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Abstract 

Sleep Disturbance and Autonomic Dysregulation as Pathways of  

Mortality and Cardiovascular Risk in Depression 

By Minxuan Huang 

 

 

Depression is a prevalent psychiatric condition, and remains a risk factor for adverse health 

outcomes, including mortality and cardiovascular disease (CVD). However, little is known about 

the pathophysiology underlying depression and its associated consequences. Sleep disturbance is 

a modifiable behavior that is a common symptom of depression; autonomic dysregulation has 

been linked to depression. Both factors independently contribute to higher risk of mortality and 

CVD. The objective was to elucidate the complex roles of sleep disturbance and autonomic 

dysregulation on the pathways linking depression and adverse outcomes, using a co-twin control 

design. This dissertation leveraged data from the Emory Twin Study, which included 283 pairs 

(n=566) from members of the Vietnam Era Twin Registry. 

 

In Aim 1, we conducted a cross-sectional evaluation of the association of depressive symptoms, 

assessed by the Beck Depression Inventory-II (BDI), with sleep disturbance, assessed by in-lab 

polysomnography, at-home actigraphy, and the self-rated Pittsburgh Sleep Quality Index. We 

found that depression was associated with longer rapid eye movement sleep disruption, sleep 

fragmentation and variability. Depression was consistently not associated with sleep architecture 

or sleep-disordered breathing. 

 

In Aim 2, we evaluated the temporal relationships between sleep and autonomic dysregulation 

indexed by heart rate variability (HRV). We found that the associations of daytime HRV with 

sleep stages, cumulative hypoxic burden and sleep continuity measures were bidirectional. 

Autonomic function during wakefulness and sleep disturbance are closely interrelated and their 

influence on each other may extend beyond 24 hours. 

 

In Aim 3, we assessed the prognostic implications of baseline HRV and depression with adverse 

outcomes during 12-year follow-up. We found that depression and reduced HRV at baseline 

were associated with higher risk of all-cause mortality and CVD during follow-up. 

 

The findings of this dissertation extend the existing literature by providing substantial evidence 

that depression, sleep disturbance and autonomic dysregulation are closely interrelated, and they 

together contribute to a higher risk of adverse outcomes. Our results contribute to clarify the link 

between depression and its outcomes, and help inform future research on strategies targeting 

sleep and HRV in lowering mortality and cardiovascular risk in depressed individuals.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Depression is a prevalent psychiatric condition, with a lifetime prevalence of 16% in the 

United States, translating into 33 to 35 million adults with depression some time in their lives.1-3 

It remains a recognized risk factor for adverse health outcomes, such as all-cause mortality, as 

well as the development and progression of cardiovascular disease (CVD).4-9 However, the exact 

pathophysiology and mechanisms underlying the association between depression and adverse 

health outcomes, including mortality and CVD, still remain unclear. Despite many proposed 

mechanisms (e.g., inflammation, neuroendocrine dysregulation, and lifestyle behaviors), they 

only partly account for the magnitude of the associations (i.e. roughly 2-fold increased risk from 

depression). Furthermore, evidence from our lab and others suggests a shared genetic 

predisposition underlying both depression and adverse health consequences such as mortality 

and CVD,10-14 which suggests that genetic factors could be a potential confounder on this 

association. Identification of new modifiable risk pathways is critical to the design and 

implementation of effective intervention strategies to reduce risk related to mortality and CVD.  

Among the many proposed mechanisms underlying the association between depression 

and adverse health outcomes, sleep disturbance is a modifiable behavior that is a common 

symptom of depression, as well as part of the diagnostic criteria for major depressive disorder 

(MDD).15 Sleep disturbance is an umbrella term that describes a range of sleep disorders, 

including disorders of initiating and maintaining sleep, disorders of excessive somnolence, 

disorders of sleep-wake schedule, and dysfunctions associated with sleep, sleep stages, or 

particle arousals. Research have shown that sleep disturbance is independently associated with 

all-cause mortality and cause-specific mortality related to CVD.16-18 Sleep disturbance also 
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contributes to cardiovascular risk, including CVD risk factors such as hypertension, obesity, and 

metabolic syndrome, and CVD incidence.19-24 Thus, sleep disturbance could be an important 

pathway linking depression and adverse events, including mortality and CVD. 

The exact mechanisms linking sleep disturbance with adverse outcomes among depressed 

patients remain undetermined. The autonomic nervous system (ANS) could be a biological 

mediator amongst depression, sleep disturbance, and adverse outcomes. Sleep disturbance, such 

as poor self-reported sleep quality or daytime sleepiness, has been linked to nighttime ANS 

dysregulation.25-27 Heart rate variability (HRV) is a measure of beat-to-beat heart rate 

fluctuations over time and represents a noninvasive index of cardiac ANS regulation.28,29 A 

relationship between depression and HRV, and other measures of autonomic dysregulation, is 

well known.30,31 In a recent study by the same research team here at Emory University, we has 

demonstrated that such association is bidirectional.32 It is likely that the association between 

sleep and HRV is also bidirectional. An evaluation of the directionality of such association can 

help better understand the complex mechanisms of depression, sleep disturbance, autonomic 

dysregulation, and adverse health outcomes. 

 

1.2 Study Motivation 

 To date, no prior research has comprehensively evaluated the complex associations 

between depression, sleep disturbance, autonomic dysregulation, and adverse health outcomes 

including mortality and CVD. Such research is necessary to help elucidate and better understand 

the complex pathophysiological mechanisms and pathways linking depression and adverse health 

consequences, in order to help reduce risk of mortality and CVD, especially among depressed 

individuals. 
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 Previous research have been limited by a lack of comprehensive evaluation of clinical 

diagnosis of depression, as well as a full spectrum of objective sleep dimensions. Even though 

depression has shown an association with self-reported sleep problems,15,33-36 the relationship 

between depression and objectively measured sleep disturbance is far less consistent in some 

objectively measured sleep dimensions, such as sleep architecture and sleep apnea, using 

objective tools including polysomnography (PSG) and actigraphy. While some studies have 

reported an association,37-40 others have not.41-43 In addition, the sleep dimensions that are 

associated with depression vary from study to study. For instance, some studies have linked 

depressive symptoms with prolonged stage 2 sleep and less rapid eye movement (REM) 

sleep,44,45while others have not identified such association between depression and sleep 

architecture.41 The inconsistencies of prior studies may results from the limited sample sizes, 

differences in their measurement of depression (clinical diagnosis vs. self-rated questionnaires), 

or a lack of comprehensive evaluation of objective sleep dimensions.33,46-48 

 As for the association between sleep disturbance and autonomic dysregulation, the 

existing literature has suggested that such association may be bidirectional, but the directionality 

of the association and the temporal dynamics still remain undetermined given the cross-sectional 

design of most previous studies.26,49,50 To date, the pathways linking ANS function and sleep still 

remain unclear. Some studies have suggested that sleep disturbance, including obstructive sleep 

apnea and sleep quality measures, such as sleep duration and latency, may result in autonomic 

imbalance by triggering a dominance of sympathetic over parasympathetic activity.51-53 In 

contrast, other studies have demonstrated that ANS regulation, measured by HRV, predicts 

subsequent alterations in sleep quality and architecture.54-56 However, no prior studies have 

comprehensively evaluated their temporal dynamics and directionality of association using a full 
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spectrum of objectively measured sleep dimensions. More information is also needed on the 

temporal dynamics between HRV and sleep, i.e., how long and the extent to which their 

influence on each other is maintained over time, since prior studies assessed primarily short-term 

associations.55,57,58 

In addition to limited information regarding the temporal directionality of the association 

between sleep disturbance and autonomic dysregulation, most prior studies recruited participants 

with specific clinical problems, such as chronic fatigue syndrome, narcolepsy, and obstructive 

sleep apnea.53,54,59,60 Literature in predominantly healthy populations is limited and results have 

not been consistent.58,61,62 Furthermore, most prior studies used laboratory-based methods to 

measure sleep.56,59,63,64 While this provides a controlled environment, it may not illuminate sleep 

problems in normal life.65,66 

Autonomic dysregulation as indexed by reduced HRV and other electrocardiographic 

(ECG) metrics, including deceleration capacity, is an independent predictor of adverse health 

outcomes, such as all-cause mortality.67-70 However, few studies have evaluated whether ECG 

metrics of autonomic dysfunction predict future incident CVD events. In addition, to our 

knowledge, no previous study has assessed nighttime HRV (which could relate to sleep 

disturbance) separately from daytime HRV in predicting CVD risk. Understanding such 

association has important clinical and public health implications. 

Prior twin studies suggest that the link between depression and sleep may be partially 

explained by shared genetic and familial factors.71-74 However, these findings were limited to 

self-reported sleep measures. Similarly, it is undetermined whether sleep disturbance, autonomic 

dysregulation, as well as mortality and CVD risk, may share common pathophysiology.75-79 By 

using a co-twin matched study design and within-pair analysis of twin pairs discordant on 
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exposure variables, we are able to control for potential genetic and early familial confounding. 

The inclusion of both monozygotic (MZ) and dizygotic (DZ) twins also allows an evaluation of 

genetic and familial factors and their effects on the association. 

 

1.3 Objective and Specific Aims 

 My dissertation research is aimed at elucidating the complex underpinnings of 

depression, sleep disturbance, autonomic dysregulation, and adverse health outcomes, and will 

address the limitations of previous studies. The objective of this dissertation is to elucidate the 

associations between depression, sleep disturbance and autonomic dysregulation, as they may 

represent pathophysiological pathways linking depression and adverse health outcomes including 

mortality and CVD.  

This dissertation includes the following aims/hypotheses. The interrelationships of the 

dissertation aims are summarized in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Interrelationships among the specific aims of the dissertation research 
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Specific Aim #1 

Examine the association of depressive symptoms with objectively and subjectively 

measured sleep disturbance. Depressive symptoms were measured using the Beck Depression 

Inventory-II (BDI) score, and major depression was assessed using structured clinical interview. 

Sleep disturbance was measured objectively using one-night in-lab PSG and 7-day in-home 

actigraphy, and was measured subjectively using the self-rated Pittsburgh Sleep Quality Index. 

The approach to this aim was to use multivariable mix-effects regression model with random 

effect for twin pair. The hypothesis for this aim is that individuals with more depressive 

symptoms (or depression diagnosis) have more sleep disturbance compared to individuals with 

fewer depressive symptoms (or no depression diagnosis). We also hypothesized that depression 

is more consistently associated with subjective than objective sleep measures, and that genetic 

and familial factors play a role in this association. 

 

Specific Aim #2 

Evaluate the temporal relationships and directionality of association between objectively 

measured sleep disturbance and autonomic dysregulation. Sleep disturbance was objectively 

measured using one-night in-lab PSG and 7-day in-home actigraphy. Autonomic dysregulation 

indexed by HRV was obtained using 24-hour Holter ECG and 7-day ECG monitoring with a 

wearable patch. Multivariable mixed-effects regression models and vector autoregressive models 

with Granger causality tests were used to examine the temporal dynamics and directionality of 

the association between sleep and HRV. We hypothesized that the association between sleep and 

HRV is bidirectional and that the influence of these phenotypes on each other would be 

relatively brief, within 24 hours. 
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Specific Aim #3 

Evaluate the prognostic implications of depression and autonomic dysregulation at baseline 

with risk of all-cause mortality and incident CVD events during follow-up. Depressive 

symptoms were measured using the Beck Depression Inventory-II (BDI) score, and major 

depression was assessed using structured clinical interview. At baseline assessment, autonomic 

dysregulation indexed by HRV was measured through 24-hour ECG monitoring, and were 

segmented into daytime and nighttime data. During an average of 12-year follow-up, mortality 

data were collected via National Death Index database, and within a subset of twins, incident 

CVD events data were obtained during in-person visit or phone interview, and were further 

verified and adjudicated via a thorough medical chart review. The approach to this aim was to 

use Kaplan-Meier figures to illustrate the survival probabilities by depression status or HRV 

values, and to use multivariable frailty models with random effect for twin pair to examine the 

hazard ratios for mortality and CVD events within twin pairs. We hypothesized that fewer 

depressive symptoms (or no depression diagnosis) and higher values of both daytime and 

nighttime HRV are associated with decreased risk of mortality and CVD, and genetic and 

familial factors play a role in this association. 

 

1.4 Data Source 

We will leverage the Emory Twin Study (ETS) and its follow-up study (the Emory Twin 

Study Follow-up, or ETSF). The participants of this study were recruited from the Vietnam Era 

Twin Registry (VETR), which is a national sample of >7,000 male MZ and DZ twin pairs who 

served on active duty during the Vietnam war (1964-1975).80 The ETS included 566 twins (283 

pairs), and its objective was to evaluate the role of biological, psychological, and behavioral risk 
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factors in the development of subclinical CVD.81,82 The ETSF followed these twins either in-

person or by phone, who were initially without a history of CVD, for incident CVD events and 

subclinical coronary heart disease on average 12 years after the baseline assessment. The study 

over-sampled twin pairs that are discordant of depression or posttraumatic stress disorder in 

order to address questions related to these conditions. About half of the twin pairs are discordant 

for major depressive disorder (MDD). In a subgroup of 112 twin pairs (n=224) at follow-up we 

have collected objective sleep (polysomnography and 7-day actigraphy) and ANS data through 

both in-lab and at-home monitoring, thus allowing to gather data in a controlled laboratory 

environment as well as in the “real-world”. 

A co-twin control study provides a natural “counterfactual” design to examine 

phenotypic associations with intrinsic adjustment for potential confounders, as twins are matched 

for genetic and early familial factors.83 The study of MZ and DZ twins provides information on 

common etiological pathways linking phenotypes of interest. Because MZ twin pairs share 100% 

of their genes while DZ twin pairs only share 50% on average, if a larger association of interest 

is found within DZ pairs than within MZ pairs, this suggests that genetic factors may play a role 

in this association. Our co-twin control study design has improved internal validity and precision 

by intrinsically adjusting for unknown or unmeasured confounders, such as genetic, familial and 

environmental factors. 

 

1.5 Public Health Importance 

This dissertation contributes to a better understanding of the complex relationships 

among depression, sleep disturbance, autonomic dysregulation and adverse health outcomes, 

including mortality and CVD.  
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Specifically, this research project provides a comprehensive evaluation on the association 

of depression with both objective and subjective sleep disturbance, in a full spectrum of sleep 

dimensions. It contributes to clarify the link between depression and sleep disturbance, and their 

roles in the pathophysiology of adverse health events. This study elucidates the temporal 

dynamics and directionality of association between sleep and HRV, which helps inform future 

research directions on prevention and treatment strategies to mitigate sleep disturbance and 

autonomic dysregulation among depressed individuals. In addition, this dissertation project sheds 

light on the prognostic implications of alterations in HRV and depressive symptoms in predicting 

mortality and CVD, which suggest the utility of HRV monitoring in preventing and treating 

adverse health consequences, especially among individuals with depression and/or sleep 

disturbance. Our research helps understand whether screening for potential sleep disorders and/or 

autonomic dysregulation among patients with depression is effective in identifying individuals at 

the highest risk for adverse outcomes. Our study supports the sleep hygiene education as an 

adjunct treatment for depression, as well as exercise interventions, which are shown to improve 

autonomic dysfunction, as an adjunct treatment for sleep improvement. In addition, 

pharmacological therapies to restore autonomic balance and/or treat poor sleep may have an 

effect on adverse health outcomes among depressed individuals. Furthermore, capitalizing on the 

twin sample, this study helps evaluate the role of genetic predisposition and familial factors as 

opposed to unshared environment in the underlying pathways from depression to sleep 

disruption, autonomic imbalance, mortality and CVD.  
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

2.1. Depression and Adverse Health Outcomes 

Depression is a prevalent psychiatric condition with a lifetime prevalence of 16% in the 

United States, translating into 33 to 35 million adults who will develop depression at some point 

in their life time.1-3,32,84 During 2013 and 2016, it was estimated that 8.1% of American adults 

aged 20 and over had major depressive disorder (MDD) in a given 2-week period.85 Depression 

also has substantial gender, age and racial differences. For example, women are almost twice as 

likely as are men to have had depression; people in younger age groups (such as 18-25 years) 

have higher prevalence of depression than people in older age groups (such as >50 years). As for 

racial differences, although racial minorities are less likely to report acute episodes of MDD than 

white, they are more like to suffer from chronic depression with heavier consequences on daily 

functioning.86 Figure 2.1 shows the prevalence of major depressive episode as well as the 

differences among US adults in 2017. Research has reported that the prevalence of depression 

has increased drastically, especially among adolescents and young adults in the recent years.87,88 

The increasing prevalence and the adverse health outcomes that are associated with depressive 

disorders highlight the importance of depression prevention and intervention.  
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Depression remains a recognized risk factor for disability, mortality, as well as the 

development and progression of CVD.1,3,7,9,89-91 Numerous studies have been conducted on the 

association of depression with increased risk of all-cause mortality in general population as well 

as various patient groups. For example, a 2014 meta-analysis that included 293 studies with more 

than 1.8 million participants from 35 countries showed that depression was associated with a 1.5 

times increased risk of all-cause mortality.7 For cause-specific mortality, studies have suggested 

that individuals in the general community with depression may be at increased risk of mortality 

due to CVD, even several decades after depression assessment.92-94 As for cancer-specific 

mortality, even though depression is linked to disease development and progression in cancer 

patients,95 the association between depression and cancer mortality is weaker compared to CVD 

mortality, and decreases when the follow-up period exceeds 5 years.92,94,96-98 The excess 

mortality risk associated with depression is not explained by excess suicide deaths.99 

The association of MDD or depressive symptoms with CVD morbidity is well established 

among subjects with and without CVD.6,90,91,100 For example, a systematic review and meta-

Figure 2.1 Prevalence of major depressive episode among US adults (2017) 
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analysis of prospective cohort studies showed that depression is associated with a significant 

increase in the risk of coronary heart disease and myocardial infarction by about 30%, which 

may have implications for CVD etiological research and psychological treatments.90 Research 

has continually shown that the severity of depressive symptoms is proportional to the risk of 

developing CVD.101 As CVD is the leading cause of mortality in developed countries, when 

CVD and MDD present together, the prognosis for both worsen.102-104 Evaluation of the potential 

mechanisms linking depression and adverse events such as CVD contributes to a better 

understanding of pathophysiological pathways, and helps inform prevention and treatment 

strategies for CVD risk. 

The exact pathophysiology and mechanisms underlying the association between 

depression and mortality still remain unclear. It has been proposed that higher mortality found 

among depressed individuals might be attributable to the mechanisms specific to the existing 

diseases, behavioral pathways such as treatment adherence and health behaviors, and biological 

pathways (e.g. neuroendocrine and neuro-immunological systems, and the circadian rhythm).7,105 

Specifically, research has demonstrated that depression is associated with peripheral 

inflammation and oxidative stress, which are mechanisms that may contribute to higher risks of 

obesity and cardiometabolic conditions that lead to shorter time to mortality.106-108 The 

association between depression and cardiovascular mortality may also be attributable to platelet 

function, endothelial function, inflammation, and autonomic balance, which play important roles 

in cardiovascular disease development and progression.109,110 For cancer-specific mortality, one 

of the suggested mechanisms is stress affecting the development and progression of cancer by 

impacting the repair of damaged DNA and accelerating tumor cell growth, which may contribute 

to a shorter time to cancer death.111,112 
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As for mechanisms linking depression to CVD, studies have suggested multifactorial 

pathophysiological pathways through which depression can increase CVD risk, including 

neuroendocrine dysregulation, metabolic and immune-inflammatory disturbance, and unhealthy 

lifestyle behaviors (e.g., smoking, alcohol abuse, physical inactivity, sleep disturbance, and 

unhealthy diet).19,20,32,100,113-115 Figure 2.2 summarizes a few of the proposed mechanisms linking 

depression to adverse cardiac events.116 However, these data have not been entirely consistent, 

and the above suggested mechanisms only partially explain the association between depression 

and CVD; and none has been shown to account for more than a small proportion of the CVD 

risk.6 Identification of additional modifiable bio-behavioral mechanisms linking depression to 

CVD is critical to the design and implementation of intervention strategies to lower CVD risks 

among depressed individuals. Furthermore, evidence from our lab and others suggests a shared 

genetic predisposition underlying both depression and CVD,10,11 pointing to common 

pathophysiological mechanisms yet to be discovered. In the current application, we will test the 

hypothesis that sleep disturbance and nighttime autonomic dysregulation are key interrelated 

pathways linking depression and CVD. 
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Among the many proposed mechanisms and potential pathophysiology underlying the 

pathways from depression to adverse health outcomes, such as mortality and CVD, sleep 

disturbance and autonomic dysregulation may explain the excess risk of adverse outcomes 

among depressed individuals in addition to the traditional risk factors and other known 

mechanisms. However, there is a lack of comprehensive evaluation of both these factors and 

their relationships with mortality and CVD in the context of major depression. Thus, both sleep 

disturbance and autonomic dysregulation are the main factors to be evaluated in this dissertation 

project. 

Figure 2.2 Proposed mechanisms of adverse cardiac outcomes in cardiac patients with 

depression 
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2.2 Depression and Sleep Disturbance 

Among the many proposed mechanisms underlying the association between depression 

and adverse outcomes, sleep disturbance is a modifiable behavior that is a common symptom of 

depression.15 As sleep disturbance has been shown to be independently associated with all-cause 

mortality and cause-specific mortality related to CVD,16-18 it is likely a potential mediating factor 

that may explain the excess risk of mortality and CVD events in major depression. 

Sleep is an essential component of physiological regulation and is critical for optimal 

brain and bodily functions. Sleep disturbance affects 87 million adults in the US annually.117,118 

Sleep disturbance is an umbrella term that describes a range of sleep disorders, including 

disorders of initiating and maintaining sleep, disorders of excessive somnolence, disorders of 

sleep-wake schedule, and dysfunctions associated with sleep, sleep stages, or particle arousals. 

Table 2.1 summarizes the main categories of sleep disturbance, including insomnias, 

hypersomnias, and disorders of the sleep-wake schedule.119 
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Table 2.1 Classification of sleep disturbance 

Classification of sleep disturbance 

I. Insomnias: Disorders of initiating and maintaining sleep 

A. Psychophysiologic–situational or persistent 

B. Associated with psychiatric disorders, particularly affective disorders 

C. Associated with drugs and alcohol 

1. Tolerance to or withdrawal from CNS depressants 

2. Sustained use of CNS stimulants 

3. Sustained use of or withdrawal from other drugs 

4. Chronic alcoholism 

D. Associated with sleep-induced respiratory impairment 

1. Sleep apnea syndrome 

2. Alveolar hypoventilation syndrome 

E. Associated with sleep-related (nocturnal) myoclonus and "restless legs" 

F. Miscellaneous—other medical, toxic, or environmental conditions 

II. Hypersomnias: Disorders of excessive somnolence 

A. Psychophysiologic—situational or persistent 

B. Associated with psychiatric disorders, particularly affective disorders 

C. Associated with drugs and alcohol 

D. Associated with sleep-induced respiratory impairment (as in D above) 

E. Narcolepsy—cataplexy 

F. Miscellaneous—other medical, toxic, environmental, or idiopathic conditions 

III. Disorders of the sleep–wake schedule 

A. Transient—jet lag, work shift 

B. Persistent 

1. Delayed sleep phase syndrome 

2. Advanced sleep phase syndrome 

3. Non-24-hour sleep–wake syndrome 

IV. Parasomnias: Dysfunctions associated with sleep, sleep stages, or partial arousal 

A. Sleepwalking 

B. Sleep terrors and dream anxiety attacks 

C. Enuresis 

D. Nocturnal seizures 

E. Other sleep-related dysfunctions 

 

Previous research that evaluated the association between depression and sleep have 

focused on a few specific sleep dimensions, such as insomnia, sleep-disordered breathing, 

hypersomnolence disorders, and disruption in the sleep-wake schedule. Among common types of 

sleep disturbance, insomnia is a prevalent and persistent sleep problem in which a person has 

difficulty falling asleep or staying sleep throughout the night. It has been estimated that up to 
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10% to 30% of adults live with some form of insomnia.120 Most cases of insomnia have been 

attributed to poor sleep habits, depression, anxiety, lack of exercise, chronic illness, or certain 

medications.121 Sleep-disordered breathing (SDB) describes a chronic condition in which partial 

or complete cessation of breathing occurs throughout the night, and may result in daytime 

sleepiness or fatigue.121 Sleep apnea is the most common form of SDB, in which breathing 

briefly and repeatedly stops and starts during sleep. Hypersomnolence disorders refer to feelings 

of sleepiness and fatigue during the day despite a healthy circadian rhythm and an adequate 

amount of sleep during the previous night.121 Specifically, narcolepsy describes a condition that 

is characterized by extreme sleepiness during the day and falling asleep suddenly during the day. 

Sleep-wake disorders occur when the body’s internal clock does not work properly or is out of 

sync with the surrounding environment.122 Jet lag disorder and shift work disorder are the two 

common types of sleep-wake disorders. Parasomnia is a collective term for unusual behaviors 

that occur prior to sleep, during sleep, or during the transition period between sleep and 

waking.123 Other sleep dimensions of interest may include sleep fragmentation that is 

characterized by repetitive short interruptions of sleep, restless legs syndrome which is a type of 

sleep-related movement disorder, and disruptions in the sleep stages and architecture.121 

Sleep disturbance is a common symptom of depression.15,124 Studies have shown that 

more depressive symptoms are positively associated with various self-reported indices of sleep 

disturbance, including worse sleep quality, more sleep onset difficulties, and more frequent 

awakenings.15,33,34,125 Numerous studies have shown an association between depression and self-

reported sleep problems.15,33-36 For example, in a community sample of elderly Asian population, 

depressive symptoms, evaluated by a self-rated measure of depression in older adults, were 

significantly associated with sleep disturbance measured by self-reported questionnaire, the 
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Pittsburgh Sleep Quality Index (PSQI).33 In another patient population with heart disease, more 

depressive symptoms, measured by the Beck Depression Inventory (BDI) score, were 

significantly associated with poor sleep indexed by PSQI components in subjective sleep quality 

and daytime dysfunction. Because of the low cost and convenience of administration, self-

reported sleep measures such as the PSQI score remain the most frequently used methods to 

measure sleep disturbance. 

There have been quite a few studies that evaluated the association between depression 

and objectively measured sleep disturbance, using measures such as polysomnography (PSG) or 

actigraphy. However, their results have not been consistent, in terms of directionality and 

magnitude of association, or sleep dimensions that are shown to be associated with depression. 

For example, some studies have reported an association between more depressive symptoms and 

longer rapid eye movement (REM) sleep latency and higher REM density,37,38 while other 

studies have not found such association.41,42 In addition, the existing literature is far from 

consistent regarding the sleep dimensions that may be affected by depression. For example, some 

studies have linked depressive symptoms with prolonged stage 2 sleep and less rapid eye 

movement (REM) sleep,44,45 while others have not found an association between depression and 

sleep architecture.41 The inconsistencies of results in prior studies may be due to the fact that 

several studies were limited in sample size, differed in their measurement of depression (self-

rated or clinical diagnosis), or lacked a comprehensive evaluation of objective sleep 

dimensions.33,46-48 As for SDB, most previous studies that examined the relationship of 

depression with SDB-related measures did not find a significant association.42,126-131 For 

actigraphy-measured sleep disturbance, prior studies have reported a significant association 

between depression and worse sleep quality and continuity, such as lower sleep efficiency (SE) 
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and higher fragmentation.132-135 

A growing body of literature has pointed out a potential bidirectional association of 

clinical depression or depressive symptoms with various indices of sleep disturbance (e.g., 

longer sleep onset latency, more numbers of awakenings, and lower sleep efficiency).15,136-138 For 

example, more than 90% of depressed patients have reported having one or more sleep issues, 

such as insomnia and hypersomnia.34 Specifically, a study by Lovato et al suggested that 

depressed individuals had significantly longer sleep onset, more wake after sleep onset, and 

lower sleep efficiency compared to individuals without depression.136 These sleep problems may 

emerge as a symptom of major depression or as a side effect from treatment of depression. On 

the other hand, sleep disorders often occur prior to the onset or recurrent episode of major 

depression. It has been reported that among individuals with major depression, 40% reported 

having insomnia before depression.139 Other studies reported as many as 24% to 58% of 

individuals with sleep-disordered breathing were also diagnosed with depression, suggesting that 

sleep disturbance may be involved in the pathogenesis of depression.140,141 

 

2.3 Depression and Autonomic Dysregulation 

Autonomic nervous system (ANS) controls basic bodily functions such as heartbeat, 

digestion, respiration and blood pressure regulation. The dysregulation of the ANS system can be 

a complication of many diseases, and is associated with various pathological conditions, such as 

higher blood pressure, incident cardiovascular disease (CVD), and mortality.67,142-144 Autonomic 

dysregulation can be measured noninvasively using heart rate variability (HRV), which provides 

a measure of beat-to-beat heart rate fluctuations over time and represents a noninvasive index of 

cardiac autonomic regulation.28,29. Reduced HRV is indicative of an imbalance between 
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sympathetic and parasympathetic modulation, i.e. increase in the sympathetic nervous system 

(SNS) and/or a decrease in the parasympathetic nervous system (PNS) modulation,114 and is 

suggestive of increased morbidity and mortality. Deceleration capacity (DC) is a novel and 

powerful HRV metric of parasympathetic activity that provides an average speed of heart rate 

deceleration, and is potentially more robust and predictive than other HRV metrics in evaluating 

parasympathetic function and predicting adverse outcomes.70 Specifically, compared to HF 

HRV, one advantage of DC is that it is not influenced by respiration of body position, which 

makes it a more stable and reproducible metric that depends less on the activity in general. 

Reduced HRV predicts CVD morbidity and all-cause mortality, and vagal function indexed by 

HRV may provide a structural link connecting psychological moments to morbidity and 

mortality.28,29,67,143,145,146 

ANS dysregulation indexed by a reduced HRV is likely a critical biological mediator 

linking depression, sleep disturbance, and adverse health outcomes.6,25-27,30,31,100 Prior studies 

have consistently shown an association of depression with reduced HRV among individuals with 

CVD.6,100 Predominantly cross-sectional studies have reported an inverse association between 

more depressive symptoms and reduced HRV in multiple domains.147-149 Due to the small 

number of longitudinal investigations on the directionality of the association between depression 

and HRV, the temporal relationships between these two phenotypes still remain undetermined. 

The existing studies have been inconsistent in terms of the directions of association between 

depression and unfavorable HRV indices and notably reduced cardiac vagal modulation. Of note, 

a recent study, using a cross-lagged analysis over a 10-year period, has demonstrated that higher 

baseline HRV measures were associated with a lower likelihood of incident depressive 

symptoms at follow-up in men, but depressive symptoms at baseline were not associated with 
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HRV at follow-up.150 Figure 2.3 shows the association between baseline heart rate and HRV 

with the risk of incidence depressive symptoms 10 years later in men and women without 

depressive episodes at baseline.150 

 

 

Using our own twin dataset, the candidate has also recently investigated the temporal 

directionality of the association between depression and autonomic dysregulation indexed by 

reduced HRV.32 This study demonstrated that depressive symptoms are bidirectionally 

associated with a reduced HRV in all frequency domains, including ultra-low frequency (ULF), 

very low frequency (VLF), low frequency (LF), and high frequency (LF). In addition, results 

showed consistent associations between baseline HRV and depressive symptoms at follow-up 

Figure 2.3 Baseline heart rate and HRV and risk of incidence depressive symptoms 10 years later 

in men and women without depressive episode at baseline 
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across all HRV domains and models, which were not explained by antidepressants or other 

participant characteristics. The magnitude of the association was similar in the opposite 

pathways linking baseline depressive symptoms to HRV at follow-up, and it can be mediated by 

antidepressant use. The associations were slightly stronger in dizygotic twins, suggesting a 

potential role of genetic predisposition on the association of depression with HRV. Our findings 

agree with the previous longitudinal study that evaluated the temporal directionality, and expand 

previous predominantly cross-sectional studies of the inverse association between depressive 

symptoms and HRV. This evidence supports the hypothesis that ANS disturbances, as reflected 

by reduced HRV metrics, may have bidirectional association with depression, and the causal 

pathway from depression to ANS disturbances can be mediated by use of antidepressants.150 

The exact mechanisms linking depression and ANS dysfunction are still unknown. 

Emotional regulation and social behavior, which are involved in the risk of depression, have 

been associated with brain areas that regulate vagal modulation and cardiac ANS control, such as 

prefrontal cortex and the amygdala.151,152 This suggests that there could be shared 

pathophysiology underlying disturbed ANS functions and links both depression vulnerability and 

cardiac ANS regulation. Other research also suggested that chronic stress and prolonged negative 

emotions, often experienced among depressed individual, can lead to increased sympathetic and 

reduced parasympathetic modulation.115 The effect of depression on ANS dysfunction may be 

partly explained by antidepressant use, as supported by our own findings as well as other 

studies.32,153,154 For example, in a longitudinal study, depressed individuals who started to use 

different antidepressant medications exhibited a decreased cardiac vagal control, compared with 

antidepressant naïve individuals with depression or individuals who stopped using 

antidepressants.153 
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2.4 Sleep Disturbance and Autonomic Dysregulation 

Similar to the bidirectional association between depression and autonomic dysregulation 

indexed by reduced HRV, it is likely that the association between sleep disturbance and HRV is 

also bidirectional. However, to date, given the cross-sectional design of most previous studies, 

the directionality of associations between sleep disturbance and autonomic dysregulation still 

remains unclear.26,49,50  

Some studies have suggested that sleep disturbance may precede autonomic 

dysregulation. For example, studies have suggested that sleep disturbance, including obstructive 

sleep apnea and measures of sleep quality, may cause autonomic imbalance by triggering a 

dominance of sympathetic over parasympathetic activity.51-53 REM sleep is characterized by 

decreased parasympathetic modulation, whereas during non-REM sleep efferent sympathetic 

nerve activities diminish and parasympathetic modulation increases, indexed by HF HRV.155,156 

Marked autonomic dysfunction involving the parasympathetic system has been described in 

patients with sleep disorders.25-27,49,50,156 For example, in a children population aged between 5 to 

11 years old, long sleep latency predicted lower HF HRV, while nocturnal awakenings, sleep 

latency, low sleep efficiency, and low corrected sleep duration were related to higher LF/HF, 

which is an indicator for sympathetic and parasympathetic imbalance.52 Similarly, another study 

showed that patients with obstructive sleep apnea (OSA) are characterized by reduced HRV, 

compared to individuals without OSA.53 The findings of this study also indicates that a higher 

apnea/hypopnea index (AHI), which is a primary indicator for sleep apnea, constitutes an 

independent predictor of reduced HRV, both in the sympathetic and parasympathetic 

components, as well as the sympathetic-parasympathetic balance. 

