <0.05) of multi-task methods over target–only setting.
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Abstract

Neural networks have shown promise in predicting clinical outcomes from high-dimensional
genomic data, but their potential may be limited due to insufficient training data. This
is particularly true for predicting clinical outcomes, where a large portion of the samples
may have incomplete clinical followup. In this paper, we show how multi-task and adver-
sarial learning approaches can be used to overcome data shortages and improve accuracy
in predicting clinical outcomes. We first show how multi-task learning can significantly
improve prediction of overall survival in breast cancer by combining microarray and RNA-
sequencing gene expression profiles from the METABRIC and TCGA datasets. We improve
prediction accuracy further using an adversarial penalty to encourage the network to learn a
consistent representation across datasets. We also demonstrate the utility of this approach
in leveraging samples with multiple clinical outcomes like time to progression and overall
survival, and in combining data from distinct but related cancer types. We compare our
proposed method to two baseline approaches and describe how this framework can help to
mitigate data shortages in cancer genomics learning problems.

1. Introduction

Since the emergence of high-throughput proteomic and genomic platforms, the volume of
molecular data produced has been increasing exponentially (Stephens et al., 2015). These
platforms can generate tens of thousands of genetic, epigenetic, transcriptomic, or proteomic
features from a single biopsy, and the ability to generate this data has so far outpaced the
ability to translate it into clinically-actionable information, as typically only a handful of

c© S. Yousefi, A. Shaban, M. Amgad, R. Chandradevan & L.A.D. Cooper.
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molecular features are still used in diagnosis or prognostication (Bailey et al., 2018; Van
De Vijver et al., 2002; Network, 2015).

Machine-learning has emerged as a powerful tool for analyzing high-dimensional data,
with open software tools that enable scalable and distributed data analysis. A sub-field
of machine learning, known as deep learning, has recently achieved remarkable success in
learning from high dimensional images and sequences (LeCun et al., 2015). It involves
artificial neural networks with several processing layers that learn to transform data into
highly-predictive representations for specific prediction tasks. There are several challenges
in applying neural networks to genomic data (Min et al., 2017). The more parameters a
machine learning model has, the more independent samples it requires for training (Abu-
Mostafa, 1989), and neural networks often have many thousands or millions of parameters
due to their many interconnected layers. Cancer genomic datasets often have small sample
sizes (typically hundreds of samples), and much larger dimensionality (tens of thousands
of features), presenting a challenging scenario for machine learning algorithms. This data
insufficiency issue is further pronounced in survival analysis, where large fractions (e.g.
87% in TCGA breast cancer data) of available samples may have incomplete labels. Sev-
eral approaches have been employed to mitigate data insufficiency including dimensionality
reduction, feature selection, data augmentation, and transfer learning (Ching et al., 2018).

An alternative approach to mitigate data insufficiency is to integrate multiple datasets to
increase the training set size (e.g. two gene expression studies of breast cancer). Challenges
in integrating datasets range from dealing with normal technical biases on the same platform
used at different sites, to integrating data from entirely different platforms (sequence-based
versus array-based), and dealing with different cohort compositions. Cohorts from multiple
sites or studies often have different demographic or clinical characteristics like stage. This
means that naively combining heterogeneous cohorts is both difficult and may degrade
model accuracy due to batch effects (Tom et al., 2017). A significant amount of work has
been done in the area of normalizing datasets for integration and removing batch effects.
Many of these methods are based on linear regression and singular value decomposition,
and make numerous assumptions such as orthogonality of the batch effect and biological
variation, the ability of humans to distinguish between batch effects and biological effects,
and assumptions on the batch structure (see for example Leek et al. (2010); Haghverdi et al.
(2018)). Another limitation of such methods is that they do not take a learning objective
into account to distinguish between relevant variations and batch effects.

In addition to integrating data from studies involving the same primary site, data-hungry
algorithms may benefit from combining data from different cancer types to increase training
set size Yousefi et al. (2017). Cancers originating from different primary sites are known to
have significant differences in transcriptional profiles, although many share similar genetic
alterations and altered pathways (Hoadley et al., 2018; Bailey et al., 2018; Hanahan and
Weinberg, 2011).The idea of combining datasets from different primary sites relies on the
premise that models of sufficient complexity and constraints can identify and exploit these
similarities among the surrounding noise to improve outcome predictions.

Finally, one could tackle the problem of censoring to some extent by combining mul-
tiple outcomes for the same samples in training. Although clinical outcomes like disease-
progression and overall survival are typically highly correlated, including both may provide
additional observations for training machine learning models.
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In this paper we describe a multi-task and adversarial representation learning approach
for mitigating data insufficiency in clinical outcomes prediction. This flexible approach
enables a variety of beneficial data integration tasks, from integrating multiple datasets
derived from the same disease, to leveraging multiple clinical endpoints, and integrating
datasets from different diseases. Where the multi-task learning component of this approach
enables learning of a representation that is predictive for multiple learning objectives, the
adversarial component encourages the learning of a representation that is robust to cohort-
specific noise that would harm prediction accuracy. Since these approaches are based on
neural networks, integration is learned in an unbiased manner and optimally for the pre-
diction problem at hand. We show how these approaches provide significant improvements
in prediction accuracy in several scenarios, including integrating early and late stage breast
cancer datasets across array and sequencing based platforms, leveraging both overall sur-
vival and time-to-progression outcomes in breast cancer, and in combining datasets from
different primary cancers. We analyze these results by looking inside both single task and
multi-task adversarial models and using gene set enrichment analysis to see what pathways
and biological themes they emphasize. We also show how these themes explain gains in
prediction accuracy.

