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Abstract 
Detecting differentially expressed genes when there is no replicate: a 

Bayesian inference with historical data-based informative priors 
By 

Wanqi Chen 
 

Background: As modern high-throughput sequencing technologies such as 

microarray have become essential in biological studies, the number of publicly 

assessible datasets has also dramatical increased. The next generation 
sequencing technologies lead to the ‘large p, small n’ problem, we focus on 

the extreme case that there is no replicate in the sample when detecting 
differentially expressed genes. To combine historical data and current studies, 

hierarchical models serve as the ideal tools. 
 
Methods: The key idea of our method is to borrow information from highly correlated 

“relative” genes when conducting inference on a single gene. We utilize historical data 
to identify the correlation structure and specify an informative prior distribution, 
followed by Bayesian inference using the informative prior. We use the posterior 
distribution to make statistical inference, and also rank the probability of differential 
expressed genes. 

 

Results: In simulation studies, our proposed strategy make accurate and 

robust inference on gene expression levels. It also outperforms GFOLD in 
differentially expressed genes detection with lower false discovery rate and 

larger area under the receiver operating characteristic curve. 
 

Conclusion: We illustrated the feasibility and effectiveness of using informative 

priors from historical data to help detect differentially expressed genes when there is 
no replicate. 
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1. Introduction 

Modern high-throughput sequencing technologies such as microarray have become 

essential in biological studies. These developing technologies have the capability of 

sequencing multiple DNA molecules in parallel, generating comprehensive insights 

into molecular biology, genetics, and genomics (Churko, Mantalas, Snyder, & Wu, 

2013). The wider application of modern sequencing technologies also leads to 

statistical challenges. 

 

In conventional statistical problems, the number of observations n is usually much 

larger than the number of features p to be analyzed. However, in modern sequencing 

applications, the difficulty of sample preparation and its relatively high cost, result in 

the number of featured variables being larger than the number of samples, which is 

often termed as the ‘large p, small n’ problem (Fan & Lv, 2010). With the aim to detect 

the difference in gene expression level between two groups, traditional statistical 

methods faced great challenges. Extensions of these procedures have been used to 

improve the accuracy of statistical inferences for ‘large p, small n’ problem.  

Nevertheless, all these methods have been developed only based on current data in 

the analysis, ignoring the information from previous experiments. Given the dramatical 

increase of publicly accessible genomic datasets, existing data and information can 

be considered and utilized. 

 

To combine historical data with current study, hierarchical models are ideal options 

which have been shown effective in detecting gene expression changes from high 

throughput genomics data (Newton, Kendziorski, Richmond, Blattner, & Tsui, 2001) 

and other bioinformatics areas (Ji & Liu, 2010). In a hierarchical model framework, all 

features parameters distributions are assumed to be randomly drawn from a higher 
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level distribution, which provides a reasonable solution to ‘borrow’ information from 

historical data an improve the inference results. 

 

In this study, we focused on the extreme case where there is no replicate in case and 

control samples in a study. In this case, variances within case and control samples 

cannot be estimated from the current data directly. Our proposed strategy is based 

on Bayesian hierarchical modeling, using historical data to provide informative priors. 

We hypothesized that with reasonable normalization and assumed conditions (such 

as control), the correlation between the expression values of any pair of genes in the 

genome remain the same, and hence the distributions of such correlation coefficients 

can be estimated from historical data. We used Gibbs Sampler method (George, 

1992) to make statistical inference, and then conducted simulation study to test the 

effectiveness of this novel model-based method. 

 

2. Method 

2.1 Motivation 

The majority of high throughput experiments have limited sample size due to practical 

constraints, which present great challenges for statistical inference. Sophisticated 

statistical approaches such as DESeq-2(Love, Huber, & Anders, 2014) and Limma 

(Smyth, 2005) have been developed to handle these difficulties. However, these 

methods no longer work in the most extreme case when there is no replicate in cases 

and controls. 
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2.2 Model 

Taking advantage of the fact that many genes in the genome are highly correlated, 

the key idea of our method is to borrow information from highly correlated “relative” 

genes when conducting inference on a single gene. To achieve our strategy, we utilize 

historical data to identify the correlation structure and specify an informative prior 

distribution, followed by Bayesian inference using the informative prior. 

