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Abstract 

Approximating McDowell’s Evolutionary Theory of Behavior Dynamics  

with Stochastic Neural Networks 

 

By Steven Riley, M.S. 

 

Behavioral selectionism is the metaphor that learning is like evolution, where successive 

generations of behaviors develop to increase their demonstrated ability to obtain reinforcement. 

McDowell’s evolutionary theory of behavior dynamics (ETBD) is a selectionist system based on 

a sexually reproducing population of bitstrings that undergoes successive rounds of emission, 

selection, recombination, and mutation. The ETBD is consistent with quantitative behavioral 

findings under variable schedules of reinforcement. However, it lacks the ability to generalize 

across high-dimensional input spaces, and it is not biologically plausible. Two neural network 

implementations of the ETBD are presented, which allow for generalization and hierarchical 

organization of behaviors. Rather than housing a population of behaviors, these networks encode 

a population within their synapse weights. Network rules acting on these encoded populations 

are shown to approximate operations on the ETBD’s explicit populations. The networks are 

evaluated against twelve quantitative behavioral findings and found to diverge from the results of 

the ETBD. Genetic drift in the population of behaviors in the ETBD is shown to be responsible 

for important features of behavior records. Adding a small amount of reinforcement 

unconditionally at each time step is shown to approximate the effects of genetic drift and leads to 

convergence between net one and the ETBD’s behavior outputs.  
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Approximating McDowell’s Evolutionary Theory of Behavior Dynamics with Stochastic Neural 

Networks 

The analogy between evolution and behavioral learning is a metaphor that psychologists 

and philosophers have used for over a century (Adams, 1998; Andersson, 2007; Börgers & Sarin, 

1997; Catania, 1978; Costa, 2011; Donahoe, Burgos, & Palmer, 1993; Glenn & Field, 1994; 

Glenn & Madden, 1995; Hull, Langman, & Glenn, 2001; Knudsen, 2004; Pringle, 1951; 

Szilagyi, Zachar, Fedor, de Vladar, & Szathmary, 2016; Thorndike, 1998; Wasserman, 2012). 

This metaphor says that unobserved behavior populations undergo a process like evolution, 

where fitness is a behavior’s demonstrated ability to obtain reinforcement. The metaphor is 

called selectionism, behavioral selectionism, or selection by consequences (Skinner, 1981).  

Selectionism 

 In behaviorism, biology, computer science, and related fields, selectionism encompasses 

a class of algorithms that search for successively better solutions to a problem. In each 

selectionist system there is a population of elements, and usually there are birth, death, and 

change processes that apply to individuals or groups of elements. A selectionist process is 

“blind,” meaning that the population elements do not have access to the space beyond the limited 

information that they inherit.  

 Selectionism offers a causal channel that differs from typical theories of the world. 

Rather than explain with mechanistic or “efficient” causes, selectionism relies upon “final” 

causes, or causes based on utility (Bacon, 1878; Killeen, 2001). Elements come into being and 

the environment either nurtures or thwarts them, causing them to survive or die off. In this type 

of explanation, it is the environment that acts upon the population. This causal mode allows for a 
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natural link between selectionism and behaviorism, which attempts to explain behavior in terms 

of its environmental effects (Ringen, 1993; Skinner, 1981; Smith, 1983). 

 Selection originally and primarily refers to sexual and asexual reproduction. In addition, 

there are other processes where elements of a population come into being, change, and exit 

depending on their characteristics. For instance, when planets form from a cloud of dust 

particles, those particles must be the ones that started with stable orbits; speedy particles escape 

the solar system while slow ones fall into the sun (Donahoe et al., 1993; Gehrz, Black, & 

Solomon, 1984). Orbital dynamics act as a filter. As a result, planets are made from particles that 

have stable orbits, so they in turn will have stable orbits. Depending on the definition in use, one 

may consider these other processes to be selectionist. A full discussion of the properties of 

selectionist systems is beyond the scope of this text, and interested readers are referred to 

Fernando, Szathmary, and Husbands (2012), Hull et al. (2001), and Price (1970, 1972).   

 There is a major difference between sexual and asexual variants of selectionism. In brief, 

sexual reproduction allows communication between genomes and causes the population to act as 

a coordinated whole (Fernando et al., 2012). In contrast, asexual reproduction does not support 

this type of communication between genomes, so it only allows for search of small areas around 

the current elements of the population. This paper leverages the geometry inherent in the search 

accomplished by sexual reproduction and it implements this type of search in neural networks. 

Studying the geometry of sexual vs. asexual reproduction produces surprising and beautiful 

results that are beyond the scope of this text. Interested readers are referred to Whitley (1994)’s 

tutorial on genetic algorithms for a fascinating and highly readable account. 
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The Evolutionary Theory of Behavior Dynamics 

 McDowell’s evolutionary theory of behavior dynamics (ETBD, McDowell, 2004) is an 

implementation of behavioral selectionism. The ETBD generates a stream of behavior that is 

amenable to the same analyses that are applied to the behavior of live organisms. The ETBD is a 

genetic algorithm with a population of potential behaviors. Successive generations of this 

population undergo selection, recombination, and mutation. Each generation emits one behavior 

into a user-defined environment, which may trigger the arrival of a reinforcing or punishing 

consequence. Behavior streams from the ETBD show remarkable similarity to studies of live 

animals under variable reinforcement schedules (McDowell, 2019). First, the common 

implementation of the ETBD is described1, then its empirical results are discussed.  

Implementation of the ETBD 

 The ETBD consists of two modules. The first, called the artificial organism (AO), 

supports a population of behaviors, updates them at each time tick, and generates a behavior 

stream by emitting one behavior per tick. The second module, which simulates an environment, 

tracks reinforcement schedules and decides if an emitted behavior has produced a reinforcer. 

These two modules only communicate via emitted behaviors and obtained consequences, so 

neither has knowledge of the other’s implementation.  

 The Artificial Organism. The commonly used rule set of the AO is as follows. 

1) Initialization 

 

 

1 Calvin (2019) explores variants of the ETBD and their effects on output. A recent extension to the ETBD is the 

inclusion of punishment (McDowell & Klapes, 2019). These variants are less commonly used in studies of the 

ETBD and are not included in the implementations found in this paper.  
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a. An AO creates a population of one hundred behaviors. Each behavior is a 

number from 00000000002 to 11111111112 in binary notation, which is zero 

to 1023 in decimal notation. The genotype of each behavior is defined as its 

binary string and its phenotype is defined as its decimal value. The one 

hundred behaviors are chosen with equal probability from these 1024 possible 

values. 

2) Emission 

a. At each tick, the AO emits one behavior with equal probability from its 

current population of 100 behaviors. The environment decides whether the 

emitted behavior obtains a reinforcer, and if so, what the magnitude of the 

reinforcer is.  

3) Selection 

a. Pairs of behaviors from the current population are selected to be parents of 

elements in the next generation. There will be one hundred pairs in this 

intermediate set. One behavior can serve as parent for multiple offspring. The 

two behaviors in each pair must be different.  

b. If the emitted behavior from step two obtains a reinforcer, then the parents of 

the next generation are chosen based on how close2 they are to the emitted 

 

 

2 Phenotype determines distance. For instance, 511 and 512 are one unit apart, even though their binary strings 

(01111111112 and 10000000002, respectively) are opposites. Conversely, 0 and 512 are far apart despite having 

binary strings that differ by only one bit (00000000002 and 10000000002, respectively). The topology of the 

phenotype space is a circle, so the distance between behaviors at 0 and 1023 is only one unit. In general, the distance 

between decimal integers 𝑥 and 𝑦 is min (|𝑥 − 𝑦|, 1024 − |𝑥 − 𝑦|). 
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behavior. Behaviors in the current generation become parents at a rate 

proportional to a “fitness density function” (FDF) that monotonically 

decreases with the distance to the reinforced behavior. The FDF is a 

symmetric triangular distribution3 with mean and mode equal to zero. The 

width of the FDF is proportional to a hyperparameter4 called the “selection 

strength” or “FDF mean,” referred to with the Greek letter µ. It equals the 

mean absolute deviation of the FDF. The default value of µ is forty units, 

though µ may vary to simulate changes in reinforcement magnitude. 

Reinforcer magnitude and µ are inversely related: a smaller µ creates a more 

exclusive set of parents and therefore a stronger reinforcement effect.  

c. If the emitted behavior from step two does not obtain a reinforcer, then all 

behaviors in the current population are equally likely to become parents for 

the next generation.  

4) Recombination 

a. Each pair from step three combines genomes via universal crossover (i.e., 

independent inheritance by bit, Whitley, 1994) to create one new offspring.  

5) Mutation 

 

 

3 Other studied FDFs include Gaussian, Laplacian, and uniform distributions. See Calvin (2019) for an analysis of 

FDF variants and their effects on ETBD outputs. 
4 The term “hyperparameter” is used here to emphasize that it is set in advance (as in, e.g., Claesen & De Moor, 

2015); in contrast a parameter is a value that an algorithm learns or calculates at runtime.  
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a. The mutation rate, referred to with the Greek letter 𝜑, is a second 

hyperparameter that is usually set to ten percent. Each behavior independently 

is subjected to mutation with a probability of 𝜑. When mutation occurs in a 

behavior, a single random bit flips one → zero or zero → one.  

6) The new population from step five replaces the old population. 

7) Steps two through six are repeated until a user-defined condition is met.  

 The Environment. There is a separate environment module that schedules and dispenses 

consequences for emitted behaviors. The environment is meant to simulate an operant chamber 

with manipulanda such as levers or buttons. The collection of all behaviors that trigger a specific 

object forms a target class5. Most behaviors that an animal can emit in an operant chamber do not 

trigger the manipulanda, and so most behaviors in the emission range of the ETBD do not belong 

to a target class. Rather, they correspond to off-target behaviors such as grooming, exploring, or 

sleeping. 

 Behaviors in the same target class are similar in effect, and these similarities are captured 

in the ETBD by defining target classes as small contiguous ranges in the phenotype space. They 

are typically forty-one units wide.6 The environment schedules reinforcers that may be obtained 

by any action within the span of the target class. Each target class may keep a separate schedule, 

typically a random interval (RI) or random ratio (RR) schedule, and most often these schedules 

 

 

5 There are multiple ways to interact with an object that cause the same result. For instance, a rat may use one paw 

or the other to push a lever. Both actions have the same function, and so both belong to the same target class.  
6 Li, Elliffe, and Hautus (2018) argue for target classes that are only eight units wide, which aligns the rate of target 

behavior with observed behavior rates of live animals. 
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are independent of each other. Once a reinforcer is scheduled, the next emitted behavior from the 

target class obtains the reinforcer and causes the scheduling of the next reinforcer.  

 In single schedule experiments, there is a single target class. In concurrent schedule 

experiments, where there are two target classes, the placements of classes will minimize the 

separation in the phenotype space while maximizing genotype distance. Target classes at 471-

511 and 512-552 meet these conditions, forming a Hamming cliff of ten bits at their boundary 

(511 = 01111111112 and 512 = 10000000002, which differ on all ten bits).7   

Empirical Tests of the ETBD 

 McDowell (2019) described the set of empirical findings from the ETBD and compared 

them with results from analogous experiments on animals, typically rats or pigeons, in operant 

chambers. These experiments produce measures of long-term steady-state behavior as well as 

short-term dynamic behavior. This section summarizes a representative set of twelve findings 

from these experiments and corresponding tests of the ETBD in the same scenarios. Findings are 

shown with italics. These twelve findings yield the set of hypotheses that are summarized in 

Table 1. 