2. Materials and Methods

2.1. Survival analysis with Cox proportional hazards model

Survival analysis refers to any problem where the variable of interest is time to some event,
which in cancer is often death or progression of disease. Time-to-event modelling is different
from ordinary regression due to a specific type of missing data problem known as censoring.
Incomplete or censored observations are important to incorporate into the model since they
could provide critical information about long-term survivors (Harrell Jr, 2015). The most
widely used approach to survival analysis is the semi-parametric Cox proportional hazards
model (Cox, 1972). It models the hazard function at time s given the predictors xi of the
ith sample as:

h(s|xi, β) = h0(s)eβ
>xi (1)

The model parameters β are estimated by minimizing Cox’s negative partial log-likelihood:

Lcox(X,Y, β) = −
∑

xi∈U

(
β>xi − log

∑

j∈Ri
eβ

>xj
)

(2)

where X = {x1, ..., xN} are the samples, and Y = {E,S} represents label vectors of event
or last follow-up times S = {s1, ..., sN} and event status E = {e1, ..., eN}. For censored
samples (e = 0), s represents time of last follow-up while for observed samples (e = 1), it
represents event time. The outer sum is over the set of uncensored samples U and Ri is
the set of at-risk samples with sj ≥ si. The baseline hazard h0(t) is cancelled out of the
likelihood and can remain unspecified.

A non-linear alternative to Cox regression is SurvivalNet (Yousefi et al., 2016, 2017), a
fully connected artificial neural network fW with parameters W that replaces X in Equation
2 with its non-linear transformation fW (X). SurvivalNet has been shown to outperform
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other common survival analysis techniques such as random survival forests (Ishwaran et al.,
2008) and Cox-ElasticNet.

This paper proposes two multi-task learning models built upon SurvivalNet to learn task-
invariant representations from heterogeneous data sources. These models will be discussed
in detail in section 2.9.

2.2. Multi-task learning for survival analysis

Both theoretical and empirical studies show that learning multiple related tasks simultane-
ously often significantly improves performance relative to learning each task independently
(Baxter, 2000; Ben-David and Schuller, 2003; Caruana, 1997). This is particularly the case
when only a few samples per task are available, since with multi-task learning, each task
has more data to learn from. Multi-task learning has been applied to many areas of ma-
chine learning including computer vision (Zhang et al., 2014), natural language processing
(Collobert and Weston, 2008), and survival analysis (Wang et al., 2017; Li et al., 2016).

Following Pan and Yang (2010), we provide a classification of multi-task learning prob-
lem settings in cancer survival analysis. Let us first define the terms domain and task.
A domain is a pair {X , P (X)} which includes a feature space and a marginal probability
distribution where X = {x1, ..., xn} ∈ X . A task {Y, P (Y |X)} consists of a label space and
a conditional probability distribution function. P (Y |X) is the ultimate predictive func-
tion that is not observed but can be learned from training data. Multi-task learning, by
definition, involves different tasks, that is different P (Y |X), or even different label spaces.
With that in mind, we focuses on the following multi-task learning scenarios in this paper
(Sections 3.1, 3.2, and 3.3). :

1. Different P (X): Data for the tasks come from different distributions. Examples
include:

- Standard gene expression data and progression-free survival labels are available
for all cohorts, but the cohorts are diagnosed with different cancer types.

- Standard gene expression data and progression-free survival labels are available
for all cohorts, and the cohorts are diagnosed with the same cancer types but
belong to different studies/hospitals.

2. Different P (Y |X): All tasks are the same in nature, but the conditional distribution
of labels are different. For example, learning overall survival and progression-free
survival simultaneously for the same cohort of patients falls under this category.

We do not consider scenarios with different feature spaces X or label spaces Y, although
they provide interesting directions for future work.

The general form of the loss function when learning T tasks simultaneously is:

L(Y,X,W ) =

T∑

t=1

Lt(y
t, gt(W t, Xt)) + γλ(Y,X,W ) (3)

lt and W t, respectively, are the loss function and the parameters of task t. Y = {Y 1, ..., Y T }
and X = {X1, ..., XT } are the combined input data of all t tasks. gt indicates the prediction
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function corresponding to task t, and λ is a regularization or auxiliary function that captures
task relatedness assumptions, examples of which include cluster norm (Jacob et al., 2009),
and `2,1 norm (Argyriou et al., 2007). γ is a weight parameter controlling the importance
of the auxiliary function.