 

Let (𝑋#, 𝑋%,⋯ , 𝑋')		denote the gene expression values of a group of genes in the 

sample which have similar biological functions. The full model is: 

	(𝑋#, 𝑋%,⋯ , 𝑋')		~	𝒩(𝝁, 𝜮) 

𝜇/	~	𝑁(𝜇1, 𝜎1%) 

𝜎/%	~	𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(𝛼1, 𝛽1)	 

where 𝝁 = (𝜇#, 𝜇%,⋯ , 𝜇'), 𝜮 = 𝑺
𝟏
𝟐𝑹𝑺

𝟏
𝟐, 𝑺 = 𝐷𝑖𝑎𝑔(𝜎#%, 𝜎%%,⋯ , 𝜎'%) , and the correlation 

matrix 𝑹  is assumed known (derived based on historical data). 𝝁  is the location 

parameter for the sample, and 𝜮 is the covariance matrix. 

 

There are four prior parameters 𝜇1, 𝜎1, 𝛼1, 𝛽1 for one sample. 𝜇1, 𝜎1% can be interpreted 

as location and scale parameters for 𝜇/ while 𝛼1, 𝛽1 are shape and scale parameters 

for 𝜎/% . And we also assumed that the 𝜇/′𝑠  and 𝜎/%	′𝑠  in one sample were slightly 

different with each other. 

 

2.3 Statistical Inference and Testing 

Since we consider the situation with no replicate, the data likelihood is the data 

distribution itself. 
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With the aim to detect the expression difference for each gene between two groups, 

the data distribution can be conditionally written as a one-dimensional distribution: 

𝑋#|	𝑿G𝟏		~	𝑁H𝜇#∗, 𝜎#∗
JK 

where 𝜇#∗, 𝜎#∗
J are the parameters for the conditional data distribution. Here we chose 

𝜇# as the example, and the inference for other 𝜇/′𝑠 are similar. 

 

	𝜇#∗ = 	𝜇# +	𝚺𝟏𝟐𝚺𝟐𝟐G𝟏(𝑿G𝟏 −	𝝁G𝟏) 

𝜎#∗
J = 	𝜎#% −	𝚺𝟏𝟐𝚺𝟐𝟐G𝟏𝚺𝟐𝟏	 

𝚺 = O 𝜎#
% 𝚺𝟏𝟐

𝚺𝟐𝟏 𝚺𝟐𝟐
P 

𝑿G𝟏 = (	𝑋%,⋯ , 𝑋'), 𝝁G𝟏 = (𝜇%, 𝜇Q,⋯ , 𝜇'), 			𝝈G𝟏𝟐 = (𝜎%%, 𝜎Q%,⋯ , 𝜎'%) 

 

Due to conjugacy, the conditional posterior distributions for 𝜇# and 𝜎#% are also normal 

and inverse- gamma distribution: 

𝜇#	|	𝑿, 𝝁G𝟏, 𝑺 ∼ 𝑁H𝜇T, 𝜎T%K 

	𝜎#%|𝑿, 𝝁, 𝝈G𝟏𝟐 	∼ 𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(𝛼T, 𝛽T) 

 

where 𝜇T, 𝜎T, 𝛼T, 𝛽T  are parameters for the posterior distributions conditional on all 

X’s: 

𝜇T = 	
UVWX
YV
J Z	 [\

Y\
∗J

\
YV
JZ	

\

Y\
∗J
− 𝑐, 𝑐 = 	𝚺𝟏𝟐𝚺𝟐𝟐G𝟏(𝑿G𝟏 −	𝝁G𝟏)	  

	𝜎T% = 	
1
𝜎1%

+	
1

H𝜎#% −	𝚺𝟏𝟐𝚺𝟐𝟐G𝟏𝚺𝟐𝟏K
% 

	𝛼T = 	𝛼1 +	
1
2
 

𝛽T = 	𝛽1 +	
(𝑋# − 𝜇# − 𝑐	)%

2
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We have two known parameters in our model: 𝜇 and 𝜎%. Since we would like to use 

this model-based strategy to detect the difference in expression level, we focus 

more on the expression level so 𝜇 is the parameter of interest. For the ith gene in 

two samples (i.e. 𝑋/, 𝑌/), the hypotheses are: 

𝐻1:	𝜇c/ = 	𝜇d/ 

𝐻e: 𝜇c/ ≠ 𝜇d/ 

We calculated the probability of observing 𝑌/ given that 𝐻1 is true: 

Pr(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑌/	| 𝜇c/ = 	𝜇d/) = Pr	(𝑌/|𝜇c/, 𝜎c/% , 𝑿) 

 

We used this probability to rank differentially expressed (DE) genes. 

