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Abstract 

 

Effect modification by environmental quality index  

on the short-term association between PM 2.5 and mortality  

 

 

By Tong Wang 

 

 

Abstract: 

        Here we used the data obtained from US Environmental Protection Agency to 

examine association between PM2.5 and total non-accidental death risk and to evaluate the 

heterogeneity in PM2.5 mortality rate across different counties. We also evaluated whether 

county-level environmental quality index modifies the association between PM2.5 and 

total non-accidental death risk. This study included data of 433 US counties. Bayesian 

meta-regression was used to combine relative risks from 433 US counties from a national 

multisite time-series analysis. Among the five environment quality indexes to represent 

different domains (air, built environment, land, water, sociodemographic) considered, air 

quality and built environment were found to be significant effect modifiers on PM 2.5 

health risks. The effect modification were robust after adjustment by other environmental 

quality indexes.  
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Chapter I 

Introduction 

Particulate matter (PM) and human health 

Particulate matter (PM) is defined as the minute mixture of solid particles or liquid 

droplets that are suspended in the air.[1] Based on their penetration capacity into the lungs, 

Environmental Protection Agency(EPA) has been categorizing particles mainly into two 

categories: coarse particulate matter (PM10) with an aerodynamic diameter of less than 10 

μm and fine particulate matter (PM2.5) with an aerodynamic diameter of 2.5 μm[2]. 

Particulate matters are primarily generated from sources such as road dust, agriculture 

dust, river beds, construction sites, mining operations, and similar human activities[3]. PM 

is a key indicator of air pollution. The chemical constituents of PM include nitrates; 

sulfates; elemental and organic carbon; organic compounds; biological compounds; and 

metals such as iron, copper, nickel, zinc, and vanadium.[4] Since PM can be suspended 

over a long time and travel over long distances in the atmosphere, it has the potential to 

cause or exacerbate a variety of diseases.[5] Several studies have reported association 

between exposure to PM and total morality, as well as morality due to cardiovascular and 

respiratory diseases.[1,6] More than two million deaths are estimated to occur globally 

each year as a direct consequence of air pollution due to the respiratory disease [7]. 

Among these deaths, around 2.1 millions are caused by PM2.5. 
[7–8] Because of the 

potential adverse health effects of PM2.5 and its associated pollutants, detailed knowledge 

of the association between PM and human health is of primary importance.[5] 
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Effect modification on PM2.5 mortality risk 

Multisite population-based epidemiological studies have observed significant 

heterogeneity in the regional difference in the PM2.5 mortality risk estimates. [9]The 

observed regional differences in PM mortality risk estimates have often been attributed to 

a variety of factors, including geographic variability in particle composition, spatial 

heterogeneity of constituents, and differences between cities in the distribution of the 

population potentially at greatest risk of an air pollutant-related health effect.[10] 

A better understanding of the effect modification on mortality risk can help us understand 

the regional difference in heterogeneity and make corresponding policy to reduce the 

mortality rate. 

Environmental quality index(EQI) 

To help us better understand the relationship between environment conditions and human 

health, an environmental quality index(EQI) for all counties in the US was recently 

developed. By incorporating a variety of environmental and population data, five 

environmental domains were constructed(air, water, land, built environment and 

sociodemographic). The unit of analysis for EQI development was at each U.S. county 

and the indexes were developed using data between 2002 to 2005. Here we briefly 

describe the data sources and variable construction of each EQI. 

Data sources 
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Daily concentrations of six criteria air pollutants from the Air Quality System(AQS) and 

county-level hazardous air pollutants(HAP) concentrations from the NationalScale Air 

Toxics Assessment(NATA) were included and calculated in the air domain.  

Eleven variables from the U.S. Census and data on area-level crime environment from 

the Federal Bureau of Investigation (FBI) Uniform Crime Report (UCR) were employed 

in the sociodemographic domain. 

Water domain included five data sources: Watershed Assessment, Tracking & 

Environmental Results (WATERS) Program Database, Estimates of Water Use in the 

U.S. , National Atmospheric Deposition Program (NDAP), Drought Monitor Network, 

and National Contaminant Occurrence Database (NCOD). Data on water impairment, 

water contamination, recreational water quality, quality of the water used for domestic, 

possible drought status conditions, chemical contamination of water supplies and 

concentration of nine chemicals in precipitation, calcuim, magnesium, potassium, 

sodium, ammonium, nitrate, chloride, sulfate, and mercury were collected and assessed 

from the above sources. 