In contrast, other studies have proposed that ANS regulation, measured by HRV, is a 
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predictor of subsequent sleep quality and sleep architecture.54-56 In a study of chronic fatigue 

syndrome, researchers found that low HF HRV domain strongly predicted subjective sleep 

quality, such as repeated awakenings during the study night.54 In a population of healthy 

individuals, researchers found that higher values of parasympathetic indices, such as root mean 

square of successive RR intervals (RMSSD) and percentage of successive RR that differ by more 

than 50 ms (pNN50), predicted poor sleep such as lower values in wake after sleep onset 

(WASO).55 Other studies also suggest these parasympathetic indices, collected during a short 

wakefulness resting period, are associated with better one-week sleep efficiency.157  

Despite the above-mentioned investigations that longitudinally evaluated the association 

between sleep and HRV, no prior studies have comprehensively evaluated the temporal 

directionality of these associations using a full spectrum of objective sleep measures. More 

information is also needed on the temporal dynamics between HRV and sleep, i.e., the extent to 

which their influence is maintained over time, since prior studies assessed primarily short-term 

effects.55,57,58 Most existing data are also based on patients with specific clinical problems, such 

as chronic fatigue syndrome, narcolepsy, and obstructive sleep apnea.53,54,59,60 and literature in 

healthy populations has been limited and results have differed.58,61,62 An evaluation of the 

temporal relationships between autonomic dysregulation and objectively measured sleep 

disturbance is necessary to better clarify their temporal dynamics and directionality. 

The exact underlying mechanisms linking sleep disturbance and autonomic dysregulation 

have not been completely understood. For the pathway from sleep disturbance to autonomic 

dysfunction, it has been reported that sleep shortage might increase sympathetic activity by 

higher levels of the catecholamines norepinephrine and epinephrine through activation of the 

stress system.51,158,159 It has been noted that low sleep duration and poor sleep continuity can 
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increase sympathetic over parasympathetic dominance, which may be reflected in reduced 

HRV.51,52,160 Sleep disturbance may also lead to decreased sensitivity of hormonal receptors such 

as corticotropin-releasing hormone and serotonin receptors, which may result in dysregulation of 

stress responses and autonomic function.51 It has also been suggested that decreased HRV could 

be interpreted as a state of autonomic hypervigilance, which is consistent with documented 

effects of daily stress on HRV during sleep.161,162 Overall, autonomic dysregulation has been 

shown to be a potential pathway linking sleep disturbance with the common pathophysiology of 

hypertension, diabetes, cardiovascular disease, and mortality risk.20,163 

As for the pathway from autonomic dysregulation to sleep disturbance, previous research 

suggests that cardiac vagal control, indexed by HF HRV domain, is implicated in flexible 

regulation of arousal, which has important clinical implications in supporting better sleep 

quality.57 This study also found that cardiac vagal control during wakefulness was only related to 

a variety of sleep quality variables such as sleep latency, and number of arousals during sleep, 

and not with variables that are related to sleep quantity or architecture, which agrees with other 

reports.164,165 Similarly, another study found that HRV before falling asleep can be used as a 

predictor for sleep efficiency.56 This may be due to sympathetic activation which then result in 

the relative dominance of the HRV LF band power over the HF band power, which has been 

shown to affect sleep quality, such as sleep efficiency. A comprehensive evaluation of the 

association between autonomic dysregulation in a full spectrum of sleep dimensions is necessary 

to better elucidate the mechanisms and pathophysiology underlying these two phenotypes. 
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2.5 Sleep Disturbance and Adverse Health Outcomes 

Overall, prior studies have reported a positive relationship between sleep disturbance and 

risk of mortality.16-18. Sleep disturbance has also emerged as an independent contributor to higher 

cardiovascular risk, including CVD risk factors such as hypertension, obesity, and metabolic 

syndrome, and higher CVD incidence.19-23,166 Thus, sleep disturbance could be an important 

pathway of mortality and CVD risk, especially for depressed individuals. 

A systematic review and meta-analysis of prospective cohort studies pointed out that both 

short and long sleep duration (e.g. <5 or >9 hours) are associated with an increased risk of all-

cause mortality (i.e. a U-shape association).166 Longer sleep onset latency, lower sleep 

efficiency, duration of REM sleep, use of sleep medication, and severity of obstructive sleep 

apnea have all been shown to be associated with higher risk for mortality.18,167-169 However, prior 

literature on the association between sleep disturbance and mortality and CVD risk has not been 

completely consistent. In addition, there seems to be a disparity in the dimensions of sleep that 

are associated with risk of adverse health outcomes. For example, some studies reported a 

significant association of sleep dimensions such as shorter sleep duration and OSA with 

mortality,18,170,171 but other studies reported that insomnia was not significant associated with 

excess mortality hazard.170 The discrepancies in prior findings may result from differences in 

study design, study population and participant characteristics, and sleep measurements (i.e. 

whether sleep was objectively or subjectively measured). 

Prior literature has also been inconsistent on the association between sleep disturbance 

and cause-specific mortality. Some studies have shown a significant association between sleep 

disturbance and cardiovascular mortality,17 but others have not found a clear association.167 As 

for cancer-related mortality, some reported there was no noteworthy association of sleep duration 
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and sleep quality with mortality due to cancer or other causes,17 but others reported that sleep 

apnea was significantly associated with incident cancer and cancer mortality.18 

There are several potential mechanisms that may contribute to the relationships between 

sleep disturbance and increased risk for mortality and CVD. First, sleep disturbance may have 

multiple effects on endocrine and metabolic function, such as decreased levels of testosterone 

and melatonin secretion, as well as vascular damage, which may be implicated with mortality or 

cardiovascular events.172-176 Second, sleep deprivation or sleep irregularity may result in 

circadian misalignment, which may aggravate cardiovascular risk.177 Third, experimental studies 

have shown that sleep disturbance may increase systemic inflammation and insulin 

resistance,178,179 and other observational studies supported the role of sleep disturbance as a risk 

factor for diabetes, obesity and hypertension, which are established risk factors for mortality and 

cardiovascular outcomes.180-182 In addition, it has been shown that the hypothalamic-pituitary-

adrenal (HPA) axis may be another potential mechanisms that is associated with both sleep 

disturbance and poor health outcomes.183 The positive association between sleep disturbance and 

increased risk for mortality and CVD events may also be explained by pre-existing psychiatric 

conditions, such as depression and posttraumatic stress disorder (PTSD). 

It is necessary to comprehensively evaluate the association between objectively measured 

sleep disturbance and risk of mortality and CVD events. Such research is needed to further 

elucidate the sleep dimensions of that are most strongly associated with mortality and CVD, and 

it may shed light on the potential prevention strategies for excess mortality risk and CVD by 

targeting on sleep disturbance as a modifiable behavioral factor. However, our twins dataset is 

limited by a lack of objective sleep disturbance assessment at baseline, thus we are unable to 

assess the prognostic implications of sleep disturbance in predicting adverse health outcomes 
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including mortality and CVD in this population. In our own dataset, we were only able to assess 

the association of baseline depression and autonomic dysregulation in predicting mortality and 

CVD events during follow-up. Future investigations are necessary to evaluate the predictive 

values of a full spectrum of objectively measured sleep dimensions in predicting adverse events, 

especially among depressed individuals, using a twin difference design. 

 

2.6 Autonomic Dysregulation and Adverse Health Outcomes 

Autonomic dysregulation as indexed by reduced HRV and other ECG metrics, such as 

deceleration capacity, is an independent predictor of adverse health outcomes including all-cause 

mortality and CVD, mostly among patients with CVD.67-70 For example, a meta-analysis of 28 

cohort studies in patients with known CVD showed that individuals with a lower HRV had 112% 

and 46% higher risk of all-cause death and cardiovascular events, respectively.184 A few prior 

studies have also assessed the prognostic significance of ECG-derived autonomic metrics in 

predicting CVD events,185-187 however data are limited among individuals without known CVD. 

Prior community-based research in middle-aged to elderly participants,28,188-190 including 

individuals without known CVD,67 also suggested that reduced HRV is associated with an 

adverse cardiovascular risk profile and an elevated risk of mortality and CVD events, and the 

elevated risk of mortality could not be attributable to a specific cause. 

Prior investigations showed that, among all HRV frequency bands, LF power is the 

strongest HRV predictor with regard to mortality, and the prognostic implications of baseline 

HRV still remain after 5 years.145,188 The power in the LF HRV domain is modulated mainly 

through sympathetic nervous system (SNS) as a response to oscillations in blood pressure.191 The 

reduction in parasympathetic function may be an early sign of autonomic dysregulation, but it 
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has been hypothesized that impaired sympathetic modulation indexed by reduced LF power may 

imply a more severe involvement of autonomic nervous system.145,192-194 Studies also found 

significant prognostic values in VLF and HF domains in predicting all-cause mortality.188 

Studies that evaluated the predictive values of DC among patients with CVD demonstrated that 

DC at baseline significantly predicted all-cause mortality.70,195 

As for cause-specific mortality, prior research showed that the association between 

reduced HRV and increased risk of mortality may not be specific to CVD causes, and can be 

largely explained by non-CVD causes, such as cancer.67,189 It has been reported that sympathetic 

activation, linked with reduced HRV, may have direct effects on the number, function, and 

subset distribution of circulating lymphocytes, which play a major role in the immune function 

and cancer risk.196,197 Other studies also found significant predictive values of HRV for CVD 

mortality.198,199  

Lower HRV in multiple domains has also been linked to increased risk for incident 

cardiovascular events, in patients with or without known CVD at baseline, and the elevated risk 

could not be attributable to other risk factors.28,67,184 Of note, one study has shown that lower 

HRV significantly predicted a higher risk in patients with MI but not in patients with CHF.184 

Reduced VLF HRV was linked to an increased risk of major adverse CVD events and 

hospitalizations in maintenance of hemodialysis patients.185 Similarly, a systematic review found 

that lower HF and LF domains were associated with higher risk of first CVD events among 

individuals without known CVD.186 Another study also showed that one-unit increase in log-

ULF was significantly associated with 3.66 increased hazard of cardiovascular events.200 

However, no prior study has evaluated and compared the prognostic implications of both 

daytime and nighttime HRV in predicting mortality and CVD events. Physical activity and 
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mental stressors can influence the measurement of HRV, thus nighttime HRV measuring during 

sleep may provide useful information compared with HRV assessment based on 24-hour Holter 

monitoring.201,202 However, to date no prior study has evaluated and compared the prognostic 

values of daytime and nighttime HRV frequency domains in predicting mortality. For CVD 

event, a previous study found that nighttime HRV but not 24-hour HRV was associated with 

stroke events.202 It is necessary to investigate and compare both daytime and nighttime HRV and 

their prognostic implications in predicting adverse health outcomes. Evaluation of the prognostic 

values of both daytime and nighttime autonomic dysregulation in predicting adverse health 

outcomes has important clinical and public health implications in implementing better preventive 

strategies and reducing healthcare burden. 

The pathophysiological mechanisms linking reduced HRV and risk for mortality and 

CVD events still remain unclear. HRV represents the adaptive responses in heart rate caused by 

fluctuations of both SNS and PNS activities of the autonomic nervous system. Dysfunction of 

the autonomic nervous system, indexed by reduced HRV, reflects sympathovagal imbalance.203 

It has been hypothesized that sympathovagal imbalance or an overshooting sympathetic 

activation may be linked to higher risk of mortality and cardiovascular events.195,204 The higher 

mortality and CVD incidence associated with lower HRV may also be due to subclinical 

coronary artery disease. It has also been hypothesized that lower HRV is an indicator of 

unfavorable general health, such as immune function, which plays a major role in tumor 

formation and progression.189 This may explain the association of HRV with increased risk of 

cancer-specific mortality in previous investigations. DC indicates a measure of cardiac vagal 

modulation, and prior literature has shown a cardioprotective role of vagal activity, which is 

linked to a reduced risk of mortality and CVD.205,206 
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2.7 Preliminary Work 

To investigate the temporal directionality of association between depressive symptoms 

and HRV, the candidate recently conducted a longitudinal cross-lagged twin study to investigate 

the association in a subsample of our twin study population with repeated measures on these 

factors.32  

The study was based on a follow-up of a subgroup of the Vietnam Era Twin Registry 

twin pairs who participated in the Emory Twin Study.81,207 A total of 83 pairs completed the in-

person follow-up, on average 6.6 years after the baseline visit. Both depressive symptoms and 

HRV data were collected at baseline assessments from March 2002 to March 2006 (visit 1) and 

at a 7-year in-person follow-up (visit 2). A total of 73 pairs (n=146) had available depression and 

HRV data at both visit, thus they represent the analytical population for this study. At both visit, 

depressive symptoms were measured using the Beck Depression Inventory-II (BDI-II) score, and 

HRV was measured using 24-hour electrocardiogram (ECG) monitoring. A cross-lagged analysis 

approach was used to assess the directionality of the association between depressive symptoms 

and HRV, and within-pair differences in multivariable mixed-effects regression models were 

examined. We also standardized all  coefficients for both pathways (i.e. from depression to 

HRV, and from HRV to depression) to allow a comparison of the magnitude of associations. The 

associations were also evaluated separately in monozygotic and dizygotic twins to examine the 

role of potential genetic predisposition. 

Results showed a consistent association between baseline HRV and depression at follow-

up, which was not explained by use of antidepressants at baseline or any other participant 

characteristics. The magnitude of the association was similar in the opposite pathway linking 

baseline depression to reduced HRV at follow-up, but this association was largely explained by 
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antidepressant use. Figure 2.4 illustrates the cross-lagged association between all HRV domains 

with BDI score. The associations in the DZ twins were slightly stronger compared to those in the 

MZ twins, suggesting a potential role of genetic factors on the association. 

 

 

This research suggests that depressive symptoms and autonomic dysregulation indexed 

by reduced HRV are bidirectionally associated. The pathway from depression to autonomic 

dysregulation could be partly mediated by use of antidepressants. These findings highlight the 

important potential role of the autonomic nervous system in the pathophysiology from 

depression to adverse health outcomes, and contribute new understanding of the mechanisms 

underlying the comorbidity of depression and CVD. Our results also suggest that future 

interventions modulating autonomic nervous system regulation may be useful for the prevention 

and treatment of cardiovascular events among patients with depression. More investigations are 

needed to further assess the link between sleep disturbance and autonomic dysregulation, as well 

Figure 2.4 Illustration of the cross-lagged association between all HRV domains and BDI  

score in fully adjusted models 
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as the role of sleep disturbance on the pathways from depression to adverse outcomes. 

In conclusion, preliminary work from our twin study supports our hypotheses of a 

relationship between depression and autonomic dysregulation. What is needed now is a 

comprehensive evaluation of such associations using objective measures of sleep and 

differentiation between daytime and nighttime ANS function; an evaluation of the directionality 

of the association between autonomic dysregulation and sleep; and a demonstration that 

depression and autonomic dysregulation, both during the day and night, predicts adverse health 

outcomes, such as mortality and CVD events. 
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CHAPTER 3: METHODS 

3.1 Data Source 

The participants in this study were recruited form the Vietnam Era Twin (VET) Registry, 

which is a national samples of adult male twins from all military branches who served on active 

duty during the Vietnam War (1964-1975).208 The present study is based on the 566 twins (283 

pairs) recruited from VET Registry and participated in the Emory Twin Study (ETS).81 The 

objective of the ETS was to evaluate the role of biological, psychological, and behavioral risk 

factors in the development of subclinical CVD.81,82 We included twin pairs who were born 

between 1946 and 1956, and excluded twin pairs if either member of the twin pair self-reported 

history of CVD based on previous survey data obtained by the Registry in 1990.207,209 The twin 

pairs were discordant for depression or posttraumatic stress disorder (PTSD), or free of these 

psychiatric conditions as control pairs. The twin pairs were in person (in pairs) examined 

together between 2002 and 2010, when their mean age was 55 years.209 

Of the 283 ETS twin pairs, we invited 504 twins to participate in the ETSF, followed for 

clinical outcomes, for an in-person or phone evaluation that was conducted on average 12 years 

after the initial assessment. A total of 392 twins participated in ETSF, and among them 279 twins 

(including 124 pairs and 31 singles) completed the second in-person visit. Of these, 230 twins 

(99 pairs, 32 singles) were included in the sleep substudy which collected objective sleep data. 

Self-reported sleep disturbance was available in the entire sample of 124 pairs (248 twins) who 

completed the in-person ETSF visit. Figure 3.1 shows the construction of the study population. 
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Participants in ETS 
566 Twins 
(283 Pairs) 

Invited to Participate in ETSF 
504 Twins  

(231 Pairs, 42 Single) 

Collected PSG Data 
181 Twins 

(74 Pairs, 33 Single) 

Collected Actigraphy Data 
212 Twins 

(87 Pairs, 38 Single) 

Participants ETSF 
392 Twins 

Died Prior to Recruitment 

62 Twins 
(10 Pairs, 42 Single) 

Excluded 

112 Twins 

- 95 never responded or refused 

- 10 died during recruitment period 
- 5 too ill to participate 

- 1 withdrew 
- 1 incarcerated 

 

Completed ETSF In-Person 
279 Twins  

(124 Pairs, 31 Single) 

Completed ETSF by Phone 

113 Twins 

- 56 full questionnaire data* 

- 55 outcome data only 
- 2 withdrew 

Participants in Sleep Substudy 
230 Twins  

(99 Pairs, 32 Single) 

Figure 3.1 Participant flow diagram 

 

* 5 additional twins are still in the recruitment phase 

Abbreviations: ETS: Emory Twin Study; ETSF: Emory Twin Study Follow-up; PSG: 

polysomnography 
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At both ETS and ETSF visits, twin pairs were examined together at Emory University on 

the same day using identical assessment protocols to minimize measurement error. We obtained 

twins’ comprehensive medical history data during a two-day admission under controlled 

conditions, and collected blood samples, autonomic function data, anthropometric 

measurements, behavioral and psychosocial assessments using identical protocols and similar 

schedule for the two twins. Polysomnography (PSG) sleep data were obtained in the Emory 

Sleep Center. At the end of the visit, a research coordinator placed the ECG patch and the wrist 

actigraphy device on each twin for a 7-day home monitoring of ECG and sleep—both devices 

were returned by mail. Zygosity was obtained and verified by DNA typing.210 We obtained 

written informed consent from all twins, and the Emory University institutional review board 

approved this research. 

 

3.2 Measurements of Depression    

At both ETS and ETSF visits, the Beck Depression Inventory-II (BDI-II) was 

administered to assess the severity of depressive symptoms. The BDI is a validated scale 

providing a continuous measure of depressive symptoms, including 21 items each scored from 0 

to 3, with a total score ranging from 0 to 63.211-213 A higher BDI indicates more depressive 

symptoms. In the analysis related to Specific Aim #1, we removed the sleep item in BDI to 

eliminate the potential influence it may have on the association of BDI with sleep disturbance. At 

both visit, we also administered the Structured Clinical Interview for Diagnostic and Statistical 

Manual of Mental Disorder, 4th Edition (DSM-4), or SCID, to obtain a clinical diagnosis of 

major depressive disorder (MDD). Depression data at the ETSF visit were used for Aims 1 & 2 

analyses, and depression data at the baseline visit were used for Aim 3 sensitivity analysis. 
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3.3 Measurements of Sleep Disturbance    

We used both objective and subjective methods to obtain a comprehensive assessment of 

sleep disturbance. We conducted one-night in-lab PSG at the Emory Sleep Center using a Natus 

N7000 recording system (Natus, Inc.). PSG is an objective multi-parametric test usually 

performed overnight that continuously monitors the biophysiological changes that occur during 

sleep.214 PSG is necessary to derive measures of sleep stages and architecture, oxygen 

desaturation, and nighttime muscle activity, and it remains the gold standard for measuring sleep 

apnea, which is the most common form of SDB. PSG consisted of measurements of frontal, 

central and occipital electroencephalography, bilateral electrooculography and mentalis surface 

electromyography to derive measures of sleep architecture and continuity. PSG also included 

measures of respiratory airflow, respiratory effort, breathing sounds, electrocardiography and 

surface electromyography recorded above the anterior tibialis of the left and right legs. All 

scoring was performed by registered technologists who were blind to the participants’ clinical 

data following guidelines of the American Academy of Sleep Medicine.215 A summary of the 

PSG and actigraphy variables and their definitions are summarized in Table 3.1. 

Since prior research was especially inconsistent on whether depression is associated with 

alterations in sleep architecture, periodic limb movements (PLMS), and sleep-disordered 

breathing (SDB),40,41,44,45,126,216,217 we focused on these measures in Aim 1 analysis. We 

quantified the proportion of total sleep time (TST) spent asleep (sleep efficiency, SE), and the 

proportion of TST spent in N1, N2, N3, and REM sleep, as well as REM latency (time from the 

first epoch of sleep to the first epoch of REM including intervening wakefulness). We also 

analyzed the PLMS index (number of movements per hour of TST). SDB was analyzed using 

different indices: the apnea/hypopnea index (AHI), respiratory disturbance index (RDI), oxygen 
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desaturation index (ODI), and percentage of TST with saturated oxygen below 90%. Both AHI 

and ODI definitions required a drop in saturated oxygen of 4% or greater. The AHI was our 

primary measure of SDB. 

For Aim 2 analysis, we used the following PSG measures: (1) sleep architecture 

variables: proportions of total sleep time (TST) spent in N1, N2, N3, and REM sleep; (2) the 

PLMS index; and (3) SDB-related indices, including the apnea/hypopnea index (AHI) and the 

percentage of TST with oxygen saturation <90%. Although PSG also generates data on sleep 

efficiency (SE), and wake after sleep onset (WASO), we did not use these data derived from 

PSG because of their low short-term stability in the context of a single lab night. Instead, we 

relied on actigraphy, derived from up to 7 nights of data, to provide more stable estimates for 

these parameters. A total of 181 twins had usable PSG data for Aim 1 & Aim 2 analyses, 

including 71 pairs (n=142) who were included in the within-pair analysis in Aim 1 analysis. 
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PSG variables Definitions 

Total sleep time Total amount of sleep time from sleep onset to sleep offset, in minutes 

REM latency The time from the sleep onset to the first epoch of REM sleep, in minutes 

Sleep efficiency 

Percentage of total time in bed actually spent in sleep; calculated as sum of 

stages N1, N2, N3, and REM sleep, divided by the total time in bed and 

multiplied by 100 

Percentage of total sleep time 

in N1 

Percentage of total sleep time in stage N1 sleep; calculated as sleep time in stage 

N1 divided by the total sleep time and multiplied by 100 

Percentage of total sleep time 

in N2 

Percentage of total sleep time in stage N2 sleep; calculated as sleep time in stage 

N2 divided by the total sleep time and multiplied by 100 

Percentage of total sleep time 

in N3 

Percentage of total sleep time in stage N3 sleep; calculated as sleep time in stage 

N3 divided by the total sleep time and multiplied by 100 

Percentage of total sleep time 

in REM 

Percentage of total sleep time in REM sleep; calculated as sleep time in REM 

divided by the total sleep time and multiplied by 100 

Total arousal index 
Total number of arousals (i.e. interruptions of sleep lasting 3 to 15 seconds) 

adjusted per hour of sleep 

Periodic leg movement index 

Total number of period leg movements (i.e. in series of at least 4 consecutive 

movement each lasting 0.5-5 seconds and separated by intervals of 4-90 seconds) 

adjusted per hour of sleep 

Apnea/hypopnea index 

The number of apnea (i.e. pauses in breathing for at least 10 seconds) and 

hypopnea (i.e. partial loss of breath for at least 10 seconds) events adjusted per 

hour of sleep 

Respiratory disturbance 

index 

The number of respiratory events, including apnea and hypopnea and respiratory-

effort related arousals (RERAs), adjusted per hour of sleep 

Oxygen desaturation index 

The number of desaturation episodes (i.e. decrease in the mean oxygen saturation 

of 4% over the last 120 seconds that lasts for at least 10 seconds), adjusted per 

hour of sleep 

Percentage of sleep duration 

with SaO2 <90% 

Percentage of total sleep time where arterial oxygen saturation was below 90%  

Actigraphy Variables  

Total sleep time Total amount of sleep time from sleep onset to sleep offset, in minutes 

Sleep onset latency 
Time between the start of the nocturnal sleep period and the onset of sleep, in 

minutes 

Sleep efficiency Percentage of total time in bed actually spent in sleep 

Wake after sleep onset Time of wakefulness during the sleep period after sleep onset, in minutes 

 

Fragmentation index 

The number of interruptions of sleep by physical movement calculated as 100 x 

the number of groups of consecutive mobile 30s epochs/by the total number of 

immobile epochs 

SD of sleep duration Standard deviation of total sleep time over 7-day period 

SD of sleep onset timing Standard deviation of sleep onset timing over 7-day period 

 

Following the PSG, each participant returned home with a wrist-worn actigraph, i.e. 

Actiwatch Spectrum Pro (Philips-Respironics, Inc.), to derive objective sleep metrics in a 

naturalistic environment. All participants were instructed to wear the devices on their non-

dominant wrist for 7 days. Wrist actigraphy is an accepted measure of rest-activity patterns, and 

Table 3.1 Definitions of PSG and actigraphy variables 
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has been recognized as a useful adjunctive tool in sleep medicine.65,66 It measures body 

movement using a motion sensor, which allows inference of various measures of sleep continuity 

and daytime napping.218 We used the Actiwatch Spectrum Pro (Philips-Respironics, Inc.), which 

contains a calibrated accelerometer that records physical movement in 1-minute epochs. Raw 

actigraphy data (including activity counts and event markers) were first adjudicated using a sleep 

diary kept by each participant, and then we applied a standardized scoring algorithm to the 

data,219 using Actiwatch software (version 6.0), primarily to determine the onset and offset of 

intended nighttime sleep periods. We derived objective nap data from the actigraphy with the aid 

of the sleep diary. Both number and duration of naps were obtained.  

For selected variables, we derived the mean and within subject standard deviation for 

analyses. For Aim 1 analysis, our measures of interest included TST (minutes), sleep onset 

latency (SOL, minutes), SE (%), wake after sleep onset (WASO) (minutes), fragmentation index 

(%), and two additional SD measures for sleep irregularity: 7-day SD in sleep duration (minutes) 

and 7-day SD in sleep onset timing (minutes).220 For Aim 2 analysis, our primary actigraphy 

measures included: (1) TST, defined as the total number of minutes spent asleep during the night 

(not including daytime naps); (2) SE, the percentage of the nocturnal sleep period spent asleep; 

and (3) WASO, the total minutes of wakefulness during the sleep period after sleep onset. A total 

of 212 twins had usable actigraphy data for Aim 1 and Aim 2 analyses, including 87 pairs 

(n=174) who were included in the within-pair analysis. Among twins included in the within-pair 

analysis (n=174), all twins had at least 4 days of actigraphy data; most (n=151, 87%) had the 

whole 7 days of data, and almost all (n=170, 98%) had at least 6 days of data. Thus, all twins 

were included in the analysis to maximize sample size. 

We also assessed subjective sleep disturbance using the Pittsburgh Sleep Quality Index 
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(PSQI), a self-reported 19-item questionnaire with excellent psychometric properties, yielding 7 

subscales (with a score 0 to 3) and a single total score (with a score 0 to 21).221 A higher PSQI 

indicates more sleep disturbance over the previous month. The 7 subscales are: (1) subjective 

sleep quality; (2) SOL; (3) sleep duration; (4) SE; (5) sleep disturbance; (6) need any 

medications to sleep; and (7) sleep issues causing any daytime dysfunction. The entire sample of 

124 pairs (n=248) who completed the in-person ETSF visit had usable PSQI data. 

 

3.4 Measurements of Autonomic Dysregulation    

At ETS, twin wore an ambulatory electrocardiogram monitor for 24 hours. We followed 

previously published procedures to maximize accuracy of recordings and minimize potential 

confounding.222 Both twins in the same pair were evaluated at the same time, and their recording 

times, schedule, and activity level during each recording were similar. Twins were refrained 

from smoking, drinking alcohol, and having coffee during measurements. We used frequency-

domain methods to analyze the HRV data, utilizing customized software to assign bands of 

frequency and then count the number of beat-to-beat intervals that match each band.11,223 Each 

tape of Holter recordings was digitally processed and analyzed using methods as previously 

described in the literature,11,223 and was further segmented into daytime (6am to 10pm) and 

nighttime (10pm to 6am) periods as determined by time stamps on Holter recording. The HRV 

spectrum was computed using a fast Fourier transform with a Parzen window on the 24-hour R-

R interval file.  

We evaluated 24-hour average, as well as daytime and nighttime average values for four 

discrete frequency bands, including ultra-low frequency (ULF, <0.003 Hz), very low frequency 

(VLF, 0.0033-0.04 Hz), low frequency (LF, 0.04-0.15 Hz), and high frequency (HF, 0.15-0.40 
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Hz).68,143 We also calculated deceleration capacity (DC), which provides an average speed of 

heart rate deceleration, which is a potentially more useful indicator than other HRV metrics in 

evaluating parasympathetic nervous function and predicting adverse health outcomes.70 The 

HRV data processing was performed blindly to twins’ characteristics. 

During the clinic visit at ETSF visit, twins wore an ambulatory Holter electrocardiogram 

(ECG) monitor for 24 hours. We followed previously published procedures to maximize 

accuracy of recordings and minimize potential confounding.222 Both twins in the same pair were 

evaluated at the same time, and their recording times, schedule, and activity level during 

recording were similar. We used manufacturer’s custom-built validated software to extract the 

raw signal and convert it into WFDB format.224 Then we extracted RR intervals and computed 

the frequency domains using a previously validated HRV toolbox from the Clifford lab.225 

Specifically, a signal to quality index (SQI) based on beat detection was computed for each ECG 

signal.226 Non-sinus rhythm and beats with SQI lower than 90% were removed to obtain a 

normal to normal (NN) interval time series. The power spectra of the NN time series was 

generated using the Lomb periodogram, and frequency domain HRV metrics were calculated on 

5 minutes 30 seconds sliding windows on the NN time series signal. Each tape of Holter 

recordings was digitally processed and analyzed, and was further segmented into sleep 

(nighttime) and wake (daytime) periods as determined by the beginning and end of the in-lab 

PSG recording (i.e. day 1, night, and day 2).  

We evaluated four discrete frequency domains, including ultra-low frequency (ULF, 

<0.0033 Hz), very low frequency (VLF, 0.0033-0.04 Hz), low frequency (LF, 0.04-0.15 Hz), and 

high frequency (HF, 0.15-0.40 Hz).68,143 We also calculated deceleration capacity (DC), which 

provides an average speed of heart rate deceleration, and it is potentially more useful than other 



43 

 

HRV metrics in evaluating parasympathetic nervous function and predicting adverse events.70 A 

total of 151 twins had usable Holter HRV, including 53 pairs who were included in the within-

pair analysis. 

During the home monitoring at the ETSF visit, we used the CardeaSoloTM patch, which is 

a non-invasive and wearable ambulatory ECG monitoring adhesive patch monitor. A study 

coordinator applied the device over the left pectoral region of each participant’s chest, and 

instructed him to wear the patch for 7 days. ECG data were extracted and processed using the 

manufacturer’s custom-built validated software in the methods that used to process the 24-hour 

Holter ECG data.224,225 On each day, four frequency domains (i.e. ULF, VLF, LF, and HF) and 

DC were obtained, similar to 24-hour Holter recording.  Data were also further separated into 

sleep (nighttime) and wake (daytime) periods as determined by the adjudicated actigraphy data 

for up to 7 days. Twins with low quality data (e.g. loss of electrode contact, movement artifacts, 

low SQI <90%, or twins with <75% data) were excluded, reducing the number of subjects with 

usable HRV home monitoring data to 115 twins, including 34 twin pairs (n=68) who were 

included in the within-pair analysis. There were no differences between twins who did (n=115) 

and did not have (n=97) complete HRV assessments in terms of sociodemographic and health-

related characteristics. 

 

3.5 Measurements of Adverse Health Outcomes    

Vital status data during follow-up, including mortality dates and causes of deaths (e.g. 

cancer, CVD, etc.), were collected and verified by National Death Index database through 

December 31st, 2017. All-cause mortality was the primary outcome of this study. Comprehensive 

medical history data, including all cardiovascular events and hospitalization dates, were obtained 



44 

 

among twins who completed ETSF, either in-person or over the phone. Data on CVD outcomes, 

including dates and reasons for hospitalizations, were objectively measured and adjudicated by a 

thorough medical chart review. As a secondary outcome, we evaluated a composite measure of 

major CVD events, including myocardial infarction (MI), congestive heart failure (CHF), and 

stroke. 

 

3.6 Other Measurements    

At both ETS and ETSF visits, a thorough assessment including medical history and 

physical examination were obtained by a research nurse or physician assistant. 

Sociodemographic and anthropometric data, health behaviors, fasting blood glucose and lipid 

profile were measured as previously described.81,207 Habitual physical activity was measured 

using the Baecke Questionnaire of Habitual Physical Activity. This is a 16-question instrument 

recording physical activity levels at work, during sports and non-sports activities, rendering a 

global physical activity score.227,228 History of hypertension was defined as systolic blood 

pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg, or self-reported use of anti-

hypertensive medications, following the Joint National Committee (JNC)-7 classification for 

Stage 1 hypertension which was the accepted staging at the time.229 History of coronary artery 

disease that might have occurred from the time of the initial screen was also assessed. Diabetes 

mellitus was defined as having a measured fasting glucose of more than 126 mg/dL or any 

current treatment with antidiabetic medications. Current use of beta-blockers, antidepressants, 

statins, and angiotensin-converting enzyme inhibitors were also recorded. A continuous measure 

of depressive symptoms was assessed by the Beck Depression Inventory-II (BDI-II) score, which 

includes 21 items each scored from 0 to 3, with a total score ranging from 0 to 63. A clinical 
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diagnosis of major depression and PTSD (lifetime and current), as well as alcohol abuse 

disorder, were obtained using the Structured Clinical Interview for Diagnostic and Statistical 

Manual of Mental Disorder, 4th Edition (DSM-IV), or SCID. 

