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Abstract 

Predicting Rehabilitation Responses in Persons with Aphasia Undergoing Language 

Therapy Using Baseline Whole-Brain Task fMRI in a Multivariate Method 

by Serena Song 

 

Background: With the diversity in aphasia profiles as well as a small window of plasticity, it is 

imperative to deliver the most effective rehabilitation treatment to patients soon after their 

incidence of stroke. Voxel-based lesion-symptom mapping (VLSM) is a widely used approach 

for identifying predictors of treatment outcomes, but the lack of network-level information in 

VLSM may omit the holistic details needed to create valid language-network prediction models. 

As task-fMRI offers neurobiological inspection of lesion impact on the whole language network, 

this study aims to develop a multivariate analysis inclusive of whole-brain task-fMRI data to 

more holistically predict treatment outcomes in persons with aphasia (PWA) undergoing 

language therapy. 

 

Methods: This thesis will be a correlational study focused on analyzing the relationship between 

patterns of pretreatment brain activity across multiple PWA and treatment-induced language 

improvements over time to predict post-treatment outcomes. Initially, multivariate methods will 

be optimized to handle whole-brain task fMRI data by inserting a customized mask 

representative of the whole-brain as well as testing a series of k-fold cross-validations in order to 

find the optimal sparseness value. This will then be tested systematically for reliability, extended 

utility, and overall sensitivity. 

 

Results: Multivariate optimizations included the modification of k-fold CVs, brain masks, and 

lesion size correction. With these changes, the multivariate analysis was able to feasibly predict 

post-treatment outcomes at both whole-level and group-level analyses. Additionally, predictive 

biomarkers such as the right extrastriate area and right fusiform gyrus were discovered during 

brain-behavior analysis of semantic fluency. When analyzing the extended utility of multivariate 

methods, the left medial frontal gyrus was found to predict post-treatment responses to more 

sentence-level language functions such as grammar. 

 

Conclusion: Ultimately, the goal of this study is to create an optimized prediction model that is 

better able to capture network-level information for functions such as language. The use of such 

information would help clinicians predict rehabilitation responses in PWA to develop a more 

effective rehabilitation regimen for aphasia patients.  
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Introduction 

Aphasia 

Aphasia is an acquired language impairment most commonly caused by stroke or other 

forms of brain trauma (Damasio 1992). This disorder affects the ability to produce and 

comprehend language both orally, auditorily, and visually (Sidman 1972, Le et al. 2016). 

Abilities in speech, reading, and writing are therefore affected, with specific impairments noted 

in semantic, grapheme, phonetic, imagery, as well as syntax language skills (Yu et al. 2017). 

Given the complexity of language, many types of aphasia exist where a certain aspect of 

language is impaired. For example, Broca’s aphasia involves impairments in speech production 

whereas Wernicke’s aphasia involves impairments in speech comprehension (Kertesz 1993). The 

symptoms of these types of aphasia are thus drastically different and these differences are 

attributed to differences in lesion location. For example, left-lateralized frontal damage (Keller et 

al. 2009) may give rise to speech production deficits while more temporal damage (Dewitt and 

Rauschecker 2013) gives rise to speech comprehension deficits. Additionally, the size of the 

lesion has also been found to be associated with not only aphasia severity, but also the extent of 

recovery (Plowman et al. 2011). Considering these variances, the lesion location, size, as well as 

type of brain trauma (i.e. ischemic stroke, infection, neurodegeneration) affect how language 

impairments may manifest in a person with aphasia (PWA) to differing degrees in terms of 

function and severity.  

As one can imagine, language impairments can be devastating as a bulk of our day-to-day 

involves verbal communication. As social beings, the ability to reciprocally communicate is a 

vital part of our well-being and is highly correlated with quality of life and self-efficacy (Cruice 

et al. 2010). Studies have shown that the inability to effectively communicate can have great 
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detriments on not only an individual's standard of living but also their overall health (Babbitt and 

Cherney 2015). This leads to consequences such as increased healthcare costs and higher 

mortality rates (Ellis et al. 2012). Oftentimes, PWA also report psychiatric comorbidities due to 

the underlying frustrations and difficulties in expressing one’s needs and wants (Morrow et al. 

2022). Perhaps most notably, people with aphasia are often diagnosed with depression, 

generalized anxiety, and other psychiatric disabilities which sprouts from increasing self-doubt 

and feelings of incompetence (Baker et al. 2019, Code and Herrmann 2003). For this reason, 

PWA must be properly treated in order to minimize the negative impacts of communication 

impairments.  

Given that aphasia occurs as a result of head trauma, the brain is in a critical stage of 

recovery where many restorative mechanisms are in action. During recovery, neuronal 

representations within the brain are undergoing relateralization and overall plasticity (Thompson 

et al. 2010). Studies have shown, however, that there is a “window of plasticity” that dictates the 

extent to which neuronal functions will be restored after the onset of brain trauma. Oftentimes 

aphasia severity and type are greatly altered within the first year after onset (Pederson et al. 

2004). After this time frame, it is difficult to observe noticeable differences in aphasia severity 

and overall language recovery. Given that treatments for language recovery are often a long-term 

process involving multiple hours of repeated sessions, this limited time frame can pose problems 

if treatment plans are not effective. Moreover, studies have highlighted that the amount of 

individual variability in response to treatment interventions depend on the type of aphasia 

(Bakheit et al., 2007). The combination of diversity in aphasia, small “window of plasticity”, and 

uncertainty in treatment response exacerbates the need to deliver the most effective treatment 
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plan that has been individualized to a patient’s specific needs soon after the incidence of stroke 

so that the optimal level of recovery can be achieved. 

Diversity of Language Treatments Available 

  

 Due to the extent of aphasia types as well as the multiplicity of underlying mechanisms 

involved in language, treatment interventions for aphasia are diverse and typically cater towards 

a specific aspect of language impairment. Typically, the treatment interventions for a person with 

deficits in speech production will greatly differ from someone who has deficits in speech 

comprehension ultimately perpetuating the need for specialized, impairment-specific therapies. 

As language is a complicated and multi-faceted function, both speech production and 

comprehension are needed to communicate effectively.  

 Aphasia can be treated with methods involving biological and behavioral approaches or 

even adjuvant methods. Biological approaches involve neural remediation through methods such 

as neural stimulation (Breining and Sebastian 2020), cell transplantation, and neurotrophins 

(Small and Llano 2009). These approaches are often paired with behavioral therapies as the brain 

is incredibly plastic and receptive to environmental stimuli, especially in the context of recovery 

(Horgn and Sur 2006). The most commonly used behavioral method to treat aphasia involves 

speech and language therapy, however, a variety of other methods exist. For example, music 

intonation therapy has been widely used to treat patients with Broca’s aphasia as the brain 

recruits different areas of the brain for singing as opposed to speech (Norton et al. 2009). The act 

of singing however greatly mimics the motor activities involved in speech, which may facilitate 

the reorganization of neural mechanisms for language production within the brain. Other 

examples of language interventions involve reading treatments (Cherney et al., 1986), 

technology-based support (Nichol et al., 2022), word retrieval treatments (Raymer and Cohen, 
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2006), and many more. PWA may also undergo treatments targeting more domain-general 

functions that support language such as attention and working memory. Given the extensive 

utility and diversity of treatments for aphasia, it may be hard to find the right treatment plans for 

optimal recovery, and PWA may end up wasting time and money to find an effective treatment 

on a trial-and-error basis. A potential solution that could help clinicians mitigate negative 

treatment responses could be to discover biomarkers that could potentially predict treatment 

responses in PWA utilizing neuroimaging and computational techniques. 