Land domain comprised five sources: the 2002 National Pesticide Use Database, the 

2002 Census of Agriculture, the National Priority Site data, the National Geochemical 

Survey and the EPA Radon Zone Map. Information on the agricultural environment, 

herbicide, insecticide, and fungicide use, the natural geochemistry and soil 

contamination, large industrial facilities and potential for elevated indoor radon levels 

were obtained and assessed from these sources. 



P a g e  | 4 

 

The built environment domain employed five data sources: the Topographically 

Integrated Geo- coding Encoding Reference (TIGER), the Fatality Analysis Reporting 

System (FARS) data, yearly report of National Highway Traffic Safety administration, 

Housing and Urban Development data and data collected by Dun and Bradstreet. Data on 

housing environment, high way safety, the proportions of highway and primary roads, 

business and service environment were constructed and assessed from these resources. 

Variable constructions 

Air domain 

Daily concentrations of six criteria air pollutants from the Air Quality System (AQS) 

were temporally averaged to get annual mean concentrations for each monitor location 

from 2000 to 2005. To estimate annual concentrations at each county center point, the 

annual means were temporally and spatially kriged. These kriged values were then 

averaged for the six-year study period. 

County-level hazardous air pollutants (HAP) concentrations from the NationalScale Air 

Toxics Assessment(NATA) were retrieved. Emission estimates for each variable were 

averaged to get a composite emissions estimate across the study period. Air domain 

variables were checked for normality and log-transformed if necessary.  

Sociodemographic domain 

Eleven variables from the United States Census were included in the sociodemographic 

domain of the EQI. When the sociodemographic domain was constructed, positive 
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variables were reverse-coded to ensure that a higher amount of the sociodemographic 

domain represented adverse environmental conditions. 

The area-level crime environment was represented using the data from Federal Bureau of 

Investigation (FBI) Uniform Crime Reports (UCR). Crime data were spatially and 

temporally kriged to estimate counties with no reported crime. Kriging employed a 

double exponential covariance structure for the spatial covariance; one represented short-

range variability and the other long-range variability. The covariance model was fit to 

experimental covariance values with a least squares method and demonstrated sufficient 

fit. The crime variable was log-transformed to be included in the EQI. 

Water domain 

Using the WATERS database and joining the data in GIS software with measures of 

stream length in the Reach Address Database, a cumulative measure of percent of water 

impairment for agricultural, drinking, recreational wildlife and industrial use was used to 

represent overall water quality in the county. 

The number of National Pollutant Discharge Elimination System (NPDES) permits in a 

county was used as a proxy for general water contamination. Three composite variables 

were included in the EQI: a composite for number of sewage permits, a composite for 

industrial permits, and one for stormwater permits, all per 1000 km of stream length per 

county. 
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Quality of recreational water was assessed using the WATERS database , from which 

three variables for number of days of beach closure were created - for any event, for 

contamination events, and for rain events in a county. 

Domestic water quality data was obtained from the Estimates of Water Use in the U.S. 

database as a proxy for the quality of the water used for domestic needs. Two variables 

were therefore included in the EQI: the percent of population on self-supplied water 

supplies and the percent of those on public water supplies which are on surface waters. 

The NDAP dataset provides measures for the concentration of nine atmospheric 

chemicals in precipitation, calcuim, magnesium, potassium, sodium, ammonium, nitrate, 

chloride, sulfate, and mercury. Annual summary data for each year from each monitoring 

site were spatially kriged, using an exponential covariance structure, to achieve national 

coverage and county level estimates. The annual estimates for each pollutant were then 

averaged for the full study period. The data for all pollutants, except sulfate, were log-

transformed. 

The Drought Monitor dataset offers raster data on six possible drought status conditions 

for the entire U.S. on a weekly basis. To estimate the percentage of the county in each 

drought status condition the data were spatially aggregated to the county level. From this 

data we used the percentage of the county in extreme drought (D3-D4) in the EQI. 

