
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for
an advanced degree from Emory University, I hereby grant to Emory University and
its agents the non-exclusive license to archive, make accessible, and display my thesis
or dissertation in whole or in part in all forms of media, now or hereafter known,
including display on the world wide web. I understand that I may select some access
restrictions as part of the online submission of this thesis or dissertation. I retain
all ownership rights to the copyright of the thesis or dissertation. I also retain the
right to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Jin Ming Date



Brain Network-Based Statistical Approaches for Neuroimaging Data

By

Jin Ming
Doctor of Philosophy

Biostatistics

Suprateek Kundu, Ph.D.
Advisor

Robert Lyles, Ph.D.
Committee Member

Joe Nocera, Ph.D.
Committee Member

Lance Waller, Ph.D.
Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D, MPH
Dean of the James T.Laney School of Graduate Studies

Date



Brain Network-Based Statistical Approaches for Neuroimaging Data

By

Jin Ming
B.A., University of Nottingham Ningbo China, China, 2014

MSPH., Emory University, GA, 2016

Advisor: Suprateek Kundu, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Biostatistics

2022



Abstract

Brain Network-Based Statistical Approaches for Neuroimaging Data
By Jin Ming

Brain Networks derived from neuroimaging data have been widely studied recently
to analyze the underlying complex spatial relationships between different regions of
the brain. Functional connectivity (FC) derived from brain networks have been used
as a potential biomarkers for delineating between healthy and mentally ill groups or
subgroups with pre-defined features. Although there has been an intense development
of statistical methods for computing brain networks, further advances are needed for
developing novel and flexible statistical approaches are needed to address several gaps
in the literature.
In chapter one, we propose a novel graph-theoretic approach for estimating a popu-
lation of individual-specific dynamic functional connectivity that is able to systemat-
ically borrow information across multiple heterogeneous samples in a data-adaptive
manner and guided by supplementary covariate information. In one of the first such
approaches in literature, we develop a Bayesian product mixture model that uses co-
variates to model the mixture weights, which is able to cluster across heterogeneous
samples independently at each time scan. An application to a fMRI block task ex-
periment with behavioral interventions in veterans reveals sub-groups of individuals
with homogeneous dynamic connectivity patterns and identifies significant dynamic
network changes resulting from the intervention.
In chapter two, we proposed a novel semi-parametric Bayesian Support Vector Ma-
chine (SVM) approach that incorporates high-dimensional networks as covariates and
is able to assign varying levels of shrinkage to the coefficients in an unsupervised man-
ner via a Dirichlet process mixture of double exponential priors. Although SVM-based
methods are heavily used in classifying mental disorders, there are few, if any, semi-
parametric Bayesian SVM approaches for classification based on high-dimensional
brain networks that naturally provides the ability to conduct inferences. We apply
the approach to a connectome fingerprinting problem using the Human Connectome
Project (HCP) data as well as a second application involving classification of indi-
viduals with attention deficiency hyperactivity disorder (ADHD) and showcase the
superior classification accuracy of the proposed approach.
In chapter three, we examine the potential of multimodal dynamic FC, computed
by fusing functional magnetic resonance imaging (fMRI) and diffusion tensor imag-
ing data, in terms of predicting continuous clinical measures of disease severity. We
develop concrete measures of temporal network variability that are directly linked
with disease severity and identify regions whose temporal connectivity fluctuations
are significantly related to the disease. Our results illustrate the distinct advantages
of prediction of disease severity compared to the usual analysis based on disease
phenotype categories, it shows that the multimodal approach is more sensitive to
connectivity changes and highlights the predictive prowess of multimodal dynamic
FC over existing static and dynamic network models.
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2.1 A schematic diagram illustrating the proposed dynamic pairwise correlation

method. A mixture prior with H = 3 components is used to model dynamic

correlations, where the mixture weights are modeled using covariates. The

resulting networks at each time scan for each sample are allocated to one of

the H clusters representing distinct network states that are represented by

red, orange and blue cubes. Although the proposed method does not clus-

ter transient states across time, the simplified representation in the Figure

illustrates the similarity of brain states contained in identical colored cubes

across the experimental session. Such temporal smoothness of the network

is imposed via hierarchical fused lasso priors on the mixture atoms. Once,

the dynamic FC is estimated, a post-processing step using K-means (Sec-

tion 2.2) is applied to compute sub-groups of samples that exhibit similar

dynamic connectivity patterns summarized across all time scans. The sub-

groups are represented by the circle, pyramid, triangle and inverted triangle

shapes in the Figure and correspond to different modes of dynamic connec-

tivity with different number of brain states represented by different patterns

within each shape. The connectivity change points for each individual, as

well as at a cluster level, are computed via another post-processing step

that employs a group fused lasso penalty (Section 2.3). The method reports

both individual and cluster-level network features. . . . . . . . . . . . . . 13

2.2 F1-score over time for one single subject under the case of dynamic par-

tial correlation method. The vertical green lines are the true change

points. Red line represents the proposed method with dynamic par-

tial correlation (idPMAC), the cyan line represents the covariate-naive

version (BPMM-PM), the blue line represents DCR, and the pink line

represents SINGLE method. . . . . . . . . . . . . . . . . . . . . . . . 38



2.3 Performance of dynamic pairwise correlation (columns 1 and 2) and

dynamic precision matrix (columns 3 and 4) methods under differ-

ent number of spurious covariates represented by the X-axis. Lines
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False Positive estimations), and the performance of edge level change

point estimation was provided in the bottle row. . . . . . . . . . . . . 41
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bottom panel correspond to the results under dynamic pairwise correla-

tion and dynamic precision matrix estimation incorporating covariates,

respectively. Red and blue lines correspond to lower or higher edge

strengths in the pre-intervention network compared to post-intervention.
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4.1 A diagrammatic illustration of our novel multimodal dynamic FC approach

using Rs-fMRI data that is guided by brain SC information computed from

DTI data. Given a set of nodes in the network, the approach is able to

learn change points or jumps in the network in an unsupervised manner,

where the number and locations of the change points are unknown and the

network is assumed to remain constant within a state phase defined as the

time interval between two consecutive change points. The greedy partition-

ing scheme used to compute change points uses state phase-specific networks

that are computed after incorporating brain SC knowledge - in this man-

ner, the change point estimation procedure is influenced by the given brain

SC information. In order to scale up the multimodal dynamic FC (mDFC)

approach to high-dimensional networks, we propose a sub-network sam-

pling scheme where we use the mDFC approach to compute change points

using several smaller subsets of nodes or sub-networks. This process is ap-

plied repeatedly for a large number of sub-networks, and the set of change

points for each sub-network is recorded. The sub-network sampling scheme

yields a frequency or score for each time point to be identified as a net-

work level change point, and a systematic data-adaptive thresholding strat-

egy to determine frequency cut-offs that can be used to determine network

level change points that are consistently identified across most sub-networks.

Conditional on the estimated network level change points, the structurally

informed precision matrix estimation is applied once again to compute a

distinct sparse inverse covariance matrix encoding the network separately

for each state phase. The state phase specific networks are computed by

integrating brain SC information that encourages greater weights for FC

corresponding to those edges with strong SC under a Gaussian graphical

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



4.2 The proposed analysis pipeline. Panel (a) illustrates the nodes used

in brain functional connectivity that are distinguished based on the

known functional modules. Panel (b) illustrates the computed dynamic

functional connectivity separately for each individual, the method for

which is detailed in the Methods section and Figure 4.1. Panel (c)

depicts a heatmaps with summary measures that reflect the degree of

temporal variation for edges across all the individuals. Panel (d) illus-

trates our discovery regarding the edges whose temporal fluctuations

are directly related to trauma resilience. Panel (e) provides boxplots

for out of sample prediction accuracy using the edge-wise dynamic con-

nections to predict the continuous clinical outcome, via the scalar-on-

function statistical methodology. Panel (f) provides a visual depiction

of the performance metrics from our extensive validation studies com-

paring the proposed approach with alternative methods. . . . . . . . 108

4.3 Histogram for the number of FC change points detected in the PTSD

data analysis. The left and right panels depict the results under the

proposed approach and under the SC naive version of the method.

The multimodal dynamic FC approach seems to be more sensitive to

network changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



4.4 Panels (A)-(C) illustrates the edge-wise temporal variation averaged

over all individuals, individuals with PTSD and those without PTSD,

respectively. Here the temporal variation for an edge was calculated

as the ratio of the number of state changes for that edge divided by

the number of state changes in the network. Edges in several modules

including Visual, SAL, SCOR, VAN and DAN show strong temporal

fluctuations resulting from frequent state changes. On the other hand,

the Sensory, Cingulomotor, and DMN register the fewest temporal fluc-

tuations over time. Only 213 edges illustrated significant differences

in terms of the proportion of edge-specific state changes between the

PTSD and non-PTSD groups, which suggests the inadequacy of this

measure to distinguish disease severity. Out of these 213 edges, almost

all had a higher frequency corresponding to the PTSD group, illustrat-

ing higher temporal fluctuations in this cohort. Panel (D) illustrates

edges whose fluctuations in terms of the edge strength (measured via

edge-specific standard deviations for partial correlations over time) are

significantly related to PTSD resilience (multiplicity adjusted). Most

of these edges lie between functional modules and are contained be-

tween the Visual and other modules, as well as between the DAN and

other modules. Blue and red colors imply a negative and positive asso-

ciation with PTSD resilience respectively. It is clear that an increase

in temporal edge strength fluctuations in most edges leads to decrease

in resilience and vice-versa. However, a small number of connections

within DMN and between DMN and other modules lead to increased

resilience corresponding to higher fluctuations in edge strength and

vice-versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



4.5 Prediction performance in terms of Mean squared error or MSE when

using dynamic network metrics for predicting resilience score under

mDFC, SC naive version of mDFC (denoted as DFC), and siGGM. The

subplots indicate MSE values when using the following time-varying ex-

planatory variables in scalar-on-function regression (A): global cluster-

ing coefficient and global efficiency; (B) local clustering coefficient for

DAN+VIS, SAL+VIS, SCOR+VIS, VAN+VIS functional modules (C)

local efficiency in DAN, SCOR, and VAN functional modules; and (D)

local efficiency in DAN+VIS, SCOR+VIS, VAN+VIS functional mod-

ules. mDFC has lower or comparable MSE in all cases, and significantly

lower MSE (higher prediction accuracy) when using dynamic global ef-

ficiency and clustering coefficient; dynamic clustering coefficient using

nodes in DAN+VIS modules, SAL+VIS modules, VAN+VIS modules

and SCOR+VIS modules; dynamic local efficiency when using nodes

from DAN module, as well as DAN+VIS modules. . . . . . . . . . . 111

4.6 Prediction performance in terms of Mean squared error or MSE when

using small-worldedness derived from localized functional modules for

predicting resilience scores. Results are reported for multimodal dy-

namic connectivity (mDFC) and the SC-naive version of the method

(denoted as DFC), along with the siGGM approach that computes

static networks. The results indicate MSE values are lower or com-

parable under the mDFC method across all local functional modules,

with significant improvements corresponding to the salience network. 112



4.7 Figures 7(a)-7(c) denote frequency plots for change point estimation. Fig-

ures 7(a) and 7(b) correspond to the case of V = 20 and V = 100 nodes

respectively, with the true change points being located at 60, 165, and 300.

Figure 7(c) corresponds to the case of 10 true change points which are la-

beled on the X-axis. The histograms show a strong clustering around true

change points. Although there exist some loosely grouped frequencies cor-

responding to spurious change points, they are almost always eliminated

through sub-network sampling mechanism. Figure 7(d) depicts the compu-

tation time as the sub-network size is varied. . . . . . . . . . . . . . . . 112

4.8 Simulation results corresponding to true networks with discrete jumps at

change points. There are total 3 true change points for each simulation.

The first column denotes different simulation scenarios: ER, SW, and SF,

denote Erdos-Renyi, small world network, and scale-free networks respec-

tively. The numbers within the parenthesis denote the network density,

number of nodes, and number of time points respectively. CP is the per-

centage of estimated true change points. FP is the average number of false

estimated change points. mDFC has Strong power to detect all true change

points without and FP. In terms of graph estimation, mDFC has significant

higher AUC compared with siGGM as well as DCR that is denoted as DFC

in this Figure. The significantly improved metrics are highlighted in bold. 113



4.9 Simulation results corresponding to true dynamic networks with three tran-

sition periods instead of discrete jumps. The first column denotes different

simulation scenarios: ER, SW, and SF, denote Erdos-Renyi, small world

network, and scale-free networks respectively. The numbers within the

parenthesis denote the network density, number of nodes, and number of

time points respectively. CP is the percentage of estimated true change

points. FP is the average number of false estimated change points. In terms

of change points detection, mDFC performs better than DCR which is de-

noted as DFC in this Figure. mDFC also has higher AUC compared with

siGGM and DCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
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Chapter 1

Introduction

1.1 Neuroimaging Study

Neuroimaging studies have proved to be a pivotal tool for understanding the neuro-

biological basis of cognitive and behavioral outcomes in psychiatric studies, as well

as for examining the pathopysological mechanisms and atypical brain development

underlying mental disorders. Traditional neuroimaging studies focus on identifying

brain regions which are activated with respect to a certain task or outcome. How-

ever, more studies have focus on analysing the functional connectivity (FC), which

measures the temporal correlation between different regions of the brain recently.

1.1.1 Brain Network

Many studies have tried to describe the nervous system as a network of interconnected

neurons (Sporns, 2013; Hutchison et al., 2013). In addition, many studies have im-

plicitly assumed that the this interconnected system between different brain regions

(Functional Connectivity, FC) is constant throughout the experiments. As a quantity

to measure the temporal correlation between different brain regions over time, pair-
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Figure 1.1: An illustration of fMRI study.

wise correlation and covariance have been widely used to measure the FC (Friston,

2011; Bressler and Menon, 2010). Recent works have shown that functional connec-

tivity, especially resting-state functional connectivity, is related with some mental

illness and psychiatric disorders. Resting-state functional connectivity could be de-

fined as the brain network when people are at rest, which normally means that the

fMRI data is acquired in the absence of a stimulus or a task. For example, many

resting state FC studies have shown that cortical networks and cortical-subcortical

connectivity is altered in schizophrenia (Baker et al., 2014; Woodward et al., 2012).

Researchers are also trying to identify patients with major depression based on the

difference in resting-sate FC (Greicius et al., 2007; Zeng et al., 2012).

There has been a steady development of approaches to compute dynamic func-

tional connectivity (FC) that is fueled by an increasing agreement among scientists

that the brain network does not remain constant across time and instead undergoes

dynamic changes resulting from endogenous and exogenous factors. For example,

task-related imaging studies have shown that the brain networks will re-organize

when the subjects undergo different modulations of the experimental tasks during

the scanning session (Chang and Glover, 2010; Lukemire et al., 2020). Similarly,
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dynamic FC has also been observed during resting-state experiments (Bullmore and

Sporns, 2009). In general, recent studies have found increasing evidence of under-

lying neuronal bases for temporal variations in FC which is linked with changes in

cognitive and disease states (Hutchinson et al., 2013). Throughout this article, we

use a graph-theoretic interpretation of dynamic connectivity involving time-varying

correlations that is commonly used in literature.

1.1.2 Graphical Model

Graphical models have been used to describe the brain network. Graphical model

usually contains two core parameters: nodes and edges. Nodes correspond to random

variable, like different regions of interests (ROIs) in neuroimaging study. Edges rep-

resent the statistical dependencies between the variables. Graphical network could

be either directed or undirected. In a directed network, the value of edges from two

nodes might be different in order to show the different dependencies between these

two nodes. However, undirected network has edges that do not have a direction. The

edge indicate a two-way relationship. Edges in graphical model could also be weighted

or unweighted. In a weighted graphical model, the edges might have different value,

in terms to represent the strength of different edges. Unweighted models assume that

all edges are equally weighted, or the dependence relationship is the same among all

edges. In a graphical model, network could be transferred into matrix version. In an

unweighted graphical model, edge could be either 1 or 0, whereas 1 indicates there

is connection between two corresponding nodes, and 0 represent the absence of edge.

Figure 1.2 is a illustration of a graphical model with 5 nodes.

In the study of fMRI, normally the undirected, unweighted graphical models are

used to represent the brain network, or functional connectivity. Precision matrix has

recently become one of the most widely used and successful metrics to describe brain

network, as it could distinguish a true, direct functional connection from an apparent
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Figure 1.2: Illustration of a graphical model with 5 nodes(undirected, unweighted).
Left: network. Right: corresponding matrix

connection, caused via confounding by a common third party node. Although it is

possible to threshold the pairwise correlation matrix to estimate brain network, the

choice of threshold value might be controversial. In addition, the connection based

on pairwise correlation is not the direct connection for two nodes.

In addition, the dynamic functional connectivity could be estimated via sparse pre-

cision matrix under graphical models. The Gaussian graphical model, like graphical

lasso (Friedman et al., 2008) could be Incorporated directly under Bayesian frame-

work. For example, Kundu et al., (2018) estimate the dynamic functional connectivity

of each state by using graphical lasso of all time points within that time range.

1.2 Static Functional Connectivity

Many neuroimaging studies have focus on the study of static functional connectivity

(sFC), which assume that the brain network keep stationary over the time of fMRI

session or the experiment. However, brain regions do not show constant communica-

tion with each other but show some fluctuations over time. In other words, sFC is

calculated as the average or mean connectivity over the whole fMRI session.

Normally, static functional connectivity could be captured as the pairwise correlation

(Pearson‘s correlation) or partial correlation between BOLD signals (time series) of

different regions of the brain. Pairwise correlation measures the connections between

pairs of nodes without accounting for the third party of nodes, whereas partial corre-
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lation reports connectivity that can be interpreted as the association between nodes

conditional on the effects of the remaining network nodes. Both pairwise correlation

and partial correlation have been widely used as the measure of static functional con-

nectivity (Kim et al., 2015). The advantage of using pairwise correlation is that it is

easy to calculate. However, pairwise correlation could not distinguish the association

between a pair of nodes is direct or not. In other words, it might be the case that the

association of two nodes is caused by a third node or third party of nodes.

In order to capture the direct association between two nodes, many studies have

used partial correlation to measure the functional connectivity. Partial correlation

quantifies the association between two regions, conditioning on the other regions. In

other words, partial correlations measure the direct connection between two regions.

A zero value of partial correlation indicates there is no direct connection between

two regions, which could also be interpreted as conditional independence. Despite

the advantage of quantifying direct association, there are some limitations of using

partial correlation as sFC as well. First of all, the computation of partial correla-

tion is much more challenging for neuroimaging data. Precision matrix is normally

used for the calculation of partial correlation. Friedman et al., (2008) proposed the

using for graphical lasso penalty when estimating precision matrix. However, as neu-

roimaing data normally is high dimensional, with over thousands of different nodes,

the penalization framework took much longer time than pairwise correlation directly.

Secondly, the estimation of precision matrix through penalization need the use of

penazlied parameter to control the overall density of the precision matrix. But the

performance of different brain network with different density level might be different

as well. So researchers might need to test the performance based on all different level

of densities. Finally, it is unclear that the statistical power of using partial correlation

is higher than that of using pairwise correlation when testing group different.
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1.3 Methods for Dynamic Functional Connectivity

Dynamic connectivity may be computed via (i) change point methods (Cribben et

al., 2012; Kundu et al., 2018) that assume stable phases of connectivity interspersed

with connectivity jumps at unknown locations, which results in piece-wise constant

connectivity; (ii) Hidden Markov Models (HMMs) that model fast transient networks

suitable for electrophysiological data (Vidaurre et al., 2016; Quinn et al., 2018) and

which have also been recently applied to fMRI data (Warnick et al., 2018); and (iii)

sliding window approaches that enforce temporal homogeneity in FC (Chang and

Glover, 2010; Monti et al., 2014) that reflects the biologically plausible assumption

of slowly varying temporal correlations resulting in gradual changes in connectivity.

1.3.1 Sliding Window Method

Arguably, the sliding window methods are most widely used to compute dynamic

functional connectivity. Allen et al.(2012) combined sliding window with Independent

Component Analysis (ICA) and K-means clustering to assess whole-brain dynamic

FC. Sakoglu et al.(2010) applied sliding window method to a schizophrenia data-set.

They have also combined time-frequency analysis.

While the sliding window methods is a valuable tool for investigating temporal

dynamics of functional brain networks, however, there are some known limitations

associated with this approach such as the choice of the window length (Lindquist et.

al, 2014). A narrower window length may not be strong enough to capture the real

underlying network structure because limited number of time scans are used, which

results in poor network estimation. However, the rapid change of the functional con-

nectivity could not be detected when using a large window size. The sliding window

method with adaptive window size was proposed to solve this problem, however, their

performance under real data is still not clear. Another problem relating to sliding



7

window methods is that computationally expensive model-based approaches relying

on sliding window correlations (Monti et. al, 2014) may not be suitable for high-

dimensional networks. In addition, the sliding window methods require secondary

criteria to determine if variations in the edge structure are significant, which might

not be straightforward to implement.

1.3.2 Change Point Method

Dynamic functional connectivity (dFC) is often conceptualized as a collection of state

phases corresponding to various modulations in the brain (Hutchison et al., 2013).

Change point models assume stable state phases where the transitions between con-

secutive state phases are defined by connectivity jumps. Gribben et al. (2012) has pro-

posed dynamic connectivity regression (DCR), which could detect temporal change

points in functional connectivity and estimates a graph, or set of relationships between

ROIs, for data in the temporal partition that falls between pairs of change points.

They combined graphical Lasso (Glasso) (Friedman et al., 2008) and regression tree

to search for the potential change points by using the information of all subjects. In

2013, Gribben et al. (2013) has also extend the previous DCR algorithm to a single-

subject version, which increases accuracy for individual subject data with a small

number of observations and reduces the number of false positives in the estimated

undirected graphs. In addition, Shakil et al. (2015) used the similarity measures

of two images, statistical sign change (SSC), to adaptive detect change points for a

single subject. Kundu et al. (2018) proposed a fully automated two-stage approach

which pools information across multiple subjects to estimate change points in func-

tional connectivity, and subsequently estimates the brain network within each state

phase lying between consecutive change points.

Although existing change point methods for dynamic functional connectivity have
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been somewhat successful in describing the temporal changes in the brain network,

there are some existing challenges. First of all, most existing change point methods

could not detect rapid changes in brain organizations, that can evolve within as little

as 30-60s. Such rapid fluctuations would divide the scanning period into a collection

of narrow state phases. The number of scans might be smaller than the minimal

scans required to detect the change under assumption. Secondly, it is hard to pool

information across heterogeneous individuals to inference the subject-level functional

connectivity. DCR has both multi-subject version and single-subject version, but

neither of them could solve this problem.

1.3.3 Hidden Markov Model

Hidden Markov Models (HMM) also assume a collection of state phases exists. How-

ever, HMM estimate transient states that can change instantaneously but are rein-

forced or revisited over time. In addition, there is no provision to ensure temporal

smoothness of connectivity estimates under HMMs, which is a practical feature en-

countered in fMRI data as evident from the vast literature on sliding window based

approaches. Hidden Markov Models have been widely applied in the studies of neu-

roimaging. Vidaurre et al. (2016) presents a method combined HMM with multivari-

ate autoregressive (MAR) for EEG data. This approach models brain activity using a

discrete set of sequential states, with each state distinguished by its own multi-region

spectral properties. Warnick et al. (2018) applied HMM in fMRI, and they also

defined a super-graph to better estimate the brain graph structure. In addition, Fan

et al. (2020) propose a continuous HMM by considering the mixture of von Misea

Fisher (VMF) distributions as its emission densities.
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1.4 Prediction and Classification using Brain Net-

works

It has been a long history of using brain network do make some prediction and clas-

sification for mental illness or disorders. Many disease are considered to be related

with human brain. Analysis of the brain network provides powerful abilities to aid

brain disease detection. For example, existing literature try to use brain network to

classify subjects with Alzheimer’s disease (AD) with normal controls (Bi et al., 2020).

There is great interest in understanding the neural underpinnings of individual differ-

ences in intelligence, because it is one of the most important predictors of long-term

life success. Intelligence may be measured via cognitive measures that may include

fluid intelligence, defined as the ability to use inductive and deductive reasoning (in-

dependent of previously acquired knowledge) to solve new problems (Kyllonen and

Kell, 2017), or crystallized intelligence that involves knowledge that comes from prior

learning and past experiences, among others. Such intelligence measures are assumed

to be tied to brain structure; however, it is a major challenge to relate structural

and functional properties of brain to complex behavioural expression or function

(Bullmore and Sporns, 2009; Le Bihan et al., 2001; Raichle et al., 2001). Existing

literature as used neuroimaging-derived features such as whole brain volume, regional

gray and white matter volumes or regional cortical volume/thickness and diffusion

indices, which may smooth over discriminative features at a finer resolution and are

often inadequate predictors of intelligence (Chen, Chen, Hsu, and Tseng, 2020; Paul

et al., 2016; Ritchie et al., 2018; Yuan, Voelkle, and Raz, 2018). A more recently

emerging line of work has started to investigate prediction strategies for intelligence

based on fMRI and derived features such as functional connectivity that has shown

greater promise (Shen et al., 2017; Ferguson, Anderson, and Spreng, 2017; He et al.,

2020; Kashyap et al., 2019; Liu, Liao, Xia, and He, 2018; Fan, Su, Qin, Hu, and Shen,
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2020; Sen and Parhi, 2021; Liu et al., 2018; Dubois, Galdi, Paul, and Adolphs, 2018).