 

 

7 Large genotype distances between target classes are necessary to create behavior patterns that look like live animal 

data. If Hamming cliffs between target classes are too small, then behaviors rapidly switch between targets, and 

preference for the richer alternative drops (Popa & McDowell, 2010). Analogously, in live animals, if there is no 

cost associated with switching, then responding tends to alternate rapidly and preference for the richer option is 

weak (Shull & Pliskoff, 1967). To prevent this outcome in live experiments, schedules usually include a changeover 

delay, which is a brief period after switching targets where no reinforcement is available. The justification for this 

delay is that it prevents the reinforcement of the switching itself and counteracts superstitious behavior (Catania & 

Cutts, 1963). Due to the parallel effects found in these two types of experiments, Popa and McDowell (2010) 

suggest that the Hamming cliff between target classes acts like a changeover delay. While this interpretation 

explains the data well, the Hamming cliff is a spatial separation rather than a temporal cost. Spatial separations or 

barriers between manipulanda in live experiments are also effective at preventing rapid switching or superstitious 

behavior (Aparicio, 2001). There have been no published studies on the effect of temporal changeover delays in the 

ETBD.  
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 Important short timescale measurements, or “molecular” values, include preference 

reversals, which are rapid shifts in distributions of expressed behavior following environmental 

contingencies, and changeovers, which are successive target behaviors in different target classes. 

The aggregate measurements of note, so called “molar” values, are the total behaviors emitted in 

each target class (𝐵1 and 𝐵2), and the total reinforcers acquired per target class (𝑅1 and 𝑅2).  

 Molar behavior.  

 Bivariate Matching on Concurrent RI Schedules. 8Herrnstein (1961) showed that 

pigeons working on concurrent RI schedules of reinforcement distribute behavior between the 

two options such that the ratio of behaviors 

𝐵1

𝐵2
 

approximated the ratio of reinforcers received on those options 

𝑅1

𝑅2
 

. This equivalence became known as the matching law:  

𝐵1

𝐵2
=

𝑅1

𝑅2
 

. 

 Baum (1974) analyzed a variety of data showing that experimental subjects 

systematically deviate from the matching law in two common ways. The first, bias, occurs when 

 

 

8 RI stands for Random Interval. In this type of schedule, when a reinforcer is obtained, the next reinforcer is 

scheduled by draw from an exponential distribution with time as its dependent variable. The mean of the distribution 

is the RI schedule value, e.g., RI 1 minute means time between reinforcers is a random variable 𝑡 such that  

𝑡 ~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜇 = 1 𝑚𝑖𝑛𝑢𝑡𝑒). 
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there is consistent preference for one alternative. Bias is rare unless reinforcers or manipulanda 

differ, such as water vs. food, or larger force requirements on one key vs. the other. The second, 

undermatching, is when the subject expresses proportionally more behavior on the option with 

fewer received reinforcers than would be predicted using Herrnstein’s matching law. 

Undermatching is an example of decreased sensitivity, whereas the opposite, overmatching, 

shows increased sensitivity.  

 Baum (1974) proposed a power function extension of the matching law with the 

flexibility to accommodate deviations in bias and sensitivity: 

𝐵1

𝐵2
= 𝑏 (

𝑅1

𝑅2
)

𝑎

 

. 

This equation is the generalized matching law (GML). The parameters 𝑏 and 𝑎 account for bias 

and sensitivity, respectively. When 𝑏 > 1  there is bias toward the first option, and if there is no 

bias then 𝑏 = 1. When 𝑎 > 1, the organism shows increased preference for the richer schedule. 

This is known as overmatching, which is rare, but can occur when switching between options is 

difficult (Aparicio, 2001). A value of 𝑎 < 1 corresponds to the more common outcome of 

undermatching. Most studies of concurrent RI responding find that organisms undermatch with 

values of 𝑎 ≈ 0.8 (McDowell, 2013a), and studies on humans show values close to a ≈ 0.7 
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(finding a; Kollins, Newland, & Critchfield, 1997). The different sensitivities are attributed to 

methodological differences between studies9.  

 When fitting the GML to data, customary practice is to transform it by taking the 

logarithm10 of both sides: 

log (
𝐵1

𝐵2
) = 𝑎 log (

𝑅1

𝑅2
) + log 𝑏 

. Live data fits the transformed equation well. A meta-analysis (Sutton, Grace, McLean, & 

Baum, 2008) found that there were no residual trends when fitting the transformed version of the 

GML, and that residuals were homoscedastic. 

 Later work showed that perfect matching on RI-RI schedules (i.e., 𝑎 = 𝑏 = 1) maximizes 

the expected number of reinforcers gained per behavior (Kubanek, 2017). Since RI schedules 

suffer from diminishing returns, it is always worth distributing behavior on the leaner RI 

schedule. Assuming the subject emits behavior at a constant rate, Kubanek (2017) showed 

analytically that the allocation of behavior with the highest rate of return is where perfect 

matching occurs.  

 Undermatching is therefore suboptimal in static environments. However, it is notably 

pervasive, being found consistently across species and over substantial variations in conditions 

(McDowell, 2013a). While there is no agreed upon reason for this consistency, one explanation 

 

 

9 For instance, experimenters often put animal subjects on food deprivation prior to experiments, which increases the 

sensitivity of the subject to food reinforcers. 
10 All logarithms in this paper are base 10.  
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is that undermatching is adaptive in a quickly changing environment and keeps options open 

(McDowell & Caron, 2007).  

 Live subjects match behavior to other qualities of reinforcement. The concatenated GML 

(Davison & McCarthy, 2016), or cGML, extends the GML to allow measurement of sensitivity 

to these other qualities. For instance, a common experimental manipulation is to vary the 

magnitude of reinforcement, such as by dispensing more food pellets on one option. In studies 

that use this manipulation, subjects match their behavior rates to reinforcer magnitudes, although 

the estimated sensitivity parameter is typically lower. The cGML for rate and magnitude is:  

log (
𝐵1

𝐵2
) = 𝑎𝑟 log (

𝑅1

𝑅2
) + 𝑎𝑚 log (

𝑀1

𝑀2
) + log 𝑏 

. 

The parameter 𝑎𝑚 is analogous to the sensitivity parameter from the GML but applies to 

reinforcer magnitudes. This equation uses 𝑎𝑟 instead of 𝑎 to avoid confusion.  

 A testable assumption of this model is that rate and magnitude independently affect 

behavior. A meta-analysis by Cording, McLean, and Grace (2011) found that bivariate 

manipulations of rate and magnitude produced data that fit well with the cGML. The mean value 

for 𝑎𝑚 in their data set is .60 (finding b), which is lower than the .80 value commonly found 

when measuring 𝑎𝑟. Values for 𝑎𝑚 across individual studies ranged from .26 to .87.11 The 

authors found no interaction effects between rate and magnitude, and so Cording et al. (2011) 

 

 

11 The studies in this meta-analysis had only thirty-four subjects between them. This small sample size may limit the 

reliability of its conclusions.  
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concluded that the available data support the independence of these two factors on behavior 

rates (finding c).   

 There is no direct equivalent to magnitude in the ETBD. So, before testing for these 

properties in the ETBD, a proxy for reinforcer magnitude must be established. McDowell, Popa, 

and Calvin (2012) chose to equate reinforcement magnitude with the reciprocal of the selection 

strength hyperparameter12. With this definition of reinforcer magnitude in place, McDowell et al. 

(2012) ran AOs on concurrent RI-RI schedules with a range of reinforcer magnitudes, reinforcer 

rates, and mutation rates. Their studies found that for a range of mutation rates between 7.5% 

and 14%, the outputs of the ETBD met the criteria for a successful bivariate matching test. For 

these mutation rates, 𝑎𝑟 was between .78 and .85 with mean .83, and 𝑎𝑚 was between .64 and 

.71 with mean .68. Residuals from these fits were homoscedastic with no detectable trends. 

Effects of rate and magnitude were independent. McDowell et al. (2012) concluded that the 

ETBD produces bivariate matching data indistinguishable from records of live subjects so long 

as the mutation rate is within the correct range. 

 “Exclusive” Preference on Concurrent RR Schedules.13 Unlike RI schedules, RR 

schedules do not suffer from diminishing returns, and the expected reward per unit of effort is 

 

 

12 If µ is small, then fewer behaviors will qualify to be parents in the next generation. Those that become parents will 

be tightly clustered around the reinforced behavior, and so offspring in the next generation will cluster together as 

well. Target behaviors will appear with higher probability in the upcoming generations. So, a small µ is consistent 

with a large reinforcer magnitude. Other functions also show this inverse relationship, though using the reciprocal of 

the selection strength leads to easy calculations of the magnitude ratio. 
13 Confusingly, “exclusive” and “absolute” preference are not the same. Horner and Staddon (1987, p.62) use 

“exclusive” to describe behavior where at least 83% of responses are on one alternative (McDowell & Klapes, 

2018). Exclusive preference is strong but not absolute. McDowell and Klapes (2018) adopt this terminology from 

Horner and Staddon (1987) and it is also used here. 
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constant. This relation would imply that in concurrent RR-RR choice paradigms, also known as 

“two-armed bandits,” devoting all behavior to the richer schedule maximizes reinforcement.  

 Live subjects do not maximize in these experiments. They express most, but not all, 

behavior on the richer alternative. Notably, this outcome is not dependent upon having a nervous 

system. Humans (Shah, Bradshaw, & Szabadi, 2016) and slime molds (Reid et al., 2016) both 

give exclusive but not absolute preference to the richer ratio. Strength of preference increases 

with the ratio between schedule densities (finding d) and with the overall reinforcement rate 

(finding e). 

 Interestingly, exclusive preference also develops when schedules are equal, and depends 

on overall reinforcement rate (finding f; Horner & Staddon, 1987). This counterintuitive result 

shows deficiencies in both matching and maximizing accounts of behavior. Since behavior and 

reinforcement are proportional in RR schedules (i.e., 𝐵 ≈ 𝑎 ∗ 𝑅 where 𝑎 is the schedule ratio), 

perfect matching happens regardless of behavior distribution, since 

𝐵1

𝐵2
=

𝑎 ∗ 𝑅1

𝑎 ∗ 𝑅2
=

𝑅1

𝑅2
 

. And, since the two schedules have the same reinforcement density, no distribution of behavior 

is better than any other. When RR schedules are equal, subjects match and maximize regardless 

of their distribution of behavior, so neither matching nor maximizing can predict what will 

happen. Since the data show a distinct pattern, another mechanism must be at work.  

 McDowell and Klapes (2018) found that the ETBD followed the patterns found in Horner 

and Staddon (1987). Unequal concurrent RR schedules produced exclusive preference correlated 
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with schedule differences and with overall reinforcement rate. Equal concurrent RR schedules 

produced exclusive preference correlated with overall reinforcement rate.  

 Molecular Behavior. 

 Quadratic Changeovers. McDowell et al. (2012) studied the relation between 

changeovers, reinforcer rate ratios, and reinforcer magnitude ratios. They fit a two-dimensional 

quadric surface14, with form 𝑧 = 𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐹𝑦 + 𝐺, for the data set from each 

mutation rate. The variable 𝑧 is the rate of changeovers, which are consecutive pairs of target 

behaviors that fall into different target classes, and the variables 𝑥 and 𝑦 are logarithms of the 

reinforcement rate and magnitude ratios, respectively. Importantly, to date, no researchers have 

conducted this type of changeover study in live organisms. 

 McDowell et al. (2012) found that the surface that best fit the data was a downward-

opening elliptic paraboloid with its vertex at (0, 0, 𝐺) (finding g). This surface had vertical cross 

sections that were downward-opening parabolas and horizontal cross sections that were ellipses. 

The parameters that create a shape with this description must satisfy 𝐴 < 0, 𝐶 < 0, 𝐵2 − 4𝐴𝐶 <

0, and 𝐷 = 𝐹 = 0. When fitting this curve to the data, the height of the vertex, 𝐺, increased with 

the mutation rate (finding h). The value |𝐴| was larger than |𝐶| for all data sets (finding i).  

