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Abstract 

New Thoughts on Using Elemental and Non-Elemental 

Sets to Produce Robust Estimates of Regression 

Coefficients 

 

By Chengyin Jin 

 

The idea of utilizing elemental sets in linear regression was proposed in 1755, but 

was not widely accepted due to computational burdens. Renewed recent interest in this 

topic was inspired by the appeal of robust regression, along with the development of 

modern computational environments. In this paper, different weighting factors are 

developed and applied for elemental regression. These weights combine information 

from influence statistics together with variance information associated with elemental 

sets, to down-weight subsets with outliers with a view toward maintaining efficiency for 

estimating regression coefficients. A new approach, called the “Drop K” method, is 

proposed and assessed in simulation studies. Instead of selecting all unique elemental 

subsets containing the minimal number of observations sufficient to fit the desired model, 

k observations are dropped from the original dataset to form each subset, where k is the 

number of suspected outliers. Estimators were again calculated under different weights, 

including those based on influential statistics and the variance of estimators from each 

set. The performance of this method is compared with that of elemental regression, as 

well as with a popular robust regression technique (the Huber estimator) in simulation 

studies. The Drop K approach performed better than the least square estimators, and 

appears to provide an appealing alternative to elemental regression estimators. 
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Chapter 1: Introduction 

1.1 Multiple Linear Regression and Outliers 

The standard multiple linear regression model is:  

Y=Xβ+ε (1.1) 

where Y denotes an n1 vector of random observations, X is an np design matrix of 

known predictors, β is a p1 vector of unknown parameters, and ε is an n1 vector of 

independent random errors with E{ε}=0 and Var{ε}=σ
2
I. The parameter vector β is 

typically estimated by Ordinary Least Squares (OLS), which minimizes the sum of 

squared residuals: SSE(β)=(Y-X β)
t
(Y-X β)=ε

t
ε=



n

i

iε
1

2 . The resulting OLS estimator is 

given by 


β =(X
t
X

)-1
X

t
Y assuming that the regression model is of full rank; otherwise a 

generalized inverse is required and the estimator is not unique. 

OLS is very efficient under the usual assumptions above for linear regression; however, it 

is highly non-robust to outliers in the model. Outliers are residuals iii YY 


, whose 

values are well separated from the reminder of the residuals. Outliers come from diverse 

sources, such data incompatible with model assumptions. When fitting linear regression 

models, outliers may dramatically affect the estimated regression coefficients obtained 

via the OLS solution. Figure 1.1 shows an example of how the fitted OLS line can be 

affected by an outlier. 

A large number of methods have been developed for outlier detection. A traditional 

approach is the examination of standardized residuals and studentized residuals [1] . 
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Influential statistics, such as Cook’s distance [2], Dffits [1] and Dfbetas [1],  have also 

been developed to identify the outliers.   

  

Figure 1.1: Fitted OLS lines with and without outlier. The Solid dot denotes the outlier. 

Solid line: regression line based on observations without outlier; 

Dashed line: regression line based on observations with outlier. 

What is the best approach to deal with observation outliers? In some cases, outliers 

contain valuable information for fitted models. Simple deletion of outlying observations 

is never recommended except when they are due to verified recording errors and/or 

reflect implausible values. Robust regression methods have been proposed as alternatives 

to deal with outliers, and elemental regression has been identified as a potential facilitator 

for certain robust regression alternatives. 
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1.2 Robust Regression 

Instead of objectively removing outliers, robust regression techniques consist of 

algorithms which provide more robust estimators than OLS. Statisticians have developed 

numerous robust regression methods, leading to estimators that can be roughly classified 

as M-estimators, R-estimators and L-estimators [3]. The M-estimators derive their name 

from “generalized maximum likelihood”, which was proposed by Huber in 1964 [4]. M-

estimators tend to perform well for outliers in the outcome variable. The R-estimators are 

derived from “rank tests” and were proposed by Jaeckel in 1972 [5, 6]. The L-estimators 

derive their name from the fact that they are “linear combinations of order statistics” [5]. 

Boscovich first suggested the Least Absolute Value (LAV) method in 1757 [7], and later 

Rousseeuw proposed Least Median Squares (LMS) [8] and Least Trimmed Squares 

procedures [9] in 1984.  

As computing power increased, iteratively reweighted least squares (IRLS) became 

popular as an operational method for calculating robust regression estimators. In IRLS 

robust regression, weights are assigned to observations according to how outlying they 

are. These weights are revised until convergence is obtained for the robust fit, with the 

fitting process at each step resembling a weighted least squares strategy. Many weight 

functions have been developed to reduce the effect of outliers. Among the widely used 

approaches are those based on the so-called Huber and Bisquare weights [10]. The Huber 

weight function is defined as:  
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














345.1||
||

345.1

345.1||1

u
u

u

w  

Here, w denotes the weight and u denotes the scaled residual: 

MAD

e
u i

i    , where |}}{{|
6745.

1
ii emedianemedianMAD   denotes “median absolute 

difference” and where ei is the ith sample residual [10]. 

 

1.3 Elemental Regression 

The idea of elemental regression was proposed in 1775 by Boscovich [11], years before 

the least squares methodology became popular. However, the method was not widely 

accepted due to the computational burdens as n and p become larger. Modern 

computational efficiency makes elemental regression feasible, and has inspired renewed 

interest in this topic. 

In regression model (1.1), the minimum number of observations required to obtain the 

OLS estimator is p. In elemental regression, p observations are taken from the dataset as 

a subset. The final estimator is calculated by combining the estimators from all possible 

unique subsets. Letting h={i1, i2, … ip} denote a subset with p observations, the estimator 

for subset h (assuming that the h
th

 design matrix is full rank) is denoted: 

h

t

hh

t

hh YXXXβ
1)( 



  ,      (1.2) 
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where Xh is the pp design matrix for subset h and Yh is the p1 subvector of Y [12].  

As noted by several authors [12-14], the OLS estimator can be obtained as a weighted 

average of the estimators derived from each elemental subset: 



 






h hhhh t

h

t

h

h h

t

h

hh h

t

h

OLS w ββ
XX

XX

XX

βXX
β

||

||

||

||
 (1.3) 

When 1h hw , (1.3) is the same as the OLS estimator. For estimating the slope 

parameter in simple linear regression (SLR) with p=2, these determinant-based weights 

are equivalent to the following: 

 




ts ts

ji
h

xx

xx
w

2

2

)(

)(
,      (1.4)   

where i and j index the two observations contained in the h
th

 elemental set, xi and xj are 

the values of x for those two observations, and the summation in the denominator is over 

all possible elemental sets (see, e.g., [12]). 

Importantly, we note that this is the same as the inverse of the variance of 
h



β  divided by 

the sum of the inverse variances across all elemental sets. 

Hoerl and Kennard [15] similarly used determinant-based weights and proved that in fact 

for any value of m, p ≤ m ≤ n, the OLS estimator can be reproduced by a weighted 

average of all 








m

n
  regression coefficients based on all possible unique observation 

subsets of size m in the dataset. In Wang’s thesis [14], it is shown that this extension of 
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the elemental set result for reproducing OLS based on subsets of various sizes can also be 

accomplished by variations on inverse-variance weighting. Further, Wang [14] shows 

that direct inverse-variance weighting produces estimators very close to the OLS result, 

indicating that using inversed variances as weights works to ensure efficiency when 

combining regression estimates based on elemental or non-elemental subsets. Mayo and 

Gray [12, 13] showed that many regression estimators can be expressed in terms of 

elemental regressions, like OLS, LMS, weighted least squares and IRLS. They named 

this class the leverage-residual weighted elemental (LRWE) estimator. Each member of 

the LRWE class can be expressed in the form:  










h

h

h

hhw

hhw

)](),([

)](),([

),(






β

β ,      (1.5) [12] 

where λ(h) is a weighting factor based on leverage information from elemental subset h,  

ρ(h) is a weighting factor based on the residual or degree of fit information. For example, 

the weighting factors for OLS are .1)(|,|)(  hh h

t

h  XX   [12, 13]. 

Mayo and Gray also proposed an approach, the trimmed elemental estimator (TEE), 

which changes the contributions of one or both weighting factors. TEE is a special case 

of (1.5), by setting  

).||100)1(||()(

|,|)(

11

valuese
p

n
theofpercentiletheIh

h

n

i

hi

n

i

phi

h

t

h


















 XX

     [13] 
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where I(·) is the indicator factor,  


n

i

hie
1

||  is the sum of absolute residuals and p is the 

trimming constant ( 10  p ). For further details, refer to Mayo and Gray [12, 13]. 