There is increasing evidence linking temporal fluctuations in brain functional con-

nectivity (FC) with mental disorders, which is often characterized by distinct disease

phenotypes. However, the potential of dynamic FC as a neuroimaging biomarker

for more heterogeneous disorders such as posttraumatic stress disorder (PTSD) that

often may not have clearly demarcated phenotypes has yet to be explored. Recently,

dynamic network differences have been discovered between PTSD and non-PTSD

groups (Jin, et al., 2017; Fu, et al., 2019). However, disease phenotype classification,

while a worthy objective, may be of secondary interest in heterogeneous mental dis-

orders where there is no gold standard for classification. For such disorders, experts

may prefer modeling continuous measures of disease progression as a clinical outcome

of interest. Unfortunately, there have been limited efforts for using dynamic func-

tional connectivity to model continuous clinical measures (Haslam, 2003; Widiger, et

al., 2005).
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Chapter 2

Integrative Learning for

Population of Dynamic Networks

with Covariates

2.1 Introduction

Essentially, almost the entirety of the existing dynamic connectivity literature has

focused on data from single individuals, due to the fact that connectivity changes

are expected to be subject-specific and may not be replicated across individuals.

However, recent evidence suggests that combining information across individuals in a

group provides more accurate estimates for connectivity (Hindriks et al., 2016), which

adheres to the commonly used statistical principle of pooling information from multi-

ple samples to obtain more robust estimates. Along these lines, Kundu et. al (2018)

proposed a sub-sampling approach to compute time varying dynamic connectivity

measures using multi-subject fMRI data that were then used to estimate dynamic

network changes at the level of individuals for fMRI task experiments. Compared to

analyses that use data separately for each individual, their approach was shown to
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result in considerable gains in dynamic network estimation when the heterogeneity in

the sample was limited. However in many practical settings (involving both resting

state and task-based fMRI experiments), the heterogeneity across samples may not

be restricted. In such cases, one needs a carefully calibrated approach for pooling in-

formation across individuals for accurately estimating a population of single-subject

dynamic networks, while adequately tackling heterogeneity between subjects. To our

knowledge, such approaches have received little or no attention in literature, which is

likely due to considerable methodological and computational challenges involved. For

example, in order to estimate dynamic networks with V nodes for N individuals each

having T time scans, one needs to compute NT distinct V ×V connectivity matrices,

which may not be straightforward for high-dimensional fMRI data. Moreover, it is

not immediately clear how to effectively borrow information across individuals in a

data-adaptive manner that also respects the inherent connectivity differences between

heterogeneous samples. Hence, there is a critical need to overcome such challenges

via significant methodological advances.

2.2 Methods

In this section, we propose a novel approach for estimating a population of dynamic

networks using heterogeneous multi-subject fMRI data with the same number of

brain volumes across all individuals. For modeling purposes, we will assume that the

demeaned fMRI measurements are normally distributed with zero mean (Kundu et

al., 2018) at each time scan, and that pre-whitening steps have been performed to

minimize temporal correlations (see Supplementary Materials for details). We will

fix some notations here. Suppose fMRI data are collected for T scans and V nodes

(voxels or regions of interest) for N individuals. Denote the fMRI measurements

across all the nodes at time point t as y
(i)
t = (y

(i)
1,t, . . . , y

(i)
V,t)

′, and denote the V × T
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Figure 2.1: A schematic diagram illustrating the proposed dynamic pairwise correlation
method. A mixture prior with H = 3 components is used to model dynamic correlations,
where the mixture weights are modeled using covariates. The resulting networks at each
time scan for each sample are allocated to one of theH clusters representing distinct network
states that are represented by red, orange and blue cubes. Although the proposed method
does not cluster transient states across time, the simplified representation in the Figure
illustrates the similarity of brain states contained in identical colored cubes across the
experimental session. Such temporal smoothness of the network is imposed via hierarchical
fused lasso priors on the mixture atoms. Once, the dynamic FC is estimated, a post-
processing step using K-means (Section 2.2) is applied to compute sub-groups of samples
that exhibit similar dynamic connectivity patterns summarized across all time scans. The
subgroups are represented by the circle, pyramid, triangle and inverted triangle shapes in the
Figure and correspond to different modes of dynamic connectivity with different number of
brain states represented by different patterns within each shape. The connectivity change
points for each individual, as well as at a cluster level, are computed via another post-
processing step that employs a group fused lasso penalty (Section 2.3). The method reports
both individual and cluster-level network features.
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matrix of fMRI measurements for the i-th individual as Y (i) that has the t-th column

as y
(i)
t , i = 1, . . . , N . Further, denote the vector of q × 1 covariates as xi for the i-th

sample, and represent the collection of fMRI data matrices across all individuals as

Y .

In what follows, the idPAC method for pairwise correlations (Section 2.1) and

idPMAC method for partial correlations (Section 3), will involve a combination of

likelihood terms and priors on the model parameters that are combined into a poste-

rior distribution, which is used to estimate model parameters. The posterior distri-

bution for parameter θ given data Y is defined as P (θ|Y ) = L(Y |θ)×π(θ)
P (Y )

using Bayes

theorem, where L(Y |θ) denotes the data likelihood given the parameter value θ, π(θ)

represents the prior on θ under the Bayesian model, and P (Y ) =
∫
L(Y |θ)π(θ)dθ is

the marginal likelihood after integrating out all possible values of θ. Full details of

the posterior distributions are provided in the Appendix.

2.2.1 Dynamic Connectivity via Pair-wise Correlations

Let the unknown dynamic pairwise correlation of individual i be denoted as ρ(i) :=

{ρ(i)jl,t, j < l, j, l = 1 . . . V, t = 1 . . . T}, and the corresponding Fisher-transformed

pairwise correlations be denoted as γ
(i)
jl,t = arctanh(ρ

(i)
jl,t). We propose a Bayesian

hierarchical approach that models the edge-wise dynamic correlations, using data

from multiple individuals. We propose the following model for edge (j, l), and jointly

for t = 1, . . . , T, and i = 1, . . . , n,

y(i)jt

y
(i)
lt

 ∼ N2

(0
0

 , σ2
y

 1 ρ
(i)
jl,t

ρ
(i)
jl,t 1

), γ(i)jl,t ∼
H∑

h=1

ξh,jlt(xi)N(γ∗h,jlt, σ
2
γ,h), σ

−2
γ,h ∼ Ga(aσ, bσ),

π(γ∗h,jl1, . . . γ
∗
h,jlT ) ∝ exp(−λ

T−1∑
t=1

|γ∗h,jlt − γ∗h,jl,t−1|), ξ
(i)
h,jlt(xi) =

exp(xi
T
h,jlt)

1 +
∑H−1

h=1 exp(xi
T
h,jlt)

, (2.1)
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where |·| denotes the L1 norm, σ2
y denotes the residual variance in the likelihood term,

the Fisher-transformed correlations γ
(i)
jl,t are modeled under a mixture of Gaussians

prior having H components denoted as γ∗h,jlt, h = 1, . . . , H, with the prior probability

for the h-th mixture component denoted as ξh,jlt(xi) that depends on covariates, such

that
∑H

h=1 ξh,jlt(xi) = 1 for all t = 1, . . . , T , σ2
γ,h captures the (unknown) variabil-

ity of the pairwise correlations under the mixture prior specification, and Nv(µ,Σ)

denotes a multivariate Gaussian distribution with mean µ and V × V covariance

matrix Σ. Under a hierarchical Bayesian specification, σ−2
γ,h is estimated under the

conjugate Gamma prior with shape and scale parameters aσ, bσ, respectively. The

mixture prior specifies that for any given time scan t, the functional connectivity for

each individual can take values revolving around any one of the H mixture atoms

denoted by (γ∗1,jlt, . . . , γ
∗
H,jlt), that are themselves unknown and modeled under a

fused lasso prior as in (4.1). These values are realized with respective prior prob-

abilities (ξ1,jlt(xi), . . . , ξH,jlt(xi)) that are modulated via covariates with effect sizes

(1,jlt, . . . ,H,jlt ) respectively, where h,jlt ∼ N(0,Σ) with H,jlt = 0 fixed as the reference

group.

Modeling mixture atoms via fused lasso: The mixture atoms are modeled under a fused

lasso prior in (4.1) that encourages temporal smoothness of pairwise correlations by

assigning small prior probabilities for large changes in the values between consecutive

time scans. Although temporal smoothness in correlations is encouraged, the Bayesian

approach is still equipped to accommodate sharp jumps in connectivity that may

arise due to changes in experimental design or other factors. Such connectivity jumps

are detected using a post-processing step (see Section 2.3) applied to the estimated

dynamic connectivity under the proposed model.

Modeling mixture weights via covariates: In order to effectively tackle heterogene-

ity, we incorporate supplementary covariate information when modeling the mixture

weights under our mixture modeling framework in (4.1). By incorporating covariate
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information, the model is designed to achieve more accurate identification of clusters,

which then naturally translates to improved estimates for dynamic FC at the level of

each individual. In particular, we model (ξ
(i)
1,jl, . . . , ξ

(i)
H,jl) via a Multinomial Logistic

regression (Engel, 1988), where h,jlt ∼ N(0,Σ) (with H,jlt = 0) represents the vector

of unknown regression coefficients that control the contribution of the covariates to

the mixture probabilities for the h-th component (h = 1, . . . , H − 1), in contrast to

the H-th component. A large value of these regression coefficients implies increased

importance of the corresponding covariate with respect to modeling a particular edge

under consideration, whereas 1,jlt ≈ . . . ≈H−1,jlt≈ 0 for all t = 1, . . . , T, indicates

spurious covariates unrelated to the dynamic pairwise correlations.

The multinomial logistic regression model incorporating covariates suggests that

the log-odds for each component ξ
(i)
h,jlt(xi)/ξ

(i)
H,jlt(xi), h = 1, H−1, can be expressed as

a linear combination of covariates. When two or more samples have similar covariate

information, the prior specification in (4.1) will encourage similar mixture compo-

nents to characterise the dynamic connectivity for all these samples that will result

in analogous connectivity patterns. However the posterior distribution (that is used

to derive parameter estimates) should be flexible enough to accurately estimate vary-

ing connectivity patterns between individuals even when they share similar covariate

values, by leveraging information present in the data (as evident from extensive nu-

merical studies in Section 5).

Role of clustering in tackling heterogeneity and pooling information: Under model

(4.1), each sample will be assigned to one of the H clusters at each time scan in an

unsupervised manner and guided by their covariate profiles in order to model the

edge-level dynamic connectivity. Due to independent clustering at each time scan,

these cluster configurations change over the experimental session in a data-adaptive

manner to characterize connectivity fluctuations across individuals. Such time scan

specific clusters represent subgroups of individuals with similar connectivity profiles
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over a subset of time scans, which are learnt by pooling information across all samples

within a cluster. Here, it is important to note that model (4.1) does not impose iden-

tical dynamic connectivity across all time scans between multiple individuals (that is

biologically unrealistic), but instead encourages common connectivity patterns within

subgroups of samples for a subset of time points that are learnt in a data-adaptive

manner. Hence, the proposed method is designed to result in more accurate estima-

tion compared to a single subject analysis that is not equipped to pool information

across samples or a group level analysis that does not account for within sample het-

erogeneity. We note that although the estimation is performed separately for each

edge, the connectivity estimates across all edges are consolidated to obtain connectiv-

ity change point estimates (Section 2.3) or identify subgroups with common dynamic

connectivity profiles (Section 2.2).

2.2.2 Post-processing steps for sub-group detection

In practical neuroimaging applications, it is often of interest to detect dissimilar modes

of dynamic connectivity patterns that are embodied by distinct subgroups of individu-

als who also differ in terms of demographic or clinical characteristics, or other factors.

For example in our fMRI task study, one of the objectives is to assess variations in

dynamic connectivity with respect to subgroups of samples that were assigned dif-

ferent interventions, and who also had varying demographic characteristics. Instead

of comparing network differences between pre-specified subgroups that are likely to

contain individuals with heterogeneous connectivity patterns, it is more appealing

to develop a data-adaptive approach to identify subgroups that comprise individu-

als with homologous dynamic connectivity, and then examine connectivity variations

across such subgroups and how these variations are related to intervention and other

factors of interest. When estimating these subgroups, we do not require identical

dynamic connectivity patterns for all individuals within subgroups, but rather expect
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them to have limited network differences in terms of edge strengths and connectivity

change points. An inherently appealing feature of subgroup detection is that is allows

one to compute cluster level change points and other aggregate network features (see

Section 2.3) which are more reproducible in the presence of noise and heterogene-

ity, compared to a single-subject analysis. Subgroup level network summaries may

be particularly beneficial in certain scenarios such as fMRI block task experiments

where it may be challenging for single-subject analyses to detect rapidly evolving

network features induced via quick transitions between rest and task blocks within

the experimental design.

We propose an approach that consolidates the time-varying clusters of samples

under the BPMM approach to detect subgroups which comprises samples with similar

network-level dynamic connectivity patterns. In order to identify these subgroups,

we first create a N × N similarity matrix that measures the propensity of each pair

of samples to belong to the same cluster over the experimental session. This matrix

is created by examining the proportion of time scans during which a pair of samples

belonged to the same cluster across the experimental session, averaged across all

edges. Once this similarity matrix has been computed, a K-means algorithm is applied

to identify clusters of samples that exhibit similar dynamic connectivity patterns

across the experimental session. The number of clusters K is determined using some

goodness of fit score such as the elbow method (Thorndike, 1953), or it is fixed as the

maximum number of mixture components (H) under the BPMM approach. Finally,

we note that the subgroup identification step is not strictly needed under the proposed

BPMM framework for dynamic network estimation, but it is an optional analysis that

can be used to identify cluster-level network features in certain scenarios of interest.
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2.2.3 Post-processing steps for connectivity change point es-

timation

The estimated dynamic correlations can be used to detect connectivity change points

in scenarios involving sharp changes in the network during the session, such as in

fMRI task experiments. Our strategy involves computing change points for each in-

dividual network (a) at the edge level that captures localized changes; and (b) at the

global level that captures major disruptions in connectivity over the entire network.

We compute the change points using the total variation penalty (Bleakley and Vert,

2010) that was also used in CCPD approach by Kundu et. al (2018). However the pro-

posed methods are distinct from the two-stage CCPD approach; the latter estimates

connectivity change points based on empirical time-varying connectivity measures in

the first stage, and then in the second stage, computes piecewise constant networks

conditional on the estimated change points that represent connectivity jumps. In

contrast, proposed method pools information across samples in order to first estimate

dynamic correlations that does not depend on change points and can vary continu-

ously over time, and subsequently uses a post-processing step to compute connectivity

change points without requiring piecewise constant connectivity assumptions. An ap-

pealing feature of the proposed mixture modeling framework guided by covariates is

that it is more suitable for tackling divergent dynamic connectivity across samples,

in contrast to empirical correlations under the CCPD approach.

Denote the vector of estimated correlations over all edges for the i-th individual

and at time scan t as r̂
(i)
t ∈ ℜV (V−1)/2, t = 1, . . . , T, i = 1, . . . , N . Then the functional

connectivity change points for the i-th individual may be estimated using connections

across all edges via a total variation norm penalty that is defined as ||u(i)
t+1 − u

(i)
t || =

1
V (V−1)/2

√∑V (V−1)/2
m=1 (u

(i)
t+1,m − u

(i)
t,m)

2. In particular, the following penalized criteria is
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used as in Kundu et al. (2018) for detecting network level connectivity change points:

minu∈ℜV (V −1)/2

T∑
t=1

||̂r(i)t − u
(i)
t ||2 + λu

T−1∑
t=1

||u(i)
t+1 − u

(i)
t ||, (2.2)

where λu represents the penalty parameter and u
(i)
t ∈ ℜp(p−1)/2 represents the piece-

wise constant approximation to the time series of correlations at time point t for the

i-th individual that also assumes the presence of an unknown number of connectivity

jumps. The first term in (2.2) measures the error between the observed correlations

and the piece-wise constant connectivity, while the second term controls the temporal

smoothness of correlations for V (V − 1)/2 edges. The increment ||u(i)
t+1 −u

(i)
t || in the

second term becomes negligible when the multivariate time series does not change

significantly between times t and t + 1, but it takes large values corresponding to

significant connectivity changes. The network change points computed via (2.2) rep-

resent global changes functional connectivity resulting from a subset of edges that

exhibit large connectivity changes. It is important to note that not all edges are

expected to exhibit changes at these estimated change points. When it is of interest

to compute edge-level connectivity change points, one can simply use criteria (2.2)

separately for each edge, so that the total variation term translates to the L1 penalty.

However, it is important to note that edge-level connectivity changes represent gran-

ular fluctuations that are typically more challenging to detect in the presence of noise

in fMRI.

The number of change points is determined by the penalty parameter λu, with

a smaller value yielding a greater number of change points and vice-versa. Tibshi-

rani and Wang (2007) proposed an estimate of λu based on a pre-smoothed fit of a

univariate time series using a lowess estimator (Becker et al., 1988). We adapt this

approach for a multivariate time series to obtain an initial estimate for λu, and then

propose post-processing steps to tune this estimate in order to obtain change points,
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as in the CCPD approach in Kundu et al. (2018). Full details for these steps are

provided in Section 3 of Supplementary Materials.

Cluster-level connectivity change point estimation: For fMRI task experiments in-

volving multiple subjects, subgroups of individuals are expected to share analogous

dynamic connectivity patterns with limited variations across samples, as discussed in

Section 2.2. The proposed total variation penalty norm in (2.2) is equipped to leverage

information across samples within a cluster for identifying cluster level change points,

which reflect aggregated dynamic connectivity changes across all samples within a

cluster at the global network level. These cluster level connectivity changes are ob-

tained by aggregating the change points obtained via (2.2) applied separately to each

sample within the cluster, and then choosing those change points that show up repeat-

edly within the cluster. One can define a threshold such that all change points that

appear with a high frequency (above the chosen threshold) across samples within the

cluster are determined to represent cluster level change points (Kundu et al., 2018).

We note that under the proposed method, it is entirely possible for individuals within

a cluster to have unique connectivity changes in addition to the common cluster level

change points, which reflect within sample heterogeneity. In our experience, this

method typically works well in accurately recovering aggregated cluster-level connec-

tivity changes, in certain scenarios such as block task experiments, or more generally

in the presence of subgroups of individuals with similar dynamic connectivity pat-

terns.

2.3 Extension to Dynamic Precision Matrix Esti-

mation

We now propose a mixture model for dynamic precision matrix estimation (idPMAC)

that looks at the totality of all nodes in the network, in contrast to the edge-wise
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analysis in Section 2.1. While the idPMAC also uses a mixture modeling framework,

it is fundamentally distinct compared to the idPAC method in Section 2.1, with

respect to the manner in which the mixture prior is specified and in terms of how

the network edges are constructed and interpreted. The proposed approach estimates

the network by computing the V × V precision matrix involving V (V − 1)/2 distinct

partial correlations that are learnt by borrowing information across V nodes at each

time scan. The partial correlations measure interactions between pairs of regions after

removing the influence of third party nodes, which is successful in filtering out spurious

correlations. Hence a zero partial correlation between two nodes implies conditional

independence. The proposed idPMAC approach enables one to report graph-theoretic

network summary measures that capture important patterns of network information

transmission (Lukemire et al., 2020), which may not be straightforward to report

using pairwise correlations (Smith et al., 2012).

Denote the V × V precision matrix over all nodes for the i-th individual at the

t-th time point as Ω
(i)
t =

ω(i)
t,11 ω

(i)
1,t

ω
(i)′

1,t Ω
(i)
11,t

, and note that the partial correlation between

nodes k and l is given directly as−ωkl/
√
ωkkωll (ignoring the subject-specific and time-

scan specific notations). We propose a Gaussian graphical model involving product

mixture priors as:

y
(i)
t ∼ N

[
0,Ω

(i)
t

]
, ω

(i)
v,t ∼

H∑
h=1

ξh,t(xi)NV−1(ω
∗
h,t, σ

2
ω,hIV−1), ξ

(i)
h,t(xi) =

exi
T
h,t

1 +
∑H−1

h=1 e
xi

T
h,t

,

ω
(i)
t,vv ∼ E(

α

2
), π(ω∗

h,1, . . . , ω
∗
h,T ) ∝ exp(−λ

T−1∑
t=1

|ω∗
h,t − ω∗

h,t−1|), σ−2
ω,h ∼ Ga(aσ, bσ), h,t ∼ N(0,Σ),

(2.3)

for i = 1, . . . , N, t = 1, . . . , T , where Ω
(i)
t ∈ M+

V , the space of symmetric positive

definite matrices, E(α) denotes the Exponential distribution with scale parameter

α, and ω
(i)
v,t denotes the vector of (V − 1) off-diagonal elements corresponding to the
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v-th row of Ω
(i)
t that are modeled using a mixture of multivariate Gaussians prior.

Specifically, the dynamic connectivity at time scan t is likely to be characterised via

the hth mixture component with prior probability ξh,t(xi) depending on covariates,

where the prior mean and precision for this unknown mixture component is given

by ω∗
h,t and σ

−2
ω,h respectively. The idPMAC approach in (2.3) specifies independent

mixture priors on the set of all edges related to each node and at each time scan,

while ensuring that the precision matrices are symmetric and positive definite. Full

details for the computational steps are presented in Section 4.

Modeling mixture atoms: Under a hierarchical Bayesian specification, the mixture

atoms or component-specific means ω∗
h,t are themselves unknown and modeled via

a fused lasso prior, which encourages temporal homogeneity of partial correlations

by assigning small prior probabilities for large changes in the values. In addition,

systematic changes in connectivity reflected by sharp jumps may be still identified

via a post-processing step in Section 2.3. The unknown prior variance on mixture

components (σ−2
ω,h) is assigned a Gamma prior and is estimated adaptively via the

posterior distribution.

Modeling mixture weights via covariates: The node level mixture weights incorporat-

ing covariates are modeled via a Multinomial Logistic regression with unknown co-

variate effects (1,t, . . . ,H,t ) corresponding to time scan t that are assigned Gaussian

priors, and we fix H,t = 0, t = 1 . . . T, as the reference group. The prior in (2.3) en-

courages similar clustering configurations resulting in analogous time-varying partial

correlations for individuals with similar covariate profiles. However in the presence

of heterogeneity, the posterior distribution under the idPMAC method is still able to

identify divergent dynamic connectivity patterns even among individuals with same

covariate profiles (see numerical studies in Section 5).

Role of clustering in tackling heterogeneity and pooling information: Under model

(2.3), each column of the precision matrix is assigned to one of the H clusters at each
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time scan in an unsupervised manner. Hence, the mixture modeling framework allows

subsets of rows/columns of Ω
(i)
t to have the same values depending on their clustering

allocation at each given time scan, which is an unique feature under the idPMAC

approach that is not shared by the idPAC method. This feature results in robust es-

timates by pooling information across nodes and samples to estimate common partial

correlations, and is a necessary dimension reduction step for scenarios involving large

networks. For example, all weak or absent edges can be subsumed into one cluster

which yields model parsimony. In addition, divergent connectivity patterns are cap-

tured via distinct time-varying clustering configurations across individuals as derived

from the posterior distribution, which accommodates heterogeneity. Hence, the clus-

tering mechanism under the idPMAC method not only enables dimension reduction,

but also provides a desirable balance between leveraging common connectivity pat-

terns within and across networks and addressing inherent network differences across

individuals.

Post-processing steps: The post-processing steps for sub-group detection and con-

nectivity change point estimation under the idPMAC approach can be applied in a

similar manner as outlined in Sections 2.2 and 2.3. They proceed by replacing the

estimated pairwise correlations with estimated dynamic partial correlations derived

under the idPMAC approach in the K-means algorithm and the fused lasso criteria

(2.2) in Sections 2.2 and 2.3 respectively.

2.4 Computational Details for Parameter Estima-

tion

Although one can use Markov chain Monte Carlo (MCMC) to sample the parameters

from the posterior distribution, we use amaximum-a-posteriori or MAP estimators for

our purposes in this article that bypasses the computational burden under a MCMC



25

implementation. The MAP estimators are obtained by maximizing the posterior dis-

tribution for the model parameters and are derived via the Expectation-Maximization

or EM algorithm. The EM algorithm is scalable to high-dimensional fMRI applica-

tions of interest that requires one to compute N × T distinct dynamic networks each

involving V × V connectivity matrices. Table 2.1 provides a list of model parameters

to be estimated via the EM steps for both the dynamic pairwise correlations and the

dynamic precision matrix estimation methods.

Notation Description Update
DATA

Y fMRI scanning data for all individuals observed

y
(i)
lt observed fMRI data for individual i, node l, time point t observed
xi covariate information for individual i observed

σ2
y Variance of y

(i)
lt that is empirically estimated Pre-Fixed

Σβ prior covariance for covariate effects β Pre-Fixed
H Number of components in mixture Pre-Fixed

Dynamic Pairwise Correlation

ρijl,t pairwise corr for edge (j, l) at time t (γ
(i)
jl,t = Fisher-transformed ρijl,t) M-step

γ∗h,jlt mean of h−th component for edge (j, l) at time point t M-step
σ2
γ,h Variance for h−th mixture component M-step

βh,jlt unknown regression coefficient used for modelling ξh,jlt(xi) M-step

ψ
(i)
h,jlt posterior probability of γ

(i)
jl,t taking values from h−th component E-step

Dynamic Precision Matrix
ω∗
h,t h-th mixture component M-step

σ2
ω,h mixture variance of h-th component M-step
βh,t unknown regression coefficient used in Multinomial Logistic regression M-step

ψ
(i)
h,vt posterior prob of ω

(i)
v,t taking values from component h E-step

Ω
(i)
t precision matrix for individual i at time point t MC E-step

Table 2.1: Summary for all model parameters under the dynamic pairwise correlations
and the dynamic precision matrix methods. MC E-step refers to Monte Carlo E-step.