 

3. Results 

3.1 Statistical Inference using Gibbs Sampler 

We conducted simulation studies to test the performance of the proposed method in 

estimating model parameters. To show the generality of this model-based strategy, 

we tried various settings of the correlation matrix, dimension, as well as the initial 

values of the MCMC. Our method performed well in inferring mean (𝜇/ ) under all 

conditions.  

 

We randomly generated 30 gene sets from the same multivariate normal distribution 

and each gene set contained 20 genes. Then we applied our model-based strategy 

to make inference on. Prior parameters were  𝜇1 = 2, 𝜎1 = 0.15, 𝛼1 = 3, 𝛽1 = 0.5, and 

random correlations between 0 to 1. We named this informative prior Bayesian model-

based method IPBM. 
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The boxplot (Figure 1) summarized the difference between observations/estimator 

and true means for all 20 genes in 30 repeated simulations. Generally, we can see the 

estimators are accurate and robust. 

 

 
 
3.2 Differentially Expressed Genes Detection 
 
We used simulation to test the performance of IPBM. The control group contained 50 

gene sets, and each gene set had 20 genes. We created two treatment samples, both 

of them contained 50*20 genes and 20% of them were differentially expressed. We 

examined two scenarios: the differences in gene expressions between treatment and 

control groups were either uniformly distributed between 0.15 and 0.30, or uniformly 

distributed between 0.30 and 0.60. Prior parameters were  𝜇1 = 2, 𝜎1 = 0.15, 𝛼1 =

3, 𝛽1 = 0.5, with random correlations between 0 to 1 assigned to each gene set. 

 

Figure 1 The differences between simulated data or IPBM estimators and true means 
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Among existing methods, only GFOLD (Meyer et al., 2012) can handle the situation 

that there is no replicate. We repeated the simulations 500 times and calculated the 

empirical false discovery rate (FDR) (Benjamini & Hochberg, 1995). Our method 

performed better than GFOLD with lower FDRs under both situations (Figure 2). 

 

 

We used Receiver Operating Characteristic (ROC) (Hanley & McNeil, 1982) curves to 

further evaluate the performance of these two methods. Figure 3 showed typical 

ROC curves for one single simulation. Our method clearly outperformed the GFOLD 

method regardless of the different settings of DE genes. 

  

Figure 2 FDR for IPBM and GFOLD methods. (a) Differences between two groups of data were uniformly distributed 
between 0.15 to 0.30. (b) Differences between two groups of data were uniformly distributed between 0.30 to 0.60. 
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4. Discussion 

We presented a novel method called IPBM based on Bayesian hierarchical model with 

informative priors in this thesis. Simulation studies showed IPBM outperformed 

GFOLD in detecting differentially expressed genes when there is no replicate in our 

sample, with better accuracy, sensitivity, and specificity. However, all results were 

based on simulation studies. We plan to conduct real data analysis to further test the 

performance of IPBM. 

 

IPBM focused on the extreme case that there is no replicate, but theoretically it can 

handle the common cases in bioinformatics that there are small number of replicates 

as well. And many widely used DE genes detecting methods were designed for similar 

situations, such as DESeq2 (Love et al., 2014) and Limma (Smyth, 2005). 

 

Figure 3 ROC curves for IPBM and GFOLD methods. (a) Differences between two groups of data were uniformly 
distributed between 0.15 to 0.30. (b) Differences between two groups of data were uniformly distributed between 
0.30 to 0.60. 
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The current IPBM method uses multivariate normal distribution to model the log 

transformed expression level of gene sets for mathematical convenience. The 

application of other non-normal distributions may help to improve the robustness of 

our method in inference and prediction (Ganjali, Baghfalaki, & Berridge, 2015). We 

used IPBM to detect different expression level gene by gene. But since we considered 

the correlations between genes in the model, another possible improvement of our 

method is to detect the different expression level for whole gene sets. This will 

potentially improve IPBM’s performance with greater flexibility. 

 
 

5. Conclusion 

We illustrated the feasibility and effectiveness of using informative priors from 

historical data to help detect DE genes when there is no replicate. In simulation 

studies, our proposed strategy showed its better performance than GFOLD. With the 

increasingly available genomics data, we presented a promising method to make 

statistical inference and to detect differentially expressed genes. 

 

We simulated microarray data to test IPBM, since microarray is more popular than 

RNA-seq due to its relatively lower cost. But RNA-seq can provide more information 

about the transcriptome, our proposed method can be applied on it as well. 

Additionally, cross-platform models may also be feasible.  
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