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Abstract  

 

 

The Role of Plasminogen Activator Inhibitor-1 in Hepatic Steatosis, Dyslipidemia, 

Insulin Resistance and Fructose Consumption in Children with Fatty Liver Disease 

 

 

By Jeffrey Holzberg 

 

 

Background: The increased morbidity and mortality in patients with nonalcoholic fatty 

liver disease (NAFLD) is in large part due to complications of cardiovascular disease 

(CVD). Fructose, a common nutrient in the westernized diet, has been reported to be 

associated with increased cardiovascular risk, but its impact on adolescents with NAFLD 

is not well understood. Plasminogen activator inhibitor-1 (PAI-1) has been proposed as a 

link between fructose consumption, NAFLD and CVD. Thus, we examined PAI-1 in 

relation to fructose consumption and the development of hepatic steatosis and insulin 

resistance among overweight and obese children. 

 

Methods: Our study consisted of two parts. In the first, 39 overweight and obese Hispanic 

children underwent comprehensive anthropometric and metabolic assessment as well as 

magnetic resonance spectroscopy for hepatic fat calculation. In the second part, 24 

children from cohort 1 who had hepatic steatosis >5% on imaging and that were regular 

consumers of sugary beverages were enrolled in a 4-week randomized-controlled, double 

blind intervention study using calorically matched fructose and glucose beverages and 

evaluated at 0, 2 and 4 weeks. 

 

Results: PAI-1 was found to be closely correlated with severity of hepatic steatosis 

independent of BMI, visceral fat, and insulin resistance (p < 0.001). PAI-1 did not 

significantly correlate with insulin resistance after controlling for BMI. Further, plasma 

PAI-1 did not significantly change over the four week period among those consuming 

fructose supplement or glucose supplement, or comparing the change between the two 

groups. 

 

Conclusion: These findings suggest that PAI-1 most closely relates to hepatic steatosis in 

early stages of fatty liver development in children, independent of other risk factors, and 

that hepatic steatosis may mediate PAI-1’s association with insulin resistance. PAI-1 

offers the potential to be elevated among high-fructose beverage consumers but further 

studies are needed to observe this trend. Finally, PAI-1 may serve as a biomarker for 

NAFLD development early in the course of its disease and possibly as a target to prevent 

NAFLD progression into NASH or CVD complications.   
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INTRODUCTION: 

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver 

disease worldwide in adults and children.
1,2

 The disease encompasses a spectrum of 

pathological conditions ranging from simple steatosis (fat infiltration of >5% of 

hepatocytes in the absence of excessive alcohol intake) to nonalcoholic steatohepatitis 

(NASH), fibrosis and liver cirrhosis.
3
 In children, NAFLD is particularly concerning 

because of its progressive nature and lifelong liver- and cardiac-related morbidity and 

mortality.
4,5

 In all age groups, NAFLD is closely intertwined with features of metabolic 

syndrome, most notably obesity, insulin resistance and dyslipidemia,
6-11

 and 

independently predicts cardiovascular disease (CVD) events.
12-16

 The exact mechanistic 

pathways that underlie development of hepatic steatosis remain poorly understood, as 

does the link between NAFLD and CVD.
17

 The fibrinolytic system, which is linked with 

NAFLD,
18,19

 insulin resistance,
20

 and atherosclerosis,
21

 is likely involved in the 

pathogenesis of NAFLD and may help to investigate possible targeted interventions. 

Plasminogen activator inhibitor-1 (PAI-1) is an acute-phase protein produced 

primarily by hepatocytes and adipocytes. It inhibits the serine proteases tissue 

plasminogen activator (tPA) and urokinase plasminogen activator (uPA), and thereby 

attenuates fibrinolysis and inhibits the activation of hepatocyte growth factor (HGF) 

(Figure 1).
22-24

 PAI-1 is best known for its role in vascular thrombosis and atherosclerosis 

in patients with CVD
25,26

 and has been known for years to be elevated in obesity, 

dyslipidemia and insulin resistance.
20,27,28

 More recently, some studies have shown PAI-1 

to be associated with hepatic steatosis and NAFLD development.
18,29,30

 This association 

is independent of BMI and sex, and implicates PAI-1 as a potential biomarker or critical 
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step in the mechanism of NAFLD progression. However, there are mixed results between 

studies in part because of utilization of less precise fat measurement like ultrasound
31-33

 

and lack of characterization of important confounders like visceral adiposity and insulin 

resistance.
31,33-35

 Additionally, virtually no studies have been done in children, a crucial 

period in NAFLD development. 

In view of the high prevalence of NAFLD among adolescents
36

 and the strong 

association between NAFLD and CVD, it is also essential to explore early prevention 

strategies through diet and lifestyle modification. Fructose is a widely used sweetener in 

beverages and many processed food and its consumption has increased dramatically over 

the last 40 years.
37

 Recent data have shown that fructose intake represents ~12% of daily 

calories consumed by U.S. adolescents, primarily from sugary beverages.
38

 In both 

animal and short-term human feeding studies, fructose has been found to increase hepatic 

fat accumulation through insulin resistance, lipogenesis, and plasma 

hypertriglyceridemia.
39-41

 Fructose intake has also been suggested in numerous studies as 

part of the mechanistic pathway that elevates plasma PAI-1.
30,42-44

 However, direct 

evidence showing the benefits of fructose restriction on PAI-1, hepatic steatosis or CVD 

risk in NAFLD is still lacking, especially in adolescents, a group characterized by both 

high prevalence of NAFLD and high intake of fructose.
36,38
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STUDY AIMS: 

Thus, the present study was done in children with fatty liver disease to assess the 

relationship between PAI-1 and hepatic steatosis, insulin resistance and fructose 

consumption; thus clarifying the role of PAI-1 in NAFLD development. This thesis has 

two study aims with diagrammatic explanation in Figure 2. Our first aim is to examine 

the association between PAI-1 and various metabolic impairments in overweight and 

obese Hispanic children. The primary outcome of interest is hepatic steatosis, while 

secondary outcomes of interest include insulin resistance and dyslipidemia. We 

hypothesized that an elevated level of PAI-1 is associated with an elevated level of 

hepatic steatosis, insulin resistance and dyslipidemia independent of weight. 