Chemical contamination of water supplies was obtained from the NCOD dataset which 

provides data on 69 contaminants provided by public water supplies throughout the 

country for the period from 1998–2005. Data for all samples in a county for each 
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contaminant were averaged over the time period and log-transformed. With the 

assumption that lack of measurement for an area indicated low concern for that particular 

contaminant, missing values were set to zero. 

Land domain 

In total, eight variables representing agriculture were constructed using data from 2002 

Census of Agriculture and county-level percentages (acres applied per county total 

acreage) were calculated and then log-transformed. 

Herbicide, insecticide, and fungicide use for each county and state pesticide use data 

were estimated using data from the 2002 Census of Agriculture and the 2002 National 

Pesticide Use Dataset, respectively. All pesticide variables were log-transformed. 

The natural geochemistry and soil contamination was estimated using data from the 

National Geochemical Survey (NGS). These data, collected for stream sediments, soils, 

and other media, were combined at the county level to estimate the mean values of 13 

geochemical contaminants available and were log-transformed. 

Large industrial facilities represent sources for pollutants released into the environment. 

The National Priority List data from the EPA provided information on facilities for the 

U.S. Because many counties had at least one, but no counties had all six of the facility 

types present, a composite facilities data variable was constructed by summing the count 

of any one of the six facilities types (brownfield sites, superfund sites, toxic release 

inventory sites, pesticide producing lo- cation sites, large quantity generator sites, and 
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treatment, storage and disposal sites) across the counties. The facilities rate variable was 

assessed for normality and log-transformed. 

Finally, the potential for elevated indoor radon levels was represented using county score 

from the EPA Radon Zone map. 

Built environment domain 

The built environment domain employed five data sources: the Topographically 

Integrated Geo- coding Encoding Reference (TIGER), the Fatality Analysis Reporting 

System (FARS) data, yearly report of National Highway Traffic Safety administration, 

Housing and Urban Development data and data collected by Dun and Bradstreet. Data on 

housing environment, high way safety, the proportions of highway and primary roads, 

business and service environment were constructed and assessed from these resources 

Housing environment was represented by two variables available from the HUD data 

source, low-rent and section-eight, which were summed to get the count of any low-rent 

or section-eight housing in each county; the subsidized housing rate was constructed and 

log-transformed from this count. 

Highway safety was represented using a traffic fatality variable. Rates of count of fatal 

crashes per county were constructed and log distributed. The percent of county residents 

who use public transportation was the only U.S. Census variable and was log-

transformed. 
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The proportions of each county that were served by highways, secondary roads and 

primary roads were also included. 

Nine business environment rate variables were constructed using data from Duns and 

Bradstreet by dividing the county-level count of a business type by the county- level 

population count. All variables except the negative food environment were log-

transformed. When the built domain was constructed, positive variables were reverse- 

coded to ensure that a higher amount of these service variables represent adverse 

environmental conditions.[11] 

All of these five domains have a negative valence, meaning that the higher a specific 

domain score, the poorer environment quality.  

Problem statement 

There has been considerable research on the associations between PM2.5 levels and 

mortality risk and human disease. There is increasing interest in research focusing on 

identifying effect modifiers that can contribute to spatial effect heterogeneity. To have a 

comprehensive understanding on the effect modifiers, we needs to identify whether 

environmental quality index modifies the association between PM2.5 and mortality risk. 

Purpose statement  

In this study we aim to examine the association between PM2.5 and total non-accidental 

death risk, as well as evaluate the heterogeneity in PM2.5 mortality rate across different 
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counties in the US. We also attempt to identify whether environmental quality index 

modifies the association between PM2.5 and total non-accidental death risk. 