2.4.1 EM Algorithm for Pair-wise dynamic connectivity

EM Algorithm: Denote the matrix containing the fMRI time series for the lth node

as Yl = (y1,l, . . . ,yT,l) where yt,l = (y
(1)
l,t , . . . , y

(N)
l,t )′ represents the fMRI observations

across all samples for node l and time scan t. Further, denote ∆h as a latent indicator
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variable for the hth mixture component (that is not observed and is imputed in

the proposed EM algorithm) and finally, denote by Θjl the collection of all model

parameters under the specification (4.1) corresponding to edge (j, l). Note that under

the proposed multinomial logistic regression model for incorporating covariates in

(4.1), one has an equivalent specification under the binary latent variables distributed

as (∆
(i)
1,jlt, . . . ,∆

(i)
H,jlt) ∼ MN

(
1, (ξ1,jlt(xi;h,jlt ), . . . , ξH,jlt(xi;h,jlt ))

)
, where MN(1;p0)

denotes a multinomial distribution with probability vector p0, Bjlt = (1,jlt, . . . ,H−1,jlt)

and one can marginalize out (∆
(i)
1,jlt, . . . ,∆

(i)
H,jlt) to recover the original specification in

(4.1). The EM algorithm uses the augmented log-posterior derived in the Appendix

involving the above latent mixture indicators, to compute MAP estimates for the

model parameters by iteratively applying the Expectation (E) and Maximization

(M) steps. The latent indicators {∆(i)
h,jlt, h = 2, . . . , H, t = 1, . . . , T, i = 1, . . . , N} are

imputed via the E-Step by using the posterior probability of γ
(i)
jl,t taking values from

the h-th mixture component, which is denoted by ψ
(i)
h,jlt = Pr(∆

(i)
h,jlt = 1 | −) and

updated as:

E-step: Compute the posterior expectation for the latent cluster membership indi-

cators as ψ̂
(i)
h,jlt =

{∑H
r=1 ξr,jlt(xi;h,jlt )ϕ(γ

(i)
jl,t | γ∗r,jlt, σ2

γ,h)
}−1{

ξh,jlt(xi;h,jlt ) × ϕ(γ
(i)
jl,t |

γ∗h,jlt, σ
2
γ,h)
}
, where ϕ(γ

(i)
jl,t | γ∗, σ2

γ) denotes the normal density with mean γ∗ and

variance σ2
γ.

The remaining parameters are updated via M-steps using closed form solutions

except γ
(i)
jl,t that is updated using Newton-Raphson steps. These M-steps comprise

several mathematically involved derivations and are detailed in the Appendix. The

E and M steps are repeated till convergence, which occurs when the absolute change

in the log-posterior between successive iterations falls below a certain threshold (we

use 10−4 in our implementation).
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2.4.2 EM Algorithm for Dynamic Precision Matrix Estima-

tion

Let us denote the collection of all the precision matrices as Θ, and y
(i)′

t,−v as the

(V − 1)-dimensional vector of fMRI measurements at time scan t over all nodes

except node v. The prior on the precision matrix can be expressed as π(Ω
(i)
t ) =∏V

v=1 π(ω
(i)
t,vv)π(ω

(i)
vt ), with the corresponding prior distributions π(·) being defined in

(2.3). Denote by | · |1, the element-wise L1 norm, denote κ
(i)
1,t = ω

(i)
t,11 − ω

(i)′

1,t Ω
(i)−1
11,t ω

(i)
1,t

to represent the conditional variance corresponding to the fMRI measurements for

the vth node given all other nodes, and let ω
(i)
t,vv and ω

(i)
v,t respectively denote the

diagonal and the vector of off-diagonal elements of the vth row in Ω
(i)
t . Moreover

use det(A) to denote the determinant of the matrix A, and write S
(i)
t = y

(i)
t y

(i)′

t =s(i)t,11 s
(i)
1,t

s
(i)′

1,t S
(i)
11,t

 as the matrix of cross-products of the response variable, where s
(i)
vv,t

and s
(i)
v,t denote the v-th diagonal element and the off-diagonal elements for the v-th

row respectively. Introduce latent indicator variables (∆
(i)
1,vt, . . . ,∆

(i)
H,vt) that follow

a multinomial distribution with probability vector (ξ1,t(xi), . . . , ξH,t(xi)) such that∑H
h=1 ξh,t(xi) = 1.

Denote by Ω
(i)
vv,t, the (V −1)×(V −1) obtained by deleting the v-th row and column

from Ω
(i)
t . The EM algorithm uses an E step for the latent mixture indicators, as well

as a Monte Carlo E step that samples from the posterior distribution in order to

obtain estimates for the precision matrix. These steps are described below:

E-step for mixture component indicator: For v = 1, . . . , V, use the expres-

sion: ψ̂
(i)
h,vt =

{∑H
r=1 ξr,t

(
xi;h,t

)
ϕV−1

(
ω
(i)
v,t | ω∗

r,t, σ
2
ω,rIV−1

)}−1×
{
ξh,t
(
xi;h,t

)
ϕV−1

(
ω
(i)
v,t |

ω∗
h,t, σ

2
ω,hIV−1

)}
, where ϕV−1(· | ω∗,Σ) denotes the probability density function for the

(V − 1)-dimensional normal density with mean and variance as (ω∗,Σ) respectively.

Monte Carlo E-step for precision matrix: We use an E-step to update the pre-

cision matrix that computes the posterior mean by averaging MCMC samples drawn
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from the posterior distribution, which is equivalent to a Monte Carlo EM method

(Wei and Tanner, 1990). We use this Monte Carlo approximation for the condi-

tional expectation since it provides a computationally efficient approach to sam-

ple symmetric positive definite precision matrices via closed form posteriors. The

posterior distribution for the precision off-diagonal elements are given as π(ω̂
(i)
vt |

−) ∼ N

[
Vωvt

(∑H
h=1

∆
(i)
h,vtω

∗
h,t

σ2
ω,h

+ 2(s
(i)
v,t)

)
, Vωv,t

]
, where Vωvt =

(
σ2
ω,hIV−1 + (s

(i)
vv,t +

α)(Ω
(i)−1
vv,t ) +

∑H
h=1

∆
(i)
h,vt

σ2
ω,h

)−1

is the posterior covariance. Moreover, writing ω
(i)
t,vv =

κ
(i)
v,t + ω

(i)′

v,t Ω
(i)−1
vv,t ω

(i)
v,t, the diagonal precision matrix elements are updated via the pos-

terior κ
(i)
vt ∼ GA(1

2
+ 1,

s
(i)
vv,t+α

2
) where α is pre-specified. The above steps can be

alternated to sample positive definite precision matrices as in Wang (2012), and we

draw several MCMC samples and average over them to approximate the conditional

expectation.

The remaining parameters are updated via closed form expressions under the

M step, which involve mathematically involved derivations and are detailed in the

Appendix. The algorithm iterates through the E and M steps until convergence.

2.4.3 Tuning Parameter Selection

Certain tuning parameters in the BPMM need to be selected properly or pre-specified,

in order to ensure optimal performance. For both dynamic pair-wise correlations and

precision matrix estimation, λ is the tuning parameter used in fused lasso penalty for

the mixture atoms that controls the temporal smoothness of the dynamic connectivity.

We choose an optimal value for λ over a pre-specified grid of values, as the value of

the tuning parameter that minimizes the BIC score. In model (4.1) for the dynamic

pairwise correlation, the σ2
y is also pre-specified as the initial mean variance over all

edges and across all samples. Moreover when updating covariate effects, Σβ is pre-

fixed as a diagonal matrix with the diagonal terms as 100, although it is also possible
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to impose a hierarchical prior on Σβ and update it using the posterior distribution.

Extensive simulation studies revealed that the proposed approach is not sensitive to

the choices of Σβ as long as the variances are not chosen to be exceedingly small.

Other hyper-parameters in the hierarchical Bayesian specification include α in the

prior on the precision matrices (chosen as in Wang (2012)), and aσ = 0.1, bσ = 1, that

results in an uninformative prior on the mixture variance.

The number of mixture components H also needs to be chosen appropriately. On

the one hand, a large value of H may be used to address inherent heterogeneity,

but it will also increase the running time and may generate redundant clusters that

overcompensates for the variations across samples. On the other hand, a small value

of H may restrict the approach to overlook connectivity variations across individuals,

resulting in inaccurate estimates. One may use a data adaptive approach to select H

in certain scenarios where it is reasonable to assume that the dynamic connectivity can

be approximated by piecewise constant connectivity. In such cases that potentially

involve block task experiments (Kundu et al., 2018), one can evaluate criteria (2.2)

separately for each individual under different values of H, and fix the optimal choice

as that which minimizes the average value of the criteria (2.2) across all individuals.

Based on extensive empirical studies, we noticed the need for larger values for H

when fitting the model for cases involving large number of nodes and samples.

2.5 Numerical Experiments

2.5.1 Simulation set-up

Data generation: We generate observations from Gaussian distributions with sparse

and piecewise constant precision matrices that change at a finite set of change points.

Moreover, the network change points are generated based on covariate information

where individuals with identical covariates have partially overlapping connectivity
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change points. Broadly, we use the following few steps to generate the data, each of

which is described in greater detail in the sequel: (i) generate a given number of change

points for each subject using corresponding covariate information; (ii) conditional on

the generated change points, piecewise constant networks are simulated such that the

connectivity changes occur only at the given change points; (iii) conditional on the

network for a given state phase, a corresponding positive definite precision matrix

is generated for each time scan where non-zero off-diagonal elements represent edge

strengths and zero off-diagonals represent absent edges; and (iv) the response variable

for a given time point is generated from a Gaussian distribution having zero mean

and the precision matrix in step (iii). Four clusters are created with 10 samples

each, where the samples with each cluster have the same number of connectivity

change points, common state phase specific networks and identical covariate values.

However within each cluster, there are differences in locations of connectivity change

points and the network edge strengths are free to vary across individuals even when

they share the same network structure. All samples in the first two clusters have 3

connectivity change points each, whereas the samples in the other two clusters have

4 change points, out of a total of T = 300 time scans.

Conditional on the change points in step (i), several types of networks are con-

structed for each state phase in step (ii) that include: (a) Erdos Renyi network where

each edge can randomly appear with a fixed probability; (b) small-world network,

where the mean geodesic distance between nodes are relatively small compared with

the number of nodes and which mimics several practical brain network configura-

tions; and (c) scale-free network that resembles a hub network where the degree of

network follows a power distribution. Given these networks, the corresponding preci-

sion matrix was generated in step (iii) by assigning zeros to off-diagonals for absent

edges, and randomly generating edge weights from uniform [-1,1] for all important

edges. To ensure the positive definiteness, the diagonal values of the precision matrix
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were rescaled by adding the sum of the absolute values of all elements in each row

with one. Finally, the response variables were generated either (a) independently at

each time point via a Gaussian graphical model, or (b) via a vector autoregressive

(VAR) model where the response variables are autocorrelated across time. In both

cases, sparse time-varying precision matrices having dimensions V = 40, 100, were

used. The ‘VARM’ function in Matlab was used to generate temporally correlated

observations under a lag-1 VAR model, where the elements in autocorrelation matrix

were generated from a uniform random variable with range (−0.2, 0.2).

We generated two binary features that resulted in four distinct covariate con-

figurations, i.e. (0,0), (0,1), (1,0), (1,1), and all samples with identical covariates

were allocated to the same cluster. In addition, we also evaluated the performance

of proposed method in the presence of spurious covariates that are not related to

dynamic connectivity patterns. Specifically, we introduced anywhere between 1 to 8

spurious covariates for each sample (in addition to the two true covariates described

earlier), which were randomly generated using uniform as well as from random normal

distributions. We then investigated the performance of the proposed approach over

varying number of spurious covariates. While the proposed approach is expected to

work best in practical experiments involving a carefully selected set of covariates that

influence dynamic connectivity patterns, our goal was also to investigate the change

in performance as the number of spurious covariates increase.

Competing methods: We perform extensive simulation studies to evaluate the per-

formance of the proposed approach, and compare the performance with (a) change

point estimation approaches such as the CCPD (Kundu et al., 2018) that can estimate

single subject connectivity using multi-subject data in the presence of limited hetero-

geneity, and the dynamic connectivity regression (DCR) approach for single subjects

proposed in Cribben et al. (2013); (b) an empirical sliding window based approach

(SD) and the model-based SINGLE (Monti et al., 2014) method that uses sliding
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window correlations; and (c) a covariate-naive version of the proposed approach us-

ing the methods in Section 2.1 and Section 3 (denoted as BPMM-PC and BPMM-PR

respectively) that employs a multinomial distribution to model the mixture weights

without covariates. While methods in (a) and (c) are designed to report connectivity

change points, we were also able to compute change points under the sliding window

approaches in (b) by applying a post-processing step in (2.2) on the estimated sliding

window correlations. Moreover, the data under the VAR case were prewhitened via

an autoregressive integrated moving average (ARIMA) before fitting the proposed

models. In particular, the ‘auto.arima’ in R was used to prewhiten the raw data,

which yielded residuals that were subsequently used for analysis (more details pro-

vided in Supplementary Materials). The SINGLE approach was implemented using

the python implementation in pySINGLE, while all other methods were implemented

in Matlab.

Performance metrics: We evaluate the performance of different approaches in terms

of different metrics. First, we investigated the accuracy in recovering true connec-

tivity change points at the network and edge level for each sample, using sensitivity

(defined as the proportion of truly detected change points or true positives), as well

as the number of falsely detected change points or false positives. In addition, the

performance of the network connectivity change points at the cluster level was also

evaluated by comparing the true connectivity change points for each sample within

the cluster with the aggregated cluster level change points. We note that since there

were variations in connectivity change points within each cluster, false positive change

points are to be expected under any estimation approach; however our goal is to eval-

uate how well these false positives are controlled and the sensitivity in detecting true

change points under different methods. In addition, we also evaluated accuracy in

terms of estimating the strength of connections that is computed as a squared loss

(MSE) between the estimated and the true edge-level pairwise correlations. The
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pairwise correlations corresponding to dynamic precision matrix approaches for com-

puting MSE were obtained by inverting the respective precision matrices.

In order to evaluate the accuracy in dynamic network estimation, we computed the

F-1 score defined as 2(Precision×Recall)/(Precision + Recall), where Precision=TP/(TP+

FP ) is defined as the true positive rate, and Recall=TP/(TP + FN) represents the

sensitivity in estimating the edges in the network. Here, TP, FP, FN, refer to the

number of true positive, false positive, and false negative edges that are obtained

via binary adjacency matrices derived by thresholding the estimated absolute partial

correlations. We employed reasonable thresholds (0.05) that are commonly used in

literature (Kundu et al., 2018). In contrast, it was not immediately clear how to

choose such thresholds for pairwise correlations given the fact that they tend to be

typically larger in magnitude and have greater variability. Hence, we did not re-

port F-1 scores corresponding to pairwise correlations, although one could do so in

principle by choosing suitable thresholds to obtain binary adjacency matrices. Fi-

nally, we also evaluated the clustering performance in terms of the clustering error

(CE) and Variation of Information (VI). CE (Patrikainen and Meila, 2006) is defined

as the maximum overlap between the estimated clustering with the true clustering,

whereas VI (Meilǎ, 2007) calculates the entropy associated with different clustering

configurations.

2.5.2 Results

The performance in terms of recovering the true clusters of subjects is provided in Ta-

ble 2.2, in the presence of two covariates that are both related to the true connectivity

changes. It is clear from the results that incorporating covariate information results

in near perfect recovery of the clusters, in contrast to the covariate-naive version of

the method. For V = 100, the dynamic pairwise correlation approach seems to have

a slightly higher accuracy in terms of cluster recovery compared to the dynamic pre-
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cision matrix approach when data were generated from a VAR model. However when

covariates are not included, the BPMM-PR method has greater clustering accuracy

compared to the BPMM-PC approach, since the former is able to pool information

across the whole network to inform the clustering mechanism, in contrast to an edge-

by-edge analysis under BPMM-PC. Table 2.3 reports the accuracy in recovering the

true network-level change points under the proposed approaches at the level of the

estimated clusters, as per discussions in Section 2.3. In this case, both idPAC and

idPMAC methods are shown to have near perfect recovery of the true network con-

nectivity change points when data were generated under GGM, and high sensitivity

when data were generated under VAR. Moreover when using data from a VAR model,

the idPAC method has a comparable or higher sensitivity but also higher false posi-

tives for V = 100 in terms of detecting connectivity change points at the cluster level,

compared to the idPMAC method. We note that although all samples within a cluster

had identical covariate information, the proposed approach was able to accommodate

within cluster connectivity differences that is evident from low false positives and

high sensitivity when estimating cluster level change points. Moreover as seen from

Tables 2.4-2.5, the accuracy in recovering cluster level connectivity change points is

considerably higher than the corresponding results at the level of individual networks.

These results indicate the usefulness of aggregating information when it is reasonable

to assume the existence of subgroups of individuals who share some similar facets of

dynamic connectivity.

Table 2.4 reports the performance under pair-wise correlation based approaches,

i.e. idPAC, BPMM-PC, SD, and CCPD. It is clear for the results that the proposed

idPAC method has a near perfect sensitivity when data were generated under GGM,

and a suitably high sensitivity under the VAR model, when estimating connectivity

change points. The sensitivity for network and edge change point estimation, along

with the MSE in estimating the pairwise correlations are significantly improved under



35

idPAC BPMM-PC
V=40 V=100 V=40 V=100

CE VI CE VI CE VI CE VI
GGM+Erdos-Renyi 0 0 0 0 0.64 1.93 0.62 2.19
GGM+Small-world 0 0 0 0 0.57 1.92 0.71 2.23
GGM+Scale-free 0 0 0 0 0.63 2.01 0.66 2.19
VAR+Erdos-Renyi 0 0 0 0 0.61 1.93 0.67 1.97
VAR+Small-World 0 0 0 0 0.59 1.88 0.61 1.90
VAR+Scale-Free 0 0 0 0 0.61 1.78 0.61 1.93

idPMAC BPMM-PR
V=40 V=100 V=40 V=100

GGM+Erdos-Renyi 0 0 0 0 0.43 1.41 0.54 1.59
GGM+Small-world 0 0 0 0 0.41 1.41 0.51 1.68
GGM+Scale-free 0 0 0 0 0.43 1.49 0.60 1.78
VAR+Erdos-Renyi 0.08 0.25 0.04 0.17 0.54 1.51 0.66 1.88
VAR+Small-World 0 0 0.03 0.14 0.48 1.47 0.58 1.91
VAR+Scale-Free 0 0 0.04 0.11 0.49 1.42 0.63 1.75

Table 2.2: Clustering performance under different network types. GGM implies that
the Gaussian graphical model was used to generate temporally uncorrelated observa-
tions; VAR implies a vector autoregressive model that was used to generate temporally
dependent observations. For the VAR case, the observations were pre-whitened be-
fore fitting the model.

idPAC idPMAC
V=40 V=100 V=40 V=100

sens FP sens FP sens FP sens FP
GGM+Erdos-Renyi 1 2.15 0.99 1.58 0.97 3.94 0.99 3.18
GGM+Small-world 0.97 2.11 1 1.59 0.99 4.18 0.98 3.17
GGM+Scale-free 0.99 2.09 1 1.37 1 3.91 0.97 3.09
VAR+Erdos-Renyi 0.91 3.71 0.88 3.66 0.87 3.47 0.87 2.89
VAR+Small-world 0.84 3.44 0.8 3.09 0.82 3.45 0.81 2.98
VAR+Scale-free 0.88 3.29 0.84 3.68 0.85 3.3 0.81 3.01

Table 2.3: Cluster-based network change point estimation under the proposed ap-
proaches, assuming that all samples within a particular cluster have the same number
and similar location of change points, with a limited degree of heterogeneity in func-
tional connectivity. If this assumption holds, then the cluster level network change
point estimation provides greater accuracy compared to the estimated change points
at the level of individuals as reported in subsequent Tables.
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Results for V=40 Network CP Edge CP MSE Network CP Edge CP MSE
sens FP sens FP MSE sens FP sens FP MSE

BPMM-PC idPAC
GGM+Erdos-Renyi 0.91 7.31 0.50 1.12 0.1 1 2.75 0.92 1.08 0.09
GGM+Small-world 0.92 5.99 0.47 1.03 0.12 0.98 2.77 0.92 1.01 0.08
GGM+Scale-free 0.91 7.29 0.49 1.19 0.12 1 2.81 0.92 1.1 0.09

SD+GFL CCPD
GGM+Erdos-Renyi 0.3 3.13 0.09 2.97 0.29 0.92 2.15 0.31 4.1 0.16
GGM+Small-world 0.29 3.31 0.09 3.08 0.27 0.92 2.18 0.29 4.17 0.21
GGM+Scale-free 0.29 3.08 0.09 2.99 0.24 0.91 2.33 0.29 4.09 0.19

BPMM-PC idPAC
VAR+Erdos-Renyi 0.68 6.55 0.43 1.08 0.2 0.84 5.57 0.80 1.06 0.12
VAR+Small-world 0.66 5.97 0.47 1.14 0.19 0.77 5.54 0.74 1.12 0.09
VAR+Scale-free 0.59 5.51 0.39 1.02 0.17 0.78 5.29 0.73 1.06 0.09

SD+GFL CCPD
VAR+Erdos-Renyi 0.41 7.72 0.13 3.06 0.26 0.55 1.12 0.18 4.33 0.21
VAR+Small-world 0.56 6.29 0.14 2.98 0.19 0.64 1.36 0.17 3.47 0.23
VAR+Scale-free 0.42 6.99 0.17 3.13 0.22 0.58 1.27 0.19 3.29 0.2

Results for V=100 Network CP Edge CP MSE Network CP Edge CP MSE
sens FP sens FP MSE sens FP sens FP MSE

BPMM-PC idPAC
GGM+Erdos-Renyi 0.92 4.77 0.51 1.31 0.11 1 2.31 0.83 1.16 0.09
GGM+Small-world 0.91 4.69 0.49 1.33 0.1 1 2.37 0.82 1.17 0.09
GGM+Scale-free 0.91 4.71 0.50 1.31 0.11 1 2.29 0.83 1.16 0.09

SD+GFL CCPD
GGM+Erdos-Renyi 0.3 3.13 0.09 2.97 0.29 0.9 1.12 0.29 4.6 0.18
GGM+Small-world 0.29 3.31 0.09 3.08 0.27 0.91 1.18 0.25 4.2 0.17
GGM+Scale-free 0.29 3.08 0.09 2.99 0.27 0.91 1.02 0.27 4.4 0.17

BPMM-PC idPAC
VAR+Erods-Renyi 0.66 5.97 0.51 1.07 0.14 0.82 5.88 0.81 1.04 0.11
VAR+Small-world 0.59 6.03 0.41 1.02 0.14 0.75 5.44 0.74 1.05 0.12
VAR+Scale-free 0.62 5.49 0.44 0.99 0.15 0.77 5.51 0.71 1.11 0.13

SD+GFL CCPD
VAR+Erdos-Renyi 0.37 8.03 0.1 3.14 0.15 0.55 1.09 0.17 3.75 0.22
VAR+Small-world 0.44 7.51 0.16 2.71 0.16 0.66 1.44 0.19 3.41 0.19
VAR+Scale-free 0.36 7.72 0.18 2.88 0.18 0.59 1.31 0.17 3.44 0.19

Table 2.4: Results under the dynamic pair-wise correlation approaches for network
and edge-level connectivity change-point estimation (Edge CP) accuracy and network
changepoint (Network CP) estimation accuracy for V = 40, 100. GGM and VAR cor-
respond to data generated from Gaussian graphical models and vector autoregressive
models. Significantly improved metrics among the four approaches corresponding to
the GGM data and separately for the VAR data, are highlighted in bold font. The
standard deviations corresponding to the reported metrics are presented in separate
Tables in the Supplementary Materials.
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Results for V=40 Network CP Edge CP MSE F1 Network CP Edge CP MSE F1
sens FP sens FP MSE F1 sens FP sens FP MSE F1

BPMM-PR idPMAC
GGM+Erdos-Renyi 0.85 6.99 0.32 1.04 0.1 0.79 1 5.2 0.79 0.89 0.08 0.88
GGM+Small-world 0.88 7.14 0.33 1.16 0.08 0.77 1 5.11 0.81 0.91 0.08 0.9
GGM+Scale-free 0.87 7.36 0.33 1.19 0.08 0.71 0.97 5.6 0.77 0.92 0.07 0.89

DCR SINGLE
GGM+Erdos-Renyi 0.22 16.15 0.41 9.39 0.27 0.59 0.35 6.49 0.1 2.84 0.08 0.71
GGM+Small-world 0.19 11.83 0.49 9.66 0.22 0.61 0.32 6.55 0.09 2.88 0.07 0.77
GGM+Scale-free 0.21 10.92 0.49 9.058 0.23 0.62 0.33 6.01 0.09 2.94 0.07 0.69

BPMM-PR idPMAC
VAR+Erdos-Renyi 0.66 4.45 0.29 1.16 0.10 0.77 0.79 4.81 0.68 1.22 0.09 0.81
VAR+Small-world 0.59 5.12 0.27 1.03 0.1 0.74 0.78 4.99 0.69 1.04 0.09 0.79
VAR+Scale-free 0.61 4.77 0.31 1.04 0.12 0.77 0.76 4.64 0.71 0.99 0.09 0.82

DCR SINGLE
VAR+Erdos-Renyi 0.22 9.83 0.4 3.35 0.24 0.64 0.42 7.35 0.13 3.11 0.27 0.66
VAR+Small-world 0.24 10.14 0.33 3.61 0.23 0.63 0.44 7.12 0.17 3.04 0.26 0.62
VAR+Scale-free 0.21 9.98 0.32 3.61 0.22 0.59 0.38 6.77 0.21 3.36 0.23 0.6

Results for V=100 Network CP Edge CP MSE F1 Network CP Edge CP MSE F1
sens FP sens FP MSE F1 sens FP sens FP MSE F1

BPMM-PR idPMAC
GGM+Erdos-Renyi 0.92 6.83 0.28 1.09 0.08 0.83 0.97 5.1 0.82 0.89 0.08 0.89
GGM+Small-world 0.91 6.98 0.31 1.19 0.09 0.81 0.97 5.44 0.81 0.99 0.07 0.87
GGM+Scale-free 0.92 7.44 0.32 1.25 0.08 0.81 0.96 5.6 0.79 0.94 0.07 0.87

DCR SINGLE
GGM+Erdos-Renyi 0.33 16.14 0.41 9.39 0.22 0.63 0.38 6.77 0.12 2.97 0.08 0.69
GGM+Small-world 0.31 15.88 0.4 9.66 0.27 0.59 0.35 6.48 0.12 3.02 0.08 0.71
GGM+Scale-free 0.34 16.82 0.39 10.08 0.27 0.64 0.35 7.02 0.11 2.97 0.08 0.70

BPMM-PR idPMAC
VAR+Erdos-Renyi 0.73 4.41 0.29 1.18 0.14 0.77 0.88 4.22 0.63 1.09 0.13 0.82
VAR+Small-world 0.56 5.22 0.22 0.91 0.11 0.78 0.72 4.87 0.61 1.09 0.1 0.81
VAR+Scale-free 0.59 5.13 0.29 1.03 0.11 0.78 0.77 4.49 0.65 1.08 0.09 0.81

DCR SINGLE
VAR+Erdos-Renyi 0.23 9.92 0.43 3.19 0.16 0.64 0.42 7.41 0.14 3.11 0.11 0.71
VAR+Small-world 0.31 10.23 0.37 3.37 0.19 0.67 0.47 7.66 0.13 3.28 0.12 0.69
VAR+Scale-free 0.25 10.23 0.38 3.61 0.18 0.65 0.44 7.59 0.13 3.19 0.11 0.66

Table 2.5: Results under the dynamic precision matrix estimation approaches for
network and edge-level connectivity change-point estimation (Edge CP) accuracy
and network changepoint (Network CP) estimation accuracy for V = 40, 100. GGM
and VAR correspond to data generated from Gaussian graphical models and vector
autoregressive models respectively. Significantly improved metrics among the four
approaches corresponding to the GGM data and separately for the VAR data, are
highlighted in bold font. The standard deviations corresponding to the reported
metrics are presented in the Supplementary Materials.
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Figure 2.2: F1-score over time for one single subject under the case of dynamic
partial correlation method. The vertical green lines are the true change points. Red
line represents the proposed method with dynamic partial correlation (idPMAC), the
cyan line represents the covariate-naive version (BPMM-PM), the blue line represents
DCR, and the pink line represents SINGLE method.

idPAC compared to competing approaches in Table 2.4. The CCPD method is shown

to have the lowest false positives when estimating the network level change points,

but otherwise has poor sensitivity for change point estimation and high MSE, which

is potentially due to the assumption of piecewise constant connectivity. The approach

based on sliding window correlations has the poorest performance across all the re-

ported metrics, which illustrates their drawback in estimating dynamic connectivity.