Imaging-Based Prediction Models for Aphasia 

 

Advancements in neuroimaging have made it possible to understand and observe 

underlying brain neurophysiology and functional activity. For example, functional magnetic 

resonance imaging (fMRI) during a language task provides valuable information regarding the 

location of brain areas involved in language functions (Harnish et al. 2015). Additionally, for 

mechanisms such as language, this functional brain activity can be a marker for neuroplasticity 

by revealing information about brain reorganization within longitudinal studies (Meinzer et al. 

2013). Recent advancements have also utilized resting-state fMRI as a measure of functional 

connectivity changes between various brain regions (Meszlenyi et al. 2017). These examples 

highlight how clusters of brain activity, revealed in neuroimaging methods, can be valuable in 

understanding long-term neural changes. Considering PWA whose brain exists in an altered 

state, this information is imperative in not only understanding but also predicting language 

function over time. Altogether, the current literature points to the promising uses of 

neuroimaging techniques as a method to understand and potentially predict responses to 

treatment in PWA. This may aid the filtration of interventions so that the most effective 

treatment regimen may be administered for optimal recovery.  
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A variety of predictive functional neuroimaging methods have been developed over the 

past couple decades. One such method is voxel-based lesion-symptom mapping (VLSM) which 

discovers relationships between behavioral deficits and lesion sites to identify predictive 

biomarkers of language recovery (Bates et al. 2003). VLSM utilizes a mass-univariate approach 

to independently analyze correlations between brain activity and behavior at a voxel level. One 

study utilizing VLSM discovered that lesions within the inferior and middle frontal gyri 

predicted a positive response to speech entrainment therapy in PWA (Fridriksson et al., 2015). A 

caveat, however, to this approach is the isolated nature of the analysis. VLSM involves lesion 

exclusive analysis in creating brain-behavior relationships. Language, however, involves 

multiple areas of the brain in a network fashion due to the inherent complexity and attentional 

demands of speech. Not only does VLSM not consider network-level information, but brain 

areas around the lesion are often compromised due to low blood flow as a result of head trauma 

(Crinion et al., 2013). Given that functional imaging is the most common way to obtain brain 

data for predictive analysis, this decrease in blood flow may not effectively reflect BOLD 

changes despite the presence of neural activation (Altamura et al., 2009). Combining this lack of 

network information and lack of sensitivity, VLSM omits the holistic details needed to create 

valid language-network prediction models. Overall, these limitations pose problems in the 

efficacy of previously discovered predictive biomarkers, and efforts towards developing holistic 

analyses to predict treatment response are needed. 

Computationally, VLSM mass-univariate approaches pose further limitations. For 

example, the possibility of obtaining false positives increases as thousands of regression analyses 

are being performed in this voxel-by-voxel analysis (Mirman et al. 2017). Additionally, mass-

univariate approaches do not account for voxel-to-voxel relationships and instead treat each 
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voxel as an independent unit (Wilson 2018). Neurobiological, however, adjacent regions in the 

brain are not purely isolated and instead are context-dependent where voxel-to-voxel interactions 

hold significance (Baldassano et al. 2012). For this reason, multivariate methods have been 

developed to account for relative voxel interactions. This analysis computes brain-behavior 

correlations for each voxel simultaneously which allows for voxel-to-voxel relationships to be 

accounted for (Ivanova et al. 2021). Overall, multivariate analysis overcomes the limitations of 

mass univariate analysis by sensitizing for more network-level associations within neuroimaging 

data. 

As functional task fMRI offers neurobiological inspection of lesion impact on the whole 

language network, a potential solution to the VLSM approach could be to utilize whole-brain 

task-fMRI data within the brain-behavior relationship analysis. Therefore, the goal of this project 

is to utilize whole-brain task fMRI data within a prediction model in order to capture holistic 

network-level brain activation using a multivariate methodology. Given the computational 

demand as well as limited approaches involved in conducting multivariate analysis, various 

optimizations will be made in order to feasibly utilize whole-brain task fMRI brain data in the 

prediction model. The prediction design will be a correlational analysis focused on analyzing the 

relationship between patterns of pretreatment brain activity across multiple PWA and 

improvements in language behavior over time. The language treatment involves a standard 

language therapy approach utilizing picture naming and category exemplar generation coupled 

with either an intention treatment or control treatment. Overall, the goal is to help clinicians 

predict rehabilitation responses in PWA to ultimately aid the development of effective 

rehabilitation regimens for aphasia patients.  
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Hypothesis 

 

Aim 1: To develop and optimize multivariate-based predictors in order to analyze significant 

relationships between whole-brain task fMRI and post-treatment behavioral data. 

Aim 2: To assess the reliability of multivariate analysis by analyzing how well it converges with 

conventionally used predictors such as mass univariate analysis.  

Aim 3: To validate both multivariate and mass univariate analyses using another behavioral 

measure.  

Aim 4: To sensitize the multivariate method to predict treatment-specific language changes.  

 

Hypothesis: Multivariate analysis of whole-brain task fMRI provides the feasibility to extract 

brain-behavior relationships that are predictive of treatment-induced changes. 
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Methods 

 

Participants 

A total of 19 participants were recruited for the study. These participants underwent a 

pretreatment screening procedure to determine eligibility. Inclusion criteria were the ability to 

follow one-step commands, English as the first language, as well as right-handedness which was 

assessed by the Edinburgh Handedness Inventory (Oldfield, 1971). Aphasia severity was also 

assessed and participants were required to score between 4 to 45 correct items on the Boston 

Naming Test (BNT), and fall below ˂93.8 (the threshold for normal language function (Kertesz 

2006)) on the Western Aphasia Battery Aphasia Quotient (WAB-AQ) (Shewan & Kertesz, 

1980). Exclusion factors included the presence of other neurological or psychiatric disorders, the 

presence of learning disorders such as dyslexia, the inability to be scanned in an MRI, and 

alcohol/drug abuse within the past year. Five participants did not pass the pretreatment 

screening; therefore, only 14 participants participated in the study. All participants provided 

written informed consent according to the procedures outlined by the University of Florida 

Health Science Institutional Review Board. All participant data were collected >10 years ago and 

are de-identified for post-analysis to be conducted by institutions such as the Center for Visual 

and Neurocognitive Rehabilitation at the Atlanta VA Medical Center. Participant demographics 

are outlined in Table 1. Further MRI scans and medical records indicated that all subjects were 

six months post-stroke with brain lesions located in the left hemisphere concentrated in both 

cortical and subcortical regions. All subjects were randomly assigned to either the intention 

treatment (INT) or control treatment (CT) group. There were no significant differences in age, 

gender, education, BNT, and WAB-AQ scores between the two groups. The INT group consisted 

of 5 female and 2 male participants with an average age of 72.1 (standard deviation = 10.5), 

average years of education of 14.9 (standard deviation = 2.5), a 5/2 ischemic to hemorrhagic 
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cerebrovascular accident type ratio, an average BNT score of 24.7 (standard deviation = 13.4) 

and an average WAB-AQ score of 65.5 (standard deviation = 8.3). The CT group consisted of 1 

female and 6 male participants with an average age of 63.0 (standard deviation = 9.2), average 

years of education of 12.9 (standard deviation = 1.1), a 6/1 ischemic to hemorrhagic 

cerebrovascular accident type ratio, an average BNT score of 30.9 (standard deviation = 6.3) and 

an average WAB-AQ score of 71.9 (standard deviation = 11.8). 