Significant statement 

A better understanding of effect modification on the relative mortality rate may help 

inform local air quality efforts to best alleviate the adverse health risk of air pollution. It 

can also have implications for policy-makers so that more stringent strategies can be 

taken to reduce air pollution and the corresponding mortality risk. 
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Chapter II 

Literature Review 

By 1990s, time-series studies conducted at a single location [12-15], demonstrated that even 

very low concentration of air pollution levels were associated with mortality rates in 

cities in the United States, Europe, and other developed regions. However, the 

inconsistency in findings of single-site studies on this association leads to the critique and 

questioning of the choice of particular cities. From then on, a hierarchical modeling 

approaches which can combine information across cities have been applied.[16] 

While the epidemiological evidence relating the association between exposure to PM 2.5 

and total mortality is substantial, there has been limited studies of effect modifications on 

this association. The challenge in understanding effect modification lies in the huge 

heterogeneity among study designs and populations, with a variety of health outcomes, 

pollutants, confounders, regions, and effect modifiers.[17] Levy JI et al.[10] reported that 

the regional differences in PM mortality risk estimates have often been attributed to 

factors such as geographic variability in particle composition and spatial heterogeneity of 

constituents. Baxter LK et al.[9] demonstrated that that the difference between cities may 

be due to differences in the air pollution mixture as well as differences in exposure (i.e., 

exposure measurement error or city-specific exposure factors), and possibly those related 

to local sources such as traffic. 
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Chapter III 

Methods 

Data 

Core Based Statistical Area (CBSA) was defined as centers of an urban region of at least 

10,000 people and adjacent areas that are socioeconomically tied to the urban center by 

commuting.[18] A CBSA may consists of one or more than one counties. Daily mortality 

rates as well as environmental quality indexes for each county were obtained from 

Environmental Protection Agency (EPA). The relative risks of daily PM2.5 levels and 

total non-accidental death model with various lag structures were obtained from Poisson 

log-linear models estimated for each county separately. The mortality rate was measured 

as the log relative risk of total non-accidental death in counties per unit increase in PM2.5. 

Since we would look at the association between PM2.5 and total non-accidental death risk 

on both county-data and CBSA data, for the CBSA analysis, we removed the counties 

that are not part of a CBSA. The total number of counties is 433, while the number of 

counties belonging in a CBSA is 277. 

Statistical Models 

We examined the association between PM2.5 and total non-accidental death risk as well as 

evaluate the heterogeneity in PM2.5 mortality rate across different counties using a two-

stage Bayesian hierarchical modeling approach. To identify whether environmental 

quality index modifies the association between PM2.5 and total non-accidental death risk 

on county-data and CBSA data, explanatory variables were added in the second-stage. 
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First, we estimated the overall pooled effects of the mortality risks in a Bayesian 

regression model. Here 𝛽𝑐 denotes the true log relative risk at a given county, 𝜇 denotes 

the pooled effect estimates of the log relative risk and 𝜎2 denotes the between-county 

variability. 

Model 1:    𝛽𝑐 = 𝜇 + 𝜀𝑐     𝜀𝑐~𝑁(0, 𝜎2) 

Second, we fit a Bayesian hierarchical model to decompose the variability into between-

CBSA variability and between-county variability. Here  𝛽𝑐𝑗 denotes the true log relative 

risk at county c within CBSA j, 𝜇 denotes the estimates of the mean log relative risk, 

𝜎2 denotes the between-county variability after accounting for CBSA effects, and 𝜏2 

denotes the between-CBSA variability.     

Model 2:    𝛽𝑐𝑗 = 𝜇𝑗 + 𝜀𝑐𝑗   𝜇𝑗~𝑁(𝜇, 𝜏2)  𝜀𝑐𝑗~𝑁(0, 𝜎2) 

Third, to look at the effect modification of environmental quality index, we added an 

explanatory variable to Model 1, where 𝑍𝑐 is the county-specific environmental quality 

index. It measures the change in the true log relative risk associated with1-unit increase 

in the corresponding county-specific environmental quality index. 

Model 3:     𝛽𝑐 = 𝜇 + 𝛼𝑍𝑐 + 𝜀𝑐          𝜀𝑐~𝑁(0, 𝜎2) 

Fourth, to look at the effect modification of environmental quality index account for 

CBSA heterogeneity, we added an explanatory to model 2, where 𝑍𝑐𝑗 is the CBSA-

specific environmental quality index. It measures the change in the true relative morality 
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risk associated with1-unit increase in the corresponding county-specific environmental 

quality index after accounting for CBSA. 

