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Abstract

Low-degree points on some rank 0 modular curves
By Alexis Newton

Let E be an elliptic curve defined over a number field K. We present some new
progress on the classification of the finite groups which appear as the torsion subgroup
of E(K) as K ranges over quartic, quintic and sextic number fields. In particular, we
concentrate on determining the quartic, quintic and sextic points on certain modular
curves X1(N) for which the rank of the Jacobian is zero.
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Chapter 1

Introduction

A classical theorem of Barry Mazur [9] states that the torsion subgroup of an elliptic

curve, E(Q)tors, is isomorphic to one of 15 different groups over the rational numbers:

Theorem 1.0.1 (Mazur [9], 1978). Let E/Q be an elliptic curve. Then E(Q)tors is

isomorphic to one of the following groups.

Z/NZ, for 1 ≤ N ≤ 10 or N = 12

Z/2Z⊕ Z/2NZ, for 1 ≤ N ≤ 4.

Since modular curves parameterize elliptic curves, we can restate Mazur’s theorem.

Let K be a number field. Let Y1(N) be the curve parameterizing pairs (E,P ), where

E/K is an elliptic curve, and P is a point of exact order N on E, and let Y1(M,N)

(with M |N) be the curve parameterizing E/K such that E(K)tors contains Z/MZ⊕

Z/NZ. Let X1(N) and X1(M,N) be the smooth compactifications of Y1(N) and

Y1(M,N). Then X1(N) and X1(2, 2N) have rational points for exactly the values of

N appearing in Mazur’s theorem.

This prompts the question, if we fix d ≥ 1, can we say something about the groups
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which can occur as E(K)tors for K a field extension of Q of degree d?

Merel [10] showed in 1996 that for every integer d ≥ 1, there is a constant N(d)

such that for all K/Q of degree at most d and all E/K,

#E(K)tors ≤ N(d).

Thus the size of E(K)tors is dependent only on the degree of the field extension of K

over Q.

We can further ask for a classification of such groups. For the case of quadratic

extensions, when d = 2, Kamienny [7] and Kenku-Momose [8] find that E(K)tors must

be one of 26 groups for E an elliptic curve over a quadratic number field K:

Theorem 1.0.2 (Kamienny-Kenku-Momose, 1980’s). Let E be an elliptic curve over

a quadratic number field K. Then E(K)tors is one of the following groups.

Z/NZ, for 1 ≤ N ≤ 16 or N = 18,

Z/2Z⊕ Z/2NZ, for 1 ≤ N ≤ 6,

Z/3Z⊕ Z/3NZ, for 1 ≤ N ≤ 2, or

Z/4Z⊕ Z/4Z.

Similarly, the cubic case where d = 3 has also be completely classified by Derickx,

Etropolski, Morrow, van Hoeij, and Zurieck-Brown [5].

Let K/Q be a cubic extension and E/K be an elliptic curve. Then E(K)tors

is isomorphic to one of 26 different groups. It is important to note that this set

of groups overlaps but is distinct from the 26 groups found in the quadratic case.

Another notable difference with this case is the existence of a singular sporadic point

discovered by Najman [11]. Derickx, Etropolski, Morrow, van Hoeij, and Zurieck-
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Brown [5] show that there exist infinitely many Q-isomorphism classes for each such

torsion subgroup listed below, except for Z/21Z. In this case, the base change of

the elliptic curve 162b1 to Q(ζ9)
+ is the unique elliptic curve over a cubic field with

Z/21Z-torsion.

Theorem 1.0.3 (Derickx–Etropolski–Morrow–van Hoeij–Zurieck-Brown [5], 2020).

Let K/Q be a cubic extension and E/K be an elliptic curve. Then E(K)tors is iso-

morphic to one of the following 26 groups:

Z/NZ with 1 ≤ N ≤ 21, N ̸= 17, 19, and

Z/2Z⊕ Z/2NZ with 1 ≤ N ≤ 7.

Finally, significant progress has been made on the quartic case where d = 4. Jeon,

Kim, and Park [6] find that as K varies over all quartic number fields and E varies

over all elliptic curves over K, the group structures which appear infinitely often as

E(K)tors are one of 38 groups.

Theorem 1.0.4 (Jeon–Kim–Park [6], 2006). If K varies over all quartic number

fields and E varies over all elliptic curves over K, the group structures which appear
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infinitely often as E(K)tors are exactly the following:

Z/NZ N = 1− 18, 20− 22, 24

Z/2Z⊕ Z/2NZ, N = 1− 9,

Z/3Z⊕ Z/3NZ, N = 1− 3,

Z/4Z⊕ Z/4NZ, N = 1− 2,

Z/5Z⊕ Z/5Z,

Z/6Z⊕ Z/6Z,

Following this result, it was the initial goal of this dissertation to complete the

classification of the finite groups that appear as the torsion subgroup of E(K) for K

a quartic number field. However, recent work (December 2024) of Maarten Derickx

and Filip Najman [3] completed this classification. Detailed in this dissertation is

the work completed on classifying quartic torsion up to December 2024, with some

further results over quintic and sextic number fields using the same methods.

Thus for the quartic case, Maarten Derickx and Filip Najman [3] show that the

group structures which appear as E(K)tors are one exactly the groups that appear

infinitely often. This means that there are no cases of sporadic quartic torsion.