 

3.7 Data Analysis Plan 

 The available data at baseline visit and during follow-up for each aim were illustrated in 

Figure 3.2. The statistical analysis plan for each aim is also described as following. 

 

 

 

 

Specific Aim #1 

We conducted descriptive analyses by summarizing participants’ characteristics, 

including sociodemographic factors, health-related factors, medication use and sleep measures. 

We also compared study variables by tertiles of BDI, using ANOVA for continuous variables 

and chi-squared tests for categorical variables. In a secondary analysis, we compared the same 

variables in twins with vs. without MDD. 

Our primary analysis focused on the associations between the within-pair difference in 

the BDI and the within-pair difference in sleep disturbance represented by PSG, actigraphy, and 

PSQI. In a study of twins, within-pair differences intrinsically control for potential confounding 

by shared genetic and familial influences, as well as environmental factors during the clinic visit 

Figure 3.2 Available data at baseline and follow-up visits and for each aim 
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as twins were examined together. For all analyses, we fitted multivariable mixed-effects models 

and accounted for twin pair as random effect. The BDI was rescaled so that the  coefficients 

would describe the within-pair change in sleep metrics, per 5-unit difference in within-pair BDI. 

In the primary analysis, we removed the sleep item from the BDI to eliminate its potential 

influence on the association with sleep disturbance. 

 We constructed a series of models to examine the impact of sets of a priori selected 

variables on the association of interest. The base model (model 1) was unadjusted, including only 

the within-pair difference of the independent variable. We then progressively adjusted for 

sociodemographic and behavioral variables (education, employment, smoking status, and alcohol 

abuse) in model 2, and further adjusted for CVD risk factors most likely to be related to both 

sleep and depression (BMI and history of hypertension) in model 3. In the analysis of actigraphy 

data, we further adjusted for number of naps and average nap duration during the 7-day period in 

model 4. 

To assess potential shared genetic influence on depression and sleep, we examined MZ 

and DZ twins separately to examine effect modification by zygosity. Because MZ twin pairs 

share 100% of their genes while DZ twin pairs only share 50% on average, if a larger association 

of depression with sleep disturbance is found within DZ pairs than within MZ pairs, this suggests 

that genetic factors may play a role in the association.  

 We also conducted a series of sensitivity analyses to expand our primary analytic 

approach. First, we repeated the analysis including the use of antidepressants as an additionally 

adjusted variable. Second, we replaced the BDI score with a lifetime history of MDD measured 

with the SCID. Third, we examined whether the results remained robust after adjustment for 

PTSD symptoms measured with the PCL-4 or a SCID diagnosis of lifetime history of PTSD. 
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Fourth, we repeated the analysis using the full BDI, without removal of the sleep item. Finally, 

we conducted stratified analyses separating somatic and cognitive dimensions of BDI, and used 

standardized estimates of beta-coefficients to compare these two depression dimensions. 

 

Specific Aim #2 

To clarify the data analysis structure for Aim 2, we divided the analysis into 2 different 

parts: (1) Part I used the clinic visit day data, including the HRV data collected by 24-hour 

Holter recording, and sleep disturbance data measured by one-night in-lab PSG; (2) Part II used 

the 7-day at monitoring data, including the HRV data obtained by the adhesive patch ECG 

monitoring, and sleep disturbance data measured by 7-day at-home wrist actigraphy. 

Using PSG and Holter data collected during clinic visit day (Study I), we analyzed the 

temporal directionality of associations of the within-pair difference in PSG metrics with the 

within-pair difference in HRV metrics. In a study of twins, within-pair differences intrinsically 

control for potential confounding by shared genetic factors and early familial background, as 

well as environmental factors during ambulatory monitoring as twins were examined together. 

We first evaluated the association of the average within-pair difference in HRV during day 1 (i.e. 

from start of data collection to nighttime sleep onset) with PSG findings during nighttime. 

Second, we examined the reverse, i.e., the association of nighttime PSG findings with HRV 

during day 2, (i.e. from sleep offset to end of data collection), with adjustment for average 

nighttime HRV data. Illustration of this analysis is shown in Figure 2. For all analyses, we fitted 

multivariable mixed-effects regression models and accounted for twin pair as a random effect. 

All models were adjusted for potential confounding factors (smoking status, habitual physical 
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activity, BMI, history of hypertension, and history of depression, PTSD and alcohol abuse). As 

HRV data were skewed, logarithmic transformations were used to normalize the distributions.   

 Using actigraphy and ECG data collected during 7-day home monitoring (Study II), we 

further evaluated the temporal relationships between sleep measures and HRV in a naturalistic 

environment. The within-pair analysis included a total of 362 observations (days) reflecting data 

from 68 twins, and on average, each twin contributed 5.3 observations (days) of data. We fit 

bivariate vector autoregressive (VAR) models to analyze the longitudinal data.230 We included 

each combination of HRV (ULF, VLF, LF, HF, and DC) and sleep metric (TST, SE, and 

WASO) in separate models. Then for each combination of HRV and sleep measures, we built 

bivariate VAR models that adjusted for the same potential confounders as in Study I.  

 In Study II, the recording of multiple 24-hour periods of simultaneous ECG and 

actigraphy allowed us to model potential temporal causality using time-lagged models. To 

determine the length of time the association between HRV and sleep was maintained, we built a 

series of models by adding lagged values of the dependent variables. The Bayesian Information 

Criterion (BIC) was used for order selection, with lower BIC values indicating better model fit. 

To formally test whether the associations between HRV and sleep persist beyond a single 24-

hour period, we used likelihood ratio tests to compare VAR models with the lowest BIC with the 

first order models. 

 After determining the appropriate lag order, to evaluate the temporal directionality of the 

associations between HRV and sleep, we conducted F tests of Granger causality. In a Granger 

causality test, if the F-value is statistically significant, it means that the past values of predictor X 

contain information that helps predict outcome Y in addition to the information contained in the 

past values of Y alone, after controlling for other covariates; in other words, X “Granger-causes” 
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or predicts Y. We individually tested if each of the HRV metric predicted each of the sleep 

measure, and vice versa, and conducted VAR models separately for wake and sleep periods to 

evaluate the day and night difference in the relationship between HRV and sleep. We further 

conducted mixed-effects regression models to clarify the direction of significant effects after 

controlling for the same set of covariates as in the VAR models. In these models, predictor 

variables were expressed as daily variation from individual’s averages. 

To assess potential shared genetic influence on the association between HRV and sleep 

disturbance, we examined the associations separately in MZ and DZ twins to evaluate effect 

modification by zygosity. Because MZ twin pairs share 100% of their genes while DZ twin pairs 

only share 50% on average, if a larger effect of HRV on sleep or vice versa is observed within 

DZ pairs than in MZ pairs, then it may suggest that genetic factors play a role in this association. 

 

Specific Aim #3 

We conducted descriptive analyses by summarizing participants’ characteristics at the 

baseline visit, sociodemographic factors, health-related factors, medication use, depression 

status, and 24-hour average HRV. Continuous variables were described as mean and standard 

deviation (SD), and categorical variables as frequencies (percentage). The HRV data were log-

transformed owing to non-normality. We also compared the characteristics among twins who 

deceased during follow-up to those who survived, using two sample t-test (for continuous 

variables) and chi-squared test (for categorical variable). Kaplan-Meier curves for all-cause 

mortality and a composite measure of major CVD events were computed by within-pair 

difference of depression (i.e. within-pair difference of BDI or MDD >0 vs. <0) or log-HRV (i.e. 
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within-pair difference of log-HRV >0 vs. <0), and log rank tests were used to compare the 

survival curves. 

Our primary analysis focused on the associations between the within-pair difference in 

depression and log-HRV with time to all-cause mortality. For all analyses, BDI, MDD and 24-

hour average HRV metrics were used as primary predictors of interest, and we also examined 

daytime and nighttime average HRV metrics. As a secondary analysis, we also evaluated the 

associations between depression and log-HRV and time to first major CVD events, including MI, 

CHF, and stroke. In a study of twins, within-pair differences intrinsically control for potential 

confounding by shared genetic and early familial confounding, as well as environmental factors 

during ambulatory monitoring as twins were examined together. For all analyses, we fitted 

multivariable frailty models and accounted for twin pair as random effect. The frailty models are 

the extensions of the Cox proportional hazard models, with random effect to account for 

heterogeneity in clustered data (such as in twins dataset).231 To allow comparisons between 

different HRV metrics, the HRV metrics were standardized so that the  coefficients can be 

interpreted as hazard ratios for all-cause mortality or CVD events, per 1-SD increment in log-

HRV metrics.  

To avoid model overfitting, we constructed a series of models to examine the impact of 

sets of a priori selected variables on the association of interest. The base model, or model 1, was 

unadjusted, and only included between-pair difference of HRV metrics. We then progressively 

adjusted for sociodemographic and behavioral variables (education, employment status, ever 

smoking status, alcohol abuse, and physical activity) in model 2, and further adjusted for CVD 

risk factors that are likely related to depression, HRV and adverse health outcomes (BMI, history 
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of hypertension, history of coronary artery disease, and diabetes) in model 3.163 In model 4, we 

additionally adjusted for medication use, including beta-blockers and antidepressants. 

To assess potential shared genetic influence on the HRV and adverse health outcome, we 

examined the associations separately in MZ and DZ twins to evaluate effect modification by 

zygosity. Because MZ twin pairs share 100% of their genes while DZ twin pairs only share 50% 

on average, if a larger effect of HRV on adverse health outcomes is observed within DZ pairs 

than in MZ pairs, then it may suggest that genetic factors play a role in this association. 

We also conducted a series of sensitivity analyses to expand our primary analytic 

approach. First, we examined the association between HRV and cause-specific mortality 

including cancer and CVD, and further accounted for competing risk due to non-cancer or non-

CVD mortality, respectively, using Fine & Gray subhazard models.232 Second, we repeated all 

analyses by examining twins as individuals instead of within-pair, to allow an evaluation of 

potential familial and environmental influence on the associations of interest. Third, we 

examined whether the results remained robust after additionally adjusting for depression and 

PTSD diagnosis or symptoms, as well as adjusting for 24-hour average heart rate, as prior 

research pointed out that the correlation between HRV and mortality could be partially 

attributable to concurrent change in HR.233 We also tested the effect modification between 

depression and HRV by including an interaction term between the two variables in all models. 

For analyses in all the Specific Aims, missing data were rare (<5%) for all variables, thus 

we used all available data without imputation. We checked linearity assumptions of all 

continuous variables, as well as potential multicollinearity by variance inflation factors. A two-

sided p-value of less than 0.05 was used to indicate statistical significance, and hazard ratios and 

associated 95% confidence intervals (CI) were calculated for model parameters. All statistical 
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analyses were performed using SAS, version 9.4 (SAS Institute, Cary, NC) and Stata 14.0 

(StataCorp, College Station, TX).  
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4.1 ABSTRACT 

 

Background: Few studies have comprehensively evaluated the association of depression with 

both objective and subjective sleep disturbance using a controlled twin study design. 

 

Methods: We studied 246 members of the Vietnam Era Twin Registry. We measured depressive 

symptoms using the Beck Depression Inventory-II (BDI), and assessed major depression using 

structured clinical interview. Twins underwent one-night polysomnography and 7-day actigraphy 

to derive measures of objective sleep disturbance, and completed the Pittsburgh Sleep Quality 

Index for subjective sleep. Multivariable mixed-effects regression models were used to examine 

the association of depression with sleep disturbance within twin pairs. 

 

Results: Twins were all male, mostly white (97%), with mean (SD) age of 68 (2) years. The 

mean (SD) BDI was 5.9 (6.3), and 49 (20%) met criteria for major depression. For 

polysomnography, each 5-unit higher BDI, within-pair, was significantly associated with 19.7 

minutes longer rapid eye movement (REM) sleep latency, and 1.1% shorter REM sleep after 

multivariable adjustment. The BDI was not associated with sleep architecture or sleep-disordered 

breathing. For actigraphy, a higher within-pair difference in BDI was significantly associated 

with lower sleep efficiency, more fragmentation and higher variability in sleep duration. The 

BDI was associated with almost all dimensions of self-reported sleep disturbance. Results 

remained consistent using major depression diagnosis instead of BDI and were independent of 

presence of comorbid posttraumatic stress disorder and antidepressant use. 
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Conclusions: Depression is associated with REM sleep disruption in lab and sleep fragmentation 

and sleep variability at home, but not with sleep architecture or sleep-disordered breathing.  
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4.2 Introduction 

 Depression is a prevalent psychiatric condition with a lifetime prevalence of 16% in the 

US.1-3 Sleep disturbance is a commonly reported symptom of depression,15,234 and numerous 

studies have shown an association between depression and self-reported sleep problems.15,33-36 

However, the relationship between depression and sleep disturbance is less consistent when 

using objective tools to measure sleep, such as polysomnography (PSG) or actigraphy. While 

some of these studies have reported an association,37-40 others have not.41-43 Furthermore, the 

existing literature is far from consistent regarding the sleep dimensions that may be affected by 

depression. For example, some studies have linked depressive symptoms with prolonged stage 2 

sleep and less rapid eye movement (REM) sleep,44,45 while others have not found an association 

between depression and sleep architecture.41 These inconsistencies may be due to the fact that 

several studies were limited in sample size, differed in their measurement of depression, or 

lacked a comprehensive evaluation of objective sleep dimensions.33,46-48  

A co-twin control study provides a natural “counterfactual” design to examine 

phenotypic associations, as twins are matched for genetic and early familial factors.83 The 

inclusion of both monozygotic (MZ) and dizygotic (DZ) twin pairs allows to examine the genetic 

influence on the association of interest. Prior twin studies suggest that the link between 

depression and sleep may be partially explained by shared genetic and familial factors.71-74 

However, these findings were limited to self-reported sleep measures. Currently, it is unknown 

whether shared genes and familial factors explain the association between depression and 

objectively measured sleep disturbance. 

In a twin study of older veterans, a population highly affected by both depression and 

sleep disturbance,235-237 we sought to evaluate whether depressive symptoms and major 



57 

 

depression are related to sleep disturbance utilizing a comprehensive set of subjective and 

objective sleep measures, and whether genetic and familial factors play a role in the association. 

We hypothesized that depression is more consistently associated with subjective than objective 

sleep measures, and that familial factors play a role in this association. 

 

4.3 Methods and Materials 

Study Cohort 

 The subjects of this study were recruited from the Vietnam Era Twin Registry, which is a 

national sample of 7,369 male twins who served on active duty during the Vietnam war (1964-

1975).80 The present study is based on the sleep substudy of the Emory Twin Study Follow-up 

(ETSF). ETSF conducted a second visit of the Registry twins who participated in the Emory 

Twin Study (ETS).81,207 ETS initially included 283 twin pairs (n=566) born between 1946 and 

1956, with no prior history of cardiovascular disease who were examined in person between 

2002 and 2010 when their mean age was 55 years.209 The study included twin pairs discordant 

for depression or posttraumatic stress disorder (PTSD) based on previous registry surveys, as 

well as control pairs free of these psychiatric conditions. Of the 283 ETS twin pairs, we invited 

504 twins to participate in the ETSF for an in-person or phone evaluation that was conducted on 

average 12 years after the initial assessment. A total of 392 twins participated in ETSF, and 

among them 278 twins (including 123 pairs and 32 singles) completed the visit and had available 

depression data. Of these, 230 twins (99 pairs, 32 singles) were included in the sleep substudy 

which collected objective sleep data. Self-reported sleep disturbance was available in the entire 

sample of 123 pairs (246 twins) who completed the in-person ETSF visit. Thus, the latter 
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represented the analytical sample for this study. Figure 4.1 shows the construction of the study 

population. 

 At the ETSF, all twin pairs were examined together at Emory University on the same day 

to minimize measurement error. Medical history, anthropometric measurements, behavioral and 

psychosocial measures, and sleep data were collected using identical protocols and similar 

schedule for the two twins. Zygosity data were obtained and verified by DNA typing.210 We 

obtained written informed consent from all twins, and the Emory University institutional review 

board approved this study. 

  

Measurements of Depressive Symptoms and Major Depression 

 The Beck Depression Inventory-II (BDI-II) was administered to assess the severity of 

depressive symptoms. The BDI is a validated scale providing a continuous measure of depressive 

symptoms, including 21 items each scored from 0 to 3, with a total score ranging from 0 to 

63.211-213 A higher BDI indicates more depressive symptoms. In this study, we removed the sleep 

item in BDI to eliminate the potential influence it may have on the association of BDI with sleep 

disturbance. We also administered the Structured Clinical Interview for Diagnostic and 

Statistical Manual of Mental Disorder, 4th Edition (DSM-4), or SCID, to obtain a clinical 

diagnosis of major depressive disorder (MDD). Given the small number of twin pairs discordant 

for lifetime MDD (37 pairs, n=74, or 30%), we chose the BDI instead of MDD for our primary 

analysis. 
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Measurements of Sleep Disturbance 

We used both objective and subjective methods to obtain a comprehensive assessment of 

sleep disturbance. We conducted one-night in-lab PSG at the Emory Sleep Center using a Natus 

N7000 recording system (Natus, Inc.). PSG consisted of measurements of frontal, central and 

occipital electroencephalography, bilateral electrooculography and mentalis surface 

electromyography to derive measures of sleep architecture and continuity. PSG also included 

measures of respiratory airflow, respiratory effort, breathing sounds, electrocardiography and 

surface electromyography recorded above the anterior tibialis of the left and right legs. All 

scoring was performed by registered technologists who were blind to the participants’ clinical 

data following guidelines of the American Academy of Sleep Medicine.215 Since prior research 

was especially inconsistent on whether depression is associated with alterations in sleep 

architecture, periodic limb movements (PLMS), and sleep-disordered breathing 

(SDB),40,41,44,45,126,216,217 we focused on these measures. We quantified the proportion of total 

sleep time (TST) spent asleep (sleep efficiency, SE), and the proportion of TST spent in N1, N2, 

N3, and REM sleep, as well as REM latency (time from the first epoch of sleep to the first epoch 

of REM including intervening wakefulness). We also analyzed the PLMS index (number of 

movements per hour of TST). SDB was analyzed using different indices: the apnea/hypopnea 

index (AHI), respiratory disturbance index (RDI), oxygen desaturation index (ODI), and 

percentage of TST with saturated oxygen below 90%. Both AHI and ODI definitions required a 

drop in saturated oxygen of 4% or greater. The AHI was our primary measure of SDB. A total of 

178 twins had usable PSG data, including 71 pairs (n=142) who were included in the within-pair 

analysis. 
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 Following the PSG, each participant returned home with a wrist-worn actigraph to derive 

objective sleep metrics in a naturalistic environment. All participants were instructed to wear the 

devices on their non-dominant wrist for 7 days. Wrist actigraphy is an accepted measure of rest-

activity patterns. It measures body movement using a motion sensor, which allows inference of 

various measures of sleep continuity and daytime napping.218 We used the Actiwatch Spectrum 

Pro (Philips-Respironics, Inc.), which contains a calibrated accelerometer that records physical 

movement in 1-minute epochs. Raw actigraphy data were adjudicated using a sleep diary and a 

standardized scoring algorithm, primarily to determine the onset and offset of intended nighttime 

sleep periods. We derived objective nap data from the actigraphy with the aid of the sleep diary. 

Both number and duration of naps were obtained. For selected variables, we derived the mean 

and within subject standard deviation for analyses. Our measures included TST (minutes), sleep 

onset latency (SOL, minutes), SE (%), wake after sleep onset (WASO) (minutes), fragmentation 

index (%), and two additional SD measures for sleep irregularity: 7-day SD in sleep duration 

(minutes) and 7-day SD in sleep onset timing (minutes).220 A total of 212 twins had usable 

actigraphy data, including 87 pairs (n=174) who were included in the within-pair analysis. All 

twins had at least 4 days of actigraphy data, thus were all included in the analysis; most (n=151, 

87%) had the whole 7 days of data, and almost all (n=170, 98%) had at least 6 days of data. 

 We assessed subjective sleep disturbance using the Pittsburgh Sleep Quality Index 

(PSQI), a self-reported 19-item questionnaire with excellent psychometric properties, yielding 7 

subscales (with a score 0 to 3) and a single total score (with a score 0 to 21).221 A higher PSQI 

indicates more sleep disturbance over the previous month. The 7 subscales are: (1) subjective 

sleep quality; (2) SOL; (3) sleep duration; (4) SE; (5) sleep disturbance; (6) need any 
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medications to sleep; and (7) sleep issues causing any daytime dysfunction. The entire sample of 

123 pairs (n=246) who completed the in-person ETSF visit had usable PSQI data. 

 

Other Measurements 

 Medical history and physical examination were obtained by a research nurse or physician 

assistant. Anthropometric data, fasting blood glucose, lipid profile, and health behaviors were 

measured as previously described.11 We used standardized questionnaires to obtain data on 

sociodemographic factors and health behaviors. Physical activity was measured using the Baecke 

Questionnaire of Habitual Physical Activity. History of hypertension was defined as systolic 

blood pressure >140 mmHg or diastolic blood pressure >90 mmHg, or self-reported use of anti-

hypertensive medications. History of coronary artery disease that might have occurred from the 

time of the initial screen, was defined as a previous diagnosis of myocardial infarction or angina 

pectoris, or previous coronary revascularization procedures. Diabetes mellitus was defined as 

having a measured fasting glucose of more than 126 mg/dL or being treated with antidiabetic 

medications. Current use of beta-blockers, antidepressants, statins, angiotensin-converting 

enzyme inhibitors, and sleep medications were also recorded. A continuous measure of PTSD 

symptoms was obtained using the PTSD Checklist for DSM-4 (PCL-4), and a binary measure of 

PTSD diagnosis (lifetime and current), as well as a diagnosis of alcohol abuse disorder, were 

obtained using the SCID. 

 

Statistical Analysis 

 We conducted descriptive analyses by summarizing participants’ characteristics, 

including sociodemographic factors, health-related factors, medication use and sleep measures. 
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We also compared study variables by tertiles of BDI, using ANOVA for continuous variables 

and chi-squared tests for categorical variables. In a secondary analysis, we compared the same 

variables in twins with vs. without MDD. 

Our primary analysis focused on the associations between the within-pair difference in 

the BDI and the within-pair difference in sleep disturbance represented by PSG, actigraphy, and 

PSQI. In a study of twins, within-pair differences intrinsically control for potential confounding 

by shared genetic and familial influences, as well as environmental factors during the clinic visit 

as twins were examined together. For all analyses, we fitted multivariable mixed-effects models 

and accounted for twin pair as random effect. The BDI was rescaled so that the  coefficients 

would describe the within-pair change in sleep metrics, per 5-unit difference in within-pair BDI. 

In the primary analysis, we removed the sleep item from the BDI to eliminate its potential 

influence on the association with sleep disturbance. 

 We constructed a series of models to examine the impact of sets of a priori selected 

variables on the association of interest. The base model (model 1) was unadjusted, including only 

the within-pair difference of the independent variable. We then progressively adjusted for 

sociodemographic and behavioral variables (education, employment, smoking status, and alcohol 

abuse) in model 2, and further adjusted for CVD risk factors most likely to be related to both 

sleep and depression (BMI and history of hypertension) in model 3. In the analysis of actigraphy 

data, we further adjusted for number of naps and average nap duration during the 7-day period in 

model 4. 

To assess potential shared genetic influence on depression and sleep, we examined MZ 

and DZ twins separately to examine effect modification by zygosity. Because MZ twin pairs 

share 100% of their genes while DZ twin pairs only share 50% on average, if a larger association 
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of depression with sleep disturbance is found within DZ pairs than within MZ pairs, this suggests 

that genetic factors may play a role in the association.  

 We also conducted a series of sensitivity analyses to expand our primary analytic 

approach. First, we repeated the analysis including the use of antidepressants as an additionally 

adjusted variable. Second, we replaced the BDI score with a lifetime history of MDD measured 

with the SCID. Third, we examined whether the results remained robust after adjustment for 

PTSD symptoms measured with the PCL-4 or a SCID diagnosis of lifetime history of PTSD. 

Fourth, we repeated the analysis using the full BDI, without removal of the sleep item. Finally, 

we conducted stratified analyses separating somatic and cognitive dimensions of BDI, and used 

standardized estimates of beta-coefficients to compare these two depression dimensions. 

 Missing data were rare (<5%) for all variables, thus we used all available data without 

imputation. We assessed linearity of all continuous variables, and evaluated multicollinearity by 

variance inflation factors. A two-sided p-value of less than 0.05 was used for statistical 

significance and 95% confidence intervals (CI) were calculated from model parameters. All 

statistical analyses were performed using SAS, version 9.4 (SAS Institute, Cary, NC). 

 

4.4 Results 

Participants’ Characteristics 

 To calculate within-pair differences in sleep disturbance, 246 twins (123 pairs) with any 

usable sleep data were included in the within-pair base sample (Figure 4.1). Among these twins, 

238 (97%) were white, with a mean age  SD of 68  2 years at the in-person visit (Table 4.1). 

Of the 246 twins with any sleep data, 76 pairs (n=152, 62%) were MZ twins and 47 pairs (n=94, 

38%) were DZ twins. The number of twin pairs discordant for MDD was relatively small, with 
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19 discordant pairs, 25 pairs, and 37 pairs, respectively, with PSG, actigraphy and PSQI. Thus, 

the analysis based on MDD discordance status was a secondary analysis. 

 

Depression and Polysomnography Measures of Sleep Disturbance 

Twins with higher BDI scores than their brothers, signifying more depressive symptoms, 

showed longer REM latency assessed with PSG across all models (Table 4.2). After 

multivariable adjustment, a 5-unit higher BDI score was associated with 19.7 minutes (95% CI: 

8.6 to 30.8 minutes) longer REM latency. We also observed a tendency for a higher BDI score to 

be associated with lower REM% ( coefficients per 5-unit higher BDI: -1.1%, 95% CI: -2.1% to 

-0.1%). BDI was consistently not associated with any SDB-related variables. 

These findings were consistent with the analysis that examined MDD instead of BDI. 

Among 19 MDD-discordant pairs, twins with MDD had significantly longer REM latency ( 

coefficient=58.7 minutes, 95% CI: 23.8 to 93.6 minutes) and lower REM% ( coefficient= -

4.7%, 95% CI: -7.7% to -1.7%), compared to their co-twins without MDD after full covariates 

adjustment (Supplement Table S.4.2). MDD was also significantly associated with more sleep 

time with oxygen saturation below 90% ( coefficient= 11.1%, 95% CI: 5.1% to 17.2%).  

Neither BDI nor MDD, however, were associated with sleep architecture defined as 

percentage of TST in N1, N2, and N3. Furthermore, neither BDI nor MDD were associated with 

AHI (Table 4.2, Table S.4.2). In contrast, health-related factors, such as higher BMI and history 

of hypertension were significantly associated with a higher AHI (Tables S.4.3-S.4.4). 
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Depression and Actigraphy Measures of Sleep Disturbance over 7 Days 

 Within twin pairs, a higher BDI was significantly associated with lower SE, higher 

fragmentation index, and more irregular sleep duration measured as the SD of sleep duration 

over 7 days. The BDI, however, was not associated with TST, SOL, WASO, or irregular sleep 

onset time (Table 4.3).  

Similar to the PSG analysis, adjustment for other participant characteristics did not 

affect the results. After multivariable adjustment, a 5-unit increment in BDI was associated with 

0.5% lower SE (95% CI: -1.1% to -0.1%), 1.2% higher fragmentation index (95% CI: 0.6% to 

1.9%) and 5.8 minutes higher SD of sleep duration (95% CI: 1.7 to 9.9 minutes) (Table 4.3). 

Further adjustment for number of naps during home monitoring and the average nap duration did 

not materially change the results. The analysis that examined pairs discordant for MDD (n=50 

twins) yielded consistent results: twins with MDD compared with their co-twins without MDD 

had 2.1% lowered SE (95% CI: -3.6% to -0.6%), 2.6% higher fragmentation index (95% CI: 

0.5% to 4.8%) and 17.9 minutes higher SD of sleep duration (95% CI: 6.8 to 28.9 minutes) after 

full covariate adjustment (Table S.4.5). 

 

Depression and Self-Reported Measures of Sleep Disturbance 

 Within twin pairs, a higher BDI was significantly associated with more sleep disturbance 

measured by self-report with the PSQI across almost all dimensions, after multivariable 

adjustment (Table 4.4). For example, a 5-unit higher BDI was associated with a 1.16-point 

higher PSQI total score (95% CI: 0.83 to 1.49), and higher PSQI subscales indicating poorer 

sleep quality, shorter sleep duration, lower SE, more sleep disturbance, need for more 
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medications to sleep, and more daily dysfunction due to poor sleep ( coefficients ranging from 

0.11 to 0.27). Similar results were obtained when examining MDD (Table S.4.6). 

 

Additional Analyses 

 In stratified analysis by zygosity, significant associations between BDI and sleep metrics, 

including PSG, actigraphy and PSQI, were observed in both MZ and DZ twins, with no material 

difference in the strength of the association by zygosity (results not shown). The interaction term 

between zygosity and depression was not significant in any of the models. When we examined 

different dimensions of BDI, the somatic and cognitive subscales showed similar associations 

with sleep disturbance (Tables S.4.7-S.4.9). Using full BDI without removal of the sleep item 

did not materially change the results. Further adjustment for antidepressant use, as well as 

adjustment for PTSD symptoms or lifetime history of PTSD weakened the association between 

BDI and percentage of TST in REM, which became marginally significant, but overall it did not 

affect the association between BDI and other sleep metrics (Tables S.4.10-S.4.12).  

 

4.5 Discussion 

 In this co-twin control study, depressive symptoms and MDD were associated with a 

number of objectively measured indices of sleep disturbance. With PSG, twins with higher levels 

of depressive symptoms or a history of MDD showed more REM sleep abnormalities than their 

brothers with fewer depressive symptoms or without MDD, including longer REM latency and 

lower percentage of TST in REM. Depression measures were also associated with more 

actigraphy-measured irregular and fragmented sleep, such as lower SE, more fragmentation and 

higher day-to-day variability of sleep duration. These associations persisted with adjustment for 
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sociodemographic, behavioral and CVD risk factors. In contrast, depression measures were not 

associated with several other sleep abnormalities, including TST, indices of SDB, PLMS, sleep 

architecture, and WASO. The results were similar in both MZ and DZ twins, and the interaction 

with zygosity was not significant, suggesting the absence of shared genetic and familial influence 

on the association of depression with sleep abnormalities. 

 Our findings are consistent with prior PSG studies showing that more depressive 

symptoms are associated with longer REM latency38,45 and shorter TST spent in REM.44,45,238 

Some previous studies,44,45 but not others,19,234,239 have reported an association of depressive 

symptoms with increased stage N2 sleep. In our study, none of the sleep architecture variables 

were associated with depression measures. 

In our study, depressive symptoms were not associated with any of the SDB-related 

measures. This is in agreement with previous studies that examined the relationship of 

depression with PSG-derived indices of sleep disturbance.42,126-131 Most of these prior 

investigations were limited by small sample sizes, inclusion of selected samples of symptomatic 

patients referred for evaluation, and lack of measures of clinical diagnosis of depression. Thus, 

we have confirmed these previous finding using a more rigorous design. In contrast to the in-lab 

PSG results, individuals with depression demonstrated worse actigraphy-measured sleep over a 

week, especially lower SE and higher fragmentation, as others have also reported.132-135  

Taken together, our results suggest that depression is primarily related to metrics of sleep 

disturbance in a natural environment over several days (as measured through actigraphy), but not 

to disturbed sleep as measured via PSG. PSG conducted in a laboratory environment provides an 

artificial setting, and may not truly represent the typical sleep pattern of a person, though it is 

typically used to characterize sleep disorders such as SDB.240 Our findings are consistent with 
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the notion that, insofar as depression is concerned, the most salient features of sleep are likely 

best appreciated over a longer interval of study in the home environment. 

 Even though we excluded the item on sleep problems from BDI, we observed a much 

more consistent association of depressive symptoms with subjective rather than objective sleep 

metrics. This was also reported by others,41,241 and supports the theory that sleep complaints 

differ from objective sleep disturbance, and may be more strongly rooted in psychological 

disorders, such as depression.242,243 Furthermore, self-reported sleep measures may introduce 

recall bias which could lead to overestimation of the association between depression and sleep 

disturbance. Thus, objectively measured sleep metrics may be more useful in measuring sleep 

disturbance than self-reported measures in the context of psychological disorders like depression.  

 There are a number of possible mechanisms linking depression with sleep disturbance. 

First, dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis may be implicated, as the 

HPA axis plays a critical role in sleep regulation as well as in depression.244,245 Second, some 

antidepressant drugs can increase the function of monoaminergic systems such as the 

norepinephrine and serotonin systems, which can suppress REM sleep and prolong REM 

latency.216 This is consistent with our findings that adjusting for antidepressant use dampened the 

strength of the association between depressive symptoms and reduced REM sleep. Third, there 

could be a shared biological pathway linking depression and sleep, as suggested by previous twin 

studies based on self-reported sleep measures.71-74 Using objective measures, however, we did 

not find evidence that genetic factors play a major role in this association. Fourth, cognitive 

characteristics of depression could play a role. According to the cognitive model of insomnia, a 

tendency to worry and ruminate during the day in depressed individuals may extend to the pre-

sleep period, and may trigger autonomic arousal and emotional distress.246 Lastly, the association 
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of depression with sleep abnormalities could be mediated by autonomic dysregulation. We have 

previously shown that depressive symptoms and autonomic dysregulation are bidirectionally 

associated.32  

 The strengths of this study include the use of multiple objective sleep measures including 

PSG and actigraphy, and the matched co-twin control study design. To our knowledge, this is the 

first twin study that evaluated the association of depressive symptoms with objectively measured 

sleep disturbance using both gold standard, in-lab PSG and in-home actigraphy. The co-twin 

study design increased precision by providing an internal control (the unaffected twin), and 

intrinsically controlled for shared genetic and early familial factors. In addition, as twin pairs 

were assessed together (in lab) and in the same week (at home), confounding from 

environmental or seasonal/temporal influences on sleep measurements was minimized. Our 

study also has limitations. First, our sample included mostly white, middle-aged men, thus the 

generalizability to women and other racial/ethnic groups is limited. However, although a 

homogenous sample reduces generalizability, it should increase validity, which was a major goal 

of our study. Second, because of the cross-sectional design, we were unable to assess the 

directionality of the association. Third, the sample size for MDD-discordant twin pairs was 

relatively small, limiting our analysis of MDD. However, our results for MDD overall showed a 

similar pattern as those for the BDI. Future epidemiologic studies with more diverse study 

populations, a longitudinal design, and a larger sample size are needed to confirm our findings. 