Table 2.5 reports the performance under precision matrix based approaches, i.e.

idPMAC, BPMM-PR, SINGLE, and DCR. It is evident that the proposed idPMAC

method has near-perfect or high sensitivity for detecting network level change points,

corresponding to data generated under GGM and VAR models respectively. It also

has a suitably high sensitivity for detecting edge level connectivity change points

under both cases. Similarly, the MSE for edge strength estimation and the F-1

scores for network estimation accuracy are significantly improved under the proposed

method in contrast to competing approaches. Figure 2.2 illustrates that the F-1

score over time under the proposed dynamic precision matrix method with covariates

is almost always higher across almost all time scans compared to competing methods.
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Moreover the DCR and SINGLE method have the least impressive performance in

terms of connectivity change point estimation, which also translates to poor dynamic

network estimation (low F-1 scores).

Our results clearly illustrate the advantages of the proposed methods over exist-

ing approaches that are not effective in leveraging information across samples. In

addition, Tables 2.4-2.5 also illustrate the gains of incorporating covariate informa-

tion under the proposed idPAC and idPMAC approaches over the covariate naive

BPMM counterparts. It is interesting to note that the covariate naive BPMM still

fares better than existing dynamic connectivity methods that fail to pool information

across samples in a systematic manner. We also note that while the presence of false

positive (FP) connectivity change points are expected due to the heterogeneity across

samples, the proposed approaches provide desirable control of FP even while pooling

information across samples with varying networks. In fact, the FP under the proposed

method are lower than all competing methods except CCPD, whose performance is

otherwise less impressive in terms of significantly lower sensitivity for change point

detection, and inferior network estimation as reflected by poor MSE and F-1 scores.

When comparing the relative performance between idPAC and idPMAC methods,

it is evident that the former has comparable or higher sensitivity but lower false

positives in terms of estimating connectivity change points at the network level, when

data are generated under a GGM. When data are generated under a VAR model, the

idPAC method has higher sensitivity but also higher false positives compared to

idPMAC, for estimating network connectivity change points. This is also true when

estimating edge-level connectivity change points. In addition, since the idPMAC

method estimates all edges simultaneously, the mean squared error for estimating

edge strengths is often lower compared to the idPAC method. Moreover when the

number of spurious covariates is increased, both these approaches experience a drop in

performance (Figure 2.3), as expected. It is of note that the number of false positive



40

change points under the dynamic pairwise correlation approach increase minimally

under the scale-free and small-world networks with an increase in the number of

spurious covariates. However, this robust behavior was not replicated for network

change points or other metrics of interest under the dynamic pairwise correlation

method. In contrast, the recovery of the true clusters is shown to be more resilient

under the dynamic precision matrix approach. This is evident from the top panels

in Figure 2.3 that show a slower increase in the clustering error under the idPMAC

method.

Method v=20 V=40 V=100
BPMM-PC 21 80 321
BPNN-PR 25 92 348
idPAC 27 102 402
idPMAC 31 114 416
SD+GFL 3 9 44
CCPD 70 315 844
DCR 18 90 297

Table 2.6: Computation Time (in minutes) for simulation studies involving 300 time
scans and 40 samples, under all approaches implemented via Matlab version R2017a.

The proposed approach is clearly scalable to higher dimensional networks, with the

dynamic pairwise correlation method being slightly faster than the dynamic precision

matrix estimation approach. We found the computation time under the proposed

approaches to be slightly slower than existing dynamic connectivity methods such as

DCR, which results from additional computations related to clustering and due to

incorporation of covariates. Table 2.6 presents the computation time in minutes for

all approaches implemented via Matlab on a personal desktop computer (Alienware

Desktop) that had Intel(R) Core i7-4930 processor with 32GB RAM (SINGLE was

implemented via Python and hence the computation time is not reported). We note

that the total computation time under BPMM is expected to increase with V, T,N,

which is true for most dynamic connectivity approaches.

Finally, we also conducted sensitivity analysis of the proposed approaches with
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Figure 2.3: Performance of dynamic pairwise correlation (columns 1 and 2) and dy-
namic precision matrix (columns 3 and 4) methods under different number of spurious
covariates represented by the X-axis. Lines with different color represent different net-
work structure: Green (Erdos Renyi), Red (Small World), Blue (Scale Free). The top
row provides the information of clustering performance (Clustering Error and Varia-
tion of Information), the middle row demonstrates the performance of network level
change points estimation (sensitivity and number of False Positive estimations), and
the performance of edge level change point estimation was provided in the bottle row.
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respect to the model hyperparameters (see Tables 3-4 in Supplementary Materials).

We found that moderate variations in the values of hyperparameters do not result

in considerable changes in performance. Further, the clustering error is seen to be

more sensitive to changes in hyperparameter values, while the metrics corresponding

to dynamic network estimation seem more resilient to changes in hyperparameters,

which suggests a degree of robustness for the estimated dynamic network with respect

to the choice of hyperparameters. Although we do expect the performance of the

methods to fluctuate to a greater degree for extreme choices of hyper-parameters,

this is not of immediate concern to practitioners who use recommended values for the

model hyper-parameters suggested in the manuscript.

2.6 Analysis of Task fMRI Data

2.6.1 Description of the study

We analyze a block task data involving a semantic verbal fluency at Veterans Affairs

Center for Visual and Neurocognitive Rehabilitation, Atlanta. In a 12-week random-

ized controlled trail, 33 elderly individuals (aged 60-80, 11 males, 22 females) were

assigned to two intervention groups: spin aerobic exercise group (14 participants) and

the non-aerobic exercise control group (19 participants). During the intervention, in-

dividuals belonging to the aerobic spin group were required to do 20-45 minutes of spin

aerobic exercise three times a week, led by a qualified instructor. For control group,

participants were asked to do the same amount of non-aerobic exercise per week, such

as group balance and light muscle toning exercise. A more detailed description of the

data is available in Nocera et al. (2017).

For each participant, fMRI scans were conducted with 6 blocks of semantic verbal

fluency (task) conditions with 8 scans, both pre- and post-intervention. The semantic

verbal fluency task involved participants looking at different categories (e.g. “colors”)
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at the center of video screen and they were asked to generate and speak 8 different

objects associated with that category (e.g. “blue”). After task block, a rest block

with 3-5 TRs would appear and participants were required to read the word “rest” out

loud. A total of 74 brain scans were acquired using a 3T Siemens Trio scanner with a

whole-brain, 1-shot gradient EPI scan (240mm FOV, 3.75 × 3.75 in-plane resolution,

TR=5830ms, TA=1830ms, TE=25ms, flip angle (FA)=70). Analysis of Functional

NeuroImages (AFNI) software and FMRIB Software Library (FSL) were used for pre-

processing, as in Nocera et al. (2017). Slice-time corrections, linear trend removal,

echo planar images alignment, and motion correction were performed as a part of the

pre-processing pipeline. We used 18 brain regions for analysis that were shown to be

differentially activated between the two intervention groups as described in Nocera

et al. (2017). These regions are listed in Table 2.7 and comprise more regions in

the right hemisphere due to decreased activity in that hemisphere in the spin group

following the intervention, as compared to the control group. We note that since

these regions corresponded to group differences due to spin exercise, they can not be

described as “canonical” regions associated with semantic language function, which

would also comprise some additional homologous regions in the left hemisphere. Since

the purpose of the study was to investigate dynamic connectivity changes between

brain regions due to the intervention, an analysis based on the selected 18 regions

was undertaken instead of using canonical regions.

2.6.2 Analysis Outline

We performed the analysis separately for the pre-intervention and post-intervention

data, under both the dynamic pairwise correlations and dynamic precision matrix

estimation methods. We used age and gender as covariates for the pre-intervention

dataset, while also using the type of intervention (spin or non-aerobic control) as

an additional covariate for the post-intervention analysis. Our analysis is designed
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ROI Number Region name Broadmann area MNI coordinate
1 R Cerebullum 1 NA (5,-62,-57)
2 R Inferior Temporal Gyrus 20 (41,-27,-30)
3 R Angular Gyrus 39 (44,-56,12)
4 R Middle Frontal Gyrus 10 (23,56,-6)
5 R Middle Temporal Gyrus 1 22 (53,-12,-9)
6 L Precuneus 1 7 (-9,-74,57)
7 L Cingulate Gyrus NA (-9,-33,39)
8 R Precuneus 7 (6,-80,48)
9 R Cerebellum 2 NA (35,-53,-27)
10 R Middle Temporal Gyrus 2 21 (60,-45,-6)
11 R Inferior Frontal Gyrus/precentral gyrus 44 (59,9,9)
12 R Retrosplenial Area 30 (9,-47,18)
13 R Supramarginal Gyrus 40 (41,-36,33)
14 R Pars Triangularis/MFG 45 (47,47,-9)
15 L Precuneus 2 7 (-6,-71,45)
16 L Cuneus 19 (-15,-80,27)
17 L Superior Frontal Gyrus 6 (-17,-18,69)
18 R Middle Temporal Gyrus 3 22 (60,-36,0)

Table 2.7: Summary of brain regions used for analysis. R and L are abbreviations for
right and left respectively.

to: (i) investigate the clustering behavior and inspect how these clusters differ with

respect to demographics and the intervention type; (ii) investigate the cluster-level

network differences using network summary measures; (iii) estimate the connectivity

change points and examine how well they align with the changes dictated by the block

task experiment; (iv) infer nodes and edges in the network with significantly different

connectivity patterns between pre- and post-intervention.

Objective (i) enables us to characterize homogeneous dynamic connectivity pat-

terns corresponding to clusters of samples in terms of their demographic and clinical

characteristics; aim (ii) will be instrumental in interpreting the cluster-level network

differences that will shed light on network variations across transient network states;

aim (iii) will provide insights regarding the effectiveness of the proposed approaches

in terms of recovering connectivity jumps where these changes are influenced by,

but often not fully aligned with, the changes in the block task experimental design
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(Hindriks et al., 2016; Kundu et al., 2018); and aim (iv) will inform investigators

regarding dynamic connectivity differences that are associated with the type of in-

tervention. For aim (ii), we were only able to report results under dynamic precision

matrix estimation, since a graph theoretic framework is necessary to compute the

network summary measures, which may not be feasible under a pairwise correlation

analysis.

2.6.3 Results

Cluster analysis: As seen from Table 2.8, the analysis under both idPAC and idP-

MAC methods yielded 5 clusters consolidated over all time scans (using the K-means

algorithm described in Section 2.2, although the size of the clusters were more equi-

table under the idPAC method. The pre-intervention analysis yielded clusters that

were largely homogeneous with respect to gender. These clusters were also reason-

ably well-separated with respect to age under the idPAC analysis, whereas the age of

the participants within clusters were more diverse under the idPMAC analysis. The

post-intervention analysis yielded more heterogeneous clusters with respect to both

age and gender, with only one cluster comprising all males under both the idPAC

and idPMAC analyses. This suggests a realignment of the dynamic connectivity af-

ter the intervention is administered, such that individuals with similar genders and

age-groups have synchronous dynamic connectivity patterns pre-intervention as iden-

tified via subgroups, but the subgroups and their composition with respect to age

and gender change post-intervention. Our post-intervention analysis also suggests

that the variability across clusters under the idPAC method can be largely explained

via the intervention type.

Connectivity change point estimation: Table 2.8 illustrates the cluster level connec-

tivity change point estimation. We observed that under both the idPAC and idP-

MAC methods, the estimated change points were consistent with 4 or more (out of
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Method idPAC idPMAC
Cluster index 1 2 3 4 5 1 2 3 4 5
Cluster features Pre-intervention Pre-intervention

Size 8 6 8 7 4 3 5 17 6 2
% of females 0 100 0 14 100 0 100 0 100 0
Age (mean) 72.2 65.8 64.7 76.7 67.7 71.7 69 70.4 66.8 67
Age(range) 69-73 60-72 60-68 74-80 66-69 63-78 62-80 60-80 60-72 66-68
CP(Task-Rest) 6 3 4 4 4 4 5 5 4 3
CP(Rest-Task) 3 5 2 3 4 4 4 2 4 3

Post-intervention Post-intervention

Size 8 4 7 11 3 3 4 9 11 6
% of females 63 75 0 18 33 67 100 0 9 67
Age (mean) 67.3 65 65.1 74.5. 73.7 73.7 69.3 68.6 73 62.7
Age(range) 62-70 60-71 60-68 71-80 68-78 67-80 68-72 63-78 68-80 60-66
CP(Task-Rest) 5 6 4 3 6 3 3 5 5 5
CP(Rest-Task) 3 5 2 2 4 2 5 2 4 2
Spin(%) 0 100 100 0 100 33 0 100 9 50

Table 2.8: Results for analysis of block task fMRI experiments. Size refers to the
number of participants in each cluster, ‘CP(Task-Rest)’ and ‘CP(Rest-Task)’ denotes
the cluster level connectivity change points that were detected within +/- 2 time
scan of the change in experimental design from task to fixation, and from fixation
to task, respectively. ‘Spin’ refers to the percentage of individuals assigned the Spin
intervention belonging to each cluster.

6) changes in experimental design when transitioning from task to rest, except one

cluster where 3 of the connectivity change points aligned with the experimental de-

sign. These patterns were consistent in both the pre- and post-intervention analysis;

however the number of connectivity change points that were strongly aligned with

changes in the experimental design were (on average) greater in the post-intervention

analysis compared to the pre-intervention analysis. This suggests a learning effect of

the task that was reflected in terms of higher concordance between the connectivity

change points and the experimental design post-intervention. On the other hand, the

cluster-level estimation of change points when transitioning from fixation to task was

(on average) less aligned with the experimental design compared to the change points

when transitioning from task to fixation, as seen in Table 2.8. This is somewhat
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expected since there were only 3-5 time scans in each fixation block, which made it

extremely challenging to detect connectivity changes when transitioning from fixation

to task. However, the proposed approach was still able to detect at least two, and

often 3 or more connectivity change points (out of 6) aligned with the experimen-

tal design that suggests a reasonable concordance between connectivity jumps and

experimental transitions from fixation to task.

In contrast, the CCPD approach detected at most one or two connectivity change

points, while the DCR method was not able to detect connectivity change points

at all, which makes these results appear biologically impractical given the nature of

the block task experiment. Although the changes in connectivity are not expected

to be fully aligned with changes in the experimental design (Hindriks et al., 2016),

one expects a certain degree of synchronicity between the two. Our results indicate

that this is not captured at all via existing change point methods especially when

there are rapidly occurring transitions in the experimental design, which highlights

their limitations. Hence, our analysis clearly illustrates the advantages of pooling

information across heterogeneous samples and incorporating covariate knowledge via

a mixture modeling framework, which is simply not possible using existing approaches

that rely on information from single subjects as in DCR, or that use empirical methods

to pool information across individuals as in CCPD.

Cluster level network differences: In order to investigate the differences between the

networks corresponding to the different clusters, we examined variations in dynamic

network metrics that capture modes of information transmission in the brain. These

network metrics include the characteristic path length (CPL) that measures the length

of connections between nodes, and the mean clustering coefficient (MCC) that mea-

sures the clustering tendency averaged over all network nodes. Using permutation

testing, we examined p-values to evaluate which pairs of clusters exhibited signifi-

cantly different network summary measures. None of the clusters had significantly
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different CPL values in the pre-intervention analysis, but several pairs of clusters

exhibited significant CPL differences post-intervention. The CPL differences were

particularly pronounced between the first and remaining clusters, as well as the last

and remaining clusters in the post-intervention analysis. These two clusters also

demonstrated the highest within cluster variability in CPL values amongst all clus-

ters. Moreover, the number of pairs of clusters with significantly different MCC

values increased from the pre-intervention to post-intervention analysis, with 8 out

of 10 pairs of post-intervention clusters reporting significantly different MCC values

compared to at least one other cluster. Hence, our results suggest greater variability

in network organization between clusters in the post-intervention analysis compared

to pre-intervention, which potentially reflects greater network heterogeneity after the

12 week intervention was administered.

Network differences pre- and post-intervention: We applied paired t-test with mul-

tiplicity adjustment (using Bonferroni correction) in order to infer which edges were

significantly different between pre- and post-intervention at 5% level of significance,

along with identifying which network nodes contained the greatest number of differ-

ential edges. Since the magnitude of the pairwise correlations and the corresponding

edge strength differences were higher, we discovered higher number of edges with dif-

ferential edge strengths under the idPAC analysis. For both the idPAC and idPMAC

methods, the bulk of the pre- vs post-intervention connectivity differences were con-

centrated in individuals in the spin group exclusively that were not present in the

control group. We obtained 57 significantly different edges under the idPAC analysis,

and 38 significantly different edges under the idPMAC analysis, which were exclusive

to the spin group - see Figure 2.4. In contrast, the number of significantly different

edges between the pre- and post-intervention networks under the idPAC analysis were

20 corresponding to both the spin and control groups, and 7 corresponding to the

control group only. Moreover the idPMAC analysis did not produce any significant
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edge level differences between the pre- and post-intervention networks corresponding

to both the intervention groups as well as for the control group only. Our results

suggest a considerably strong realignment in dynamic connectivity after the 12-week

intervention that were exclusive to the spin group, compared to negligible changes in

the control group.

The changes between the pre-vs post intervention networks that occurred exclu-

sively in the spin group under idPAC analysis were concentrated in the following

brain regions: Right Angular Gyrus(8 edges), Left Precuneus(10 edges), Right Cere-

bellum(9 edges), Right Middle Temporal Gyrus(11 edges), and Right Middle Tempo-

ral Gyrus(8 edges). Similarly the following brain regions had the highest number of

differential edges pre- vs post-intervention under the idPMAC analysis: Right Middle

Frontal Gyrus(16 edges), Right Cerebellum(6 edges), Right Pars Triangularis/MFG(8

edges), and Right Middle Temporal Gyrus(7 edges). Two nodes, Right Cerebellum

and Right Middle Temporal Gyrus had a large number of significantly differential

edges under both idPAC and idPMAC analyses, while the right middle frontal gyrus

had, by far, the largest number of differential edges (16) under the dynamic precision

matrix analysis. In addition, we also observe that more nodes in right hemisphere

of the brain have significantly differential connectivity, which is to be expected since

the majority of the 18 brain regions being investigated lie in the right hemisphere.

The large number of differential connections with respect to the right cerebellum

is believed to be attributable to the generation of internal models or context specific

properties of an object (Moberget et al., 2014), and preferential activation during

a semantic challenge (D’Mello et al., 2017). The connectivity between the right

cerebellum and inferior frontal regions has been noted in earlier studies (Balsters et

al., 2013), with the inferior frontal regions being responsible for ordering language

and codifying the motor output for syntax (Balsters et al., 2013). Moreover, the

differential connectivity in the right middle temporal gyrus is along the lines of earlier
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Figure 2.4: Circle plots for the edges that are significantly different pre- and post-
intervention in spin group but not in the control group. The top and bottom panel
correspond to the results under dynamic pairwise correlation and dynamic precision
matrix estimation incorporating covariates, respectively. Red and blue lines corre-
spond to lower or higher edge strengths in the pre-intervention network compared to
post-intervention. RC1 and RC2 refer to the two brain regions in the right cerebellum;
RMTG1-RMTG3 refer to the three brain regions in the right middle temporal gyrus;
and LP1-LP2 refer to the two regions in the left precuneus. The MNI coordinates for
these regions are provided in the Figure legend.
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findings that illustrated the role of the left temporal gyrus as a hub for integration

of sensory input into a transformation to semantic forms (Davey et al., 2016), and

the corresponding connectivity differences in the right middle temporal gyrus may

be attributable to a shift in laterality of involvement (Lacombe et al. 2015) due

to aging. Finally, the large number of differential edges corresponding to the right

middle frontal gyrus is potentially associated with semantic priming in older adults

(Laufer et al., 2011). Given that this region is associated with executive function

(Wang et al., 2019; Jolles et al., 2013) and is well characterized as being involved in

working memory tasks, it is likely for connectivity differences to be focused on this

region since the semantic task requires a continuous reference to working memory.

2.7 Discussion

In this article, we developed a novel approach that accurately estimates a population

of subject-level dynamic networks by pooling information across multiple subjects

in an unsupervised manner under a mixture modeling framework using covariates.

The proposed approach, which is one of the first of its kind in dynamic connectiv-

ity literature, results in significant gains in dynamic network estimation accuracy, as

illustrated via extensive numerical studies. The gains under the proposed method

become particularly appealing compared to existing approaches in the presence of

rapid transitions in connectivity as evident from our fMRI block task analysis. The

proposed approach works best in fMRI task experiments involving a group of het-

erogeneous individuals executing the same task protocols, and in the presence of a

carefully chosen set of covariates that are related to the dynamic network.

We also illustrate the robust performance of the proposed approach in the pres-

ence of a limited number of covariates that are not related to changes in connectivity,

although the performance deteriorates as the number of spurious covariates increase.
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In the presence of a large number of features that may not be necessarily related to

dynamic connectivity, one can perform a screening step to exclude unimportant pre-

dictors from the analysis. This step will involve examining the associations between

each covariate and the dynamic connectivity estimates obtained from the covariate

naive BPMM approach, and subsequently only retaining the covariates with signif-

icant associations for analysis using the full model. This approach is expected to

work well as long as the screening step does not exclude any important covariates

and manages to largely filter out spurious covariates that are unrelated to the net-

work. In future work, we plan to extend the proposed approach to incorporate feature

selection that automatically identifies significant covariates that are related to the dy-

namic networks, and down-weights the contribution of unimportant covariates using

Bayesian shrinkage priors. We note that although our analysis included covariates

that do not vary with time, the proposed BPMM approach can be easily generalized

to include time-varying covariates that are collected in-scanner (such as behavioral

performance), when required.

Moreover for networks with higher densities or those with large variability in

the values of the non-zero elements in the precision matrix, it is possible that the

proposed approach may result in sub-optimal performance under a small number of

mixture components. This is due to the symmetry constraint, which may potentially

impose some restrictions on the clustering of the precision matrix elements when the

number of clusters is small, and hence lead to inaccurate estimates. In such cases,

a larger number of clusters would be required to fit the data well. Another avenue

to tackle such potential restrictions is to generalize the proposed BPMM approach in

equation (3) so as to specify independent mixture priors on each element of the upper

triangular precision matrix subject to the constraint Ω
(i)
t ∈ M+

V , which will impose

the same marginal distributions on elements (i, j) and (j, i) in the precision matrix.