Previous work has applied multi-task learning under different task relatedness assump-
tions to train Cox’s proportional hazards model using multiple genomic data sources (Wang
et al., 2017; Li et al., 2016). In this paper, our main assumption is that gene expression
data lies on a lower dimensional subspace that can be utilized in several prognostic tasks.
We will enforce this assumption via parameter sharing and the bottleneck architecture of
our models as shown in Figure 1. Moreover, In section 2.9 we describe how an adversar-
ial classification objective can be used as auxiliary function λ to encourage task-invariant
representation learning.

For simplicity, we consider settings with one target task and one auxiliary task (T=2).
Ground truth labels are available for both tasks, and the goal is to make better predictions
on the target task by learning relevant information from the auxiliary task.

2.3. Adversarial representation learning

The idea of using adversarial learning to match two distributions was first proposed by
Goodfellow et al. (2014) for training generative models. In generative adversarial models, a
generator aims to generate realistic data to mislead a discriminator that is simultaneously
trained to distinguish between real and generated data. This competition drives the two
components of the model to improve, until the generated data distribution is indistinguish-
able from the real data distribution.

This idea has been applied to unsupervised domain adaptation in several applications
including natural language processing and computer vision, with varying design choices
including parameter sharing, type of adversarial loss, and discriminative vs. generative
base model (Ganin and Lempitsky, 2015; Ganin et al., 2016; Tzeng et al., 2015; Liu and
Tuzel, 2016; Tzeng et al., 2017).

We adapt this idea to multi-task learning to encourage our proposed model to learn
task-invariant representations. A cohort discriminator is trained to assign samples to their
cohort. Simultaneously, a SurvivalNet is adversarially trained to confuse the discriminator
by learning a representation of data where samples from different cohorts are indistinguish-
able (in addition to learning to predict survival). This competition will teach SurvivalNet to
avoid learning cohort-specific noise. See section 2.9 for a formal definition of the proposed
models.

2.4. Software

All software and parameters to reproduce the results presented in this section are publicly
available at [GITHUB LINK].

2.5. Training, Model Selection, and Validation

Multitask learning experiments involve a target dataset (the dataset where performance
will be evaluated) and an auxiliary dataset used to supplement the training samples from
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the target dataset. The target dataset samples are split between the testing set (%40) and
the training and model selection sets (%60). Training and model selection are performed
by combining target samples with samples from the auxiliary dataset (the integrated train-
ing/selection set). This integrated set is randomly split into five folds, and cross validation
is performed to identify the best model hyper-parameters. The best-performing model was
then applied to the held-out target testing samples to measure prediction accuracy using
Harrell’s concordance index (c-index).

When integrating multiple clinical outcomes like OS and PFI in a single dataset, one of
these outcomes is the target and the other is the auxiliary. We exclude the target testing and
validation samples from the auxiliary data in each cross validation experiment, maintaining
non-overlapping training, validation and testing sets.

The above validation procedure was repeated for 30 random splits of the target dataset to
generate 30 c-index performance measurements. The performance of models was compared
using the re-sampled t-test and re-sampled paired t-test (Dietterich, 1998) for significance
analysis and to derive confidence intervals.

All neural networks shared a 50-unit single hidden layer architecture. A grid search was
performed to select the optimal learning rate (0.00001-0.001), dropout regularization rate
(0-0.9), and `2-norm regularization rate(0.001, 1.0) of the neural network weights W , and
the weight of adversarial discriminator loss γ (0.1-100). Experiments involving Cox elastic
net regression tuned the regularization weight λ (0.001-100) and the mixture coefficient α
(0-1) using the same procedure.

2.6. Evaluation Metric

We measured model performance using concordance index (CI) that captures the rank
correlation of predicted and actual survival (Harrell Jr et al., 1982), and is given by:

CI(β,X) =
∑

P

I(i,j)
|P | (4)

I(i, j) =

{
1, if rj > ri and tj > ti

0, otherwise
(5)

Where P is the set of orderable pairs. A pair of samples (xi, xj) is orderable if either the
event is observed for both xi and xj , or xj is censored and tj > ti. Intuitively, CI measures
the pairwise agreement of the prognostic scores ri, rj predicted by the model and the actual
time of event for all orderable pairs. Optimizing the cox partial likelihood (Equation 2) has
been shown to be equivalent to optimizing CI (Steck et al., 2008).

2.7. Data

The Cancer Genome Atlas (TCGA) provides publicly available clinical and molecular data
for 33 cancer types. Experiments in this paper use TCGA gene expression features from
the Illumina HiSeq 2000 RNA Sequencing V2 platform. The significant challenge that
high-dimensional gene expression profiles present for machine learning algorithms was the
motivation in choosing this platform to explore multitask adversarial learning. The clinical
data from the TCGA PanCancer Atlas project includes both overall survival (OS) and
progression free interval (PFI) labels, with varying degrees of availability and extent of
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censorship for different primary cancer sites (Liu et al., 2018). PFI is defined as the period
from the date of diagnosis until the date of the first occurrence of a new tumor-related
event, which includes progression of the disease, distant metastasis, or death. OS is the
period from the date of diagnosis until the date of death from any cause. Since patients
generally suffer from disease progression or recurrence before dying, PFI requires shorter
follow-up times and has higher event rate. Additionally, OS is a noisy signal due to deaths
from non-cancer causes. Therefore, wherever possible, PFI is used as the outcome variable.