Our second aim is to examine the effect of switching to consumption of beverages 

high in glucose as opposed to fructose on the concentration of plasma PAI-1 after 14 and 

28 days among overweight and obese Hispanic children with NAFLD who are known to 

be high fructose consumers. We hypothesized that PAI-1 levels will be lower in the 

group of children who switched from fructose to glucose compared to the group that 

continued to consume fructose. 
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METHODS: 

Study Population 

This sample consisted of Hispanic overweight and obese children prospectively 

recruited from pediatric clinics at Emory Children’s Center and from nearby community 

centers through flyers and presentations at community events during the summer of 2012 

and then studied in the Atlanta Clinical and Translational Science Institute (ACTSI) 

Clinical Research sites at Children’s Healthcare of Atlanta (CHOA) and Emory 

University Hospital.  

Eligibility criteria included children aged 11-18 years, self-identified as Hispanic; 

body mass index (BMI) ≥ 85th percentile for age and gender; and average self-reported 

consumption of at least 3 sugar-containing drinks per day. We chose to study obese 

Hispanic adolescents because they are at particularly high risk of metabolic syndrome 

and hepatic steatosis.
11,45

 Sugar containing beverage consumption was an inclusion 

criteria in order to increase the likelihood of finding adolescents with significant 

steatosis.
46,47

 These beverages were defined as sodas, flavored drinks, 100% juice, and 

other beverages containing primarily fructose and water. Although 100% juice is not 

typically included in assessment for sugar consumption, we included them because the 

fructose content of juice is high and little evidence exists to suggest that it would not have 

the same effects as fructose from soda.  

Exclusion criteria included known liver diseases; diabetes or fasting glucose > 

126 mg/dL; renal insufficiency (creatinine > 2 mg/dl); any chronic diseases required daily 

medication; acute illness within past 2 weeks prior to enrollment (defined by fever > 

100.4ºF); and supplement or anti-oxidant therapy within past 4 weeks before enrollment.  
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39 adolescents who met the eligibility criteria were recruited for the Aim 1 

Sample of this cross-sectional study. These subjects underwent an anthropometric 

assessment and MRS procedure for the determination of hepatic fat content and a blood 

sample collection in the fasting state. 

The second aim of this study would examine fructose as a possible cause of 

elevated PAI-1. Aim 2 was a 28 day, double-blinded, parallel armed randomized 

controlled trial of a subset of the 39 overweight and obese Hispanic adolescents enrolled 

in Aim1 with MRI-confirmed NAFLD (n=27) (Figure 3). Of these 27 adolescents, 24 

agreed to participate in our one-month cohort study. These 24 participants now in Sample 

2 were randomized to receive 3 servings of 12 ounces per day of fructose-sweetened 

beverages or reduced-sugar sweetened beverages (glucose-based) over a 28-day period. 

Follow-up visits were scheduled at 14 and 28 days after the initiation of randomization.  

After randomization, one subject with extremely elevated ALT was excluded and 

two subjects dropped out after 2 weeks. All 3 were in the fructose arm and all 3 were 

male. Therefore, a total of 21 subjects successfully completed the beverage intervention 

(Figure 3). Recruitment was originally set at 20 subjects per beverage arm to allow 

additional within-group comparisons; however the study was halted at 24 subjects after a 

policy change that no longer allowed our pediatric subjects to obtain MRS at the adult 

center. By using a 3% mean change of hepatic fat and standard deviation, the power 

analysis for the project had estimated 6 subjects per beverage group to achieve >90% 

power, although this was done for lipid data rather than PAI-1. 

During the 4 week study, participants were instructed to drink 3 servings (12 oz 

bottles) of study-provided beverages each day. The study beverages contained 33 grams 
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of sugar in the form of either glucose or fructose and were matched for color and 

flavoring (Power Brands, Beverly Hills, CA). This is similar to the energy supplied from 

three 12 oz sodas per day (typical soda has 33 grams of sucrose or high fructose corn 

syrup) and ~26% of the energy in a typical 2000 calorie diet. Each subject was given a 

sufficient supply of study beverages to take home or beverages were delivered directly to 

their house by the research coordinator. Participants and investigators were blinded as to 

the contents of the drinks. No other sugar-containing beverages were allowed during the 

study period. Subjects were requested not to change their diet pattern and physical 

activity. Compliance was monitored through daily drink logs, return of empty beverage 

bottles at each study visit, and weekly phone calls from the study coordinator. The study 

protocol was approved by the Emory and Children’s Healthcare of Atlanta IRB and 

written informed consent (parental consent obtained for subjects <18 years) and assent 

(when applicable) were obtained for each subject prior to participation in the study. 