We plan to explore such generalizations in future work.
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In addition to identifying important connectivity changes, during the fMRI block

task experiment, our analysis conclusively established major changes between the pre-

and post-intervention networks that were exclusive to the spin group. We note that

existing literature has established the role of cardiovascular fitness in regulating aging

related declines in both language and motor control (McGregor et al., 2011, 2013).

However, much less is known about the effect of exercise intervention on dynamic con-

nectivity, particularly in older adults. Because connectivity is a fundamental aspect

of neuronal communication required for high-level cognitive processes, it is important

to understand the potential impact of aging and/or aerobic exercise interventions in

aging on changes in brain connectivity.

Further, our analysis also discovered subgroups of individuals with homologous

dynamic connectivity, where the heterogeneity within these subgroups with respect to

intervention was higher under the idPMAC method compared to the idPAC analysis.

This indicates that dynamic pairwise correlations were more accurate in classifying

participants in terms of the intervention administered. It is important to note that

the separation of clusters with respect to intervention reflects the distinct patterns

of dynamic connectivity between the 18 brain regions specified in our study that are

known to be differentially activated in spin and control groups (Nocera et al., 2017).

However, if additional regions are included that may not be necessarily associated

with intervention type, it is entirely possible to obtain more heterogeneous clusters

that have a more equitable composition with respect to intervention group. This

is due to the presence of network edges between regions that are not necessarily

associated with intervention and hence behave similarly in both the spin and control

groups. Future work will focus on a more general analysis involving a larger number

of cannonical regions known to be associated with the semantic language function.
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Chapter 3

Non-parametric Bayesian Support

Vector Machines for Brain

Network-based Classification

3.1 Introduction

There is increasing evidence about the potential of resting state functional Magnetic

Resonance Imaging (rs-fMRI) in terms of informing diagnosis of different disease

conditions. In particular, the role of functional connectivity (FC) derived from rs-

fMRI data has become increasingly prominent in terms of disease classification and

prediction of disease severity, and there is a growing body of literature focusing on

developing connectivity-based neuroimaging biomarkers for different diseases. This is

consistent with the increasing evidence that different regions of the brain communicate

with each other to drive cognitive process or disease etiology. There are several

approaches for constructing networks for brain FC (Lukemire, Kundu, Pagioni, Guo,

2020; JASA). These approaches rely on selecting a pre-defined set of brain regions or

nodes, and subsequently computing the correlations between them, which represents
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the brain connectivity. When the correlations are time-averaged and stationary over

the length of the fMRI session, these measures correspond to static connectivity;

whereas more recent literature has also included dynamic connectivity models that

allow time-varying correlations (Kundu, Ming, Nocera, McGregor, 2021). Moreover,

the connectivity is typically computed in terms of pairwise correlations or partial

correlations, with the latter being increasingly favored in the statistical and machine

learning literature due to it’s ability to regress out the effects of third party nodes

that may otherwise induce spurious associations between regions (Smith et al., 2011).

These correlations can be thresholded to infer edges or connections in the network.

Each p-node network can also be represented as an p×p connection/adjacency matrix

comprising binary off-diagonal elements that indicate the presence or absence of edges.

In an undirected network that is of interest in this article, the adjacency matrices are

symmetric, and the edge set can be fully represented by the off-diagonal elements.

Linear regression models for prediction, and linear classifiers such as the support

vector machines (SVMs) have been the workhorse for the large majority of litera-

ture, although more recent methods have included non-linear regression models (Ma,

Kundu, and Stevens 2022) as well as deep learning based approaches (Meng and

Xiang, 2018). While deep learning methods are attractive in terms of providing an

end-to-end pipeline, they often lack interpretability, and require a large training sam-

ples to adequately fit a massive number of embedded model parameters. Hence deep

learning based methods may not perform well for small to moderate sample sizes

due to overfitting or other related issues, and it may not be straightforward to infer

the important network features associated with the phenotype. Similarly, there are

a limited number of non-linear approaches such as Gaussian process models based

on high-dimensional non-Euclidean network covariates in literature, and they require

further investigation. In contrast, SVM-based linear classifiers assume linear rela-

tionships and hence are more interpretable, it is possible to infer important features
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via appropriate priors in a Bayesian set-up, and SVM classifiers based on network

connectivity features have been widely and successfully used in several disease areas

including schizophrenia, bipolar disorder, autism spectrum disorder (ASD), attention

deficit hyperactivity disorder (ADHD), Alzheimer’s disease (AD) and mild cognitive

impairment (MCI), and so on. See the review article by Du, Fu, and Calhoun (2018).

It is to be noted that the overwhelming majority of SVM-based classification ap-

proaches using FC as covariates rely on penalized or optimization methods to derive

point estimates for model fitting. While penalized approaches are often useful in

practical applications, there are several limitations. First, the results under penalized

SVM methods are often sensitive to the choice of the penalty parameter that is often

obtained by tuning or cross-validation. The problem is exacerbated in brain network

applications, since the choice of the penalty parameter reflects an overall sparsity

level for the model, but it may not be adaptive to different levels of shrinkage across

different subsets of network edges in the model, resulting in inadequate performance.

For example, in network applications, it is well-known that a large percentage of

the network edges have zero or negligible effects, while the variability in the mental

health outcomes are driven by a small proportion of significant edges with varying

importance. Existing linear approaches involving L-1 penalties and regulated by a

single penalty parameter, may not perform well in these settings since they are not

readily adaptive to differential sparsity levels. For example, they are typically known

to result in inflated models involving an overly large set of estimated non-zero features

in linear regression settings (Chang, Kundu, Long, 2018), which often lead to poor

feature selection performance and low accuracy. Second, penalized SVM approaches

fail to report measures of uncertainty for the estimates, which is of paramount im-

portance in high-dimensional neuroimaging applications. This is due to the fact that

the brain network is derived from rs-fMRI data via suitable algorithms, and hence

are subject to measurement error and mis-specifications. In these scenarios, a point
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estimate may not suffice, and additional measures of uncertainty via credible intervals

may be highly desirable for the parameter estimates. Third, inferring significant ef-

fects under existing penalized SVM methods often require computationally expensive

procedures such as permutation tests (Lukemire, Kundu, Pagioni, Guo, 2020) that

may be challenging to implement for high dimensional network applications. As a

result, these methods may yield inaccurate feature selection results.

To address the above challenges in this article, we propose a novel non-parametric

Bayesian support vector machine (BNP-SVM) approach for classification, based on

high-dimensional brain networks. The key motivation behind the non-parametric

Bayesian approach is to adaptively cluster the subsets of edges according to similarity

in edge importance, with different clusters reflecting different degrees of importance

of the edges in the SVM model. By pooling information across subsets of edges and

allowing for different degrees of Bayesian shrinkage, the proposed approach is able

to estimate the edge-specific importance in a robust and accurate manner, which re-

sults in considerable improvements over existing approaches. The number of clusters

and the cluster memberships for the edge importance weights are determined in a

data adaptive manner, under a fully non-parametric Bayesian set-up. The method

is scalable to high-dimensional networks and performs well in terms of feature selec-

tion and classification performance in these high-dimensional settings. The proposed

method overcomes the limitations of penalized or optimization based SVM methods

described earlier. For example, it is naturally able to quantify uncertainty for the

parameter estimates via credible intervals, and it provides an integrated framework

for inference required for feature selection. In addition, it has considerable advantages

over parametric Bayesian approaches in terms of ensuring model parsimony, greater

computational efficiency, and superior numerical performance.

The main contributions of this article are as follows. First, the proposed approach

is one of the first non-parametric Bayesian SVM based classification approach based
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on static brain networks that is able to adaptively estimate edge importance under a

Dirichlet process mixture (DPM) framework and infer significant network edges. This

novel approach focuses on clustering edge importance weights and on binary labels,

which is distinct from non-parametric models for multi-class classification (Nguyen

et al., 2016) in machine learning literature. Second, given the recent success of dy-

namic networks in predicting intelligence (Sen and Parhi, 2021; Liu et al., 2018), we

extend the BNP-SVM approach for classification (based on static networks) to incor-

porate dynamic networks, which is able to account for the temporal correlations of

edges in the time evolving network and is able to naturally infer significant dynamic

sub-networks. Our analysis provides a direct comparison regarding the classification

performance of static and dynamic resting state networks, which is another impor-

tant contribution of independent interest. Third, we extend the proposed method

to integrate static network data from multiple fMRI sessions performed on the same

set of individuals. There is very limited work in neuroimaging literature for such

integrative analysis, although recent studies have indicated the benefits of perform-

ing multi-task and multi-session analysis (Xiao et al., 2020; Ma and Kundu, 2022).

However, while the limited development in this area has primarily relied on regular-

ization techniques that yield point estimates, we propose a non-parametric Bayesian

approach for systematically integrating multi-session resting state fMRI (rs-fMRI)

networks for improved classification performance. Fourth, we evaluate the effective-

ness of our proposed framework via extensive numerical studies on various datasets

that include rs-fMRI data from: (i) the Human connectome project (HCP) with the

goal to classify fluid intelligence as well as crystallized intelligence based on resting

state brain FC; and (ii) a ADHD dataset, where the goal is to classify individuals

with Attention-Deficit/Hyperactivity Disorder (ADHD) from neurotypical controls

(NC). To our knowledge, our paper is one of the first to establish the utility of so-

phisticated Bayesian SVMs based on brain networks as a powerful classification tool
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in neuroimaging and mental health studies.

3.2 Methods and Materials

3.2.1 Description of Datasets

HCP study and pre-processing details

The Human Connectome Project (HCP) contains resting state as well as task fMRI

scans for adults, along with a battery of cognitive measurements including fluid intel-

ligence and crystallized intelligence. The HCP developed a novel multimodal parcel-

lation that defines brain regions based on a combination of structural and functional

features (Glasser et. al, 2016) having 360 nodes. The atlas includes in a larger number

of regions (better resolution) than used in many other atlases, such as the 90 regions

used in the structurally-based AAL atlas (Tzourio-Mazoyer et al., 2002) or the 264

regions in the functionally-based Power atlas (Power et. al, 2011). In the HCP data,

each subject had two sessions of resting-state fMRI scans on the first day, where each

scan was 14:33 minutes with TR=0.72, resulting in 1200 time points for each voxel.

Further, these two scanning sessions were also repeated on a second follow-up day. We

used the cortical surface data from the FIX pre-processed left-right phase-encoding

scan for our analysis. For more details of pre-processing, see Smith et. al (2013). The

pre-processing pipeline included slice timing correction, rigid body re- alignment, and

normalization to the EPI version of the MNI template. The time courses were tempo-

rally detrended in order to remove gradual trends in the data. CompCorr ( Behzadi

et al., 2007 ) was performed to estimate and remove spatially coherent noise from

the white matter and ventricles, along with the linearly detrended versions of the six

rigid body realignment parameters and their first derivatives. From here, the data

was spatially smoothed with a 6mm FWHM Gaussian kernel and bandpass filtered



60

be- tween 0.01-0.1 Hz. Finally, spike correction was performed using the AFNI pack-

age ( Cox, 1996 ), as an alternative to motion scrubbing. The time series for each

vertex was extracted, mean centered and normalized to unit variance, and then each

time point averaged by parcel, resulting in a dataset with 360 nodes and 1200 time

points for each subject.

ADHD study and pre-processing details

Pre-processed resting state fMRI data used was obtained from The Connectomics

in NeuroImaging Transfer Learning Challenge (CNI-TLC) involving children. The

CNI-TLC data was amassed retrospectively across multiple studies conducted by the

Center for Neurodevelopmental and Imaging and Research (CNIR) at the Kennedy

Krieger Institute (KKI) in Baltimore, Maryland. The overall cohort includes 145

children diagnosed with ADHD, 25 children with a primary diagnosis of Autism Spec-

trum Disorder (ASD) who also meet the diagnostic criteria for ADHD, and 170 neu-

rotypical controls (NC). In our analysis we used 120 ADHD children after excluding

those with the additional ASD diagnosis, and matched this cohort with another 120

NC subjects. The data was downloaded from the Github repositories for the CNI-

TLC study that included 100 samples each from ADHD and HC cohorts for training

(https://github.com/mdschirmer/2019 CNI TrainingRelease/), and 20 samples from

each cohort for validation (https://github.com/mdschirmer/2019 CNI ValidationRelease).

The rs-fMRI data used in this challenge was acquired on a Philips 3T Achieva scan-

ner housed in the F.M. Kirby Research Center for Functional Brain Imaging at

KKI. The acquisition protocol used a single shot, partially parallel gradient-recalled

EPI sequence with TR/TE 2500/30ms, flip angle 70 degrees, and voxel resolution

3.05 × 3.15 × 3mm3. The scan duration was either 128 or 156 time samples. Chil-

dren were instructed to relax with their eyes open and focus on a central cross-hair,

while remaining still for the duration of the scan. All participants completed a mock
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scanning session to habituate to the MRI environment. The rsfMRI data was pre-

processed using a pipeline developed by CNIR and implemented in SPM-12 (Friston

et al., 2007), and described in Schirmer et al. (2021). The data based on three

standard parcellations were used : (1) the AAL atlas (Tzourio-Mazoyer et al., 2002),

which consists of 90 cortical/subcortical regions and 26 cerebellar regions, (2) the

Harvard- Oxford atlas (Desikan et al., 2006), which consists of 110 cerebral and cere-

bellar regions, and (3) the Craddock 200 atlas (Craddock et al., 2012), which is a finer

parcellation of 200 regions. The choice of atlases enabled analysis at multiple spatial

scales. Additional demographic variables including age, and sex, were also included

in the analysis.

3.2.2 Classification Using Static Networks

Here, we develop a novel Bayesian SVM approach to efficiently classify subjects into

two groups based on their static brain network and supplemental covariates. Towards

this aim, we considered a generic dataset with n samples in the training set where

the binary outcome zi ∈ {−1, 1}, the corresponding full edge set xi, and denote the

non-network related covariate information as ci (C × 1) for subject i.

Static Functional Connectivity Estimation

Assume the total number of subjects is N, with Ti scans for the i-th subject. For

subject i, the V × Ti fMRI data matrix is denoted as Y (i), which contains V regions

of interest (ROI) and Ti time scans. In order to construct the binary network that

is used as a predictor in our SVM model, we use existing approaches in literature

to estimate a sparse inverse covariance or precision matrix. In particular, we first

calculated the Pearson correlation matrix (denoted by Θi) for each subject using

the observed fMRI data by averaging over all time points, and subsequently applied

the graphical lasso algorithm (Friedman et al., 2008) to compute a sparse inverse
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covariance matrix separately for each sample, although other algorithms can also be

used. Numerically, the graphical lasso algorithm was implemented via the QUIC

method proposed by Hsieh et al., (2013) that relies on quadratic approximations.

The off-diagonal elements in the sparse precision matrix Ωi corresponding to the

ith sample denotes the strength of the network edges in terms of the conditional

dependency between two nodes in the network given all other nodes. For example, a

zero off-diagonal element implies conditional independence between the corresponding

nodes. The amount of structural zeros or the sparsity level of the network is controlled

via a tuning or penalty parameter (λgl) in the QUIC algorithm, with a larger λgl value

resulting in sparser networks. We describe a method to choose a suitable λgl value in

the sequel.

Preliminary edge screening: We propose a model-free approach for initial screening.

We screen out those edges with minimal variations in edge strengths across samples

in order to exclude edges that are not instrumental in explaining between-subject

differences from the analysis. Such a screening step is able to reduce the dimension

of the explanatory variables that are included in the classification model without

compromising accuracy, while speeding up computations. For example, those edges

that are present (absent) in all or almost all samples are not instrumental for dif-

ferentiating between groups of individuals and will be screened out. We exclude all

edges for which the variability in edge strengths across all sample was limited and

did not exceed a certain threshold. We use the threshold of 0.1 for our analysis, al-

though more stricter thresholds were also considered (0.05) but without any distinct

improvements in accuracy. We will denote the screened set of edges used in the final

classification model as x∗
i , having dimension Q × 1. We note that although the set

of screened edges represent a viable set of candidate network connections that may

drive differences across subgroups or classes, the final set of significant edges related

to differences in class labels is inferred from amongst this set of initial screened edges
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under the fully Bayesian SVM approach, as elaborated in the sequel.

Bayesian SVM via Pseudo-Likelihood

We will concatenate the edge set and supplementary covariates to form an augmented

feature vector set, which is denoted as ui = [x∗
i ; ci]. We propose a linear classifier

using a linear function of the features, i.e. f(ui) = ui
Tβ∗ = xi

∗Tβ + ci
Tγ for binary

classification. Here β is a Q × 1 vector of edge-specific effects, γ is C × 1, and β∗ is

of dimension P × 1, where P = Q + C. Using the derivations in Polson and Scott

(2011), the Bayesian SVM pseudo-likelihood can be represented as follows

L(z|u, β∗, γ, σ2
ϵ ) =

N∏
i=1

1

σ2
ϵ

e
− 2max(1−ziui

T β∗,0)
σ2
ϵ

=
N∏
i=1

∫ ∞

0

1

σϵ
√
2πρi

exp
(
− (ρi + 1− ziu

T
i β

∗)2

2ρiσ2
ϵ

)
dρi, (3.1)

where, σ2
ϵ represents the scale parameter in the likelihood, and a latent parameter ρ

is introduced to facilitate posterior computation. We note that the pseudo-likelihood

is directly related to the hinge loss that is routinely used in SVM models, having the

form max(1−ziuiTβ∗, 0), where smaller value of the loss function implies large values

of the pseudo-likelihood. Moreover, large values of σ2
ϵ results in sharper changes in the

pseudo-likelihood with changes in the values of the linear mean function, as evident

from Figure 3.1.

Non-parametric Priors for Sparse Learning

In practice, one expects only a subset of edges to be instrumental for classifying

the binary outcome variable. Further, different edges may have different degrees

of importance in the model. In order to ensure appropriate shrinkage of the edge

effect sizes that allows for differential sparsity levels, we specify a Laplace or Double
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Figure 3.1: Plot of hinge loss under different values of σϵ. zi = 1, X-axis represents
different value of ui

Tβ∗.

exponential (DE) prior on β∗ = (β∗
1 , . . . , β

∗
P )

T as:

π(β∗) =
P∏

p=1

λp
2σϵ

exp−λp
σϵ

|βp|, λ2p ∼ P, P ∼ DP (Mf0), (3.2)

which is modulated by the local shrinkage parameter λp > 0, that follows a non-

parametric Dirichlet process (DP) prior with precision parameter M , and base mea-

sure f0 that is chosen as f0 := Gamma(r, δ) for ease in posterior calculations. Under

a Bayesian specification, the prior on the scale parameter is specified as an inverse-

Gamma prior with shape and scale parameters being a1, b1, i.e. σϵ ∼ IG(a1, b1). The

overall specification results in a novel Dirichlet process mixture of Laplace distribu-

tions on the effect sizes β∗, which results in a novel Bayesian non-parametric SVM

(BNP-SVM) approach.

The proposed approach is founded on the Bayesian Lasso method proposed by

Park and Cassella (2008), where a large value of λp implies greater prior shrinkage

towards zero for βp (see Figure 3.2). However unlike in Park and Cassella (2008)

that used global shrinkage, our approach is distinct in allowing for feature-specific

shrinkage parameters. The novel specification in (3.2) results in clustering of shrink-

age parameters (λ′s) across edges, where each cluster represents a distinct degree of

shirnkage or importance of the coefficients in the SVM model. Moreover, the number
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of clusters and the cluster memberships are unknown and learnt in an unsupervised

manner. The precision parameter M controls the prior number of clusters (larger M

implies more clusters). The non-parametric prior defines a class of prior distributions

on the set of densities for λ, where the prior guess of the density is given by the base

measure f0. The following Lemma captures the closed form of the non-parametric

mixture prior on the coefficients.

Lemma 1: The prior distribution on the coefficients can be written as f(β∗
p) =∫

λ
2
exp{−λ|β∗

p |}dP (λ) =
∑∞

l=1 πhfh(β
∗
p ;λh), where fh(β

∗
p ;λh) = λh

2
exp{−λh|β∗

p |},

p = 1, . . . , P , and πh = νh
∏h−1

h′=1(1− νh′), νh ∼ Be(1,M).

Lemma 1 summarizes the fact the the prior distribution can be represented as an

infinite mixture distribution with stick-breaking weights, which follows directly from

the results in Sethuraman (1994). The infinite mixture representation highlights

the non-parametric nature of the proposed prior. Further, using results in Antoniak

(1974), the number of distinct clusters ∆ for the shrinkage parameters λ is guaranteed

to increase with P as well as the parameterM , under the rule E(∆) =
∑P

m=1M/(M+

m− 1) ≈M log((P +M)/M), where E(∆) represents the prior expectation of ∆.

The proposed approach results in sharp improvements over parametric approaches

that are not necessarily equipped to combine information across edges, by learning dif-

ferential sparsity levels (represented by λ) across subsets of edges in an unsupervised

manner. For example, the traditional Bayesian lasso approach (Park and Cassella,

2008) specifies a global shrinkage parameter λ across all edges, which is an extreme

case of the proposed model with ∆ = 1, but can not capture differential sparsity pat-

terns across features. An alternative method is to force unique shrinkage parameters

across all edges, which is also a special case of the proposed approach with ∆ = P .

However, this approach is expected to result in poor accuracy due to the inability to

robustly estimate the importance weights by pooling information across edges. The
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Figure 3.2: Plot of Laplace Prior under different values of β∗
p . X-axis represents

different value of β∗
p

proposed approach provides a desirable balance between these two extreme scenarios,

and results in data-adaptive learning of differential sparsity levels across unknown

subsets of edges.

Posterior Computation

In order to facilitate posterior calculations, we re-express the Laplace distribution as a

scale-mixture of normals with an exponential mixing density as β∗
p |σ2

βp
∼ N(0, σ2

βp
), σ2

βp
∼

λ2
p

2
exp
(
− λ2

p

2
σ2
βp

)
, where λ2p ∼ P, P ∼ DP (Mf0). The model parameters are updated

via a Markov Chain Monte Carlo sampling (MCMC) sampling scheme. A fully Gibbs

sampler was used for posterior computation, which cycles through the following up-

date steps.

MCMC Steps: Algorithm I

(i) Use the following conditional distribution to sample σ2
ϵ : σ

2
ϵ |β∗, u, z, ρ ∼ IG

(
a1 +

3N
2
, b1 +

∑N
i=1

(ρi+1−ziui
T β∗)2

2ρi

)
.

(ii) ρi is sampled using the inverse Gaussian conditional distribution π(ρ−1
i |−) =

IN
(
|1− ziui

Tβ∗|−1, 1
σ2
ϵ

)
, i = 1, . . . , N .

(iii) Use a multivariate normal distribution with mean µβ and variance Σβ to sample

β∗, where Σβ =
(
1 +D−1

σβ

)−1
, µβ = Σβu

T z, and Dσβ
represents the P × P diagonal
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matrix with entries (σ2
β1
. . . σ2

βP
).

(iv) Use π(σ−2
βp
|−) = IN(

∣∣λp

β∗
p

∣∣, λ2p) to update σ2
βp
.

(v) The conditional distribution of λ2p could be updated via slice sample for Dirichlet

process atoms

Choice of the network sparsity:

The proposed BNP-SVM approach may be sensitive to the choice of the estimated

static network that is used as the input feature vector for classification. In order to

select the optimal network sparsity level, we fit the graphical lasso algorithm over

a grid of shrinkage parameter values, and fit the proposed BNP-SVM based on the

corresponding edge set from the estimated static network. For a given network,

we calculate the classification accuracy in a validation sample. Subsequently, we

choose the network sparsity level that results in the best validation accuracy, and use

this choice for out-of-sample classification for test sample. Such a validation scheme

provides a key understanding of network sparsity levels yielding optimal classification.

3.2.3 Extension to Classification Using Dynamic Networks

It is of interest to evaluate how the resting state static FC compares with resting state

dynamic FC in terms of classification accuracy. To this end, we extend the Bayesian

SVM to include dynamic connectivity features. Dynamic FC involves a time-varying

connections for each edge, which need to be integrated into the model, thus posing

methodological challenges. We use a set of extracted features from the connectivity

time-series for each edge for our model, where these extracted features can be auto-

mated or can be manually specified based on subject matter expertise.

Dynamic Connectivity Estimation: Unlike static FC that used the precision matrix

to capture the network edge strengths averaged over all time points, the dynamic FC

approach calculates a connectivity matrix at each time point using a sliding window
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approach, denoted as Σ̃2, . . . , Σ̃T−1, which capture the time varying pairwise corre-

lations. Instead of using the entire timecourse of pairwise correlations represented

by the above sequence {Σ̃t′}T−1
t′=2, we extract summary features for each edge that

reduces dimensionality with minimal loss of information. In particular, consider the

extracted features {ukl,1, . . . , ukl,R} from the time-series of sliding window correla-

tions {σ̃kl,2, . . . , σ̃kl,T−1} corresponding to edge (k, l), where the number of extracted

features R is pre-specified. For subject i, let uri , r = 1 . . . R be the Q × 1 vector

containing the subset of screened edges for feature r.

Proposed Model

The Bayesian SVM pseudo-likelihood based on dynamic FC may be represented as

L(z|u, β∗, γ, σ2
ϵ ) =

∏N
i=1

1
σ2
ϵ
exp{− 2

σ2
ϵ
max(1− zi

∑R
r=1 ui

rTβ∗
r − ci

Tγ, 0)}. Noting that

the effects for the extracted features corresponding to the same edge are expected

to be correlated, we propose a structured regression coefficient as β∗
q,r = β∗

qηr, r =

1 . . . R, 1 ≤ q ≤ Q, where {η1, . . . , ηR} represent feature-specific correlated effects that

are considered invariant across edges that is modeled as η ∼ N(0,Ση), with Ση ∼

IW (b,D), b = R,D = d∗ × IR, d
∗ ∼ IG(c, d), such that Ση captures the correlations

within η. On the other hand, β∗
q reflects the global edge-specific contribution of the

extracted features in the SVM model, with β∗
q = 0 implying no effect corresponding

to the dynamic connection of edge q. The edge-specific parameters (β∗
1 , . . . , β

∗
Q) are

assigned the same DP mixtures of Laplace prior as in (3.2). We will denote this model

as dynamic BNP-SVM or dyBNP-SVM.