 

4.6 Conclusions 

 Using a unique approach of objectively measuring multiple dimensions of sleep 

disturbance in the context of a controlled twin design, we demonstrate that depression is 
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associated with distinct features of altered sleep. While individuals with depression suffer from 

sleep disruption in the home environment, such as lower sleep efficiency, more fragmentation, 

and higher sleep duration variability, their depressive symptoms showed minimal association 

with SDB or PLMS. Individuals with depression are also vulnerable towards disruption of REM 

sleep, including longer REM latency and lower percentage of TST in REM. Our twin study 

shows that genetic and familial factors may not explain these associations. Our findings 

contribute to clarify the link between depression and sleep disturbance, but future research is 

needed to evaluate the directionality of this association. Our results help inform future research 

on prevention and treatment strategies to mitigate sleep disturbance among depressed 

individuals. 
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Figure 4.1 Participant Flow Diagram 
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* Recruitment dispositions: 95 never responded or refused to participate; 10 deceased during 

recruitment; 5 were too ill to participate; 1 withdrew; 1 incarcerated during recruitment. 

Abbreviations: BDI: Beck Depression Inventory; ETS: Emory Twin Study; ETSF: Emory Twin 

Study Follow-up; PSG: polysomnography; PSQI: Pittsburgh Sleep Quality Index.
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Table 4.1 Characteristics of 246 twins by tertiles of BDI score 

Characteristics, mean (SD) 
Total 

(N=246) 

Tertile 1: 

BDI (0 – 2) 

(n=87) 

Tertile 2: 

BDI (3 – 

7) 

(n=89) 

Tertile 3: 

BDI (8 – 

44) 

(n=70) 

BDI score 5.9 (6.3) 1.0 (0.8) 4.6 (1.4) 13.8 (6.6) 

Sociodemographic factors         

    Age, years 68 (2) 68 (2) 68 (3) 68 (3) 

    White, No. (%) 238 (97) 84 (97) 88 (99) 66 (94) 

    Education, No. (%)         

        High school or less 54 (22) 16 (18) 20 (22) 18 (26) 

        Some college or associate 109 (44) 42 (48) 36 (40) 31 (44) 

        College degree 44 (18) 14 (16) 17 (19) 13 (19) 

        Graduate education or degree 39 (16) 15 (17) 16 (18) 8 (11) 

    Employed, No. (%) 84 (34) 33 (38) 27 (30) 24 (34) 

         

Health factors         

    BMI* 29 (4) 29 (4) 29 (4) 30 (4) 

    Ever smokers, No. (%) 157 (64) 56 (64) 55 (62) 46 (66) 

    Alcohol abuse, No. (%)* 56 (23) 14 (16) 17 (19) 25 (36) 

    Baecke score for physical activity* 7.9 (1.4) 8.2 (1.4) 8.0 (1.4) 7.5 (1.5) 

    Systolic blood pressure, mmHg 139 (18) 136 (19) 140 (19) 139 (17) 

    Diastolic blood pressure, mmHg 78 (11) 76 (11) 80 (10) 79 (12) 

    History of hypertension, No. (%) 146 (59) 45 (52) 54 (61) 47 (67) 

    History of diabetes, No. (%)* 53 (22) 18 (21) 13 (15) 22 (31) 

    Family history of CAD, No. (%) 41 (17) 11 (13) 17 (19) 13 (19) 

    PCL-4 score* 25 (11) 20 (4) 24 (9) 34 (13) 

    Lifetime history of PTSD, No. (%)* 59 (24) 9 (10) 21 (24) 29 (41) 

    Lifetime history of depression, No. (%)* 49 (20) 6 (7) 15 (17) 28 (40) 

    Current PTSD, No. (%)* 34 (14) 0 (0) 14 (16) 20 (29) 

    Current depression, No. (%)* 17 (7) 0 (0) 1 (1) 16 (23) 
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Medication use         

    β-Blockers, No. (%) 58 (24) 16 (18) 22 (25) 20 (29) 

    Antidepressants, No. (%)* 37 (15) 3 (3) 9 (10) 25 (36) 

    Statin, No. (%) 126 (51) 42 (48) 48 (54) 36 (51) 

    ACE inhibitor, No. (%) 64 (26) 19 (22) 27 (30) 18 (26) 

PSG metrics (n=142) (n=59) (n=50) (n=33) 

    Total sleep time, minutes 304 (64) 306 (60) 292 (68) 321 (61) 

    REM latency, minutes 145 (88) 131 (70) 150 (88) 161 (115) 

    Sleep efficiency, % 68 (14) 69 (13) 66 (16) 71 (14) 

    Percentage of total sleep time in N1, % 13 (8) 11 (6) 15 (9) 13 (10) 

    Percentage of total sleep time in N2, % 64 (11) 64 (11) 63 (11) 64 (11) 

    Percentage of total sleep time in N3, % 8 (10) 9 (10) 7 (9) 8 (11) 

    Percentage of total sleep time in REM, % 15 (8) 15 (7) 15 (7) 15 (8) 

    Total arousals index, per sleep hour 35 (22) 33 (22) 35 (23) 38 (21) 

    Periodic leg movement index, per sleep hour 24 (30) 26 (32) 24 (29) 22 (29) 

    Apnea/hypopnea index, per sleep hour 17 (19) 14 (16) 18 (19) 21 (23) 

    Respiratory disturbance index, per sleep hour 31 (23) 27 (23) 32 (22) 36 (25) 

    Oxygen desaturation index, per sleep hour 16 (18) 13 (15) 17 (18) 19 (21) 

    Percentage of sleep duration with SaO2 <90%, % 9 (15) 5 (11) 11 (16) 11 (19) 

         

Actigraphy metrics (n=174) (n=64) (n=63) (n=47) 

    Total sleep time, minutes 482 (64) 478 (52) 484 (62) 484 (81) 

    Sleep onset latency, minutes 8 (7) 7 (5) 8 (7) 8 (8) 

    Sleep efficiency, %* 88 (6) 90 (4) 88 (5) 88 (8) 

    Wake after sleep onset, minutes* 49 (25) 42 (17) 53 (25) 52 (32) 

    Fragmentation index, %* 21 (10) 18 (7) 22 (9) 23 (13) 

    SD of sleep duration, minute 66 (36) 65 (31) 62 (35) 75 (44) 

    SD of sleep onset timing, minute 46 (28) 46 (32) 44 (27) 51 (24) 

    Number of naps during 7 days* 1.2 (1.7) 0.7 (1.2) 1.6 (1.8) 1.5 (2.0) 

    Average nap duration, minute 34 (50) 26 (53) 36 (49) 41 (46) 
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PSQI metrics (n=246) (n=87) (n=89) (n=70) 

    PSQI total score* 6.3 (3.6) 4.6 (2.8) 6.5 (3.6) 8.5 (3.5) 

    PSQI subscale: sleep quality* 1.0 (0.7) 0.7 (0.5) 1.1 (0.7) 1.3 (0.7) 

    PSQI subscale: sleep latency* 1.2 (1.0) 0.9 (0.9) 1.2 (1.0) 1.4 (1.0) 

    PSQI subscale: sleep duration* 0.7 (0.9) 0.5 (0.7) 0.7 (0.9) 1.0 (1.1) 

    PSQI subscale: sleep efficiency* 0.8 (1.1) 0.5 (0.9) 1.0 (1.1) 0.9 (1.1) 

    PSQI subscale: sleep disturbance* 1.5 (0.6) 1.2 (0.5) 1.5 (0.6) 1.7 (0.7) 

    PSQI subscale: need meds to sleep* 0.7 (1.2) 0.4 (1.0) 0.5 (1.1) 1.1 (1.4) 

    PSQI subscale: sleep issues cause dysfunction* 0.7 (0.6) 0.3 (0.5) 0.6 (0.6) 1.1 (0.6) 

 

* Indicates significant difference in participants’ characteristics between BDI tertiles at P <0.05. P values were calculated using 

ANOVA tests (continuous variables) and chi-squared tests (categorical variables).  

Abbreviations: ACE: angiotensin-converting enzyme; BDI: Beck Depression Inventory; BMI: body mass index; CAD: coronary artery 

disease; PCL-4: PTSD Checklist for Diagnostic and Statistical Manual of Mental Disorder, 4th Edition; PSG: polysomnography; PSQI: 

Pittsburgh Sleep Quality Index; PTSD: posttraumatic stress disorder; REM: rapid eye movement; SaO2: oxygen saturation; SD: 

standard deviation. 
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Table 4.2 Within-pair analysis of the association between BDI score and PSG metrics 

PSG sleep metricsa Model 1b Model 2c Model 3d 

Total sleep time, minutes 8.2  (-0.5, 16.8) 5.4  (-3.5, 14.3) 5.3  (-3.8, 14.4) 

REM latency, minutes 12.8  (1.1, 24.4)* 18.2  (6.6, 29.9)* 19.7  (8.6, 30.8)* 

Sleep efficiency, % 1.7  (-0.3, 3.6) 0.7  (-1.2, 2.7) 0.7  (-1.2, 2.7) 

Percentage of total sleep time in N1, % 0.1  (-1.0, 1.1) 0.3  (-0.8, 1.3) 0.2  (-0.9, 1.3) 

Percentage of total sleep time in N2, % 1.1  (-0.4, 2.6) 1.0  (-0.5, 2.6) 1.2  (-0.2, 2.7) 

Percentage of total sleep time in N3, % -0.7  (-2.0, 0.6) -0.7  (-2.1, 0.7) -1.0  (-2.4, 0.4) 

Percentage of total sleep time in REM, % -0.9  (-1.9, 0.1) -1.2  (-2.2, -0.1)* -1.1  (-2.1, -0.1)* 

Total arousals index, per sleep hour -0.4  (-2.9, 2.1) -0.2  (-2.9, 2.4) -0.5  (-3.1, 2.2) 

Periodic leg movement index, per sleep hour 1.8  (-1.4, 5.0) 0.9  (-2.5, 4.3) 1.5  (-1.9, 4.9) 

Apnea/hypopnea index, per sleep hour 0.9  (-1.2, 3.0) 0.8  (-1.5, 3.0) 0.9  (-1.2, 3.0) 

Respiratory disturbance index, per sleep hour 0.8  (-2.0, 3.7) 1.4  (-1.6, 4.4) 1.4  (-1.5, 4.2) 

Oxygen desaturation index, per sleep hour 0.6  (-1.4, 2.7) 0.6  (-1.5, 2.8) 0.7  (-1.3, 2.7) 

Percentage of sleep duration with SaO2 <90%, % 1.0  (-1.2, 3.1) 1.0  (-1.3, 3.2) 1.4  (-0.8, 3.5) 

* Indicates significant association at P <0.05.  

Abbreviations: BDI: Beck Depression Inventory; BMI: body mass index; PSG: polysomnography; REM: rapid eye movement; SaO2: 

oxygen saturation. 

a Results are shown as β coefficients in the mixed models, per 5-unit increase in BDI score. Sample size N=142 (or 71 pairs).  

b Base model adjusted for within-pair difference of BDI. 

c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, and 

alcohol abuse. 

d Model 3 = Model 2 + BMI and history of hypertension. 
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Table 4.3 Within-pair analysis of the association between BDI score and actigraphy metrics over 7 days 

Actigraphy sleep metricsa Model 1b Model 2c Model 3d Model 4e 

Total sleep time, minutes -0.7  (-8.0, 6.6) 1.6  (-5.3, 8.6) 2.0  (-5.0, 9.0) 2.1  (-4.8, 9.1) 

Sleep onset latency, minutes 0.2  (-0.5, 0.9) 0.2  (-0.5, 1.0) 0.2  (-0.5, 1.0) 0.2  (-0.5, 1.0) 

Sleep efficiency, % -0.4  (-1.0, 0.1) -0.5  (-1.1, -0.1)* -0.5  (-1.1, -0.1)* -0.5  (-1.1, -0.1)* 

Wake after sleep onset, minutes 1.2  (-1.0, 3.4) 2.0  (-0.2, 4.2) 2.0  (-0.2, 4.2) 1.9  (-0.3, 4.1) 

Fragmentation index, % 1.3  (0.6, 2.0)* 1.3  (0.6, 2.0)* 1.2  (0.6, 1.9)* 1.2  (0.5, 1.9)* 

SD of sleep duration, minute 5.1  (1.0, 9.2)* 5.4  (1.4, 9.5)* 5.8  (1.7, 9.9)* 6.1  (2.0, 10.1)* 

SD of sleep onset timing, minute -0.8  (-4.4, 2.9) -0.1  (-3.2, 3.1) 0.1  (-3.1, 3.2) 0.1  (-3.1, 3.2) 

* Indicates significant association at P <0.05.  

Abbreviations: BDI: Beck Depression Inventory; BMI: body mass index; SD: standard deviation. 

a Results are shown as β coefficients in the mixed models, per 5-unit increase in BDI score. Sample size N=174 (or 87 pairs).  

b Base model adjusted for within-pair difference of BDI. 

c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, and 

alcohol abuse. 

d Model 3 = Model 2 + BMI and history of hypertension. 

e Model 4 = Model 3 + number of naps and average nap duration.  
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Table 4.4 Within-pair analysis of the association between BDI score and PSQI metrics 

PSQI sleep metricsa Model 1b Model 2c Model 3d 

PSQI total score 1.10  (0.78, 1.42)* 1.16  (0.83, 1.50)* 1.16  (0.83, 1.49)* 

PSQI subscale: sleep quality 0.20  (0.14, 0.27)* 0.23  (0.16, 0.30)* 0.23  (0.16, 0.30)* 

PSQI subscale: sleep latency 0.09  (-0.01, 0.19) 0.09  (-0.01, 0.19) 0.09  (-0.01, 0.19) 

PSQI subscale: sleep duration 0.13  (0.04, 0.23)* 0.16  (0.07, 0.25)* 0.16  (0.07, 0.25)* 

PSQI subscale: sleep efficiency 0.08  (-0.02, 0.19) 0.11  (0.01, 0.22)* 0.11  (0.01, 0.22)* 

PSQI subscale: sleep disturbance 0.16  (0.11, 0.22)* 0.16  (0.11, 0.22)* 0.16  (0.10, 0.22)* 

PSQI subscale: need meds to sleep 0.17  (0.05, 0.29)* 0.14  (0.01, 0.27)* 0.13  (0.01, 0.26)* 

PSQI subscale: sleep issues cause dysfunction 0.27  (0.22, 0.33)* 0.27  (0.22, 0.33)* 0.27  (0.22, 0.33)* 

* Indicates significant association at P <0.05.  

Abbreviations: BDI: Beck Depression Inventory; BMI: body mass index; PSQI: Pittsburgh Sleep Quality Index. 

a Results are shown as β coefficients in the mixed models, per 5-unit increase in BDI score. Sample size N=246 (or 123 pairs).  

b Base model adjusted for within-pair difference of BDI. 

c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, and 

alcohol abuse. 

d Model 3 = Model 2 + BMI and history of hypertension. 

 

 



79 

 

Table S.4.1 Characteristics of 246 twins by lifetime history of MDD status 

Characteristics, mean (SD) 
Total 

(N=246) 

MDD 

(n=49) 

No MDD 

(n=197) 

Sociodemographic factors       

    Age, years 68 (2) 67 (2) 68 (2) 

    White, No. (%)* 238 (97) 45 (92) 193 (98) 

    Education, No. (%)       

        High school or less 54 (22) 11 (22) 43 (22) 

        Some college or associate 109 (44) 20 (41) 89 (45) 

        College degree 44 (18) 11 (22) 33 (17) 

        Graduate education or degree 39 (16) 7 (14) 32 (16) 

    Employed, No. (%) 84 (34) 15 (31) 69 (35) 

       

Health factors       

    BMI 29 (4) 29 (5) 29 (4) 

    Ever smokers, No. (%) 157 (64) 36 (73) 121 (61) 

    Alcohol abuse, No. (%)* 56 (23) 21 (43) 35 (18) 

    Baecke score for physical activity 7.9 (1.4) 7.8 (1.5) 7.9 (1.4) 

    Systolic blood pressure, mmHg 139 (18) 138 (19) 139 (18) 

    Diastolic blood pressure, mmHg 78 (11) 80 (14) 78 (10) 

    History of hypertension, No. (%) 146 (59) 33 (67) 113 (57) 

    History of diabetes, No. (%) 53 (22) 9 (18) 44 (22) 

    Family history of CAD, No. (%) 41 (17) 9 (18) 32 (16) 

    BDI score* 5.9 (0.5) 11.2 (1.3) 4.6 (0.3) 

    PCL-4 score* 25 (11) 38 (13) 23 (8) 

    Lifetime history of PTSD, No. (%)* 59 (24) 30 (61) 29 (15) 

    Current PTSD, No. (%)* 34 (14) 24 (49) 10 (5) 

    Current depression, No. (%)* 17 (7) 17 (35) 0 (0) 

       

Medication use       

    β-Blockers, No. (%) 58 (24) 10 (20) 48 (24) 

    Antidepressants, No. (%)* 37 (15) 23 (47) 14 (7) 

    Statin, No. (%) 126 (51) 19 (39) 107 (54) 

    ACE inhibitor, No. (%) 64 (26) 13 (27) 51 (26) 

       

PSG metrics (N=142) (n=25) (n=117) 

    Total sleep time, minutes 304 (64) 317 (70) 302 (62) 

    REM latency, minutes* 145 (88) 186 (123) 137 (78) 

    Sleep efficiency, % 68 (14) 71 (16) 68 (14) 

    Percentage of total sleep time in N1, % 13 (8) 15 (11) 12 (7) 

    Percentage of total sleep time in N2, % 64 (11) 66 (11) 63 (11) 

    Percentage of total sleep time in N3, % 8 (10) 6 (9) 9 (10) 

    Percentage of total sleep time in REM, % 15 (8) 13 (9) 16 (7) 

    Total arousals index, per sleep hour 35 (22) 37 (25) 34 (22) 

    Periodic leg movement index, per sleep hour 24 (30) 29 (34) 23 (29) 

    Apnea/hypopnea index, per sleep hour 17 (19) 21 (26) 17 (17) 

    Respiratory disturbance index, per sleep hour 31 (23) 35 (28) 30 (22) 

    Oxygen desaturation index, per sleep hour 16 (18) 19 (24) 15 (16) 

    Percentage of sleep duration with SaO2 <90%, % 9 (15) 12 (20) 8 (14) 
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Actigraphy metrics (N=174) (n=33) (n=141) 

    Total sleep time, minutes 482 (64) 482 (91) 482 (57) 

    Sleep onset latency, minutes 8 (7) 8 (8) 8 (6) 

    Sleep efficiency, % 88 (6) 88 (7) 89 (5) 

    Wake after sleep onset, minutes 49 (25) 52 (29) 48 (24) 

    Fragmentation index, % 21 (10) 43 (17) 41 (15) 

    SD of sleep duration, minute* 66 (36) 79 (47) 63 (33) 

    SD of sleep onset timing, minute 46 (28) 52 (24) 45 (29) 

    Number of naps during 7 days 1.2 (1.7) 1.5 (2.0) 1.2 (1.7) 

    Average nap duration, minute 34 (50) 35 (42) 33 (52) 

       

PSQI metrics (N=246) (n=49) (n=197) 

    PSQI total score* 6.3 (3.6) 8.4 (3.7) 5.8 (3.5) 

    PSQI subscale: sleep quality* 1.0 (0.7) 1.3 (0.7) 0.9 (0.7) 

    PSQI subscale: sleep latency 1.2 (1.0) 1.4 (1.0) 1.1 (1.0) 

    PSQI subscale: sleep duration* 0.7 (0.9) 1.0 (1.1) 0.6 (0.9) 

    PSQI subscale: sleep efficiency 0.8 (1.1) 0.9 (1.1) 0.8 (1.1) 

    PSQI subscale: sleep disturbance* 1.5 (0.6) 1.7 (0.6) 1.4 (0.6) 

    PSQI subscale: need meds to sleep* 0.7 (1.2) 1.1 (1.4) 0.6 (1.1) 

    PSQI subscale: sleep issues cause dysfunction* 0.7 (0.6) 1.2 (0.7) 0.5 (0.6) 

 

Abbreviations: ACE: angiotensin-converting enzyme; BDI: Beck Depression Inventory; BMI: 

body mass index; CAD: coronary artery disease; MDD: major depressive disorder; PCL-4: 

PTSD Checklist for Diagnostic and Statistical Manual of Mental Disorder, 4th Edition; PSG: 

polysomnography; PSQI: Pittsburgh Sleep Quality Index; PTSD: posttraumatic stress disorder; 

SaO2: oxygen saturation; SD: standard deviation. 

* Indicates significant difference between MDD status at P <0.05. P values were calculated 

using two-sample t test (continuous variables) and chi-squared test (categorical variables).
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Table S.4.2 Within-pair analysis of the association between MDD and PSG metrics 
PSG sleep metricsa Model 1b Model 2c Model 3d 

Total sleep time, minutes 11.1  (-15.0, 37.2) 9.1  (-17.6, 35.7) 9.6  (-17.1, 36.2) 

REM latency, minutes 30.1  (-5.6, 65.9) 54.1  (18.4, 89.8)* 58.7  (23.8, 93.6)* 

Sleep efficiency, % 2.4  (-3.4, 8.2) 1.0  (-4.9, 6.9) 1.2  (-4.7, 7.1) 

Percentage of total sleep time in N1, % 1.2  (-1.9, 4.3) 0.3  (-2.9, 3.5) 0.1  (-3.0, 3.3) 

Percentage of total sleep time in N2, % 0.5  (-4.3, 5.3) 1.8  (-3.2, 6.7) 1.9  (-2.9, 6.7) 

Percentage of total sleep time in N3, % -1.0  (-4.8, 2.8) -1.4  (-5.4, 2.6) -1.5  (-5.4, 2.5) 

Percentage of total sleep time in REM, % -3.6  (-6.6, -0.6)* -4.4  (-7.5, -1.4)* -4.7  (-7.7, -1.7)* 

Total arousals index, per sleep hour -2.8  (-10.3, 4.7) -3.4  (-11.3, 4.5) -2.9  (-10.6, 4.8) 

Periodic leg movement index, per sleep hour 4.4  (-5.3, 14.0) 3.6  (-6.5, 13.8) 3.7  (-6.4, 13.7) 

Apnea/hypopnea index, per sleep hour 3.9  (-2.6, 10.4) 4.1  (-2.7, 10.9) 4.7  (-1.7, 11.1) 

Respiratory disturbance index, per sleep hour 0.6  (-8.0, 9.2) 1.0  (-8.0, 10.0) 1.9  (-6.6, 10.3) 

Oxygen desaturation index, per sleep hour 3.0  (-3.2, 9.2) 3.1  (-3.4, 9.6) 3.6  (-2.5, 9.8) 

Percentage of sleep duration with SaO2 <90%, % 9.1  (2.7, 15.5)* 10.5  (4.0, 17.0)* 11.1  (5.1, 17.2)* 

 

Abbreviations: BMI: body mass index; MDD: major depressive disorder; PSG: polysomnography; REM: rapid eye movement; SaO2: 

oxygen saturation. 

* Indicates significant association at P <0.05. 

a Results are shown as β coefficients in the mixed models, comparing MDD to non-MDD. Sample size N=38 (or 19 pairs discordant 

for MDD). 

b Base model adjusted for within-pair difference of MDD. 

c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, and 

alcohol abuse. 

d Model 3 = Model 2 + BMI and history of hypertension. 
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Table S.4.3 Within-pair analysis of the multivariable association between BDI score and AHI 
Variablesa  

BDI, per 5-unit increase 0.9  (-1.2, 3.0) 

Education -1.2  (-4.7, 2.2) 

Employment 1.4  (-4.3, 7.1) 

Ever smoking 1.0  (-5.2, 7.1) 

Alcohol abuse 2.4  (-4.9, 9.7) 

BMI 0.8  (0.1, 1.6)* 

History of hypertension 7.8  (2.3, 13.2)* 

 

Abbreviations: AHI: apnea/hypopnea index; BDI: beck depression inventory; BMI: body mass index. 

* Indicates significant association at P <0.05. 

a Results are shown as β coefficients in the mixed models, per 5-unit increase in BDI score. Sample size N=142 (or 71 pairs).  
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Table S.4.4 Within-pair analysis of the association between MDD and AHI 
Variablesa  

MDD 4.7  (-1.7, 11.1) 

Education -1.5  (-4.9, 1.9) 

Employment 2.3  (-3.4, 7.9) 

Ever smoking 0.1  (-6.3, 6.4) 

Alcohol abuse 2.6  (-4.4, 9.6) 

BMI 0.8  (0.1, 1.5)* 

History of hypertension 8.0  (2.6, 13.4)* 

 

Abbreviations: AHI: apnea/hypopnea index; BMI: body mass index; MDD: major depressive disorder. 

* Indicates significant association at P <0.05. 

a Results are shown as β coefficients in the mixed models, comparing MDD to non-MDD. Sample size N=38 (or 19 pairs discordant 

for MDD). 
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Table S.4.5 Within-pair analysis of the association between MDD and actigraphy metrics 
Actigraphy sleep metricsa Model 1b Model 2c Model 3d Model 4e 

Total sleep time, minutes -3.2  (-24.0, 17.6) -9.4  (-28.6, 9.7) -10.4  (-29.5, 8.8) -10.8  (-29.8, 8.2) 

Sleep onset latency, minutes 0.1  (-2.0, 2.2) 0.4  (-1.8, 2.5) 0.4  (-1.7, 2.6) 0.4  (-1.7, 2.6) 

Sleep efficiency, % -1.6  (-3.1, -0.1)* -2.0  (-3.5, -0.5)* -2.1  (-3.6, -0.6)* -2.1  (-3.6, -0.6)* 

Wake after sleep onset, minutes 4.8  (-1.5, 11.1) 5.4  (-0.9, 11.7) 5.6  (-0.7, 11.9) 5.5  (-0.8, 11.8) 

Fragmentation index, % 2.5  (0.4, 4.7)* 2.6  (0.4, 4.8)* 2.7  (0.5, 4.8)* 2.6  (0.5, 4.8)* 

SD of sleep duration, minute 15.3  (3.9, 26.6)* 17.4  (5.9, 28.9)* 17.9  (6.6, 29.2)* 17.9  (6.8, 28.9)* 

SD of sleep onset timing, minute 2.5  (-8.1, 13.1) 6.1  (-3.8, 16.1) 6.8  (-3.3, 16.8) 6.7  (-3.3, 16.7) 

 

Abbreviations: BMI: body mass index; MDD: major depressive disorder; SD: standard deviation. 

* Indicates significant association at P <0.05. 

a Results are shown as β coefficients in the mixed models, comparing MDD to non-MDD. Sample size N=50 (or 25 pairs discordant 

for MDD).  

b Base model adjusted for within-pair difference of MDD. 

c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, and 

alcohol abuse. 

d Model 3 = Model 2 + BMI and history of hypertension. 

e Model 4 = Model 3 + number of naps and average nap duration. 
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Table S.4.6 Within-pair analysis of the association between MDD and PSQI metrics 
PSQI sleep metricsa Model 1b Model 2c Model 3d 

PSQI total score 1.18  (0.22, 2.14)* 1.17  (0.17, 2.16)* 1.20  (0.21, 2.19)* 

PSQI subscale: sleep quality 0.26  (0.05, 0.47)* 0.27  (0.06, 0.49)* 0.27  (0.06, 0.49)* 

PSQI subscale: sleep latency -0.25  (-0.52, 0.02) -0.26  (-0.54, 0.02) -0.25  (-0.53, 0.03) 

PSQI subscale: sleep duration 0.22  (-0.04, 0.48) 0.26  (-0.01, 0.52) 0.26  (-0.01, 0.52) 

PSQI subscale: sleep efficiency 0.09  (-0.21, 0.39) 0.05  (-0.25, 0.36) 0.05  (-0.26, 0.35) 

PSQI subscale: sleep disturbance 0.14  (-0.02, 0.31) 0.09  (-0.08, 0.26) 0.09  (-0.07, 0.26) 

PSQI subscale: need meds to sleep 0.33  (-0.01, 0.68) 0.24  (-0.12, 0.59) 0.26  (-0.09, 0.61) 

PSQI subscale: sleep issues cause dysfunction 0.52  (0.36, 0.69)* 0.56  (0.40, 0.73)* 0.56  (0.40, 0.73)* 

 

Abbreviations: BMI: body mass index; MDD: major depressive disorder; PSQI: Pittsburgh Sleep Quality Index. 

* Indicates significant association at P <0.05. 

a Results are shown as β coefficients in the mixed models, comparing MDD to non-MDD. Sample size N=74 (or 37 pairs discordant 

for MDD).  

b Base model adjusted for within-pair difference of MDD. 

c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, and 

alcohol abuse. 

d Model 3 = Model 2 + BMI and history of hypertension.  
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Table S.4.7 Within-pair analysis of the association of BDI somatic and cognitive subscales with PSG metrics 
BDI Somatic Subscale 

PSG sleep metricsa Model 1b Model 2c Model 3d 

Total sleep time, minutes 0.15  (-0.02, 0.32) 0.09  (-0.08, 0.27) 0.09  (-0.08, 0.27) 

REM latency, minutes 0.16  (-0.01, 0.33) 0.25  (0.09, 0.42)* 0.27  (0.11, 0.43)* 

Sleep efficiency, % 0.15  (-0.01, 0.32) 0.07  (-0.10, 0.24) 0.07  (-0.10, 0.24) 

Percentage of total sleep time in N1, % -0.01  (-0.18, 0.17) 0.01  (-0.17, 0.19) 0.01  (-0.17, 0.19) 

Percentage of total sleep time in N2, % 0.07  (-0.09, 0.23) 0.08  (-0.09, 0.24) 0.09  (-0.06, 0.25) 

Percentage of total sleep time in N3, % -0.01  (-0.18, 0.16) 0.01  (-0.18, 0.19) -0.02  (-0.20, 0.16) 

Percentage of total sleep time in REM, % -0.15  (-0.32, 0.02) -0.22  (-0.39, -0.04)* -0.21  (-0.38, -0.04)* 

Total arousals index, per sleep hour 0.01  (-0.16, 0.19) 0.02  (-0.16, 0.21) 0.02  (-0.16, 0.19) 

Periodic leg movement index, per sleep hour 0.05  (-0.12, 0.22) 0.01  (-0.18, 0.18) 0.03  (-0.15, 0.21) 

Apnea/hypopnea index, per sleep hour 0.11  (-0.06, 0.28) 0.09  (-0.08, 0.27) 0.11  (-0.06, 0.27) 

Respiratory disturbance index, per sleep hour 0.09  (-0.08, 0.26) 0.11  (-0.07, 0.29) 0.11  (-0.05, 0.28) 

Oxygen desaturation index, per sleep hour 0.08  (-0.08, 0.25) 0.07  (-0.10, 0.25) 0.09  (-0.08, 0.25) 

Percentage of sleep duration with SaO2 <90%, % 0.13  (-0.04, 0.30) 0.12  (-0.06, 0.29) 0.15  (-0.02, 0.31) 

BDI Cognitive Subscale 

Total sleep time, minutes 0.15  (-0.02, 0.32) 0.10  (-0.07, 0.28) 0.10  (-0.08, 0.28) 

REM latency, minutes 0.18  (0.02, 0.35)* 0.23  (0.06, 0.40)* 0.25  (0.09, 0.41)* 

Sleep efficiency, % 0.11  (-0.06, 0.28) 0.04  (-0.13, 0.22) 0.04  (-0.13, 0.22) 

Percentage of total sleep time in N1, % 0.03  (-0.14, 0.20) 0.08  (-0.10, 0.26) 0.07  (-0.11, 0.26) 

Percentage of total sleep time in N2, % 0.15  (-0.01, 0.31) 0.14  (-0.02, 0.30) 0.16  (0.01, 0.32)* 

Percentage of total sleep time in N3, % -0.19  (-0.36, -0.02)* -0.23  (-0.41, -0.05)* -0.26  (-0.44, -0.08)* 

Percentage of total sleep time in REM, % -0.10  (-0.27, 0.06) -0.13  (-0.30, 0.05) -0.11  (-0.29, 0.06) 

Total arousals index, per sleep hour -0.09  (-0.26, 0.08) -0.07  (-0.26, 0.11) -0.10  (-0.28, 0.08) 

Periodic leg movement index, per sleep hour 0.14  (-0.03, 0.31) 0.10  (-0.08, 0.28) 0.14  (-0.04, 0.32) 

Apnea/hypopnea index, per sleep hour 0.01  (-0.16, 0.17) 0.01  (-0.18, 0.18) 0.01  (-0.17, 0.17) 

Respiratory disturbance index, per sleep hour -0.02  (-0.19, 0.15) 0.03  (-0.15, 0.21) 0.02  (-0.15, 0.19) 

Oxygen desaturation index, per sleep hour -0.01  (-0.17, 0.16) 0.01  (-0.17, 0.18) 0.01  (-0.16, 0.18) 

Percentage of sleep duration with SaO2 <90%, % -0.02  (-0.19, 0.15) -0.01  (-0.18, 0.17) 0.02  (-0.15, 0.19) 

 

Abbreviations: BDI: Beck Depression Inventory; BMI: body mass index; PSG: polysomnography; REM: rapid eye movement; SaO2: 

oxygen saturation. 