Theorem 1.0.5 (Derrickx–Najman [3], 2024). If K varies over all quartic number

fields and E varies over all elliptic curves over K, the group structures which appear
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as E(K)tors are exactly the following:

Z/NZ with 1 ≤ N ≤ 24, N ̸= 19, 23,

Z/2Z⊕ Z/2NZ with 1 ≤ N ≤ 9,

Z/3Z⊕ Z/3NZ with 1 ≤ N ≤ 3,

Z/4Z⊕ Z/4NZ with 1 ≤ N ≤ 2,

Z/5Z⊕ Z/5Z,

Z/6Z⊕ Z/6Z,

Using different techniques to Derickx and Najman [3], my collaborator Michael

Cerchia and I confirm the classification for some N in the quartic case, as well as

extend the classification for some N in the quintic and sextic cases:

Theorem 1.0.6 (Cerchia–Newton, 2024). For N = 25, 26, 27, 28, 34, 35 and 40, the

modular curve X1(N) has no non-cuspidal quartic points.

Theorem 1.0.7 (Cerchia–Newton, 2025). For N = 26, 27, 34 and 40, the modular

curve X1(N) has no non-cuspidal quintic points.

Theorem 1.0.8 (Cerchia–Newton, 2025). For N = 34, the modular curve X1(N)

has no non-cuspidal sextic points.

The code for each of these proofs can be found in the GitHub repository at https:

//github.com/alexisnewton/Low-degree-points-on-some-rank-0-modular-curves.

The remainder of this dissertation will detail background material in Chapter 2, meth-

ods in Chapter 3, proofs in Chapter 4, and future work in Chapter 5.

https://github.com/alexisnewton/Low-degree-points-on-some-rank-0-modular-curves
https://github.com/alexisnewton/Low-degree-points-on-some-rank-0-modular-curves
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Chapter 2

Background

2.1 Elliptic Curves

An elliptic curve E is a smooth, projective, algebraic curve of genus one, with a

distinguished point O.

Definition. For field K (with characteristic not 2 or 3) an elliptic curve defined over

K can be written in Weierstrass form as

y2 = x3 + Ax+B

with A,B ∈ K, where the discriminant ∆(E) = −16(4A3 + 27B2) ̸= 0.

For simplicity, consider K = Q. If (x0, y0) is a point on the curve y2 = f(x), then

so is (x0,−y0). Suppose that P and Q are points on E. To add these points, draw a

line through P and Q. This line will intersect at a third point R, and if we reflect R

across the x-axis, we get a new point P +Q. (If P = Q, we draw the tangent line to

the curve there to find P +Q.)

We let E(Q) be the set of rational points on E. The “ + ” operation of addding

points as defined above has the following five properties.

1. If P and Q are in E(Q), the P +Q is also in E(Q).
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Figure 2.1: E : y2 = x3 − 5x+ 4,∆ = 1088

Figure 2.2: Suppose that P and Q are points on E.
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Figure 2.3: Let P = (0, 2) and Q = (1, 0)

Figure 2.4: To add these points, draw a line through P and Q.
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Figure 2.5: This line will intersect with a third point R.

Figure 2.6: Reflect R across the x-axis.
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Figure 2.7: We get a new point P +Q.

2. If P,Q,R ∈ E(Q), then (P +Q) +R = P + (Q+R).

3. If O = (0 : 1 : 0), then P +O = P for all P ∈ E(Q).

4. If P = (x : y : z), let −P = (x : −y : z). Then, P + (−P ) = O.

5. For all P,Q ∈ E(Q), P +Q = Q+ P .

Therefore under the operation of adding points, E(Q) forms an abelian group. See

Figure 2.7 for an explicit example.

More generally, we have the following result over a number field K.

Theorem 2.1.1 (Mordell-Weil, 1928). For an elliptic curve E, E(K) is a finitely-

generated abelian group, and E(K) ∼= E(K)tors×Zr where E(K)tors is a finite abelian

group and r ≥ 0, r ∈ Z.

The number r is called the rank of E(K). This is the number of independent

points of infinite order on the curve. Notice that this implies E(K) is finite if and
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only if r = 0. The set of points with finite order on E is called the torsion subgroup.

It is denoted by E(K)tors and can be isomorphic to the following groups 15 groups

when K = Q.

Theorem 2.1.2 (Mazur [9], 1978). Let E/Q be an elliptic curve. Then E(Q)tors is

isomorphic to one of the following groups.

Z/NZ, for 1 ≤ N ≤ 10 or N = 12

Z/2Z⊕ Z/2NZ, for 1 ≤ N ≤ 4.

2.2 Modular Curves

Let Γ be a congruence subgroup of SL2(Z). The modular curves X(N) are defined to

be the quotients of the extended upper-half plane by the action of Γ.

Definition. Let N be a natural number. Define

Γ(N) =
{a b

c d

 ∈ SL2(Z)
∣∣∣
a b

c d

 ≡

1 0

0 1

 mod N
}

Γ0(N) =
{a b

c d

 ∈ SL2(Z)
∣∣∣
a b

c d

 ≡

∗ ∗

0 ∗

 mod N
}

Γ1(N) =
{a b

c d

 ∈ SL2(Z)
∣∣∣
a b

c d

 ≡

1 ∗

0 1

 mod N
}
.