We note that while the structured coefficients in the dyBNP-SVM model βq,r =

β∗
qηr(r = 1 . . . R, 1 ≤ q ≤ Q) can be generalized to accommodate greater flexibility,

such modeling assumptions can lead to a dramatic increase in the number of parame-

ters and slow down computations. For example, one can instead specify βq,r = β∗
qηq,r,

which allows for edge-specific and feature-specific variations. However, it is clear that
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the overall number of parameters for such a specification becomes exceedingly large

with the increase in the network size, resulting in computational bottlenecks and

potential overfitting issues. Hence we do not consider such generalizations further.

Posterior Computation

The form of the pseudo-likelihood using dynamic connectivity features lends itself to

a similar treatment for MCMC sampling as in model (3.1) with static connectivity

features, with some additional steps needed to sample the η effects and associated

hyperparameters.

MCMC Steps based for dyBNP-SVM: Algorithm II

The posterior distributions of σ2
ϵ and ρ−1

i are given similarly as in steps (i) and (ii)

in Algorithm I involving static connectivity, with ui replaced by uη,i
∗. Similarly

the updates for σ2
βp

proceeds similarly as in Algorithm I. Moreover, the posterior

distributions for β∗ follows the Multivariate Normal distribution with mean µβ and

variance Σβ with Σβ =
(
1+D−1

σβ

)−1
, µβ = Σβuη

∗T z, where Dσβ
represents the P ×P

diagonal matrix with entries (σ2
β1
. . . σ2

βP
). Similarly, the posterior distributions of

η follows the Multivariate Normal distribution with mean µη and variance Σ∗
η, with

Σ∗
η =

∑N
i=1

{
ûη,i

Tβ∗β∗T ûη,i

}
+Ση, µη =

∑N
i=1

{
β∗T ûη,i(ρi+1)

ρiσ2
ϵ

}
Σ∗

η, where ûη,i is R×Q

matrix with the r− th row as uir, r = 1 . . . R. The posterior distribution for updating

Ση is given as Ση ∼ IW (b + 1, D + ηTη), while that for updating d∗ is given by

Inv−Gamma(c+Rb/2, d+0.5Tr(Σ−1
η )), where Tr(·) represents the Trace operator.

The conditional distribution of λ2p is given similarly as that in the posterior update

in step (v) in Algorithm I.
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Choice of window length

A common question in sliding window based approaches is how to optimally select

the window length. In our approach focused on classification, we fit the proposed

dyBNP-SVM model separately over a grid of window length values, and compute

the classification performance in a validation sample. Subsequently, we choose the

window length that results in the lowest mis-classification accuracy in the validation

sample, and use this choice for out-of-sample classification for the test sample.

3.2.4 Classification via Integrating Multiple fMRI Sessions

In the HCP study, data was collected for two sessions (left-right and right-left phase

encoding) on the first day (denoted as LR1 and RL1) as well as on another follow-up

visit (denoted as LR2 and RL2) for each individual. One major question of interest

in the neuroimaging community, is whether it is possible to develop classification

approaches with higher accuracy via integrating information across multiple sessions.

To address this question, we used static networks computed using resting state fMRI

data from LR1 and LR2 sessions together in the proposed approach based on static

connectivity. In other words, the edge sets for both the LR1 and LR2 networks were

included jointly in the Bayesian SVM model for classification, where the network

density for these networks was determined from the single-session static connectivity

analysis as in Section B.5. A preliminary edge screening was performed as in Section

B.1. for each of the two scans, and subsequently this subset of edges was used for

classification.

3.2.5 Feature Selection

The fully Bayesian framework seamlessly enables one to perform inference. For exam-

ple, testing for significant coefficients is by constructing 100(1−α)% credible intervals
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based on the posterior distributions of β1, . . . , βQ. Here α is the level of the credible

set, which is usually selected as 5%, and it can be adjusted to account for multi-

plicity corrections. The resulting approach enables one to identify the significant

network edges and other covariates that play an important role in classification un-

der the SVM model. In order to determine which edges are consistently significant

in the SVM model, we divide the overall sample into two halves, of roughly equal

demographic compositions. Subsequently, we fit the Bayesian model and infer the

significant edges separately for each half of the data. Then, those network edges

that show up as significant for both slices of the data are considered as consistently

significant and reproducible. Moreover, we also evaluate the concordance of feature

selection corresponding to the two data slices via the Intraclass Correlation Coeffi-

cient (ICC), as a measure of feature selection reproducibility. Given that we are able

to achieve almost perfect classification for the top and bottom 10% fluid intelligence

groups corresponding to the LR1 scan (see results in the sequel), we focus on this

subset of individuals for feature selection analysis. We do not consider larger subsets

for feature selection, given that the reproducibility of results is expected to deteri-

orate for such subsets involving greater heterogeneity leading to lower classification

accuracy.

3.3 Numerical Results Using rs-fMRI Data

3.3.1 Study Objectives

Human Connectome Project Data

Our goal is to use resting state functional connectivity to classify individuals belonging

to various strata in the intelligence spectrum. To this end, we consider classifying

individuals belonging to the top and bottom ζ% intelligence groups, where ζ is chosen
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Fluid Intelligence Crystallized Intelligence
Bottom Top Bottom Top

Age Male Age Male Age Male Age Male
10% 28.4 46.5 28.7 52.5 27.6 45.5 29.1 50.5
12% 28.1 45.4 28.7 52.1 27.7 46.2 29.3 51.3
15% 28.1 47.7 28.6 50.3 27.5 45.6 29.3 53.0
18% 28.2 46.9 28.6 49.4 27.7 48.0 28.2 55.3
20% 28.3 47.9 28.6 49.0 27.8 48.5 29.3 55.6
25% 28.5 50.1 28.7 48.0 27.9 49.6 29.2 54.8

Table 3.1: Demographics information of HCP data

to be 10%, 13%, 15%, 18%, 20%, 25%, to reflect different levels of intelligence. The

demographics for these different population strata are given in Table 3.1. We perform

the analysis separately for both fluid intelligence and crystallized intelligence, with

the goal being to classify them into high or low intelligence groups. We note that

while the classification accuracy is expected to be high when classifying the top and

bottom 10% intelligence levels, it is likely to deteriorate for larger sub-populations

with lesser separation between the low and high intelligence groups. Age and gender

are included as explanatory variables, along with the brain network that is calculated

using the multimodal Glasser atlas with 360 nodes or regions of interest that was

developed by the HCP study. We use rs-fMRI data from both LR1 and LR2 scans

for analysis.

We perform three different streams of analysis for each intelligence strata. First

we use static FC to evaluate classification performance using data from one scanning

session, separately for the LR1 and LR2 scans from HCP. Subsequently, we repeat

this analysis with dynamic connectivity for these scans. Finally, we combine the

resting state static networks from LR1 and LR2 scans to perform an integrative

classification analysis. The three separate analysis provides us with an understanding

of which types of network-based features (single-session or multi-session analysis based

on static networks, or dynamic networks) derived from resting-state fMRI data is

expected to yield superior classification accuracy. For the static connectivity analysis

using one scanning session, we computed the network across varying sparsity levels
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by tuning the λgl parameter over a grid for each individual, and we chose the network

density for all individuals that corresponded to a pre-determined sparsity level. We

considered a range of pre-determined network sparsity values varying from 10% to

25%. The classifier is fit using the same degree of network sparsity for all individuals,

and the optimal network sparsity is selected based on the best classification accuracy.

The pre-screening procedure as described previously was used to select a subset of

edges to be used in the classifier.

For the multi-session analysis, we used the network sparsity level that was deemed

optimal under the single session analysis for LR1 and LR2 scans. Moreover, all edges

that were included after pre-screening for the LR1 and LR2 scans were combined to

obtain the pre-screened edge set for the classification analysis involving the multi-

session data. Finally, for classification based on dynamic functional connectivity, we

considered different methods for extracting the features from the time-varying sliding

window correlations for each edge that would be subsequently used in the classification

analysis. These methods included (i) the three manually specified features used in

Liu et al., (2019) that involved the mean FC along with measures of variation and

stability of the time-varying FC; (ii) features extracted from a principal component

analysis (PCA) of the time-varying functional connectivity, that retained at least

95% variability; and (iii) features extracted from independent component analysis

(ICA), where the number of components was chosen to be the same as in the PCA

analysis. Hence, our analysis is able to evaluate which set of features extracted from

the dynamic connectivity profiles (manually selected or data-adaptive) yields the best

classification performance.

ADHD Data

In this analysis, we used resting state fMRI data from the CNI transfer learning

challenge (CNI-TLC), to classify individuals with ADHD, and neurotypical controls
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(TC), based on resting state FC. Te full details for this dataset can be found in

Schirmer et al. (Medical Image Analysis, 2021, 70). The training data comprised 100

ADHD and 100 TC individuals, and the testing data had 20 individuals in each cohort.

The mean age for the ADHD and TC groups were 10.4(1.5) and 10.3(1.2) respectively,

and the gender distribution for these groups comprised 31.0% boys for ADHD and

30.0% boys for TC. The SVM model was trained separately on data coming from the

three parcellations AAL (116 ROIs), Harvard Oxford (110 ROIs) and Craddock200

(200 ROIs), and the relative performance over the three parcellations was compared.

Coupled with the HCP analysis, this second analysis highlights the generalizabilty of

the proposed BNP-SVM approach for different disease areas, and different choices of

brain parcellations, that goes beyond intelligence classification.

3.3.2 Comparison Methods and Metrics

We evaluate the performance of the proposed method in the context of several state-of-

the-art competing methods for classification. The first competing method is penalized

SVM (Becker et al., 2009), which use the combination of SCAD and ridge penalties

as the penalty function of SVM to overcome the limitations of each penalty applied

separately. As the performance of SVM based model is highly associated with the

choice of tuning parameters, the penalized SVM was trained using different tuning

parameters and the cross-validation was used to select the best tuning parameter.

The second competing method is penalized logistic regression, where the elastic net

penalty (the combination of L-1 and L-2 penalties) was used. Again, a grid of tuning

parameters were tested and the combination with best performance based on cross-

validation was used in the final fitted model.

We evaluate the performance of different approaches using out-of-sample classifica-

tion accuracy of the test samples, via several metrics popularly used in literature

(Schirmer at al. 2021). In particular, we report the mis-classification rate defined as
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the ratio of incorrect classification labels over the total number of instances evalu-

ated, the F1 score that is computed as the harmonic mean between recall (sensitivity)

and precision, and the informedness that is also known as Youden’s J statistic and

summarizes the true positive and true negative rates of a classifier. We note that

precision is defined as the fraction of correctly classified positive samples in relation

to the number of the total positive classified samples, while sensitivity is defined to

be the fraction of positive samples that are correctly classified. As a classification

method, classification accuracy is the most direct measure of the performance and is

considered superior for a method with low mis-classification accuracy and higher F1

score, geometric mean and Youden’s J statistic.

3.3.3 Analysis Results for HCP Data

Results based on Static Connectivity

As seen from Figure 3.3, the proposed DP mixture of Laplace approach consistently

resulted in superior classification accuracy across all the network sparsity levels com-

pared to the different competing methods. From amongst the different network spar-

sity levels over which we conducted our analysis on, the best classification accuracy

for both fluid as well as crystallized intelligence was obtained with network den-

sity as 0.2 under the LR1 scan, and 0.18 for the LR2 scan under the proposed ap-

proach. This finding is of independent interest, and can potentially shed light on the

optimal network densities required to obtain good classification accuracy for cogni-

tion/intelligence based on static connectivity obtained via sparse precision matrices.

The results for classification performance using static connectivity for the HCP data

under all approaches are reported in Table 3.2 under these optimal network sparsity

levels, corresponding to both fluid intelligence and crystallized intelligence. The same

network sparsity levels are used to report results under all approaches in Table 3.2

for the sake of consistency, and given the consistently superior performance of the
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proposed approach over varying sparsity levels.

Several aspects are clear from the reported results. First, the classification accu-

racy under all approaches was the highest when classifying the subgroups correspond-

ing to the top and bottom 10% intelligence groups, but the accuracy deteriorates

as the size of these subgroups are increased gradually to the top and bottom 25%

brackets, which is expected given the decreasing separation between high and low

intelligence groups for more heterogeneous sub-populations. Second, the proposed

DP mixture of Laplace approach has statistically significant improvements in terms

of F-1 score, informedness, and the geometric mean metrics for almost all cases, bar-

ring a few exceptions. The mis-classification rate is also significantly lower under the

proposed method for the overwhelming majority of cases when classifying fluid intelli-

gence, but the penalized SVM approach is seen to have comparable mis-classification

rates under the penalized SVM approach for some scenarios involving crystallized

intelligence classification. Unfortunately, all competing approaches consistently had

inferior classification performance compared to the proposed method even for sub-

populations with lesser separation between the high and low intelligence groups, due

to their inability to adaptively pool information across features in order to determine

differential sparsity levels. These results clearly illustrate the prowess of the proposed

Bayesian approach across varying intelligence spectrum, which highlights it’s utility

as a classification method for connectome fingerprinting. Third, by including age and

gender along with the static network in the model, it is possible to obtain improved

classification accuracy compared to using only the network in the SVM model (results

not reported here). This illustrates the importance of including demographic features

(particularly age) in classification models for intelligence and cognition.

Fourth, we discover that the classification performance is generally improved un-

der the LR1 scan compared to the LR2 scan under all methods for fluid intelligence

classification, but on the other hand, classification accuracy is often higher corre-
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sponding to the LR2 scan under all approaches. These results are consistent with the

definitions of crystallized intelligence that is based on accumulated knowledge from

the past, meaning that individuals were likely to be increasingly familiar with the ex-

perience with the resting state fMRI experiment during the LR 1 scan, that resulted

in higher separation (in the form of increased classification accuracy) between the

high and low intelligence groups. In contrast, since fluid intelligence that measures

intuitive and spontaneous reasoning, the separation between the top and the bottom

fluid intelligence sub-groups (10%−15%) was greater during the first LR1 scan where

all individuals participated in the fMRI experiment for the first time.

Results based on Dynamic Connectivity

Table 3.3 provides the result of fluid intelligence classification based on dynamic

functional connectivity. From amongst the three types of features extracted from

the sliding window correlations, the manually extracted features defined in Liu et

al., (2019) yielded the best classification accuracy across all approaches. Hence, our

analysis is able to validate the utility of the manually crafted metrics for dynamic

functional connectivity proposed in Liu et al. (2019) and is consistent in terms of

reporting poor classification accuracy under ICA and PCA decomposition as also

reported in Sen and Parhi (2020).

As for the static connectivity case, the proposed approach is shown to have higher

classification accuracy compared to the competing methods. Moreover, the dynamic

connectivity based classification results are less accurate compared to resting state

static connectivity results across all methods. This result illustrates that static FC

derived from resting state fMRI is better suited for classifying intelligence levels com-

pared to resting state dynamic connectivity, which is potentially due to the fact that

temporal fluctuations in connectivity during the scanning session that are captured

via dynamic FC may not be directly related to variations in intelligence. This finding
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Fluid Intelligence Classification
LR1 LR2 Multi-session

10% MC F1 inf MC F1 inf MC F1 inf
DPL-SVM 0.00 0.99 0.99 0.05 0.97 0.93 0.00 0.99 0.99
L1-SVM 0.00 0.99 0.99 0.06 0.93 0.88 0.00 0.99 0.99
L1-Log 0.00 0.99 0.99 0.06 0.93 0.88 0.00 0.99 0.99
12% MC F1 inf MC F1 inf MC F1 inf
DPL-SVM 0.09 0.92 0.84 0.14 0.87 0.72 0.07 0.94 0.87
Pen-SVM 0.12 0.87 0.75 0.17 0.83 0.68 0.07 0.93 0.87
Pen-Log 0.12 0.87 0.75 0.18 0.81 0.63 0.08 0.91 0.83
15% MC F1 inf MC F1 inf MC F1 inf
DPL-SVM 0.17 0.85 0.68 0.25 0.78 0.54 0.14 0.87 0.73
Pen-SVM 0.19 0.80 0.62 0.26 0.73 0.48 0.15 0.84 0.70
Pen-Log 0.21 0.80 0.61 0.27 0.72 0.46 0.15 0.85 0.71
18% MC F1 inf MC F1 inf MC F1 inf
DPL-SVM 0.25 0.77 0.51 0.25 0.78 0.53 0.23 0.79 0.56
Pen-SVM 0.26 0.73 0.48 0.26 0.73 0.47 0.25 0.74 0.50
Pen-Log 0.27 0.72 0.46 0.27 0.71 0.43 0.26 0.73 0.48
20% MC F1 inf MC F1 inf MC F1 inf
DPL-SVM 0.30 0.71 0.40 0.30 0.73 0.43 0.25 0.78 0.54
Pen-SVM 0.30 0.69 0.40 0.31 0.69 0.39 0.26 0.76 0.51
Pen-Log 0.32 0.67 0.36 0.32 0.68 0.37 0.28 0.69 0.44

Crystallized Intelligence Classification
10% MC F1 inf MC F1 inf MC F1 inf
DPL-SVM 0.13 0.88 0.75 0.11 0.91 0.81 0.09 0.92 0.84
Pen-SVM 0.14 0.86 0.73 0.11 0.89 0.79 0.09 0.91 0.83
Pen-Log 0.15 0.85 0.70 0.12 0.88 0.75 0.10 0.91 0.82
12% MC F1 inf MC F1 inf MC F1 inf
DPL-SVM 0.17 0.85 0.68 0.14 0.86 0.71 0.12 0.89 0.77
Pen-SVM 0.18 0.82 0.68 0.15 0.84 0.70 0.13 0.86 0.72
Pen-Log 0.18 0.81 0.64 0.17 0.82 0.67 0.14 0.84 0.70
15% MC F1 inf MC F1 inf MC F1 inf
DPL-SVM 0.24 0.77 0.52 0.23 0.78 0.55 0.20 0.81 0.61
Pen-SVM 0.24 0.75 0.52 0.24 0.76 0.54 0.21 0.79 0.60
Pen-Log 0.24 0.74 0.51 0.26 0.75 0.52 0.23 0.75 0.51
18% MC F1 inf MC F1 inf MC F1 inf
DPL-SVM 0.26 0.78 0.53 0.25 0.77 0.51 0.23 0.75 0.56
Pen-SVM 0.27 0.73 0.49 0.25 0.74 0.49 0.24 0.74 0.50
Pen-Log 0.28 0.73 0.48 0.27 0.71 0.44 0.26 0.73 0.48
20% MC F1 inf MC F1 inf MC F1 inf
DPL-SVM 0.29 0.74 0.46 0.31 0.71 0.40 0.26 0.73 0.48
Pen-SVM 0.29 0.72 0.45 0.32 0.67 0.36 0.27 0.70 0.46
Pen-Log 0.31 0.69 0.40 0.33 0.65 0.33 0.28 0.69 0.44

Table 3.2: Classification results for HCP data based on static connectivity via partial
correlation, using single- and multi-session analysis. Results are reported under vary-
ing sub-populations reflect the top and bottom spectrums of intelligence. MC, F1,
and Inf refer to the mis-classification rate, the F1 score and the informedness metrics.
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Figure 3.3: Misclassification Rate of fluid intelligence using static functional connec-
tivity based on HCP-LR1 with different percentage of subjects and different network
density. Blue line: BNP-SVM (network only), Red line: Penalized SVM (Network
only), Yellow line: Penalized Logistic Regression (Network only), Purple line: BNP-
SVM (Network+Age+Gender), Green line: Penalized SVM (Network+Age+Gender),
Cyan line: Penalized Logistic Regression (Network+Age+Gender)
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Figure 3.4: Misclassification Rate of crystallized intelligence using static func-
tional connectivity based on HCP-LR1 with different percentage of subjects and
different network density. Blue line: BNP-SVM (network only), Red line: Pe-
nalized SVM (Network only), Yellow line: Penalized Logistic Regression (Net-
work only), Purple line: BNP-SVM (Network+Age+Gender), Green line: Penal-
ized SVM (Network+Age+Gender), Cyan line: Penalized Logistic Regression (Net-
work+Age+Gender)
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Gf Classification MC F1 inform MC F1 inform
Sliding Window HCP-LR1 HCP-LR2

DPL-SVM 0.06 0.95 0.89 0.20 0.80 0.60
Pen-SVM 0.07 0.93 0.87 0.21 0.79 0.59
Pen-Log 0.07 0.92 0.86 0.22 0.78 0.57
PCA HCP-LR1 HCP-LR2

DPL-SVM 0.36 0.68 0.33 0.36 0.67 0.31
Pen-SVM 0.37 0.64 0.25 0.39 0.63 0.25
Pen-Log 0.42 0.58 0.19 0.42 0.58 0.19
ICA HCP-LR1 HCP-LR2

DPL-SVM 0.33 0.71 0.39 0.35 0.67 0.32
Pen-SVM 0.35 0.65 0.30 0.36 0.63 0.24
Pen-Log 0.41 0.60 0.22 0.43 0.57 0.18

Table 3.3: Classification accuracy for fluid intelligence based on dynamic connectivity
using pairwise correlation

Gf Classification CNI-CC200 CNI-AAL CNI-HO
Without MC F1 inform MC F1 inform MC F1 inform

Age and Gender Network(0.18) Network(0.14) Network(0.20)
DPL-SVM 0.14 0.87 0.72 0.12 0.89 0.78 0.15 0.87 0.74
Pen-SVM 0.16 0.84 0.70 0.13 0.87 0.76 0.17 0.86 0.73
Pen-Log 0.18 0.82 0.64 0.17 0.83 0.67 0.18 0.81 0.64

With Age and Gender Network(0.18) Network(0.14) Network(0.20)
DPL-SVM 0.14 0.87 0.73 0.12 0.88 0.76 0.14 0.87 0.74
Pen-SVM 0.15 0.85 0.70 0.12 0.87 0.75 0.16 0.86 0.70
Pen-Log 0.17 0.83 0.67 0.17 0.83 0.69 0.17 0.82 0.67

Table 3.4: Classification accuracy for ADHD vs control using using partial correlation
with different network density based on CNI data
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is complimentary to recent results in (Sen and Parhi, 2020) that shows good predic-

tion accuracy for intelligence based on dynamic connectivity based on task data in

the Human Connectome Project. Moreover, the classification accuracy for fluid intel-

ligence is higher under the LR1 scan compared to the LR2 scan, while for crystallized

intelligence classification, . . .

3.3.4 Analysis Results for CNI Data

Results based on Static Connectivity

According to Table 3, the results for the CNI dataset analysis using static connec-

tivity show more improved mis-specification rates and higher sensitivity under the

proposed model compared to alternative methods, although it can result in slightly

lower specificity. This is true across all the three brain parcellation schemes, al-

though the network density that provides the optimal classification performance is

seen to vary according to the parcellation scheme. This illustrates that the parcel-

lation scheme can have an effect on the manner in which the network features are

associated with the clinical outcome.

In addition, the mis-classification rate reported under the proposed approach

based on partial correlations are seen to be improved when compared to the results

obtained for the same dataset in Schirmer et al (2021), although that paper used a

training sample of 100 in contrast to our training sample of 80. We also see improved

performance in terms of other metrics such as F1 score and informedness.

Results based on Dynamic Connectivity

As for the HCP analysis, the classification performance under dynamic functional

connectivity based on sliding windows appear weaker compared to the classification

results using static connectivity obtained via sparse precision matrices . . .
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3.4 Discussion

In this paper, we proposed one non-parametric Bayesian SVM which combined Dirich-

let Process framework to overcome the limitation of traditional linear classifiers such

as penalized SVM when applying to brain network. We have also applied the proposed

method into two different data set: HCP and ADHD. Results showing that sparse

precision matrix corresponding to the static network using resting fMRI provides the

best classification performance. The network density resulting in optimal classifica-

tion performance vary depending several factors, such as percellation, sample size,

and binary phenotype. Dynamic connectivity based on sliding window correlation

using resting state fMRI has a worse performance compared to static connectivity.
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Chapter 4

Estimating Dynamic Connectivity

Correlates Of PTSD Resilience

Using MultiModal Imaging

4.1 Introduction

Over the last decade, numerous advances have been made in developing neuroimaging

biomarkers for mental illnesses that offer tremendous versatility in terms of under-

standing and targeting pathophysiological mechanisms such as structural decline (e.g.

loss in volume, cortical thinning), functional changes (e.g. fMRI hyperactivity, altered

network connectivity), white matter decline (e.g. white matter integrity), pathology

aggregation (e.g. amyloid levels), and so on. Of these, static functional connectiv-

ity has emerged as one of the most promising biomarkers capable of classifying and

predicting mental disorders (see Du, et al., 2018 for a recent review). However, it is

increasingly recognized that the brain connectivity may not remain constant over time

and is likely to exhibit dynamic variations that may be linked to changes in vigilance

(Thompson, et al., 2013), arousal (Change, et al., 2013), emotional state (Cribben, et
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al., 2012), behavioral performance (Jia, et al., 2014), disease status (Jin, et al., 2017),

and so on. Most existing methods use the sliding window approach (Sakoğlu, et al.,

2010) to compute dynamic connectivity, and then use it to classify disease pheno-

types. While the sliding window is one of the most popular approaches for dynamic

connectivity, it has some known drawbacks including the choice of window length

(Kundu, et al., 2018). Further, (Laumann, et al., 2017) suggested that correlations

measured by resting-state BOLD are relatively stable over short timescales and may

not reflect instantaneous changes in cognition, which suggests the need for alterna-

tive approaches to estimate dynamic connectivity. An alternative to sliding window

analysis is change point estimation methods that allows for unsupervised learning of

changes in connectivity states characterized by a collection of discrete jumps with

the connectivity being constant between two consecutive jump points (Kundu, et al.,

2018). However, single subject change point based approaches for dynamic connec-

tivity needs further improvements in order to develop it as an effective neuroimaging

biomarker, which is a central issue that we investigate in this article.