For experiments involving multiple diseases, we selected TCGA cancer types that have
a PFI event rate higher than %20. We further filtered these datasets using Cox elastic net
regression to measure outcome label quality, keeping those datasets with a %60 or higher
concordance index, selecting adrenocortical carcinoma (ACC), cervical squamous cell carci-
noma (CESC), lower-grade glioma (LGG), kidney renal clear cell carcinoma (KIRC), kidney
renal papillary cell carcinoma (KIRP), mesothelioma (MESO), and pancreatic adenocarci-
noma (PAAD). ACC and MESO could not be used as target cohorts since their small sample
sizes did not allow for reliable model evaluation. All of the mentioned cancer types were
used as auxiliary cohorts.

For breast cancer outcome prediction experiments, we combine TCGA used METABRIC
(Molecular Taxonomy of Breast Cancer International Consortium) (Curtis et al., 2012) gene
expression and clinical data in section 3.1. This data was obtained from the cBioPortal
website Gao et al. (2013). Since METABRIC comes with OS labels only, OS was used as
the outcome variable in this section.

2.8. Cohort Selection

TCGA breast invasive carcinoma (BRCA) was used in section 3.1 as target cohort. In
section 3.2 we perform multi-task learning experiments on every possible pair of target and
auxiliary cohorts chosen from a subset of cancer types. Out of the 33 TCGA cancer types,
we selected those with PFI event rate higher than 20%. We used the performance of Cox-
ElasticNet (Park and Hastie, 2007) on each of these cancer types as a measure of outcome
label quality, and used only those cancer types where Cox-ElasticNet achieved a c-index of
60% and higher, leaving us with adrenocortical carcinoma (ACC), cervical squamous cell
carcinoma (CESC), lower-grade glioma (LGG), kidney renal clear cell carcinoma (KIRC),
kidney renal papillary cell carcinoma (KIRP), mesothelioma (MESO), and pancreatic ade-
nocarcinoma (PAAD). ACC and MESO could not be used as target cohorts since their
small sample sizes did not allow for reliable model evaluation. All of the mentioned cancer
types were used as auxiliary cohorts.

We discarded samples that did not have gene expression data or outcome labels. A
summary of sample sizes and event rates of datasets after this preprocessing step is given in
Table 1. Z-score normalization and 3-NN missing data imputation were performed on gene
expression data. No further feature selection or dimensionality reduction was performed. In
section 3.1, we found the intersection of Hugo IDs present in both BRCA and METABRIC
datasets (17272 genes), and discarded the genes that were absent in either dataset. We
used the log of BRCA gene expression data since METABRIC provides log-expression val-
ues. BRCA survival times were converted from days to months to be comparable with
METABRIC.
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Dataset
Name

Number
of

Samples

Numbr
of

Features

Event
Rate

Event
Type

ACC 79 20531 52% PFI
CESC 304 20531 23% PFI
KIRC 533 20531 30% PFI
KIRP 514 20531 37% PFI
LGG 288 20531 20% PFI

MESO 84 20531 70% PFI
PAAD 178 20531 58% PFI
BRCA 1094 20531 13% OS

METABRIC 1903 24368 33% OS

Table 1: Summary of datasets.
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Figure 1: Model architectures used.

2.9. Proposed Methods

In cases where the target and auxiliary tasks are similar and their corresponding samples
come from similar distributions, a natural approach is to simply combine (i.e. concatenate)
the target and auxiliary datasets and train a single-task model on the combined training
data, as done in Yousefi et al. (2017). We implement this approach as a baseline using both
Cox-ElasticNet and SurvivalNet to provide two performance baselines.

But the assumption that the two cohorts come from the same distribution rarely holds.
Comparisons of survival time between pairs of samples are integral to the Cox log-likelihood
loss function. When one naively combines datasets to train a model with a single Cox loss,
in addition to comparisons within target cohort and within auxiliary cohort, comparisons
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between these cohorts contribute to the loss. Since the difference between distributions of
these cohorts could be due to clinically insignificant factors (such as batch effects), these
between-cohort comparisons could be misleading in training. Our first proposed model
aims to eliminate this potentially misleading signal from the training process via multi-task
learning:

Multi-task learning (MTL): This proposed extension of SurvivalNet model comprises
one Cox loss node per each task. Each Cox loss node is responsible for one cohort only, so
that only within-cohort comparisons contribute to the loss (See Figure 1a). The objective
function of the MTL model is the sum of all Cox losses:

LMTL =
T∑

t=1

LCox(fW (Xt), Y t, β) (6)

where fW is the SurvivalNet model. All parameters of MTL, β and W , are shared among
tasks.

Although we are encouraging sparse representation learning via the bottleneck architec-
ture of the MTL model, that does not adequately force the model to learn a task invariant
representation. The model may learn a sparse representation, but still have enough param-
eters to be able to discriminate between samples from different cohorts and process them
differently. The adversarial model described below addresses this limitation.