 

1.4 Outline 

In this thesis, different weighting factors are developed and applied for elemental 

regression. A new approach, called the “Drop K” method, is also proposed and assessed 

in simulation studies. The performance of this method is compared with that of elemental 

regression, as well as the Huber estimator. 
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Chapter 2: Methods 

2.1 Introduction 

In the first part of this chapter, a series of new weights for potential use in elemental 

regression is introduced. These weights combine information from influence statistics 

together with variance information associated with elemental sets, to down-weight 

subsets with outliers with a view toward maintaining efficiency for estimating regression 

coefficients. 

The second part of the methods chapter proposes a new idea for subset construction. 

Instead of selecting all unique elemental subsets containing the minimal number of 

observations sufficient to fit the desired model, k observations are dropped from the 

original dataset to form each subset, where k is the number of suspected outliers detected 

in the dataset. Estimators are again calculated under different weights, including those 

based on influential statistics and the variance of estimators from each set. 

 

2.2 Elemental Regression 

2.2.1 Notation 

Assuming there are n observations and p unknown parameters, then the total number of 

elemental subsets is 









p

n
e . Let Ej, j=1,2, …, e, represent the j

th
 unique elemental set 

with p observations. 
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2.2.2 β Estimator 

As previously suggested by Mayo and Gray[12, 13], a potentially robust estimator of a 

given regression coefficient (


β ) using the elemental regression method can be defined as: 







e

j

EjEjw
1

ββ             (2.1) 

where 







e

j
jj

jj
Ej

EE

EE
w

1

)()(

)()(




            (2.2) 

Here, 
Ej



β  is the regression coefficient for subset Ej, λ(Ej) is a weighting factor based on 

the elemental subset-specific design matrix XEj, and ρ(Ej) is a weighting factor based on 

influential statistics associated with the observations comprising the jth elemental set. 

2.2.3 Weighting Factors 

Here, we will use λ(Ej)=1/var( Ej



 ), in keeping with the fact (see Chapter 1) that inverse-

variance weighting of elemental sets is essentially fully efficient under the usual linear 

regression assumptions. Thus, letting ρ(Ej)=1, we obtain the inverse-variance weights as: 











e

j
Ej

Ej
INVjW

1

,

)var(1

)var(1




             (2.3) 

The estimator


 using Wj,INV essentially reproduces the same result as OLS, ensuring the 

efficiency of our weighting method. Note that because of the assumed homoscedastic 
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errors, the calculation in (2.3) can be made without estimating the residual variance; that 

is, we use only the 1)( 
XX

t  portion of )( EjVar


β
 
when working with elemental sets. 

To obtain robust alternative estimators, we propose that the ρ(Ej) be defined as the 

product of inversed influential statistics for each observation in the elemental subset Ej, 

i.e., 


p

t
j tjF

E
1

)(
1)( , where F(tj) is the value of an influential statistic for the t

th
 

observation within the jth elemental set. Cook’s distance, absolute value of Dffits 

(|Dffits|), Dffits
2
[16] and absolute value of Dfbetas (|Dfbetas|) are each used separately as 

influential statistics in our current study to produce “influence” weights(WINF), as 

follows: 

 





 



e

j

p

t

p

t
INFj

tjF

tjF
W

1 1

1
,

)(
1

)(
1

                 (2.4) 

For outlying observations, the influential statistics F(tj) are much larger than for normal 

observations; hence, the inversed influential weight can effectively down-weight the 

estimated coefficients from subsets that contain outliers.  

There are many possible combinations for the final weight wEj based on Wj,INV and Wj,INF. 

The following weighting factors were tested: 

(1) Wj,INVF, which combines Wj,INV and Wj,INF: 
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





e

j
INFjINVj

INFjINVj
INVFj

WW

WW
W

1
,,

,,
,              (2.5) 

Note that (2.5) is algebraically equivalent to (2.2), with λ(Ej)=1/var( Ej



 ), and 





p

t

j tjF
E

1
)(

1)( . 

(2) Wj,MINVF , which takes the minimum of Wj,INV and Wj,INF,  and scales the resulting 

weights so that their sum equals 1: 







e

j
INFjINVj

INFjINVj
MINVFj

WWMin

WWMin
W

1
,,

,,
,

),(

),(
        (2.6) 

(3) Wj,PINVF. As discussed in Chapter 1, Mayo and Gray [12, 13] considered some desired 

percentiles when building the weight factors for TEE. Using a similar idea as in the TEE 

method, we consider alternative weights for each elemental subset denoted as Wj,PINVF 

and scaled so that the resulting weights sum to 1. First, we define 




























otherwisew

valuesw
p

n
the

ofpercentilethwifwwMin

w

INVj

INFj

INFjINFjINVj

j

,

100),,(

,

,

,,,

,




  (2.7) 

The resulting weight Wj,PINVF then becomes 
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





e

j
j

j
PINVFj

w

w
W

1
,

,
,




               (2.8) 

The idea here is to use the efficient inverse-variance weighting for all elemental sets 

except those that merit low influence weights.  

 

2.3 Drop K Method 

2.3.1 Notation 

Assume again that we have a total of n observations. The Drop K method consists of two 

steps. First, standard regression diagnostics based on the assumed linear regression model 

are applied to detect how many suspected outliers there are in the full data set. We record 

this number of outliers as k. Then, the 











kn

n
d  unique subsets containing n-k of the 

observations are constructed. Define Dj, j=1, 2, …, d,  as the j
th

 “Drop K” subset of the 

original dataset in which k observations are dropped.   

The idea behind the proposed Drop K method is similar to that of elemental regression, 

except that instead of selecting a small number of observations to build a subset, a certain 

number of points are dropped and the rest are used as a subset. As noted in Chapter 1, 

appropriate inverse-variance weighting of all unique subsets of arbitrary size m ( p) 

reproduces the OLS estimator [14, 15]. Thus, as before, the efficient aspect of the 

weighting can be accomplished via inverse-variance weights. 
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2.3.2 Outlier Detection 

For our purposes, studentized (jackknife) residuals are used for outlier detection. These 

are defined as follows: 

)
i

h(12
i)(

S

i
e

i)(
r







 

Here, 
2

i)(
S


 is the mean square error from the original regression of Y on the X’s after 

dropping the i
th

 observation, and hi represents the leverage value for the i
th

 observation. 

Note that i)(r   follows a t distribution with n-p-1 degrees of freedom under the typical 

assumptions for linear regression [1]. In the current study, observation i was flagged as an 

outlier if the absolute value of i)(r  was greater than the Bonferroni critical value t(1-α/2n; 

n-p-1), where we take α=0.1 [10]. The comparison was two-sided because we are 

concerned with extreme absolute values of the studentized residuals.  

2.3.3 β Estimator 

The proposed estimator 


β  using the Drop K method can be expressed in the following 

form: 







d

j

DjDjw
1

ββ             (2.9) 

where







d

j
jj

jj
Dj

DD

DD
w

1

)()(

)()(




             (2.10) 
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Here, 
Dj



β  is the estimator based on the j
th

 drop k subset Dj, and ρ( jD ) is a weight factor 

based on the influential statistics associated with the k observations that were dropped to 

obtain the subset Dj. The remaining component λ(Dj) is the weighting factor 

incorporating leverage information based on the jth subset-specific design matrix (XDj) 

associated with subset Dj.  Note the similarity of (2.9) and (2.10) to the elemental set-

based versions in (2.1) and (2.2), except that the leverage portion of the weight is now 

based on influence statistics corresponding to the observations that are not included in the 

jth set.  

2.3.4 Weighting Factors 

Here, we take λ(Dj) to be the inversed variance of the β estimator from the j
th

 drop k set, 

i.e., λ(Dj)=1/var( Dj



 ). As we indicated in 2.2.3, λ(Dj) acts to preserve efficiency. We 

define the inverse-variance weights as 









d

j

Ej

Ej

INVjW

1

,

)var(1

)var(1





            

 (2.11) 

 Next, we take 



k

t

j tjFD
1

)()(  to be the influence weighting factor, where F(tj) is the 

influential statistic for the t
th

 observation dropped for the jth subset and in the current 

study F can represent Cook’s distance, |Dffits|, Dffits
2
 or |Dfbetas|. The “influence” 

weight for the drop k approach is then as follows: 
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Note that (2.11) is the same as (2.3) for elemental regression; however, (2.12) is different 

from (2.4) in that the influential statistics are placed in the numerator instead of the 

denominator to blunt the effect of outliers. This is because the influential statistics are 

based on the observations deleted. Consider the extreme case in which all k outliers 

happen to be dropped for subset Da, 0 ≤ a≤ d. Since the influential statistics for the k 

dropped outliers will be larger than those for other normal observations, 
Da



β  gains the 

largest influence weight based on ρ( aD ).  