 Rapid Acquisition of Responding. Davison and Baum (2000) conducted a test of 

reinforcer-by-reinforcer changes in behavior rates. They showed that each successive reinforcer 

affects expressed behavior ratios, or per the title of the paper, “every reinforcer counts.”  

 

 

14 Properties of quadric surfaces vary depending on the parameters. A full discussion is beyond the scope of this text. 

See Silvio (1995) for more information. 
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 Reinforcement in this experiment used Stubbs and Pliskoff (1969) style scheduling. In 

these manipulations, a single RI schedule determines when the next reinforcer is available. Once 

available, the schedule probabilistically assigns the reinforcer to one of the two targets based on 

a preset ratio. The subject must obtain this reinforcer before the next gets scheduled.15  

 Davison and Baum (2000) conducted two experiments on pigeons using these schedules. 

The first was to measure how preference changed for each successive reinforcer as a function of 

the ratio of reinforcement between the two sides. The authors divided time into bins between 

successively delivered reinforcers and calculated the logarithm of the ratio of target behaviors 

during each bin. They found that for all subjects, ratios reached asymptote after no more than 

eight consecutive reinforcers (finding j). Additionally, the overall reinforcement context affected 

the rate of approach to asymptote; more dense overall reinforcement corresponded to a more 

rapid approach (finding k).  

 A second experiment looked at the relative effect of consecutive reinforcers for the same 

target behavior (“confirmations”) vs. reinforcers that were obtained on different target behaviors 

(“disconfirmations”). Confirmations had a smaller effect on preference, but disconfirmations 

always had a large effect. A graph of log behavior ratios as a function of the sequence of length 

one, two and three of confirmations/disconfirmations produced a characteristic interleaved 

pattern (finding l; see Figure 1).  

 

 

15 In independent schedules, the ratio of acquired reinforcers may be quite different from the ratio of scheduled 

reinforcers. This occurs, for instance, when the subject distributes all their behavior to one target class. Stubbs and 

Pliskoff (1969) schedules solve this problem and ensure the acquired ratio is close to the scheduled ratio. 
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Figure 1. Log behavior ratio of live subject (y-axis) with identifier “C7” as a function of the pattern of the last three reinforcers 

(x-axis). Black dots show that the last reinforcer was on the right, open dots on the left. From Davison and Baum (2000). 

 Kulubekova and McDowell (2013) repeated the experiments from Davison and Baum 

(2000) with the ETBD, and their results showed the same patterns. As each reinforcer arrived, 

behavior ratios increased and reached an asymptote before eight reinforcers. The rate of 

approach to asymptote depended on the overall reinforcement density. Additionally, the ETBD 

reproduced the characteristic interleaved pattern of behavior as a function of sequences of 

confirmations/disconfirmations (see Figure 2).  

 

Figure 2. Log behavior ratio of AOs as a function of the pattern of the last three reinforcers. Black dots show that the last 

reinforcer was on the right, open dots on the left. From Kulubekova and McDowell (2013). 

 These twelve findings have been converted into hypotheses in Table 1. Any algorithm 

that claims to replicate the ETBD should satisfy these hypotheses. Networks described in this 

paper will be evaluated against each of them.   
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Table 1 

 

Summary of Findings and Hypotheses from ETBD Experiments 

Finding/Hypothesis ETBD 

source 

Live animal source 

When the cGMLa is fit to data from concurrent 

bivariate RI-RI schedules and mutation rate is between 

7.5% and 14%: 

a. 𝑎𝑟   ≈  .83 

b. 𝑎𝑚 ≈  .68 

c. Effects of reinforcer rate and magnitude are 

independent 

McDowell, 

Popa, and 

Calvin 

(2012) 

Cording, McLean, 

and Grace (2011), 

McDowell (2013) 

Preference RR-RR schedules: 

d. Increases with ratio of schedule densities 

e. Increases with overall reinforcement rate in 

unequal schedules 

McDowell 

and Klapes 

(2018) 

Horner and Staddon 

(1987) 

f. Increases with overall reinforcement rate in 

equal schedules 

For a quadric surfaceb fit to changeover rates from 

concurrent bivariate RI-RI schedules: 

g.  𝐴 <  0; 𝐶 <  0; 𝐵2 –  4𝐴𝐶 <  0; 𝐷 =  0; 𝐹 =
 0; and 𝐺 >  0 

h. 𝐺 increases with mutation rate 

i. |𝐴|  −  |𝐶|  >  0 

McDowell, 

Popa, and 

Calvin 

(2012) 

Nonec 

For Stubbs and Pliskoff (1969) schedulesd: 

j. Preference reaches asymptote before eight 

reinforcers are obtained 
Kulubekova 

and 

McDowell 

(2013) 

Davison and Baum 

(2000) 
k. More dense reinforcement causes a more rapid 

approach to asymptote 

l. Confirmations and disconfirmations yield a 

characteristic interleaved pattern 
acGML = concatenated generalized matching law, stated as log (

𝐵1

𝐵2
) = 𝑎𝑟 log (

𝑅1

𝑅2
) + 𝑎𝑚 log (

𝑀1

𝑀2
) + log 𝑏. bThe 

equation for this quadric surface is 𝑧 = 𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐹𝑦 + 𝐺, where 𝑧 is the number of 

changeovers per 500 generations, 𝑥 = log (
𝑅1

𝑅2
), and 𝑦 = log (

𝑀1

𝑀2
). cHypotheses g, h, and i have not been 

evaluated on live animals. dStubbs and Pliskoff (1969) schedules use a shared RI schedule with a fixed 

probability that each reinforcer appears on the left vs. right side. 



ETBD with Stochastic Networks     18 

 

 

Gaps Between the ETBD and Live Behavior 

 The ETBD is a selectionist system that also conforms to quantitative behavioral 

observations of live organisms under variable schedules of reinforcement. It allows the study of 

selectionism with the tools developed for the experimental analysis of behavior. However, there 

are gaps in the ability of the ETBD to model behavior. Three important gaps are generalization, 

hierarchical organization, and biological plausibility. The following section describes how the 

ETBD struggles with them. Following each discussion will be an argument why artificial neural 

networks (ANNs) are well equipped to solve the problem.  

 Problem One: Generalization of Discriminative Stimuli. A discriminative stimulus 

elicits behavior that previously led to reinforcement in the presence of that stimulus. In live 

organisms, the appearance of a discriminative stimulus (e.g., a feeder light changes from red to 

green) causes changes in behavior (e.g., increased pecking at a key). The behavior is said to be 

under stimulus control (Urcuioli, 2013). In the current implementation of the ETBD, the only 

way to model stimulus control is to keep separate populations of behaviors associated with each 

combination of stimuli. This is a workable solution if there is a finite set of predefined 

discriminative stimuli and there are adequate computing resources available for training each 

population. However, with large, unbounded, or continuous stimulus spaces (e.g., all images of a 

certain size, or all frequencies of visible light), this solution may require more memory and 

training time than is reasonable. To get around this problem, a user may segment stimuli into 

equivalence classes and use one population per class. But, segmenting a large stimulus space into 

predefined bins would not allow for smooth generalization gradients (e.g., small changes in light 
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frequency produce small changes in behavior rates; Hanson, 1959). Ideally there would be a way 

for the ETBD to automatically segment or grade discriminative stimuli, though currently there 

seems to be no way to add this capability without significant changes to the algorithm.  

 This situation is analogous to the early work on Markov decision processes (MDPs), 

which are fully observable, time-independent, memoryless reinforcement learning environments. 

An MDP contains a set states and actions, and each action might produce a reward or cause an 

agent to transition between states. An early algorithm for optimizing behavior in MDPs was Q-

Learning (Watkins, 1989). This algorithm learns an expectation of value for each state-action 

pair by exploring the world and observing the consequences. This expected value is called a Q-

value. Given enough exploration, the highest Q-value in each state will converge to the best 

action available in that state (Watkins & Dayan, 1992). However, the number of observations 

required for convergence grows faster than the number of states (Even-Dar & Mansour, 2003). 

Additionally, Q-learning cannot solve unbounded state spaces in finite time, nor does it 

generalize learned values to novel states or allow for smooth dependence between similar 

state/action pairs and Q-values. As a result, the original form of Q-learning only works in small 

discrete state-action spaces.  

 Using a neural network to estimate Q-values rather that maintaining a table is an effective 

way to generalize across large input spaces. Mnih et al. (2015) used a network architecture called 

“deep Q-learning” to achieve human-level performance across a variety of Atari video games. A 

deep Q-network takes only the score and raw pixel information from the display as inputs. The 

space of inputs is extremely large, and to solve this task the network must group together input 

patterns with similar characteristics. It can then use these groupings to find the expected value of 
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each action/state pair. No definition of “similar” is available to the network; it spontaneously 

organizes input patterns according to what is useful for predicting reinforcement. The network 

automatically segments and grades the space of discriminative stimuli without need for 

exhaustive sampling. 

 Problem Two: Hierarchical Behavior Organization. As an organism masters a set of 

behaviors, its repertoire becomes organized into hierarchical patterns. Limb movements become 

part of a gait, which allows travel, and travel helps conduct longer term goals. The ETBD has no 

mechanism to organize behavior patterns in a hierarchy. To do so requires a reliable method of 

credit assignment (Minsky, 1961), without which an algorithm has no way to divide up a 

reinforcement signal among a hierarchy of behaviors. Schmidhuber (2000) argues that 

implementing hierarchical credit assignment in genetic algorithms is achievable by using 

conditional logic within the genome. Allowing conditional jumps when reading out genetic code 

might lead to the reuse of sections that are useful, but no such conditional coding is used in the 

ETBD.  

 In contrast, ANNs naturally develop a hierarchical organization of information during 

training. Feedforward ANNs consist of layers of artificial neurons, each of which receives 

connections from earlier layers and sends messages to later layers. The first level takes raw 

inputs and the last chooses the output. Later levels learn successively more abstract patterns. For 

instance, neurons in successive layers of convolutional neural networks (LeCun & Bengio, 

1995), which are the first layer in deep Q-networks, form receptive fields that resemble those in 

the visual hierarchy. Artificial neurons in earlier levels have receptive fields similar to biological 

neurons in V1 (Ukita, Yoshida, & Ohki, 2019), while neurons in later levels respond like 
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downstream brain regions, such as the inferior temporal cortex and V4 (Cadieu et al., 2014; 

Yamins et al., 2014).   

 Problem Three: Biological Plausibility. The ETBD is not a biologically plausible 

account of behavior. In contrast, ANNs were originally based on biological networks 

(McCulloch & Pitts, 1943), though models have since strayed from biological realism. The 

simplest neuron models in current use are perceptrons, which are the building block of most 

modern ANNs, and the most realistic are multicompartment simulations based on Hodgkin and 

Huxley’s (1952) equations. Recasting the ETBD within a neural network and gradually 

increasing the complexity and realism of the neuron models would shed light on why the output 

patterns of the ETBD resemble those of live animals.  

ETBD vs. Other RL Algorithms 

 Given the inability of the ETBD to perform these expected functions of modern RL 

algorithms, it may be tempting to dismiss it as a curiosity. Recently developed RL algorithms 

demonstrate superhuman performance on a wide range of activities (Brown & Sandholm, 2019; 

Schrittwieser et al., 2020; Vinyals et al., 2019). This prompts the question why one should study 

the ETBD rather than the current state of the art in RL.  