The modular curves associated with the above congruence subgroups will be de-

noted by X(N), X0(N), and X1(N).

The non-cuspidal K-rational points of the modular curve X1(M,MN) classify
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elliptic curves E and independent points P and Q of order M and MN defined over

K. If we let M = 1, then we may define X1(N) := X1(1, N). The non-cuspidal

K-rational points of the modular curve X1(N) classify elliptic curves over K which

have a torsion point of exact order N defined over K.

For computational purposes, we need explicit equations for all of these modular

curves. For X1(N), we use Andrew Sutherland’s optimized equations generated from

[14].

2.2.1 Intermediate Modular Curves

Definition. Let N be a natural number. Define

H =
{a b

c d

 ∈ SL2(Z)
∣∣∣
a b

c d

 ≡

a ∗

0 ∗

 mod N
}

for ⟨a⟩ = ∆ ⊆ (Z/NZ)∗.

The modular curve associated with the above congruence subgroup will be denoted

XH(N) For a subgroup Γ1(N) ⊆ H ⊆ Γ0(N), we can form the “intermediate” mod-

ular curve XH(N). This curve is a quotient of X1(N) by a subgroup of Aut(X1(N)),

and (roughly) parameterizes elliptic curves whose mod N Galois representation has

image contained in H ([13], Lemma 2.1).

For XH(N), we use David Zywina’s code from [16] to produce the modular curves

XH for a given subgroup H of SL2(Z).

2.2.2 The Jacobian

Let X be a smooth, projective, and geometrically integral k-curve. Suppose that X

has a k-point. Then there is a k-variety J = JacX called the Jacobian of X such

that J(k) is naturally in bijection with Pic0X
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Theorem 2.2.1 (Thm 5.3.1, [12]). Let X be a smooth, projective, and geometrically

integral k-curve. Let J = JacX. Suppose that P is a k-point of X. Any morphism

f : X → B from X to an abelian variety B satisfying f(P ) = O factors uniquely

through J : i.e., there is a unique homomorphism h : J → B such that the following

commutes:

X B

J

f

ι h

2.3 The Cuspidal Subscheme Lemma

The analysis of quartic, quintic, and sextic points relies on understanding the cuspidal

subscheme of X1(N).

Lemma 2.3.1 (Derickx–Etropolski–Morrow–van Hoeij–Zurieck-Brown [5], 2020). Let

N ≥ 5 be a positive integer, and let R = Z[1/2N ].

1. The cuspidal subscheme of X1(N)R is isomorphic to

⊔
d|N

(µN/d × Z/dZ)′/[−1],

where the prime notation refers to points of maximal order.

2. The cuspidal subscheme of X0(N)R is isomorphic to

⊔
d|N

(µgcd(d,N/d))
′

where the prime notation refers to points of maximal order.

This result for intermediate curves is generally known. See Section 3.3 of [15].

We use the following code by Jeremy Rouse to determine the cuspidal subsheme for

XH(N).
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1 // Code by Jeremy Rouse , Wake Forest University

2 // let HH equal H the subgroup of (Z/NZ)* (make sure it includes -I)

3 HH:= // insert here

4

5 phiN := EulerPhi(N);

6 G := GL(2,Integers(N));

7

8 // This function does the same as genus , but it takes a subgroup.

9

10 function genus2(G)

11 md := Modulus(BaseRing(G));

12 H := SL(2,Integers(md));

13 S := H![0,-1,1,0];

14 T := H![1,1,0,1];

15 phi , perm := CosetAction(H,G meet H);

16 lst := [phi(S),phi(T),phi(S*T)];

17 // printf "Permutation for S = %o.\n",phi(S);

18 // printf "Permutation for T = %o.\n",phi(T);

19 // printf "Permutation for S*T = %o.\n",phi(S*T);

20 cs := [CycleStructure(lst[i]) : i in [1..3]];

21 gen := -2*Degree(perm) + 2;

22 einfty := #Orbits(sub <perm | lst[2]>);

23 e2 := #Fix(lst [1]);

24 e3 := #Fix(lst [3]);

25 ind := Degree(perm);

26 for j in [1..3] do

27 for i in [1..#cs[j]] do

28 gen := gen + (cs[j][i][1] -1)*cs[j][i][2];

29 end for;

30 end for;

31 gen := gen div 2;

32 printf "The genus = %o.\n",gen;

33 genhur := 1 + (ind /12) - (e2/4) - (e3/3) - (einfty /2);
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34 printf "The Hurwitz formula is %o = 1 + %o/12 - %o/4 - %o/3 - %o

/2.\n",

35 genhur ,ind ,e2 ,e3 ,einfty;

36 return gen , ind , einfty , e2 , e3;

37 end function;

38 gengen , ind , einfty , e2 , e3 := genus2(HH);

39

40 U, mp := UnitGroup(Integers(N));

41 lst := [ G![1,0,0,mp(U.i)] : i in [1.. NumberOfGenerators(U)]];

42 lst := [ G![1,1,0,1] ] cat lst;

43 P := sub <G | lst >;

44 Q := sub <G | G![1,1,0,1]>;

45

46 A, B := CosetAction(G,HH);

47

48 galoisorbs := Orbits(A(P));