For all subjects, written informed consent was obtained from a parent or guardian 

and written assent was obtained from all children 11 years and older before participation. 

Demographic data were obtained from the parent. The protocols were approved by the 

Institutional Review Boards for Human Subject Research for Emory University (Atlanta, 

GA) and CHOA.   

 

Variables. The following variables were measured for a total 39 subjects. 

Anthropometric Measurements.  Body weight, height and blood pressure were measured 

with the subject wearing light clothing with shoes removed. BMI was calculated as 

weight in kilograms divided by height in meters squared. BMI z-score/percentile was 
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determined according to age and gender, based on data from the Centers for Disease 

Control and Prevention.
48

   

Laboratory Assay Measures. Baseline blood samples were drawn at 8 AM following a 12 

hour overnight fast. Samples were collected into EDTA-coated tubes and plasma was 

separated immediately. Plasma samples were protected from light and transported in ice 

pack to the laboratory for further processing (within 4 hours). Samples were analyzed for 

aspartate aminotransferase (AST; U/L), alanine aminotransferase (ALT; U/L), gamma-

glutamyl transpeptidase (GGT; U/L), and fasting insulin level (µU/ml).  Plasma 

concentrations of AST and ALT were measured by routine enzymatic methods in the 

hospital clinical laboratory. Plasma cytokines, adipokines, chemokines, and pro-fibrotic 

markers were measured using multi-analyte chemiluminescent detection using Luminex® 

xMap technology (Millipore Corporation, St. Louis, MO USA).  Specifically, 

adiponectin, resistin, tumor necrosis factor-α (TNF-α), PAI-1, C-reactive protein (CRP), 

were determined. Plasma insulin concentration was assessed using immunoturbidometric 

methods (Sekisui Diagnostics, Exton, PA). 

All lipid measurements were performed by the Emory Lipid Research Laboratory 

at the Atlanta Veterans Affairs Medical Center using AU480 chemistry analyzer 

(Beckman Coulter). Total cholesterol and triglycerides (TG) were measured by 

enzymatic methods using reagents from Beckman (Beckman Diagnostics, Fullerton, CA). 

Low-density lipoproteins (LDL) and high-density lipoproteins (HDL) were measured by 

homogeneous enzymatic assays (Sekisui Diagnostics, Exton, PA). Free fatty acids (FFA) 

were obtained by colorimetric methods (Sekisui Diagnostics, Exton, PA).  
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Insulin Resistance Measures. Two methods were used to evaluate insulin resistance. The 

Homeostasis Model Assessment of Insulin Resistance (HOMA-IR)
49

 was calculated with 

the following formula: [Fasting plasma glucose (mmol/L) x fasting serum insulin 

(mU/mL)] / 22.5. Adipose tissue insulin resistance (Adipo-IR)
50,51

 was calculated with 

the following formula: [fasting nonesterified fatty acids (mmol/L) x fasting insulin 

(pmol/L)].  

Hepatic and Visceral Fat Measures.  Hepatic steatosis was assessed by magnetic 

resonance spectroscopy (MRS) using our previously described methods.
52-54

 Briefly, we 

used a rapid 15-sec acquisition technique obtained during a single breath hold. The 

sequence is constructed from five concatenated echoes using a fixed cumulative TE of 

15,000 ms, with each echo having a TR=3000ms, voxel=3x3x3cm3, 1024 points, and 

1200 Hz bandwidth. The acquisition was repeated three times for reproducibility. Data 

were exported off-line for automatic processing with in-house software (Matlab, 

Mathworks, Natick, MA). Water and lipid magnitude spectra were analyzed by 

determining the AUC corresponding to a user-defined frequency range surrounding the 

corresponding water/lipid peaks (water peak: 4.6ppm; lipid peak: 1.3, 2.0ppm). The 

integrated magnitude signals at each TE were fit to exponential T2 decay curves, 

whereby the equilibrium signal (M0) and the relaxation rate (R2=1/T2) were determined 

by least-squares approximation. Using M0 for water and lipid, the T2-corrected hepatic 

lipid fraction was calculated from: %Hepatic Lipid = M0lipid / (M0lipid + M0water). 

The calculated percentage of steatosis was then grouped depending on whether the 

steatosis was normal (< 5%), low (5-10%), or high (> 10%). Visceral adiposity was 
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measured using the seven scans taken in the abdomen region by MRI using previously-

described methods.
55

 

 

Statistical Analysis 

For aim 1, descriptive analysis was done by dividing the study participants into 

three groups based upon quantification of hepatic fat (normal, low, and high). Group 

comparisons of means of the study variables were tested along this hepatic fat spectrum 

using the Kruskal-Wallis test, the nonparametric equivalent of the one-way analysis of 

variance (ANOVA) with Dunn’s posttest, since most variables were not normally 

distributed. A significant test indicated that at least two of the groups were significantly 

different, in which case the Mann-Whitney U test was run to identify the groups of 

difference. Data are expressed as mean ± standard error with statistical significance 

considered as a p-value ≤ 0.05. 