Model 4:    𝛽𝑐𝑗 = 𝜇𝑗 + 𝛼𝑍𝑐𝑗 + 𝜀𝑐𝑗      𝜇𝑗~𝑁(𝜇, 𝜏2)       𝜀𝑐𝑗~𝑁(0, 𝜎2) 

The specification of these Bayesian model is completed with the following prior 

distributions. We used the R package R2WinBUGS and WinBUGS to perform Markov 

chain Monte Carlo (MCMC). The total number of MCMC iterations is 40000 with a burn 

in of 20000 samples. The prior distributions are:𝜇~𝑁(0,1000000), 

𝛼~𝑁(0,1000000), 𝜎2~𝑢𝑛𝑖𝑓(0, 100),  𝜏2~𝑢𝑛𝑖𝑓(0, 100).  

 

 

 

 

 

 

 



P a g e  | 15 

 

Chapter IV 

Results 

Table 1 summarizes the descriptive statistics of the environmental quality indexes. We 

can see that the average EQIs of county-data and CBSA data are nearly the same. 

On average across counties, the pooled change in relative risk per 10 unit increase in 

PM2.5 levels for lag time 0, 1 and 2 are: 0.1470(-0.0425, 0.3252), 0.3142(0.1159, 0.4638), 

0.3889(0.2359, 0.5393). For the CBSA analysis, the overall estimates of log relative risk 

for lag 0, 1 and 2 are: 0.0392(-0.1973, 2.3690), 0.2071(0.0126, 0.0407), 0.3334(0.0865, 

0.5736). Hence, the overall estimates obtained from considering all counties are slightly 

higher than that obtained from using only counties within a CBSA. 

Figure 1 shows the estimated effect modification of log relative risks with 95% posterior 

intervals (PI) for different environmental quality indexes by exposure day lag under 

model 3 and model 4. As figure 1 indicates, the air and built environment domains are 

significant positive effect modifiers while land, water and sociodemographic domain are 

non-significant. Also, as the lag increases from 0 to 2, the air domain become less 

significant while build domain are more significant. The effect modification slope by the 

air domain during lag 0, 1, 2 are: 0.4398(95%PI: 0.1115,0.7704), 0.2676(95%PI:-0.0466, 

0.5990), -0.0755(95%PI:-0.3624, 0.1729). This translates to: for current day log relative 

risk(lag=0), one-unit increase in the environmental quality index of the air domain will 

leads to a 0.44% increase in the county-specific log relative risk on mortality per 10-unit 

increase in PM2.5. For the CBSA-only analysis, the effect of air domain for lag 0, 1, and 2 

are: 0.5215(0.0173, 0.9679), 0.5021(0.0918, 0.8769). For the built environment domain 
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during lag 0, 1, and 2, the effect modifications are: 0.4519(95%PI: 0.0310, 0.8662), 

0.4977(95%PI: 0.2526, 0.7519), 0.5661(95%PI: 0.222, 0.8686) in the all-county analysis. 

For the CBSA-only analysis, the corresponding estimates are: 0.4396(95% PI:-0.0583, 

0.9272), 0.6852(95% PI: 0.2546, 1.1180), 0.5679(95% PI: 0.2732, 0.9240).  

We then examined the robustness of the air and built environment domain effect 

modification after adjustment by other environmental indexes. Figure 2 and Figure 3 

show mean estimates and 95% posterior intervals of air and built environment domain 

after adjusting for the other four environmental quality indexes, one at a time. Overall, 

the effect modifications by air and built environment domain are similar to those without 

adjustment.  
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Chapter V 

Discussion 

According to the Figure 1, we found that the CBSA estimates and the county estimates 

are very similar. However, the CBSA estimates have wider confidence interval than the 

estimates of county-data. The reason that CBSA estimates have wider confidence interval 

may due to two reasons: First, we removed counties that are not within a CBSA, leading 

to a smaller sample size, thus larger confidence interval. Second, this may due to a large 

heterogeneity variance. 