49 orbs := Orbits(A(Q));

50

51 mults := [];

52 for i in [1..# galoisorbs] do

53 Append (~mults ,#[ j : j in orbs | j subset galoisorbs[i]]);

54 end for;

55

56 orbitreps := OrbitRepresentatives(A(P));

57 rt := RightTransversal(G,HH);

58 mats := [];

59 for i in [1..# orbitreps] do

60 // For each i, find a permutation g in B so that g(1) = orbitreps[

i][2];

61 ind := Index([ Image(A(rt[j]) ,1) eq orbitreps[i][2] : j in [1..#rt

]],true);

62 Append (~mats ,rt[ind]);

63 end for;
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64

65 printf "Subgroup has genus %o. It has %o cusps and %o Galois orbits

66 of cusps with sizes %o.\n",gengen ,einfty ,# galoisorbs ,mults;
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Chapter 3

Methods

3.1 Introduction

As our ultimate goal was initially to complete the classification of the finite groups

which appear as the torsion subgroup of E(K) for K a quartic number field, we first

looked to the methods used in the cubic case [5]. Derickx, Etropolski, Morrow, van

Hoeij, and Zurieck-Brown [5] first listed the N for which they needed to consider

X1(N) and X1(2, 2N). Of these, all but two values of N had Jacobian with rank 0,

which they delt with first. Hence we focus in on the curves with Jacobian rank 0 as

well. From [5], these are the curves X1(N) where

N = 1, ..., 36, 38, ..., 42, 44, ..., 52, 54, 55, 56, 59, 60, 62, 64, 66, 68, 69, 70, 71, 72, 75, 76,

78, 81, 84, 87, 90, 94, 96, 98, 100, 108, 110, 119, 120, 132, 140, 150, 168, and 180.

Recall that the gonality γ(X) of X is the minimal degree of a finite K-morphism

X → P1. Let d(X) denote the least integer for which the set {a ∈ X(K)
∣∣∣[K(a) :

K] = d} of points of degree d on X is infinite.

Proposition 3.1.1 (Derickx–Sutherland [4], 2017). Let X/K be a nice curve whose
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Jacobian has rank zero. Then d(X) = γ(X).

This implies that if the gonality is greater than or equal to 5 and the rank of the

Jacobian of X is 0, then there are not infinitely many quartic points on the curve

on X. In the case of modular curves X1(N), these are exactly the curves with level

structure that corresponds to N = 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 39, 42, 45, 51, 55,

and 119. These are the cases we investigated first.

1 // /////////////////////////////

2 // Equations for X_1 (26), from Derickx --Sutherland

3 // Code proves that the gonality (mod p) is at least 5 for X_1 (26)

4 // ////////////////////////////

5

6 F := Rationals ();

7 P<[t]> := ProjectiveSpace(F,9);

8 A2 <x,y> := AffineSpace(F,2);

9

10 X:= Curve(A2,y^6 + (3*x^2 + 4*x - 2)*y^5 + (3*x^4 + 10*x^3 - 9*x +

1)*y^4 + (x^6 + 7*x^5 + 8*x^4 - 14*x^3 - 11*x^2 + 6*x)*y^3 + (x^7

+ 4*x^6 - x^5 - 13*x^4 + 2*x^3 + 10*x^2 - x)*y^2 - (x^6 - 7*x^4

- 4*x^3 + 2*x^2)*y - x^4 - x^3);

11 Xp := ProjectiveClosure(X);

12

13 p := 3;

14 Cp <[T]> := Curve(Reduction(Xp,p));

15

16 function divisorsOfDegree(C,d : seed := [])

17 return

18 &join[{ &+([ tup[j] : j in [1..# part ]]) : tup in

19 CartesianProduct ([ Places(C,i) : i in part])}

20 : part in Partitions(d)];

21 end function;

22
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23 divs := divisorsOfDegree(Cp ,4);

24 #divs;

25 for D in divs do d := Dimension(RiemannRochSpace(D)); if d gt 1

then D, d; end if; end for;

3.2 Direct Analysis

Let X be a smooth, proper, geometrically connected curve defined over a field K.

For a positive integer d, define the dth-symmetric power of X to be X(d) := Xd/Sd

where Sd is the symmetric group on d letters.

The K-points of X(d) correspond to effective K-rational divisors on X of degree

d. In particular, a point of X/K of degree d gives rise to a divisor of degree d, and

thus a point of X(d)(K). We will often identify a degree d point of X with a divisor

of degree d without distinguishing notation.

We use a method called Direct Analysis, as described in Derickx, Etropolski,

Morrow, van Hoeij, and Zurieck-Brown [5] to show there are no non-cuspial quartic,

quintic or sextic points on X1(N) for some values of N .

Let M equal the degree of the points we wish to study. When X1(N) has gonality

at least M + 1 and J1(N)(Q) has rank 0 over Q one can use Direct Analysis to

investigate these curves X1(N). For values of N such that the genus of X1(N) and

the size of J1(N)(Q) is not too large, it is possible to do this directly over Q.

We can compute the finitely many pre-images of an Abel-Jacobi map

ι : X1(N)(M)(Q) → J1(N)(Q).