Linear regression was used to assess the predictive associations of the log-

transformed PAI-1 with various independent continuous variables. This included hepatic 

fat, lipid measurements (TG, cholesterol, LDL, ApoB), and measures of insulin resistance 

(HOMA-IR, Adipo-IR, insulin). Since the distribution of PAI-1 as the outcome of interest 

was skewed (normality was examined with Komogorov Smirnov’s test, skewness and 

kurtosis, table in appendix), it was log-transformed for the assumption of normality. The 

exact role played by PAI-1 has been historically been questioned because of its 

correlation with third factors that could potentially explain its association with 

atherosclerotic disease (such as diabetes mellitus, hypertension, obesity, dyslipidemia).
56

 

Therefore, regression models tested independence from these third variables, including 
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BMI, visceral adipose tissue (VAT), insulin resistance (as HOMA-IR) (Figure 4). Hepatic 

steatosis was controlled for when we tested it as a mediator between PAI-1 and other 

variables, such as lipids. BMI was of particular interest due to close correlation with PAI-

1 in our study (Spearman’s rho = 0.42, p = 0.0075) and prior studies.
20,57,58

 Age and sex 

were not included in the model because of the limited sample size. Ordinal independent 

variables were included in the model as continuous variables. Spearman’s correlations 

were also used to compare associations between continuous variables when appropriate.   

 For the descriptive analysis of aim 2, as the subjects were randomized, means and 

standard error are presented. For further analysis, treating PAI-1 as the dependent 

variable, a repeated measures model with beverage selection (fructose or glucose) and 

time as the independent variables factors were fitted. The interaction between beverage 

and time was also included as an independent variable. Individual was held constant in 

the model since the repeated measurements were among the same individual. Finally, to 

assess the change in PAI-1 continuously from baseline to 14 days (timepoint 1) and to 28 

days (timepoint 2) between beverage groups, comparisons were made using a repeated 

measures ANOVA. 
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RESULTS: 

Baseline Characteristics of Participants. Demographic characteristics and baseline 

variables for aim 1 and 2 are presented in Table 1 and Table 2 respectively.  Cohort 1 

included 39 Hispanic obese children (BMI z-score, mean ± SE: 2.09 ± 0.06 ng/mL) who 

self-reported high consumption of sugary beverages. In this group, 12 (30.8%) had 

normal hepatic fat (NHF, ≤ 5%), 14 (35.9%) had low hepatic fat (LHF, 5-10%), and 13 

(33.3%) had high hepatic fat (HHF, > 10%). In cohort 2, 9 adolescents completed the 

study in the fructose group, as did 12 within the glucose group. All had the same range 

from 11-18 years old and nearly the same BMI z-score. 

Aim 1 

PAI-1 and Hepatic Fat. PAI-1 was positively associated with hepatic fat, increasing from 

8.78 ± 1.17 ng/mL in the NHF group to 11.6 ± 0.99 ng/mL in the LHF group and 20.8 ± 

2.26 in the HHF group (p < 0.001 by Kruskal-Wallis’ test) (Figure 5).  There was a 

significant difference between the NHF (0-5% fat) and LHF (5-10%) hepatic fat groups 

(p = 0.04), and LHF and HHF (>10%) groups (p = 0.002). Linear regression was used to 

further assess the relationship with the log of PAI-1 while controlling for confounding 

variables. Unadjusted analysis showed that hepatic fat was strongly associated with the 

log of PAI-1 (β = 0.06, p < 0.0001) (Table 3). Correcting for the child’s BMI z-score, 

hepatic fat was found to have a strong association with the log of PAI-1 (β = 0.056, p = 

0.0005) (Table 4). This association maintained significance even after controlling for 

insulin resistance instead (measured as HOMA-IR) (Table 5) or visceral adiposity (VAT) 

(Table 6) (β = 0.057, p = 0.0004; β = 0.08, p = 0.001; respectively).  
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PAI-1 and Dyslipidemia. We found that the log of plasma PAI-1 levels were closely 

associated with the plasma concentration of triglycerides (p = 0.001) and free fatty acids 

(p = 0.007) in the unadjusted analysis (Table 3). This remained true after controlling for 

BMI z-score (p = 00009, 0.02, respectively) (Table 4). Both triglycerides and free fatty 

acids maintained significance with the log of PAI-1 even after controlling for insulin 

resistance (HOMA-IR) (Table 5) (p = 0.005) or VAT (Table 6) (p = 0.001). Both 

associations with the log of PAI-1 lost significance after controlling for hepatic steatosis 

(Table 7). Other lipid measurements in the plasma were not significantly associated with 

the log of PAI-1, including cholesterol and LDL, in the unadjusted analysis or after 

controlling for BMI z-score (Table 3, 4). 

PAI-1 and Insulin Resistance. Plasma the log of PAI-1 did not significantly associate 

with either HOMA-IR or Adipo-IR after controlling for BMI z-score (Table 4). Similarly, 

plasma insulin levels were positively associated with the log of PAI-1 levels (p = 0.02) 

but lost significance after controlling for BMI z-score. Neither measure of insulin 

resistance was found to significantly associate with the log of PAI-1 after controlling for 

hepatic steatosis (Table 7).  

Aim 2 

PAI-1 by Beverage Group. Plasma PAI-1 did not significantly change over the four week 

period among those consuming fructose supplement or glucose supplement (Table 8). A 

trend was present among the fructose and glucose groups (Figure 6), such that levels 

increased within the fructose group and decreased within the glucose group. Examination 

of the changes in PAI-1 on an individual level (in the fructose (Figure 7) and glucose 
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group (Figure 8)) demonstrated significant variability and a few extreme cases in the 

change in PAI-1 over 4 weeks.  