 There are two main reasons why standard RL algorithms are not appropriate for the 

current context. First, the goal of the ETBD is not to maximize reward, but to replicate patterns 

of animal behavior. The typical paper in RL starts out with a description of a problem, a reward 

function, and an explicit goal of maximizing that reward function over a problem space. If the 

problem obeys certain constraints, then typical algorithms in use today, for instance Q-Learning, 

will converge on the best policy given adequate exposure (Watkins & Dayan, 1992). In contrast, 
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animals do not maximize reinforcement within the tasks that they are given in laboratory 

experiments regardless of exposure time. As discussed earlier, animals do not maximize rates of 

reward per unit effort on variable schedules of reinforcement even after days or weeks of 

exposure to the task. Using an RL algorithm that always converges to the optimal policy will not 

provide a good model of animal behavior.  

 Second, most RL algorithms implicitly or explicitly assume that the problem space is a 

fully observable Markov decision process (MDP)16. These algorithms are based on the idea that 

only the currently observable state matters, and no information about how the current state came 

to be is relevant. This assumption does not hold, for instance, under RI schedules of 

reinforcement. For an MDP, if there is an optimal policy, then it must be deterministic and 

memoryless (Puterman, 2014).17 However, on concurrent RI schedules of reinforcement, the 

optimal policy is mixed, and no deterministic policy can produce the same rate of return 

(Kubanek, 2017). So, by contradiction, RI schedules are inconsistent with fully observable 

MDPs. An RI schedule turns a fully observable MDP into a partially observable MDP, and these 

types of tasks require memory or stochastic policies to solve (Ghosh et al., 2021). The 

assumptions underlying common RL algorithms are thus inconsistent with studies of animal 

behavior under RI schedules.  

 

 

16 An MDP is an environment where an agent takes actions that cause stochastic transitions between discrete world 

states, and sometimes these actions yield rewards. For the purposes of this discussion, the most important features of 

an MDP are that the state of the world is always fully observable, and that the reward function only depends on the 

current state, the last state, and the action taken to transfer between these states. The reward function does not 

depend, for instance, on the amount of time since the last reward was obtained.  
17 More specifically, if there exists an optimal policy then there must be a deterministic policy within the set of 

policies that is optimal. There may be optimal stochastic or mixed policies, but they will never dominate the best 

deterministic policy. 
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Goals 

 There are three goals of this thesis. The first is to create an algorithm that approximates 

the behavioral outputs of the ETBD and live animals on variable schedules of reinforcement. The 

findings summarized in Table 1 reference the relevant studies on live animals and the ETBD. For 

each of these findings, studies on the ETBD give more precise predictions; so, matching the 

results of the ETBD implies being able to match the outputs of live organisms.  

 The second goal is for the implementation of the new algorithm to be able to increase the 

generalizability, hierarchical organization capability, and biological plausibility of the ETBD. As 

discussed previously, neural networks are well suited to improving the ETBD in these ways. 

There are other benefits to remaking the ETBD as a neural network. For instance, computational 

neuroscience and AI share an interest in ANNs; a neural ETBD would help to unite the 

experimental analysis of behavior with these two fields and allow them to speak a common 

language.  

 The third goal is to highlight the underlying similarities of the computations performed 

by sexually reproducing genetic algorithms and stochastic neural networks, thus giving a sound 

theoretical underpinning to the selectionist metaphor. In particular, the goal is to show that an 

isomorphism exists between the statistical properties of a certain genetic algorithm and a certain 

stochastic network. For processes based on these two algorithms, it will be shown that if the 

distributions of possible outputs 𝑃𝑡 are the same at a given time 𝑡, and the emitted outputs 𝑏𝑡 and 

consequences 𝑐𝑡 are the same, then the expected set of possible outputs at the next time step 

𝐸(𝑃𝑡+1(𝑥)|𝑃𝑡(. ), 𝑏𝑡, 𝑐𝑡) will be the same.    
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Stochastic Networks  

 Stochastic neural networks, which contain units that turn on or off probabilistically based 

on their inputs, have advantages over real-valued ANNs for these tasks. First, there is a natural 

correspondence between stochastic hidden neurons and selection of parents during sexual 

reproduction. Stochastic spiking of hidden neurons, when combined with integration at the 

output layer, allows for search over hyperplanes much like the recombination step in genetic 

algorithms (Whitley, 1994). By aligning operations in a stochastic network with those of a 

genetic algorithm, the expected distribution of outputs becomes identical. This claim will be 

supported in later sections. 

  Second, the learning rules available to stochastic neurons have more biological 

plausibility than those available to real-valued ANNs. The most common way of training ANNs 

is the backpropagation algorithm (Rumelhart, Hinton, & Williams, 1985). Without adjustments, 

backpropagation is not a biologically plausible model of learning (Crick, 1989).18 In contrast, 

stochastic networks can use learning rules based on spike timing dependent plasticity (STDP; Bi 

& Poo, 1998) and neuromodulation. STDP occurs when a presynaptic neuron and a postsynaptic 

neuron both fire within a brief time window, which causes a change of synapse strength. While 

STDP can perform unsupervised learning, it cannot learn from reinforcement; to do so, there 

 

 

18 Surprisingly, the properties of ANNs trained by backpropagation can show striking similarity to biological 

networks. Depending on the task and the structure of the network, backpropagation can generate neurons that 

respond like cells at various levels of the ventral visual stream (Yamins & DiCarlo, 2016) or like entorhinal grid 

cells (Banino et al., 2018). Recently there has been interest in reconciling backpropagation with biology (Lillicrap, 

Santoro, Marris, Akerman, & Hinton, 2020; Sacramento, Costa, Bengio, & Senn, 2018; Whittington & Bogacz, 

2017), though there is still no consensus as to how the brain approximates backpropagation. Whittington and Bogacz 

(2019) argue that there are multiple mechanisms approximating backpropagation and that the brain may switch 

among them as development progresses. 
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would need to be a way for the reinforcement signal to affect the synapse strength. Seung (2003) 

postulated a three-factor form of Hebbian learning that incorporates a reinforcement signal. 

Seung called this a “hedonistic synapse.” When presynaptic and postsynaptic neurons both fire 

within a brief window, the synapse creates a long-lasting synaptic tag. Neuromodulators interact 

with the tag to change the strength of the synapse (Gerstner, Lehmann, Liakoni, Corneil, & Brea, 

2018).  

 This paper presents two stochastic networks that are intended to be the first rungs of a 

ladder connecting the ETBD to a biologically realistic simulation. Network one is highly 

constrained with low biological fidelity and implements a close approximation to the ETBD. It 

has binary synapse weights so that it may faithfully replicate the operations of a genetic 

algorithm. The second network still runs on a fixed tempo, though it expands the function of the 

units to include properties that better approximate biological neurons. In particular, the second 

network solves problems related to generating binary outputs while allowing real-valued synapse 

weights. Future work may expand this ladder, for instance by creating a network with recurrent 

connections, continuous-time updates, delayed synaptic conduction, Poisson distributed inputs, 

or separate inhibitory and excitatory neuron populations.  

 The functionality of each network is a superset of the functionality of the last one. In this 

way, these networks are successive “relaxations” of the ETBD toward biological realism. Both 

networks will be assessed for conformance to the hypotheses in Table 1 using methods identical 

to those of experiments on the ETBD. 
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Implementing the ETBD in Stochastic Networks 

 A reimplementation of the ETBD with stochastic neural networks is sought. An 

important first step in designing this network is to decide on a mapping between operations of 

the ETBD and a stochastic network.  

How to Map ETBD Functions 

 To cast the ETBD as a stochastic network, assumptions will be made about which 

functions correspond between the two algorithms. These assumptions are not the only ones 

possible, nor does this paper provide any guarantees that they best reframe the ETBD. Given the 

utility of evolutionary algorithms, it is likely that there are multiple ways that neural networks 

have co-opted processes akin to evolution (Fernando et al., 2012).  

Outputs 

 The outputs of the ETBD are numbers from 0 to 1023 that have a decimal and a binary 

representation. A reasonable interpretation that maps between genetic algorithms and binary 

networks is that an “on” state in an output neuron corresponds to a one in a binary representation, 

while “off” corresponds to zero. To enforce this assumption, each bit in the ETBD will have a 

single output neuron as its surrogate. These output neurons receive signals along synapses from a 

group of hidden neurons and then produce zeros or ones at each time step.19 The order in which 

 

 

19 The approach of using a single neuron to read from a pool of hidden neurons is common in studies of spiking 

networks (e.g., Fiete & Seung, 2006; Maass, Natschlager, & Markram, 2002; Seung, 2003). However, it is at odds 

with real biological readouts, which are often not individual neurons, but populations (Pouget, Dayan, & Zemel, 

2000). These readout populations can measure a graded response as opposed to a single binary digit, and so have 

more flexibility and information content (Urbanczik & Senn, 2009). This extension is left to future research. 
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these ten outputs are read will always be the same. Reading these bits produces a ten-digit binary 

string that can be translated into a decimal number. 

Hidden Neurons and Update Rules 

 Parents in the ETBD are replaced by hidden neurons whose synapse weights encode 

genomes. Output neurons integrate signals from these synapses and generate samples from the 

equivalent mating operations between parents. The selection and mutation operations in the 

population will not look like their network equivalents, but distributions of outputs will update in 

ways that are similar. The network selection rules will change outputs to be more like a just-

reinforced behavior, and network mutation rules will increase the variability of outputs. When 

possible, selection and mutation rules will have analytically derived approximations to ETBD 

operations. Otherwise, hyperparameters will require tuning through pilot testing.  

Phenotype Space 

 In the ETBD, the phenotype range corresponds to the functional distribution of behaviors. 

The typical interpretation of a target class in the ETBD (e.g., 471 - 511) is that it is a set of 

behaviors that have the same effect on the environment. Behaviors that are phenotypically 

similar fall into the same target class. These behaviors can have varying topographies, such as 

pushing a lever with a right paw or a left paw; what binds them into a target class is that the 

function of these behaviors is the same. The networks in this paper will do away with the 

phenotype space for three reasons: lack of support for its importance, difficulty implementing an 

equivalent space in a network, and concern that its existence implies pre-exposure to an 

environment.  
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 First, there is some evidence that the phenotype metric has only a marginal effect on 

behavior dynamics. Popa and McDowell (2010) showed that target classes with the same 

phenotype distance, but different genotype distances, had markedly different behavior patterns. 

Calvin (2019) studied a phenotype-only implementation of the ETBD and concluded that it did 

not replicate the results of the original ETBD. In contrast, unpublished data from Klapes 

(personal communication, June 12, 2020), who examined the effect of increasing phenotype 

distance between target classes without changing genotype distance, suggested that this 

manipulation had a small effect.  

 Second, there does not seem to be a natural parallel to the phenotype space within a set of 

binary neurons. To create such a space would require a translation of binary to decimal 

representations of numbers. This translation is simple in computer code, but it is not clear how 

one might implement it with binary neurons. Neural nets are universal approximators (Hornik, 

Stinchcombe, & White, 1989; Maass et al., 2002), so it must be possible to create a structure that 

mimics the characteristics of the phenotype space. However, a goal of this paper is to create a 

network instantiation with as few extra parts as possible, so adding an extra unnecessary 

structure goes against the spirit of these simulations.  

 Third, for an organism to learn functional similarities between behaviors may require it to 

have prior exposure to an environment. The topology of the phenotype space makes sense if an 

organism has had prior training in the environment, but this may not always be the case. There is 

no mechanism to simulate the learning of functional similarities within the ETBD. 

 Given these reasons, networks developed in this paper will lack an object that 

corresponds to the phenotype space. In the ETBD, the phenotype determines the probability that 
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behaviors will become parents following reinforcement. As a replacement, the selection 

mechanisms in the described networks will depend only on distance between genotypes (i.e., the 

Hamming distance). A hypothesis will be that a phenotype analogue produces only small effects 

on behavior records, and that the networks in this paper will be able to successfully approximate 

the ETBD without one.  