Adversarial model (ADV): This models extends SurvivalNet by addition of an adver-
sarial cohort classification loss. Let Xcomb = {x1, ..., xM} and Ycomb = {y1, ..., yM} denote
the combination of all Xt and Y t, respectively, including M samples in total. A set of
one-hot vectors YD = {d1, ..., dM} indicate cohort membership, so that dit = 1 means that
the ith sample belongs to the tth cohort. A cohort discriminator is trained to assign the
transformed samples zi = fW (xi) to the cohort they belong to. This component of the
model is a multi-class logistic regression with a softmax cross-entropy loss. It comprises
a linear transformation gθ mapping zi to a T-dimensional vector, where T is the number
of tasks, and a softmax function that transforms the result to a T-dimensional vector of
probabilities. The predicted probability that sample i belongs to cohort t is given by:

d̂it =
egθ(zi)t

∑T
k=1(egθ(zi)k)

,

and the objective function of the discriminator LD is the cross-entropy between predicted
probabilities and cohort lables:

LD(fW (Xcomb), YD, θ) = γ
M∑

i=1

T∑

t=1

−dit log d̂it (7)

This loss function only trains the parameters of the discriminator, namely θ the parameters
of the linear function gθ.

Simultaneously, a risk predictor is adversarially trained to learn a cohort-invariant rep-
resentation that misleads the cohort classifier, in addition to learning to predict risk of
event. The objective function of the risk predictor component of the model is:

LR = LCox(fW (Xcomb), Ycomb, β)− γLD(fW (Xcomb), YD, θ) (8)
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LR trains the parameters of the risk predictor β as well as W . By updating W with an
objective function that is the opposite of that of the discriminator, we encourage learning
a representation of data in which samples from different cohorts are indistinguishable. γ
controls the contribution of the adversarial loss to representation learning.

Adversarial multi-task model (ADV-MTL): Combining the MTL and ADV model
described above, we allocate one Cox loss node for each cohort and additionally employ an
adversarial cohort classification (See Figure 1b). The discriminator loss function is the same
as given by Equation 7 while the rest of the model is trained with the following objective:

LR =
T∑

t=1

LCox(fW (Xt), Y t, β)− γLD(fW (Xcomb), YD, θ) (9)

3. Results

3.1. Combining two breast cancer cohorts

This section investigates the integration of two breast cancer cohorts from independent
studies. We use BRCA as target and METABRIC as auxiliary cohort. Both of these
cohorts are diagnosed with breast cancer, and have overall survival labels. In such cases
where similar biological processes determine the outcomes, one would expect naively pooling
cohorts together to lead to better predictions on each of the cohorts. This is the expectation
particularly in this case where the auxiliary cohort has twice the number of samples as the
target cohort and three times the event rate. We train SurvivalNet and Cox-ElasticNet
on the naive combination of BRCA and METABRIC as a two baselines, and compare the
results to MTL, ADV, and ADV-MTL models as shown in Figure 2.

Surprisingly, we observe that simply adding METABRIC to training data has no effect
on prediction c-index on BRCA (p=0.83). This implies that the distributions of the two
datasets are so different that comparisons made between them are not providing useful
insights to the model. Therefore, we eliminate these between-cohort comparisons by training
a MTL model and observe a significant improvement (p=3e-4). Addition of adversarial
classification loss to SurvivalNet lead to a slight improvement over naive SurvivalNet, while
combining the MTL and ADV approaches into ADV-MTL significantly outperforms all
other methods. The significance of the improvement achieved by ADV-MTL from a machine
learning standpoint is discussed in section 3.5.

We measured some of the clinical and histological differences between METABRIC
and TCGA-BRCA cohorts (see Fig. 3). Kaplan-Meier analysis and log-rank testing of
progression-free survival revealed a significant difference between the two cohorts (p=0.01).
Clinical variable bar charts show remarkable difference in the distribution of disease stage.
Additionally, slight differences in age and histological subtypes can be observed. To mea-
sure differences in distribution of features directly used by the machine learning models,
we visualized the log expression values for a subset of the Oncotype DXTM assay Sparano
et al. (2015) in both cohorts.
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Overall survival prediction in breast cancer

p=0.10p=1e-4*

p=3e-2*
p=2e-5*

Figure 2: One solution to data insufficiency is to obtain similar cohorts and combine them with target
training data. METABRIC gene expression and clinical data were combined with BRCA training
data to improve performance on BRCA using models described in section 2.9. TCGA only refers
to performance of SurvivalNet when trained on TCGA only. The horizontal line indicates the
performance of Cox-Elasticnet trained on naive combination of cohorts. Shaded areas indicate
95% confidence intervals. Paired t-test p-values are provided for some comparisons.

3.2. Combining cohorts with different cancer types

We repeat the experiments of section 3.1 this time using cohorts diagnosed with different
cancer types. As explained in section 2.8, we use five cancer types as target and seven
cancer types as auxiliary cohorts, performing experiments on each possible pair of target
and auxiliary cohorts. Results of these experiments are summarized in Tables 2 and 3 in
terms of average c-index achieved on target test set.