PAI-1 by Beverage Group and Time. Repeated measures ANOVA with interaction did 

not demonstrate significance in the change of PAI-1 comparing fructose to glucose 

groups over the 1 month period (Table 8). A mixed model ANOVA regression was also 

performed to look for significant changes in PAI-1 between timepoints and beverage 

groups (Table 9). At baseline, there was no significant difference in PAI-1 between 

groups. Among glucose consumers, PAI-1 was shown to go decrease from baseline to 14 

days (β = -1.45 ng/mL/14d) and from baseline to 28 days (β = -2.19 ng/mL/28d) but 

neither of these reached significance. Among fructose consumers, PAI-1 increased from 

baseline to 14 days (β = 3.35 ng/mL/14d), although the difference was not significant. 

Among fructose consumers, PAI-1 slightly decreased (β = -0.41 ng/mL/28d) from 

baseline to 28 days, but this difference was not significant. The change between the 

fructose and glucose supplement groups was not significant when compared from 

baseline to 14 days or from baseline to 28 days. 
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DISCUSSION: 

The aim of this study was to investigate the role of PAI-1 in pediatric NAFLD by 

analyzing its associations with MRI-confirmed hepatic steatosis, insulin resistance, 

dyslipidemia and fructose consumption in a sample of Hispanic children that were high 

fructose consumers. PAI-1 was found to be closely correlated with severity of hepatic 

steatosis in children with NAFLD independently of BMI, visceral fat, and insulin 

resistance. There was no significant change in PAI-1 over a one month period among 

those who switched from fructose to glucose compared to those who kept drinking 

fructose supplement. These results support the involvement of PAI-1 in the pathogenesis 

of steatosis in children with NAFLD through its role in the buildup of hepatic fat 

irrespective of weight, visceral fat and insulin resistance, but do not support glucose 

substitution of fructose in beverages as an intervention to reduce PAI-1. Nonetheless, this 

study was not powered to detect smaller changes in PAI-1 levels that may have been 

caused by glucose substitution in sugary drinks. 

The increased morbidity and mortality that is found in patients with NAFLD is 

mainly due to complications of CVD.
59-61

 Although CVD events tend to occur in middle 

to late-aged adults, pathologic studies have shown that the subclinical atherosclerotic 

process begins in childhood
12,62-64

 probably because of the dyslipidemia, insulin 

resistance and pro-inflammatory state seen in patients with NAFLD.
15,65-67

 Some studies 

have sought to use PAI-1 to explain this link between NAFLD and CVD.
32

 Similarly with 

NAFLD, PAI-1 has been linked to elevated CVD risk through increased numbers of 

atherosclerotic plaques, buildup of triglycerides and LDL, and contributions to a pro-

inflammatory state.
68-70

 Thus, it is important to clarify the relationship of PAI-1 with 
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NAFLD to understand its contribution to liver and cardiovascular pathology. It is equally 

important to examine modifiable influences such as fructose consumption that contribute 

to this increased cardiovascular risk in NAFLD. 

AIM 1 

The first conclusion of our study is that PAI-1 has a strong and independent 

association with hepatic steatosis. Studies that have previously linked PAI-1 to CVD 

have not accounted for the progression of hepatic steatosis in NAFLD development.
32,69

 

The association between PAI-1 and hepatic steatosis in our study is independent of the 

weight of the child or visceral adiposity, which are known to be strong predictors of the 

metabolic syndrome, NAFLD, and inflammatory biomarkers like adiponectin.
32,71

 This 

finding suggests a possible role for PAI-1 as a direct biomarker and possible target for 

intervention in early development of hepatic steatosis. Our results suggest that plasma 

PAI-1 levels relate more to liver steatosis than fat accumulation in the extremities or 

abdominal cavity. This finding in children has not previously been reported in the 

literature but is consistent with reports in mice and adult humans. Alessi et al. showed 

that PAI-1 levels in adults are more closely related to liver steatosis than to visceral 

adiposity, although it is unclear how many cases of fatty liver were alcohol-induced.
34

 In 

the same study, they showed that in genetically obese mice that develop a fatty liver early 

in life, PAI-1 expression was found to be significantly higher in the liver than in adipose 

tissue.
34

 This is also consistent with studies in children that have shown an association 

between PAI-1 and hepatic steatosis but did not control for weight.
35,72

 

Hepatic steatosis results from increased hepatic uptake of free fatty acids derived 

from hydrolysis of adipose-tissue triglycerides, dietary chylomicrons and hepatic 
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lipogenesis.
32,73,74

 Our findings of a strong association between PAI-1 and triglycerides 

and free fatty acids help explain PAI-1’s association with hepatic steatosis. These two 

associations remain significant even if controlling for VAT or HOMA-IR but lose 

significance when controlling for hepatic steatosis, strengthening the explanation of 

triglycerides and free fatty acids as the lipid content in the liver increases, thus having a 

significant relationship with PAI-1.  From linear regression, we can deduce that an 

increase in hepatic steatosis by 1% is associated with an increase in PAI-1 by 5.6% (β of 

0.056).  Considering the 5% cutoff for diagnosing simple hepatic steatosis in NAFLD, the 

1% increase in hepatic fat found to be associated with a 5.6% increase in PAI-1 is quite 

significant.  