Network One 

Properties of Network One 

 Network one is an attempt to replicate a genetic algorithm as closely as possible. The 

justification for the similarity between network one and the ETBD comes from an observation by 

Holland (1992) about the distribution of offspring in a genetic algorithm. The following sections 

lay out how a stochastic network can approximate the reproduction, selection, and mutation of 

the ETBD. Encoded patterns in synapse weights are the “population” undergoing these 

operations. 

 When the genes in a genetic algorithm are binary strings of length n, then a natural 

representation of the genotype space is an n-dimensional analogue of a cube, also known as a 

hypercube (Holland, 1992; Whitley, 1994). Every instance of a genotype sits at a different vertex 

in the hypercube, and two genomes share an edge if there is a single bit that differs between 

them. This organization leads to a fundamental geometric interpretation of reproduction in a 

genetic algorithm: every unmutated child will lie on the smallest hyperplane20 that connects its 

 

 

20 Hyperplanes are lower dimensional hypercubes contained in a higher dimensional hypercube, such as the square 

faces of a six-sided cube. 
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parents (see Figure 3). If each gene assorts independently, as in the ETBD, then the probability 

distribution of potential children is uniform over this minimal connecting hyperplane (Whitley, 

1994). This property gives sexually reproducing populations a unique quality: for every two 

individuals, there is one encoded hyperplane in the genome space. In contrast, asexually 

reproducing populations do not share information, so search takes place over a collection of 

unconnected neighborhoods surrounding the elements of the population. Sexually reproducing 

populations search hyperplanes, while asexual reproduction searches small neighborhoods. 

 

Figure 3. A four-dimensional hypercube represents all possible four-bit genomes. The genomes of two parents, p and p’, sit at 

0000 and 0011, respectively. Without mutations, any child of p and p’ will have a genome somewhere on the heavy black square.  

 An example will illustrate this principle in action. Consider two bitstrings of 

00000000002 and 00000001112 (phenotypes zero and seven, respectively). When these genomes 

combine, the offspring obtains bits with equal probability from the two parent genomes. Since 
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the first seven bits of the parent genotypes agree, it does not matter which supplies the gene, and 

the offspring gets a zero at these locations either way. For the last three bits, where the parent 

genomes disagree, there is a 50/50 chance of receiving a one or zero. Representing an 

indeterminate bit as “*”, as in Whitley (1994), the genome of the child is 0000000***2. It is now 

possible to visualize the space of genotypes of all offspring that might result from this pairing. 

There are eight genotypes that fit the pattern of the child’s genome, which are the binary strings 

that correspond to the integers from zero through seven. These are binary values from 

00000000002 to 00000001112. These genotypes spread across three orthogonal dimensions. Each 

genotype connects to three other genotypes via single bit-flips (e.g., 00000000002 connects to 

00000000012, 00000000102, and 00000001002), so this set forms a cube. It is a three-

dimensional hyperplane within the ten-dimensional genome.  

 Network one exploits a parallel between genetic algorithms and stochastic networks. 

Specifically, it relies on the fact that both structures naturally encode hyperplanes. In genetic 

algorithms, it is pairs of parents that code for a hyperplane. In contrast, a single hidden neuron in 

a stochastic network is very flexible and can encode hyperplanes and more complicated objects 

(see network two). So, network one must be constrained to get the same two-objects-encode-one-

hyperplane property of a genetic algorithm.  

 Intuitively, the synapses of a hidden neuron hold information about whether a set of 

output neurons should fire. Positive weights increase the probability of an output firing, while 

negative weights decrease it. The most extreme case is when synapse weights are so strong that 

the firing of a single hidden neuron causes a specific output pattern with 100% chance. Consider 

a network architecture that allows this result for synapses with maximal weight. These saturated 
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synapses correspond to an “always fire” and “never fire” signal, respectively. Without loss of 

generality, saturated weights are defined to be positive one and negative one.  

 Now, consider what would happen if two such hidden neurons were to fire at the same 

time. If they agreed as to what a given output neuron should do, then the output neuron would act 

in a manner consistent with both received messages. But, if the hidden neurons disagree, then the 

messages contradict. In a genetic algorithm the result of conflicting bits at a locus is to randomly 

choose the bit. So, network one will give the same answer – there is a 50% chance of a one or a 

zero output in this case21. This answer yields the following rule: if inputs agree, follow orders; if 

they disagree, behave randomly.  

 This rule is directly analogous with reproduction in genetic algorithms. When the bits 

from parents at a given locus agree, the child will contain that bit at that locus; if the parents’ bits 

disagree, the child is equally likely to receive a zero or a one. By constraining network one to 

only have saturated weights, an isomorphism is established between a hidden neuron in network 

one and a parent genome in a genetic algorithm. If two such hidden neurons fire at the same 

time, then the set of “offspring” outputs has the same distribution that would be generated from 

mating the “parents” that have those encoded bitstrings.  

 

 

21 Stochastic binary neurons of this type were first proposed by Little (1974). They extend the behavior of the 

deterministic formal neuron of McCulloch and Pitts (1943). Thompson and Gibson (1981a, 1981b) analyze network 

behavior of Little’s neurons, concluding that they are more computationally realistic than the formal neuron and that 

they can simulate a wide range of biological network activity patterns. 
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 The bits in a parent genome correspond to the weights of a synapse. A one in the genome 

corresponds to a synapse weight of positive one, and a zero in the genome corresponds to a 

synapse weight of negative one. Figure 4 illustrates this correspondence. 
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Figure 4: Correspondence between a stochastic network and a genetic algorithm. Both are computing the possible offspring of 

the binary genomes 100 and 110. Above, the weights of the synapses in the two hidden neurons encode the genomes, where a 

weight of positive one (solid line) corresponds to a bit of one, and a weight of negative one (dashed line) corresponds to a bit of 

zero. Output neurons sum their inputs and apply a stochastic transfer function. The probability of firing is 0% if the sum of inputs 

is negative, 50% if it is zero, and 100% if it is positive. The leftmost output neuron will always fire in this case, the middle is 
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indeterminate, and the right will never fire. This output pattern corresponds to the binary pattern 1*0, the same as the output of 

mating 100 and 110.  

 In the ETBD, when an emitted behavior produces reinforcement, the FDF constrains the 

parents of the next generation to be phenotypically close to the reinforced behavior. Network one 

has no phenotype space, so this distance metric is not usable. Instead, the selection operation for 

these networks will move the bits encoded in the synapses closer to those of the reinforced 

behavior. By probabilistically flipping bits that disagree, the average Hamming distance between 

each hidden neuron and the output behavior is reduced.  

 Each hidden neuron encodes the genome of a single parent behavior. After reinforcement, 

a subset of synapses of every hidden neuron will flip to match the output of the reinforced 

behavior. Wherever a hidden neuron’s encoded output differs from a reinforced output, the 

synapse weight will change sign with fixed probability 𝜌. In other words, the reinforced behavior 

will be one of the parents of every child in the next generation, and 𝜌 controls the proportion of 

alleles that originate from the reinforced behavior.22 The hyperparameter 𝜌 governs 

reinforcement strength like the selection strength hyperparameter does in the ETBD, though 

these values are inversely related: high 𝜌 acts like a low µ and vice versa. Pilot testing will find 

the proper mapping between 𝜌 and µ. 

 Mutation in the ETBD causes random changes from zeros to ones in the population. A 

corresponding rule for network one would be to randomly flip the sign of synapse weights. The 

 

 

22 The reinforced behavior acts like a dominant “alpha” for purposes of mating. Each new element of the population 

will be a genetic combination between the alpha and an element from the old population. In effect, one parent from 

each pair will be the alpha, and each element of the current population will be the parent of exactly one child. The 

hyperparameter 𝜌 equals the penetrance of the alpha’s genome into the next generation.  
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number of bits that mutate in the ETBD is directly comparable to the number of synapse weight 

changes in network one. Full specification for network one along with the equivalent genetic 

algorithm can be found in Appendix A.  

Discussion of Network One 

 Network one approximates the operations of the ETBD, though it is not an exact copy. 

One major difference between the algorithms is the stability of their output distributions over 

small timescales. In the absence of any reinforcement or mutation, net one’s output distribution 

over the set of behaviors stays steady, but under the same conditions the ETBD’s population will 

change due to the random nature of parent selection. This process is equivalent to genetic drift. 

Allele frequencies may fluctuate due to this resampling and random noise may accumulate in the 

system. By design, the two algorithms should have similar output distributions when viewed 

over long timescales, but in the short term the outputs may have different statistical properties 

which may affect the outcomes of behavioral experiments.  

Network Two 

Properties of Network Two 

 See Appendix A for the full definition of network two. Network two address the problem 

of reimplementing network one without so many unrealistic restrictions. Network two has the 

same structure as network one but with a richer set of operating rules. These functional changes 

are a step toward biological plausibility. There are four major differences between network one 

and network two, which are discussed below. These differences are real-valued synapses, a 

smooth transfer function, a multiplicative mutation rule, and an additive selection rule. The first 
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change, real-valued synapses, necessitates the other three changes, though each difference 

increases biological plausibility.  

 The units in this network are stochastic binary neurons with real-valued synapses, which 

were first proposed and studied by Little (1974). Output units sum the synapse weights from 

“on” hidden neurons, pass the sum through a smooth stochastic transfer function, and turn on 

with probability equal to the output of this function. To fit an interpretation consistent with the 

definition of an excitatory synapse, any stochastic transfer function should be monotonically 

increasing and bounded between zero and one.  

 The logit function 

𝑝(𝑦 = 1|𝑥) =
1

1 + 𝑒−4𝑥
 

, where 𝑥 is the weighted sum of inputs, will be used as the transfer function in net two. This 

choice allows for a straightforward mapping of the mutation rule from network one onto network 

two (see Appendix B). The inverse of this transfer function is 

𝑥 =
1

4
ln (

𝑝

1 − 𝑝
) 

, so synapse weights are proportional to the log odds of an output neuron turning on. When 

multiple hidden neurons are on, the output neurons sum the weights, thus adding their respective 

log-odds values of firing.  

 By allowing real-valued weights, hidden neurons lose their correspondence to points in a 

hypercube - there are no more saturated synapses that can guarantee a spike in an output neuron. 

Hidden neurons now correspond to probability distributions over the hypercube. Were synapse 

weights to approach ∞, −∞, or zero, these output distributions would approach hyperplanes with 
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coordinates one, zero, or *, respectively. However, in exchange for this loss of correspondence, 

an individual neuron can now encode what used to require multiple neurons. As a result, fewer 

hidden neurons may be necessary to achieve the same behavior patterns. The number of hidden 

neurons, 𝑘, becomes a free hyperparameter. 

 Since weights are no longer binary, network two requires a different mutation rule.23 

With synapses that can take only two weights, the rule was straightforward: change the current 

weight to the other possible weight, akin to changing between zero and one. But with real-valued 

weights the same constraint does not hold. 

 The output statistics of the ETBD are a guide for how to implement mutation. Mutation 

“flattens” the distribution of behaviors over the genotype space. After repeated mutations, 

without any other effects present, each bit will become equally likely to be a one or zero. Viewed 

as a whole, the expected distribution of behaviors approaches the uniform distribution. Network 

two’s mutation operator, whatever its implementation, should therefore have this same limiting 

action. Since the transfer function of net two has a y-intercept of .5 (i.e., 𝑝(0) = .5), a uniform 

distribution on each bit corresponds to a sum of inputs equal to zero. So, moving all synapse 

weights closer to zero will cause a mutation-like effect.  