There has been limited literature on disease phenotypic classification using dy-

namic FC (Du, et al., 2018) that highlights some initial potential as a neuroimaging

biomarker. In particular, dynamic network differences have been discovered between

PTSD and non-PTSD groups (Jin, et al., 2017; Fu, et al., 2019). However, disease

phenotype classification, while a worthy objective, may be of secondary interest in

heterogeneous mental disorders where there is no gold standard for classification, such

as our motivating PTSD application. For such disorders, experts may prefer modeling

continuous measures of disease progression as a clinical outcome of interest. Unfor-

tunately, there have been limited efforts for using dynamic functional connectivity

to model continuous clinical measures (Haslam, 2003; Widiger, et al., 2005). Hence,

considerable efforts needs to be made in this direction. Some challenges include: (a)

developing reliable measures of dynamic connectivity based on single subject data;
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(b) discovering localized brain regions whose dynamic connectivity signatures are di-

rectly related to behavior; (c) developing predictive models for continuous clinical

outcomes based on dynamic networks, that goes beyond disease phenotype classifi-

cation; and (d) developing quantifiable dynamic network summaries that provide the

highest differentiating power with respect to the clinical outcomes of interest. For our

PTSD application, the continuous clinical outcome needs to be chosen carefully so

that it accounts for varying levels of trauma exposure that represents a major source

of heterogeneity for individuals with and without PTSD.

In this article, we seek to address the above issues using data on PTSD symptom

severity among individuals obtained from the Grady Trauma Project. Our results

show that network fluctuations in terms of the frequency of switching between dif-

ferent states is weakly related to the disease phenotype, but the fluctuations in the

connectivity strength is related to a continuous metric of disease severity called re-

silience that is defined as the ability to maintain high levels of emotional and social

functioning in the face of stress exposure. To address (a), we develop a novel ap-

proach to estimate dynamic FC based on resting state fMRI (Rs-fMRI) data that

is guided by brain structural connectivity (SC) information obtained via diffusion

tensor imaging (DTI) data. The estimates of the dynamic network obtained via the

multimodal approach is shown to be more sensitive to network changes and provides

greater predictive power when modeling trauma resilience. The multimodal dynamic

FC approach is also shown to recover the true dynamic network accurately via ex-

tensive validation studies. Our analysis helps discover edges or connections between

brain regions whose variations in connectivity strengths are directly related to trauma

resilience, as well as edges that are more stable in the dynamic network, which pro-

vides insights into question (b). In order to address questions (c) and (d) we apply

state of the art scalar-on-function regression approaches to model trauma resilience

based on dynamic connectivity, and identify time-varying global network summaries



87

encoding patterns of information transmission in the brain that provide the highest

predictive accuracy under the proposed multimodal approach compared to static net-

work models as well as dynamic network models using fMRI only. We also identify

functional modules in the network where the local patterns of dynamic information

transmission are most predictive of trauma resilience with superior accuracy under

the proposed approach. A graph theoretic approach is used to model the network,

where brain regions are perceived as nodes and edges describe functional or structural

connectivity depending on the imaging modality.

To our knowledge, we are one of the first to develop and investigate multimodal

dynamic FC as a neuroimaging biomarker for predictive analysis of disease severity in

mental illness. Of course, the motivation for structurally guided dynamic functional

connectivity comes from a well-established literature illustrating the relationship be-

tween static FC and SC. In particular, there is strong evidence that white matter fiber

tracts regulate static FC (Damoiseaux et al., 2009; Sporns, 2013). Based on such ev-

idence, there has been some limited development of static FC approaches guided by

SC knowledge (Hinne, et al., 2014; Messé, et al., 2014) using multi-subject data as

well as data for single individuals (Higgins, et al., 2018). Since static FC can be

interpreted as an average of dynamic FC values over time, it is natural to conjecture

that dynamic FC is also regulated by brain SC to some degree. Hence, it is of interest

to develop data-adaptive approaches to compute multimodal dynamic FC, especially

to improve dynamic network estimates for single subject analysis. Since it is non-

trivial to generalize the existing approaches to our settings of interest involving the

estimation of dynamic brain networks guided by SC information, our efforts represent

major methodological and scientific innovations with the ultimate goal of developing

neuroimaging biomarkers based on dynamic FC.
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4.2 Materials and Methods

4.2.1 Description of Grady Trauma Project Data

Our study involves female African-American participants from the Grady Trauma

Project (GTP). These participants were recruited from primary care clinics at Grady

Health System, a publicly funded, tertiary care center serving a predominantly socioe-

conomically disadvantaged inner-city population in Atlanta, Georgia. A majority of

these participants have experienced significant psychological trauma of various types

(Gillespie, et al., 2009). Imaging modalities including Rs-fMRI and DTI data were

collected for each individual - the details for the pre-processing steps are provided

in the Supplementary Materials. We focused on a moderate subset of 24 individuals

who were aged below 30 years and hence we expected to have more homogeneous

brain function and structure. The participants were all female and African-American

(age 25.8 ± 3.1) and did not have any disability. Out of these participants 1 was

Hispanic and 23 were non-Hispanic, 12 subjects were diagnosed as PTSD (resilience

score, 13.1±8.2) and the other 12 subjects were not (resilience score, −6.9±5.3). Our

clinical outcome of interest is the resilience score that is measured via the Connor-

Davidson Resilience Scale (CD-RISC) (Connor, et al., 2003). Resilience is a trans-

diagnostic indicator of mental health in the face of adversity, and is highly relevant

to groups of individuals who have experienced high levels of trauma exposure and

other forms of stress, as in the Grady Trauma Project sample. High resilience scores

can be interpreted as a direct indicator of PTSD severity, and all individuals with

high resilience had PTSD positive status. We note that although our sample size is

moderate, we expect to obtain accurate inferences under the proposed approach that

involves the integration of functional and structural imaging to obtain the dynamic

FC, which is subsequently used to model resilience using state-of-the art statistical

techniques. Moreover, using the continuous resilience score as our clinical outcome
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of interest allows us to pool information across varying levels of disease severity to

inform our analyses, which provides greater power to detect important signals com-

pared to an alternate analysis that compares distinct clinical phenotypes represented

by smaller subgroups.

Power Atlas and Functional Modules

We use a whole brain parcellation corresponding to the fMRI time courses from the

264 ROIs under the Power system (Power, et al., 2011) to perform our network anal-

ysis. Although the network analysis involved 264 nodes, we further group these ROIs

into 10 functional modules as identified by (Cole, et al., 2013), which better character-

ize resting state functional networks. These modules included sensory/somatomotor,

cingulo-opercular (CON), salience (SAL), auditory (AUD), subcortical (SCOR), de-

fault mode network (DMN), visual, fronto-parietal (FPL), ventral-attention network

(VAN), and dorsal-attention network (DAN). The coordinates for the ROIs and their

allocation to these modules in presented in a Table in Supplementary Materials. We

note that 37 ROIs were excluded from our analysis based on (Cole, et al., 2013),

either because they were located in cerebellum or they were identified with unknown

functionality.

4.2.2 Validation Studies Using Simulated Data

We conducted extensive simulation studies to evaluate the performance of the pro-

posed approach, under different network structures. In the first set of simulations

(Scenario I), we generated data from an underlying change point model with three

change points (i.e. four state phases). A network and the corresponding precision

matrix was constructed at each time point (described below), and these were constant

within each state phase. The measurements were generated under a Gaussian dis-

tribution characterized by the time-varying precision matrix. We generated data for
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V = 20, 50 regions and with T = 300, 500 time points. In a second set of simulations

(Scenario II), we allow the network to change more slowly over time, that is more

consistent with the timescale of the haemodynamic activity. In particular, instead

of three change points as in the first scenario, we now have three transition periods,

each comprising seven consecutive time points. A certain percentage of the edges are

flipped from the network at the previous time point to obtain the modified network

for the next time point within each transition period. The network is assumed to be

constant between two consecutive transition periods. This scenario is more challeng-

ing since the network changes multiple times over the course of the experiment. The

goal of this experiment is to investigate if the proposed approach can detect the tran-

sition periods and whether it can approximate the true dynamic network sufficiently

well when the underlying assumptions of the proposed model may not hold.

We generate data using three different types of networks (details provided in

Supplementary Materials). In addition to Scenarios I and II, we also reported results

under Erdos-Renyi networks for 100 nodes with three true change points, to test the

performance in higher dimensions, and investigated the scenario involving a large

number of change points (10) with 50 nodes. These challenging settings help us

evaluate the performance of the methods for high dimensions and large number of

fluctuations in the dynamic network. For each simulation setting, 25 replicates were

used.

4.2.3 Overview of Statistical Approach

Our goal is to develop an approach for estimating dynamic connectivity based on

Gaussian graphical models that guided by SC knowledge. We denote our approach as

multimodal dynamic FC (mDFC) through the rest of the paper. GGMs assume that

the fMRI measurements are normally distributed and are characterized by a sparse

inverse covariance or precision matrix that has zero off-diagonals corresponding to
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absent edges in the network. Moreover, the non-zero elements of the precision matrix

encode the strength of the important edges. The dynamic GGM approach proposed

in this paper combines the concept of change point estimation with GGMs, where

the fMRI measurements are assumed to come from a Gaussian distribution having a

sparse inverse covariance matrix that is constant within a state phase, but changes

between state phases. Each state phase denotes the period between two consecutive

change points, whose number and locations are unknown. We note that in a dynamic

GGM, the pattern of zeros in the precision matrix at each time point essentially

provides all the necessary information about the time-varying network.

Denote yt as the V × 1 vector of spatially distributed fMRI measurements over

V voxels or regions of interest (ROI), at the t-th time point (t = 1, . . . , T ). Denote

the SC probability corresponding to the edge (j, l) as pjl where j ̸= l, j, l = 1, . . . , V,

and denote the corresponding SC probability matrix as P . These SC probabilities

are obtained from DTI data, and are made symmetric (i.e. pjl = plj) as in (Higgins,

et al., 2018). We specify the following dynamic GGM

yt ∼ N(t,Ω
−1
P,Gt

), t = 1, . . . , T, (4.1)

where N(,Ω−1) refers to a multivariate Gaussian distribution with mean and covari-

ance matrix Ω−1, ΩP,Gt denotes the inverse covariance or precision matrix at time

point t that depends on the time-varying network Gt characterized by the vertex set

V and edge set Et, as well as brain SC information P . The vertex set V = {1, . . . , V }

consists of a set of pre-defined voxels/ROIs or nodes, the edge set Et contains the set

of all edges present in Gt, and {ΩP,G1 , . . .ΩP,GT
} encodes the strength of the time

varying FC. The goal of change point modeling is to develop an algorithm that is

able to learn the best fitting partition of the time course defined by the change points

0 = a1 < a2 < . . . < aK < aK+1 = T so that Gt remains constant for consecutive
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time points except for discrete jumps at the change points. These change points are

unknown for our problems of interest, and estimated in an unsupervised and data-

adaptive manner. For conciseness, we denote ΩP,k as the constant precision matrix

for the k-th state phase corresponding to the interval (ak−1, ak]. throughout the ar-

ticle. A diagrammatic illustration for our approach is provided in Figure 4.1. More

details regarding the approach including the structurally informed precision matrix

estimation, and change point estimation using the subnetwork sampling scheme are

provided in the Supplementary Materials.

4.2.4 Analysis Outline

Using the mDFC approach, we first compute the dynamic resting state network and

subsequently investigate whether or not the temporal changes in the dynamic network

can explain variations in disease severity measured via resilience. Figure 4.2 provides

a visual depiction of the different steps in our analysis, which are described in detail

below.

Detecting Temporal Connectivity Fluctuations Related to Resilience

We would like to investigate whether temporal variability is related to disease severity.

To evaluate this, we (a) examined whether temporal variability of an edge in terms

of the number of fluctuations between the present and absent states (measure via

change points) is significantly different between individuals with and without PTSD

(or equivalently high and low resilience groups); and (b) investigated whether the

temporal variability of the connectivity strength (measured via partial correlations)

is related to the continuous resilience measure. For (b), we performed a regression

analysis to identify those edges whose standard deviation of the partial correlations are

significantly related to the resilience score. Due to a large number of edges involved,

an univariate analysis was performed for one edge at a time, and significant effects
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were identified after multiplicity adjustment for p-values using Benjamini-Hochberg

corrections (Benjamini, et al., 1995). Edges having a significantly positive association

under this analysis will imply connections where greater variability in connectivity

strength enhances resilience and vice-versa, whereas significant negative associations

will imply connections where greater temporal fluctuations lead to decrease in re-

silience and vice-versa.

Prediction Based on Dynamic FC via Scalar on Function Regression

We use scalar on function regression to predict the resilience score using the dy-

namic functional connections as a function of time. The scalar-on-function regression

(Ramsay, et al., 2005) can be expressed as zi =
∫ T

0
ρ̂i(t)β(t)dt + ϵi, where ϵi denotes

the residual that is assigned a Gaussian distribution, zi represents the scalar clini-

cal outcome and ρi(t) denotes some network summary measure of the estimated time

varying functional connectivity for the i-th individual derived under the dynamic net-

work (see the sequel for more details), and β(t) denotes the time-varying coefficient

function that weights the dynamic connection over time in order to model the out-

come and can be interpreted as a dynamic analogue of regression coefficients in usual

linear regression models. The model fitting proceeds by expressing the time varying

quantities using known basis functions and unknown wavelet coefficients, and there-

after using standard techniques in linear regression models to estimate the unknown

wavelet coefficients and thereby estimate the time varying regression coefficient.

We used the R package FDBoost (Brockhaus, et al., 2018) for implementing the

scalar-on-function regression. The predictive accuracy of the scalar-on-function re-

gression was assessed using out of sample mean squared error that calculates the

averaged squared difference between the observed and predictive values in the test

sample. A lower error implies higher predictive accuracy and a better model fit. We

randomly split the sample into training and test sets, fitted the scalar on regression
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model on the training data, and computed the out of sample MSE on the test sample.

We then repeated the above operation for 100 random splits and obtained a boxplot

of the our of sample MSE. We did not include gender, race or age in our regression

model since the entire sample comprised African-American females between 19-30

years.

Dynamic Network Summaries for Prediction of Disease Severity

Edge level analyses, although more easily interpretable, may often be subject to

greater levels of noise and may be less reproducible across studies. Hence, instead

of using edge level features, we investigated the predictive ability of global dynamic

network summaries such as small-worldedness, global efficiency and global clustering

coefficients, as well as local clustering coefficient and local efficiency corresponding

to some local functional modules. These include Visual, Salience, Subcortical, VAN,

and DAN modules that were identified as regions with the highest FC changes for

trauma exposed individuals under our dynamic network analysis (see Figure 4.4).

We also reported the prediction results corresponding to the small-worldedness for all

modules. Clustering coefficient and small worldedness were chosen based on recent

findings of differences in these metrics in static networks between individuals with

and without PTSD (Rowland, et al., 2018), whereas the global and local efficiency

are additional network metrics that we chose to investigate in the context of predicting

resilience. We note that all the network metrics change across state phases under the

dynamic network, and hence are time-dependent. The network metrics represent

the efficiency of information transmission at a global or local level in the brain, and

were computed at each time point and for each subject using the Matlab toolbox

Brain Connectivity Toolbox (Rubinov, et al., 2010). They are described in detail in

Supplementary Materials.
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Comparison with Existing Methods

We compare our method with two competing approaches: a hierarchical Bayesian

structurally informed Gaussian graphical model (siGGM) by (Higgins, et al., 2018)

which estimates the static network over the experimental time course while account-

ing for the SC information, and dynamic connectivity regression (DCR) for single

participants proposed by (Cribben, et al., 2013) in validation studies. For the analy-

sis of the data from the PTSD study we replace DCR with the SC naive version of

the proposed approach that is similar to DCR, since the DCR approach is not appli-

cable to high-dimensional networks used in our analysis involving 264 nodes or ROIs.

We used default set-up in the (Cribben, et al., 2012) paper to implement the DCR

method for validation studies, i.e. minimum block size of 30, significance level for

permutation test of 0.05 and the number of bootstrap is set to be 1000. While both

the change point detection and the network estimation performance were reported

under the DCR approach and the SC naive version of the proposed method, the

siGGM only reports the network estimation performance, since it does not account

for dynamic changes. The performance metrics used for comparison are described in

detail in Supplementary Materials.

4.3 Results

4.3.1 Findings in PTSD Data Analysis

Multimodal Approach is More Sensitive to Dynamic Network Changes

Our first aim is to compute dynamic FC guided by brain SC information for each

participant, and investigate brain regions that exhibit connections with the greatest

and least temporal variability. We calculated networks which were approximately

around 15 percent density for all participants, which seem to reflect an acceptable
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sparsity level in brain connectivity studies. Figure 4.3 provides the histogram for the

number of change points for the proposed approach and the SC naive version of the

method. Our method detected 5 change points on average across all participants,

with the number of change points ranging from 3 to 7. On the other hand, the SC

naive version of the method registers only 1 change point for a large majority of

participants, and only one subject has 3 change points. Given 146 brain volumes

in the fMRI time series and recent findings that some brain networks may change

within as little as 30–60s (Sakoğlu, et al., 2010; Shirer, et al., 2012), the number of

change points under the SC naive version seem to be unrealistic whereas the number

of change points under the proposed method appears more practical and supported

by previous evidence. Our findings reveal that the brain network computed via the

proposed multimodal FC method using brain SC information is more sensitive to

temporal fluctuations in the dynamic network to a far greater degree than the SC

naive version. Hence incorporating brain SC knowledge provides greater power to

detect dynamic changes in the network (also see validation experiments).

The edges with the largest temporal fluctuations are identified as those that con-

sistently switch over the different state phases averaged across individuals, as reported

in Figures 4.4(A)-(C). In particular, this Figure depicts the proportion of times each

edge flips (changes from present to absent state from one time point to the next, and

vice-versa) over the course of the scanning session averaged over all individuals (Figure

4.4(A)), and separately for the PTSD (Figure 4.4(B)) and non-PTSD (Figure 4.4(C))

cohorts, where a higher proportion implies greater temporal variability. From Figure

4.4 (A), we observe that connectivity within and between certain modules such as the

Visual, FPL, DAN, and VAN, exhibit the highest temporal fluctuations in connectiv-

ity. Interestingly, the highest temporal fluctuations in connectivity occur between the

different functional networks, whereas the temporal fluctuations within most of these

functional modules is somewhat limited. On the other hand, edges connected to nodes
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in Sensory, CON, AUD, and DMN have the least temporal variability both within

and between modules, which implies stable connections that can be characterized by

static connectivity. Hence, our approach identifies certain concentrated regions in the

brain with greatest temporal fluctuations in connectivity, and also identifies several

other regions can exhibit static connectivity in terms having negligible frequency of

state phase changes.

We observed that connections between the Visual-FPL modules, Visual- VAN

module, Visual- DAN module, Visual- SAL network module, and the Visual - SCOR

regions have the highest temporal fluctuations in the dynamic network. The Visual

network seems be most active in terms of temporal fluctuations - some of the regions

that had the highest fluctuations in the Visual network were located in left Occipital

Inf, left Lingual, right inferior temporal gyrus, right Cuneus, and left middle Occipital

lobes. These regions have been shown to be involved in upregulated perception of

environmental stimuli that could be arousal-mediated (Mueller-Pfeiffer, et al., 2013).

The SAL and SCOR modules have previously demonstrated altered resting state

connectivity (Rabinak, et al., 2011; Brown, et al., 2014), and grey matter alterations

were also discovered in subcortical areas for PTSD individuals (O‘Doherty, et al.,

2017). The highest temporal fluctuations in the Salience network came from regions

located in the middle frontal gyrus and superior frontal gyrus (Brodmann Area 10)

that have been known to be associated with cognitive control (Nicholson, et al., 2017).

Moreover, resting state connectivity differences in prefrontal cortex (Kennis, et al.,

2015) and hypoactivity in medial prefrontal cortex (Koenigs, et al., 2009) have been

observed in individuals with varying PTSD severity. Additionally, the areas with

the highest temporal network fluctuations in the subcortical module were located in

the Putamen region close to the white matter just lateral of caudate, that is known

to be associated with motivated behavior/approach (Elman, et al., 2009). Finally,

increased resting state FC has also been discovered in DAN and VAN modules (Block,
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et al., 2017).

Do Temporal Network Fluctuations Drive Disease Severity?

To investigate this question, we first compared the temporal fluctuations for indi-

viduals with and without PTSD in terms of the frequency of state changes in the

network in Figures 4.4 (A)-(C). Figures 4.4 (B)-(C) clearly illustrate very limited

differences in temporal variability patterns in individuals with and without PTSD,

although individuals with PTSD tend to have slightly higher number of fluctuations

in brain network state phases. In particular, only 213 edges (0.61% of all possible

edges in the network) have significantly different frequency of state phase changes

between the PTSD and non-PTSD groups at 5% level of significance after adjusting

for family-wise error rate over all edges using Bon-ferroni corrections. Almost all

of these edges correspond to a higher frequency of changes under the PTSD group.

Overall, this part of our analysis point to the limited ability of the frequency of state

phase changes to distinguish between the PTSD and non-PTSD groups. Hence it

is imperative to develop alternate measures of dynamic connectivity that provides a

greater distinction with respect to disease severity.

We seek to develop a measure for temporal changes in connectivity that is more

effective in terms of showing greater associations with disease severity. Hence, we in-

vestigated the ability of temporal variability of edge-wise connectivity strengths (mea-

sured as the standard deviation of partial correlations) to predict resilience scores that

is a more continuous representation of the disease spectrum. Figure 4.4(D) illustrates

those dynamic FC that have significant associations between temporal variability

in connectivity strength and resilience. The significant edges were detected using

univariate analysis at 5% level of significance and using multiplicity corrections for

controlling family-wise error rate over all edges via Bon-ferroni corrections. The over-

whelming number of edges between the Visual and Sensory functional modules have
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fluctuations in connectivity strength which are significantly related to resilience. The

temporal fluctuations of connectivity strengths between and within the Visual, FPL,

VAN and DAN modules are also see to be significantly associated with resilience.

The functional modules with the smallest proportion of edges whose temporal vari-

ability is related to resilience include the Salience and Subcortical modules, and the

DMN. Clearly, our findings regarding significant dynamic network differences driving

disease severity is stronger and more informative compared to the findings in (Fu, et

al., 2019), who discovered some preliminary dynamic FC differences between PTSD

individuals and healthy controls, but were unable to recover dynamic FC features

that are significantly associated with PTSD status.

The overwhelming majority the significant associations ( 96.1%) are negative,

which means increased temporal fluctuations for these connections lead to decreased

resilience, and vice-versa. A small number of positive associations between the tem-

poral variability of the connection strengths and resilience can be found for edges

corresponding to nodes within the DMN, and between DMN and the Visual module

and FPL modules. Since the connections in DMN were shown to relatively stable

over time (Figures 4.4 (A)-(C)), significant positive associations between resilience

and edges within the DMN implies lower resilience resulting from stable connections

within DMN. Similarly, the increased temporal connectivity fluctuations within and

between the Visual, FPL, VAN and DAN modules (Figures 4.4 (A)-(C)), combined

with the largely negative associations between temporal variations of connectivity

strengths and resilience for these edges implies a decrease of resilience due to in-

creased dynamic connectivity in these regions. The same conclusion also holds for

edges between the Visual and Salience modules, and those between the Visual and

Subcortical modules. On the other hand, negligible temporal fluctuations in other

regions of the brain (Figures 4.4 (A)-(C)), coupled with largely negative associations

between edges in these regions and resilience (Figure 4.4 (D)), point to an increase in
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resilience due to more stable associations in these regions.

Dynamic Networks Provide Higher Predictive Accuracy for Trauma Re-

silience

Another important objective is to investigate the ability of the dynamic FC to differ-

entiate individuals with distinct resilience levels and check whether dynamic networks

estimated by fusing functional and structural imaging data can provide significantly

greater predictive power compared to standard network modeling approaches. The

results of our predictive analysis are reported via boxplots for out of sample MSE

corresponding to the different network metrics are presented in Figure 4.5. An addi-

tional Figure (4.6) also demonstrates the predictive accuracy using small-worldedness

derived from different localized functional modules.

A multiplicity adjusted permutation test revealed that the improvements in pre-

dictive accuracy were significantly better under mDFC when using dynamic global

efficiency, clustering coefficient, and small-worldedness. It is also clear that when

focusing on localized functional modules, the proposed approach has a lower MSE

compared to the SC naive dynamic connectivity for most cases, and a comparable

MSE for the remaining cases. Moreover, the MSE under mDFC derived from lo-

calized functional modules is significantly lower compared to siGGM that computes

static networks incorporating brain SC knowledge, which clearly highlight the predic-

tive advantages of dynamic FC over static FC in PTSD. We note that the predictive

MSE using small-worldedness from the SAL network is significantly lower compared

to the other two methods, and lower or comparable for the other localized functional

modules. Further, the mDFC approach shows significant improvements in predictive

accuracy when using the following local time varying network features: the dynamic

clustering coefficient for nodes in DAN and VIS modules, as well as those in SAL

and VIS modules, nodes in VAN and VIS modules, and finally nodes in the SCOR
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and VIS modules. Superior predictive accuracy under mDFC is also obtained when

using dynamic efficiency computed using nodes in the DAN module, as well as nodes

combined from the DAN and VIS modules, with the predicting accuracy under the

latter being significantly higher. This could potentially imply an important role of

between module connections for predicting resilience. These findings may indicate

modules in the brain where dynamic connectivity changes have the greatest differ-

entiating power with respect to resilience, and help localize the brain regions where

the temporal network fluctuations have the strongest predictive power with respect

to resilience.