Table 2 summarizes the result of training SurvivalNet on the naive combination of
target and auxiliary cohorts (NAIVE). The last column provides c-index of SurvivalNet
after training on target cohort only. This naive approach leads to either significant (p<0.01)
deterioration or no significant difference in performance compared to SurvivalNet trained
on target only, achieving significant improvement only in one case. ADV-MTL, on the other
hand, achieves significant improvement over target-only setting in 10 cohort combinations
(See Table 3).

In Fig. 4 we show the results of comparison between ADV-MTL and Cox-`2,1 in terms
of c-index achieved on target test set. In each set of experiments, one cancer type is chosen
as target and all others are used as auxiliary data. In 3 out of five 5, training on the
combination of heterogeneous TCGA datasets with ADV-MTL model leads to significant
improvement over single-task training of SurvivalNet with target training data only. Cox-
`2,1 achieves the same in 2 out of 5 cases. We did not observe any significant difference
between ADV-MTL and Cox-`2,1 in this set of experiments, except in experiments with
PAAD where ADV-MTL significantly outperforms Cox-`2,1 (p=7e-3).
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Comparison of TCGA and METABRIC breast cancer datasets
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d. Histological Subtypes
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Figure 3: Differences between the TCGA and METABRIC datasets in terms of outcomes (A), cohort de-
mographics (B, C), clinical variables (C), histologic subtypes (D), and gene expression levels (E).
Progression-Free survival of the TCGA cohort is significantly worse than that of the METABRIC
cohort, which is explained in part by the stark difference in proportion of advanced cases (stages
3 and 4) in the TCGA cohort. Abbreviations used in panels C and D: HR+, hormone-receptor
positive cases (ER+ and/or PR+); TN, triple-negative cases (ER-, PR-, Her2-); Ductal, Infil-
trating ductal carcinomas or carcinomas of no specified type (NST); Lobular, infiltrating lobular
carcinomas. Genes shown in panel E are part of the OncotypeDx breast cancer recurrence panel
(Sparano et al., 2015).

+ACC +CESC +LGG +KIRP +KIRC +PAAD +MESO
Target-

only

CESC
63.82

(±1.79)
-

62.28*
(±1.91)

63.08
(±1.87)

61.49*
(±1.33)

60.50*
(±1.63)

65.43
(±1.44)

64.06
(±1.60)

LGG
71.12

(±0.84)
70.87

(±0.96)
-

69.45
(±1.39)

67.99*
(±1.05)

71.27
(±0.86)

70.76
(±0.70)

70.62
(±0.74)

KIRP
75.14

(±1.98)
74.17

(±1.93)
73.48

(±1.84)
-

74.38
(±1.90)

74.58
(±1.36)

74.89
(±1.77)

74.62
(±1.83)

KIRC
71.20

(±1.14)
70.31

(±0.81)
70.62

(±1.08)
71.03*
(±1.16)

-
70.28

(±1.13)
67.32*

(±1.36)
69.69

(±1.06)

PAAD
63.77

(±1.43)
59.25*

(±1.54)
63.22

(±1.43)
62.24

(±1.81)
58.80*
(±2.13)

-
63.49

(±1.50)
63.16

(±1.84)

Table 2: Performance of SurvivalNet (c-index) when trained on naive combination of target data (rows) and
auxiliary data (columns). Performance after training on target data only has been provided for
reference. Numbers is parentheses are 95% confidence intervals. All improvements are boldened.
* marks significant differences (p–values less than 0.01).
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+ACC +CESC +LGG +KIRP +KIRC +PAAD +MESO
Target-

only

CESC
64.32

(±1.75)
-

63.41
(±1.57)

61.54
(±1.63)

62.92
(±1.84)

60.64
(±1.58)

65.26
(±1.57)

64.06
(±1.60)

LGG
71.04

(±0.93)
71.80*
(±1.05)

-
71.23*
(±0.71)

71.00
(±0.97)

72.24*
(±0.78)

70.42
(±0.74)

70.62
(±0.74)

KIRP
76.49*
(±1.89)

72.24*
(±1.90)

74.91
(±1.68)

-
75.60

(±1.78)
75.0

(±1.64)
75.45
(±1.9)

74.62
(±1.83)

KIRC
72.59*
(±0.92)

72.18*
(±0.85)

72.50*
(±0.74)

73.14*
(±0.75)

-
71.83*
(±1.0)

73.53*
(±0.94)

69.69
(±1.06)

PAAD
64.48

(±1.66)
62.66*
(±1.58)

64.17
(±1.33)

63.99
(±1.42)

64.20
(±1.49)

-
64.14

(±1.66)
63.16

(±1.84)

Table 3: Performance of ADV-MTL model when trained on combination of target data (rows) and aux-
iliary data (columns). Performance of SurvivalNet after training on target data only has been
provided for reference. Numbers is parentheses are 95% confidence intervals. All improvements
are boldened. * marks significant differences (p–values less than 0.01).

Progression-free interval prediction using proposed and baseline methods

** * * *

CESC LGG KIRP KIRC PAAD

Figure 4: Survival prediction accuracy was improved by multi-task learning and adversarial repre-
sentation learning on several benchmark datasets. ? indicate significant improvement (p
<0.05) of multi-task methods over target–only setting.
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PFI prediction performance with and without multi-task learning with OS)

CESC KIRC KIRP LGG PAAD

p=6e-3 p=5e-3 p=0.1 p=9e-9 p=4e-2

LGG KIRC

Figure 5: Progression-free interval (PFI) prediction performance with and without multi-task learning
with overall survival (OS). Comparison performed on five different cancer types. Significance
levels are shown on the plot for each comparison.