Our findings also suggest that hepatic steatosis may explain the association 

between PAI-1 and insulin resistance, which has been shown to be pathogenic in 

progression to steatohepatitis and CVD morbidity and mortality.
32,67,75

 Insulin resistance 

has been associated with PAI-1 in previous studies, with some suggesting that hepatic 

steatosis actually mediates this relationship, initially thought to be mediated by adipose 

tissue.
34

 The current study is the first to show this relationship in children. In a study by 

Ardigo et al., hyperinsulinemia is only associated with increased plasma PAI-1 in adults 

where there is also high liver fat content.
31

 The results from our study show that PAI-1 is 

significantly associated with both HOMA-IR and Adipo-IR until the model controlled for 

hepatic steatosis, at which point significance was lost. This means that hepatic steatosis 

could be a common cause of both PAI-1 and insulin resistance, thus serving as a 

confounder with no true association existing between them. More likely, and consistent 

with prior studies,
31,34

 hepatic steatosis exists in the causal pathway between PAI-1 and 



17 

 

insulin resistance, such that the association is lost when hepatic steatosis is held constant. 

Thus, the presence of hepatic steatosis could worsen the risk for insulin resistance in an 

overweight or obese child.  

AIM 2 

We also theorized that fructose reduction for 4 weeks would improve PAI-1 

values. Hepatic fat has been shown by others to increase after soda consumption over 6 

months.
76

 A recent pilot study of fructose reduction in adults with NAFLD indicated a 

decline in intrahepatic fat content along with weight loss after 6 months.
77

 In our study, 

neither group had a change in hepatic steatosis levels. While this disproved our 

hypothesis, our study was designed to be eucaloric. In other studies, the fructose 

reduction associated with loss of hepatic fat in adults was in the setting of weight loss; 

this might be a requirement for removing excess stored energy in the liver. Further, since 

hepatic steatosis may be a downstream result of worsened insulin resistance, visceral fat 

accumulation, and oxidative stress, there may not have been sufficient time to develop 

these downstream conditions from a change in fructose consumption. Perhaps a longer 

study would have resulted in changes in the liver. Given the proposed relationship 

between PAI-1 and steatosis, it is consistent that PAI-1 also did not change in either 

group. 

Aims 1 & 2 

Our study has several limitations. First, the cross-sectional model precludes 

assessment of causal or temporal relationships between PAI-1, hepatic steatosis, insulin 

resistance and inflammation. Additionally, visceral fat was not quantified directly but 

instead was inferred from body mass index. However, body mass index has been used 
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and accepted in prior studies as a measurement for visceral fat.
31,34

 Third, as outlined 

before, the sample size in our study may have limited the significance of some 

associations. Since this was a pilot study, and one of the first looking at the association 

between PAI-1 and hepatic steatosis in children, there may not have been significant 

power to detect small changes. Finally, the sample was made up of overweight and obese 

Hispanic children, thereby limiting the generalizability of our results to other ethnic 

groups. For our second aim, we did not control the entire diet in our study subjects over 

the intervention period. This is not practical in children and would likely be less 

applicable to health recommendations. Compliance with supplement consumption was 

also difficult to control in this study, especially considering that the glucose supplement 

tasted objectively less sweet than the fructose supplement. This could limit the desire for 

the children to drink the glucose vs. fructose supplement.  

Our study also has a number of strengths, including the use of MRI/MRS to 

quantify hepatic fat, the gold standard. This is also one of the first studies to look at 

NAFLD and PAI-1 in children, and the first study to take into account insulin resistance, 

and VAT in children. Our second aim was also a calorically-matched, double-blind, 

randomized controlled study comparing glucose to fructose beverages, a very strong 

format for an intervention study that is aimed to specifically assess the specific effects of 

fructose replacement with glucose on PAI-1. 

Additional studies are needed to assess interventions that may reduce plasma PAI-

1 concentrations and hepatic steatosis in children, including larger RCT’s that specifically 

evaluate the potential role of fructose as a causal factor. Some studies have also 

suggested that angiotensin receptor blockers appropriately target PAI-1 and serve as a 



19 

 

potential treatment for NAFLD;
78,79

 this is also being evaluated in an ongoing clinical 

trial by our group. 

In conclusion, our results show that PAI-1 has a strong association with hepatic 

steatosis in children with NAFLD independent of visceral adiposity and BMI, likely due 

to the buildup of triglycerides and free fatty acids in the liver. Our study also 

demonstrates that the replacement of fructose with glucose for a 4 week period in 

adolescents with hepatic steatosis does not significantly reduce levels of PAI-1.  
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Table 1. Demographic and Metabolic Characteristics of Cohort 1 

Parameters, mean (SE) NHF (N=12) LHF (N=14) HHF (N=13) 
p-value 

Hepatic fat (%) (3.96) (7.26) (15.9) 