Therefore for the Drop K method, Wj,INVF is expressed by: 





d

j

INFjINVj

INFjINVj

INVFj

WW

WW
W

1

,,

,,

,              (2.13) 

Note that (2.13) is algebraically equivalent to (2.10), with λ(Dj)=1/var( Dj



 ), and 





k

t

j tjFD
1

)()( . We focus primarily on (2.13) to obtain a robust estimator based on the 

Drop K approach, as we find in what follows that fewer adjustments to this natural 

incorporation of influence and inverse-variance weights are needed than in the elemental 

regression setting.  
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Chapter 3: Simulations 

Simulation studies were conducted in a simple linear regression (SLR) situation to 

evaluate the proposed weighted estimators using elemental regression (with p=2), and 

using the Drop K method. 

For elemental regression, WINVF, WMINVF, WPINVF (α=0.05), WPINVF (α=0.25), WPINVF 

(α=0.50) and WPINVF (α=0.75) were compared against regular OLS regarding robustness 

and relative performance. Weights with different influential statistics, including Cook’s 

distance, |Dffits|, Dffits
2
 and |Dfbetas| were tested for each form of weight factor. 

For the Drop K method, only WINVF (2.13) was used as the weight factor, with Cook’s 

distance, |Dffits|, Dffits
2
 and |Dfbetas| utilized to produce the influence weights (F), 

respectively. 

Each simulation used 1000 iterations. For each regression situation, the sample size was 

set as n=25, 50, or 100. The predictor variable X was obtained by random number 

generation from the normal distribution N(3,3), and  sorted in ascending order. The 

outcome variable Yi was generated by: 

Yi=β0+β1Xi+εi, i=1, …, n         (3.1) 

where β0 was set as 0 and β1as 1. The error εi followed the normal distribution N(0,0.15) 

or N(0,1) for each situation.  

First, two artificial outliers were created by setting Yn-1=-10 and Yn=-10. Under this 

setting, 2 outliers were expected for most cases. Around 3% of the data sets with n=25 

and errors distributed as N(0,0.15) had less than 2 outliers identified by means of 
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studentized residuals. About 10% of the data sets with n=25 and ε following N(0,0.1) had 

less than 2 outliers detected. The program was automatically adjusted for each simulated 

dataset according to the number of outliers detected for the Drop K method. Separately, 

datasets without any imposed outliers were used to assess the performance of our 

weighting factors under the usual SLR assumptions. For the Drop K approach, the 

regression diagnostic step still detected outliers for approximately 10% of the simulated 

datasets in this case, and the corresponding Drop K procedure was applied to each such 

dataset.  For datasets with no outliers detected, the estimator used for the Drop K 

approach was the OLS estimator from the complete data. 

As part of the comparison of regression coefficient estimators, we also included regular 

OLS after deleting the identified outliers in the dataset in addition to IRLS robust 

regression using the Huber weight function [10] for comparison.  
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Chapter 4: Results 

4.1 Simulation Results 

Table 4.1.1 and Table 4.1.2 summarize the β estimators from 1000 iterations with sample 

size n=25 and independently and identically distributed residual errors generated as 

N(0,0.15) and N(0,1). Tables 4.1.3-4.1.6 summarize similar simulations as in Tables 

4.1.1 and 4.1.2, except that for Table 4.1.3 and Table 4.1.4 we used sample size n=50 and 

for Table 4.1.5 and Table 4.1.6 we used sample size n=100. 

For the Drop K method, both Table 4.1.1 and Table 4.1.2 indicate that the proposed 

estimators yielded values much closer to the true value than did OLS. Among the four 

influential statistics used, weighting factors calculated based on Cook’s distance and 

Dffits
2
 performed slightly better than those utilizing |Dffits| and |Dfbetas|. The results 

with these two weighting factors in the Drop K setting were competitive in terms of bias 

with those based on the popular Huber weighting method. The situation regarding the 

Drop K approach was essentially the same for Tables 4.1.3 through 4.1.6. Comparing the 

results in Table 4.1.1, Table 4.1.3 and Table 4.1.5 together, the estimators got closer on 

average to the true value as the sample size n increased.  The same conclusion held for 

Tables 4.1.2, 4.1.4 and 4.1.6. 

For elemental regression Tables 4.1.1 and 4.1.2 suggest that using WMINVF, which 

incorporates the minimum of the inversed variance and inversed influential statistics for 

each elemental set, yielded the best estimator compared to other weighting factors. 

Within the WMINVF group, Dffits
2
 and Cook’s distance again appeared to outperform the 

rest of the influential statistics used in constructing the ‘INF’ weights. In Table 4.1.3, 
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estimators using WMINVF still performed well, but in Table 4.1.4, estimators using WPINVF 

(α=0.25) performed best overall. All WPINVF estimators with different α’s produced 

relatively close mean estimates to the true value in Table 4.1.5 and Table 4.1.6, but 

WPINVF (α=0.5) arguably performed best in Table 4.1.5 and WPINVF (α=0.05) performed 

best in Table 4.1.6. As the residual variance increased from 0.15 to 1, most estimators in 

Table 4.1.2, Table 4.1.4 and Table 4.1.6 became further away from the true value on 

average and more scattered than the corresponding ones in Table 4.1.1, Table 4.1.3 and 

Table 4.1.5. However, when fixing the error distribution, there was not always a clear 

trend indicating that the elemental set-based estimates more closely approximated the 

true values as the sample size grew. Also, it was sometimes difficult to tell from these 6 

tables, which influential statistic performed the best for constructing the weighting 

factors.  

Tables 4.1.7 to Table 4.1.12 show the results for datasets without outliers under the same 

collection of settings that were studied in Tables 4.1.1 through 4.1.6. The estimated 

regression coefficients in all tables based on the proposed weighted estimators were very 

close to the OLS estimates, confirming the efficiency of the proposed robust estimators 

when data are consistent with the usual SLR assumptions. 

 

4.2 Artificial Data Example for SLR  

Here we used the same artificial dataset introduced from Mayo and Gray’s paper [12]. 

The dataset contained 25 observations, with 24 regular observations and 1 induced 

outlier. Note that the authors set up the example intentionally so that the OLS intercept 
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and slope would be exactly 0 and 1, respectively, after removal of the outlier. The data 

are listed in Table 4.2.1, and Figure 4.2 provides a scatterplot for the dataset. 

Table 4.2.2 listed the estimates from Mayo’s paper (see [12] for the definitions of the 

estimators compared in that paper, including various versions of the ‘trimmed elemental 

estimators’ (TEE)). Table 4.2.3 shows the results for our proposed elemental regression 

and Drop K approaches. Based on our outlier detection criteria, there was 1 outlier in the 

dataset and our program automatically chose the Drop 1 method. The estimate using the 

Drop 1 Method with Dffits
2
 in the weight function appeared to perform the best for our 

method, and produced results closer to the ideal estimates of 0 and 1 relative to all 

methods listed in Mayo’s paper except the TEE (50% trim, SAE) and the TEE (50% trim, 

SAE with 25% trim).  Also, note in Table 4.2.3 that for this example most of the 

weighting approaches proposed here gave results closer to the desired values (0 and 1) 

than OLS. 

 

Figure 4.2: Scatter-plot of Artificial Data. The artificial sample consists of n=25 data points, 24 of which 

are from a simple linear regression model with a slope 1 and an intercept of 0. The 25
th

 data point is an 

outlier located at (2,1) [12].  
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4.3 Data Set Example in MLR for Drop K Approach 

While the elemental set-based approaches presented here are in theory applicable for any 

sample size (n) and number of predictors (p), the computational burden associated with 

identifying the potentially large number of elemental sets when n and p become large is 

an issue. However, for illustration we have extended the Drop K approach from SLR to 

multiple linear regression (MLR) with 2 predictor variables, and applied it to a 

previously-analyzed dataset. The dataset used here is Duncan’s [17] occupational prestige 

data, with 45 observations and 4 variables. This dataset was also used by Fox [18], who 

detected two suspicious outliers. Thus, the Drop 2 approach was used here and the results 

are shown in Table 4.3.1. The estimators using the Drop 2 approach appear robust 

compared to the OLS estimators, and they yield values close to those obtained via the 

Huber estimators and the OLS estimators after discarding outliers.  

 

4.4 Computing Time 

The simulations were run on a Dell Vostro 3450 personal computer with 4 GB RAM 

running Matlab R2008a. 

Considering the elemental regression and Drop K method in SLR, if the number of 

outliers detected for a given dataset was 2, then the number of subsets required for 

elemental regression was the same as the Drop 2 method. Figure 4.4.1 shows the 

computing time for elemental regression with p=2 compared with the Drop K method 
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with k=2, using WINVF (Dffits
2
) as the weighting factor. As the sample size increased, the 

computing time for the Drop K method was higher than that for elemental regression. 

The longest time for the Drop K method with sample size n=200 was 35 seconds, 

compared with 27 seconds for elemental regression. Figure 4.4.2 provides the computing 

time for the Drop K method with k=1, 2 and 3. As k increased, the computing time grew 

dramatically. The time for sample size=125 was 0.13 seconds for k=1, 8.7 seconds for 

k=2 and 5,833 seconds for k=3. Analytically, the Drop K method has O(n choose k) 

complexity since for a given k, all possible subsets of size n-k need to be considered. 