To do this, we begin by fixing a base point ∞ ∈ X1(N)(Q). We know that a divisor

D ∈ J1(N)(Q) is in the image of the Abel-Jacobi map E 7→ E −M∞ if and only if

the linear system |D + M∞| ≠ ∅. Thus we can compute |D + M∞| via Magma’s
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RiemannRoch intrinsic, and if |D + M∞| = ∅ then we disregard it. Otherwise, it

will contain a single effective divisor E of degree M. Thus as D ranges over J1(N)(Q),

we eventually compute all of the effective degree M divisors (and hence the image of

Abel-Jacobi).

However, direct analysis over Q is often slow for curves with high rank values, so

instead, we work over Fp using the following diagram.

X(M)(Q) ι //

redX
��

JX(Q)

redJ
��

X(M)(Fp)
ιp // JX(Fp)

This diagram commutes, so the image of ιp contains the reduction of the image of ι,

and it then suffices to:

1. Compute the image of ιp.

2. Compute the preimage of im ιp under redJ .

3. Compute which elements of red−1(im ιp) are in image of ι.

We refer to this approach as Direct Analysis over Fp, as do Derickx, Etropolski,

Morrow, van Hoeij, and Zurieck-Brown [5].

As an example, X1(26) has genus 10, and rank 0 with torsion subgroup Z/133Z⊕

Z/1995Z, and it is generated by differences of rational points There are 12 rational

cusps and 0 quadratic, cubic, or quartic cusps on X1(26).

Working mod 3, there are 12 F3-points, 0 F9-points, 16-F27 points, and 12 F81-

points. We compute that the images of the 12 F81-points are not in the image of

the Abel-Jacobi map. Thus the modular curve X1(26) has no non-cuspidal quartic

points. (See Appendix A for full code).
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3.2.1 Intermediate Modular Curves

While Direct Analysis works in principle, we encounter several values of N where the

genus of X1(N) and the size of J1(N) are prohibitively large.

Instead, we consider a morphismX1(N) → XH(N), whereXH(N) is non-tetragonal

(has no degree four map to P1) and perform the Direct Analysis on this intermediate

curve XH(N).
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Chapter 4

Results

Using Direct Analysis over Fp on X1(N) and XH(N), as described in Chapter 3, we

obtain the following results using the computer algebra system Magma [1]. The code

for each of these proofs can be found in the GitHub repository at https://github.

com/alexisnewton/Low-degree-points-on-some-rank-0-modular-curves.

Theorem 4.0.1 (Cerchia-Newton, 2024). For N = 25, 26, 27, 28, 34, 35, and 40, the

modular curve X1(N) has no non-cuspidal quartic points.

Theorem 4.0.2 (Cerchia-Newton, 2025). For N = 26, 27, 34 and 40, the modular

curve X1(N) has no non-cuspidal quintic points.

Theorem 4.0.3 (Cerchia-Newton, 2025). For N = 34, the modular curve X1(N) has

no non-cuspidal sextic points.

The argument for each level N is detailed below. Code for N = 26 can be found

in Appendix A. The rest of the code is located in the Github Respository (link)

4.1 The Case of N = 25

We show now that the modular curve X1(25) has no non-cuspidal quartic points. The

curve X1(25) has genus 12 and is 5-gonal. We use Andrew Sutherland’s optimized

https://github.com/alexisnewton/Low-degree-points-on-some-rank-0-modular-curves
https://github.com/alexisnewton/Low-degree-points-on-some-rank-0-modular-curves
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equations (cite) forX1(25). From the subscheme lemma, we know there are 10 rational

cusps, 2 quartic cusps, and one degree-10 cusp. Via a Magma computation, J1(25)(Q)

is cyclic of order 227555.

Over F3, we find

• 10 places of degree 1 on X1(25),

• 0 places of degree 2 on X1(25),

• 0 places of degree 3 on X1(25),

• 12 places of degree 4 on X1(25).

The 10 degree-1 points lift to Q, so we compute with the 12 quartic points. Com-

puting the inverse image of Abel-Jacobi succeeds. We compute that the images of

the 12 F27-points under Abel–Jacobi do not meet the reduction of the global torsion.

4.2 The Case of N = 26

We show now that the modular curve X1(26) has no non-cuspidal quartic or quintic

points. X1(26) has genus 10 and rank 0. The torsion subgroup is Z/133Z×Z/1995Z,

and is generated by differences of rational points.

There are 12 rational cusps, 0 quadratic or cubic cusps, and 2 sextic cusps.

Computing the inverse image of Abel–Jacobi succeeds. It is slow to do this directly,

so instead, we work mod 3, and note that there are

• 12 places of degree 1 on X1(26),

• 0 places of degree 2 on X1(26),

• 16 places of degree 3 on X1(26),

• 12 places of degree 4 on X1(26),
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• 48 places of degree 5 on X1(26).

We compute that the images of the 12 F81 points under Abel–Jacobi do not meet

the reduction of the global torsion. Similarly combinations of the 12 F3-points and

the 16 F27-points under Abel-Jacobi do not meet the reduction of the global torsion.

4.3 The Case of N = 27

We show now that the modular curve X1(27) has no non-cuspidal quartic or quintic

points. X1(27) has genus 13, and rank 0. The torsion subgroup Z/3Z × Z/3Z ×

Z/52497Z is generated by differences of cusps. There are 9 rational cusps, 3 quadratic,

1 sextic and 1 degree 9. Computing the inverse image of Abel-Jacobi succeeds.