 

 

23 It might be tempting to equate mutation with flipping the sign of a synapse weight, just like in network one, but 

this solution would have unacceptable consequences. Mutation would have an insignificant effect if all weight 

values were close to zero, and it would have a large effect if synapse values were also large. As a result, mutation 

would cause more changes in behavior when synapse values were far from zero. Large synapse weights cause 

responding to be consistent and rapid, such as when there has been frequent reinforcement in the recent past. Thus, 

mutation would have more effect in richer reinforcement contexts. This relation is opposite to what is found in the 

ETBD (McDowell & Klapes, 2019).  
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 A simple method that approximates the ETBD’s mutation operator is therefore to 

multiply all synapse weights by a constant 𝑐 between zero and one. Appendix B shows a 

derivation for a reasonable value of 

𝑐 = 1 −
𝜑

5
 

, where 𝜑 is the equivalent mutation rate from the ETBD. For instance, the typical mutation rate 

of 10% corresponds to repeatedly multiplying each synapse weight by .98.24   

 Network two also requires a selection rule. In network one, the rule was to randomly flip 

a subset of weights of all hidden neurons to align more closely with the output. With real-valued 

synapse weights a bit more subtlety is allowed, and changes in weights may be smaller and more 

widespread. Network two’s selection rule is a three-factor extension of Hebbian learning, what 

Seung (2003) referred to as a “hedonistic synapse.” In three-factor learning rules, a synapse 

strengthens if a presynaptic neuron fires, a postsynaptic neuron fires, and a reinforcing 

neuromodulator enters the synapse. When all three occur, the synapse weight changes. Network 

two’s selection rule equates this neuromodulator release with reinforcement. Following 

reinforcement, synapse strength will increase by a positive value 𝜃, where 𝜃 is a free 

hyperparameter.25  

 

 

24 The calculation in Appendix B is based on a linear approximation to the transfer function at 𝑝(0). There will be 

deviations from this approximation when the sum of weights is far from zero. Due to the concavity of the transfer 

function this will cause mutation effects to be weaker in network two than what would be observed in the ETBD or 

network one. A higher order expansion, or one that worked directly on log-odds values, would improve the fidelity 

of the mutation operator. This extension is left to future research. 
25 Variations in reinforcer magnitude will alter the amount by which synapse weight changes. The most used value 

for 𝜇 is 40, and reinforcement strength is inversely proportional to 𝜇, so the nominal magnitude of a reinforcer is 

𝑚 = 40/𝜇. The change to a synapse should be proportional to reinforcer magnitude, so it is 40 ∗ 𝜃/𝜇. 
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 To make this network function appropriately, there must be a second rule that balances 

out the first. Without this balancing rule weights would only ever be positive, which would bias 

the output of the network toward ones. This second rule is a mirror image of the first: when there 

is a presynaptic spike and reinforcement, but the output neuron has not fired, the synapse weight 

will decrease by 𝜃. In other words, if the reinforced output contains a zero at bit 𝑥, then synapses 

will be more likely to produce a zero at bit 𝑥 in the future. This second rule is necessary due to 

the interpretation of “off” as equivalent to zero in the ETBD.26 It reinforces the lack of output, 

but in doing so it runs counter the STDP paradigm.  

Discussion of Network Two 

 Network two includes exponential weight decay (Xiao, Niu, & Wigstrom, 1996) and 

three-factor Hebbian learning (Gerstner et al., 2018) that are consistent with biology and 

approximate the mutation and selection rules of the ETBD. Networks one and two can each 

handle input connections, so they may be capable of solving the stimulus control issue discussed 

previously. Hidden units in network two are more powerful than the corresponding objects in 

network one and the ETBD, so network two may need fewer hidden units. With the same 

number of units, network two can store more information. However, interpreting “off” as “0” in 

this network necessitates an additional learning rule for balance, and this second rule conflicts 

with the empirical observations of STDP experiments.27   

 

 

26 A solution to this problem might entail replacing a single output neuron with a pair of mutually inhibitory outputs 

and labeling one of these outputs ‘zero’ and the other ‘one.’ This type of recurrent connection would require either a 

more complicated update rule or a change from discrete to continuous time. This extension is left to future research.  
27 The learning rule from network one also contained this flaw, though it was less visible due to the binary nature of 

the network. 
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Method 

Subjects, Apparatus, and Materials 

 AOs animated by the ETBD, network one, and network two were evaluated in three 

experiments. The rules for animating these AOs and justifications for design choices can be 

found above in their respective sections. J. J McDowell originally developed the computer code 

for the ETBD and the environment module in VB.Net. Other contributors to the ETBD codebase 

include Olivia Calvin, Bryan Klapes, Cyrus Chi, Andrei Popa, and Saule Kulubekova. The 

ETBD was transcribed into python and both networks were implemented in python by the 

current author. The transcription of the ETBD and the implementations of the two networks are 

publicly available at https://github.com/misterriley/PyETBD. All simulations were run in Python 

3.9 on Windows 10.  

Procedure 

 For all experiments, variable schedules were implemented using exponential 

distributions. That is, if a RI or RR schedule had a nominal value of 𝑥, then reinforcers were 

arranged using an exponential distribution with mean 𝑥. See Table 2 for a summary of all 

experiments. 

Pilot Testing: Mapping Hyperparameters Between AOs 

 Due to unclear relationships between hyperparameter values in the three AOs, 

hyperparameters were tuned by fitting the outputs of one AO to the outputs of another. The 

ETBD implementation has two free hyperparameters, which are the mean of the FDF, µ, and the 

mutation rate, 𝜑.  

https://github.com/misterriley/PyETBD
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 Phase One. The selection strength parameter in network one, 𝜌, is inversely related to µ, 

though the exact relationship is unclear. A function ρ(µ) that maps between them is required. 

Phase one of pilot testing generated the data for finding this function. Network one and the 

ETBD were each run on a series of RI 40/40 schedules of reinforcement, and each used a fixed 

mutation rate of 10%. For the ETBD, the left alternative always had µ = 40, and the right 

alternative varied from µ = 10 to µ = 80 by increments of 5. For network one, the value of 𝜌 for 

the left alternative was fixed at 20%, and the value for the right alternative varied from 5% to 

50% by increments of 5%.  

 Phase Two. This phase of pilot testing generated the data for tuning the hyperparameters 

of network two, which are 𝜃, the selection strength, and 𝑘, the number of hidden neurons. The 

values chosen to fit on were the sensitivities to rate and magnitude in the bivariate concurrent 

RI/RI analysis performed by McDowell et al. (2012). These values are 𝑎𝑟 = 0.83, 𝑎𝑚 = 0.68. 

Since these values are included in the predictions described in the section on empirical findings 

of the ETBD, there are two fewer actual predictions made for network two. The schedules from 

McDowell et al. (2012) were used, with RI values of 20/120, 45/95, 70/70, 95/45, and 120/20, 

varied factorially with µ values of 75/25, 62/38, 50/50, 38/62, and 25/75. There were twenty-five 

schedules total. Mutation rate was fixed at 10% across all runs. Sixteen runs through the 

procedure were collected per batch with small random variations in 𝜃 and 𝑘. Sensitivities to rate 

and magnitude were calculated for each run, and a second order Newton-Raphson method was 

used to iteratively minimize the L2-norm distance between outputs and targets. 
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Experiment One: Bivariate Matching and Changeovers During Concurrent RI-RI Schedules 

 The first experiment was a replication of selected components of McDowell et al. (2012). 

Each of the three AOs completed a series of bivariate concurrent RI-RI schedules of 

reinforcement. RI values were 20/120, 45/95, 70/70, 95/45, and 120/20, µ values were 75/25, 

62/38, 50/50, 38/62, and 25/75, and mutation rates were 7.5%, 8%, 10%, 12%, and 14%. RI 

values, µ values, and mutation rates were varied factorially for a total of 125 schedules per AO. 

Each schedule in the experiment ran 20,500 generations, and ten repetitions of the experiment 

were run per AO. Outputs of interest for each schedule were counts of reinforcers obtained per 

side, behaviors emitted per side, and changeovers per five hundred generations.  

Experiment Two: Exclusive Preference on RR-RR Schedules 

 The second experiment was a replication of McDowell and Klapes (2018). Each of the 

AOs completed a series of concurrent RR-RR schedules of reinforcement. Mutation rate was 

fixed at 10% and µ was fixed at 40 for all schedules. For each block of five thousand 

generations, the output of interest was the percent of target behaviors expressed on the preferred 

alternative. All schedules were repeated five times. 

 Phase one examined the distribution of behaviors on unequal schedules of RR 

reinforcement. Each schedule contained a richer option on the left target class and a leaner option 

on the right target class. The RR values for the left option were 2, 3, 5, 10, and 15. The RR 

values for the right alternative were multiplies of the left RR value. The multiples used were 1.1, 

1.25, 1.5, 2, 3, 4, 5, 10, and 20 times the left RR value. Schedules were run for 20,500 

generations.  
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 Phases two and three examined the distribution of behaviors on equal schedules of 

concurrent RR reinforcement and how these distributions changed with reinforcement density. In 

both experiments the AOs were not reset between schedules. Phase two used RR schedules of 

160/160, 5/5, and 160/160, and phase three used RR schedules of 2/2, 3/3, 4/4, 5/5, 10/10, 20/20, 

40/40, 80/80, 160/160, 320/320, and 640/640. Each schedule in both parts was run for four 5000-

generation blocks.  

Experiment Three: Preference Development During Stubbs and Pliskoff (1969) Schedules 

 The third experiment was a replication of phases one and two from Kulubekova and 

McDowell (2013). Each of the three AOs completed a series of Stubbs and Pliskoff (1969) style 

concurrent schedules of reinforcement. In each of these schedules there was a fixed probability 

ratio for where the reinforcer would appear and a combined RI schedule for when the reinforcer 

would be available. For instance, on a RI 25 schedule with a probability ratio of 3:1, time 

intervals between reinforcers are drawn from an exponential distribution with mean twenty-five. 

The location of the reinforcer is random with probabilities of 75% left and 25% right. Only one 

reinforcer is available or scheduled at a time and a new reinforcer is not scheduled until the 

current reinforcer is obtained. For all schedules, the mutation rate was fixed at 10% and µ was 

fixed at 25. Both phases used the same probability ratios, which were 27:1, 9:1, 3:1, 1:1, 1:3, 1:9, 

and 1:27, and the same RI values, which were a rich schedule with RI 25 and a lean schedule 

with RI 60. In both phases AOs ran fifty repetitions of each schedule.  

 For phase one, each schedule was run until ten total reinforcers were obtained. The output 

of interest in phase one was the ratio of behaviors expressed per side as a function of total 
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reinforcers obtained. So, each schedule generated ten data points: from beginning to first 

reinforcer, from first to second, from second to third, etc.  

 For phase two, each schedule was run until forty total reinforcers were obtained. The 

output of interest for phase two was the ratio of behaviors as a function of the last three 

reinforcer locations. For instance, one data point consisted of all behaviors where the last three 

reinforcer locations formed the pattern L-R-L. There are eight such patterns. Data from all 

schedules with the same RI value was pooled.  
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Table 2 

 

Details of Experimental Procedures 

Experiment Source 𝜑 Schedules and magnitudes Stop criterion Reset between 

schedules? 

Repetitions 

Pilot 

testing, 

phase one 

N/A 

10% 

µ  

  40/10, 40/15, 40/20, 40/25, 40/30, 

40/35, 40/40, 40/45, 40/50, 40/55, 

40/60, 40/65, 40/70, 40/75, 40/80 

 

ρ  

  .2/.05, .2/.1, 2/.15, 2/.2, 2/.25, 2/.3, 

2/.35, 2/.4, 2/.45, 2/.5 

 

RI  

  40/40 

20,500 

generations  

 

Yes 

 

One 

Pilot 

testing, 

phase two 

McDowell 

et al. (2012) 

µ  

  75/25, 62/38, 50/50, 38/62, 25/75 

 

RI  

  20/120, 45/95, 70/70, 95/45, 20/120 

 

Varied factorially 

Until 

converged 

One 
McDowell 

et al. (2012) 

7.5%, 8%, 10%, 

12%, 14% 

 

Varied factorially 

µ  

  75/25, 62/38, 50/50, 38/62, 25/75 

 

RI  

  20/120, 45/95, 70/70, 95/45, 20/120 

 

Varied factorially 

20,500 

generations  
Yes Ten 
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Experiment Source 𝜑 Schedules and magnitudes Stop criterion Reset between 

schedules? 