 

Figure 4.4.1: Computing time vs. Sample size for elemental regression and Drop K method. The solid line 

represents the seconds needed for elemental regression with p=2. The dashed line represents the seconds 

needed for Drop K method, k=2. 
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Figure 4.4.2: Computing time vs. Sample size for Drop K method. The solid line shows the log time 

required for Drop K method, k=1. The dashed line shows the log time needed for Drop K method, k=2. The 

dotted line represents the log time for Drop K method, k=3. 
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Chapter 5: Discussion 

The appeal of elemental and non-elemental set-based weighted estimators is their 

potential for robust regression without the wholesale deletion of outliers or suspicious 

points. 

From the simulation results, we can see that the Drop K method generally performed 

better than our elemental regression-based methods with regard to accuracy and therefore 

robustness. Within the Drop K method weighting factors, the best estimator was 

generally the one using Dffits
2
 as influential statistics for all possible combinations of 

sample sizes and error distributions, and its result was competitive compared to the 

existing Huber method. 

Elemental regression provided better estimators than OLS for most cases. However, it is 

harder to say which weighting factor was the best, since this varied across situation. The 

accuracy of the estimators was sensitive to the sample size and the choice of the 

influential statistic upon which to base the ‘INF’ component of the weights. For the 

percentile-adjusted weighting factors [see (2.7)], there was no clear trend between the 

selected α level and the estimators’ performance. Mayo and Gray [13] found similar 

variations in performance depending on the α level selected for use with their proposed 

TEE estimators. Note that the proposal in (2.7) is similar in spirit to the TEE approach, 

although the weighting employed features some fundamental differences. 

The results using the dataset from Mayo and Gray’s paper were consistent with the 

conclusions drawn above. In particular, the Drop K method with Dffits
2
 gave the best 

estimates and was close to the best result obtained in Mayo’s paper. 
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 We extended the Drop K method to MLR by using the data example of Duncan [17]. 

The dataset had two predictor variables and regression diagnostics found 2 outliers, so we 

applied the Drop 2 program. The results in Table 4.3.1 showed that the Drop 2 approach 

provided estimates which were much closer to those based on OLS without the detected 

outliers, compared to OLS using all data points. 

The computing time required for elemental regression and the Drop K method with p=k 

was similar since the total numbers of subsets generated were the same. Elemental 

regression required a little bit less time than Drop K method. For the Drop K method, the 

computing time increased dramatically with k=3 compared to k=2. Therefore, in SLR, if 

k is larger than 2, elemental regression may be a better choice regarding the time for 

calculation. If k=p, then we recommend the Drop K method since both consume similar 

time for computing, while we found the results for the Drop K method to be much closer 

to the truth than results from elemental regression. 

 In this thesis, we listed one weighting factor for the Drop K approach and three forms of 

weight factors for elemental regression. We proposed the idea of adding influential 

statistics in the weighting factors to reduce the weight for subsets with outliers, and we 

utilize inverse-variance weighting in the interest of maintaining efficiency. There are 

many ways of constructing weighting factors combining the efficiency and influential 

information. Also there are other influential statistics that can be used in the weighting 

factors. 

In conclusion, the Drop K approach appears more stable than elemental regression; 

however, it is limited based on the number of outliers detected and the sample size. One 
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possible solution to reduce the computation time could be to sample the dataset into 

several small ones and then apply Drop K approach to each one and combine the results. 

Future research might include further evaluation of the elemental set-based weights 

proposed here under typical settings in which there are multiple suspicious (but not 

necessarily extreme) points. It would also be of great interest to directly compare the 

proposed estimators in this thesis to the TEE estimators [12, 13], and to develop 

appropriate and computationally feasible methods for estimating standard errors 

associated with our weighted estimators.  
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Tables: 

Table 4.1.1: Regression coefficients when n=25, ε=N (0, 0.15) and 2 outliers 

Method Weighting Factor 

Beta 0 

(mean±sd) 

Beta1 

(mean±sd) 

True Value 

 

0.000 1.000 

OLS (without outliers) 

 

0.001±0.05 0.986±0.12 

OLS  

 

1.362±0.86 0.070±0.20 

Huber 

 

0.032±0.05 0.979±0.01 

Drop K method WINVF(Cook's) 0.014±0.12 0.974±0.15 

 

WINVF(|Dffits|) 0.025±0.14 0.965±0.16 

 

WINVF(Dffits
2
) 0.013±0.12 0.975±0.14 

 

WINVF(|Dfbetas|) 0.050±0.16 0.969±0.15 

Elemental  WINVF(Cook's) 0.147±0.31 0.896±0.15 

Regression WINVF(|Dffits|) 0.282±0.22 0.823±0.07 

 

WINVF(Dffits
2
) 0.138±0.31 0.902±0.15 

 

WINVF(|Dfbetas|) 0.296±0.28 0.922±0.06 

 

WMINVF(Cook's) 0.017±0.12 0.984±0.03 

 

WMINVF(|Dffits|) 0.273±0.15 0.882±0.04 

 

WMINVF(Dffits
2
) 0.010±0.12 0.988±0.03 

 

WMINVF(|Dfbetas|) 0.861±0.36 0.935±0.03 

 

WPINVF(Cook's),alpha=0.05 1.466±0.77 0.211±0.18 

 

WPINVF(|Dffits|),alpha=0.05 1.459±0.76 0.216±0.18 

 

WPINVF(Dffits
2
),alpha=0.05 1.447±0.76 0.218±0.18 

 

WPINVF(|Dfbetas|),alpha=0.05 1.918±0.86 0.217±0.19 

 

WPINVF(Cook's),alpha=0.25 0.575±0.43 0.631±0.16 

 

WPINVF(|Dffits|),alpha=0.25 0.540±0.37 0.672±0.14 

 

WPINVF(Dffits
2
),alpha=0.25 0.477±0.38 0.690±0.15 

 

WPINVF(|Dfbetas|),alpha=0.25 0.903±0.36 0.489±0.17 

 

WPINVF(Cook's),alpha=0.5 0.338±0.39 0.776±0.19 

 

WPINVF(|Dffits|),alpha=0.5 0.407±0.32 0.776±0.14 

 

WPINVF(Dffits
2
),alpha=0.5 0.276±0.36 0.817±0.17 

 

WPINVF(|Dfbetas|),alpha=0.5 0.779±0.31 0.489±0.17 

 

WPINVF(Cook's),alpha=0.75 0.206±0.42 0.860±0.23 

 

WPINVF(|Dffits|),alpha=0.75 0.357±0.28 0.824±0.15 

 

WPINVF(Dffits
2
),alpha=0.75 0.164±0.38 0.889±0.21 

 

WPINVF(|Dfbetas|),alpha=0.75 0.841±0.34 0.891±0.15 
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Table 4.1.2: Regression coefficients when n=25, ε=N (0, 1) and 2 outliers 

Method Weighting Factor 

Beta 

0(mean±sd) 

Beta1 

(mean±sd) 

True Value 

 

0.000 1.000 

OLS (without outliers) -0.006±0.30 0.974±0.18 

OLS  

 

1.389±0.88 0.062±0.21 

Huber 

 

0.204±0.34 0.858±0.10 

Drop K method WINVF(Cook's) 0.160±0.44 0.859±0.24 

 

WINVF(|Dffits|) 0.378±0.50 0.695±0.24 

 

WINVF(Dffits
2
) 0.128±0.43 0.882±0.24 

 

WINVF(|Dfbetas|) 0.595±0.49 0.750±0.24 

Elemental  WINVF(Cook's) 0.857±0.80 0.395±0.30 

Regression WINVF(|Dffits|) 0.548±0.55 0.611±0.19 

 

WINVF(Dffits
2
) 0.857±0.80 0.396±0.30 

 

WINVF(|Dfbetas|) 0.315±0.67 0.684±0.30 

 

WMINVF(Cook's) 0.167±0.60 0.793±0.20 

 

WMINVF(|Dffits|) 0.333±0.44 0.811±0.11 

 

WMINVF(Dffits
2
) 0.164±0.60 0.794±0.20 

 

WMINVF(|Dfbetas|) 0.966±0.54 0.856±0.13 

 

WPINVF(Cook's),alpha=0.05 1.475±0.80 0.204±0.19 

 

WPINVF(|Dffits|),alpha=0.05 1.466±0.80 0.209±0.19 

 

WPINVF(Dffits
2
),alpha=0.05 1.454±0.80 0.211±0.19 

 

WPINVF(|Dfbetas|),alpha=0.05 1.904±0.91 0.205±0.19 

 

WPINVF(Cook's),alpha=0.25 0.628±0.52 0.611±0.18 

 

WPINVF(|Dffits|),alpha=0.25 0.612±0.49 0.644±0.17 

 