Over F5, we find

• 9 places of degree 1 on X1(27),

• 12 places of degree 2 on X1(27),

• 57 places of degree 3 on X1(27),

• 171 places of degree 4 on X1(27),

• 612 places of degree 5 on X1(27).

The 9 rational points lift. Through a counting argument we find that the images

of the points under Abel–Jacobi do not meet the reduction of the global torsion.

4.4 The Case of N = 28

We show now that the modular curve X1(28) has no non-cuspidal quartic points.

X1(28) has genus 10, and rank 0. The torsion subgroup Z/2Z × Z/4Z × Z/12Z ×
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Z/936Z is generated by differences of cusps. There are 9 rational cusps, 3 quadratic,

1 cubic, and 2 sextic. Computing the inverse image of Abel-Jacobi succeeds.

Over F3, we find

• 9 places of degree 1 on X1(28),

• 3 places of degree 2 on X1(28),

• 5 places of degree 3 on X1(28),

• 12 places of degree 4 on X1(28).

The 9 rational points lift. Through a counting argument we find that the images

of the points under Abel–Jacobi do not meet the reduction of the global torsion.

4.5 The Case of N = 34

We show now that the modular curve X1(34) has no non-cuspidal quartic, quintic or

sextic points. X1(34) has genus 21, and rank 0. The torsion subgroup Z/8760Z ×

Z/595680Z is generated by differences of cusps. There are 16 rational and 2 degree-8

cusps. Computing the inverse image of Abel-Jacobi succeeds.

Over F3, we find

• 16 places of degree 1 on X1(34),

• 0 places of degree 2 on X1(34),

• 0 places of degree 3 on X1(34),

• 26 places of degree 4 on X1(34),

• 32 places of degree 5 on X1(34).

The 16 rational points lift. Through a counting argument we find that the images

of the points under Abel–Jacobi do not meet the reduction of the global torsion.
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4.6 The Case of N = 35

This is a complete determination of the quartic points on XH(35). The genus of

XH(35) is 9, and it has rank 0. The torsion subgroup Z/1560Z is generated by

differences of cusps. There are 4 rational cusps, 2 quadratic and 2 quartic.

Over F3, we find

• 4 places of degree 1 on X1(35),

• 2 places of degree 2 on X1(35),

• 12 places of degree 3 on X1(35),

• 2 places of degree 4 on X1(35).

The 4 rational cusps lift to Q. Through a counting argument we find that the

images of the points under Abel–Jacobi do not meet the reduction of the global

torsion.

4.7 The Case of N = 40

This is a complete determination of the quartic and quintic points on XH(40). The

genus ofXH(40) is 9, and it has rank 0. The torsion subgroup Z/4Z×Z/60Z×Z/120Z

is generated by differences of cusps. There are 8 rational cusps, 4 quadratic and 4

quartic cusps.

Over F3, we find

• 8 places of degree 1 on X1(40),

• 4 places of degree 2 on X1(40),

• 0 places of degree 3 on X1(40),

• 44 places of degree 4 on X1(40).
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The 8 rational cusps lift to Q. Through a counting argument we find that the

images of the points under Abel–Jacobi do not meet the reduction of the global

torsion.
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Chapter 5

Future Work

An ongoing program of study is to classify higher degree points on X0(N) and other

quotients of X1(N) and X1(M,N). While this will inevitably take the combined work

of many, the classification of the quintic and sextic degree cases should be in reach in

the next five years.

Problem. What are the non-cuspidal quintic points on X1(N)?

Problem. What are the non-cuspidal sextic points on X1(N)?

It is conjectured that the torsion on modular Jacobians is generated by differences

of cusps. This is a conjecture of Conrad-Edixhoven-Stein [2] for the modular Jacobian

J1(p) where p is a prime, which had been proved for all primes p ≤ 157 except

p = 29, 97, 101, 109, and 113. Moreover, their conjecture is true for all primes p

such that J1(p)(Q) has rank 0. Further work has been done for composite N for

N ≤ 55, N ̸= 54 [5].

Problem. Prove the torsion on J1(N)(Q) is generated by the Gal(Q/Q)-orbits of

cusps.

On a more explicitly computational track, in several cases of using the intermediate

curve XH we needed a j-invariant map to rule out the existence of quartic points that

could be lifts of sporadic points on XH . This code proved hard to come by.
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Problem. Write code to compute the j-invariant map for intermediate curves XH .
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Appendix A

Code

1 // This is a complete determination of the quartic points on X_1 (26)

2 /*

3 Here is a summary of the argument.

4

5 X_1 (26) has genus 10, and rank 0.

6 The torsion subgroup is [133, 1995] ,

7 and is generated by differences of rational points.

8

9 There are phi (26)/2 = 12 rational cusps and 0 quadratic or cubic

cusps , 2 sextic cusps.

10

11 Computing the inverse image of Abel -Jacobi succeeds.

12 It is slow to do this directly , so instead , we work mod 3, and note

that

13 there are 12 F_3 points , 0 F_9 points , and 16 F_27 points , 12 F_81

points.

14

15 We compute that the images of the 12 F_81 points under Abel --Jacobi

16 do not meet the reduction of the global torsion. Similarly with

17 combinations of the 16 F_27 points and 12 F_3 points.