Repetitions 

Two, phase 

one 

McDowell 

and Klapes 

(2018) 

 

10% 

µ  

  40/40 

 

Left  

  RR 2, 3, 5, 10, 15 

 

Right  

  Left RR x1.1, x1.25, x1.5, x2, x3, x4, 

x5, x10, x20 

 

Varied factorially 

20,500 

generations  
Yes Ten 

Two, phase 

two 

µ  

  40/40 

 

RR  

  160/160, 5/5, 160/160 

20,500 

generations 
No Five 

Two, phase 

three 

µ  

  40/40 

 

RR  

  2/2, 3/3, 4/4, 5/5, 10/10, 20/20, 40/40, 

80/80, 160/160, 320/320, 640/640 

20,500 

generations 
No Five 
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Experiment Source 𝜑 Schedules and magnitudes Stop criterion Reset between 

schedules? 

Repetitions 

Three, 

phase one 

Kulubekova 

and 

McDowell 

(2013) 

10% 

µ  

  25/25 

 

Stubbs and Pliskoff (1969) schedules 

 

Probability ratios  

  27:1, 9:1, 3:1, 1:1, 1:3, 1:9, 27:1 

 

RI  

  25, 60 

 

Varied factorially 

Ten 

reinforcers  

Yes 50 

Three, 

phase two 

Forty 

reinforcers  
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 Results 

 There were several notable divergences between the behavior records of the ETBD and 

the two networks. These divergences occurred even though the networks were tuned to produce 

the same results as the ETBD in other circumstances. The meaning of these divergences and 

some ways to ameliorate them will be examined in the discussion section.  

Pilot Testing: Mapping Hyperparameters 

Phase One  

 The responses of the AOs on each schedule were tallied and response ratios between the 

left and right alternatives were calculated. For the ETBD, these response ratios were compared 

against the ratios of µ between the two target classes. For network one, they were compared 

against the ratios of 𝜌. A priori, equal selection strength on the two sides should produce no bias. 

The regressions were constrained to meet this assumption. A regression between the log of µ 

ratios and the log of behavior ratios produced a relationship of 

log10 (
𝐵1

𝐵2
) = −1.044log10 (

𝜇1

𝜇2
) 

. Figure 5 displays this regression. 
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Figure 5. ETBD bias as a function of the ratio between µ values of the fitness density function. The regression was constrained 

such that it contained the point (0,0), corresponding to no bias when µ values on the two sides are equal. The resulting line is 

𝑙𝑜𝑔10 (
𝐵1

𝐵2
) = −1.044𝑙𝑜𝑔10 (

µ1

µ2
) 

.  

 A similar analysis was performed on the outputs of net one. A highly linear relationship  

between the ratios of 𝜌 and the logarithm of behavior ratios was found. The function 

log10 (
𝐵1

𝐵2
) = −.552(

𝜌1

𝜌2
− 1) 

fits the desired constraint (see Figure 6).  
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Figure 6. Net one bias as a function of ratio between values of 𝜌 on the two alternatives. The equation is  

𝑙𝑜𝑔 (
𝐵1

𝐵2
) = −.552(

𝜌2

𝜌1
− 1) 

. 

 This data gives an estimate of how the bias relates to both µ and ρ. Combining these two 

equations yields 

−1.044 log10 (
µ1

µ2
) = −.552(

𝜌2

𝜌1
− 1) 

. Plugging in the fixed values of 𝐹𝐷𝐹2 = 40 and 𝜌2 =  .2 that were used in the experiments, and 

solving for 𝜌1, gives the relationship  

𝜌(𝜇) = .2 − .378 log10 (
𝜇

40
) 

The following experiments use this function to calculate the value 𝜌(𝜇) that corresponds to a 

given value . 
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Phase Two 

 Net two’s best fitting hyperparameters were found to be (𝜃, 𝑘) = (1.035, 27). This gives 

a relationship between 𝜃 and 𝜇:  

𝜃(𝜇) = 1.035 ∗ (
40

𝜇
) 

These hyperparameters consistently produce the desired coefficients of (𝑎𝑟, 𝑎𝑚) = (0.83, 0.68) 

when run on the schedules from McDowell et al. (2012) and a mutation rate of 10%. The 

following experiments use this function to calculate the value 𝜃(µ) that corresponds to a given 

value of 𝜇, and the implementation of net two in these experiments uses 𝑘 = 27 hidden neurons.  

Experiment One: Bivariate Matching and Changeovers During RI-RI Schedules 

 Expressed behaviors and obtained reinforcers in the two target classes were tallied per 

schedule variant. For each AO and mutation rate, twenty-five such data points were collected per 

repetition. The cGML for rate and magnitude was fit to each set of points, and coefficients from 

these fits were averaged across repetitions. Averaged coefficients are graphed in Figure 7.  

 At a mutation rate of 10%, the coefficient 𝑎𝑚 is close to the hypothesized value of 0.68 

for both networks. For net two, the coefficient 𝑎𝑟 is close to the hypothesized value of 0.83. 

However, there is a much wider variation in the sensitivity coefficients than was hypothesized. 

Mutation rates in net one and net two have a larger effect on sensitivity values than does 

mutation rate in the ETBD. 
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Figure 7. Mean coefficients from fits to cGML from experiment one. Standard errors for data points are all smaller than 0.01 and 

are omitted.  
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 Changeovers per five hundred generations were calculated per schedule variant, then 

averaged across all blocks from the same schedule. The quadric surface 

𝑓(𝑥, 𝑦) = 𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐹𝑦 + 𝐺 

was fit to the 25 points from each combination of AO and mutation rate, where 

𝑓(𝑥, 𝑦) 

is the number of changeovers, 

𝑥 = log10

𝑅1

𝑅2
 

, and 

𝑦 = log10

𝑀1

𝑀2
 

. Coefficients and values of interest from these fits are shown in Table 3, and values of 𝐺 are 

graphed in Figure 8. 

 Hypotheses concerning changeovers were that for all AOs and mutation rates, 𝐴 < 0, 

𝐶 < 0, 𝐺 > 0, 𝐵2 − 4𝐴𝐶 < 0, and |𝐴| − |𝐶| > 0. A surface fitting these constraints will be a 

downward-opening elliptic paraboloid with a vertex above the 𝑥𝑦 plane that is wider in the 𝑦 

direction and steeper in the 𝑥 direction. Additionally, it was hypothesized that as 𝜑 increases, so 

does 𝐺.  

 Net one meets all hypotheses, though the fitted values of coefficients are much larger 

than those of the ETBD. Net two fails each hypothesis besides 𝐺 > 0 for at least one mutation 

rate, with 12% mutation causing most hypotheses to fail. The surface with the coefficients 

reported for net two is a hyperbolic paraboloid with a saddle point at (0, 0, 𝐺). Reported 

coefficients for net two are much more variable than those of the ETBD.  
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Figure 8. Values of G from fits of changeovers to the quadric surface. These values correspond to the z-intercept of the quadric 

surface.  

Table 3 

 

Quadric Surface Coefficients and Values of Interest 

AO 𝜑 A B C G 𝐵2 − 4𝐴𝐶 |𝐴| − |𝐶| 

ETBD 

7.5% -1.87 0.11 -0.70 4.93 -5.22 1.17 

8% -1.80 -0.11 -0.69 5.19 -4.95 1.11 

10% -2.59 -0.19 -1.31 6.74 -13.54 1.28 

12% -3.17 -0.56 -1.39 8.08 -17.32 1.78 

14% -3.84 -0.57 -1.63 9.28 -24.71 2.21 

Net One 

7.5% -5.56 -2.63 -2.70 14.20 -53.12 2.86 

8% .5.57 -2.55 -3.08 14.43 -62.10 2.49 

10% -5.57 -2.70 -2.98 15.06 -59.12 2.59 

12% -5.44 -2.51 -2.99 15.56 -58.75 2.45 

14% -5.50 -2.23 -2.79 15.99 -56.40 2.71 

Net Two 

7.5% -5.84 -15.07 4.61 40.37 334.79 1.23 

8% -5.49 -12.8 2.70 38.92 223.13 2.79 

10% -1.38 -8.05 3.05 33.21 81.64 -1.67 

12% 1.03 -5.46 1.93 29.83 21.86 -0.90 

14% 1.72 -3.35 1.43 27.70 1.38 0.29 
Note: Values of D and F were not significantly different from zero and are not reported. 

Values that violate hypotheses are displayed in bold.  
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Experiment Two: Exclusive Preference During RR-RR Schedules 

 Behaviors expressed on the two target classes were tallied per 500-generation block. The 

percent of target behaviors on the preferred alternative, which equals 

max(𝐵1, 𝐵2)

𝐵1 + 𝐵2
 

, was calculated. The median of these values per ten consecutive blocks was taken, so each data 

point in this experiment represents five thousand generations.  

Phase One 

 AOs were evaluated on unequal RR schedules of reinforcement in phase one. Data are 

graphed in Figure 9. Hypotheses d and e concern how AOs should behave in these settings, and 

data confirm these hypotheses: as the ratio between RRs increases or the overall rate of 

reinforcement increases, the preference for the richer alternative steadily increases as well.  
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Figure 9. AO Preference for the richer alternative in a pair of unequal concurrent RR-RR schedules of reinforcement. Lines 

connect values where the left alternative had the RR value shown in the key. 
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 Net one shows less preference for the richer alternative at low overall reinforcement 

rates. For instance, when the richer alternative is RR 5, net one shows a maximum preference of 

0.68 compared to the ETBD’s maximum preference of 0.85. In most cases net one’s preference 

is lower than that of the ETBD. In contrast, net two’s preference for the richer alternative is 

unexpectedly high for rich schedules. For the richest schedules net two shows complete 

preference for the richer alternative even at low ratios of reinforcement density between the two 

options. The graph for preference in net two is vertical at the left compared to the gradual slopes 

in the other two graphs, indicating a much higher sensitivity to reinforcement ratios than would 

be expected. 

Phases Two and Three 

 Phases two and three tested AO behavior on equal schedules of RR reinforcement. Data 

from both experiments are consistent with hypothesis f. For phase two, median preference as a 

function of schedule index is graphed in Figure 10. The first and last four points of Figure 10 

show preference on RR 160/160 schedules, while the middle four points show preference on RR 

5/5 schedules. Net one shows weak preference for either alternative across all schedules. While 

preference in net two is comparable to the ETBD’s for rich RR 5 schedules, its preference for a 

side on lean RR 160 schedules is also weak.  



ETBD with Stochastic Networks    60 

 

 

Figure 10. AO preference for an arbitrary alternative during equal concurrent schedules of RR reinforcement. Schedules one 

through four and nine through twelve are RR 160/160, schedules five through eight are RR 5/5.  

 For phase three, median preference on 500-generation blocks is graphed in Figure 11. A 

similar pattern of preference is evident here. For all schedules, preference in net one is much 

weaker than preference in the ETBD. Net two shows absolute preference for low RR values, but 

switches to weak preference when the reinforcement rate crosses a threshold between RR 5/5 and 

RR 10/10.  
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Figure 11. AO preference for an arbitrary alternative during decreasing equal concurrent RR schedules. Schedules start at a rich 

RR 2/2 and decrease every four points, ending at a lean RR 640/640. The sequence of equal RR values is 2, 3, 4, 5, 10, 20, 40, 80, 

160, 320, 640.  