Age (yrs) 14.6 (0.54) 13.9 (0.62) 13.7 (0.78) 0.615 

Male (n, %) 5 (41.7) 2 (14.3)* 9 (69.2)*† 0.015 

BMI z-score 1.95 (0.08) 2.01 (0.08) 2.30 (0.12)* 0.030 

TG (mg/dl) 72.8 (7.31) 122 (14.4)* 201 (32.7)*† 0.001 

FFA (mEq/L) 0.81 (0.08) 0.85 (0.07) 1.31 (0.80)* 0.032 

Cholesterol (mg/dl) 157 (22.1) 161 (8.78) 176 (12.0) 0.354 

LDL (mg/dl) 99.3 (8.28) 105 (6.56) 109 (9.69) 0.720 

apoB (mg/dl) 61.2 (5.39) 65.5 (4.58) 72.8 (6.80) 0.369 

Visceral adipose tissue (mm
2
) ⱡ 8974 (1137) 7283 (708)* 12924 (1379)*† 0.010 

HOMA-IR (mmol/L·pmol/L) 3.92 (0.44) 6.89 (1.66)* 11.3 (4.01)* 0.028 

Adipose-IR (mmol/L·pmol/L) 13.1 (1.60) 23.8 (5.99) 85.3 (46.7)*† 0.001 

Insulin (µU/L) 17.1 (2.15) 27.7 (22.1) 46.3 (12.9)* 0.012 

Adiponectin (µg/mL) 11.8 (1.26) 18.5 (2.1) 14.6 (2.08) 0.094 

TNF-α (pg/mL) 4.5 (0.61) 4.9 (0.46) 6.3 (0.62) 0.187 

ALT (U/L) 17.3 (2.15) 17.1 (1.05) 94.3 (36.2) <0.001 

AST (U/L) 21.8 (1.11) 25.3 (1.43) 126 (77.0) <0.001  

CRP (mg/L) 3.46 (1.03) 3.12 (0.64) 6.52 (2.18) 0.315 

P-value generated by ANOVA or alternatively Kruskal-Wallis if not normally distributed;  

* p ≤ 0.05 as compared to NHF, † p ≤ 0.05 as compared to LHF; ⱡ NHF, n=10; LHF, N=13; HHF, N=8. 

Significant p-values marked in bold 

TG, triglycerides; FFA, free fatty acids; LDL, low-density lipoprotein; ApoB, apolipoprotein b; HOMA-IR, 

homeostatic model assessment for insulin resistance index; Adipo-IR, adipose insulin resistance index; 

TNF-α, tumor necrosis factor-α; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CRP, C-

reactive protein 
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Table 2. Demographic and Metabolic Characteristics of Cohort 2 

Variable Fructose Group 

(n=9) 

Glucose Group 

(n=12) 

Age, yrs (Range) 11-18 11-18 

Male/Female 3/6 7/5 

BMI Z-Score 2.33 ± 0.55 2.10 ± 0.28 

Hepatic Fat (%) 14.5 ± 5.4 13.4 ± 5.7 

Triglycerides (mg/dl) 157.1 ± 104.6 177.1 ± 74.2 

Cholesterol (mg/dl) 168.1 ± 27.6 180.3 ± 53.7 

LDL (mg/dl) 108.4 ± 31.2 118.3 ± 43.8 

ApoB (mg/dl) 63.4 ± 15.2 77.1 ± 26.1 

HOMA-IR (mmol/L·pmol/L) 7.4 ± 2.9 7.3 ± 6.9 

Adipo-IR (mmol/L·pmol/L) 28.6 ± 11.3 31.0 ± 22.8 

Insulin (µU/L) 30.4 ± 12.8 30.9 ± 23.9 

LDL, low-density lipoprotein; ApoB, apolipoprotein b; HOMA-IR, 

homeostatic model assessment for insulin resistance index; Adipo-IR, 

adipose insulin resistance index 
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Table 3. Parameter estimates from linear regression model with PAI-1 as dependent 

variable with nothing controlled 

 Beta
 

(95% CI) p-value 

Hepatic Fat 0.06 (0.04 – 0.09) <0.0001 

Triglycerides 0.003 (0.001 – 0.005) 0.001 

Free Fatty Acids 0.47 (0.13 – 0.80) 0.007 

Cholesterol 0.004 (-0.001 – 0.01) 0.14 

LDL 0.004 (-0.003 – 0.01) 0.24 

ApoB 0.009 (-0.001 – 0.02) 0.078 

VAT 0.00004 (-0.00002 – 0.00009) 0.20 

HOMA-IR 0.023 (0.0002 – 0.046) 0.048 

Adipo-IR 0.002 (-0.0002 – 0.004) 0.067 

Insulin 0.008 (0.001 – 0.01) 0.02 

LDL, low-density lipoprotein; ApoB, apolipoprotein b; VAT, visceral 

adipose tissue; HOMA-IR, homeostatic model assessment for insulin 

resistance index; Adipo-IR, adipose insulin resistance index  
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Table 4. Parameter estimates from linear regression model with PAI-1 as dependent 

variable and controlling for BMI 

 Beta
 

(95% CI) p-value 

Hepatic Fat 0.056 (0.027–0.085) 0.0004 

Triglycerides 0.003 (0.001–0.005) 0.0009 

Free Fatty Acids 0.40 (0.07–0.72) 0.02 

Cholesterol 0.004 (-0.001–0.009) 0.12 

LDL 0.005 (-0.001–0.01) 0.13 

ApoB 0.009 (0.0005–0.02) 0.04 

VAT 0.00001 (-0.00005–0.00007) 0.63 

HOMA-IR 0.015 (-0.01–0.04) 0.23 

Adipo-IR 0.001 (-0.0009–0.004) 0.22 

Insulin 0.005 (-0.002–0.01) 0.15 

LDL, low-density lipoprotein; ApoB, apolipoprotein b; VAT, visceral 

adipose tissue; HOMA-IR, homeostatic model assessment for insulin 

resistance index; Adipo-IR, adipose insulin resistance index  
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Table 5. Parameter estimates from linear regression model with PAI-1 as dependent 