 

Table 1. Participant Demographics 

fMRI Acquisition 

 A Philips 3 T Achieva scanner utilizing a body coil for radio frequency (RF) transmission 

and an 8-channel head coil for RF receiving was used to obtain the fMRI data. Foam pads were 

used to stabilize the participants’ heads to minimize motion during scans. High resolution T1-

weighted anatomical images were acquired using turbo field echo acquisition. An echo time (TE) 

of 3.7 ms, repetition time (TR) of 8.1 ms, field of view (FOV) of 240x240 mm2, flip angle (FA) 
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of 8°, and matrix size of 240x240 was used for this acquisition. These structural images were 

obtained for spatial normalization to the Montreal Neurological Institute (MNI) template space. 

Functional fMRI images were acquired to capture brain activity, represented by changes in the 

blood-oxygen-level-dependent (BOLD) signal, during a semantic fluency task. Six runs of the 

task fMRI time course consisting of BOLD weighted echo-planar (EPI) sequences were acquired 

with a slice thickness of 4mm, FOV of 240x240 mm2, matrix size of 64x64, TR of 1700 ms, TE 

of 30 ms, FA of 70°, and a total of 186 volumes per run.  

Task Design 

Participants underwent pretreatment task fMRI to collect brain activity during word 

retrieval. Category exemplar generation (CEG), a semantic fluency task, was chosen because it 

most closely parallels word selection demands in conversation. During the scan, participants 

were visually and auditorily presented a category (e.g., “color) in which they were instructed to 

orally generate an examplar (e.g., “blue). Each task trial length was 6.8 seconds and six runs 

each containing 10 trials were conducted for a total of 60 trials. During intertrial intervals (ITI) 

that alternated between 13.6, 15.3, and 17.0 seconds (Benjamin et al., 2014), participants were 

instructed to remain still and not speak while viewing a “+” symbol on a screen.  

Treatment 

Baseline Probes and Treatment 

Before treatment, participants were asked to name 400 black-and-white line drawings of 

objects as well as generate exemplars for 120 categories (Henry et al. 2008, Howard et al. 1985, 

Marshall et al. 1990). The most frequently missed items (120 pictures and 60 categories) were 

selected as treatment items. Each treatment set included 75% consistently incorrect items as well 

as 25% consistently correct items to prevent participant discouragement throughout the sessions. 
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Thirty hours of treatment was administered in 2 hours/day, 5 days/week for 3 weeks. The 

treatment was delivered in 3 phases consisting of one phase per week. The sessions were at least 

half an hour apart. The first two phases of treatment consisted of picture naming sessions. During 

these sessions, the participants were instructed to name a series of black-and-white line drawings 

of objects. The last phase consisted of CEG sessions where participants were instructed to orally 

cite exemplars for a given category, similar to the fMRI task. Altogether, the use of picture 

naming and CEG sessions was motivated by restitutive treatments that are designed to 

rehabilitate language mechanisms by utilizing activities involving semantic and/or phonological 

representations of words (Maher and Raymer 2004, McClung et al. 2010).  

Intention and Control Groups  

Participants were split into two groups where one group experienced INT while the other 

group did not. Participants within the INT group had to lift the lid of a box and press a red button 

with their left hand to start the treatment trial during phase 1 and phase 2 (Figure 1A). A primary 

difference between phase 1 and phase 2 is that there is a flashing start with a beep in phase 1. 

Contrastingly, phase 3 is initiated by only a left-hand gesture. If the participant provided an 

incorrect response, the subjects were instructed to create a nonmeaningful circular gesture with 

their left hand while orally stating the correct answer (Figure 1B). This complex left-hand 

movement coupled with naming was designed to activate the intention mechanism within the 

contralateral hemisphere of the lesion (Crosson, 2008). Thus, the right-hemispheric activation 

initiated by intention is created to aid the activation of frontal cortical regions involved in 

language to ultimately guide the right lateralization of language functions. On the other hand, the 

participants within the CT group did not have to undergo these left-hand actions. Instead, their 

correction procedure only involved the oral repetition of correct answers. 
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Figure 1. A visual representation of the INT treatment. (A) The participants were instructed to 

lift the lid of a box and press a button with their left hand in order to start each trial during phase 

1 and phase 2. (B) The participants were instructed to make a nonmeaningful circular gesture 

with their left hand when orally repeating correct responses to trials. 

Behavioral Assessments 

Before treatment as well as two weeks after the last treatment session, all subjects 

underwent behavioral examinations of language function. Multiple behavioral examinations were 

conducted including a reexamination of picture naming and CEG, language discourse 

assessments, functional outcomes questionnaire (Glueckauf et al., 2003), etc. Only CEG, 

however, was selected as the primary measurement of behavioral change for the prediction 

analysis since it was also used as the task given during the fMRI scan. Specifically, the CEG z 

scores obtained from Tyron’s C statistics were used in the prediction model. Tryon’s C statistic 

provides information regarding the presence of a differential trend in, for example, a treatment 

series collected after baseline compared to the baseline data. This statistic accounts for changes 
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between baseline and treatment measurements, and a significant result indicates that the 

treatment series differs meaningfully from the baseline series (Tryon 1982). The statistical 

significance of the C statistic is given by the z score which is defined by the ratio of the C 

statistic to the standard error (Tryon 1982). Overall, the z scores for CEG from baseline to two 

weeks post-treatment (Figure 2A) were collected for all subjects and used as the primary 

behavioral measurement in the prediction model.  

An additional behavioral measure that differed from the fMRI task was utilized to assess 

if treatment responses involving other language functions can be predicted. For this 

measurement, language discourse scores were chosen as this behavior models a more holistic 

approach in defining language functions by analyzing the connectivity and cohesiveness of 

speech. During the language discourse examination, participants were asked to describe a given 

picture as well as answer open-ended questions. Within their response, a combination of 

quantitative (number of words (W), verbs (V), nouns (N), etc.) and qualitative (number of correct 

information units (CIU), new information (NI), grammatically correct phrases (GRAM), etc.) 

linguistic characteristics indicative of connected speech was recorded. These assessments were 

conducted before as well as 2 weeks after treatment (Figure 2B). Unlike the behavioral scores for 

CEG, Tyron’s C statistics and z-scores were not utilized, and instead percent change values from 

pre to two weeks post-treatment were calculated. The behavioral scores yielding the greatest 

percent change values were analyzed in order to find meaningful changes from the raw scores. 

Such behavioral data included discourse CIU, GRAM, N, and V. In order to assess how task 

fMRI data may provide more network-level information within the prediction models, discourse 

GRAM was chosen as the second behavioral measure as grammar involves complex 

understandings of not only semantics but also word order, tense, plurality, possessiveness, etc. 
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Grammatically correct phrases that were positively scored were based on the rules of subject-

verb agreement. Many studies have shown that grammar and lexical semantics are closely tied 

(Bates 2003) and patients with aphasia who undergo grammar-focused treatments show 

significant improvements in semantics with a high level of generalization to linguistically similar 

lexicons and sentence types (Helm-Estabrooks and Ramsberger 1986, Thompson and Shapiro 

2005). As grammar is a complex language function, multiple areas of the brain are involved 

during this process in a network-like fashion (Friederici and Gierhan 2013). Thus, the ability of 

network-level baseline brain activity to predict network-level language functions such as 

grammar in multivariate methods can be assessed by utilizing discourse GRAM. 