Among all the five environmental quality index domain, air and built environment are 

significant associated with higher PM2.5 risks. Considering that highway safety, highway 

proportion and main roads proportion are included in the built environment domain, it 

may be reflecting PM2.5 compositions that are associated with higher levels of traffic-

related pollutants, as suggested by Baxter et al[9]. As to the air domain, since the index 

includes the level of nitrogen dioxide, PM10 and PM2.5 itself, it suggests that long-term 

poor air quality is associated with higher PM2.5 risks on the mortality.  
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Appendix 

Figure1. Posterior mean and 95% posterior intervals for the effect modification of 

of different environmental quality index on PM2.5 relative risks by lag time. The 

relative risks are per 10 unit increase in PM2.5 on non-accidental mortality. The 

analysis are conducted using either all counties or counties within a CBSA.  
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Figure2 . Posterior mean and 95% posterior intervals of the effect modification by 

the air index after adjusting for other environmental quality index 
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Figure 3. Posterior mean and 95% posterior intervals of the effect modification by 

the built environment index after adjusting for other environmental quality index 
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Table1. The summary statistics(median, minimum, maximum and standard 

deviation) of environmental indexes 

 

WinBUGS code: 

Model1: 

model{ 
    for (i in 1:N) { 
        y.hat[i] ~ dnorm(y[i], prec2[i]) 
        y[i] ~ dnorm(mu[i], tau2) 
 mu[i] <- alpha 
    } 
    #Priors  
    alpha ~ dnorm(0.00000E+00, 1.00000E-06) 
    sigma2 ~ dunif(0.00000E+00, 100) 
    tau2 <- pow(sigma2, -2) 
} 
 

Model2: 

model{ 
for( i in 1:N){ 
        y.hat[i] ~ dnorm(y[i], prec2[i]) 

 Median(min, max), SD 

EQIs All CBSA 

Air  1.1637(-1.506, 2.7898), 0.5887 1.0662(-1.506, 2.7898), 

0.5995 

Built 0.7918(-2.0637, 2.615), 0.4535 0.7478(-2.0637, 2.615), 

0.4589 

Land 0.5084(-5.1192, 2.0945), 

0.8456 

0.522(-5.1192, 1.7299), 

0.8859 

Water 0.7844(-1.5971, 1.4782), 1.045 0.8417(-1.5676, 1.4248), 

0.9973 

Sociodemographic 0.5092(-3.1729, 3.5311), 

0.9234 

0.4662(-3.1729, 3.5311), 

0.9484 
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        y[i] ~ dnorm(mu[i], tau2) 
 mu[i] <- mur[ID[i]] 
    } 
for(i in 1:n){ 
       mur[i] ~ dnorm(alpha, gamma2) 
} 
    #Priors  
    alpha~dnorm(0.00000E+00, 1.00000E-06) 
    sigma2 ~ dunif(0.00000E+00, 100) 
    tau2 <- pow(sigma2, -2) 
    eta2 ~ dunif(0.00000E+00, 100) 
    gamma2 <- pow(eta2, -2) 
} 

Model3_air: 

model{ 
    for (i in 1:N) { 
        y.hat[i] ~ dnorm(y[i], prec2[i]) 
        y[i] ~ dnorm(mu[i], tau2) 
 mu[i] <- alpha+air_EQI_22July2013[i]*air 
    } 
    #Priors  
    alpha ~ dnorm(0.00000E+00, 1.00000E-06) 
    sigma2 ~ dunif(0.00000E+00, 100) 
    tau2 <- pow(sigma2, -2) 
    air ~ dnorm(0.00000E+00, 1.00000E-06)  
} 

Model4_air_CBSA: 

model{ 
    for (i in 1:N) { 
        y.hat[i] ~ dnorm(y[i], prec2[i]) 
        y[i] ~ dnorm(mu[i], tau2) 
     mu[i]<- mur[i] + air_EQI_22July2013[i]*air  
 mur[i] <- murs[ID[i]] 
    } 
for(i in 1:n){ 
       murs[i] ~ dnorm(alpha, gamma2) 
} 
    #Priors  
    alpha ~ dnorm(0.00000E+00, 1.00000E-06) 
    sigma2 ~ dunif(0.00000E+00, 100) 
    tau2 <- pow(sigma2, -2) 
    eta2 ~ dunif(0.00000E+00, 100) 
    gamma2 <- pow(eta2, -2) 
    air ~ dnorm(0.00000E+00, 1.00000E-06) 
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    icc<-gamma2/(gamma2+tau2) 
} 
 