WPINVF(Dffits
2
),alpha=0.25 0.545±0.50 0.662±0.18 

 

WPINVF(|Dfbetas|),alpha=0.25 1.035±0.47 0.530±0.18 

 

WPINVF(Cook's),alpha=0.5 0.432±0.53 0.700±0.20 

 

WPINVF(|Dffits|),alpha=0.5 0.508±0.47 0.707±0.17 

 

WPINVF(Dffits
2
),alpha=0.5 0.376±0.51 0.735±0.20 

 

WPINVF(|Dfbetas|),alpha=0.5 0.887±0.45 0.530±0.18 

 

WPINVF(Cook's),alpha=0.75 0.330±0.64 0.729±0.24 

 

WPINVF(|Dffits|),alpha=0.75 0.439±0.50 0.752±0.18 

 

WPINVF(Dffits
2
),alpha=0.75 0.291±0.63 0.751±0.23 

 

WPINVF(|Dfbetas|),alpha=0.75 0.946±0.50 0.795±0.20 
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Table 4.1.3: Regression coefficients when n=50, ε=N (0, 0.15) and 2 outliers 

Method Weighting Factor 

Beta 0 

(mean±sd) 

Beta1 

(mean±sd) 

True Value 

 

0.000 1.000 

OLS (without outliers) 

 

-0.002±0.03 1.000±0.01 

OLS  

 

0.885±0.39 0.452±0.10 

Huber 

 

0.013±0.03 0.991±0.01 

Drop K method WINVF(Cook's) -0.001±0.03 1.000±0.01 

 

WINVF(|Dffits|) 0.008±0.03 0.994±0.01 

 

WINVF(Dffits
2
) -0.001±0.03 1.000±0.01 

 

WINVF(|Dfbetas|) 0.015±0.03 0.996±0.01 

Elemental  WINVF(Cook's) 0.242±0.27 0.847±0.14 

Regression WINVF(|Dffits|) 0.095±0.10 0.942±0.03 

 

WINVF(Dffits
2
) 0.241±0.27 0.847±0.14 

 

WINVF(|Dfbetas|) 0.048±0.10 0.968±0.05 

 

WMINVF(Cook's) 0.015±0.11 0.986±0.03 

 

WMINVF(|Dffits|) 0.050±0.06 0.976±0.01 

 

WMINVF(Dffits
2
) 0.015±0.11 0.986±0.03 

 

WMINVF(|Dfbetas|) 0.164±0.09 0.987±0.01 

 

WPINVF(Cook's),alpha=0.05 0.570±0.23 0.696±0.07 

 

WPINVF(|Dffits|),alpha=0.05 0.536±0.21 0.712±0.06 

 

WPINVF(Dffits
2
),alpha=0.05 0.533±0.21 0.713±0.06 

 

WPINVF(|Dfbetas|),alpha=0.05 0.848±0.28 0.677±0.07 

 

WPINVF(Cook's),alpha=0.25 0.144±0.11 0.912±0.05 

 

WPINVF(|Dffits|),alpha=0.25 0.121±0.09 0.929±0.04 

 

WPINVF(Dffits
2
),alpha=0.25 0.111±0.09 0.932±0.04 

 

WPINVF(|Dfbetas|),alpha=0.25 0.174±0.08 0.865±0.06 

 

WPINVF(Cook's),alpha=0.5 0.096±0.11 0.940±0.06 

 

WPINVF(|Dffits|),alpha=0.5 0.093±0.09 0.947±0.04 

 

WPINVF(Dffits
2
),alpha=0.5 0.073±0.10 0.953±0.05 

 

WPINVF(|Dfbetas|),alpha=0.5 0.162±0.08 0.865±0.06 

 

WPINVF(Cook's),alpha=0.75 0.077±0.15 0.949±0.08 

 

WPINVF(|Dffits|),alpha=0.75 0.084±0.11 0.955±0.06 

 

WPINVF(Dffits
2
),alpha=0.75 0.059±0.14 0.961±0.07 

 

WPINVF(|Dfbetas|),alpha=0.75 0.166±0.09 0.974±0.05 
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Table 4.1.4: Regression coefficients when n=50, ε=N (0, 1) and 2 outliers 

Method Weighting Factor 

Beta 

0(mean±sd) 

Beta1 

(mean±sd) 

True Value 

 

0.000 1.000 

OLS (without outliers) 

 

-0.001±0.21 1.000±0.06 

OLS  

 

0.896±0.45 0.448±0.12 

Huber 

 

0.095±0.22 0.940±0.06 

Drop K method WINVF(Cook's) 0.046±0.21 0.970±0.06 

 

WINVF(|Dffits|) 0.266±0.24 0.825±0.07 

 

WINVF(Dffits
2
) 0.028±0.21 0.981±0.06 

 

WINVF(|Dfbetas|) 0.380±0.24 0.866±0.07 

Elemental  WINVF(Cook's) 0.773±0.42 0.518±0.12 

Regression WINVF(|Dffits|) 0.468±0.35 0.696±0.11 

 

WINVF(Dffits
2
) 0.773±0.42 0.517±0.12 

 

WINVF(|Dfbetas|) 0.183±0.49 0.683±0.16 

 

WMINVF(Cook's) 0.344±0.40 0.742±0.13 

 

WMINVF(|Dffits|) 0.171±0.29 0.874±0.08 

 

WMINVF(Dffits
2
) 0.344±0.40 0.741±0.13 

 

WMINVF(|Dfbetas|) 0.315±0.31 0.872±0.09 

 

WPINVF(Cook's),alpha=0.05 0.567±0.32 0.700±0.09 

 

WPINVF(|Dffits|),alpha=0.05 0.538±0.30 0.716±0.08 

 

WPINVF(Dffits
2
),alpha=0.05 0.534±0.30 0.717±0.08 

 

WPINVF(|Dfbetas|),alpha=0.05 0.871±0.35 0.670±0.10 

 

WPINVF(Cook's),alpha=0.25 0.219±0.25 0.864±0.07 

 

WPINVF(|Dffits|),alpha=0.25 0.200±0.24 0.879±0.07 

 

WPINVF(Dffits
2
),alpha=0.25 0.187±0.25 0.882±0.07 

 

WPINVF(|Dfbetas|),alpha=0.25 0.327±0.24 0.836±0.08 

 

WPINVF(Cook's),alpha=0.5 0.238±0.28 0.834±0.08 

 

WPINVF(|Dffits|),alpha=0.5 0.222±0.27 0.856±0.07 

 

WPINVF(Dffits
2
),alpha=0.5 0.218±0.28 0.845±0.08 

 

WPINVF(|Dfbetas|),alpha=0.5 0.303±0.26 0.836±0.08 

 

WPINVF(Cook's),alpha=0.75 0.321±0.34 0.776±0.10 

 

WPINVF(|Dffits|),alpha=0.75 0.223±0.29 0.849±0.09 

 

WPINVF(Dffits
2
),alpha=0.75 0.309±0.34 0.782±0.10 

 

WPINVF(|Dfbetas|),alpha=0.75 0.319±0.28 0.837±0.11 
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Table 4.1.5: Regression coefficients when n=100, ε=N (0, 0.15) and 2 outliers 

Method Weighting Factor 

Beta 0 

(mean±sd) 

Beta 1 

(mean±sd) 

True Value 

 

0.000 1.000 

OLS (without outliers) 

 

0.000±0.02 1.000±0.01 

OLS  

 

0.558±0.19 0.683±0.06 

Huber 

 

0.008±0.02 0.996±0.01 

Drop K method WINVF(Cook's) 0.001±0.02 1.000±0.01 

 

WINVF(|Dffits|) 0.010±0.02 0.994±0.01 

 

WINVF(Dffits
2
) 0.001±0.02 1.000±0.01 

 

WINVF(|Dfbetas|) 0.014±0.02 0.996±0.01 

Elemental  WINVF(Cook's) 0.337±0.18 0.805±0.08 

Regression WINVF(|Dffits|) 0.079±0.07 0.953±0.03 

 

WINVF(Dffits
2
) 0.337±0.18 0.805±0.08 

 

WINVF(|Dfbetas|) 0.014±0.09 0.955±0.05 

 

WMINVF(Cook's) 0.038±0.09 0.972±0.02 

 

WMINVF(|Dffits|) 0.016±0.04 0.990±0.01 

 

WMINVF(Dffits
2
) 0.038±0.09 0.972±0.02 

 

WMINVF(|Dfbetas|) 0.036±0.04 0.991±0.01 

 

WPINVF(Cook's),alpha=0.05 0.127±0.06 0.930±0.02 

 

WPINVF(|Dffits|),alpha=0.05 0.099±0.05 0.946±0.02 

 

WPINVF(Dffits
2
),alpha=0.05 0.098±0.05 0.946±0.02 

 

WPINVF(|Dfbetas|),alpha=0.05 0.173±0.07 0.878±0.03 

 