Figure 2. A schematic representation of the treatment and behavioral assessment timeline. 

Image Processing 

Structural and Task-fMRI Preprocessing  

The T1 weighted structural images are denoised using an optimized nonlocal means 

(ONLM) filter and then bias field corrected. A binary lesion mask was then estimated utilizing 

an automated segmentation algorithm called Lesion Identification with Neighborhood Data 

Analysis (LINDA) (Pustina et al., 2016). The skull was then stripped from the images by 

applying a binary brain mask generated by an optimized brain extraction script (Lutkenhoff et 
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al., 2014) to the T1 weighted image. To assure complete removal of meninges, the brain mask 

was manually edited using ITK Snap, a software that allows users to manually manipulate the 

inclusion or exclusion of certain voxels, before application to the structural image. Lastly, 

chimera spatial normalization was conducted to increase the efficacy of MNI transformation. 

The functional EPI images for each subject were initially slice-time corrected and head 

motion-corrected using various in-house scripts and programs such as AFNI, a software for 

processing and displaying functional MRI data, to quality check each step. The BOLD data was 

then denoised for task correlated motion (TCM) involving not only spatial artifacts created due 

to movements related to the task but also temporal artifacts present within the task-induced 

hemodynamic response function (Gopinath et al. 2009). In this case, any speech-related motions 

such as facial/temporal movements would be classified. This classification occurred using 

independent component analysis (ICA) and additional methods iterated in Krishnamurthy et al., 

2021. The denoised images were then co-registered to the T1 weighted images using a software 

consisting of tools for fMRI brain imaging called FMRIB Software Library (FSL) using a 

boundary-based registration algorithm. The images were then warped to MNI space with a voxel 

size of 2 mm3 using tools in FSL such as FLIRT which involves linear registrations and FNIRT 

which involves nonlinear registrations for more fine-tuned warping. Additionally, a binarized 

cerebrospinal fluid (CSF) mask inclusive of the ventricles and lesioned brain area, all in MNI 

space, was generated. This mask was applied when the BOLD images were spatially smoothed 

(Gaussian kernel size = 6 mm) to minimize CSF contamination. Images were then resampled 

using an AFNI command to a voxel size of 4x3.75x3.7 mm3. The BOLD time course was then 

scaled to the initial baseline condition, consisting of 7 TRs lasting 11.9 seconds, and then 

deconvolved via AFNI’s 3dDeconvolve command. During deconvolution, general linear model 
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(GLM) regression analyses are used to best estimate the hemodynamic response function (HRF) 

within a set duration characterized by TENTs. In this case, the HRF duration was set as 18.7 

which is equivalent to 12 TRs or in other words 11 beta weights. The area under the curve for the 

estimated HRF for each participant was then computed and Z-transformed (ZAUC) in order to 

normalize the distribution. This normalization was conducted using in-house scripts. The ZAUC 

was then extracted for all subjects in order to represent the average brain activity for a given 

cluster of voxels within the correlational analysis. 

Multivariate Analysis  

The multivariate analysis used in this study consisted of Sparse Canonical Correlations 

Analysis for Neuroimaging (SCCAN) through an R package called LESYMAP (Pustina et al., 

2018) to analyze brain-behavior relationships. The benefit of using SCCAN is that it gives 

information regarding the level of contribution each voxel has towards a correlational analysis. 

In this case, the relationship between the task fMRI data and behavioral data is being assessed 

and the amount of contribution a voxel has in this relationship is given by a numerical value (i.e. 

“weight”). Additionally, an optimal sparseness value that determines the amount of neuronal 

representation a cluster of voxels has within a spectrum ranging from local/sparse representation 

(Figure 3A) to distributed representation (Figure 3B) is found through a series of cross-validation 

analyses (Quiroga and Kreiman 2010). The optimal sparseness, therefore, dictates how extensive 

the results should be by influencing the number of available significant voxels (Avants et al. 

2014). Considering these factors, multivariate analysis utilizing SCCAN determines meaningful 

weights for a voxel where the level of significance is based on an optimal sparseness value.  
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Figure 3. More local/sparse representation involves (A) less significant clusters while more 

distributed representation involves (B) more significant clusters. 

To find the optimal sparseness, LESYMAP runs an internal k-fold cross-validation (CV) 

technique which splits the dataset into a training and test model. The total amount of training and 

test models are based on the number of folds specified by the user. By default, LESYMAP is set 

as a 4-fold CV where the dataset is split into four sets with each set containing a random but 

evenly distributed number of subjects (Figure 4A). One of these sets is allocated as the test set 

and the other three become the training set. The training sets identify the weights of the voxels 

based on a sparseness value randomly determined by SCCAN, while the test set is used to create 

a brain-behavior prediction model using those weights. This brain-behavior prediction model is 

then tested for accuracy by comparing the model’s expected predictions to the actual behavioral 

scores corresponding to the test set (Figure 4B). Furthermore, the p-value is calculated and 

maintained at a certain threshold (default is 0.05) and the solution is dropped if this value falls 

below the threshold at any point returning an empty brain map with no significant voxels. 

Assuming the p-value stays under the threshold, LESYMAP repeats the analysis while 

alternating the allocation of the sets’ roles until every combination of the test set and training set 

has been computed. These repeated analyses are conducted using different sparseness values that 

are randomly assigned by LESYMAP if it is not pre-determined by the user. From this series of 
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computations, the most optimal sparseness value is determined from the brain-behavior 

prediction model with the most accuracy (Figure 4C). The optimal sparseness value is then used 

in a final SCCAN run, and a raw weights image representing voxels with significant correlations 

is obtained (Figure 5A-B). This image is then normalized by the absolute greatest raw weight 

value in order to obtain a raw weights range between -1 and 1 since the values of the raw weights 

are very small (i.e. 0.000000003) (Figure 5C). Then voxels with small weight values within the 

range of -0.1 to 0.1 are removed. The normalization and thresholding are done internally in the 

LESYMAP algorithm and a final statistical image is created (Figure 5D). This image highlights 

meaningful voxels that have been normalized and thresholded for significance.  

 

Figure 4. A schematic representation of how the optimal sparseness value is obtained 
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Figure 5. A schematic representation of how the statistical image is obtained 

A caveat to k-fold CV is that the stability of the solution greatly varies depending on the 

number of folds. Typically, a smaller number of folds is used for datasets that are larger to 

decrease computation time. However, due to the small number of participants in this study, all 

possible k-fold combinations from 2-fold to 14-fold were conducted and analyzed to find the k-

fold that offered the most robust prediction model. In doing so, identical LESYMAP runs were 

conducted three times each for the different k-fold values for a total of 36 runs. The number of 

significant voxels within the statistical image as well as the optimal sparseness value tended to 

vary during each run despite having the same k-fold setting. The only k-fold, however, where 

this variance was not seen was when a k-fold equivalent to the total number of subjects in the 

analysis was used. Thus, a k-fold of 14 yielded (Figure 6B) the most robust data for whole data 

analysis as the number of significant voxels within the statistical map (Figure 7A) as well as the 

optimal sparseness value (Figure 7B) was consistently the same for all three runs. For group-

level analysis investigating the prediction model in INT versus CT groups, a 7-fold CV was used 

during multivariate analysis. Although the computation time may increase, these k-fold settings 
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were found to produce the most statistically robust results, given our small dataset.  