* Indicates significant association at P <0.05. 
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a Results are shown as standardized β coefficients in the mixed models, per 1 SD increase in standardized BDI somatic or cognitive 

subscales. Sample size N=142 (or 71 pairs).  

b Base model adjusted for standardized within-pair difference of BDI. 

c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, and 

alcohol abuse. 

d Model 3 = Model 2 + BMI and history of hypertension.  
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Table S.4.8 Within-pair analysis of the association of BDI somatic and cognitive subscales with actigraphy metrics 
BDI Somatic Subscale 

Actigraphy sleep metricsa Model 1b Model 2c Model 3d Model 4e 

Total sleep time, minutes -0.01  (-0.16, 0.14) 0.02  (-0.12, 0.16) 0.03  (-0.11, 0.17) 0.03  (-0.11, 0.17) 

Sleep onset latency, minutes 0.06  (-0.09, 0.20) 0.07  (-0.08, 0.22) 0.07  (-0.08, 0.22) 0.07  (-0.08, 0.22) 

Sleep efficiency, % -0.15  (-0.30, -0.01)* -0.18  (-0.32, -0.03)* -0.17  (-0.32, -0.03)* -0.17  (-0.32, -0.02)* 

Wake after sleep onset, minutes 0.12  (-0.03, 0.26) 0.16  (0.02, 0.30)* 0.16  (0.01, 0.30)* 0.16  (0.01, 0.30)* 

Fragmentation index, % 0.28  (0.15, 0.41)* 0.28  (0.15, 0.42)* 0.27  (0.14, 0.40)* 0.26  (0.14, 0.39)* 

SD of sleep duration, minute 0.21  (0.06, 0.36)* 0.22  (0.08, 0.37)* 0.23  (0.08, 0.37)* 0.24  (0.10, 0.39)* 

SD of sleep onset timing, minute 0.03  (-0.11, 0.17) 0.06  (-0.07, 0.18) 0.06  (-0.07, 0.18) 0.06  (-0.07, 0.18) 

BDI Cognitive Subscale 

Total sleep time, minutes -0.01  (-0.16, 0.14) 0.05  (-0.09, 0.19) 0.06  (-0.09, 0.20) 0.05  (-0.09, 0.20) 

Sleep onset latency, minutes -0.01  (-0.15, 0.14) -0.01  (-0.16, 0.15) 0.01  (-0.15, 0.16) -0.01  (-0.16, 0.15) 

Sleep efficiency, % -0.05  (-0.20, 0.09) -0.08  (-0.23, 0.07) -0.08  (-0.23, 0.07) -0.09  (-0.24, 0.06) 

Wake after sleep onset, minutes --  -- 0.06  (-0.08, 0.21) 0.06  (-0.09, 0.20) 0.06  (-0.09, 0.20) 

Fragmentation index, % 0.13  (-0.01, 0.26) 0.14  (0.01, 0.27)* 0.13  (0.01, 0.26)* 0.13  (0.01, 0.26)* 

SD of sleep duration, minute 0.12  (-0.03, 0.27) 0.12  (-0.04, 0.27) 0.14  (-0.01, 0.30) 0.14  (-0.02, 0.29) 

SD of sleep onset timing, minute -0.11  (-0.25, 0.03) -0.09  (-0.21, 0.04) -0.08  (-0.21, 0.05) -0.09  (-0.21, 0.04) 

 

Abbreviations: BDI: Beck Depression Inventory; BMI: body mass index. 

* Indicates significant association at P <0.05. 

a Results are shown as standardized β coefficients in the mixed models, per 1 SD increase in BDI somatic or cognitive subscales. 

Sample size N=174 (or 87 pairs).  

b Base model adjusted for standardized within-pair difference of BDI. 

c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, and 

alcohol abuse. 

d Model 3 = Model 2 + BMI and history of hypertension. 

e Model 4 = Model 3 + number of naps and average nap duration. 
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Table S.4.9 Within-pair analysis of the association of BDI somatic and cognitive subscales with PSQI metrics 
BDI Somatic Subscale 

PSQI sleep metricsa Model 1b Model 2c Model 3d 

PSQI total score 0.44  (0.31, 0.56)* 0.46  (0.33, 0.58)* 0.46  (0.34, 0.58)* 

PSQI subscale: sleep quality 0.36  (0.24, 0.48)* 0.39  (0.27, 0.51)* 0.39  (0.27, 0.51)* 

PSQI subscale: sleep latency 0.12  (-0.01, 0.25) 0.12  (-0.01, 0.25) 0.12  (-0.01, 0.25) 

PSQI subscale: sleep duration 0.23  (0.10, 0.35)* 0.26  (0.14, 0.39)* 0.26  (0.14, 0.39)* 

PSQI subscale: sleep efficiency 0.14  (0.01, 0.27)* 0.16  (0.03, 0.29)* 0.16  (0.04, 0.29)* 

PSQI subscale: sleep disturbance 0.34  (0.22, 0.46)* 0.33  (0.21, 0.45)* 0.33  (0.21, 0.45)* 

PSQI subscale: need meds to sleep 0.17  (0.04, 0.29)* 0.13  (0.01, 0.26)* 0.13  (0.01, 0.26)* 

PSQI subscale: sleep issues cause dysfunction 0.52  (0.41, 0.62)* 0.52  (0.41, 0.63)* 0.52  (0.41, 0.63)* 

BDI Cognitive Subscale 

PSQI total score 0.29  (0.17, 0.41)* 0.31  (0.18, 0.44)* 0.31  (0.18, 0.43)* 

PSQI subscale: sleep quality 0.26  (0.14, 0.38)* 0.32  (0.19, 0.44)* 0.31  (0.19, 0.44)* 

PSQI subscale: sleep latency 0.10  (-0.03, 0.22) 0.09  (-0.04, 0.22) 0.09  (-0.04, 0.22) 

PSQI subscale: sleep duration 0.08  (-0.05, 0.20) 0.11  (-0.02, 0.24) 0.11  (-0.02, 0.24) 

PSQI subscale: sleep efficiency 0.02  (-0.11, 0.15) 0.06  (-0.07, 0.19) 0.05  (-0.08, 0.18) 

PSQI subscale: sleep disturbance 0.30  (0.18, 0.42)* 0.31  (0.18, 0.43)* 0.30  (0.17, 0.42)* 

PSQI subscale: need meds to sleep 0.15  (0.02, 0.27)* 0.12  (-0.01, 0.25) 0.10  (-0.02, 0.23) 

PSQI subscale: sleep issues cause dysfunction 0.43  (0.32, 0.55)* 0.42  (0.30, 0.54)* 0.43  (0.31, 0.55)* 
 

Abbreviations: BDI: Beck Depression Inventory; BMI: body mass index; PSQI: Pittsburgh Sleep Quality Index. 

* Indicates significant association at P <0.05. 

a Results are shown as standardized β coefficients in the mixed models, per 1 SD increase in BDI somatic or cognitive subscales. 

Sample size N=246 (or 123 pairs).  

b Base model adjusted for standardized within-pair difference of BDI. 

c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, and 

alcohol abuse. 

d Model 3 = Model 2 + BMI and history of hypertension. 
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Table S.4.10 Within-pair analysis of the association between BDI score and PSG metrics, with adjustment for additional 

covariates 
PSG sleep metricsa Model Ab Model Bc Model Cd Model De 

Total sleep time, minutes 5.3  (-3.8, 14.4) 3.2 (-6.2, 12.7) 10.0 (-2.8, 22.8) 5.4 (-4.0, 14.7) 

REM latency, minutes 19.7  (8.6, 30.8)* 16.1 (4.8, 27.5)* 21.3 (5.1, 37.5)* 17.0 (5.8, 28.1)* 

Sleep efficiency, % 0.7  (-1.2, 2.7) 0.1 (-1.9, 2.1) 1.9 (-0.8, 4.7) 0.5 (-1.5, 2.6) 

Percentage of total sleep time in N1, % 0.2  (-0.9, 1.3) 0.6 (-0.6, 1.7) 0.5 (-1.1, 2.1) 0.3 (-0.9, 1.4) 

Percentage of total sleep time in N2, % 1.2  (-0.2, 2.7) 1.3 (-0.2, 2.8) 2.1 (-0.1, 4.3) 1.1 (-0.4, 2.6) 

Percentage of total sleep time in N3, % -1.0  (-2.4, 0.4) -1.2 (-2.7, 0.2) -2.2 (-4.1, -0.2)* -1.1 (-2.5, 0.4) 

Percentage of total sleep time in REM, % -1.1  (-2.1, -0.1)* -0.9 (-2.0, 0.2) -0.3 (-1.7, 1.2) -0.8 (-1.8, 0.2) 

Total arousals index, per sleep hour -0.5  (-3.1, 2.2) 0.3 (-2.5, 3.1) -1.6 (-5.4, 2.2) -0.5 (-3.2, 2.3) 

Periodic leg movement index, per sleep hour 1.5  (-1.9, 4.9) 2.2 (-1.3, 5.8) 0.2 (-4.7, 5.1) 1.9 (-1.6, 5.5) 

Apnea/hypopnea index, per sleep hour 0.9  (-1.2, 3.0) 1.1 (-1.1, 3.2) -1.9 (-4.9, 1.0) 0.6 (-1.6, 2.7) 

Respiratory disturbance index, per sleep hour 1.4  (-1.5, 4.2) 1.7 (-1.2, 4.7) 0.6 (-3.5, 4.7) 1.4 (-1.6, 4.3) 

Oxygen desaturation index, per sleep hour 0.7  (-1.3, 2.7) 0.9 (-1.1, 3.0) -2.8 (-5.6, 0.1) 0.4 (-1.7, 2.4) 

Percentage of sleep duration with SaO2 <90%, % 1.4  (-0.8, 3.5) 0.3 (-1.8, 2.5) -1.3 (-4.3, 1.7) 0.6 (-1.6, 2.8) 

 

Abbreviations: BDI: Beck Depression Inventory; BMI: body mass index; PSG: polysomnography; REM: rapid eye movement; SaO2: 

oxygen saturation. 

* Indicates significant association at P <0.05. 

a Results are shown as β coefficients in the mixed models, per 5-unit increase in BDI score. Sample size N=142 (or 71 pairs).  

b Model A represents the fully adjusted model in the primary analysis, with adjustment for within-pair difference of BDI, education, 

employment status, ever smoking status, alcohol abuse, BMI, and history of hypertension. 

c Model B = Model A + antidepressant use. 

d Model C = Model A + PCL-4. 

e Model D = Model A + PTSD. 

  



91 

 

Table S.4.11 Within-pair analysis of the association between BDI score and actigraphy metrics over 7 days, with adjustment 

for additional covariates 
Actigraphy sleep metricsa Model Ab Model Bc Model Cd Model De 

Total sleep time, minutes 2.1  (-4.8, 9.1) 1.9 (-5.5, 9.4) 2.3 (-7.9, 12.4) 2.2 (-4.9, 9.3) 

Sleep onset latency, minutes 0.2  (-0.5, 1.0) 0.1 (-0.7, 0.9) 0.1 (-0.9, 1.1) 0.2 (-0.5, 1.0) 

Sleep efficiency, % -0.5  (-1.1, -0.1)* -0.4 (-0.9, -0.1)* -0.4 (-1.1, 0.4) -0.5 (-1.0, 0.1) 

Wake after sleep onset, minutes 1.9  (-0.3, 4.1) 1.4 (-0.9, 3.7) 1.0 (-2.2, 4.1) 1.6 (-0.7, 3.8) 

Fragmentation index, % 1.2  (0.5, 1.9)* 0.8 (0.1, 1.5)* 1.2 (0.2, 2.2)* 1.1 (0.5, 1.8)* 

SD of sleep duration, minute 6.1  (2.0, 10.1)* 5.4 (1.1, 9.6)* 3.9 (-1.6, 9.3) 4.6 (0.7, 8.5)* 

SD of sleep onset timing, minute 0.1  (-3.1, 3.2) -1.5 (-4.5, 1.5) -1.1 (-6.1 3.8) -0.4 (-3.5, 2.8) 

 

Abbreviations: BDI: Beck Depression Inventory; BMI: body mass index; SD: standard deviation. 

* Indicates significant association at P <0.05. 

a Results are shown as β coefficients in the mixed models, per 5-unit increase in BDI score. Sample size N=174 (or 87 pairs).  

b Model A represents the fully adjusted model in the primary analysis, with adjustment for within-pair difference of BDI, education, 

employment status, ever smoking status, alcohol abuse, BMI, history of hypertension, number of naps, and average nap duration. 

c Model B = Model A + antidepressant use. 

d Model C = Model A + PCL-4. 

e Model D = Model A + PTSD. 
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Table S.4.12 Within-pair analysis of the association between BDI score and PSQI metrics, with adjustment for additional 

covariates 

PSQI sleep metricsa Model Ab Model Bc Model Cd Model De 

PSQI total score 1.10  (0.78, 1.42)* 1.01 (0.68, 1.34)* 0.81 (0.22, 1.39)* 1.05 (0.71, 1.38)* 

PSQI subscale: sleep quality 0.20  (0.14, 0.27)* 0.22 (0.15, 0.29)* 0.01 (-0.11, 0.12) 0.20 (0.13, 0.26)* 

PSQI subscale: sleep latency 0.09  (-0.01, 0.19) 0.08 (-0.02, 0.18) -0.01 (-0.18, 0.15) 0.09 (-0.01, 0.19) 

PSQI subscale: sleep duration 0.13  (0.04, 0.23)* 0.14 (0.04, 0.23)* 0.02 (-0.14, 0.18) 0.12 (0.03, 0.22)* 

PSQI subscale: sleep efficiency 0.08  (-0.02, 0.19) 0.06 (-0.05, 0.17) 0.17 (-0.03, 0.38) 0.10 (-0.01, 0.21) 

PSQI subscale: sleep disturbance 0.16  (0.11, 0.22)* 0.15 (0.09, 0.20)* 0.01 (-0.07, 0.10) 0.14 (0.08, 0.19)* 

PSQI subscale: need meds to sleep 0.17  (0.05, 0.29)* 0.08 (-0.05, 0.21) 0.23 (0.02, 0.44)* 0.11 (-0.02, 0.24) 

PSQI subscale: sleep issues cause dysfunction 0.27  (0.22, 0.33)* 0.26 (0.20, 0.31)* 0.20 (0.10, 0.29)* 0.26 (0.20, 0.32)* 

Abbreviations: BDI: Beck Depression Inventory; BMI: body mass index; PSQI: Pittsburgh Sleep Quality Index. 

* Indicates significant association at P <0.05. 

a Results are shown as β coefficients in the mixed models, per 5-unit increase in BDI score. Sample size N=246 (or 123 pairs).  

b Model A represents the fully adjusted model in the primary analysis, with adjustment for within-pair difference of BDI, education, 

employment status, ever smoking status, alcohol abuse, BMI, and history of hypertension. 

c Model B = Model A + antidepressant use. 

d Model C = Model A + PCL-4. 

e Model D = Model A + PTSD.
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5.1 ABSTRACT 

Introduction: Sleep disturbance is associated with autonomic dysregulation, but the temporal 

directionality of this relationship remains uncertain. The objective of this study was to evaluate 

the temporal relationships between objectively measured sleep disturbance and autonomic 

dysregulation in a co-twin control study. 

 

Methods: A total of 122 members (61 pairs) of the Vietnam Era Twin Registry were studied. 

Twins underwent one-night in-lab polysomnography (PSG) (Study I) and 7-day in-home 

actigraphy (Study II) to derive objective measures of sleep disturbance. Autonomic function 

indexed by heart rate variability (HRV) was obtained using 24-hour Holter electrocardiography 

(ECG) (Study I) and 7-day ECG monitoring with a wearable patch (Study II). Multivariable 

mixed-effects regression models and vector autoregressive models with Granger causality tests 

were used to examine the temporal directionality of the association of HRV with sleep metrics, 

within twin pairs, using 24-hour and 7-day collected ECG data. 

 

Results: Twins were all male, mostly white (96%), with mean (SD) age of 69 (2) years. For PSG 

(Study I), the associations between daytime HRV with sleep stages and cumulative hypoxic 

burden were bidirectional. For actigraphy (Study II), daytime HRV measures were 

bidirectionally and similarly associated with longer total sleep time and lower wake after sleep 

onset, and their temporal dynamics may be extended to a window of 48 hours.  
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Conclusions: Autonomic function indexed by daytime HRV has bidirectional associations with 

several sleep dimensions. Autonomic function during wakefulness and sleep disturbance are 

closely interrelated and their influence on each other may extend beyond 24 hours.  
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5.2 Introduction 

 Sleep is an essential component of physiological regulation and is critical for optimal 

brain and bodily functions. Sleep disturbance is associated with higher risk for many chronic 

conditions, especially cardiovascular disease (CVD).20,247 However, the precise biological 

mechanisms linking sleep disturbance with CVD risk are only beginning to be understood. One 

of these potential mechanisms is dysregulation of the autonomic nervous system (ANS), which 

controls basic bodily functions such as heartbeat, digestion and respiration.158,248  

ANS regulation can be assessed noninvasively using heart rate variability (HRV), which 

provides a measure of beat-to-beat heart rate fluctuations over time. Reduced HRV is indicative 

of an imbalance between sympathetic and parasympathetic modulation, i.e., heightened 

sympathetic activity and/or vagal withdrawal,114 and is an independent predictor of CVD 

morbidity and mortality.28,67,143  

At present, the pathways linking ANS function and sleep remain unclear. Some studies 

have suggested that sleep disturbance, including obstructive sleep apnea and measures of sleep 

quality, may cause autonomic imbalance by triggering a dominance of sympathetic over 

parasympathetic activity.51-53 In contrast, other studies have proposed that ANS regulation, 

measured by HRV, is a predictor of subsequent sleep quality and sleep architecture.54-56 

However, no prior studies have comprehensively evaluated the temporal directionality of these 

associations using a full spectrum of objective sleep measures. More information is also needed 

on the temporal dynamics between HRV and sleep, i.e., the extent to which their influence is 

maintained over time, since prior studies assessed primarily short-term effects.55,57,58 

In addition to limited information regarding the temporal directionality of the association 

between HRV and sleep, most existing data are based on patients with specific clinical problems, 
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such as chronic fatigue syndrome, narcolepsy, and obstructive sleep apnea.53,54,59,60 Literature in 

healthy populations is limited and results have differed.58,61,62 Furthermore, most prior studies 

used laboratory-based methods to measure sleep.56,59,63,64 While this provides a controlled 

environment, it may not illuminate sleep problems in normal life.65,66 Finally, no previous study 

has taken into account the potential influence of familial and genetic factors, which is an 

important consideration since autonomic regulation and sleep could share common 

pathophysiology.75,76  

To address these limitations, we conducted a co-twin control study to evaluate the 

temporal relationships between autonomic dysregulation indexed by reduced HRV and 

objectively measured sleep disturbance, using both laboratory polysomnography (PSG) and 

actigraphy. We sought to evaluate the temporal dynamics and directionality of the association 

between HRV and sleep characteristics. We hypothesized that the association between HRV and 

sleep would be bidirectional and that the influence of these phenotypes on each other would be 

relatively brief, within 24 hours. 

 

5.3 Methods and Materials 

Study Population 

 The participants in this study are part of the Sleep Substudy of the Emory Twin Study 

Follow-up (ETSF). Twins were recruited from the Vietnam Era Twin (VET) Registry, a national 

registry of >7,000 male twins who served on active duty during the Vietnam war.80 Details on 

the construction of the study sample are shown in Figure 5.1. As part of the ETSF we re-

examined in person 279 twins (including 124 pairs and 31 singles) who had participated in the 

initial Emory Twin Study (ETS).209,249 The ETS included twin pairs where at least one member 
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had PTSD or major depression, and control pairs free of these psychiatric conditions based on 

information from previous registry surveys. Twins who self-reported any history of 

cardiovascular diseases according to 1990-1991 registry data were excluded from ETS.80 The 

Sleep Substudy of the ETSF collected objective sleep measures among 230 twins (99 pairs, 32 

singles). Of these, a total of 122 paired twins (61 pairs) also had good quality autonomic function 

data obtained in-lab or at-home, thus they presented the analytical sample for this study.  

All twin pairs were examined together at Emory University on the same day to match 

environmental exposures. Comprehensive medical history and behavioral data were obtained 

using standardized forms, and anthropometric measurements were taken. Zygosity information 

was collected and verified by DNA typing.210 We obtained written informed consent from all 

participants, and the Institutional Review Board at Emory University approved this study. 

 

Assessment of Sleep 

We used a combination of both PSG (Study I) and actigraphy (Study II) to obtain a 

comprehensive and objective evaluation of sleep. We measured sleep architecture and sleep 

disorders (sleep disordered breathing [SDB] and periodic leg movements [PLMS]) using one-

night PSG in a controlled lab at the Emory Sleep Center (Study I). We generated the following 

PSG measures: (1) sleep architecture variables: the proportions of total sleep time (TST) spent in 

N1, N2, N3, and REM sleep; (2) the PLMS index (PLMSI: defined as the total number of PLMS 

divided by TST x 60; expressed as movements per hour); and (3) SDB-related indices, including 

the apnea/hypopnea index (AHI) (expressed as breathing events per hour) and the percentage of 

TST with oxygen saturation <90%. Although PSG also generates data on sleep efficiency (SE), 

and wake after sleep onset (WASO), we did not use these data derived from PSG because of 
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their low short-term stability in the context of a single lab night. Instead, we relied on actigraphy 

(Study II; see below), derived from up to 7 nights of data, to provide more stable estimates for 

these parameters. A total of 179 twins, including 71 pairs had usable PSG data. 

Following the one-night in-lab PSG, each participant returned home with a wrist-worn 

actigraph (Actiwatch SpectrumPro, Phillips Respironics) device to derive objective sleep metrics 

in a naturalistic environment (Study II). All twins were instructed to wear the device on their 

non-dominant wrist for up to 7 days. Wrist actigraphy has been recognized as a useful adjunctive 

tool in sleep medicine.65,66 It measures body movement over 24-hours using a calibrated 

accelerometer that records physical movement in 1-minute epochs, which can be used to estimate 

various parameters of sleep.218 Raw actigraphy data (including activity counts and event 

markers) were first adjudicated using a sleep diary kept by each participant, and then we applied 

a standardized scoring algorithm to the data,219 using Actiwatch software (version 6.0). Various 

sleep metrics were obtained and summarized for each 24-hour day up to 7 days. Our primary 

actigraphy measures included: (1) TST, defined as the total number of minutes spent asleep 

during the night (not including daytime naps); (2) SE, the percentage of the nocturnal sleep 

period spent asleep; and (3) WASO, the total minutes of wakefulness during the sleep period 

after sleep onset. A total of 212 twins had usable actigraphy data, including 87 pairs (n=174) that 

were included in the within-pair analysis. All twins had at least 4 days of actigraphy data; almost 

all (n=170/174, 98%) had at least 6 days of data, and most (n=151/174, 87%) had 7 days of data. 

Thus, all twins were included in the analysis to maximize sample size. 
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Assessment of Autonomic Dysregulation 

 During the clinic visit (Study I), twins wore an ambulatory Holter electrocardiogram 

(ECG) monitor for 24 hours. We followed previously published procedures to maximize 

accuracy of recordings and minimize potential confounding.222 Both twins in the same pair were 

evaluated at the same time, and their recording times, schedule, and activity level during 

recording were similar. We used manufacturer’s custom-built validated software to extract the 

raw signal and convert it into WFDB format.224 Then we extracted RR intervals and computed 

the frequency domains using a previously validated HRV toolbox from the Clifford lab.225 

Specifically, a signal to quality index (SQI) based on beat detection was computed for each ECG 

signal.226 Non-sinus rhythm and beats with SQI lower than 90% were removed to obtain a 

normal to normal (NN) interval time series. The power spectra of the NN time series was 

generated using the Lomb periodogram, and frequency domain HRV metrics were calculated on 

5 minutes 30 seconds sliding windows on the NN time series signal. Each tape of Holter 

recordings was digitally processed and analyzed, and was further segmented into sleep 

(nighttime) and wake (daytime) periods as determined by the beginning and end of the in-lab 

PSG recording (i.e. day 1, night, and day 2). We evaluated four discrete frequency domains, 

including ultra-low frequency (ULF, <0.0033 Hz), very low frequency (VLF, 0.0033-0.04 Hz), 

low frequency (LF, 0.04-0.15 Hz), and high frequency (HF, 0.15-0.40 Hz).68,143 We also 

calculated deceleration capacity (DC), which provides an average speed of heart rate 

deceleration, and it is potentially more useful than other HRV metrics in evaluating 

parasympathetic nervous function and predicting adverse events.70 A total of 151 twins had 

usable Holter HRV, including 53 pairs who were included in the within-pair analysis. 
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 For HRV home monitoring (Study II), we used the CardeaSoloTM patch, which is a non-

invasive and wearable ambulatory ECG monitoring adhesive patch monitor. A study coordinator 

applied the device over the left pectoral region of each participant’s chest, and instructed him to 

wear the patch for 7 days. ECG data were extracted and processed using the manufacturer’s 

custom-built validated software in the methods that used to process the 24-hour Holter ECG 

data.224,225 On each day, four frequency domains (i.e. ULF, VLF, LF, and HF) and DC were 

obtained, similar to 24-hour Holter recording.  Data were also further separated into sleep 

(nighttime) and wake (daytime) periods as determined by the adjudicated actigraphy data for up 

to 7 days. Twins with low quality data (e.g. loss of electrode contact, movement artifacts, low 

SQI <90%, or twins with <75% data) were excluded, reducing the number of subjects with 

usable HRV home monitoring data to 115 twins, including 34 twin pairs (n=68) who were 

included in the within-pair analysis. There were no differences between twins who did (n=115) 

and did not have (n=97) complete HRV assessments in terms of sociodemographic and health-

related characteristics (data not shown). 

 

Other Measurements 

 At the ETSF clinic visit, a research nurse or physician assistant obtained medical history 

and medication use. Anthropometric data, blood pressure, fasting blood glucose, lipid profile, 

and health behaviors were measured as previously described.11 Habitual physical activity was 

measured using the Baecke physical activity questionnaire.227,228 This is a 16-question instrument 

recording physical activity levels at work, during sports and non-sports activities, rendering a 

global physical activity score. History of hypertension was defined as systolic blood pressure 

>140 mmHg or diastolic blood pressure >90 mmHg, or use of anti-hypertensive medications, 
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following the Joint National Committee (JNC)-7 classification for Stage 1 hypertension which 

was the accepted staging at the time.229 History of coronary artery disease that might have 

occurred from the time of the initial screen was also assessed. Diabetes mellitus was defined as 

having a measured fasting glucose level more than 126 mg/dL or any treatment with antidiabetic 

medications. A lifetime diagnosis of major depressive disorder, posttraumatic stress disorder 

(PTSD), and alcohol abuse disorder were obtained using the Structured Clinical Interview for 

Diagnostic and Statistical Manual of Mental Disorder, 4th Edition (DSM-4), or SCID. 

 

Statistical Analysis 

 Using PSG and Holter data collected during clinic visit day (Study I), we analyzed the 

temporal directionality of associations of the within-pair difference in PSG metrics with the 

within-pair difference in HRV metrics. In a study of twins, within-pair differences intrinsically 

control for potential confounding by shared genetic factors and early familial background, as 

well as environmental factors during ambulatory monitoring as twins were examined together. 

We first evaluated the association of the average within-pair difference in HRV during day 1 (i.e. 

from start of data collection to nighttime sleep onset) with PSG findings during nighttime. 

Second, we examined the reverse, i.e., the association of nighttime PSG findings with HRV 

during day 2, (i.e. from sleep offset to end of data collection), with adjustment for average 

nighttime HRV data. Illustration of this analysis is shown in Figure 5.2. For all analyses, we 

fitted multivariable mixed-effects regression models and accounted for twin pair as a random 

effect. All models were adjusted for potential confounding factors (smoking status, habitual 

physical activity, BMI, history of hypertension, and history of depression, PTSD and alcohol 
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abuse). As HRV data were skewed, logarithmic transformations were used to normalize the 

distributions.   

 Using actigraphy and ECG data collected during 7-day home monitoring (Study II), we 

further evaluated the temporal relationships between sleep measures and HRV in a naturalistic 

environment. The within-pair analysis included a total of 362 observations (days) reflecting data 

from 68 twins, and on average, each twin contributed 5.3 observations (days) of data. We fit 

bivariate vector autoregressive (VAR) models to analyze the longitudinal data.230 We included 

each combination of HRV (ULF, VLF, LF, HF, and DC) and sleep metric (TST, SE, and 

WASO) in separate models. Then for each combination of HRV and sleep measures, we built 

bivariate VAR models that adjusted for the same potential confounders as in Study I.  

 In Study II, the recording of multiple 24-hour periods of simultaneous ECG and 

actigraphy allowed us to model potential temporal causality using time-lagged models. To 

determine the length of time the association between HRV and sleep was maintained, we built a 

series of models by adding lagged values of the dependent variables. The Bayesian Information 

Criterion (BIC) was used for order selection, with lower BIC values indicating better model fit. 

To formally test whether the associations between HRV and sleep persist beyond a single 24-

hour period, we used likelihood ratio tests to compare VAR models with the lowest BIC with the 

first order models. 

 After determining the appropriate lag order, to evaluate the temporal directionality of the 

associations between HRV and sleep, we conducted F tests of Granger causality. In a Granger 

causality test, if the F-value is statistically significant, it means that the past values of predictor X 

contain information that helps predict outcome Y in addition to the information contained in the 

past values of Y alone, after controlling for other covariates; in other words, X “Granger-causes” 
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or predicts Y. We individually tested if each of the HRV metric predicted each of the sleep 

measure, and vice versa, and conducted VAR models separately for wake and sleep periods to 

evaluate the day and night difference in the relationship between HRV and sleep. We further 

conducted mixed-effects regression models to clarify the direction of significant effects after 

controlling for the same set of covariates as in the VAR models. In these models, predictor 

variables were expressed as daily variation from individual’s averages. 

To assess potential shared genetic influence on the association between HRV and sleep 

disturbance, we examined the associations separately in MZ and DZ twins to evaluate effect 

modification by zygosity. Because MZ twin pairs share 100% of their genes while DZ twin pairs 

only share 50% on average, if a larger effect of HRV on sleep or vice versa is observed within 

DZ pairs than in MZ pairs, then it may suggest that genetic factors play a role in this association. 

  A two-sided p-value less than 0.05 was used for statistical significance and 95% 

confidence intervals (CI) were calculated from mixed-effect model parameters. All statistical 

analyses were performed using SAS, version 9.4 (SAS Institute, Cary, NC) and Stata 14.0 

(StataCorp, College Stata, TX). 

 

5.4 Results 

Participants’ Characteristics 

A total of 122 paired twins (61 pairs) with data collected during clinic visit (i.e. PSG and 

Holter HRV) or during home monitoring (i.e. actigraphy and patch HRV) were included in the 

within-pair base sample for this study. Among these twins, 118 (97%) were white, with a mean 

age  SD of 69 (2) years (Table 5.1).  Of the 122 twins, 39 pairs (n=78, 64%) were MZ twins 

and 22 pairs (n=44) were DZ twins. Participants’ HRV and sleep data are summarized in 
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Supplemental Table S.5.1. Overall, participants had similar HRV data collected during home 

monitoring compared to that obtained in clinic visit, but, as expected, on average they had longer 

TST at home (477 minutes) than in the sleep lab (305 minutes). On average, participants had 

87% SE and 52 minutes of WASO during home monitoring. 

 

Association of HRV with Sleep Measured by PSG in the Laboratory (Study I) 

For the association between HRV and sleep architecture (Table 5.2), we observed a 

bidirectional association across multiple sleep stages. For example, a higher ULF and VLF HRV 

were associated with decreased N1 sleep, increased N2 sleep, and decreased REM sleep, in both 

directions. However, more N3 sleep time was significantly associated with higher HF HRV and 

DC values on the following day, but not vice versa. We also observed a bidirectional association 

of a higher ULF and VLF HRV with less cumulative hypoxic burden (TST% with SaO2 <90%). 

But we did not observe any associations with the AHI or PLMSI in either direction.  

 

Association of HRV with Sleep Measured by Actigraphy Over 7 Days (Study II) 

Results of VAR models were examined to identify the most appropriate lag level and best 

model fit (from 1 to 7 days). The BIC for the 2-day VAR model was the smallest, indicating the 

best model fit, for nearly all models examining the association of sleep metrics with daytime or 

nighttime HRV. Likelihood ratio test results were consistent with BIC (Tables S.5.2-S.5.3). This 

indicates that 2-day models yielded significantly better model fit than the 1-day models for both 

daytime and nighttime HRV across almost all combinations of HRV and sleep metrics. There 

was no material difference in the results comparing 1-day VAR and 2-day VAR in the models 

that examined the association of HRV to TST. Therefore, for consistency, Granger causality tests 
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were conducted with the 2-day VAR across all models to examine the temporal directionality of 

association between HRV and sleep disturbance. 

 F test results of Granger causality showed that daytime HRV metrics during the previous 

days were significantly associated with two sleep measures in the subsequent night, including 

TST and WASO, after adjusting for smoking status, history of alcohol abuse, physical activity, 

BMI, history of hypertension, depression, and PTSD (Table 5.3). These two sleep measures also 

significantly predicted multiple daytime HRV metrics on the following day. Mixed-effects 

regression models provided the estimates for these effects (Figure 5.3). Specifically, higher 

daytime HF and DC HRV predicted subsequent longer TST; and higher ULF, LF, HF and DC 

HRV predicted decreased WASO. Looking at the opposite direction from sleep to subsequent 

daytime HRV, longer TST and lower WASO predicted higher HRV. In contrast, we did not find 

any significant associations involving nighttime HRV, i.e., between nighttime HRV and sleep 

measures in the subsequent nights, or between previous sleep measures from previous nights and 

subsequent nighttime HRV (Table S.5.4). 

 However, due to the small sample size especially for the Study II analysis, we were not 

able to generate reliable estimates separately in MZ and DZ twins in order compare the 

magnitude of associations. Thus, in the current analysis we were not able to assess the role of 

genetic factor on this association. 

 

5.5 Discussion 

 In this co-twin control study, we aimed at characterizing the temporal relationships 

between autonomic dysregulation indexed by reduced HRV, and sleep disturbance objectively 

measured in multiple dimensions. We found that most of these relationships are bidirectional. 
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Higher values in several daytime HRV domains, denoting better ANS function, were associated 

with a number of PSG-derived sleep measures in Study I, including N1, N2 and REM sleep, and 

lower hypoxic burden, after adjusting for relevant sociodemographic, behavioral and health-

related factors. In turn, lower N1 and REM sleep, higher N2 sleep, and less severe oxygen 

desaturation were associated with higher HRV in the day following the laboratory PSG. During a 

week of monitoring in the home environment (Study II), a higher daytime HRV was 

bidirectionally associated with better sleep duration and continuity measured by actigraphy, as 

indicated by longer TST and lower WASO. We also found that the relationships between 

daytime HRV and sleep duration and continuity measures generally persisted to 48 hours, but no 

longer. In contrast to daytime HRV, nighttime HRV (Study II) was not related to sleep duration 

or continuity longitudinally. Because our analysis examined differences within twin pairs, results 

are inherently independent of shared familial environment. 