18
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19 One subtlety of this case is that it greatly speeds things up to

work

20 on a singular model.

21 */

22

23 N := 26;

24

25

26 // ///////////////////////////////////

27 // Input the homebrewed functions

28 // ////////////////////////////////////

29

30 load "functions.m";

31

32

33 // //////////////////////////////////

34 // Equations for X_1 (26), from Derickx --Sutherland

35 // ///////////////////////////////////

36

37 F := Rationals ();

38 P<[t]> := ProjectiveSpace(F,9);

39 A2 <x,y> := AffineSpace(F,2);

40

41 X:= Curve(A2,y^6 + (3*x^2 + 4*x - 2)*y^5 + (3*x^4 + 10*x^3 - 9*x +

1)*y^4 + (x^6 + 7*x^5 + 8*x^4 - 14*x^3 - 11*x^2 + 6*x)*y^3 + (x^7

+ 4*x^6 - x^5 - 13*x^4 + 2*x^3 + 10*x^2 - x)*y^2 - (x^6 - 7*x^4

- 4*x^3 + 2*x^2)*y - x^4 - x^3);

42 Xp := ProjectiveClosure(X);

43

44

45 // ////////////////

46 // Compute the local torsion bound

47 // ////////////////
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48

49 for p in [q : q in PrimesUpTo (40) | not q in PrimeDivisors (2*N) ]

do

50 torsData := {@@};

51 for p in [3,5 ] do

52 invs := Invariants(ClassGroup(Curve(Reduction(X,p))));

53 torsData := torsData join {@invs@ };

54 <p,invs >;

55 end for;

56

57 // 3 [ 665, 1995, 0 ]

58 // 5 [ 7, 133, 29925, 0 ]

59

60 "The rational torsion subgroup is a subgroup of", torsBound(

torsData); ; // [133, 1995]

61

62

63 // ////////////////////

64 // Compute the known small degree points

65 // ///////////////////

66

67 // Hard code as much as possible , since Magma changes

68 // how it orders the output of "Support" mod different primes

69

70 basePt := [-1 , 0 , 1];

71

72 // mostly singular

73 pts :=

74 [

75 [ 0, 1, 0 ],

76 [ 0, 0, 1 ],

77 [ -1, 0, 1 ],

78 [ 0, 1, 1 ],
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79 [ 1, 0, 0 ],

80 [ -1, 1, 1 ],

81 [ -1, 1, 0 ]

82 ];

83

84 // Verify that these generate the torsion

85 p := 3;

86 Cp <[T]> := Curve(Reduction(Xp,p));

87 pic ,mPic := ClassGroup(Cp);

88 basePt := &+ Places(Cp![-1,0,1]);

89 divs := {@

90 &+ Places(Cp!pt) - Degree (&+ Places(Cp!pt))*basePt

91 : pt in pts @} ;

92

93 global , mGlobal :=

94 sub <pic | [( Inverse(mPic))(divs[i]) : i in [1..# divs]]>;

95 Invariants(global); // [ 133, 1995 ]

96

97

98 // ///////////////////

99 // Compute the image of Abel --Jacobi mod 3

100 // /////////////////////

101

102 "There are", [# Places(Cp,i) : i in [1..5]] , "places of degree 1,

2, 3, 4 and 5 over F_3"; // [ 12, 0, 16, 12, 48 ]

103 // the 12 degree 1 points lift to Q so we compute with the 16

cubic points , and 12 quartic

104

105 validQuarticImages := {@@};

106 for pl in Places(Cp ,4) do

107 D := Divisor(pl) - Degree(pl)*basePt;

108 if Inverse(mPic)(D) in global then

109 validQuarticImages :=
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110 validImages join {@Inverse(mPic)(D)@};

111 end if;

112 end for;

113 "The rational places all lift to Q, and", #validQuarticImages , "

of the other places are in the image of Abel --Jacobi"; // 0

114 //0

115 moreValidQuarticImages := {@@};

116 for p in Places(Cp , 3) do

117 for q in Places(Cp , 1) do

118 D := Divisor(p) + Divisor(q) - 4* basePt;

119 if Inverse(mPic)(D) in global then

120 moreValidQuarticImages :=

121 moreValidQuarticImages join {@Inverse(mPic)(D)@};

122 end if;

123 end for;

124 end for;

125 "There are", #moreValidQuarticImages , "of the other places (coming

from two quadratics) in the image of Abel --Jacobi";

126 //0

127

128 moreValidQuarticImages := {@@};

129 for p1 in Places(Cp , 1) do

130 for p2 in Places(Cp , 1) do

131 for p3 in Places(Cp , 1) do

132 for p4 in Places(Cp , 1) do

133 D := Divisor(p1) + Divisor(p2) + Divisor(p3) + Divisor

(p4) - 4* basePt;

134 if Inverse(mPic)(D) in global then

135 moreValidQuarticImages :=

136 moreValidQuarticImages join {@Inverse(mPic)(D)@};

137 end if;

138 end for;

139 end for;
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140 end for;

141 end for;

142 "There are", #moreValidQuarticImages , "of the other places (coming

from a 4 degree 1 points) in the image of Abel --Jacobi";