 

Figure 6. A visual representation of default versus optimal k-fold analyses. (A) The default k-

fold setting for LESYMAP was 4-fold. (B) The optimal k-fold setting for our study was a k-fold 

equal to the number of subjects used within the analysis (i.e. 14 for whole data analysis). 

 

A  Statistical Map Voxel Count and K-fold 
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B  Optimal Sparseness and K-fold 

 

Figure 7. 14-fold CV (during whole group analysis of the primary behavioral measure) yielded 

the most robust data. (A) The number of significant voxels presented within the statistical image 

varied across three runs for all k-folds except for when the k-fold was equal to the number of 

subject data inserted into the analysis (i.e. 14-fold CV for whole data analysis, 7-fold CV for 

group-level analysis). This lack of variance is highlighted with a star. (B) The optimal sparseness 

also did not vary for a 14-fold CV (indicated by the star above the black circle). All dots are 

color-coordinated according to the k-fold from figure 1A. 

An additional parameter contributing to multivariate analysis is the brain mask. This 

mask is applied to the images and ultimately defines the voxels of interest. For the purposes of 

this study, a brain mask encapsulating the whole brain instead of a singular cluster is needed. 

Originally, if a brain mask is not input into LESYMAP, a default brain mask will be 

automatically computed and applied. When this occurred, the generated default brain mask was 
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not inclusive of the entire brain, and instead included spurious patches of empty voxels 

throughout the image (Figure 8A). Thus, a structural brain mask including voxels representing at 

least four subjects was created using ITKsnap and used for the analysis. A representation of at 

least four subjects was chosen on the basis of balancing whole-brain coverage with statistical 

power. As all fourteen participants are aphasic, a bulk of the left hemisphere is lesioned (Figure 

8B). This poses a problem as some subjects will contain empty voxels within the left 

hemisphere. Thus, a brain mask with voxels of greater representation (i.e. at least 14 subjects per 

voxel (Figure 8C)) yielded too many empty voxels within the left hemisphere. Alternatively, a 

brain mask with lower representation (i.e. at least 2 subjects per voxel) yielded insignificant 

results due to low statistical power. Thus, a brain mask with voxels representing at least four 

subjects was the most optimal for our analysis (Figure 8D). Compared to the default brain mask 

offered by LESYMAP, this customized mask better represents the whole brain while also 

mitigating problems with low statistical power in the computational analysis.  

 After configuring all multivariate optimizations, final clusters within the statistical map 

were viewed in AFNI and clusterized. All ROI clusters within the statistical image were 

corrected for multiple comparisons (p<0.05, cluster size=50). Altogether, the various inputs 

required for SCCAN analysis through LESYMAP involve the whole-brain task fMRI data, 

behavioral data, determined k-fold setting, a brain template, as well as a brain mask (Figure 9A). 

Certain inputs were manipulated according to our analysis, and the final inputs into our 

multivariate model are highlighted in figure 9B. 
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Figure 8. Brain Mask Optimizations (A) The default LESYMAP brain mask was not inclusive 

of the whole-brain (red = voxels that are counted within the mask). (B) A heat map representing 

the location of participant lesions reveals the extent to which empty voxels are present as well as 

the left-lateralization of participant lesions (red = more representation, green = less 

representation). (C) A customized brain mask with voxels representative of at least fourteen 

subjects is not inclusive of the whole brain (red = voxels that are counted within the mask). (D) 

A customized brain mask with voxels representing at least four subjects is more inclusive of the 

whole brain without lacking statistical power (red = voxels that are counted within the mask). 
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Figure 9. A schematic representation of the various inputs fed into the LESYMAP R package for 

multivariate analysis. (A) The default LESYMAP parameters consisted of a k-fold of 4 and an 
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automatically generated default brain mask. When inserting the task fMRI brain data and 

behavioral data, a multivariate SCCAN statistical map is obtained. (B) LESYMAP optimizations 

included a k-fold of 14 and a customized brain mask exclusively consisting of voxels that a 

representative of at least four subjects. These changes result in a multivariate SCCAN statistical 

map with different spatial clusters compared to the default setting. 

Mass Univariate Analysis  

In order to assess the reliability of the multivariate-based predictors, the brain-behavior 

relationships were compared to those obtained from more conventional prediction analyses such 

as mass univariate analysis. This method utilizes simple linear regressions to assess the 

relationship between BOLD activity, represented as ZAUC, and behavior on an independently 

assessed voxel-by-voxel basis. The independent variable in this analysis consisted of the brain 

data and the dependent variable consisted of the behavioral data. Mass univariate analysis was 

conducted using MATLAB and a mask inclusive of voxels representative of at least four 

participants was applied in congruence with the multivariate method. These results were 

observed spatially using AFNI and thresholded so that only voxels with a p-value ≤ 0.05 are 

displayed. This thresholding was conducted by setting an R2 value in AFNI where R2= 0.29 for 

whole-data analysis (i.e. fourteen subjects) and R2 = 0.577 for group-level analysis (i.e. seven 

subjects). Additionally, an overlay image representing the slopes of the linear regression is set so 

that positive or negative correlations between the brain and behavioral data can be visualized for 

each voxel across the brain. Clusters were corrected for multiple comparisons (p<0.05, cluster 

size = 50), and significant ROIs were isolated using a 5 mm sphere. Linear regressions specific 

to those ROIs were visualized by plotting the extracted ZAUC values to the behavioral data for 

all fourteen subjects. 
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Correcting for Lesion Size 

 Patients with aphasia often contain lesions of varying sizes. Studies have shown that 

lesion size is often correlated with aphasia severity measured by WAB-AQ and object naming 

(Thye and Mirman 2018). To account for the effects that lesion size may have in influencing the 

prediction models, both multivariate and mass univariate approaches were modified so that the 

influence of lesion size is regressed out of the brain-behavior prediction analysis. Initially, the 

lesion size for each subject was identified and recorded.  

Within the multivariate approach, a function called “CorrectByLesSize” was modified 

from “none” to “both” in order to account for lesion size. The purpose of this function is to 

covariate out the effects of lesion size. The option “both” performs a regression analysis on both 

the brain activity data as well as the behavioral data in which they are residualized to account for 

lesion size. A caveat, however, is that LESYMAP is originally a lesion-to-symptom mapping 

software involving relationships between lesional data and behavior. Our analysis, however, is 

accounting for the entire brain without the lesion. The “lesion size” in our case is therefore 

equivalent to the entire brain without the lesion size which is inversely related as functional brain 

size decreases when lesion size increases. Thus, the in-build LESYMAP “lesion” correction 

would account for the inverse between lesion size and brain activity relationships as well as 

lesion size and behavioral data relationships for this study. In order to obtain brain-behavior 

relationships that have accurately been corrected for lesion size, the sign of the weights within 

the multivariate output must therefore be inversed. 

Within the mass univariate approach, linear regressions between each variable (i.e. 