Our findings are consistent with previous research showing that autonomic function 

represented by HRV is closely related to sleep architecture.55,250,251 However, most studies 

focused on a simultaneous monitoring of HRV and sleep, and therefore were unable to evaluated 

the temporal directionality of such association. Our Study I results suggest that, of all HRV 

metrics, higher ULF and VLF HRV during the day have the strongest and most consistent effects 

on sleep stages, including N1, N2, and REM sleep. ULF HRV reflects a circadian rhythm in the 

heart rate signal, and VLF HRV reflects a combination of overall sympathovagal balance and 

activity of the renin-angiotensin system (RAS).155 Thus, our results suggest that circadian 

rhythms of sympathovagal balance and RAS activity may be interrelated to sleep architecture. 

Our findings agree with prior research showing that the autonomic function affects sleep 

architecture,55 and also suggest that the association may be bidirectional. Our results confirm 
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previous findings that better daytime autonomic function indexed by higher HRV is related to 

decreased sleep time in N1 and increased sleep time in N2, indicating less fragmented sleep.55,252 

However, in our study higher HRV was also related to shorter sleep time in REM, which could 

impact the restorative quality of sleep.253 

 Our Study I results also demonstrates a bidirectional association between HRV and SDB 

measures such as hypoxic burden. Specifically, we observed that higher daytime ULF and VLF 

HRV predict lower hypoxic burden during sleep, which agrees with prior studies.254-256 However, 

using another measure of sleep apnea, the AHI, we also observed relationships with nighttime 

measures predicting daytime autonomic function in that a higher AHI predicted lower ULF HRV 

and VLF HRV during the next day. This is consistent with prior observations that recurrent 

episodes of apneas and awakenings may have an adverse impact on autonomic regulation during 

the following day.53,64 Contrary to prior studies,59,257 however, we did not find significant 

associations of the periodic leg movement index with HRV metrics in either direction. These 

different results may be due to differences in study populations. 

In Study II, our overall findings for actigraphy measures during home monitoring are 

consistent with prior literature showing that higher HRV predicts better subsequent sleep 

duration and continuity, although the HRV domains implicated differ across studies.54-57,157 We 

observed that all HRV metrics predict indices of better sleep, including longer TST and lower 

WASO. Of note, DC HRV, which represents changes in PNS activity, demonstrated the most 

consistent association with both of these sleep measures. LF power captures baroreflex function, 

and is modulated by inputs from both SNS and PNS to the sino-atrial node; HF power is almost 

exclusively modulated by PNS function.258 Thus, our findings suggest that both SNS and PNS 

activity during the day are involved in sleep duration and continuity. Contrary to previous 
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studies,56,157,164 however, we did not find significant relationships between HRV and SE, likely 

because the measure of SE included sleep latency in its calculation. Our findings that daytime 

HRV rather than nighttime HRV is associated with selected sleep measures, agree with prior 

studies that assessed HRV both during wakefulness and sleep.57,259 Using multiple HRV 

frequency domains and objective sleep duration and continuity measures, our findings suggest 

that ANS regulation during wakefulness, perhaps reflecting exposures to daily stressors, may 

alter the sympathovagal balance during the daytime and play a key role in sleep.163,260,261 

The existing literature is inconsistent on whether poor sleep duration and continuity can 

adversely affect, be affected by, or otherwise be associated with HRV. For example, one study 

showed that subjects with insomnia compared to normal sleepers had decreased HRV,262 while 

another study did not find such association.263 Using a longitudinal, naturalistic design over 

consecutive 24-hour periods, our study extended previous understanding of the temporal 

relationships between sleep and HRV and showed that TST and WASO, can predict subsequent 

daytime HRV in multiple domains. It has been noted that low sleep duration and poor sleep 

continuity can increase sympathetic over parasympathetic dominance, which may be reflected in 

reduced HRV.51,52,160 Sleep disturbance may also lead to decreased sensitivity of hormonal 

receptors such as corticotropin-releasing hormone and serotonin receptors, which may result in 

dysregulation of stress responses and autonomic function.51 

Our findings may not be generalizable to women and other racial and age groups, as our 

sample included mostly white older men. Due to noise and nyquist frequency, the use of 5-

minute windows to process HRV data may have not generated reliable estimates for lower 

frequency bands, such as ULF and VLF. In addition, due to the relatively small sample size, 

especially for the analysis using home monitoring data, our analysis may have been 
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underpowered to detect significant bidirectional associations across some sleep dimensions. The 

small sample size also does not allow a reliable evaluation of association separately in 

monozygotic and dizygotic twins in order to evaluate of role of genetic factors on the 

association. A reduction in sample size is inevitable in our design, given that within-pair analyses 

rely on complete pairs and consecutive data are necessary during home monitoring to properly 

calculate lagged values. However, our co-twin control study design should have improved 

internal validity and precision by intrinsically adjusting for unknown or unmeasured 

confounders. The small sample size also limited our ability to assess the role of genetic factors 

on the association between HRV and sleep. Future research with larger sample sizes is needed to 

evaluate the potential role of genetic predisposition on the association. 

 Despite these limitations, to our knowledge, this is the first study that evaluated the 

temporal dynamics and directionality of relationships between HRV and objective sleep 

measures over successive 24-hour periods and modeled day-night associations in a time-lagged 

model, allowing inferences via Granger causality. Our comprehensive approach incorporated 

objective evaluation of multiple sleep dimensions, measured both in the laboratory and at home. 

The VAR models fitting bivariate time series and associated Granger causality tests provided an 

informative method to assess the temporal directionality of associations, and it allowed us to not 

only evaluate temporal relationships between HRV and sleep, but also the length of time during 

which HRV exerted effects on sleep and vice versa. 

 

5.6 Conclusions 

 In the context of a controlled twin design, the present study provides evidence of a 

significant bidirectional association between autonomic function and sleep measures. In the 
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home environment, the relationship between autonomic dysregulation during daytime and worse 

sleep duration and continuity persists beyond a 24-hour period. Autonomic function and sleep 

are closely inter-related, and highlights the importance of a healthy autonomic function in the 

regulation of sleep and vice versa. These results should inform sleep health promotion strategies, 

and underscore that targeting daytime autonomic function is a key factor. Furthermore, our 

results suggest that both autonomic function and sleep health should be targeted mutually in 

prevention strategies of chronic conditions linked to sleep disturbance, such as CVD. 
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Figure 5.1 Participant Flow Diagram 
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Abbreviations: ETS: Emory Twin Study; ETSF: Emory Twin Study Follow-up; HRV: heart rate 

variability; PSG: polysomnography. 

* Recruitment dispositions: 95 never responded or refused to participate; 10 deceased during 

recruitment; 5 were too ill to participate; 1 withdrew; 1 incarcerated during recruitment.  
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Figure 5.2 Analysis Diagram for the Association between PSG and Holter HRV Data  

(Study I) 

 

 
 

Abbreviations: HRV: heart rate variability; PSG: polysomnography.  
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Figure 5.3 Directions of Significant Effects between Daytime Heart Rate Variability with 

Sleep Disturbance (Study II) 

 

 
 

 

Abbreviations: HRV: heart rate variability; TST: total sleep time; WASO: wake after sleep onset. 
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Table 5.1 Characteristics of 122 Twins (61 pairs)  

Characteristics, mean (SD), or No. (%) 
Total 

(N=122) 

Sociodemographic factors   

    Age, years 69 (2) 

    White, No. (%) 118 (97) 

    Education, No. (%)   

        High school or less 19 (16) 

        Some college or associate 61 (50) 

        College degree 22 (18) 

        Graduate education or degree 20 (16) 

    Employed, No. (%) 34 (28) 

   

Health factors   

    BMI 30 (4) 

    Ever smokers, No. (%) 77 (63) 

    History of alcohol abuse, No. (%) 29 (24) 

    Baecke score for physical activity 7.9 (1.3) 

    Systolic blood pressure, mmHg 139 (19) 

    Diastolic blood pressure, mmHg 79 (12) 

    History of hypertension, No. (%) 68 (56) 

    History of diabetes, No. (%) 19 (16) 

    Family history of CAD, No. (%) 14 (11) 

    BDI score 5.7 (7.0) 

    PCL-4 score 25 (11) 

    Lifetime history of PTSD, No. (%) 32 (26) 

    Lifetime history of depression, No. (%) 21 (17) 

    Current PTSD, No. (%) 18 (15) 

    Current depression, No. (%) 11 (9) 

   

Medication use   

    β-Blockers, No. (%) 29 (24) 

    Antidepressants, No. (%) 18 (15) 

    Statin, No. (%) 67 (55) 

    ACE inhibitor, No. (%) 24 (20) 

 

Abbreviations: ACE: angiotensin-converting enzyme; BDI: Beck Depression Inventory; BMI: 

body mass index; CAD: coronary artery disease; PCL-4: PTSD Checklist for DSM-4; PTSD: 

posttraumatic stress disorder; SD: standard deviation.
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Table 5.2 Adjusted Within-pair Analysis of the Association between PSG and HRV Metrics (Study I)a 
PSG metrics ULF VLF LF HF DC 

Direction from day 1 HRV to nighttime PSG 

Percentage of TST in N1, % -2.1 (-4.3, 0.1) -3.1 (-5.4, -0.8)* -0.6 (-2.6, 1.4) 0.4 (-1.0, 1.7) 0.3 (-2.9, 3.5) 

Percentage of TST in N2, % 5.6 (1.9, 9.4)* 4.5 (0.4, 8.7)* 0.9 (-2.3, 4.0) -1.3 (-3.5, 0.9) 0.6 (-4.8, 6.0) 

Percentage of TST in N3, % -1.5 (-4.8, 1.8) 0.4 (-3.1, 4.0) 0.6 (-2.2, 3.5) 0.8 (-1.2, 2.7) -0.2 (-4.9, 4.4) 

Percentage of TST in REM, % -3.0 (-5.4, -0.6)* -2.8 (-5.5, -0.2)* -1.5 (-3.5, 0.5) -0.3 (-1.8, 1.1) -2.1 (-5.6, 1.3) 

Periodic leg movement index 0.1 (-8.5, 8.8) -0.9 (-10.3, 8.4) 5.1 (-2.2, 12.4) 3.7 (-1.3, 8.8) 7.1 (-5.0, 19.3) 

Apnea/hypopnea index -5.0 (-10.4, 0.5) -1.5 (-7.5, 4.5) 0.1 (-4.6, 4.7) -1.2 (-4.4, 2.0) 1.7 (-6.1, 9.5) 

TST% with SaO2 <90%, % -7.2 (-11.7, -2.8)* -6.5 (-11.4, -1.5)* -3.3 (-7.4, 0.8) -1.7 (-4.4, 1.1) -4.9 (-11.5, 1.6) 

Direction from nighttime PSG to day 2 HRV  

Percentage of TST in N1, per 10% -0.15 (-0.27, -0.03)* -0.17 (-0.28, -0.06)* -0.21 (-0.34, -0.08)* -0.22 (-0.36, -0.08)* -0.05 (-0.12, 0.01) 

Percentage of TST in N2, per 10% 0.14 (0.07, 0.21)* 0.13 (0.06, 0.20)* 0.06 (-0.02, 0.14) 0.02 (-0.08, 0.12) 0.01 (-0.04, 0.05) 

Percentage of TST in N3, per 10% -0.02 (-0.11, 0.07) 0.02 (-0.06, 0.10) 0.09 (-0.01, 0.18) 0.16 (0.06, 0.27)* 0.06 (0.01, 0.10)* 

Percentage of TST in REM, per 

10% -0.14 (-0.25, -0.02)* -0.15 (-0.26, -0.04)* -0.11 (-0.23, 0.01) -0.03 (-0.18, 0.12) -0.04 (-0.10, 0.02) 

Periodic leg movement index, per 

10 0.01 (-0.03, 0.04) -0.01 (-0.03, 0.03) -0.02 (-0.05, 0.02) -0.03 (-0.08, 0.01) -0.01 (-0.02, 0.02) 

Apnea/hypopnea index, per 10 -0.06 (-0.12, -0.01)* -0.05 (-0.10, 0.01) -0.01 (-0.07, 0.04) -0.03 (-0.10, 0.04) -0.01 (-0.04, 0.02) 

TST% with SaO2 <90%, per 10% -0.08 (-0.14, -0.02)* -0.10 (-0.15, -0.04)* -0.07 (-0.13, -0.01)* -0.06 (-0.13, 0.02) -0.03 (-0.06, 0.01) 

 

* Indicates statistically significant association (p <0.05). 

a Models were fully adjusted for potential confounding factors (smoking status, alcohol abuse, habitual physical activity, body mass 

index, history of hypertension, depression, and PTSD). 

Abbreviations: DC: deceleration capacity; HF: high frequency; HRV: heart rate variability; LF: low frequency; PSG: 

polysomnography; REM: rapid eye movement; SaO2: saturated oxygen; TST: total sleep time; ULF: ultra-low frequency; VLF: very 

low frequency. 
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Table 5.3 F-test Results of Granger Causality for the Within-Pair Association of Daytime Heart Rate Variability and Sleep 

Disturbance During 7-Day Monitoring Using 48-hour Lag (Study II)a 
 TST SE WASO 

Direction from Previous Daytime HRV to Sleep 

ULF 1.98 0.69 3.07* 

VLF 1.71 0.26 2.48 

LF 1.03 1.40 4.91* 

HF 3.63* 1.82 4.45* 

DC 5.21* 0.96 4.53* 

Direction from Sleep to HRV in Following Day 

ULF 4.27* 2.71 3.30* 

VLF 7.09* 2.13 2.07 

LF 3.78* 0.57 3.80* 

HF 0.77 0.09 0.61 

DC 4.25* 0.88 4.34* 

 

* Indicates that the F-value was statistically significant (p <0.05). 

a Models were fully adjusted for potential confounding factors (smoking status, alcohol abuse, habitual physical activity, body mass 

index, history of hypertension, depression, and PTSD). 

Abbreviations: DC: deceleration capacity; HF: high frequency; HRV: heart rate variability; LF: low frequency; SE: sleep efficiency; 

TST: total sleep time; ULF: ultra-low frequency; VLF: very low frequency; WASO: wake after sleep onset. 
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Table S.5.1 HRV and Sleep Characteristics of 122 Twins (61 pairs)  

Characteristics, mean (SD) 
Total 

(N=122) 

HRV during clinic visit (n=106)*   

    Ultra-low frequency 6.5 (0.5) 

    Very low frequency 7.5 (0.6) 

    Low frequency 6.4 (0.7) 

    High frequency 5.5 (1.0) 

    Deceleration capacity 2.2 (0.4) 

   

HRV during home monitoring (n=68; 362 observations)*   

    Ultra-low frequency 6.3 (0.6) 

    Very low frequency 7.4 (0.6) 

    Low frequency 6.2 (0.7) 

    High frequency 5.3 (0.8) 

    Deceleration capacity 2.0 (0.4) 

   

PSG metrics (n=106)   

    Total sleep time, minutes 305 (63) 

    Percentage of total sleep time in N1, % 12 (8) 

    Percentage of total sleep time in N2, % 63 (11) 

    Percentage of total sleep time in N3, % 10 (10) 

    Percentage of total sleep time in REM, % 16 (8) 

    Periodic leg movement index, per sleep hour 24 (29) 

    Apnea/hypopnea index, per sleep hour 17 (19) 

    Percentage of sleep duration with SaO2 <90%, % 8 (15) 

   

Actigraphy metrics (n=68; 362 observations)   

    Total sleep time, minutes 477 (79) 

    Sleep efficiency, % 87 (8) 

    Wake after sleep onset, minutes 52 (35) 

 

Abbreviations: HRV: heart rate variability; PSG: polysomnography; REM: rapid eye movement; 

SaO2: oxygen saturation; SD: standard deviation. 

* HRV data were averaged over the monitoring period during clinic visit or during home 

monitoring, then log transformed.
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Table S.5.2 Likelihood ratio tests evaluating superiority of 2-day (48-hour) vs. 1-day (24-hour) model fit for temporal 

relationships between daytime HRV and sleep disturbance (Study II) 
Outcomes 

Predictors ULF VLF LF HF DC TST SE WASO 
ULF -- -- -- -- -- 3.7 8.5* 8.0* 
VLF -- -- -- -- -- 2.9 8.1* 7.9* 
LF -- -- -- -- -- 1.6 9.8* 7.0* 
HF -- -- -- -- -- 3.3 8.3* 7.1* 
DC -- -- -- -- -- 2.7 7.9* 6.4* 
TST 12.8* 15.1* 18.6* 26.2* 27.4* -- -- -- 
SE 15.3* 17.5* 18.7* 26.7* 26.5* -- -- -- 
WASO 14.9* 16.3* 18.8* 26.2* 27.8* -- -- -- 

Abbreviations: DC: deceleration capacity; HF: high frequency; LF: low frequency; SE: sleep efficiency; TST: total sleep time; ULF: 

ultra-low frequency; VLF: very low frequency; WASO: wake after sleep onset. 

* indicates significant chi-square statistics (p <0.05), suggesting that 2-day models of the association between HRV and sleep 

disturbance yield significantly better model fit than 1-day models. 
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Table S.5.3 Likelihood ratio tests evaluating superiority of 2-day (48-hour) vs. 1-day (24-hour) model fit for temporal 

relationships between nighttime HRV and sleep disturbance (Study II) 
Outcomes 

Predictor ULF VLF LF HF DC TST SE WASO 
ULF -- -- -- -- -- 1.2 17.8* 17.6* 
VLF -- -- -- -- -- 0.4 19.3* 16.0* 
LF -- -- -- -- -- 0.5 18.5* 15.2* 
HF -- -- -- -- -- 0.4 17.7* 15.6* 
DC -- -- -- -- -- 4.2 21.0* 15.1* 
TST 19.4* 18.0* 24.6* 22.9* 26.1* -- -- -- 
SE 20.6* 25.3* 26.6* 23.6* 24.2* -- -- -- 
WASO 20.2* 24.6* 28.1* 29.1* 23.0* -- -- -- 

Abbreviations: DC: deceleration capacity; HF: high frequency; LF: low frequency; SE: sleep efficiency; TST: total sleep time; ULF: 

ultra-low frequency; VLF: very low frequency; WASO: wake after sleep onset. 

* indicates significant chi-square statistics (p <0.05), suggesting that 2-day models of the association between HRV and sleep 

disturbance yield significantly better model fit than 1-day models. 
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Table S.5.4 F-test Results of Granger Causality between Within-pair Difference in Nighttime Heart Rate Variability and Sleep 

Disturbance Using 48-hour Dataa (Study II)  

 

 
 TST SE WASO 

Direction from Previous Nighttime HRV to Sleep 

ULF 0.29 0.21 0.82 

VLF 0.30 0.65 0.34 

LF 1.17 0.69 0.39 

HF 0.50 1.15 1.37 

DC 0.04 1.11 0.75 

Direction from Previous Sleep to Nighttime HRV 

ULF 1.33 1.46 1.27 

VLF 1.03 2.30 2.01 

LF 1.93 2.16 0.99 

HF 2.91 1.86 0.80 

DC 1.19 2.28 0.86 

 

* All F-values were not statistically significant (p >0.05). 

Abbreviations: DC: deceleration capacity; HF: high frequency; HRV: heart rate variability; LF: low frequency; SE: sleep efficiency; 

TST: total sleep time; ULF: ultra-low frequency; VLF: very low frequency; WASO: wake after sleep onset. 

a Models were fully adjusted for potential confounding factors (smoking status, alcohol abuse, habitual physical activity, body mass 

index, history of hypertension, depression, and PTSD).
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6.1 ABSTRACT 

Background: Depression and reduced heart rate variability (HRV) is associated with a higher 

risk of mortality and cardiovascular disease (CVD) in patients with known CVD. However, the 

prognostic implications of depression and alterations in HRV in populations without CVD is less 

clear. The objective of this study was to evaluate the prognostic values of baseline depression 

and HRV and their associations with risk of mortality and CVD during follow-up. 

 

Methods: This study analyzed 450 members (225 pairs) from the Vietnam Era Twin Registry. 

At baseline assessments, depressive symptoms were measured using the Beck Depression 

Inventory-II (BDI), and major depression was assessed using structured clinical interview. HRV 

was measured through 24-hour electrocardiogram monitoring. During an average 12-year 

follow-up, mortality data were collected via National Death Index database, and within a subset 

of twins, CVD events data were obtained and verified via medical chart review. Kaplan-Meier 

analyses and multivariable frailty models with random effect for pairs were used to examine the 

hazard ratios for mortality and CVD events within pairs. 

 

Results: Twins were all males, mostly white (97%), with mean (SD) age of 56 (3) years at 

baseline. BDI and major depression was not associated with risk of all-cause mortality, but one 

unit increase in BDI significantly predicted 12% increased risk of cancer mortality (95%CI: 

1.02-1.25). Major depression was associated with increased risk for major CVD events. All log-

transformed HRV frequency domains were associated with decreased hazard for all-cause 

mortality, with low frequency domain and deceleration capacity showing significantly decreased 

hazards of 22% and 27% per 1-SD increment, respectively, after multivariable adjustment. 
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Higher values of all HRV metrics were linked to decreased hazard for CVD, but only daytime 

ultra-low frequency domain showed significant association (51% decreased hazard, per 1-SD 

increment). Overall, daytime HRV showed similar but slightly stronger association with risk for 

mortality and CVD compared to nighttime HRV. There was no material difference in the 

associations by zygosity. 

 

Conclusions: More depressive symptoms are associated with cancer-specific mortality, and 

depression predict incident major CVD events. Higher HRV is associated with decreased hazard 

for mortality and CVD events, and daytime HRV have may stronger predictive power than 

nighttime HRV. 
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6.2 Introduction 

 Depression is a prevalent psychiatric condition, with a lifetime prevalence of 16% in the 

United States, translating into 33 to 35 million adults with depression some time in their lives.1-3 

It remains a recognized risk factor for adverse health outcomes, such as all-cause mortality, as 

well as the development and progression of cardiovascular disease (CVD).4-9  

Autonomic nervous system (ANS) controls basic bodily functions such as heartbeat, 

digestion, respiration and blood pressure regulation. The dysregulation of the ANS system can be 

a complication of many diseases, and is associated with various pathological conditions, such as 

higher blood pressure, incident cardiovascular disease (CVD), and mortality.67,142-144 Autonomic 

dysregulation can be measured noninvasively using heart rate variability (HRV), which provides 

a measure of beat-to-beat heart rate fluctuations over time. Reduced HRV is indicative of an 

imbalance between sympathetic and parasympathetic modulation, i.e. heightened sympathetic 

activity and/or vagal withdrawal,114 and is suggestive of increased morbidity and mortality. 

 Numerous studies have been conducted on the association of depression with increased 

risk of all-cause mortality in general population as well as various patient groups. As for 

autonomic dysregulation indexed by reduced HRV, although it is associated with mortality and 

cardiovascular events in individuals with known CVD,143,184,199,264 few studies have evaluated the 

association between HRV and the risk of mortality and CVD in a population without known 

CVD, and none of them evaluated a full spectrum of frequency domains of HRV. In addition, no 

prior study has evaluated and compared the prognostic implications of both daytime and 

nighttime HRV in predicting mortality and CVD events. As HRV can be easily influenced by 

physical activity and mental stress levels, the use of nighttime HRV measures may avoid 

incidental influences and have a better predictive value than 24-hour average HRV measures. 
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 Prior studies suggest that inter-individual differences in depression and HRV may be 

largely explained by genetic factors and familial predispositions, which are linked to higher risk 

of mortality and cardiac events.10,11,77-79 However, currently it is unclear how much shared genes 

and familial factors can explain the association of depression and HRV with adverse health 

outcomes, such as mortality and CVD events. A co-twin control study design provides a natural 

“counterfactual” design to examine phenotypic associations, as twins are matched for similar 

genetic and early familial factors.83 it allows us to assess the genetic influence on the association 

of interest by evaluating the associations among monozygotic (MZ) and dizygotic (DZ) twin 

pairs. 

 In a sample of middle-aged veteran twins without CVD, we sought to investigate the 

prognostic implications of depression and a full spectrum of HRV frequency domains, during 

both daytime and nighttime, in predicting future risk of mortality and CVD events, using a co-

twin control design. We also evaluated whether genetic and familial factors play a role in the 

association. Findings from this study can help quantify the association between depression and 

HRV and the risk of mortality and cardiovascular events among individuals without known 

CVD. We hypothesized that more depressive symptoms and higher values of both daytime and 

nighttime HRV were associated with decreased risk for mortality and CVD, and genetic and 

familial factors play a role in this association. 

 

6.3 Methods and Materials 

Study Population 

 The participants in this study were recruited form the Vietnam Era Twin (VET) Registry, 

which is one of the largest national samples of adult male monozygotic (MZ) and dizygotic (DZ) 
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twins who served on active duty during the Vietnam war (1964-1975).80 The present study is 

based on the 566 twins (283 pairs) recruited from VET Registry and participated in the Emory 

Twin Study (ETS).81 The objective of the ETS was to evaluate the role of biological, 

psychological, and behavioral risk factors in the development of subclinical CVD.81,82 We 

included twin pairs who were born between 1946 and 1956, and excluded twin pairs if either 

member of the twin pair self-reported history of CVD based on previous survey data obtained by 

the Registry in 1990.207,209 The twin pairs were discordant for depression or posttraumatic stress 

disorder (PTSD), or free of these psychiatric conditions as control pairs. Of the 566 ETS twins, 

we collected HRV data in 501 twins (225 pairs and 51 singles), and among them, 351 twins (132 

pairs and 87 singles) completed the Emory Twin Study Follow-up (ETSF) visit, either in-person 

or by phone, with an average follow-up period of 12 years after the initial ETS. Thus, the 225 

pairs (n=450) with available baseline HRV data and known vital status during follow-up 

represented the analytical sample for this study. Figure 6.1 shows the construction of the study 

population. 

 At ETS visit, twin pairs were examined together at Emory University on the same day 

using identical assessment protocols to minimize measurement error. We obtained twins’ 

comprehensive medical history data during a two-day admission under controlled conditions, and 

collected blood samples, autonomic function data, anthropometric measurements, behavioral and 

psychosocial assessments using identical protocols and similar schedule for the two twins. 

Zygosity was obtained and verified by DNA typing.210 We obtained written informed consent 

from all twins, and the Emory University institutional review board approved this research. 
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Measurements of Depression 

At ETS visit, the Beck Depression Inventory-II (BDI-II) was administered to assess the 

severity of depressive symptoms. The BDI is a validated scale providing a continuous measure 

of depressive symptoms, including 21 items each scored from 0 to 3, with a total score ranging 

from 0 to 63.211-213 A higher BDI indicates more depressive symptoms. In the analysis related to 

Specific Aim #1, we removed the sleep item in BDI to eliminate the potential influence it may 

have on the association of BDI with sleep disturbance. At both visit, we also administered the 

Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorder, 4th 

Edition (DSM-4), or SCID, to obtain a clinical diagnosis of major depressive disorder (MDD). 

 

Measurements of Heart Rate Variability 

 At ETS visit, twin wore an ambulatory electrocardiogram monitor for 24 hours. We 

followed previously published procedures to maximize accuracy of recordings and minimize 

potential confounding.222 Both twins in the same pair were evaluated at the same time, and their 

recording times, schedule, and activity level during each recording were similar. Twins were 

refrained from smoking, drinking alcohol, and having coffee during measurements. We used 

frequency-domain methods to analyze the HRV data, utilizing customized software to assign 

bands of frequency and then count the number of beat-to-beat intervals that match each 

band.11,223 Each tape of Holter recordings was digitally processed and analyzed using methods as 

previously described in the literature,11,223 and was further segmented into daytime (6am to 

10pm) and nighttime (10pm to 6am) periods as determined by time stamps on Holter recording. 

The HRV spectrum was computed using a fast Fourier transform with a Parzen window on the 

24-hour R-R interval file. We evaluated 24-hour average, as well as daytime and nighttime 
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average values for four discrete frequency bands, including ultra-low frequency (ULF, <0.003 

Hz), very low frequency (VLF, 0.0033-0.04 Hz), low frequency (LF, 0.04-0.15 Hz), and high 

frequency (HF, 0.15-0.40 Hz).68,143 We also calculated deceleration capacity (DC), which 

provides an average speed of heart rate deceleration, which is a potentially more useful indicator 

than other HRV metrics in evaluating parasympathetic nervous function and predicting adverse 

health outcomes.70 The HRV data processing was performed blindly to twins’ characteristics. 

 

Measurements of Mortality and Cardiovascular Events 

 Vital status data during follow-up, including mortality dates and causes of deaths (e.g. 

cancer, CVD, etc.), were collected and verified by National Death Index database through 

December 31st, 2017. All-cause mortality was the primary outcome of this study. Comprehensive 

medical history data, including all cardiovascular events and hospitalization dates, were obtained 

among twins who completed ETSF, either in-person or over the phone. Data on CVD outcomes, 

including dates and reasons for hospitalizations, were objectively measured and adjudicated by a 

thorough medical chart review. As a secondary outcome, we evaluated a composite measure of 

major CVD events, including myocardial infarction (MI), congestive heart failure (CHF), and 

stroke.  

 

Other Measurements 

 At the baseline visit (2002-2010), a thorough assessment including medical history and 

physical examination were obtained by a research nurse or physician assistant. 

Sociodemographic and anthropometric data, health behaviors, fasting blood glucose and lipid 

profile were measured as previously described.81,207 Habitual physical activity was measured 
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using the Baecke Questionnaire of Habitual Physical Activity. This is a 16-question instrument 

recording physical activity levels at work, during sports and non-sports activities, rendering a 

global physical activity score.227,228 History of hypertension was defined as systolic blood 

pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg, or self-reported use of anti-

hypertensive medications, following the Joint National Committee (JNC)-7 classification for 

Stage 1 hypertension which was the accepted staging at the time.229 History of coronary artery 

disease that might have occurred from the time of the initial screen was also assessed. Diabetes 

mellitus was defined as having a measured fasting glucose of more than 126 mg/dL or any 

current treatment with antidiabetic medications. Current use of beta-blockers, antidepressants, 

statins, and angiotensin-converting enzyme inhibitors were also recorded. A clinical diagnosis of 

PTSD (lifetime and current), as well as alcohol abuse disorder, were obtained using the 

Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorder, 4th 

Edition (DSM-IV), or SCID. 

 

Statistical Analysis 

 We conducted descriptive analyses by summarizing participants’ characteristics at the 

baseline visit, sociodemographic factors, health-related factors, medication use, depression 

status, and 24-hour average HRV. Continuous variables were described as mean and standard 

deviation (SD), and categorical variables as frequencies (percentage). The HRV data were log-

transformed owing to non-normality. We also compared the characteristics among twins who 

deceased during 12-year follow-up to those who survived, using two sample t-test (for 

continuous variables) and chi-squared test (for categorical variable). Kaplan-Meier curves for all-

cause mortality and a composite measure of major CVD events were computed by within-pair 
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difference of depression (i.e. within-pair difference of BDI or MDD >0 vs. <0) or log-HRV (i.e. 

within-pair difference of log-HRV >0 vs. <0), and log rank tests were used to compare the 

survival curves. To assess potential selection bias, we also compared the characteristics among 

twins with and without the follow-up assessment. 

Our primary analysis focused on the associations between the within-pair difference in 

depression and log-HRV with time to all-cause mortality. The end of follow-up time was the last 

contact date, the date of death, or the last day of available NDI data (12/31/2017), whichever was 

the latest. For all analyses, BDI, MDD and 24-hour average HRV metrics were used as primary 

predictors of interest, and we also examined daytime and nighttime average HRV metrics. As a 

secondary analysis, we also evaluated the associations between depression and log-HRV and 

time to first major CVD events, including MI, CHF, and stroke. In a study of twins, within-pair 

differences intrinsically control for potential confounding by shared genetic and early familial 

confounding, as well as environmental factors (e.g. physical activity, diet) during ambulatory 

monitoring as twins were examined together. For all analyses, we fitted multivariable frailty 

models and accounted for twin pair as random effect. The frailty models are the extensions of the 

Cox proportional hazard models, with random effect to account for heterogeneity in clustered 

data (such as in twins dataset).231 To allow comparisons between different HRV metrics, the 

HRV metrics were standardized so that the  coefficients can be interpreted as hazard ratios for 

all-cause mortality or CVD events, per 1-SD increment in log-HRV metrics.  

To avoid model overfitting, we constructed a series of models to examine the impact of 

sets of a priori selected variables on the association of interest. The base model, or model 1, was 

unadjusted, and only included between-pair difference of HRV metrics. We then progressively 

adjusted for sociodemographic and behavioral variables (education, employment status, ever 
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smoking status, alcohol abuse, and physical activity) in model 2, and further adjusted for CVD 

risk factors that are likely related to depression, HRV and adverse health outcomes (BMI, history 

of hypertension, history of coronary artery disease, and diabetes) in model 3.163 In model 4, we 

additionally adjusted for medication use, including beta-blockers and antidepressants. 

To assess potential shared genetic influence on the HRV and adverse health outcome, we 

examined the associations separately in MZ and DZ twins to evaluate effect modification by 

zygosity. Because MZ twin pairs share 100% of their genes while DZ twin pairs only share 50% 

on average, if a larger effect of HRV on adverse health outcomes is observed within DZ pairs 

than in MZ pairs, then it may suggest that genetic factors play a role in this association. 

We also conducted a series of sensitivity analyses to expand our primary analytic 

approach. First, we examined the association between HRV and cause-specific mortality 

including cancer and CVD, and further accounted for competing risk due to non-cancer or non-

CVD mortality, respectively, using Fine & Gray subhazard models.232 Second, we repeated all 

analyses by examining twins as individuals instead of within-pair, to allow an evaluation of 

potential familial and environmental influence on the associations of interest. Third, we 

examined whether the results remained robust after additionally adjusting for depression and 

PTSD diagnosis or symptoms, as well as adjusting for 24-hour average heart rate, as prior 

research pointed out that the correlation between HRV and mortality could be partially 

attributable to concurrent change in HR.233 We also tested the effect modification between 

depression and HRV by including an interaction term between the two variables in all models. 