143 //1365

144

145 // should be 15 choose 4 yay

146

147

148 //// quintic

149

150 validQuinticImages := {@@};

151 for pl in Places(Cp ,5) do

152 D := Divisor(pl) - Degree(pl)*basePt;

153 if Inverse(mPic)(D) in global then

154 validQuinticImages :=

155 validQuinticImages join {@Inverse(mPic)(D)@};

156 end if;

157 end for;

158 "The rational places all lift to Q, and", #validQuinticImages , "

of the other places (coming from a quintic point) are in the

image of Abel --Jacobi";

159 //0

160

161 validQuinticImages := {@@};

162 for p in Places(Cp , 4) do

163 for q in Places(Cp , 1) do

164 D := Divisor(p) + Divisor(q) - 5* basePt;

165 if Inverse(mPic)(D) in global then

166 validQuinticImages :=

167 validQuinticImages join {@Inverse(mPic)(D)@};

168 end if;

169 end for;
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170 end for;

171 "There are", #validQuinticImages , "of the other places (coming

from 1 quartic and 1 rational) in the image of Abel --Jacobi";

172 //0

173

174

175 moreValidQuinticImages := {@@};

176 for p1 in Places(Cp , 3) do

177 for p2 in Places(Cp , 1) do

178 for p3 in Places(Cp , 1) do

179 D := Divisor(p1) + Divisor(p2) + Divisor(p3) - 5*

basePt;

180 if Inverse(mPic)(D) in global then

181 moreValidQuinticImages :=

182 moreValidQuinticImages join {@Inverse(mPic)(D)@};

183 end if;

184 end for;

185 end for;

186 end for;

187 "There are", #moreValidQuinticImages , "of the other places (coming

from a 1 degree 3 point , 2 degree 1 points) in the image of Abel

--Jacobi";

188 //0

189

190

191 moreValidQuinticImages := {@@};

192 for p1 in Places(Cp , 1) do

193 for p2 in Places(Cp , 1) do

194 for p3 in Places(Cp , 1) do

195 for p4 in Places(Cp , 1) do

196 for p5 in Places(Cp , 1) do

197 D := Divisor(p1) + Divisor(p2) + Divisor(p3) +

Divisor(p4) + Divisor(p5) - 5* basePt;
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198 if Inverse(mPic)(D) in global then

199 moreValidQuinticImages :=

200 moreValidQuinticImages join {@Inverse(mPic)(D)@};

201 end if;

202 end for;

203 end for;

204 end for;

205 end for;

206 end for;

207 "There are", #moreValidQuinticImages , "of the other places (coming

from a 4 degree 1 points) in the image of Abel --Jacobi";

208 // n + k -1 choose k (picking k things from n with repitition)

209 // should be 12 + 5 -1 choose 5 = 16 choose 5 =

210 //4368



38

Bibliography

[1] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra sys-

tem. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. ISSN

0747-7171. doi: 10.1006/jsco.1996.0125. URL http://dx.doi.org/10.1006/

jsco.1996.0125. Computational algebra and number theory (London, 1993).

[2] Brian Conrad, Bas Edixhoven, and William Stein. J1(p) has connected fibers.

Documenta Mathematica, 8, 01 2003.

[3] Maarten Derickx and Filip Najman. Classification of torsion of elliptic curves

over quartic fields, 2024. URL https://arxiv.org/abs/2412.16016.

[4] Maarten Derickx and Andrew V. Sutherland. Torsion subgroups of elliptic curves

over quintic and sextic number fields. Proceedings of the American Mathematical

Society, 145(10):4233–4245, April 2017. ISSN 1088-6826. doi: 10.1090/proc/

13605. URL http://dx.doi.org/10.1090/proc/13605.

[5] Maarten Derickx, Anastassia Etropolski, Mark van Hoeij, Jackson S. Morrow,

and David Zureick-Brown. Sporadic cubic torsion. Algebra Number Theory, 15

(7):1837–1864, November 2021. ISSN 1937-0652. doi: 10.2140/ant.2021.15.1837.

URL http://dx.doi.org/10.2140/ant.2021.15.1837.

[6] Daeyeol Jeon, Chang Heon Kim, and Euisung Park. On the tor-

sion of elliptic curves over quartic number fields. Journal of the Lon-

don Mathematical Society, 74(1):1–12, 2006. doi: https://doi.org/10.1112/

http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125
https://arxiv.org/abs/2412.16016
http://dx.doi.org/10.1090/proc/13605
http://dx.doi.org/10.2140/ant.2021.15.1837


39

S0024610706022940. URL https://londmathsoc.onlinelibrary.wiley.com/

doi/abs/10.1112/S0024610706022940.

[7] S. Kamienny. Torsion points on elliptic curves and q-coeffincients of modular

forms. Inventiones mathematicae, 109(2):221–230, 1992. URL http://eudml.

org/doc/144019.

[8] M. A. Kenku and Fumiyuki Momose. Torsion points on elliptic curves defined

over quadratic fields. Nagoya Mathematical Journal, 109:125 – 149, 1975. URL

https://api.semanticscholar.org/CorpusID:16816807.

[9] Barry Mazur. Modular curves and the eisenstein ideal. Publications Mathema-

tiques de l’IHES, 47:33–186, 1977. URL http://eudml.org/doc/103950.
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