We note that our findings go further than the results in (Rowland, et al., 2018)

who illustrated differences between individuals with and without PTSD based on

small-worldedness and global clustering coefficient derived from static networks. Our

investigation not only reveals the importance of global small-worldedness, clustering

coefficients, and efficiency computed using dynamic networks for modeling disease

severity, but also reveals more localized functional modules whose clustering coeffi-

cient and efficiency based on the dynamic network are related to resilience.

4.3.2 Results from Validation Studies

Figures 4.7, 4.8 and 4.9 report the results for the validation studies corresponding to

Scenarios I and II. We note that we could not report results under DCR for the 100

node scenario since the DCR is not scalable to high dimensional networks.

Multimodal Dynamic FC Provides Near Perfect Estimation for Network

Changes

Figure 4.7(a)-(b) provides a visual illustration of the change point detection perfor-

mance under the first scenario, which plots the frequency with which each time point

is detected as a change point under the sub-network sampling scheme. In this Figure,
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the peaks in frequency are seen to concentrate around the true jumps which illustrate

the ability to accurately detect change points. The results in Figures 4.8 and 4.9

suggest that the proposed approach is able to detect essentially almost all the true

change points under both scenarios, as computed via the proportion of change points

detected. Moreover, the proportion of false change points detected (computed as the

number of falsely detected change points over replicates) is close to 0 or negligible.

In contrast, the detection of false change points is much higher under DCR, and it

has poor performance in terms of detecting the true change points. In fact, the mul-

timodal dynamic FC approach has a significantly higher proportion of change points

detected, and significantly lower number of false positives. Additional experiments

(not presented here) reveal that the performance of DCR improves when the total

number of time points in the experiment, along with the distance between consecutive

change points is increased. However, for practical experiments with a few hundred

time points, the DCR approach seems to fail in terms of change point estimation.

The proposed approach, which incorporates SC knowledge and espouses a novel sub-

network sampling scheme, performs considerably better in terms of detecting the true

change points while incurring minimal false positives.

Figure 4.7(b) presents the change point detection results for the high-dimensional

case of V = 100 for data simulated under the Erdos-Renyi network with three jump

points. The Figure clearly depicts high frequencies for change point detection around

the true change points, thereby suggesting that the proposed approach could suc-

cessfully detect true change points based on the sub-network sampling mechanism.

Finally, the results for the case involving a higher number of true change points (10)

with V = 50 regions and T = 500 time points, is presented in Figure 4.7(c), which

clearly shows peaks under the sub-network sampling scheme around all of the 10 true

change points, thereby indicating the power of the proposed approach in detecting dis-

crete jumps. In order to accurately detect all the true change points, we increased the
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number of sub-network samples to 100 for this case. For this case, the DCR approach

fails to detect an overwhelming majority of the jumps (results not reported).

In addition, we assessed the performance of the proposed approach when both

the number of change points and ROIs increases. Simulation results (not presented

here) shows that as long as the number of sub-networks is large enough and true

change points are not exceedingly close together, our method successfully detects

peaks around the true change points, under the sub-network sampling scheme. The

computation time for each sub-network is reasonable as long as the number of nodes

in the sub-network is moderate - see Figure 4.7(d) for more details. We conjecture

that an increasing number of sub-networks will be required for a good performance

as the number of nodes in the network, as well as the number of true change points

is increased. In summary, using a combination of a powerful sub-sampling scheme

and incorporating prior SC knowledge, the proposed method is shown to provide vast

improvements over existing approaches in literature in terms of detecting underlying

true network changes.

Multimodal Dynamic FC Results in Higher Network Estimation Accuracy

The results of graph estimation are reported in Figures 4.8 and 4.9. Compared to

the competing methods, the proposed method consistently has a significantly higher

area under the Receiver Operating Characteristic Curve (AUC) value for network

estimation. In addition, it has a higher or comparable sensitivity and consistently

has a significantly higher specificity, implying lower false positives in graph estimation

and suitable power to detect true positives. In several cases, both the sensitivity and

specificity under the multimodal dynamic FC were higher compared to the other two

methods. A higher AUC, along with higher specificity and comparable sensitivity,

illustrates the ability of the multimodal dynamic FC approach to better control for

false positives while having a similar or higher power to detect true signals. We



104

note that the accurate estimation of the dynamic network under the multimodal FC

approach illustrates the importance of using brain SC to guide the estimation of

dynamic FC.

4.4 Discussion

In the current study we developed a novel method (mDFC) for estimating dynamic

changes in fMRI resting state functional connectivity guided by SC information in

the brain. The approach can be scaled to a large number of change points as well

as nodes, and is applicable to diverse settings. Our findings suggest that (1) esti-

mating dynamic network connectivity models can be improved with the addition of

DTI-based structural constraints; and (2) including metrics of dynamic change in

resting networks will improve models for predicting psychiatric risk and resilience to

trauma and stress. For (1), we see that SC guided dynamic FC estimation results

in higher sensitivity in detecting network changes, which suggests that dynamic FC

changes are potentially correlated with brain SC. One possible explanation for the as-

sociation between SC and network changes is that the dynamic FC can be considered

as distinct manifestations of an underlying intrinsic network that is associated with

the brain SC, in a manner that is similar to the association between static FC and

SC. Additional work is needed to investigate the above conjecture; but if true, then

this could potentially be a novel finding with considerable implications. For (2), our

PTSD data analysis discovers resting state network alterations among participants

exposed to varying degrees of trauma based on dynamic connectivity, illustrates the

direct link between temporal fluctuations of connections with PTSD resilience which

implies that the dynamic network is related to mental health. The ability of small-

worldedness, clustering coefficients and efficiency computed from the dynamic net-

work to accurately predict trauma resilience points to the potential of these dynamic



105

network metrics as neuroimaging biomarkers in trauma resilience studies. Moreover,

the localized brain regions identified as directly related to resilience may have strong

clinical interpretations in terms of PTSD diagnosis and treatment. In particular, the

local clustering coefficient and local efficiency computed using nodes in the Visual and

Dorsal attention network both result in highest improvements in predictive accuracy,

which points to the importance of these regions with respect to trauma resilience in

a civilian, highly traumatized sample of African American women. These findings

stand in contrast to current neural circuit-based models of trauma resilience. Previ-

ous models of the neural correlates of resilience have often focused on populations of

treatment-seeking patients with either depression or PTSD, whereas in the current

study we recruited broadly among a sample at high risk for trauma but without re-

spect to any mental health diagnosis or complaint. Furthermore, while the majority

of resting state network modeling in psychiatry has focused on static functional con-

nectivity, our novel analyses that are highly sensitive to network dynamics allowed us

to provide a model of the neural correlates of resilience with much lower error than a

static connectivity-based comparison model (refer to Figures 4.5- 4.6).

These findings build upon traditional neural circuit models of trauma-related psy-

chopathology and resilience, which have focused primarily on individual differences

in fear learning and extinction, supported by plasticity within an amygdala-mPFC-

hippocampal circuit (Liberzon, et al., 2007; Johnson, et al., 2012). Recent find-

ings suggest that stress resilience also depends on the instantiation of fear memo-

ries throughout a broader network of regions, including the primary sensory cortex

through which initial information about the trauma or threat was gathered (Ressler,

2020) Network-based resting state functional connectivity findings have supported

this idea in PTSD. For example, visual and sensorimotor networks were implicated

in identifying subtypes of PTSD among war-exposed male military veterans (Maron-

Katz, et al., 2019) . A subgroup with greater re-experiencing symptoms showed
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hyper-connectivity between visual and sensorimotor networks, and hypo-connectivity

between sensorimotor network and prefrontal regions. Similarly, in our dynamic con-

nectivity analyses, we identified that greater temporal fluctuation in the visual and

sensorimotor networks were negatively associated with resilience in the context of a

sample of female civilian trauma survivors with histories of multiple trauma spread

over the lifespan, supporting the importance of sensory resting state nodes to trauma-

related pathology across multiple populations. Furthermore, these results find par-

allels in preclinical rodent models of fear learning in which fear-related behavior to

auditory tones that had previously been associated with footshocks was dependent

on plasticity in auditory cortex in addition to associations formed in the amygdala

(Keifer, et al., 2015; Banerjee, et al., 2017; Lai, et al., 2018). In humans exposed to

trauma, plasticity in the visual and sensorimotor cortices, and their interplay with

the salience network, which is hypothesized to direct sensory attention resources to

salient environmental stimuli (Menon, et al., 2010), may critically determine how

trauma memories are encoded and stabilized over the long term. Further work link-

ing resting-state network dynamics with trauma and stress-related psychopathology

is likely to provide new mechanistic insights about the neural processes contributing

to psychiatric resilience and vulnerability following a major stressor. The current

findings may be consistent with an ”overconsolidation” hypothesis (Pitman, 1989;

Yehuda, et al., 2007) such that individuals at risk for PTSD or other forms of psy-

chopathology following trauma may have very efficient communication between vari-

ous aspects of the network supporting fear memory, and thus encode and stabilize a

very strong fear memory when exposed to trauma. However, currently, there is very

little theoretical work to explain how network dynamics might contribute to individ-

ual differences in behavior or psychiatric symptoms. This is an important area of

development for future efforts in neural circuit modeling in psychiatry.
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Figure 4.1: A diagrammatic illustration of our novel multimodal dynamic FC approach us-
ing Rs-fMRI data that is guided by brain SC information computed from DTI data. Given
a set of nodes in the network, the approach is able to learn change points or jumps in the
network in an unsupervised manner, where the number and locations of the change points
are unknown and the network is assumed to remain constant within a state phase defined as
the time interval between two consecutive change points. The greedy partitioning scheme
used to compute change points uses state phase-specific networks that are computed after
incorporating brain SC knowledge - in this manner, the change point estimation procedure is
influenced by the given brain SC information. In order to scale up the multimodal dynamic
FC (mDFC) approach to high-dimensional networks, we propose a sub-network sampling
scheme where we use the mDFC approach to compute change points using several smaller
subsets of nodes or sub-networks. This process is applied repeatedly for a large number
of sub-networks, and the set of change points for each sub-network is recorded. The sub-
network sampling scheme yields a frequency or score for each time point to be identified
as a network level change point, and a systematic data-adaptive thresholding strategy to
determine frequency cut-offs that can be used to determine network level change points that
are consistently identified across most sub-networks. Conditional on the estimated network
level change points, the structurally informed precision matrix estimation is applied once
again to compute a distinct sparse inverse covariance matrix encoding the network sepa-
rately for each state phase. The state phase specific networks are computed by integrating
brain SC information that encourages greater weights for FC corresponding to those edges
with strong SC under a Gaussian graphical model.
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Figure 4.2: The proposed analysis pipeline. Panel (a) illustrates the nodes used in
brain functional connectivity that are distinguished based on the known functional
modules. Panel (b) illustrates the computed dynamic functional connectivity sepa-
rately for each individual, the method for which is detailed in the Methods section
and Figure 4.1. Panel (c) depicts a heatmaps with summary measures that reflect the
degree of temporal variation for edges across all the individuals. Panel (d) illustrates
our discovery regarding the edges whose temporal fluctuations are directly related to
trauma resilience. Panel (e) provides boxplots for out of sample prediction accuracy
using the edge-wise dynamic connections to predict the continuous clinical outcome,
via the scalar-on-function statistical methodology. Panel (f) provides a visual depic-
tion of the performance metrics from our extensive validation studies comparing the
proposed approach with alternative methods.
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Figure 4.3: Histogram for the number of FC change points detected in the PTSD data
analysis. The left and right panels depict the results under the proposed approach and
under the SC naive version of the method. The multimodal dynamic FC approach
seems to be more sensitive to network changes.
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Figure 4.4: Panels (A)-(C) illustrates the edge-wise temporal variation averaged over
all individuals, individuals with PTSD and those without PTSD, respectively. Here
the temporal variation for an edge was calculated as the ratio of the number of state
changes for that edge divided by the number of state changes in the network. Edges in
several modules including Visual, SAL, SCOR, VAN and DAN show strong temporal
fluctuations resulting from frequent state changes. On the other hand, the Sensory,
Cingulomotor, and DMN register the fewest temporal fluctuations over time. Only
213 edges illustrated significant differences in terms of the proportion of edge-specific
state changes between the PTSD and non-PTSD groups, which suggests the inade-
quacy of this measure to distinguish disease severity. Out of these 213 edges, almost
all had a higher frequency corresponding to the PTSD group, illustrating higher tem-
poral fluctuations in this cohort. Panel (D) illustrates edges whose fluctuations in
terms of the edge strength (measured via edge-specific standard deviations for par-
tial correlations over time) are significantly related to PTSD resilience (multiplicity
adjusted). Most of these edges lie between functional modules and are contained be-
tween the Visual and other modules, as well as between the DAN and other modules.
Blue and red colors imply a negative and positive association with PTSD resilience
respectively. It is clear that an increase in temporal edge strength fluctuations in
most edges leads to decrease in resilience and vice-versa. However, a small number
of connections within DMN and between DMN and other modules lead to increased
resilience corresponding to higher fluctuations in edge strength and vice-versa.
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Figure 4.5: Prediction performance in terms of Mean squared error or MSE when
using dynamic network metrics for predicting resilience score under mDFC, SC naive
version of mDFC (denoted as DFC), and siGGM. The subplots indicate MSE values
when using the following time-varying explanatory variables in scalar-on-function re-
gression (A): global clustering coefficient and global efficiency; (B) local clustering
coefficient for DAN+VIS, SAL+VIS, SCOR+VIS, VAN+VIS functional modules (C)
local efficiency in DAN, SCOR, and VAN functional modules; and (D) local efficiency
in DAN+VIS, SCOR+VIS, VAN+VIS functional modules. mDFC has lower or com-
parable MSE in all cases, and significantly lower MSE (higher prediction accuracy)
when using dynamic global efficiency and clustering coefficient; dynamic clustering
coefficient using nodes in DAN+VIS modules, SAL+VIS modules, VAN+VIS mod-
ules and SCOR+VIS modules; dynamic local efficiency when using nodes from DAN
module, as well as DAN+VIS modules.
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Figure 4.6: Prediction performance in terms of Mean squared error or MSE when
using small-worldedness derived from localized functional modules for predicting re-
silience scores. Results are reported for multimodal dynamic connectivity (mDFC)
and the SC-naive version of the method (denoted as DFC), along with the siGGM
approach that computes static networks. The results indicate MSE values are lower
or comparable under the mDFC method across all local functional modules, with
significant improvements corresponding to the salience network.

Figure 7(a) Figure 7(b)

Figure 7(c) Figure 7(d)

Figure 4.7: Figures 7(a)-7(c) denote frequency plots for change point estimation. Figures
7(a) and 7(b) correspond to the case of V = 20 and V = 100 nodes respectively, with
the true change points being located at 60, 165, and 300. Figure 7(c) corresponds to the
case of 10 true change points which are labeled on the X-axis. The histograms show a
strong clustering around true change points. Although there exist some loosely grouped
frequencies corresponding to spurious change points, they are almost always eliminated
through sub-network sampling mechanism. Figure 7(d) depicts the computation time as
the sub-network size is varied.
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Figure 4.8: Simulation results corresponding to true networks with discrete jumps at change
points. There are total 3 true change points for each simulation. The first column denotes
different simulation scenarios: ER, SW, and SF, denote Erdos-Renyi, small world network,
and scale-free networks respectively. The numbers within the parenthesis denote the net-
work density, number of nodes, and number of time points respectively. CP is the percentage
of estimated true change points. FP is the average number of false estimated change points.
mDFC has Strong power to detect all true change points without and FP. In terms of graph
estimation, mDFC has significant higher AUC compared with siGGM as well as DCR that
is denoted as DFC in this Figure. The significantly improved metrics are highlighted in
bold.
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Figure 4.9: Simulation results corresponding to true dynamic networks with three tran-
sition periods instead of discrete jumps. The first column denotes different simulation
scenarios: ER, SW, and SF, denote Erdos-Renyi, small world network, and scale-free net-
works respectively. The numbers within the parenthesis denote the network density, number
of nodes, and number of time points respectively. CP is the percentage of estimated true
change points. FP is the average number of false estimated change points. In terms of
change points detection, mDFC performs better than DCR which is denoted as DFC in this
Figure. mDFC also has higher AUC compared with siGGM and DCR.
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Chapter 5

Summary and Future Work

Neuroimaging, especially fMRI, generate rich data to study the human brain. How-

ever, it is also challenging to analysis brain imaging data because of its high dimen-

sion and complexity. In addition, the high noise-to-signal ratio of fMRI data and

heterogeneous among individuals make it even harder to estimate the subject-based

network. Most fMRI study also collect demographic information and behaviour data

of participants. But none of the existing method has tried to incorporate this useful

information to better estimate the dynamic functional connectivity of a subject. The

main objective of our research is to propose a way to discover the temporal rela-

tionship between different ROIs of the brain, or dynamic functional connectivity, by

incorporating the covaraites (both time-independent and time-dependent).

Our first proposed method is related with time-independent covariates. We propose

a fundamentally novel hierarchical Bayesian mixture modeling approach incorporat-

ing covariates for estimating a population of individual-specific dynamic FC using

heterogeneous multi-subject fMRI data. The covariates are modeled as the weight

being used in the mixture model. By doing so, we could borrow the information from

other subjects with same or similar covariates, which are supposed to have similar

brain network over time compared with subjects with totally different covariates. In
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addition, our proposed method has two version, one based on pairwise correlation,

and another one based on precision matrix. The simulation studies demonstrate that

our two models both estimate accurate network change points with high sensitivity

and comparable low false positives. Our method provides a way to inference edge-

level change points in addition to the network-level. Using our proposed method, we

analyze fMRI data from a study of the block task data involving a semantic verbal

fluency. In conclusion, by incorporating covariates, our proposed method provide a

better way to cluster subjects into different sub-group based on their network feature.

In addition, it has ability to detect rapid change for fMRI data, which is a limitation

for most existing change point methods. It also provide a way to inference the edge-

level change, which might be more useful in the future brain study.

Our second proposed method is using a novel semi-parametric Bayesian Support

Vector Machine (SVM) approach that incorporates high-dimensional networks as co-

variates and is able to assign varying levels of shrinkage to the coefficients in an

unsupervised manner via a Dirichlet process mixture of double exponential priors.

Although SVM-based methods are heavily used in classifying mental disorders, there

are few, if any, semi-parametric Bayesian SVM approaches for classification based

on high-dimensional brain networks that naturally provides the ability to conduct

inferences. We apply the approach to a connectome fingerprinting problem using the

Human Connectome Project (HCP) data as well as a second application involving

classification of individuals with attention deficiency hyperactivity disorder (ADHD)

and showcase the superior classification accuracy of the proposed approach.

In chapter three, we examine the potential of multimodal dynamic FC, computed

by fusing functional magnetic resonance imaging (fMRI) and diffusion tensor imag-

ing data, in terms of predicting continuous clinical measures of disease severity. We

develop concrete measures of temporal network variability that are directly linked

with disease severity and identify regions whose temporal connectivity fluctuations
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are significantly related to the disease. Our results illustrate the distinct advantages

of prediction of disease severity compared to the usual analysis based on disease

phenotype categories, it shows that the multimodal approach is more sensitive to

connectivity changes and highlights the predictive prowess of multimodal dynamic

FC over existing static and dynamic network models.
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Appendix A

Computation Detail for Topic 1

A.1 Computational Details for Change Point Es-

timation

Generalizing the approach in Tibshirani and Wang (2007) to the multivariate case,

we apply lowess independently to each time-series of pair-wise correlations as a first

step. Denote the smoothed fit as ρ̄q = (ρ̄q1, . . . , ρ̄qT ) for the q-th pair-wise correlation

profile, q = 1, . . . , p(p− 1)/2. The fraction parameter in the lowess fit which controls

the smoothness level, is chosen to be small so as to avoid oversmoothing which will

cause difficulty in detecting potential change points. Then for each time series, we

compute the first order differences δqt = ρ̄qt − ρ̄q,t+1, t = 1, . . . , T − 1, followed by the

median of (δq1, . . . , δq,T−1) denoted as µq, q = 1, . . . , p(p − 1)/2. Next, we compute

the median of the absolute deviations {|δq1 − µq|, . . . , |δq,T−1 − µq|}, and denote it

as ∆q, q = 1, . . . , p(p − 1)/2. Finally, we note that equation (2) can be expressed as

minu∈ℜp(p−1)/2

∑T
t=1 ||̃rt − ut||2 subject to

∑T−1
t=1 ||ut+1 − ut|| ≤ s2, where λ ∝ 1/s2,

with a smaller value of s2 implying a lesser number of increments. We choose the
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threshold parameter as

s2 = max
q=1,...,p(p−1)/2

{2∆q +
T−1∑
t=1

|δqt|1(|δqt| > 4∆q)}, (A.1)

where the expression inside the parenthesis corresponds to the threshold for the q-

th individual pairwise connectivity time series and is motivated by the choice in

Tibshirani and Wang (2007), and where 1(·) is the indicator function. The above

expression (A.1) specifies the threshold for the increment term in the fused lasso as

the maximum of the thresholds for the individual pairwise connectivity time series,

in order to ensure that no true change point is omitted in the first step. Equation A.4

assumes that first order differences with absolute values greater than 4∆q corresponds

to a change in connectivity, and the 2∆q term ensures that the threshold is not very

small and is able to capture all the true change points accurately with no omissions,

even at the cost of detecting spurious change points. Using the choice of the threshold

in (A.1), we then re-fit the fused lasso (2.2) to obtain an initial estimate of the number

of change points (Kmax) and their locations ∗ = (t∗1, . . . , t
∗
Kmax). The initial estimate

for the number of change points is potentially inflated due to the choice of a small

value of the lowess fraction parameter, and the manner in which λ was computed in

(A.1). This is to ensure that we do not exclude true change points in the initial fit.

In the next step we propose a screening criteria to exclude false change points in ∗.

In particular, the screening criteria involves a post-processing step as follows. For

each given subset of k < Kmax change-points, we approximate the signals between

the successive change-points with the mean value of the points in that interval. Sub-

sequently, we calculate the total sum of squared errors (SSE) between the set of real

signals and these piecewise constant approximations to them. Though it may ap-

pear computationally intensive to do this for all subsets of k < Kmax change-points,

a dynamic programming strategy (Picard et al., 2005) enables us to compute the
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subset of k change points having the minimum SSE from among all possible sets of

k < Kmax change points in O(Kmax2) time. The dynamic programming ensures

that the computation is tractable even for a large number of nodes and change points.

An exhaustive search becomes impossible for large Kmax since the number of par-

titions of a set with T elements into Kmax segments is
(

T−1
Kmax−1

)
. The dynamic

programming strategy reduces the computation time from O(TKmax) to O(T 2) using

the additive property of SSE. Let βk+1(i, j) denote the SSE corresponding to the best

partition of the data between the i-th and j-th time points into k+1 segments, noting

that βk+1(0, n) = SSE(k + 1). The recursive algorithm is as follows

k = 0, ∀0 ≤ i < j ≤ T, β1(i, j) =

j∑
t=i+1

||r̃t − r̄ij||2,

∀k ∈ [1, Kmax], βk+1(i, j) = min
h

{βk(1, h) + β1(h+ 1, j)}, (A.2)

where r̄ij = 1
j−i

∑j
t=i r̃t is the mean for the vector of sample pairwise correlations

between time points i and j. The above dynamic programming takes advantage

of the additivity of the SSE, considering that a partition of the data into k + 1

segments is a union of a partition into k optimal segments and a set containing 1

segment, which enables us to efficiently compute the best partition of the data into

k + 1 segments, k = 1, . . . , Kmax. Once these optimal partitions corresponding

to ∗
k, k = 1, . . . , Kmax have been computed via the dynamic programming strategy,

one can eliminate spurious change points from this set using the curvature approach

described below.

We determine the optimal number of change points by examining the curvature

of the SSE curve as follows. Denote the minimum SSE obtained from the subset

of all possible k change points derived from the set ∗ as SSE(k), and denote the

corresponding locations of the change points as ∗
k. Clearly, SSE(k+1), will be smaller

than SSE(k); however, after a certain point, adding an extra change-point will have a
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negligible impact on the SSE reduction. First we normalize the minimum SSE scores

SSE(1), . . . , SSE(Kmax) as Jk = SSE(Kmax)−SSE(k)
SSE(Kmax)−SSE(1)

(Kmax − 1) + 1, where J(1) =

Kmax, and J(Kmax) = 1. Then we compute the curvature of these normalized

scores via discrete second derivatives as ∇k = Jk−1 − 2Jk + Jk+1, and select the

number of change points as K = max{1 < k < Kmax : ∇k > 0.5} such that the

second derivative does not rise above a certain threshold on addition of further change

points. The choice of the threshold 0.5 is recommended in earlier papers on change

point estimation (Picard et al., 2005), and worked adequately well for our applications.

The idea behind this approach is that if the curvature of the normalized SSE scores

does not change beyond a certain value by adding an extra change point, then that

will imply that the SSE does not reduce significantly, suggesting that no additional

change points are required. In our experience based on extensive numerical studies,

this approach is able to eliminate any false change points included in the initial set

of change points ∗ and produces reliable estimates.
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