Missing data were rare (<5%) for all variables, thus we used all available data without 

imputation. We checked linearity assumptions of all continuous variables, as well as potential 

multicollinearity by variance inflation factors. A two-sided p-value of less than 0.05 was used to 
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indicate statistical significance, and hazard ratios and associated 95% confidence intervals (CI) 

were calculated for model parameters. All statistical analyses were performed using SAS, 

version 9.4 (SAS Institute, Cary, NC) and Stata 14.0 (StataCorp, College Station, TX). 

 

6.4 Results 

Participants’ Characteristics 

 Of the 566 twins participated at the baseline visit, 501 individuals had any analyzable 

HRV data, including 225 twin pairs (142 MZ pairs and 83 DZ pairs), and 51 single twins. The 

225 paired twins (n=450) represented our analytical sample for the within-pair analysis for 

mortality (Figure 6.1). Of these twins, 436 (97%) were white, with a mean age (SD) of 56 (3) 

years (Table 6.1). A total of 126 (28%) twins met criteria for lifetime history of MDD, and the 

mean (SD) BDI score was 6.1 (7.9). During a mean (SD) follow-up of 12 (3) years, a total of 53 

(12%) out of 450 twins deceased. Comparing deceased twins with those who survived follow-up 

(n=397), twins who deceased had significantly lower BMI, less physical activity, and 

consistently lower HRV in almost all domains, except for HF HRV (Table 6.1). Overall, the 

characteristics were similar comparing twins with and without follow-up assessment, except that 

twins who did not attend follow-up visit had more smokers and significantly higher BDI score 

compared to twins who completed follow-up (Table S.6.1). 

 

Depression, Heart Rate Variability and All-cause Mortality 

During the 12-year follow-up, 53 (112%) out of 450 twins died and were verified by 

NDI, with a mean (SD) time to mortality of 6.7 (4.4) years. Among the twins who died, 22 

(42%) and 14 (26%) were due to cancer or CVD causes, specifically. Other causes of death 
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included natural causes, motor vehicle accident, suicide, endocrine, lung, or gastrointestinal 

disorders.  

Kaplan-Meier survival curves suggested that twins with a within-pair difference of >0 in 

VLF, LF or DC domain, compared to their co-twins with within-pair difference <0 in the same 

domain, had better survival rate in terms of all-cause mortality (Figure 2). Log rank tests 

indicated that the differences in survival curves by LF and DC HRV domains were statistically 

significant (p=0.048 and p=0.047, respectively). Kaplan-Meier curves showed that twins with 

higher ULF and HF HRV had similar survival compared to their co-twins with lower HRV. 

Kaplan-Meier curves suggested that twins with higher BDI or MDD within-pair did not have 

significantly increased risk for all-cause mortality. 

For the within-pair analysis of the association between baseline depression and HRV and 

all-cause mortality during follow-up, higher BDI and MDD within-pairs were not significantly 

associated with increased risk for all-cause mortality, but higher values in all domains of 24-hour 

average HRV demonstrated decreased hazard for mortality across all models, after adjusting for 

sociodemographic and behavioral factors, CVD risk factors, and medication use (Table 2). The 

hazard ratios (HR) for HRV ranged from 0.73 to 0.96 after multivariable adjustment, suggesting 

a 4% to 27% decreased hazard per 1-SD increment in log-HRV domains. Of note, LF and DC 

HRV showed the strongest and most consistent association with decreased risk for all-cause 

mortality, with HRs (95% CI) of 0.78 (0.62, 0.98) and 0.73 (0.56, 0.95), respectively. Compared 

to nighttime data, daytime average HRV showed similar associations with all-cause mortality in 

ULF, VLF and LF domains, but showed slightly stronger association in HF and DC domains. 

Specifically, a 1-SD increment in daytime average log-LF and log-DC HRV showed 

significantly decreased hazard for all-cause mortality, with HRs (95% CI) of 0.77 (0.61, 0.98) 
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and 0.71 (0.55, 0.92); while for nighttime average HRV, log-DC showed significantly decreased 

hazard (HR: 0.76, 95% CI: 0.58-0.99), and log-LF HRV showed marginally significant result 

(HR: 0.77, 95% CI: 0.59-1.00). 

 

Depression, Heart Rate Variability and CVD Events 

 Kaplan-Meier survival curves did not show any material difference in survival 

probabilities for major CVD events by within-pair difference in depression or any HRV domains, 

and the log-rank tests showed non-significant results in all comparisons (Figure S.6.1). Among 

twin pairs who survived and participated in ETSF (132 pairs), a total of 18 (7%) twins reported 

any major CVD events during follow-up, including MI, CHF, and stroke, thus the 132 pairs 

represented our analytical sample for the within-pair analysis for CVD events. The mean (SD) 

time from baseline to first major CVD event was 9.1 (3.8) years. Higher BDI within-pair were 

not associated with increased risk for mortality. MDD is associated with a 5.5-fold increased risk 

(HR=5.51, 95% CI: 0.49-61.91) of major CVD events, however this association did not reach 

statistical significant, likely due to small number of CVD event especially among discordant 

MDD pairs. A 1-SD increment in 24-hour average log-HRV values in all domains were 

associated with 29% to 45% decreased hazard for major CVD events, with HRs ranging from 

0.55 to 0.71, however none of the HRs was statistically significant (Table 6.3). Daytime average 

HRV consistently had stronger association with CVD events compared to nighttime HRV data 

across all HRV domains and models, with HRs ranging from 0.49 to 0.65 for daytime HRV and 

0.66 to 0.81 for nighttime HRV. Specifically, after multivariable adjustment, a 1-SD increment 

in log-HRV was associated with 35% to 51% decreased hazard for CVD events, with log-ULF 

HRV showed significantly decreased risk (HR=0.49, 95% CI: 0.26-0.95) and log-LF HRV 
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showed marginally significant association (HR=0.63, 95% CI: 0.39-1.00). In contrast, nighttime 

average HRV domains were associated with 19% to 34% decreased hazard for CVD, and none of 

the associations was statistically significant. 

 

Additional Analyses 

 The stratified analysis by zygosity was only completed for all-cause mortality, as the 

sample sizes for other outcomes (i.e. cause-specific mortality and CVD events) were too small to 

yield reliable estimates of effects. Overall, the associations of depression and HRV with all-

cause mortality were slightly stronger in DZ twins compared with MZ twins across almost all 

models and HRV domains (Table S.6.2), however the interaction term with zygosity was 

consistently not significant in any of the models.  

In the analysis evaluating within-pair difference of baseline depression and HRV with 

cancer-specific mortality, MDD predicted increased hazard, and 1-unit increase in BDI was 

significantly associated with increased hazard for cancer mortality (HR=1.12, 95% CI: 1.01-

1.25). Higher values in all HRV metrics showed decreased hazard for cancer mortality, with DC 

showed significant and strongest association (HR=0.62 per 1-SD increment in log-DC HRV, 

95% CI: 0.40-0.96) (Table S.6.3). The associations for nighttime HRV were slightly stronger 

compared to daytime HRV, specifically for VLF, LF and DC domains. As for CVD-specific 

mortality, BDI did not show significant association with increased hazard, while MDD was 

associated with two-fold increased hazard of CVD mortality (HR=2.16, 95% CI: 0.39-11.92) 

(Table S.6.4). None of the baseline HRV metrics was significantly associated with hazard for 

CVD-specific mortality across all HRV domains and models. There was no material difference 
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in the results with or without accounting for competing risk due to non-cancer or non-CVD 

mortality, respectively, using Fine & Gray models (results not shown).  

Consistently across all models, the additional adjustment for depression on the 

association of HRV with outcome variables, or adjustment for HRV on the association of 

depression with outcome, did not materially changes the results. In all models that we tested, the 

interaction term between depression and HRV was consistently not significant, suggesting a lack 

of effect modification of the two phenotypes. The results of analysis evaluating twins as 

individuals were similar compared to within-pair analysis (Tables S.6.5-S.6.6). For example, a 

1-SD increment in log-LF and log-DC HV was significantly associated with 21% and 30% 

decreased hazard for all-cause mortality, respectively. None of the HRV domains was 

significantly associated with risk for major CVD events, and associations were consistently 

weaker compared to within-pair analysis. Additional adjustment for depression, PTSD, or 24-

hour average heart rate did not materially change the associations (results not shown).  

 

6.5 Discussion 

 In this co-twin control study, higher values of all HRV frequency domains, denoting 

better autonomic function, were associated with 4%-27% decreased hazard for all-cause 

mortality and 29%-45% decreased hazard for major CVD events during an average of 12-year 

follow-up. A 1-unit increase in BDI was significantly associated with 12% increased hazard for 

cancer mortality, and MDD was associated with increased hazard for mortality and major CVD 

events. The associations remained robust after adjusting for relevant sociodemographic, 

behavioral and health-related factors, and medication use. Both LF and DC HRV domains 

showed the strongest and most consistent associations with all-cause mortality, while ULF HRV 
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showed the strongest predictive values on major CVD events. Overall, daytime HRV metrics 

showed similar but slightly stronger associations with all-cause mortality and CVD events 

compared to nighttime HRV. Higher values of all HRV metrics were associated with decreased 

hazard for cancer-specific mortality, but were not associated with CVD mortality. The genetic 

factors may not play a major role in the associations of HRV with all-cause mortality, as the 

differences of the associations were not statistically significant between MZ and DZ twins.  

Consistent with previous findings, we found major depression was associated with an 

increased risk of cancer mortality and major CVD events, even though such associations were 

not statistically significant.90,94,97,98,101 Our results did not show a substantial increased risk of 

mortality among participants with major depression or more depressive symptoms, either within-

pair or as individuals, as previous research suggested.7 The different results in our investigation 

compared to others may be due to the small numbers of participants with MDD and adverse 

health outcomes, presence of unmeasured or unknown confounders, or differences in the study 

population and participants’ characteristics. In addition, twins with MDD or more depressive 

symptoms were more likely to drop out during follow-up, thus participants in ETSF who had 

available cardiovascular outcome data had better mental health status, which may have biased 

the association between depression and CVD events towards the null. Thus, a lack of statistically 

significant results does not rule out an association between depression and adverse health 

outcomes, including mortality and CVD. 

Our findings are consistent with a meta-analysis of 28 cohort studies in patients with 

known CVD, showing that individuals with a lower HRV had 112% and 46% higher risk of all-

cause death and cardiovascular events, respectively.184 Our results also agree with prior 

community-based research in middle-aged to elderly participants,28,188-190 including individuals 
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without known CVD,67 which suggest that reduced HRV is associated with an adverse 

cardiovascular risk profile and an elevated risk of mortality and CVD events, and the elevated 

risk of mortality could not be attributable to a specific cause. 

In line with prior investigations,145,188 our study showed that, among all HRV frequency 

bands, LF power is the strongest HRV predictor with regard to mortality, and the prognostic 

implications of baseline HRV still remain after 5 years. The power in the LF HRV domain is 

modulated mainly through sympathetic nervous system (SNS) as a response to oscillations in 

blood pressure.191 The reduction in the parasympathetic function may be an early sign of 

autonomic dysregulation, but it has been hypothesized that impaired sympathetic modulation 

indexed by reduced LF power may imply a more severe involvement of autonomic nervous 

system.145,192-194 Contrary to previous studies, we did not find any significant prognostic values 

in VLF and HF domains in predicting all-cause mortality.188 Our study also extended findings 

from previous investigations that evaluated predictive values of DC among patients with CVD, 

and demonstrated that DC at baseline significantly predicted all-cause mortality among 

individuals without known CVD.70,195 

 As for cause-specific mortality, our findings agreed with prior research showing that the 

association between reduced HRV and increased risk of mortality was not specifically due to 

CVD causes, and can be largely explained by non-CVD causes, such as cancer.67,189 It has been 

reported that sympathetic activation, linked with reduced HRV, may have direct effects on the 

number, function, and subset distribution of circulating lymphocytes, which play a major role in 

the immune function and cancer risk.196,197 Contrary to other studies,198,199 we did not find 

significant predictive values of HRV in CVD mortality. One explanation for the discrepancy is 

that, in our study, we did not obtain cardiovascular or cancer disease status in deceased 
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participants, or collect data on comorbidity of both CVD and cancer. It is likely that participants 

die of cancer also had CVD, and they may have died of CVD instead if they did not also have 

cancer. In addition, the numbers of participants died of different causes are too small for a more 

comprehensive evaluation of cause-specific mortality. Thus, our study cannot rule out significant 

prognostic values of HRV in predicting CVD mortality. 

Our study supports findings from previous literature that lower HRV in multiple domains 

is linked to increased risk for incident cardiovascular events, in patients with or without known 

CVD at baseline, and the elevated risk could not be attributable to other risk factors.28,67,184 Of 

note, one study has shown that lower HRV significantly predicted a higher risk in patients with 

MI but not in patients with CHF.184 However, due to the small number of twins in the within-pair 

analysis that had any major CVD events, we were not able to confirm this finding by conducting 

subgroup analysis and separately evaluating the predictive values of HRV in different types of 

events, such as MI, CHF and stroke. 

Physical activity and mental stressors can influence the measurement of HRV, thus 

nighttime HRV measuring during sleep is not comparable with HRV assessment based on 24-

hour Holter monitoring.201,202 However, to date no prior study has evaluated and compared the 

prognostic values of daytime and nighttime HRV frequency domains in predicting mortality and 

CVD events. In our study, we found that both daytime and nighttime HRV are associated with 

similarly decreased risk for all-cause mortality, except that daytime HF and DC HRV showed 

stronger associations with mortality compared to nighttime HRV data. Both HF and DC are 

influenced by modulation of PNS activities, which suggests that alterations in daytime PNS 

functions may have stronger prognostic implications in mortality risk. We found that daytime 

HRV consistently had stronger effects on risk of major CVD events compared to nighttime 
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HRV, which contradicts with a previous study that found nighttime HRV instead of 24-hour 

HRV to be associated with stroke events.202 The discrepancy may result from different study 

design, timing of HRV measurement, and different HRV metrics that were evaluated.  

 The pathophysiological mechanisms linking depression, reduced HRV and risk for 

mortality and CVD events still remain unclear. It has been proposed that higher mortality found 

among depressed individuals might be attributable to the mechanisms specific to the existing 

diseases, behavioral pathways such as treatment adherence and health behaviors, and biological 

pathways (e.g. neuroendocrine and neuro-immunological systems, and the circadian rhythm).7,105 

For cancer-specific mortality, one of the suggested mechanisms is stress affecting the 

development and progression of cancer by impacting the repair of damaged DNA and 

accelerating tumor cell growth, which may contribute to a shorter time to cancer death.111,112 As 

for mechanisms linking depression to CVD, studies have suggested multifactorial 

pathophysiological pathways through which depression can increase CVD risk, including 

neuroendocrine dysregulation, metabolic and immune-inflammatory disturbance, and unhealthy 

lifestyle behaviors (e.g. smoking, alcohol abuse, physical inactivity, and unhealthy 

diet).19,20,32,100,113-115 

HRV represents the adaptive responses in heart rate caused by fluctuations of both SNS 

and PNS activities of the autonomic nervous system. The dysfunction of the autonomic nervous 

system, indexed by reduced HRV, reflects the sympathovagal imbalance.203 It has been 

hypothesized that the sympathovagal imbalance or an overshooting sympathetic activation may 

be linked to higher risk of mortality and cardiovascular events.195,204 In our study, the association 

of HRV with risk of mortality and CVD was present in participants without known CVD, which 

suggests that low HRV precedes manifest diseases. Alternatively, the higher mortality and CVD 
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incidence associated with lower HRV may also be due to subclinical coronary artery disease. It 

has also been hypothesized that lower HRV is an indicator of unfavorable general health, such as 

immune function, which plays a major role in tumor formation and progression.189 This may 

explain the association of HRV with increased risk of cancer-specific mortality in our study. DC 

indicates a measure of cardiac vagal modulation, and prior literature have shown a 

cardioprotective role of vagal activity,205,206 which is supported by our findings. 

 A limitation of our study is that the National Death Index has limited refresh frequency 

(annual) and has a 2-year reporting delay, although it is the current US gold standard for 

mortality data. Thus, we were not able to verify mortality data after December 31st, 2017, which 

may slightly overestimate the overall survival in our sample and biased the associations between 

HRV and mortality towards the null. Second, due to the small number of participants with CVD 

events (n=18) that were included in the within-pair analysis (n=264), we may have had limited 

power to detect any statistically significant effects. This may explain why the effect sizes were 

large (i.e. HRs from 0.55 to 0.71 per 1-SD increment in log-HRV) but none of the associations 

was statistically significant. Third, for the twins who deceased during follow-up, they were not 

included in the ETSF thus their cardiovascular outcomes were not obtained and verified, which 

may lead to an underestimation of CVD events in our sample. In addition, our study also has 

limited generalizability, as our sample included all males and mostly white middle-aged twins. 

However, our co-twin control study design should have improved internal validity and precision 

by intrinsically adjusting for unknown or unmeasured confounders. Using a co-twin control 

study design, our study is the first investigation that longitudinally examined the prognostic 

implications of a full spectrum of HRV frequency domains, during both daytime and nighttime, 

in predicting mortality and cardiovascular outcomes. In addition, our study is further 
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strengthened by a relatively long follow-up of 12 years, and a thorough medical chart review 

process to adjudicate all cardiovascular events that minimized potential recall bias and 

measurement error. 

 

6.6 Conclusions 

 In the context of a controlled twin design, the present study provides evidence of strong 

prognostic values of higher HRV metrics, denoting better autonomic function, in predicting 

decreased risk for both mortality and cardiovascular events. Compared to nighttime HRV, 

daytime HRV may have similar predictive values in all-cause mortality but slightly stronger 

protective effects on CVD events. More depressive symptoms indexed by higher BDI 

significantly predicted mortality due to cancer. These associations are not explained by 

sociodemographic, behavioral and health-related factors, and medication use, and shared genetic 

factors may not play a major role in these associations. Our study demonstrates that reduced 

HRV is an indicator of compromised health and can be used as independent predictors for 

adverse health outcomes, such as mortality and CVD. Major depression and depressive 

symptoms are linked with higher risk of cancer mortality and CVD events. Furthermore, our 

findings suggest that HRV evaluation can be incorporated into the monitoring of autonomic 

function as a prevention strategy of adverse health outcomes, including mortality and CVD. 

Larger studies are needed to evaluate prognostic values of depression and HRV in cause-specific 

mortality as well as different types of cardiovascular events, such as MI, CHF and stroke. 
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Figure 6.1 Participant Flow Diagram 

 

 
 

Abbreviations: CVD: cardiovascular disease; ETS: Emory Twin Study; ETSF: Emory Twin 

Study Follow-up; HRV: heart rate variability. 

* Recruitment dispositions: 95 never responded or refused to participate; 10 deceased during 

recruitment; 5 were too ill to participate; 1 withdrew; 1 incarcerated during recruitment.
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Figure 6.2 Kaplan-Meier survival probabilities for all-cause mortality by within-pair 

difference of heart rate variability domains or depression (n=450) 
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Abbreviations: BDI: beck depression inventory; DC: deceleration capacity; HF: high frequency; 

LF: low frequency; MDD: major depressive disorder; ULF: ultra-low frequency; VLF: very low 

frequency; WPD: within-pair difference.  

Log-rank test p=0.471
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Table 6.1 Characteristics of 450 twins (225 pairs) with available HRV data in ETS 

Characteristics, mean (SD) 
Total 

(N=450) 

Deceased 

(N=53) 

Survived 

(N=397) 

Sociodemographic factors       

    Age, years 56 (3) 55 (3) 56 (3) 

    White, No. (%) 436 (97) 49 (92) 387 (97) 

    Year of education 15 (2) 15 (2) 15 (2) 

    Employed, No. (%) 361 (80) 39 (74) 322 (81) 

       

Health factors       

    BMI* 30 (5) 28 (6) 30 (5) 

    Ever smokers, No. (%) 289 (64) 40 (75) 249 (63) 

    Alcohol abuse, No. (%) 208 (46) 30 (57) 178 (45) 

    Baecke score for physical activity* 7.3 (1.8) 6.8 (2.1) 7.3 (1.8) 

    Systolic blood pressure, mmHg 124 (10) 121 (10) 124 (10) 

    Diastolic blood pressure, mmHg 74 (9) 72 (10) 74 (8) 

    History of hypertension, No. (%) 168 (37) 16 (30) 152 (38) 

    History of diabetes, No. (%) 54 (12) 7 (13) 47 (12) 

    Prior history of CAD, No. (%) 47 (10) 8 (15) 39 (10) 

    Lifetime history of PTSD, No. (%) 68 (15) 7 (13) 61 (15) 

    Lifetime history of depression, No. (%) 126 (28) 18 (34) 108 (27) 

    Current PTSD, No. (%) 30 (7) 5 (9) 25 (6) 

    Current depression, No. (%) 16 (4) 3 (6) 13 (3) 

    BDI-II score 6.1 (7.9) 7.0 (7.6) 6.0 (7.9) 

       

Medication use       

    β-Blockers, No. (%) 36 (8) 6 (11) 30 (8) 

    Antidepressants, No. (%) 72 (16) 10 (19) 62 (16) 

    Statin, No. (%) 113 (25) 8 (15) 105 (26) 

    ACE inhibitor, No. (%) 72 (16) 8 (15) 64 (16) 

       

Heart rate variability       

24-hour average       

    ln ULF* 6.7 (0.7) 6.5 (0.9) 6.7 (0.7) 

    ln VLF* 7.7 (0.7) 7.4 (0.9) 7.7 (0.7) 

    ln LF* 6.7 (0.8) 6.4 (1.0) 6.7 (0.7) 

    ln HF 5.5 (0.8) 5.5 (0.9) 5.5 (0.8) 

    ln DC* 2.3 (0.4) 2.2 (0.5) 2.4 (0.3) 

Daytime average       

    ln ULF* 6.8 (0.7) 6.5 (0.9) 6.8 (0.7) 

    ln VLF* 7.7 (0.7) 7.3 (0.9) 7.7 (0.7) 

    ln LF* 6.6 (0.8) 6.3 (1.0) 6.7 (0.7) 

    ln HF 5.4 (0.8) 5.4 (0.9) 5.4 (0.8) 

    ln DC* 2.3 (0.4) 2.2 (0.5) 2.3 (0.4) 

Nighttime average       

    ln ULF 6.3 (1.1) 6.1 (1.1) 6.3 (1.1) 

    ln VLF* 7.7 (1.0) 7.4 (1.0) 7.7 (1.0) 

    ln LF* 6.7 (0.9) 6.4 (1.1) 6.7 (0.9) 

    ln HF 5.6 (0.9) 5.7 (1.0) 5.6 (0.9) 

    ln DC* 2.4 (0.4) 2.3 (0.5) 2.5 (0.4) 
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* Indicates statistically significant (p< 0.05) difference between two groups, using two-sample t-

tests for continuous variables, and chi-squared tests for categorical variables. 

Abbreviations: ACE: angiotensin-converting enzyme; BDI: Beck Depression Inventory; BMI: 

body mass index; CAD: coronary artery disease; DC: deceleration capacity; ETS: Emory Twin 

Study; HF: high frequency; HRV: heart rate variability; LF: low frequency; PTSD: posttraumatic 

stress disorder; SD: standard deviation; ULF: ultra-low frequency; VLF: very low frequency.
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Table 6.2 Within-pair analysis of the association between baseline HRV and depression and time to all-cause mortality during 

follow-upa 

 Model 1b Model 2c Model 3d Model 4e 

BDI 1.02 (0.97, 1.08) 1.00 (0.94, 1.06) 1.00 (0.94, 1.06) 1.00 (0.94, 1.07) 

MDD 1.35 (0.59, 3.05) 1.03 (0.44, 2.41) 1.02 (0.43, 2.40) 1.02 (0.43, 2.42) 

24-hour average HRV (n=450) 

ln ULF 0.90 (0.72, 1.11) 0.89 (0.70, 1.14) 0.90 (0.71, 1.14) 0.90 (0.71, 1.14) 

ln VLF 0.85 (0.68, 1.05) 0.84 (0.66, 1.06) 0.85 (0.68, 1.07) 0.85 (0.67, 1.07) 

ln LF 0.79 (0.63, 0.98)* 0.79 (0.62, 0.99)* 0.79 (0.63, 0.98)* 0.78 (0.62, 0.98)* 

ln HF 0.95 (0.72, 1.26) 0.96 (0.72, 1.28) 0.96 (0.72, 1.28) 0.96 (0.72, 1.28) 

ln DC 0.73 (0.56, 0.94)* 0.75 (0.58, 0.97)* 0.74 (0.57, 0.96)* 0.73 (0.56, 0.95)* 

Daytime average HRV (n=444) 

ln ULF 0.90 (0.73, 1.10) 0.89 (0.71, 1.13) 0.90 (0.72, 1.13) 0.90 (0.71, 1.13) 

ln VLF 0.86 (0.70, 1.06) 0.85 (0.68, 1.06) 0.86 (0.68, 1.07) 0.85 (0.68, 1.07) 

ln LF 0.79 (0.63, 0.98)* 0.78 (0.62, 0.99)* 0.78 (0.62, 0.98)* 0.77 (0.61, 0.98)* 

ln HF 0.89 (0.67, 1.17) 0.89 (0.67, 1.18) 0.89 (0.67, 1.18) 0.88 (0.66, 1.17) 

ln DC 0.72 (0.56, 0.94)* 0.74 (0.57, 0.96)* 0.73 (0.57, 0.94)* 0.71 (0.55, 0.92)* 

Nighttime average HRV (n=418) 

ln ULF 0.95 (0.77, 1.18) 0.94 (0.74, 1.20) 0.93 (0.73, 1.17) 0.91 (0.72, 1.16) 

ln VLF 0.89 (0.71, 1.10) 0.87 (0.68, 1.11) 0.85 (0.67, 1.09) 0.84 (0.65, 1.08) 

ln LF 0.82 (0.64, 1.04) 0.81 (0.63, 1.04) 0.79 (0.61, 1.02) 0.77 (0.59, 1.00) 

ln HF 1.05 (0.79, 1.40) 1.09 (0.81, 1.47) 1.08 (0.80, 1.46) 1.06 (0.78, 1.44) 

ln DC 0.75 (0.57, 0.98)* 0.79 (0.61, 1.04) 0.79 (0.61, 1.02) 0.76 (0.58, 0.99)* 

 

Abbreviations: BDI: beck depression inventory; BMI: body mass index; DC: deceleration capacity; HF: high frequency; HRV: heart 

rate variability; LF: low frequency; MDD: major depressive disorder; SD: standard deviation; ULF: ultra-low frequency; VLF: very 

low frequency. 

* Indicates significant association at P <0.05. 

a Results are shown as standardized hazard ratios in the multivariable Cox frailty models, per 1-SD within-pair difference in log-HRV. 

b Base model was unadjusted. 
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c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, 

alcohol abuse, and physical activity. 

d Model 3 = Model 2 + BMI, history of hypertension, history of coronary artery disease, and diabetes mellitus. 

e Model 4 = Model 3 + beta-blockers and antidepressants.  
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Table 6.3 Within-pair analysis of the association between baseline HRV and depression and time to major cardiovascular 

events during follow-upa 

 
 Model 1b Model 2c Model 3d Model 4e 

BDI 0.92 (0.77, 1.11) 0.90 (0.73, 1.11) 0.91 (0.73, 1.13) 0.91 (0.73, 1.13) 

MDD 5.99 (0.57, 62.75) 5.74 (0.55, 59.84) 5.50 (0.49, 61.80) 5.51 (0.49, 61.91) 

24-hour average HRV (n=264) 

ln ULF 0.64 (0.36, 1.15) 0.62 (0.34, 1.14) 0.53 (0.28, 1.01) 0.55 (0.29, 1.07) 

ln VLF 0.84 (0.50, 1.39) 0.82 (0.49, 1.40) 0.69 (0.39, 1.21) 0.71 (0.40, 1.27) 

ln LF 0.92 (0.60, 1.41) 0.86 (0.55, 1.33) 0.70 (0.44, 1.11) 0.70 (0.44, 1.12) 

ln HF 0.84 (0.52, 1.36) 0.77 (0.47, 1.26) 0.68 (0.41, 1.13) 0.68 (0.42, 1.12) 

ln DC 0.92 (0.60, 1.41) 0.80 (0.49, 1.30) 0.68 (0.40, 1.16) 0.68 (0.40, 1.16) 

Daytime average HRV (n=259) 

ln ULF 0.64 (0.35, 1.14) 0.62 (0.34, 1.12) 0.50 (0.27, 0.93)* 0.49 (0.26, 0.95)* 

ln VLF 0.79 (0.48, 1.31) 0.76 (0.45, 1.28) 0.61 (0.35, 1.06) 0.61 (0.35, 1.09) 

ln LF 0.88 (0.56, 1.38) 0.81 (0.51, 1.28) 0.63 (0.40, 1.00) 0.63 (0.39, 1.00) 

ln HF 0.83 (0.51, 1.36) 0.76 (0.46, 1.24) 0.66 (0.40, 1.10) 0.64 (0.39, 1.07) 

ln DC 0.92 (0.59, 1.44) 0.79 (0.48, 1.29) 0.66 (0.39, 1.12) 0.65 (0.38, 1.10) 

Nighttime average HRV (n=245) 

ln ULF 0.87 (0.67, 1.15) 0.86 (0.65, 1.13) 0.79 (0.59, 1.06) 0.79 (0.59, 1.06) 

ln VLF 0.91 (0.70, 1.20) 0.88 (0.67, 1.17) 0.81 (0.60, 1.09) 0.81 (0.60, 1.09) 

ln LF 0.92 (0.68, 1.25) 0.86 (0.63, 1.16) 0.76 (0.54, 1.05) 0.75 (0.54, 1.04) 

ln HF 0.88 (0.59, 1.32) 0.83 (0.55, 1.25) 0.73 (0.48, 1.10) 0.73 (0.49, 1.09) 

ln DC 0.93 (0.59, 1.45) 0.83 (0.51, 1.35) 0.69 (0.40, 1.17) 0.66 (0.38, 1.14) 

Abbreviations: BDI: beck depression inventory; BMI: body mass index; DC: deceleration capacity; HF: high frequency; HRV: heart 

rate variability; LF: low frequency; MDD: major depressive disorder; SD: standard deviation; ULF: ultra-low frequency; VLF: very 

low frequency. 

* Indicates significant association at P <0.05. 

a Results are shown as standardized hazard ratios in the multivariable Cox frailty models, per 1-SD within-pair difference in log-HRV. 

Major cardiovascular events include myocardial infarction, congestive heart failure, or stroke. 

b Base model was unadjusted. 
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c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, 

alcohol abuse, and physical activity. 

d Model 3 = Model 2 + BMI, history of hypertension, history of coronary artery disease, and diabetes mellitus. 

e Model 4 = Model 3 + beta-blockers and antidepressants. 
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Figure S.6.1 Kaplan-Meier survival probabilities for major cardiovascular events by 

within-pair difference of heart rate variability domains and depression (n=264) 
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Abbreviations: BDI: beck depression inventory; DC: deceleration capacity; HF: high frequency; 

LF: low frequency; MDD: major depressive disorder; ULF: ultra-low frequency; VLF: very low 

frequency; WPD: within-pair difference. 
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Figure S.6.2 Kaplan-Meier survival probabilities for all-cause mortality by within-pair 

difference of daytime heart rate variability domains (n=450) 
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Twins with a higher daytime HRV value than their brothers (WPD>0) were compared with their 

co-twins (WPD <0). 

 

Abbreviations: DC: deceleration capacity; HF: high frequency; LF: low frequency; ULF: ultra-

low frequency; VLF: very low frequency; WPD: within-pair difference.
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Figure S.6.3 Kaplan-Meier survival probabilities for all-cause mortality by within-pair 

difference of nighttime heart rate variability domains (n=450) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Log-rank test p=0.646

40%

60%

80%

100%

S
u

rv
iv

a
l 
P

ro
b

a
b

ili
ty

0 5 10 15 20
Follow-up Time (Years)

 ULF WPD<0  ULF WPD>0

Log-rank test p=0.167

40%

60%

80%

100%

S
u

rv
iv

a
l 
P

ro
b

a
b

ili
ty

0 5 10 15 20
Follow-up Time (Years)

 VLF WPD<0  VLF WPD>0

Log-rank test p=0.359

40%

60%

80%

100%

S
u

rv
iv

a
l 
P

ro
b

a
b

ili
ty

0 5 10 15 20
Follow-up Time (Years)

 LF WPD<0  LF WPD>0

Log-rank test p=0.093

40%

60%

80%

100%

S
u

rv
iv

a
l 
P

ro
b

a
b

ili
ty

0 5 10 15 20
Follow-up Time (Years)

 HF WPD<0  HF WPD>0

Log-rank test p=0.265

40%

60%

80%

100%

S
u

rv
iv

a
l 
P

ro
b

a
b

ili
ty

0 5 10 15 20
Follow-up Time (Years)

 DC WPD<0  DC WPD>0



159 

 

Twins with a higher nighttime HRV value than their brothers (WPD>0) were compared with 

their co-twins (WPD <0). 