WPINVF(Cook's),alpha=0.25 0.044±0.04 0.975±0.01 

 

WPINVF(|Dffits|),alpha=0.25 0.036±0.03 0.980±0.01 

 

WPINVF(Dffits
2
),alpha=0.25 0.034±0.03 0.981±0.01 

 

WPINVF(|Dfbetas|),alpha=0.25 0.045±0.03 0.960±0.02 

 

WPINVF(Cook's),alpha=0.5 0.037±0.04 0.978±0.02 

 

WPINVF(|Dffits|),alpha=0.5 0.033±0.04 0.981±0.01 

 

WPINVF(Dffits
2
),alpha=0.5 0.030±0.04 0.982±0.01 

 

WPINVF(|Dfbetas|),alpha=0.5 0.043±0.04 0.960±0.02 

 

WPINVF(Cook's),alpha=0.75 0.041±0.06 0.975±0.02 

 

WPINVF(|Dffits|),alpha=0.75 0.030±0.05 0.983±0.02 

 

WPINVF(Dffits
2
),alpha=0.75 0.036±0.06 0.978±0.02 

 

WPINVF(|Dfbetas|),alpha=0.75 0.042±0.04 0.985±0.02 
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Table 4.1.6: Regression coefficients when n=100, ε=N (0, 1) and 2 outliers 

Method Weighting Factor 

Beta 0 

(mean±sd) 

Beta 1 

(mean±sd) 

True Value 

 

0.000 1.000 

OLS (without outliers) 

 

0.003±0.15 1.000±0.04 

OLS  

 

0.560±0.24 0.683±0.06 

Huber 

 

0.056±0.15 0.971±0.04 

Drop K method WINVF(Cook's) 0.032±0.15 0.983±0.04 

 

WINVF(|Dffits|) 0.227±0.16 0.868±0.04 

 

WINVF(Dffits
2
) 0.021±0.15 0.990±0.04 

 

WINVF(|Dfbetas|) 0.288±0.16 0.897±0.04 

Elemental  WINVF(Cook's) 0.538±0.24 0.695±0.06 

Regression WINVF(|Dffits|) 0.385±0.21 0.776±0.06 

 

WINVF(Dffits
2
) 0.538±0.24 0.695±0.06 

 

WINVF(|Dfbetas|) 0.260±0.33 0.768±0.08 

 

WMINVF(Cook's) 0.366±0.23 0.781±0.07 

 

WMINVF(|Dffits|) 0.189±0.18 0.881±0.05 

 

WMINVF(Dffits
2
) 0.366±0.23 0.780±0.07 

 

WMINVF(|Dfbetas|) 0.210±0.20 0.879±0.05 

 

WPINVF(Cook's),alpha=0.05 0.150±0.16 0.927±0.04 

 

WPINVF(|Dffits|),alpha=0.05 0.125±0.15 0.940±0.04 

 

WPINVF(Dffits
2
),alpha=0.05 0.123±0.15 0.940±0.04 

 

WPINVF(|Dfbetas|),alpha=0.05 0.303±0.16 0.892±0.04 

 

WPINVF(Cook's),alpha=0.25 0.155±0.16 0.912±0.04 

 

WPINVF(|Dffits|),alpha=0.25 0.147±0.16 0.918±0.04 

 

WPINVF(Dffits
2
),alpha=0.25 0.146±0.16 0.917±.04 

 

WPINVF(|Dfbetas|),alpha=0.25 0.185±0.16 0.911±.04 

 

WPINVF(Cook's),alpha=0.5 0.228±0.18 0.866±0.04 

 

WPINVF(|Dffits|),alpha=0.5 0.204±0.18 0.881±0.04 

 

WPINVF(Dffits
2
),alpha=0.5 0.221±0.18 0.869±0.04 

 

WPINVF(|Dfbetas|),alpha=0.5 0.197±0.17 0.911±0.04 

 

WPINVF(Cook's),alpha=0.75 0.300±0.20 0.822±0.05 

 

WPINVF(|Dffits|),alpha=0.75 0.219±0.19 0.868±0.05 

 

WPINVF(Dffits
2
),alpha=0.75 0.296±0.20 0.824±0.05 

 

WPINVF(|Dfbetas|),alpha=0.75 0.220±0.18 0.864±0.05 
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Table 4.1.7: Regression coefficients when n=25, ε=N (0, 0.15) and no outliers 

Method Weighting Factor 

Beta 0 

(mean±sd) 

Beta 1 

(mean±sd) 

True Value 0.000 1.000 

OLS (without outliers) 0.004±0.05 0.999±0.01 

OLS  

 

0.000±0.02 1.000±0.31 

Huber 

 

0.000±0.04 1.000±0.01 

Drop K method WINVF(Cook's) 0.003±0.04 0.999±0.01 

 

WINVF(|Dffits|) 0.003±0.04 0.999±0.01 

 

WINVF(Dffits
2
) 0.003±0.04 0.999±0.01 

 

WINVF(|Dfbetas|) 0.003±0.04 1.000±0.01 

Elemental  WINVF(Cook's) 0.000±0.05 1.000±0.01 

Regression WINVF(|Dffits|) 0.000±0.04 1.000±0.01 

 

WINVF(Dffits
2
) 0.000±0.05 1.000±0.01 

 

WINVF(|Dfbetas|) -0.002±0.05 1.000±0.01 

 

WMINVF(Cook's) -0.001±0.05 1.000±0.01 

 

WMINVF(|Dffits|) -0.002±0.05 1.000±0.01 

 

WMINVF(Dffits
2
) -0.001±0.05 1.000±0.01 

 

WMINVF(|Dfbetas|) -0.002±0.05 1.000±0.01 

 

WPINVF(Cook's),alpha=0.05 -0.001±0.04 1.000±0.01 

 

WPINVF(|Dffits|),alpha=0.05 -0.001±0.04 1.000±0.01 

 

WPINVF(Dffits
2
),alpha=0.05 -0.001±0.04 1.000±0.01 

 

WPINVF(|Dfbetas|),alpha=0.05 0.000±0.04 1.000±0.01 

 

WPINVF(Cook's),alpha=0.25 -0.001±0.05 1.000±0.01 

 

WPINVF(|Dffits|),alpha=0.25 -0.001±0.05 1.000±0.01 

 

WPINVF(Dffits
2
),alpha=0.25 -0.001±0.05 1.000±0.01 

 

WPINVF(|Dfbetas|),alpha=0.25 0.000±0.05 1.000±0.01 

 

WPINVF(Cook's),alpha=0.5 -0.001±0.05 1.000±0.01 

 

WPINVF(|Dffits|),alpha=0.5 -0.001±0.05 1.000±0.01 

 

WPINVF(Dffits
2
),alpha=0.5 -0.001±0.05 1.000±0.01 

 

WPINVF(|Dfbetas|),alpha=0.5 -0.001±0.05 1.000±0.01 

 

WPINVF(Cook's),alpha=0.75 0.000±0.05 1.000±0.01 

 

WPINVF(|Dffits|),alpha=0.75 -0.001±0.05 1.000±0.01 

 

WPINVF(Dffits
2
),alpha=0.75 0.000±0.05 1.000±0.01 

 

WPINVF(|Dfbetas|),alpha=0.75 -0.001±0.05 1.000±0.01 
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Table 4.1.8: Regression coefficients when n=25, ε=N (0, 1) and no outliers 

Method Weighting Factor 

Beta 0 

(mean±sd) 

Beta 1 

(mean±sd) 

True Value 0.000 1.000 

OLS (without outliers) -0.032±0.33 1.015±0.08 

OLS  

 

0.005±0.30 1.002±0.07 

Huber 

 

0.008±0.30 1.002±0.07 

Drop K method WINVF(Cook's) -0.007±0.29 1.009±0.08 

 

WINVF(|Dffits|) -0.006±0.29 1.007±0.08 

 

WINVF(Dffits
2
) -0.011±0.30 1.010±0.08 

 

WINVF(|Dfbetas|) -0.007±0.29 1.007±0.08 

Elemental  WINVF(Cook's) 0.010±0.31 1.001±0.07 

Regression WINVF(|Dffits|) 0.007±0.30 1.002±0.07 

 

WINVF(Dffits
2
) 0.010±0.31 1.001±0.07 

 

WINVF(|Dfbetas|) 0.011±0.35 1.002±0.08 

 

WMINVF(Cook's) 0.005±0.32 1.002±0.08 

 

WMINVF(|Dffits|) 0.008±0.32 1.002±0.08 

 

WMINVF(Dffits
2
) 0.005±0.32 1.002±0.08 

 

WMINVF(|Dfbetas|) 0.007±0.34 1.001±0.08 

 

WPINVF(Cook's),alpha=0.05 0.010±0.30 1.001±0.07 

 

WPINVF(|Dffits|),alpha=0.05 0.010±0.30 1.001±0.07 

 