BOLD activity and behavior) and lesion size were assessed. For example, linear regressions 

between the BOLD activities within each voxel for all subjects and lesion sizes for all subjects 
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were calculated using MATLAB where lesion size was equivalent to the independent variable 

and BOLD activity represented the dependent variable. A trend line representing the relationship 

between these variables was found and used to calculate an estimated BOLD signal based on the 

independent variable (i.e. lesion size). The estimated BOLD signal is then subtracted from the 

actual BOLD signal to obtain the newly lesion corrected BOLD signal for each voxel. Thus, the 

final output from this analysis is fourteen images with voxels representing lesion corrected 

BOLD signal. The same correction was conducted for the behavioral data in excel where 

estimated behavioral data was subtracted from the actual behavioral data. Mass univariate 

analysis was then conducted using the lesion corrected BOLD signal and behavioral data. 
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Results 

Aim 1: To develop and optimize multivariate based predictors in order to analyze significant 

relationships between whole-brain task fMRI and post-treatment behavioral data 

As the primary behavior of interest is CEG, multivariate optimizations were performed 

using CEG z-scores in the prediction model. Given a small sample of subjects in this study, k-

fold optimizations revealed that a k-fold equivalent to the total number of subjects within the 

analysis yielded the most robust data. With this setting, optimal sparseness values, as well as the 

number of significant voxels within the statistical map, did not vary between runs. Further 

optimizations involved customizing a brain mask that best encapsulated the entire brain without 

losing statistical power. Multivariate analysis with the optimized brain mask yielded drastically 

different results compared to the output from the default mask (Figure 10). Perhaps most notably, 

the areas of activation that are correlated to post-treatment responses varied. When the default 

brain mask is utilized, regions within the left posterior cingulate and the primary sensory cortex 

are found to significantly predict post-treatment outcomes (Figure 10A). This varies greatly from 

the regions highlighted in the optimized analysis involving voxels located in the bilateral middle 

temporal area (Figure 10B). Within this cluster, the right extrastriate area and the right fusiform 

gyrus are indicated as potential biomarkers in predicting the recovery of semantic fluency. 

Ultimately, these optimizations have made it possible to predict post-treatment responses from 

whole-brain task fMRI data. 
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Figure 10. LESYMAP brain mask (shown in red on the left side images) optimizations involved 

changing the (A) default mask to a (B) 4-subject overlap brain mask that was more inclusive of 

the whole-brain. With this newly optimized mask, significant clusters (p<0.05) within the 

statistical image greatly differed in terms of location as well as correlational association (positive 

(red)/negative (blue)). 

Aim 2: To assess the reliability of multivariate analysis by analyzing how well it converges 

with conventionally used predictors such as mass univariate analysis 

 In order to assess the reliability of multivariate-based predictors, mass univariate analysis 

was also conducted. When analyzing the relationship between baseline task fMRI and post-

treatment CEG scores, mass univariate analysis yielded clusters of activation in regions 

overlapping with multivariate clusters (Figure 11). Multivariate analysis, however, revealed 

more significant voxels bordering the clusters highlighted in the mass univariate analysis. Both 

analyses, however, revealed negative correlations between baseline brain activity and CEG 

behavior.  

Altogether, brain-behavior relationships between the task fMRI ZAUC and CEG 

behavioral scores were analyzed in distinct ROIs present within the multivariate analysis as well 
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as overlapping regions. Within the right extrastriate area, a multivariate found biomarker, brain 

activity negatively correlated with CEG z-scores (p-value = 0.049*) (Figure 12). Within the right 

fusiform gyrus, a biomarker found in both multivariate and mass univariate analysis, brain 

activity was also negatively correlated with CEG z-scores (p-value = 0.125), however, only 

marginally (Figure 12). 

 

Figure 11. Mass univariate and multivariate predictors for CEG display spatial overlap. Mass 

univariate clusters are more conservative than multivariate clusters. 
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Figure 12. Distinct ROIs predict brain-behavior relationships for CEG.  

Aim 3: To validate both multivariate and mass univariate analyses using another behavioral 

measure 

 The sensitivity and expanded utility of multivariate analysis was assessed by using 

another behavioral measure within the prediction model. Specifically, post-treatment discourse 

GRAM rehabilitation was assessed and results revealed that mass univariate predictors also 

converged spatially with the multivariate predictors (Figure 13). Both analyses revealed positive 

correlations between baseline brain activity and discourse GRAM behavior. Altogether, brain-

behavior relationships between the task fMRI ZAUC and discourse GRAM behavioral scores 

were analyzed in distinct ROIs. Within the left medial frontal gyrus, a biomarker found in both 

multivariate and mass univariate analysis, brain activity was positively correlated with discourse 

GRAM scores (p-value =0.09), however, only marginally (Figure 14). 

 Additionally, various k-fold settings within the multivariate analysis involving discourse 

GRAM were also analyzed. Similar to the k-fold value that yielded the most robust results when 

predicting CEG outcomes, a 14-fold CV also yielded the most robust results. With this setting, 
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the number of significant voxels within the statistical map (Figure 15A), as well as the optimal 

sparseness values (Figure 15B), did not vary between runs. Other k-folds such as 10, 12, and 13 

also yielded robust results. 

  

Figure 13. Mass univariate and multivariate predictors for discourse GRAM display spatial 

overlap. 

 

Figure 14. Distinct ROIs predict brain-behavior relationships for discourse GRAM. 
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A  Statistical Map Voxel Count and K-fold 

  

B  Optimal Sparseness and K-fold 

  
Figure 15. A k-fold of 14, again, yielded robust data within the multivariate analysis for 

discourse GRAM predictors. (A) The number of significant voxels presented within the 

statistical image varied across three runs for all k-folds except for k-folds 10, 12, 13, and 14. 

This lack of variance is highlighted with a star. (B) The optimal sparseness also did not vary for 

k-folds 10, 12, 13, and 14 (indicated by the star). All dots are color-coordinated according to the 

k-fold from figure 1A. 
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Aim 4: To sensitive the multivariate method to predict treatment-specific language changes 

Multivariate and mass univariate group-level analysis (CT and INT) was conducted for 

both behavioral measures in order to assess if these prediction models are sensitive in detecting 

treatment-induced changes. When analyzing brain-behavior relationships between BOLD 

activity and CEG, no significant predictive biomarkers were found in both multivariate and mass 

univariate analyses. However, when analyzing brain-behavior relationships between BOLD 

activity and discourse GRAM, only multivariate analysis, as opposed to mass univariate analysis, 

revealed significant predictive biomarkers. Multivariate control-specific predictors included the 

right middle frontal gyrus (R-MFG), where brain activity and discourse GRAM were negatively 

associated (Figure 16A). Multivariate intention-specific predictors included the left middle 

frontal gyrus (L-MFG), where brain activity and discourse GRAM were positively associated 

(Figure 16B). 

A  Control Specific Predictor 
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B  Intention Specific Predictor 

 
Figure 16. Multivariate analysis revealed predictive biomarkers during group-level analysis. (A) 

For the control group, activation within the R-MFG was found to be negatively associated with 

discourse GRAM scores (p-value = 0.022*, R2 = 0.681). (B) For the intention group, activation 

within the L-MFG was found to be positively associated with discourse GRAM scores (p-value 

= 0.018*, R2 = 0.703). 