3.3. Combining multiple outcome labels for the same cohort

As discussed in section 2.8, TCGA samples may have multiple outcome labels. Overall
survival (OS) labels are noisier, but simpler to obtain since the patients are either deceased
or alive at the end of the study. As shown in Table 4, for some patients, a new tumor
event is never observed (or recorded) during the study (censored PFI), while their overall
survival outcome is observed (deceased by end of study). In such cases, overall survival
could provide an extra supervision signal in training a predictive model that originally
targets PFI prediction.

We use the MTL model to simultaneously use PFI and OS outcomes in training. Target
and auxiliary domains are the same, so there is no need for adversarial domain-invariant
representation learning. What differentiates the tasks from each other is the the predictive
function P (Y |X). Results are summarized in table 4. Multi-task learning with PFI and OS
always leads to improved PFI prediction performance compared to single-task SurvivalNet
trained with PFI labels only.

3.4. Model Interpretation

To gain insights into the internal mechanisms of neural network models, we used risk gra-
dient backpropagation, described in (Yousefi et al., 2017), to interpret two breast cancer
models: the baseline model (TCGA-only) and our best model (TCGA+METABRIC, ADV-
MTL). Risk back-propagation uses partial derivatives of the risk prediction with respect to
the input data to obtain importance scores for the various input features. In order to moti-
vate the use of partial derivatives as a measure of feature importance, let us start by looking
at a linear model of risk:
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Cancer type
PFI+OS
c-index

Improvement
over PFI

Censored PFI
and observed

OS

CESC 65.83 1.69% 5.26%
KIRC 76.55 2.12% 11.81%
KIRP 76.55 1.35% 5.19%
LGG 72.15 1.75% 1.75%

PAAD 65.12 1.34% 9.55%

Table 4: Progression-free survival (PFI) prediction performance with and without multi-task learning with
overall survival (OS). Comparison performed on five different cancer types. Percent of samples
in each cohort with censored PFI and observed OS is given in the last column.

fβ(x) = x>β (10)

In the case of the above linear model, it is easy to take elements of the parameter vector β
corresponding to each feature in x as a measure of importance of that feature. In a neural
network, however, we are dealing with a highly non-linear risk function, which we can
approximate using the first-order Taylor expansion in the neighborhood of a given sample
x0:

gW (x) = gW (x0) +
∂gW (x)

∂x

∣∣∣∣
x=x0

(x− x0)

gW (x) =
∂gw(x)

∂x

∣∣∣∣
x=x0

x+ c

Where c is a constant with respect to x. The partial derivative of the neural network
risk predictions with respect to the input act as the feature coefficients in the linear function
fβ, providing a measure of importance for each input feature.

After ranking genes using the above feature importance scoring method, we performed
Gene Set Enrichment Analysis (GSEA) using rankings from both models to investigate gene
set-level/pathway-level associations (Subramanian et al., 2005) (Figure 6). Both models
learn to assign favorable prognosis to genes that are part of immune response pathways,
including Interferon Gamma response pathway, Allograft rejection gene set and IL-2-STAT5
signalling. This is to be expected, since the gene expression profiles are not 100% pure, and
come from an admixture of tumor cells and the surrounding microenvironment, including
stromal cells and tumor-infiltrating lympohocytes (Morris and Kopetz, 2016; Aran et al.,
2015). Immune response is a known indicator of good prognosis in breast cancer, and
reflects host response to the tumor (Savas et al., 2016). Genes like GCNT1, MYD88, CD40,
FURIN, XBP1, HDAC9, IL1RL1, and EIF4E3 were emphasized. Both models also learn
to assign low risk to genes from the early and late Estrogen response pathways, including
CYP4F11 and GREB1. This is also expected, given that patients with positive hormone
status (i.e. having carcinomas that express ER or PR receptors) are treated with hormone
therapy. In contrast, hormone negative patients, especially those who also lack HER2
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receptor, have much more limited therapeutic options, and subsequently suffer from worse
prognoses (Plasilova et al., 2016).

Both models also correctly learn to assign high risk to genes that are part of proliferation
pathways, including G2M checkpoint, E2F targets and Myc targets, as well as pathways
related to hypoxia response, glycolysis, and angiogenesis. The ADV-MTL model seems
to strongly emphasize proliferation pathways, enough so to reach FDR-adjusted statistical
significance (unlike the TCGA-only model). Proliferation genes like the cell cycle regulators
CCNA1 and CCNB2 (cyclin A1 and B2), ATF5, and KIF4A were picked by both models,
although the ADV-MTL model had a slightly higher emphasis on their adverse prognostic
role. More notably, the growth factor TGFB1 and the tumor suppressor gene TP53 were
much more emphasized by the ADV-MTL model, correctly so, as being associated with
high and low risk, respectively.