WPINVF(Dffits
2
),alpha=0.05 0.010±0.30 1.001±0.07 

 

WPINVF(|Dfbetas|),alpha=0.05 0.008±0.30 1.002±0.07 

 

WPINVF(Cook's),alpha=0.25 0.008±0.31 1.001±0.07 

 

WPINVF(|Dffits|),alpha=0.25 0.008±0.31 1.001±0.07 

 

WPINVF(Dffits
2
),alpha=0.25 0.008±0.31 1.001±0.07 

 

WPINVF(|Dfbetas|),alpha=0.25 0.009±0.31 1.002±0.07 

 

WPINVF(Cook's),alpha=0.5 0.006±0.31 1.002±0.07 

 

WPINVF(|Dffits|),alpha=0.5 0.008±0.31 1.002±0.07 

 

WPINVF(Dffits
2
),alpha=0.5 0.007±0.31 1.002±0.07 

 

WPINVF(|Dfbetas|),alpha=0.5 0.011±0.31 1.002±0.07 

 

WPINVF(Cook's),alpha=0.75 0.006±0.31 1.002±0.07 

 

WPINVF(|Dffits|),alpha=0.75 0.007±0.31 1.002±0.07 

 

WPINVF(Dffits
2
),alpha=0.75 0.006±0.31 1.002±0.07 

 

WPINVF(|Dfbetas|),alpha=0.75 0.009±0.32 1.001±0.08 
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Table 4.1.9: Regression coefficients when n=50, ε=N (0, 0.15) and no outliers 

Method Weighting Factor 

Beta 0 

(mean±sd) 

Beta 1 

(mean±sd) 

True Value 0.000 1.000 

OLS (without outliers) -0.003±0.04 1.002±0.01 

OLS  

 

0.001±0.03 1.000±0.01 

Huber 

 

0.001±0.03 1.000±0.01 

Drop K method WINVF(Cook's) -0.003±0.03 1.001±0.01 

 

WINVF(|Dffits|) -0.003±0.03 1.001±0.01 

 

WINVF(Dffits
2
) -0.003±0.03 1.001±0.01 

 

WINVF(|Dfbetas|) -0.003±0.03 1.001±0.01 

Elemental  WINVF(Cook's) 0.000±0.03 1.000±0.01 

Regression WINVF(|Dffits|) 0.000±0.03 1.000±0.01 

 

WINVF(Dffits
2
) 0.000±0.03 1.000±0.01 

 

WINVF(|Dfbetas|) 0.000±0.04 1.000±0.01 

 

WMINVF(Cook's) 0.000±0.03 1.000±0.01 

 

WMINVF(|Dffits|) 0.000±0.03 1.000±0.01 

 

WMINVF(Dffits
2
) 0.000±0.03 1.000±0.01 

 

WMINVF(|Dfbetas|) 0.000±0.04 1.000±0.01 

 

WPINVF(Cook's),alpha=0.05 0.000±0.03 1.000±0.01 

 

WPINVF(|Dffits|),alpha=0.05 0.000±0.03 1.000±0.01 

 

WPINVF(Dffits
2
),alpha=0.05 0.000±0.03 1.000±0.01 

 

WPINVF(|Dfbetas|),alpha=0.05 0.000±0.03 1.000±0.01 

 

WPINVF(Cook's),alpha=0.25 0.000±0.03 1.000±0.01 

 

WPINVF(|Dffits|),alpha=0.25 0.000±0.03 1.000±0.01 

 

WPINVF(Dffits
2
),alpha=0.25 0.000±0.03 1.000±0.01 

 

WPINVF(|Dfbetas|),alpha=0.25 0.000±0.03 1.000±0.01 

 

WPINVF(Cook's),alpha=0.5 0.000±0.03 1.000±0.01 

 

WPINVF(|Dffits|),alpha=0.5 0.000±0.03 1.000±0.01 

 

WPINVF(Dffits
2
),alpha=0.5 0.000±0.03 1.000±0.01 

 

WPINVF(|Dfbetas|),alpha=0.5 0.000±0.03 1.000±0.01 

 

WPINVF(Cook's),alpha=0.75 0.000±0.03 1.000±0.01 

 

WPINVF(|Dffits|),alpha=0.75 0.000±0.03 1.000±0.01 

 

WPINVF(Dffits
2
),alpha=0.75 0.000±0.03 1.000±0.01 

 

WPINVF(|Dfbetas|),alpha=0.75 0.000±0.03 1.000±0.01 
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Table 4.1.10: Regression coefficients when n=50, ε=N (0, 1) and no outliers 

Method Weighting Factor 

Beta 0 

(mean±sd) 

Beta 1 

(mean±sd) 

True Value 0.000 1.000 

OLS (without outliers) -0.004±0.22 1.002±0.06 

OLS  

 

-0.007±0.20 1.000±0.05 

Huber 

 

-0.006±0.21 1.000±0.05 

Drop K method WINVF(Cook's) -0.021±0.20 1.005±0.05 

 

WINVF(|Dffits|) -0.024±0.20 1.005±0.05 

 

WINVF(Dffits
2
) -0.020±0.20 1.004±0.06 

 

WINVF(|Dfbetas|) -0.023±0.20 1.005±0.05 

Elemental  WINVF(Cook's) -0.006±0.21 1.000±0.05 

Regression WINVF(|Dffits|) -0.006±0.21 1.000±0.05 

 

WINVF(Dffits
2
) -0.006±0.21 1.000±0.05 

 

WINVF(|Dfbetas|) -0.009±0.27 0.998±0.06 

 

WMINVF(Cook's) -0.005±0.22 0.999±0.05 

 

WMINVF(|Dffits|) -0.005±0.22 0.999±0.05 

 

WMINVF(Dffits
2
) -0.005±0.22 0.999±0.05 

 

WMINVF(|Dfbetas|) -0.007±0.23 0.999±0.06 

 

WPINVF(Cook's),alpha=0.05 -0.006±0.21 1.000±0.05 

 

WPINVF(|Dffits|),alpha=0.05 -0.006±0.21 1.000±0.05 

 

WPINVF(Dffits
2
),alpha=0.05 -0.006±0.21 1.000±0.05 

 

WPINVF(|Dfbetas|),alpha=0.05 -0.007±0.20 1.000±0.05 

 

WPINVF(Cook's),alpha=0.25 -0.006±0.21 1.000±0.05 

 

WPINVF(|Dffits|),alpha=0.25 -0.007±0.21 1.000±0.05 

 

WPINVF(Dffits
2
),alpha=0.25 -0.006±0.21 1.000±0.05 

 

WPINVF(|Dfbetas|),alpha=0.25 -0.007±0.21 1.000±0.05 

 

WPINVF(Cook's),alpha=0.5 -0.006±0.21 1.000±0.05 

 

WPINVF(|Dffits|),alpha=0.5 -0.006±0.21 1.000±0.05 

 

WPINVF(Dffits
2
),alpha=0.5 -0.006±0.21 1.000±0.05 

 

WPINVF(|Dfbetas|),alpha=0.5 -0.007±0.21 1.000±0.05 

 

WPINVF(Cook's),alpha=0.75 -0.006±0.21 1.000±0.05 

 

WPINVF(|Dffits|),alpha=0.75 -0.006±0.22 0.999±0.05 

 

WPINVF(Dffits
2
),alpha=0.75 -0.006±0.21 1.000±0.05 

 

WPINVF(|Dfbetas|),alpha=0.75 -0.007±0.22 0.999±0.05 
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Table 4.1.11: Regression coefficients when n=100, ε=N (0, 0.15) and no outliers 

Method Weighting Factor 

Beta 0 

(mean±sd) 

Beta 1 

(mean±sd) 

True Value 

 

0.000 1.000 

OLS (without outliers) 

 

0.004±0.02 0.999±0.01 

OLS  

 

0.000±0.02 1.000±0.01 

Huber 

 

0.001±0.02 1.000±0.01 

Drop K method WINVF(Cook's) 0.003±0.02 0.999±0.01 

 

WINVF(|Dffits|) 0.003±0.02 0.999±0.01 

 

WINVF(Dffits
2
) 0.003±0.02 0.999±0.01 

 

WINVF(|Dfbetas|) 0.003±0.02 0.999±0.01 

Elemental  WINVF(Cook's) 0.000±0.02 1.000±0.01 

Regression WINVF(|Dffits|) 0.000±0.02 1.000±0.01 

 

WINVF(Dffits
2
) 0.000±0.02 1.000±0.01 

 

WINVF(|Dfbetas|) 0.000±0.03 1.000±0.01 

 

WMINVF(Cook's) 0.000±0.02 1.000±0.01 

 

WMINVF(|Dffits|) 0.000±0.02 1.000±0.01 

 

WMINVF(Dffits
2
) 0.000±0.02 1.000±0.01 

 