Correcting for lesion size is feasible for both multivariate and mass univariate analysis 

 This project has demonstrated the feasibility of correcting for lesion size in both analyses. 

In terms of the brain-behavior relationships for CEG, multivariate analysis results (p-value = 

0.024*, optimal sparseness = 0.51) display spatial overlap with previously non-correct results, 

however, the sign of the voxel weights are inversed (Figure 17A). The reason behind this inverse 

has been iterated in the methods. Additionally, the lesion size corrected multivariate results are 

more conservative compared to the previous analysis. Contrastingly, mass univariate analysis 

results displayed significant clusters (p-value ≤ 0.05) that spatially diverged from the non-

corrected results (Figure 17A). In terms of the brain-behavior relationships for discourse GRAM, 



36 
 

both multivariate and mass univariate results display spatial overlap with minor changes in the 

number of significant voxels (Figure 17B).  

A  CEG Lesion Size Correction 
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B  Discourse GRAM Lesion Size Correction 

 

Figure 17. Multivariate and mass univariate approaches can be optimized to account for the 

effects of lesion size. (A) Multivariate results for CEG predictors display some spatial overlap 

while mass univariate results for CEG predictors display no spatial overlap. (B) Multivariate and 

mass univariate results for discourse GRAM predictors display some spatial overlap. 
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Discussion 

 This study focused on optimizing a multivariate methodology of identifying significant 

brain-behavior relationships to predict treatment outcomes in PWA. Conventionally used 

methods of predicting treatment outcomes present limitations that have been mitigated in this 

study. Specifically, a multivariate approach has been utilized in order to accurately capture 

context-driven voxel interactions. Additionally, whole-brain task fMRI data was utilized in order 

to more holistically capture network-level information that may meaningfully contribute to the 

brain-behavior relationship. Given, however, that current lesion-symptom mapping approaches 

have been optimized for lesion-specific analysis, the LESYMAP R package had to initially be 

modified in order to feasibly analyze whole-brain task fMRI data. K-fold CV modifications 

revealed that utilizing a k-fold equivalent to the number of samples yielded the most robust data. 

Additionally, brain mask modifications were made to account for the whole brain while 

maintaining statistical power. Lastly, the influence of lesion size on the predictive analysis was 

able to be regressed. Once the multivariate method was fully optimized, the reliability of this 

technique was assessed by analyzing the level of convergence with other, more conventionally 

used predictive tools such as mass univariate analysis. Results showed that both methods 

displayed significant spatial overlap, however, interestingly multivariate analysis uniquely 

discovered a predictive biomarker within the right extrastriate area. Once reliability was 

assessed, the expanded utility of the multivariate method was assessed by utilizing another 

behavioral measure. Notably, previous multivariate optimizations complied in this new analysis, 

and convergence with mass univariate approaches was also observed. Interestingly, multivariate 

analysis was able to identify predictive biomarkers of recovery for a more complex function that 

did not identically overlap with the function involved in the task fMRI. This suggests the 
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potential utilities of multivariate analysis in assessing treatment influence on not only task-

related functions but also more network-level functions. Moreover, assessments regarding the 

sensitivity of multivariate analysis in discovering treatment-specific (i.e. INT versus CT) 

biomarkers were conducted. Results showed that, as opposed to the mass-univariate approach, 

multivariate analysis was able to discover meaningful predictors of treatment outcomes. All in 

all, this study assesses the efficacy of whole-brain task fMRI multivariate analysis from multiple 

angles including optimization, reliability, expanded utility, as well as sensitivity in discovering 

predictive biomarkers. In accordance with the proposed hypothesis, this study has therefore 

methodically revealed the promising uses of a novel brain-behavior prognostic tool. 

Multivariate analysis can predict post-treatment responses to CEG from whole-brain task-

fMRI data 

When identifying predictive biomarkers for CEG, mass univariate and multivariate 

results displayed spatial overlap of significant clusters. For example, activation within the right 

fusiform gyrus was found to predict no response to treatment-induced changes in CEG for both 

analyses. Despite this overlap, mass univariate clusters contained fewer voxels and overall were 

more conservative. Multivariate clusters on the other hand contained more voxels and 

encapsulated unique biomarkers of CEG such as the right extrastriate area despite inputting the 

same data. This could be explained by the multifaceted nature of SCCAN as voxels are tested 

simultaneously in group comparisons as opposed to independent voxel-by-voxel analysis. Thus, 

SCCAN’s ability to concurrently compute relationships between voxels allows network-level 

information to be considered since voxel-to-voxel interactions will be accounted for. Overall, 

this makes multivariate analysis better equipped to predict treatment-induced changes for 

complex functions such as language. Considering, however, that mass univariate clusters still 
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overlapped with multivariate clusters, this method is still viable to find localized biomarkers of 

brain-behavior relationships. As mass univariate analysis is heavily data-driven, more subjects 

may be needed in order to increase statistical power and ultimately mitigate the absence of 

significant voxels.  

 The right fusiform gyrus predicted a null treatment response to CEG, however, 

insignificantly. Contrastingly, activation within the right extrastriate area predicted that the 

participant’s did not respond to treatment and their CEG skills did not improve. This region is 

known to be involved in the visual processing of categories such as faces, bodies, and objects 

(Pitcher et al. 2009). This categorization of object stimuli is involved within the CEG task and 

post-treatment behavioral assessment as participants must orally state examples of a given 

category that are presented orthographically and auditorily. Evidence has shown that the 

extrastriate area selectively responds to visually presented words (Baker et al., 2007) in a 

categorical fashion suggesting the prevalent role of this region within the task. Given that 

activation within this region is negatively correlated to CEG measures, a category-specific visual 

attention deficit could explain this relationship. During a CEG session, domain-general aspects 

of language such as visual attention are heavily involved. Oftentimes this attention is selective 

depending on the stimuli and may require different neural mechanisms. Specifically, it has been 

revealed that attention may enhance or suppress activity in category-selective areas of the 

extrastriate depending on the stimulus (Johnson and Johnson 2009). This balanced interplay 

between activation and suppression within the extrastriate area during the onset of certain 

categories may be influencing the performance of a CEG task where, at baseline, a net increase 

in activity within the right extrastriate area could be hindering the ability to effectively alter 

attention to category-specific orthographic stimuli. Given, however, that the categories within the 
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Johnson and Johnson study utilized faces and scenes instead of semantic categories, a follow-up 

study to test this theory may be necessary to verify the presence of extrastriate modulations in 

response to different semantic category-specific stimuli.  

Multivariate analysis can predict network-level language rehabilitation in response to 

treatment 

 When investigating the expanded utility of multivariate analysis in predicting treatment 

effects on another behavioral measure, activation within the left medial frontal gyrus predicted a 

positive response to treatment in discourse GRAM, however, only marginally. Despite the 

marginal significance of this result, the feasibility of utilizing whole-brain task-fMRI in 

predicting indirect outcomes is reflected. Specifically, the ability of whole-brain activity 

information during a semantic fluency task to predict more complex functions of language such 

as grammar highlights the potential viability of predicting network-level brain activity and thus 

performance. Despite the more complex nature of grammar, this language function is not 

exclusively isolated from the language functions involved within CEG. For example, as the 

formation of grammatically correct phrases is determined by subject-verb agreement, an 

understanding of the meaning and thus semantics of various nouns and verbs is needed. 