variable and controlling for HOMA-IR 

 Beta
 

(95% CI) p-value 

Hepatic Fat 0.057 (0.03 – 0.09) 0.0004 

Triglycerides 0.003 (0.001 – 0.006) 0.005 

Free Fatty Acids 0.42 (0.005 – 0.84) 0.048 

Cholesterol 0.002 (-0.004 – 0.009) 0.43 

LDL 0.003 (-0.004 – 0.009) 0.46 

ApoB 0.006 (-0.004 – 0.02) 0.23 

VAT 0.00002 (-0.00004 – 0.00008) 0.48 

Insulin 0.04 (0.001 – 0.08) 0.04 

LDL, low-density lipoprotein; ApoB, apolipoprotein b; VAT, visceral 

adipose tissue; HOMA-IR, homeostatic model assessment for insulin 

resistance index 
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Table 6. Parameter estimates from linear regression model with PAI-1 as dependent 

variable and controlling for VAT 

 Beta
 

(95% CI) p-value 

Hepatic Fat 0.08 (0.03 – 0.12) 0.001 

Triglycerides 0.005 (0.002 – 0.008) 0.001 

Free Fatty Acids 0.63 (0.07 – 1.19) 0.03 

Cholesterol 0.005 (-0.002 – 0.01) 0.17 

LDL 0.006 (-0.002 – 0.01) 0.13 

ApoB 0.01 (0.0003 – 0.02) 0.04 

HOMA-IR 0.03 (-0.02 – 0.07) 0.23 

Adipo-IR 0.01 (0.003 – 0.03) 0.02 

Insulin 0.009 (-0003 – 0.02) 0.13 

LDL, low-density lipoprotein; ApoB, apolipoprotein b; VAT, 

visceral adipose tissue; HOMA-IR, homeostatic model 

assessment for insulin resistance index; Adipo-IR, adipose insulin 

resistance index  
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Table 7. Parameter estimates from linear regression model with PAI-1 as dependent 

variable and controlling for Hepatic Steatosis  

 Beta
 

(95% CI) p-value 

Triglycerides 0.002 (-0.0006 – 0.004) 0.15 

Free Fatty Acids 0.29 (-0.01 – 0.58) 0.06 

Cholesterol 0.004 (-0.001 – 0.008) 0.12 

LDL 0.005 (-0.0008 – 0.01) 0.09 

ApoB 0.008 (-0.0002 – 0.02) 0.05 

VAT -0.00002 (-0.00008 – 0.00004) 0.42 

HOMA-IR 0.01 (-0.008 – 0.03) 0.23 

Adipo-IR 0.001 (-0.0007 – 0.003) 0.22 

Insulin 0.004 (-0.002 – 0.01) 0.18 

LDL, low-density lipoprotein; ApoB, apolipoprotein b; VAT, visceral 

adipose tissue; HOMA-IR, homeostatic model assessment for insulin 

resistance index; Adipo-IR, adipose insulin resistance index  
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Table 8. PAI-1 values (mean ± SE) by Beverage Group at Each Timepoint 

 Fructose Group Glucose Group 

Baseline (0 weeks) 47.3 ± 7.8 ng/mL 51.3 ± 6.7 ng/mL 

Two Weeks 48.7 ± 5.9 ng/mL 48.0 ± 9.7 ng/mL 

Four Weeks 49.5 ± 7.0 ng/mL 50.9 ± 8.0 ng/mL 

*   Repeated Measures ANOVA (with interaction): F-Test = 1.59; p-value = 0.2 
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Table 9. Parameter Estimates from a Mixed Model ANOVA Regression with PAI-1 as 

Dependent Variable and Controlling for Individual* 
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Figure 1. Known Mechanism of the Action of PAI-1 
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Figure 2. Visualization of Aim 1 and Aim 2 of the present study 
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Figure 3. Flow diagram of the present study 
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Figure 4. Diagrammatic Relationship between PAI-1 and Variables of Interest 
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Figure 5. The trend of plasma PAI-1 concentration in Hispanic, obese children with 

normal, low, and high hepatic fat* 

 

 

* p-value < 0.001 by Kruskal-Wallis’ test comparing the 3 groups 
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Figure 6. Mean PAI-1 Levels over 4 Week Period between Beverage Groups 
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Figure 7. Trend of PAI-1 over the 4 Week Period by Individual within Fructose Group 
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Figure 8. Trend of PAI-1 over the 4 Week Period by Individual within Glucose Group 
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APPENDIX: 

Tests for Normality of the Unedited and Log-Transformed Predictor and Outcome 

Variables 

 Kolmogorov-

Smirnov Test* 

Cramer-von 

Mises Test* 

Anderson-

Darling Test* 

Skewness^ Kurtosis^ 

PAI-1 0.079 0.033 0.032 1.22 2.26 

Hepatic Fat 0.016 <0.005 <0.005 1.22 1.26 

HOMA-IR < 0.01 <0.005 <0.005 3.62 14.68 

Adipo-IR < 0.01 <0.005 <0.005 5.63 33.08 

Log (PAI-1) > 0.150 0.211 0.141 -0.80 1.40 

Log (Hepatic Fat) > 0.150 0.226 0.241 0.22 -0.96 

Log (HOMA-IR) 0.029 0.022 0.017 0.88 1.92 

Log (Adipo-IR) 0.078 0.026 0.028 1.38 3.99 

* Note that in these tests for normality, the p-value is based on the assumption that the distribution is 

normal. So a low p-value indicates that you reject normality and your sample is non-normal.  

^ Note that normal population is assumed if skewness or kurtosis is < 1. If it is > 1, then non-

normality assumed.  

 