WMINVF(|Dfbetas|) 0.000±0.03 1.000±0.01 

 

WPINVF(Cook's),alpha=0.05 0.001±0.02 1.000±0.01 

 

WPINVF(|Dffits|),alpha=0.05 0.001±0.02 1.000±0.01 

 

WPINVF(Dffits
2
),alpha=0.05 0.001±0.02 1.000±0.01 

 

WPINVF(|Dfbetas|),alpha=0.05 0.001±0.02 1.000±0.01 

 

WPINVF(Cook's),alpha=0.25 0.000±0.02 1.000±0.01 

 

WPINVF(|Dffits|),alpha=0.25 0.000±0.02 1.000±0.01 

 

WPINVF(Dffits
2
),alpha=0.25 0.000±0.02 1.000±0.01 

 

WPINVF(|Dfbetas|),alpha=0.25 0.001±0.02 1.000±0.01 

 

WPINVF(Cook's),alpha=0.5 0.001±0.02 1.000±0.01 

 

WPINVF(|Dffits|),alpha=0.5 0.000±0.02 1.000±0.01 

 

WPINVF(Dffits
2
),alpha=0.5 0.001±0.02 1.000±0.01 

 

WPINVF(|Dfbetas|),alpha=0.5 0.000±0.02 1.000±0.01 

 

WPINVF(Cook's),alpha=0.75 0.000±0.02 1.000±0.01 

 

WPINVF(|Dffits|),alpha=0.75 0.000±0.02 1.000±0.01 

 

WPINVF(Dffits
2
),alpha=0.75 0.000±0.02 1.000±0.01 

 

WPINVF(|Dfbetas|),alpha=0.75 0.000±0.02 1.000±0.01 
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Table 4.1.12: Regression coefficients when n=100, ε=N (0, 1) and no outliers 

Method Weighting Factor 

Beta 

0(mean±sd) 

Beta 

1(mean±sd) 

True Value 

 

0.000 1.000 

OLS (without outliers) -0.025±0.15 1.002±0.04 

OLS  

 

-0.002±0.14 1.000±0.03 

Huber 

 

-0.004±0.15 1.000±0.03 

Drop K method WINVF(Cook's) -0.017±0.15 1.002±0.03 

 

WINVF(|Dffits|) -0.015±0.14 1.002±0.03 

 

WINVF(Dffits
2
) -0.017±0.15 1.002±0.03 

 

WINVF(|Dfbetas|) -0.015±0.15 1.002±0.03 

Elemental  WINVF(Cook's) -0.004±0.15 1.000±0.03 

Regression WINVF(|Dffits|) -0.003±0.15 1.000±0.03 

 

WINVF(Dffits
2
) -0.004±0.15 1.000±0.03 

 

WINVF(|Dfbetas|) -0.007±0.19 1.000±0.04 

 

WMINVF(Cook's) -0.005±0.15 1.000±0.04 

 

WMINVF(|Dffits|) -0.004±0.15 1.000±0.04 

 

WMINVF(Dffits
2
) -0.005±0.15 1.000±0.04 

 

WMINVF(|Dfbetas|) -0.007±0.16 1.000±0.04 

 

WPINVF(Cook's),alpha=0.05 -0.004±0.15 1.000±0.03 

 

WPINVF(|Dffits|),alpha=0.05 -0.005±0.15 1.000±0.03 

 

WPINVF(Dffits
2
),alpha=0.05 -0.005±0.15 1.000±0.03 

 

WPINVF(|Dfbetas|),alpha=0.05 -0.004±0.15 1.000±0.03 

 

WPINVF(Cook's),alpha=0.25 -0.005±0.15 1.000±0.03 

 

WPINVF(|Dffits|),alpha=0.25 -0.005±0.15 1.000±0.03 

 

WPINVF(Dffits
2
),alpha=0.25 -0.005±0.15 1.000±0.03 

 

WPINVF(|Dfbetas|),alpha=0.25 -0.006±0.15 1.000±0.03 

 

WPINVF(Cook's),alpha=0.5 -0.004±0.15 1.000±0.03 

 

WPINVF(|Dffits|),alpha=0.5 -0.004±0.15 1.000±0.03 

 

WPINVF(Dffits
2
),alpha=0.5 -0.004±0.15 1.000±0.03 

 

WPINVF(|Dfbetas|),alpha=0.5 -0.006±0.15 1.000±0.03 

 

WPINVF(Cook's),alpha=0.75 -0.003±0.15 1.000±0.03 

 

WPINVF(|Dffits|),alpha=0.75 -0.004±0.15 1.000±0.03 

 

WPINVF(Dffits
2
),alpha=0.75 -0.003±0.15 1.000±0.03 

 

WPINVF(|Dfbetas|),alpha=0.75 -0.005±0.15 1.000±0.04 
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Table 4.2.1: Artificial Simple Linear Regression Data Set [12] 

X Y 

1.02 1.12 

1.06 1.11 

1.1 0.9 

1.14 0.98 

1.18 1.39 

1.22 1.14 

1.26 1.45 

1.3 1.21 

1.34 1.3 

1.38 1.17 

1.42 1.57 

1.46 1.46 

1.5 1.59 

1.54 1.26 

1.58 1.75 

1.62 1.68 

1.66 1.88 

1.7 1.58 

1.74 1.87 

1.78 1.63 

1.82 1.69 

1.86 2.11 

1.9 1.95 

1.94 1.73 

2 1 

 

Table 4.2.2: Regression Estimates for Artificial Dataset [12] 

Estimator Intercept Slope 

True Value 0 1 

OLS .316 .763 

LAV .301 .763 

LMS -.655 1.500 

LMS – BEE -.821 1.607 

Chebyshev 1.341 .111 

Chebyshev – BEE 1.095 .250 

TEE (25% trim, SAE) .154 .877 

TEE (50% trim, SAE) .010 .995 

TEE (75% trim, SAE) .090 .922 

TEE (50% trim, SAE with 25% trim) -.012 1.019 
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Table 4.2.3: Regression coefficients using data example in Mayo (1997) paper 

Method Weighting Factor Beta 0 Beta 1 

True Value 

 

0.000 1.000 

OLS (without outliers) 

 

0.000 1.000 

OLS  

 

0.316 0.763 

Huber 

 

0.113 0.915 

Drop 1 WINVF(Cook's) 0.058 0.956 

method WINVF(|Dffits|) 0.148 0.887 

 

WINVF(Dffits
2
) 0.027 0.979 

 

WINVF(|Dfbetas|) 0.129 0.908 

Elemental  WINVF(Cook's) 0.328 0.750 

Regression WINVF(|Dffits|) 0.287 0.784 

 

WINVF(Dffits
2
) 0.328 0.750 

 

WINVF(|Dfbetas|) 0.274 0.821 

 

WMINVF(Cook's) 0.318 0.764 

 

WMINVF(|Dffits|) 0.223 0.841 

 

WMINVF(Dffits
2
) 0.319 0.763 

 

WMINVF(|Dfbetas|) 0.200 0.880 

 

WPINVF(Cook's),alpha=0.05 0.165 0.877 

 

WPINVF(|Dffits|),alpha=0.05 0.142 0.892 

 

WPINVF(Dffits
2
),alpha=0.05 0.139 0.894 

 

WPINVF(|Dfbetas|),alpha=0.05 0.175 0.871 

 

WPINVF(Cook's),alpha=0.25 0.199 0.851 

 

WPINVF(|Dffits|),alpha=0.25 0.141 0.900 

 

WPINVF(Dffits
2
),alpha=0.25 0.145 0.895 

 

WPINVF(|Dfbetas|),alpha=0.25 0.107 0.886 

 

WPINVF(Cook's),alpha=0.5 0.204 0.852 

 

WPINVF(|Dffits|),alpha=0.5 0.193 0.864 

 

WPINVF(Dffits
2
),alpha=0.5 0.204 0.852 

 

WPINVF(|Dfbetas|),alpha=0.5 0.215 0.886 

 

WPINVF(Cook's),alpha=0.75 0.318 0.762 

 

WPINVF(|Dffits|),alpha=0.75 0.232 0.832 

 

WPINVF(Dffits
2
),alpha=0.75 0.318 0.761 

 

WPINVF(|Dfbetas|),alpha=0.75 0.205 0.788 
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Table 4.3.1: Regression Coefficients using Duncan’s data with Drop 2 Approach 

Method Weighting Factor Beta 0 Beta 1 Beta 2 

OLS  -6.065 0.599 0.546 

OLS without outliers  -6.628 0.732 0.433 

Huber  -7.026 0.710 0.477 

Drop 2  WINVF(Cook's) -6.582 0.705 0.464 

method WINVF(|Dffits|) -6.361 0.731 0.427 

 

WINVF(Dffits
2
) -6.608 0.711 0.460 

 

WINVF(|Dfbetas|) -6.326 0.666 0.492 
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