Treatment at the single word level (CEG/Picture Naming), therefore, may influence the 

understanding of words to aid in connecting speech at the sentence level.  

Multivariate analysis is sensitive in detecting treatment-induced changes 

 When investigating the sensitivity of multivariate analysis in identifying treatment-

specific biomarkers of rehabilitation, both the L-MFG and R-MFG were found to significantly 

predict changes in discourse GRAM in response to the INT and CT correction procedure 

respectively. Interestingly, the mass univariate approach was unable to identify significant brain-
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behavior relationships during group-level analysis which highlights the statistical limitations of 

this study. Given a small sample of seven subjects, the multivariate analysis may therefore be 

more attuned to discovering predictive biomarkers despite smaller datasets. Similar to the 

reasoning behind mass univariate’s more conservative nature in identifying significant voxels, 

the data-driven approach to this method may pose a hindrance for group-level analysis. 

Multivariate analysis revealed that baseline activity within the L-MFG for INT subjects 

significantly predicts positive response to treatment in discourse GRAM. This region has been 

shown to be involved in a variety of language functions for both healthy populations and PWA. 

For example, evidence has shown that activity within the L-MFG is positively associated with 

literacy (Koyama et al., 2017). Additionally, an fMRI study in people with a lesioned Broca’s 

area revealed that the L-MFG was heavily involved during a verbal fluency task (Dong et al., 

2016). Lastly, despite the intended purpose of INT treatment in relateralizing language functions 

to the right hemisphere, residual language knowledge within the left hemisphere is necessary for 

language rehabilitation (Crosson 2009). Considering the consensus within the field, the L-MFG 

is a prominent role in not only generalized language functions, but also language recovery. Thus, 

baseline activation within this region may suggest the availability of the neural resources 

necessary to rehabilitate more generalized language functions such as discourse GRAM.  

Contrastingly, multivariate analysis revealed that baseline activity within the R-MFG for CT 

subjects predicted that the participants did not respond to treatment and their discourse grammar 

skills did not improve. In PWA, this region has been known to be involved in aiding the 

relateralization of neural mechanisms involved in language. For example, in a study on PWA, 

language recovery was present when participants had left-hemisphere lesions, however, this 

recovery stopped after the onset of right-hemisphere lesions (Barlow 1877). Further evidence 
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reveals that the involvement of the right hemisphere during language recovery is more likely to 

occur in structures that are homologous to damaged left hemisphere structures (Crosson 2009). 

As a bulk of the participants within the CT group had left frontal lesions, right frontal areas 

would be recruited during rehabilitation. Although the CT group did not undergo the INT 

treatment that was designed to motivate lateralization of language functions, all participants 

underwent the same standard therapy involving picture naming and CEG. Thus, language 

rehabilitation is still involved in the standard therapy and recruitment of right hemisphere regions 

would be necessary for optimal recovery. The timing in which the right hemisphere is involved 

during a PWA’s treatment timeline, however, has been shown to be imperative. For example, 

certain studies have shown that the initial reliance on the right hemisphere before treatment in 

aphasia patients resulted in less language recovery (Abel et al. 2015). Such findings may suggest 

that pre-treatment reliance of right hemisphere regions may reflect less availability for neuronal 

plasticity of newly recovered language functions to occur. This could explain why baseline 

activation within the R-MFG is negatively correlated to the recovery of network-level language 

functions like grammar. Altogether, the results highlight the diverging predictors of language 

recovery for INT and CT treatment. Not only in terms of spatial location but also correlation, the 

predictors for treatment-specific groups were discovered by multivariate analysis to be 

oppositely related. Specifically, the predictive biomarkers for participants within the CT group 

were negatively associated with post-treatment gains while the INT predictors were positively 

associated with the post-treatment gains. This could potentially suggest the impact that INT 

treatment may have in overcoming the hindrances apparent when the right hemisphere is initially 

relied on before treatment interventions take place. The emphasis on left-hand gestures and the 

initiation procedure may therefore aid the manifestation of right hemisphere relateralization by 
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enhancing the mechanisms involved in neural plasticity. 

Limitations and Future Works 

 Despite the promising utilities of whole-brain task fMRI multivariate analysis, there are 

some limitations to this study. Perhaps most notably, this study utilized a small number of 

subjects mainly due to screening procedures as well as the difficulty of recruiting long-term 

PWA participants. As a result, this study lacks statistical power which may explain why the 

multivariate analysis was not able to sufficiently obtain certain. For example, this approach was 

unable to find meaningful INT and CT-specific biomarkers for CEG. Another limitation to this 

study is that the maintenance of language functions was not assessed. Only behavioral data 

collected 2-weeks post-treatment was used in the model, therefore, the predictive biomarkers 

discovered in this study may not be meaningful in terms of long-term recovery. Due to this 

limitation, a follow-up study utilizing behavioral measures obtained much later (i.e. 3-months 

post-treatment) may be necessary to solidify the results of this study. Moreover, due to technical 

problems and time constraints, the lesion size corrected results have not yet been interpreted. 

Additionally, the task fMRI-based approach to study brain-behavior relationships has primarily 

involved cortical and subcortical analysis of gray matter. Stroke, however, may affect not only 

gray matter but also white matter tracts which have been shown to be involved in language by 

connecting nodes within the language network such as the Broca’s area and Wernicke’s area 

(Catani and Mesulam, 2008). Adjacent approaches in understanding brain-behavior relationships 

involving diffusion tensor imaging (DTI) may therefore be necessary to fully grasp whole-brain 

analysis. Lastly, this study has focused on utilizing task fMRI data in order to predict treatment 

responses, however, resting state fMRI (rsfMRI) data may also provide meaningful information 

needed to create accurate prediction models. Studies have shown that resting network activity 
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can be used to assess changes in connectivity (Nair et al. 2015) as well as aphasia severity 

profiles that may give insights into the extent of language recovery (Baliki et al. 2018). rsfMRI 

may therefore be a beneficial contributor to the rehabilitation prediction model by providing 

complementary hemodynamic changes within the resting network (Zhao et al. 2018), and future 

studies utilizing both rsfMRI and task-fMRI data should by conducted. Considering these 

limitations, future works may involve testing multivariate analysis on datasets involving more 

subjects, utilizing longitudinal behavioral measures, and using DTI as well as rsfMRI data in 

parallel with task fMRI data. These future works could potentially reveal meaningful information 

regarding language treatment-induced neuroplasticity that may open new doors for 

individualized treatment planning and optimal rehabilitation in clinical settings for PWA. 

Conclusion 

 Overall, this study has established the feasibility of utilizing whole-brain task-fMRI to 

compute a brain-behavior prediction model using multivariate analysis. By fully optimizing and 

assessing the reliability, extended utility, as well as sensitivity of multivariate predictors, this 

study has methodically provided the groundwork for future prediction analyses. The discovery of 

certain predictive biomarkers such as the right extrastriate area has shed light on how network-

level information may present not only domain-specific but also domain-general predictors. 

Additionally, the discovery of INT and CT-specific biomarkers highlights the attuned sensitivity 

of multivariate analysis when whole-brain network-level information is utilized. Altogether, 

these findings reveal the promising potential of utilizing this novel method to ultimately aid 

patient triaging and the individualization of treatment planning by offering a more precise 

prediction of treatment-induced language recovery.  
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