 

Abbreviations: DC: deceleration capacity; HF: high frequency; LF: low frequency; ULF: ultra-

low frequency; VLF: very low frequency; WPD: within-pair difference. 
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Table S.6.1 Comparison of characteristics of twins with and without follow-up assessment  

 

Characteristics, mean (SD) 
Total 

(N=450) 

With Follow-

up (N=308) 

Without 

Follow-up 

(N=142) 

P-value 

Sociodemographic factors        

    Age, years 56 (3) 56 (3) 55 (4) 0.146 

    White, No. (%) 436 (97) 300 (97) 136 (96) 0.355 

    Year of education 15 (2) 15 (2) 15 (2) 0.425 

    Employed, No. (%) 361 (80) 252 (82) 109 (77) 0.211 

        

Health factors        

    BMI 30 (5) 30 (4) 30 (6) 0.915 

    Ever smokers, No. (%) 289 (64) 185 (60) 104 (73) 0.007 

    Alcohol abuse, No. (%) 208 (46) 142 (46) 66 (46) 0.941 

    Baecke score for physical activity 7.3 (1.8) 7.4 (1.7) 7.0 (2.0) 0.042 

    Systolic blood pressure, mmHg 124 (10) 124 (10) 123 (11) 0.674 

    Diastolic blood pressure, mmHg 74 (9) 74 (9) 73 (9) 0.092 

    History of hypertension, No. (%) 168 (37) 120 (39) 48 (34) 0.317 

    History of diabetes, No. (%) 54 (12) 31 (10) 23 (16) 0.063 

    Prior history of CAD, No. (%) 47 (10) 28 (9) 19 (13) 0.167 

    Lifetime history of PTSD, No. (%) 68 (15) 44 (14) 24 (17) 0.472 

    Lifetime history of depression, No. (%) 126 (28) 85 (28) 41 (29) 0.780 

    Current PTSD, No. (%) 30 (7) 18 (6) 12 (8) 0.303 

    Current depression, No. (%) 16 (4) 10 (3) 6 (4) 0.602 

    BDI-II score 6.1 (7.9) 5.4 (7.5) 7.6 (8.5) 0.008 

        

Medication use        

    β-Blockers, No. (%) 36 (8) 23 (7) 13 (9) 0.540 

    Antidepressants, No. (%) 72 (16) 42 (14) 30 (21) 0.044 

    Statin, No. (%) 113 (25) 77 (25) 36 (25) 0.936 

    ACE inhibitor, No. (%) 72 (16) 45 (15) 27 (19) 0.236 

        

Heart rate variability        

24-hour average        

    ln ULF 6.7 (0.7) 6.7 (0.8) 6.6 (0.7) 0.080 

    ln VLF 7.7 (0.7) 7.7 (0.7) 7.6 (0.7) 0.041 

    ln LF 6.7 (0.8) 6.7 (0.7) 6.6 (0.8) 0.094 

    ln HF 5.5 (0.8) 5.5 (0.8) 5.5 (0.8) 0.739 

    ln DC 2.3 (0.4) 2.4 (0.3) 2.3 (0.4) 0.078 

Daytime average        

    ln ULF 6.8 (0.7) 6.8 (0.8) 6.7 (0.7) 0.110 

    ln VLF 7.7 (0.7) 7.7 (0.7) 7.6 (0.7) 0.051 

    ln LF 6.6 (0.8) 6.7 (0.7) 6.6 (0.8) 0.196 

    ln HF 5.4 (0.8) 5.4 (0.8) 5.4 (0.8) 0.717 

    ln DC 2.3 (0.4) 2.3 (0.4) 2.3 (0.4) 0.107 

Nighttime average        

    ln ULF 6.3 (1.1) 6.4 (1.2) 6.2 (1.0) 0.054 

    ln VLF 7.7 (1.0) 7.7 (1.0) 7.5 (0.9) 0.063 

    ln LF 6.7 (0.9) 6.7 (0.9) 6.6 (0.9) 0.138 

    ln HF 5.6 (0.9) 5.6 (0.9) 5.7 (0.9) 0.607 

    ln DC 2.4 (0.4) 2.5 (0.4) 2.4 (0.4) 0.145 
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Abbreviations: ACE: angiotensin-converting enzyme; BDI: Beck Depression Inventory; BMI: 

body mass index; CAD: coronary artery disease; DC: deceleration capacity; ETS: Emory Twin 

Study; HF: high frequency; HRV: heart rate variability; LF: low frequency; PTSD: posttraumatic 

stress disorder; SD: standard deviation; ULF: ultra-low frequency; VLF: very low frequency. 



162 

 

Table S.6.2 Within-pair analysis of the association between baseline HRV and depression and time to all-cause mortality 

during follow-up, stratified by zygosity 

 
 Model 1b Model 2c Model 3d Model 4e 

Monozygotic twins (n=284) 

BDI 1.00 (0.93, 1.09) 0.99 (0.91, 1.07) 0.99 (0.91, 1.07) 0.99 (0.91, 1.08) 

MDD 1.21 (0.43, 3.47) 0.93 (0.31, 2.81) 0.96 (0.32, 2.92) 0.93 (0.30, 2.84) 

ln ULF 0.89 (0.69, 1.15) 0.89 (0.66, 1.20) 0.89 (0.66, 1.18) 0.89 (0.67, 1.19) 

ln VLF 0.86 (0.68, 1.10) 0.85 (0.65, 1.13) 0.86 (0.66, 1.12) 0.86 (0.66, 1.13) 

ln LF 0.81 (0.62, 1.05) 0.81 (0.61, 1.07) 0.81 (0.62, 1.06) 0.81 (0.62, 1.06) 

ln HF 0.99 (0.68, 1.45) 1.01 (0.69, 1.48) 0.99 (0.68, 1.45) 1.00 (0.68, 1.46) 

ln DC 0.74 (0.52, 1.06) 0.79 (0.55, 1.12) 0.77 (0.54, 1.10) 0.76 (0.54, 1.07) 

Dizygotic twins (n=166) 

BDI 1.04 (0.96, 1.13) 1.02 (0.93, 1.12) 1.02 (0.92, 1.13) 1.00 (0.90, 1.11) 

MDD 1.61 (0.42, 6.18) 1.30 (0.31, 5.42) 1.46 (0.32, 6.70) 1.46 (0.32, 6.72) 

ln ULF 0.82 (0.47, 1.45) 0.82 (0.45, 1.49) 0.83 (0.45, 1.53) 1.03 (0.51, 2.08) 

ln VLF 0.72 (0.43, 1.22) 0.69 (0.39, 1.21) 0.72 (0.40, 1.27) 0.87 (0.43, 1.78) 

ln LF 0.70 (0.45, 1.11) 0.68 (0.42, 1.11) 0.66 (0.40, 1.09) 0.78 (0.38, 1.60) 

ln HF 0.89 (0.57, 1.39) 0.78 (0.47, 1.28) 0.80 (0.46, 1.40) 0.82 (0.41, 1.62) 

ln DC 0.71 (0.49, 1.03) 0.66 (0.43, 1.00) 0.63 (0.39, 1.01) 0.67 (0.36, 1.25) 

Abbreviations: BDI: beck depression inventory; BMI: body mass index; DC: deceleration capacity; HF: high frequency; HRV: heart 

rate variability; LF: low frequency; MDD: major depressive disorder; SD: standard deviation; ULF: ultra-low frequency; VLF: very 

low frequency. 

* Indicates significant association at P <0.05. 
a Results are shown as standardized hazard ratios in the multivariable Cox frailty models, per 1-SD within-pair difference in log-HRV. 
b Base model was unadjusted. 
c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, 

alcohol abuse, and physical activity. 
d Model 3 = Model 2 + BMI, history of hypertension, history of coronary artery disease, and diabetes mellitus. 
e Model 4 = Model 3 + beta-blockers and antidepressants. 
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Table S.6.3 Within-pair analysis of the association between baseline HRV and depression and time to cancer mortality during 

follow-upa 

 
 Model 1b Model 2c Model 3d Model 4e 

BDI 1.11 (1.01, 1.22)* 1.10 (0.99, 1.22) 1.12 (1.00, 1.25)* 1.12 (1.01, 1.25)* 

MDD 2.37 (0.65, 8.63) 2.23 (0.59, 8.43) 2.13 (0.56, 8.09) 2.17 (0.57, 8.25) 

24-hour average HRV (n=450) 

ln ULF 0.82 (0.53, 1.28) 0.83 (0.52, 1.34) 0.82 (0.52, 1.31) 0.79 (0.48, 1.28) 

ln VLF 0.74 (0.49, 1.11) 0.73 (0.47, 1.14) 0.73 (0.48, 1.13) 0.70 (0.45, 1.09) 

ln LF 0.73 (0.50, 1.07) 0.75 (0.49, 1.13) 0.71 (0.48, 1.06) 0.69 (0.46, 1.05) 

ln HF 0.71 (0.47, 1.07) 0.74 (0.48, 1.15) 0.72 (0.46, 1.13) 0.70 (0.44, 1.12) 

ln DC 0.64 (0.43, 0.96)* 0.70 (0.47, 1.04) 0.64 (0.41, 0.99)* 0.62 (0.40, 0.96)* 

Daytime average HRV (n=444) 

ln ULF 0.85 (0.57, 1.29) 0.86 (0.55, 1.35) 0.86 (0.56, 1.33) 0.83 (0.53, 1.31) 

ln VLF 0.81 (0.55, 1.19) 0.80 (0.52, 1.21) 0.81 (0.54, 1.22) 0.77 (0.51, 1.19) 

ln LF 0.79 (0.53, 1.17) 0.81 (0.54, 1.22) 0.78 (0.53, 1.16) 0.76 (0.51, 1.14) 

ln HF 0.70 (0.45, 1.07) 0.73 (0.47, 1.14) 0.73 (0.47, 1.14) 0.71 (0.45, 1.13) 

ln DC 0.71 (0.47, 1.07) 0.77 (0.52, 1.14) 0.72 (0.48, 1.09) 0.70 (0.46, 1.06) 

Nighttime average HRV (n=418) 

ln ULF 0.87 (0.55, 1.37) 0.83 (0.49, 1.40) 0.87 (0.55, 1.36) 0.87 (0.54, 1.39) 

ln VLF 0.69 (0.40, 1.18) 0.61 (0.34, 1.12) 0.64 (0.35, 1.16) 0.64 (0.35, 1.17) 

ln LF 0.67 (0.42, 1.07) 0.64 (0.39, 1.07) 0.64 (0.39, 1.07) 0.65 (0.38, 1.09) 

ln HF 0.79 (0.50, 1.22) 0.80 (0.49, 1.29) 0.79 (0.49, 1.28) 0.80 (0.49, 1.30) 

ln DC 0.60 (0.40, 0.91)* 0.65 (0.43, 0.98)* 0.64 (0.42, 0.99)* 0.65 (0.42, 0.99)* 

Abbreviations: BDI: beck depression inventory; BMI: body mass index; DC: deceleration capacity; HF: high frequency; HRV: heart 

rate variability; LF: low frequency; MDD: major depressive disorder; SD: standard deviation; ULF: ultra-low frequency; VLF: very 

low frequency. 
a Results are shown as standardized hazard ratios in the multivariable Cox frailty models, per 1-SD within-pair difference in log-HRV. 
b Base model was unadjusted. 
c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, 

alcohol abuse, and physical activity. 
d Model 3 = Model 2 + BMI, history of hypertension, history of coronary artery disease, and diabetes mellitus. 
e Model 4 = Model 3 + beta-blockers and antidepressants. 
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Table S.6.4 Within-pair analysis of the association between baseline HRV and depression and time to cardiovascular mortality 

during follow-upa 

 
 Model 1b Model 2c Model 3d Model 4e 

BDI 0.94 (0.84, 1.05) 0.94 (0.83, 1.05) 0.93 (0.83, 1.06) 0.93 (0.83, 1.06) 

MDD 2.09 (0.40, 11.09) 2.08 (0.39, 11.19) 2.15 (0.39, 11.84) 2.16 (0.39, 11.92) 

24-hour average HRV (n=450) 

ln ULF 1.06 (0.72, 1.56) 1.12 (0.71, 1.74) 1.10 (0.72, 1.69) 1.10 (0.72, 1.69) 

ln VLF 1.01 (0.66, 1.55) 1.04 (0.66, 1.63) 1.03 (0.68, 1.58) 1.03 (0.67, 1.56) 

ln LF 0.93 (0.58, 1.51) 0.94 (0.58, 1.53) 0.94 (0.59, 1.50) 0.93 (0.58, 1.48) 

ln HF 1.29 (0.73, 2.29) 1.32 (0.72, 2.42) 1.33 (0.73, 2.45) 1.29 (0.70, 2.39) 

ln DC 0.82 (0.48, 1.40) 0.79 (0.44, 1.41) 0.79 (0.45, 1.38) 0.75 (0.42, 1.34) 

Daytime average HRV (n=444) 

ln ULF 1.05 (0.72, 1.52) 1.10 (0.71, 1.70) 1.09 (0.72, 1.64) 1.09 (0.71, 1.65) 

ln VLF 0.98 (0.65, 1.48) 1.01 (0.65, 1.56) 1.00 (0.66, 1.52) 1.00 (0.66, 1.52) 

ln LF 0.87 (0.53, 1.40) 0.88 (0.54, 1.43) 0.88 (0.55, 1.41) 0.87 (0.53, 1.40) 

ln HF 1.18 (0.67, 2.08) 1.21 (0.66, 2.22) 1.21 (0.66, 2.23) 1.19 (0.64, 2.19) 

ln DC 0.74 (0.43, 1.26) 0.72 (0.41, 1.28) 0.71 (0.41, 1.24) 0.68 (0.38, 1.21) 

Nighttime average HRV (n=418) 

ln ULF 1.08 (0.73, 1.61) 1.11 (0.73, 1.69) 1.10 (0.72, 1.70) 1.08 (0.71, 1.66) 

ln VLF 1.05 (0.69, 1.59) 1.07 (0.69, 1.65) 1.07 (0.68, 1.67) 1.04 (0.67, 1.62) 

ln LF 1.02 (0.64, 1.64) 1.03 (0.64, 1.67) 1.03 (0.62, 1.69) 0.99 (0.60, 1.64) 

ln HF 1.39 (0.77, 2.51) 1.41 (0.77, 2.59) 1.44 (0.78, 2.68) 1.43 (0.76, 2.70) 

ln DC 0.88 (0.50, 1.52) 0.87 (0.49, 1.54) 0.86 (0.49, 1.51) 0.82 (0.45, 1.49) 

Abbreviations: BDI: beck depression inventory; BMI: body mass index; DC: deceleration capacity; HF: high frequency; HRV: heart 

rate variability; LF: low frequency; MDD: major depressive disorder; SD: standard deviation; ULF: ultra-low frequency; VLF: very 

low frequency. 
a Results are shown as standardized hazard ratios in the multivariable Cox frailty models, per 1-SD within-pair difference in log-HRV. 
b Base model was unadjusted. 
c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, 

alcohol abuse, and physical activity. 
d Model 3 = Model 2 + BMI, history of hypertension, history of coronary artery disease, and diabetes mellitus. 
e Model 4 = Model 3 + beta-blockers and antidepressants.  
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Table S.6.5 Analysis of the association between baseline HRV and depression and time to all-cause mortality during follow-up, 

twins as individuals 

 
 Model 1b Model 2c Model 3d Model 4e 

BDI 1.02 (0.99, 1.06) 1.01 (0.97, 1.04) 1.01 (0.97, 1.04) 1.01 (0.97, 1.04) 

MDD 1.38 (0.79, 2.43) 1.03 (0.56, 1.90) 1.03 (0.56, 1.91) 1.03 (0.56, 1.91) 

ln ULF 0.88 (0.73, 1.04) 0.91 (0.74, 1.11) 0.91 (0.75, 1.10) 0.91 (0.75, 1.10) 

ln VLF 0.82 (0.70, 0.97)* 0.86 (0.71, 1.03) 0.86 (0.72, 1.03) 0.86 (0.71, 1.03) 

ln LF 0.77 (0.65, 0.92)* 0.81 (0.67, 0.98)* 0.79 (0.66, 0.96)* 0.79 (0.65, 0.95)* 

ln HF 1.01 (0.77, 1.33) 1.09 (0.81, 1.46) 1.06 (0.80, 1.40) 1.06 (0.80, 1.40) 

ln DC 0.69 (0.54, 0.88)* 0.76 (0.58, 0.99)* 0.70 (0.54, 0.92)* 0.70 (0.53, 0.92)* 

Abbreviations: BDI: beck depression inventory; BMI: body mass index; DC: deceleration capacity; HF: high frequency; HRV: heart 

rate variability; LF: low frequency; MDD: major depressive disorder; SD: standard deviation; ULF: ultra-low frequency; VLF: very 

low frequency. 

* Indicates significant association at P <0.05. 
a Results are shown as standardized hazard ratios in the Cox proportional hazard models, per 1-SD difference in log-HRV. 
b Base model was unadjusted. 
c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, 

alcohol abuse, and physical activity. 
d Model 3 = Model 2 + BMI, history of hypertension, history of coronary artery disease, and diabetes mellitus. 
e Model 4 = Model 3 + beta-blockers and antidepressants.  
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Table S.6.6 Analysis of the association between baseline HRV and depression and time to major cardiovascular events during 

follow-up, twins as individuals 

 
 Model 1b Model 2c Model 3d Model 4e 

BDI 0.89 (0.77, 1.03) 0.88 (0.75, 1.05) 0.88 (0.73, 1.05) 0.88 (0.73, 1.05) 

MDD 0.87 (0.27, 2.75) 1.07 (0.32, 3.60) 1.12 (0.32, 3.88) 1.12 (0.32, 3.92) 

ln ULF 0.86 (0.55, 1.35) 0.79 (0.52, 1.22) 0.80 (0.49, 1.28) 0.96 (0.78, 1.19) 

ln VLF 0.87 (0.56, 1.34) 0.79 (0.52, 1.20) 0.78 (0.50, 1.22) 0.96 (0.78, 1.18) 

ln LF 0.83 (0.56, 1.25) 0.72 (0.47, 1.09) 0.72 (0.46, 1.11) 0.93 (0.75, 1.16) 

ln HF 0.95 (0.59, 1.53) 0.87 (0.53, 1.42) 0.90 (0.54, 1.50) 0.98 (0.78, 1.23) 

ln DC 0.83 (0.54, 1.29) 0.70 (0.42, 1.15) 0.73 (0.43, 1.23) 1.02 (0.79, 1.32) 

Abbreviations: BDI: beck depression inventory; BMI: body mass index; DC: deceleration capacity; HF: high frequency; HRV: heart 

rate variability; LF: low frequency; MDD: major depressive disorder; SD: standard deviation; ULF: ultra-low frequency; VLF: very 

low frequency. 

* Indicates significant association at P <0.05. 

a Results are shown as standardized hazard ratios in the Cox proportional hazards models, per 1-SD difference in log-HRV. 

b Base model was unadjusted. 

c Model 2 = Model 1 + sociodemographic and behavioral factors, including education, employment status, ever smoking status, 

alcohol abuse, and physical activity. 

d Model 3 = Model 2 + BMI, history of hypertension, history of coronary artery disease, and diabetes mellitus. 

e Model 4 = Model 3 + beta-blockers and antidepressants. 
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CHAPTER 7: SUMMARY AND FUTURE DIRECTIONS 

7.1 Summary 

 Overall, this dissertation project evaluated the complex pathophysiology of depression, 

sleep disturbance, autonomic dysregulation, with the risk of adverse health outcomes, including 

mortality and CVD, using a co-twin control study design. We found that major depression and 

depressive symptoms are associated with distinct features of sleep disturbance such as REM 

disruption, lower sleep efficiency, more fragmentation, and higher sleep duration variability. We 

found that there is a significant bidirectional association between autonomic function and sleep 

measures, and their associations evaluated at home may extend beyond a 24-hour period. We 

also found that autonomic dysregulation indexed by lower HRV predicts increased risk of 

mortality and CVD, and depression is associated with more incident CVD events. In the context 

of a controlled twin design, we discovered that genetic factors may not play a major role in most 

of the associations among depression, sleep disturbance, autonomic dysregulation, and risk of 

mortality and CVD outcomes. 

 This dissertation project showed that depression, sleep disturbance, and autonomic 

dysregulation are all closely interrelated, and they together contribute to a higher risk of adverse 

health outcomes, such as mortality and CVD events. Sleep disturbance and autonomic 

dysregulation are among the potential pathophysiological pathways linking depression to adverse 

outcomes. Prevention and treatment strategies targeting sleep disturbance and autonomic 

dysregulation, such as behavioral interventions and medication use to improve sleep quality and 

autonomic function, may help aide in lowering the risk of mortality and cardiovascular events, 

especially among patients with depression. 
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Specific Aim #1 

In Aim 1 (Chapter 4; manuscript in preparation), in a co-twin control study, depressive 

symptoms and MDD were associated with a number of objectively measured indices of sleep 

disturbance. With PSG, twins with higher levels of depressive symptoms indexed by higher BDI 

score, or a history of MDD showed more REM sleep abnormalities than their brothers with fewer 

depressive symptoms or without MDD, including longer REM latency and lower percentage of 

TST in REM. Specifically, each 5-unit higher BDI, within-pair, was significantly associated with 

19.7 minutes longer rapid eye movement (REM) sleep latency, and 1.1% shorter REM sleep 

after multivariable adjustment. Depression measures were also associated with more actigraphy-

measured irregular and fragmented sleep, such as lower SE, more fragmentation and higher day-

to-day variability of sleep duration. These associations persisted with adjustment for 

sociodemographic, behavioral and CVD risk factors, and were independent of presence of 

comorbid posttraumatic stress disorder and antidepressant use. In contrast, depression measures 

were not associated with several other sleep abnormalities, including TST, indices of SDB, 

PLMS, sleep architecture, and WASO. The results were similar in both MZ and DZ twins, and 

the interaction with zygosity was not significant, suggesting the absence of shared genetic and 

familial influence on the association of depression with sleep abnormalities. 

 We concluded that, using a comprehensive approach of objectively measuring multiple 

dimensions of sleep disturbance in the context of a controlled twin design, depression is 

associated with distinct features of altered sleep. While individuals with depression suffer from 

sleep disruption in the natural environment, such as lower sleep efficiency, more fragmentation, 

and higher sleep duration variability, their depressive symptoms showed minimal association 

with sleep dimensions measured in a controlled environment, such as SDB or PLMS. Individuals 
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with depression are also vulnerable towards disruption of REM sleep, including longer REM 

latency and lower percentage of TST in REM. Our twin study shows that genetic and familial 

factors may not explain these associations. 

 

Specific Aim #2 

In Aim 2 (Chapter 5; manuscript in preparation), using a co-twin control study, we 

investigated the temporal relationships between autonomic dysregulation indexed by reduced 

HRV, and objectively measured sleep disturbance. We found that most of these relationships are 

bidirectional. Higher values in several daytime HRV domains, denoting better ANS function, 

were associated with a number of PSG-derived sleep measures, including N1, N2 and REM 

sleep, and lower hypoxic burden, after adjusting for relevant sociodemographic, behavioral and 

health-related factors. In turn, lower N1 and REM sleep, higher N2 sleep, and less severe oxygen 

desaturation were associated with higher HRV in the day following the laboratory PSG. During a 

week of monitoring in the natural (non-controlled) environment, a higher daytime HRV was 

bidirectionally associated with better sleep duration and continuity measured by actigraphy, as 

indicated by longer TST and lower WASO. We also found that the relationships between 

daytime HRV and sleep duration and continuity measures generally persisted to 48 hours, but no 

longer. In contrast to daytime HRV, nighttime HRV was not related to sleep duration or 

continuity longitudinally. Because our analysis examined differences within twin pairs, results 

are inherently independent of shared familial environment. 

In the context of a controlled twin design, we concluded that there is a significant 

bidirectional association between autonomic function and sleep measures. In the home 

environment, the relationship between autonomic dysregulation during daytime and worse sleep 
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duration and continuity persists beyond a 24-hour period. Autonomic function and sleep are 

closely inter-related, and highlights the importance of a healthy autonomic function in the 

regulation of sleep and vice versa. 

 

Specific Aim #3 

In Aim 3 (Chapter 7; manuscript in preparation), using a co-twin control study design, we 

found that higher values of all HRV frequency domains, denoting better autonomic function, 

were associated with 4%-27% decreased hazard for all-cause mortality and 29%-45% decreased 

hazard for major CVD events during an average of 12-year follow-up. A 1-unit increase in BDI 

was significantly associated with 12% increased hazard for cancer mortality, and MDD was 

associated with increased hazard for mortality and major CVD events. The associations remained 

robust after adjusting for relevant sociodemographic, behavioral and health-related factors, and 

medication use. Both LF and DC HRV domains showed the strongest and most consistent 

associations with all-cause mortality, while ULF HRV showed the strongest predictive values on 

major CVD events. Overall, daytime HRV metrics showed similar but slightly stronger 

associations with all-cause mortality and CVD events compared to nighttime HRV. Higher 

values of all HRV metrics were associated with decreased hazard for cancer-specific mortality, 

but were not associated with CVD mortality. The genetic factors may not play a major role in the 

associations of HRV with all-cause mortality, as the differences of the associations were not 

statistically significant between MZ and DZ twins. 

We concluded that, in the context of a controlled twin design, high HRV metrics, 

denoting better autonomic function, have strong prognostic implications in predicting decreased 

risk for both mortality and cardiovascular events. Compared to nighttime HRV, daytime HRV 
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may have similar predictive values in all-cause mortality but slightly stronger protective effects 

on CVD events. More depressive symptoms indexed by higher BDI significantly predicted 

mortality due to cancer. These associations are not explained by sociodemographic, behavioral 

and health-related factors, and medication use, and shared genetic factors may not play a major 

role in these associations. Our study demonstrates that reduced HRV is an indicator of 

compromised health and can be used as independent predictors for adverse health outcomes, 

such as mortality and CVD. Major depression and depressive symptoms are linked with higher 

risk of cancer mortality and CVD events. 

 

7.2 Strengths 

We examined for the first time the pathophysiological pathways between depressive 

symptoms, sleep disturbances, autonomic dysregulation, and CVD outcomes, in a context of co-

twin control study. This is the first twin study that evaluated the association of depression with 

sleep disturbances, using multiple objective sleep measures such as gold stand, in-lab PSG and 

at-home actigraphy. No previous study has evaluated the temporal dynamics and directionality of 

association between HRV metrics and objective sleep disturbance over successive 24-hour 

periods and modeled day-night associations in a time-lagged model, allowing inferences via 

Granger causality. Few previous studies have assessed the prognostic implications of a full 

spectrum of ECG-derived HRV frequency domains, separately in daytime and nighttime, in 

predicting adverse health outcomes including mortality and CVD events. 

Our study is strengthened by a comprehensive measure of sleep, including both objective 

and subjective measures. Similarly, we assessed depression using self-rated questionnaire, as 

well as a clinical diagnosis which is the gold standard for measuring major depression. The 
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autonomic function indexed by HRV was also measured using validated tools, such as the gold 

standard, 24-hour Holtor recording, and ECG patch monitoring. These measures along with the 

standard measurement protocols should have minimized measurement error and improved the 

internal validity of the study. In addition, our study is further strengthened by a relatively long 

follow-up of 12 years, use of NDI to verify mortality which is the current gold standard in the 

US, and a thorough medical chart review process to adjudicate all cardiovascular events that 

minimized potential recall bias and measurement error. 

Our matched twin study design enabled us to control for potential genetic and early 

familial confounding. The study of MZ and DZ twins provides information on common 

etiological pathways linking phenotypes of interest. The co-twin study design increased precision 

by providing an internal control (the unaffected twin), and intrinsically controlled for shared 

genetic and early familial factors. In addition, as twin pairs were assessed together (in lab) and in 

the same week (at home), confounding from environmental or seasonal/temporal influences on 

sleep measurements was minimized. 

Throughout this dissertation project, we applied mixed-effect regression models with 

random effect, which allowed us to account for the heterogeneity of effect among different twin 

pairs. In all the Aims, the primary analyses were supported and extended by a series of additional 

sensitivity analysis, in order to confirm and improve the consistency and validity of results. In all 

the Aims, we constructed a series of models that progressively adjusted for variables that are 

potential confounders, in order to avoid model overfitting. In the Aim 2 analysis, the VAR 

models fitting bivariate time series and associated Granger causality tests provided an 

informative method to assess the temporal directionality of associations, and it allowed us to not 
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only evaluate temporal relationships between HRV and sleep, but also the length of time during 

which HRV exerted effects on sleep and vice versa. 

 

7.3 Limitations 

 This dissertation project also has limitations. First, our sample included mostly white, 

middle-aged men, thus the generalizability to women and other racial/ethnic groups is limited. 

However, although a homogenous sample reduces generalizability, it should increase validity, 

which was a major goal of our study. Second, because of the cross-sectional design in Aim 1 

analysis, we were unable to assess the directionality of the association between depression and 

sleep disturbance. For the HRV data processing in Aim 2 analysis, due to noise and nyquist 

frequency, the use of 5-minute windows to process HRV data may have not generated reliable 

estimates for lower frequency bands, such as ULF and VLF. For sleep data in Aim 1 and Aim 2 

analyses, as participants traveled to Emory University from different locations in the US, 

different time zones may have influenced the sleep data collection in the lab, such as sleep 

duration and sleep latency. A further evaluation of the impact of different time zones on sleep 

disturbance data is needed in future studies. In Aim 3 analysis, another limitation of our study is 

that the National Death Index has limited refresh frequency (annual) and has a 2-year reporting 

delay, although it is the current US gold standard for mortality data. Thus, we were not able to 

verify mortality data after December 31st, 2017, which may slightly overestimate the overall 

survival in our sample and biased the associations of HRV and depression with mortality towards 

the null. In addition, for the twins who deceased during follow-up, they were not included in the 

ETSF thus their cardiovascular outcomes were not obtained and verified, which may lead to an 

underestimation of CVD events in our sample. 
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Overall, our study has relatively small sample size in all the Aims. Specifically, in Aim 1, 

the sample size for MDD-discordant twin pairs was relatively small, limiting our analysis of 

MDD. In Aim 2, due to the relatively small sample size for both Study I and Study II analyses, 

especially for the analysis using home monitoring data, our analysis may have been 

underpowered to detect significant bidirectional associations across some sleep dimensions. In 

Aim 2, the small sample size also does not allow a reliable evaluation of association separately in 

monozygotic and dizygotic twins in order to evaluate of role of genetic factors on the 

association. A reduction in sample size is inevitable in our design, given that within-pair analyses 

rely on complete pairs and consecutive data are necessary during home monitoring to properly 

calculate lagged values. However, our co-twin control study design should have improved 

internal validity and precision by intrinsically adjusting for unknown or unmeasured 

confounders. In Aim 3 analysis, due to the small number of participants with CVD events (n=18) 

that were included in the within-pair analysis (n=264), we may have had limited power to detect 

any statistically significant effects. This may explain why the effect sizes were large (i.e. HRs 

from 0.55 to 0.71 per 1-SD increment in log-HRV) but none of the associations was statistically 

significant. The small sample for both mortality and CVD outcomes in Aim 3 may cause the 

final models (i.e. fully adjusted models) to be overfitted, which may have potentially increased 

size of random error. Third, for the twins who deceased during follow-up, they were not included 

in the ETSF thus their cardiovascular outcomes were not obtained and verified, which may lead 

to an underestimation of CVD events in our sample. Future epidemiologic studies with larger 

sample size and more diverse study population, are needed to confirm the findings of this 

dissertation research. 
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7.4 Public Health Impact 

This dissertation project evaluated the complex pathophysiology of depression, sleep 

disturbance, autonomic dysregulation, with the risk of adverse health outcomes, including 

mortality and CVD, using a co-twin control study design. This study pointed out that sleep 

disturbance and autonomic dysregulation are closely interrelated, and they consist of important 

pathways in which depression can lead to increased risk of mortality and CVD. Our findings 

contribute to a better understanding of the multifactorial mechanisms linking depression and its 

adverse health consequences, and shed light on potential prevention and treatment strategies of 

mortality and CVD events in patients with depression. 

Specifically, this research project has provided a comprehensive evaluation on the 

association of depression with both objective and subjective sleep disturbance, in a full spectrum 

of sleep dimensions. It contributes to clarify the link between depression and sleep disturbance, 

and their roles in the pathophysiology of adverse health events. Our results help inform future 

research on prevention and treatment strategies to mitigate sleep disturbance, such as 

pharmacological treatment or behavioral interventions, among depressed individuals. 

This study elucidates the temporal dynamics and directionality of association between 

sleep and HRV, and shows that autonomic function and sleep are closely inter-related. It 

highlights the importance of a healthy autonomic function in the regulation of sleep and vice 

versa. It also suggests that the changes in some sleep dimensions, potentially resulting from 

pharmacological treatments, may also have an impact on autonomic function; and 

pharmacological or non-pharmacological therapies to restore autonomic balance, such as 

exercise training, vagal nerve and carotid baroreceptor stimulation, may also have an effect on 

sleep disturbance.265,266 Furthermore, our results suggest that both autonomic function and sleep 
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health should be targeted mutually in prevention strategies of chronic conditions linked to sleep 

disturbance, such as CVD. 

In addition, this dissertation project sheds light on the prognostic implications of 

alternations in HRV and depressive symptoms in predicting mortality and CVD, which suggest 

the use of HRV monitoring in preventing and treating adverse health consequences, especially 

among individuals with depression. Our findings suggest that HRV evaluation can be 

incorporated into the monitoring of autonomic function as a prevention strategy of adverse health 

outcomes. Furthermore, capitalizing on the twin sample, this study helps evaluate the role of 

genetic predisposition in the underlying pathways from depression to mortality and CVD. 

 

7.5 Future Directions 

This dissertation project evaluated the complex pathophysiology of depression, sleep 

disturbance, autonomic dysregulation, with the risk of adverse health outcomes, but future 

research is needed further improve our study. First, because our study is limited by the small 

sample size and lack of generalizability due to mostly middle-aged white participants, future 

epidemiologic studies with more diverse study populations and a larger sample size are needed to 

confirm our findings. Second, because of the cross-sectional study design in Aim 1 analysis, we 

were unable to assess the directionality of association between depression and sleep disturbance. 

Future studies with a longitudinal design, such as a cross-lagged analysis, are necessary to 

evaluate the temporal relationships between depression and sleep. Third, as our sample size in 

MZ and DZ twins was too small in Aim 2 analysis to make a reliable comparison between the 

association by zygosity, more twin studies with larger sample size are needed to further evaluate 

the role of genetic factors on the temporal relationships between sleep disturbance and 
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autonomic dysregulation. Future research may evaluate a range of different cutpoints for 

depression to identify clinically useful cutpoints with implications for mortality and CVD risk. In 

addition, as the associations between depression, HRV and sleep are all likely to be bidirectional, 

future studies may be necessary to evaluate a hypothetical construct such as “biological 

depression”, encapsulating depressed mood, autonomic dysregulation and sleep disturbance as a 

single syndrome, and its association with adverse health outcomes. Last, larger longitudinal 

studies are needed to fully evaluate the prognostic values of depression and HRV in cause-

specific mortality as well as different types of cardiovascular events, such as MI, CHF and 

stroke.  
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