Other than the obvious benefit from increased sample size, there appears to be a qual-
itative benefit from the inclusion of cases from the METABRIC dataset during the train-
ing procedure. From figure 3 it can be seen that TCGA cases are much more advanced
than METABRIC; gene expression profiles from TCGA tumors can be thought to rep-
resent a later ”snapshot” of the tumor landscape than equivalent/matched profiles from
METABRIC. This contrast between the early cases from METABRIC and advanced cases
from TCGA may have provided the ADV-MTL model with enough variability to learn to
predict risk from subtle differences in gene expression, especially using proliferation-related
genes.

3.5. Significance of Results

To provide an insight into the significance of the improvement achieved by our models, we
look at the learning curve of SurvivalNet on two target datasets. Learning curves were
obtained by training SurvivalNet on incrementally more training samples (using the same
procedure described in section 3) and testing on a fixed sized test set (40% of data, consis-
tent with the rest of experiments). As shown in Figure 7a, the performance improvement
achieved by ADV-MTL over SurvivalNet trained on the full training dataset exceeds the
improvement resulting from doubling the size of target training data (from 50% to 100%
of training set). In case of breast cancer, ADV-MTL trained on METABRIC and only
10% of TCGA outperforms SurvivalNet trained on all of TCGA when tested on TCGA.
Considering the cost of obtaining labeled samples, we believe the ADV-MTL approach can
save researchers resources by enabling the integration of heterogeneous cohorts in training.

3.6. Future Work

Data insufficiency is known to hinder successful application of machine learning models to
high dimensional genomic data. In this paper, we study two neural network models for
learning from combinations of heterogeneous datasets to tackle this issue. Significant im-
provement was achieved by identifying and integrating independent cohorts diagnosed with
the same cancer type, and training the proposed models with the integrated data. We show
how even genomic data obtained from different tumor sites can be used to augment train-
ing data and improve performance. Moreover, different outcome labels of the same cohort
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Figure 6: Model interpretation using risk backpropagation and Gene Set Enrichment Analysis (GSEA).
A. GSEA results using the Hallmarks MSigDB collection. The Normalized Enrichment Score
(NES) is plotted for the same gene set for the TCGA-only model (x-axis) and the final
TCGA+METABRIC ADV-MTL model (y-axis). Higher enrichment scores indicate higher risk
(worse prognosis). Color is used to indicate the broad category to which a particular gene set
belongs, while shape is used to indicate significance of NES scores at a FDR threshold of 0.1.
B-D. Comparing gene ranks in the TCGA-only versus the ADV-MTL models. Higher rank in-
dicates lower risk (better prognosis). Density plots were used (red is higher density), and show
regions of concordant ranks as densities at the lower-left and upper-right corners. A random
sample of genes is also individually plotted in high- and low model concordance zones.
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a. SurvivalNet learning curve on LGG b. SurvivalNet learning curve on BRCA
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Figure 7: Learning curves of SurvivalNet on two datasets. Size of training data is gradually increased from
10% of the original size to 100%. The horizontal line depicts the performance of our ADV–MTL
approach. Error bars correspond to confidence intervals of the mean c–index.

were used in multi-task learning to alleviate the outcome censoring issue and significant
improvement was observed in most cases.

We show that the integration of heterogeneous datasets using our proposed method is a
reasonable alternative to acquisition of new training data from the target distribution which
may be expensive or impossible due to practical constraints (funding, availability, clinical
setting, etc).The ideal solution to any data insufficiency issue is enhanced data collection and
standardization efforts. However, in settings where this is impractical, employing techniques
like ADV-MTL and MTL can help address this at no extra cost. While our work focused
on combining datasets from the same feature space, future work may apply or extend the
proposed models to scenarios 2 and 4 introduced in Section 2.2, namely multi-task learning
using datasets with different feature spaces and/or label spaces. Studying different cancer
subtypes (eg. breast cancer histologic subtypes) under a multi-task learning setting could
also lead to improved prediction.
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Chapter 5

Transfer Learning From Nucleus

Detection To Classification In

Histopathology Images, ISBI 2019

This chapter, mostly independent of the rest of the dissertation, describes an appli-

cation of convolutional neural networks to solve a different clinical problem in cancer

care: annotating histopathology images on the cell level. This chapter presents the

following conference paper, not copied in this dissertation due to copyright consider-

ations:

Safoora Yousefi and Yao Nie, Transfer learning from nucleus detection

to classification in histopathology images. In Proceedings of International

Symposium on Biomedical Imaging (ISBI) 2019 c©2019 IEEE.

Abstract. Despite significant recent success, modern computer vision techniques

such as Convolutional Neural Networks (CNNs) are expensive to apply to cell-level

prediction problems in histopathology images due to difficulties in providing cell-level

supervision. This work explores the transferability of features learned by an object
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detection CNN (Faster R-CNN) to nucleus classification in histopathology images. We

detect nuclei in these images using class-agnostic models trained on small annotated

patches, and use the CNN representations of detected nuclei to cluster and classify

them. We show that with a small training dataset, the proposed pipeline can achieve

superior nucleus detection and classification performance, and generalizes well to

unseen stain types.
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