Experiment Three: Preference Development During Stubbs and Pliskoff (1969) Schedules 

 Each data point in experiment three represents an aggregate of behaviors that meet 

specified criteria across schedules. For each such criterion, the log of the ratio of behaviors 

between the two alternatives was calculated.  

Phase One 

 In phase one data were aggregated across all schedules with the same reinforcement ratio. 

Behaviors were placed into bins according to the number of consecutive reinforcers that had 

already arrived in that schedule. Data from this experiment are graphed in Figure 12. Data are 

consistent with hypotheses j and k. For all AOs, preference levels off after three to five 

reinforcers have been acquired, and a richer reinforcement context yields a higher slope of ascent 

and a higher asymptote.  
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Figure 12. AO development of preference under Stubbs and Pliskoff (1969) schedules of reinforcement. 

 The preference development of the ETBD is more erratic compared with the smoother 

curves generated by data from net one and net two. The difference between the richer and leaner 

reinforcement contexts has less of an effect on net two than it does on net one.  

Phase Two 

 Phase two shows how AO preferences shift when encountering two consecutive 

reinforcers on the same side (a “confirmation,” using the terminology of Davison and Baum, 

2000), or on alternating sides (a “disconfirmation”). Data from this experiment are graphed in 

Figure 13. Each graph contains a series of splits showing the difference between preference 

following a reinforcer obtained on the left vs. on the right. All graphs start close to the origin, 

which shows that behaviors are evenly distributed between the two target classes across the 
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entire experiment. The points with an x-value of one show preferences given that the last 

obtained reinforcer was on the left or right alternative, with higher y-values indicating more 

preference for the left. In each case, a confirmation leads to a small shift in preference while a 

disconfirmation causes a larger shift. Shifts are larger in the richer reinforcement context of RI 

25 and smaller in the leaner reinforcement context. This pattern is consistent with hypothesis i.  

 While the overall pattern is similar between AOs, the ETBD shows a larger maximum 

preference at both RI values. The highest point on the first graph, which occurs when the ETBD 

obtains three reinforcers in a row on the left alternative for RI 25, has a y-value of 1.34. The 

same point for net one has a y-value of .99, and for net two, 1.00. Since this is a logarithmic 

scale, the ETBD’s maximum preference after three reinforcers is more than twice as large as the 

maximum of the other two AOs.  
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Figure 13. AO preference shifts following confirmations and disconfirmations. Branches of a color connect values of log(B1/B2) 

between successive reinforcers. For instance, each brown line shows preference development across a sequence of reinforcers 

obtained on right-right-right, and the yellow path shows the same for the sequence left-right-right.  

Results Summary 

 The results of the two nets when evaluated against the twelve hypotheses is described in 

Table 4.  
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Table 4 

 

Summary of Results with Respect to Hypotheses 

Hypothesis Statement Net One Net Two  

a. 𝑎𝑟  ≈  .83 for all 𝜑a 

 

  

b. 𝑎𝑚  ≈  .68 for all 𝜑a 

 

  

c. Effects of rate and magnitude are independent ✓ ✓ 

d. Preference increases with ratio of schedule densities ✓ ✓ 

e. Preference increases with overall reinforcement rate ✓ ✓ 

f. Preference on equal RR-RR increases with reinforcement 

rate 

✓ ✓ 

g. 𝐴 <  0; 𝐶 <  0; 𝐵2 –  4𝐴𝐶 <  0; 𝐷 =  0; 𝐹 =  0; and 

𝐺 >  0  

 

✓  

h. 𝐺 increases with mutation rate 

 

✓  

i. |𝐴|  −  |𝐶|  >  0  ✓  

j. Preference reaches asymptote before eight reinforcers ✓ ✓ 

k. Denser reinforcement causes faster approach to asymptote ✓ ✓ 

l. Reinforcer patterns yield a characteristic interleaved 

pattern 

✓ ✓ 

Note: “X” indicates that there was support for the hypothesis in the behavior record of the AO. 
a For net one and net two the ranges of values of 𝑎𝑟 and 𝑎𝑚 were much larger than anticipated, 

though the means were in the correct range.   

 

General Discussion 

  The pattern of met and missed hypotheses for net one suggests a poor calibration between 

it and the ETBD. The relationship between mutation rate and the sensitivity exponent from the 

cGML is tepid in the ETBD, but sensitivity in net one is tightly dependent on mutation rate (see 

Figure 7). While hypotheses d, e, and f were technically met in net one, the degree of preference 

for a side in RR-RR schedules is markedly lower in net one that in the ETBD (see Figures 9, 10, 

and 11). Changeovers are two or three times as common in net one compared with the ETBD 

baseline (see Figure 8).  
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 Net one and genetic algorithm A (see Appendix A) produce the same results if they begin 

from the same state, produce the same output, and obtain the same consequence. Genetic 

algorithm A is much like the ETBD, but on short timescales there may be differences in outputs. 

The ETBD’s sequence of behavior populations is serially dependent on the previous population. 

These discrepancies may lead to the failed hypotheses and weak preferences found in the 

previous experiments.  

 To evaluate this idea, a post hoc experiment was run on net one and the ETBD to detect 

serial correlations in behavior records. A single reinforcer on the left target class was set up at 

the beginning of a trial. Once that reinforcer was acquired, the pattern of behaviors was recorded 

for twenty-five generations, and during those generations no other reinforcers were scheduled. 

This test was run 10,000 times. The output at each tick was labeled as positive one if the 

behavior was in the left target class, negative one if in the right target class, and zero if it was in 

neither. The correlation between output at 𝑡 = 0 (i.e., the first behavior after the reinforcer was 

acquired) and all other time points in the sequence was calculated. Results from this experiment 

are shown in Figure 14. These results demonstrate a much “sticker” behavioral profile for the 

ETBD than for net one.  
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Figure 14. Target class correlations with output at 𝑡 =  0 after a single reinforcer is acquired at time 𝑡 =  −1. The ETBD 

shows significant persistent positive serial correlations in the absence of reinforcement. For instance, if the behavior at time 𝑡 =
 0 was in the left target class, the chance of a behavior in that target class is increased at all subsequent times. This effect is 

independent of reinforcement. If the behavior at time 𝑡 =  0 was in the right target class (which was not previously reinforced), 

then subsequent behaviors will be more likely to be in the right target class as well.  

Genetic Drift in the ETBD 

 The ETBD shows significant correlations between behaviors that persist through time, 

even in the absence of reinforcement, while net one shows no such correlations. In other words, 

random signals in the present significantly affect the future behavior of the ETBD. This 

statement is not true for net one. 

 An explanation for this difference can be found by examining both algorithms in the 

absence of reinforcement and mutation. In net one the distribution of latent behaviors remains 

constant over time given no reinforcement or mutation, and so successive behaviors are random 

draws from an unchanging distribution. However, the distribution of behaviors in the ETBD does 

not stay constant given these constraints. At each time tick the ETBD generates a new population 

by randomly selecting and mating pairs from the current population. The expected distribution of 
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children at time 𝑡 + 1 is dependent on the current population at time t, and the expected 

distribution of children at time 𝑡 + 2 is dependent on the population at time 𝑡 + 1, and so on. 

Crucially, the set of children is a sample from this expected distribution and not the distribution 

itself. As a result, the statistics describing the population of behaviors can fluctuate between 

timesteps. The distribution of children at 𝑡 + 1 may therefore be different from the distribution at 

𝑡, since the random nature of sampling may cause the new set of parents to cover a distinct set of 

genomes.  

 As a result, random sampling errors accumulate in the ETBD. While the result may be 

close to the same as net one for the next step, random deviations gradually move the population 

of behaviors in one direction or another. These deviations will persist over time, thus leading to 

correlated outcomes between subsequent samples. This process is analogous to genetic drift in 

biological populations.  

 This explanation leads to a testable hypothesis for the original ETBD. If the population 

size of the ETBD were large, then the difference between the sampled populations at each time 

step due to genetic drift should tend toward zero. Conversely, a smaller population should 

increase the difference between populations at successive timesteps. So, larger populations in the 

ETBD should produce outputs more like net one, with higher changeover rates and lower 

preference during RR-RR schedules. 

Modeling Genetic Drift in Net One 

 If genetic drift in the ETBD has an observable effect on outputs, then net one as currently 

formulated is not a reasonable approximation to the ETBD, since net one contains no mechanism 

for reproducing the effects of genetic drift. So, it is necessary to find a way to model genetic drift 
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in net one. Ideally this mechanism would be consistent with a mechanism of biological neural 

networks while at the same time reducing the differences between the behavior records of net 

one and the ETBD.  

 A small amount of information about the population of the ETBD exists in the most 

recent emission. Let 𝑏𝑡 refer to the most recently emitted behavior. After emission of 𝑏𝑡, it is 

possible to conclude at the very least that the population at time 𝑡 contains 𝑏𝑡. More broadly, the 

emission of 𝑏𝑡 implies that other behaviors like 𝑏𝑡 are also likely to exist in the population at 

time. For example, the parents of 𝑏𝑡 should share approximately half their bits with 𝑏𝑡, and any 

other children of those parents should share about a quarter of their bits with 𝑏𝑡. 28 Any random 

sampling process that caused 𝑏𝑡 to come into existence would probably also create other 

behaviors with a similar genome as 𝑏𝑡. So, the similarities between 𝑏𝑡 and another behavior in 

the population at time 𝑡 should on average have more bits in common than would two random 

points in the genotype space. As a result, the emission of 𝑏𝑡 indicates that the population of 

behaviors in the ETBD is closer to 𝑏𝑡 on average than would be expected of a random 

population. So, there should be more similar behaviors to 𝑏𝑡 in the emission sequence than there 

would be dissimilar behaviors, so there would be correlated results over time.  

 Recall that the reinforcement operator in network one contracts all behaviors toward the 

reinforced output. So, a reasonable approximation to the effects of genetic drift would be to 

 

 

28 Any non-shared bits would also have a 50% chance of having the same allele on average, so parent genomes 

would share about 75% of alleles. 
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unconditionally dispense a small amount of artificial reinforcement at each time tick. This small 

artificial reinforcer will be referred to as the Reinforce Every Behavior (REB) value. 

Reinforce Every Behavior 

 Adding REB will reduce sensitivity to reinforcement rate.29 To compensate it is 

necessary to increase the strength of obtained reinforcement, so adding REB requires 

recalibrating the outputs of net one. Since adding REB would require changing up to three 

parameters (i.e., the REB constant and the slope and intercept of the FDF mean conversion 

equation 𝜌(𝜇)), three constraints are needed. If genetic drift in the ETBD is the main cause of 

differences between behavior records, then hypothetically, adding REB and increasing obtained 

reinforcement strength should bring the behavior records in line with each other.  

Evaluating the REB Hypothesis 

 To test this idea, net one was tuned to match the outputs of the ETBD on 𝑎𝑟, 𝑎𝑚 and 

changeovers at 10% mutation. The set of schedules is the same as phase one from pilot testing 

(see Table 2). Fitting on these criteria produces REB = 0.067 and 

𝜌(𝜇) = .57 − .70 log10 (
𝜇

40
) 

. 

 Results from this manipulation show that it causes the outputs of net one to fall crisply in 

line with those of the ETBD. Experiment one is repeated (see Table 2) using the retuned net one. 

 

 

29 Consider what would happen in the extreme case where the strength of reinforcement was the same for the REB 

constant and an obtained reinforcer. In this case there would be no discrimination between reinforced and 

unreinforced behaviors, so sensitivity to both rate and magnitude would approach zero.  
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See Figure 15 for the graphs of 𝑎𝑟, 𝑎𝑚, and the intercept of the quadric surface, and for the same 

values for the ETBD. The graphs of  𝑎𝑟 and 𝑎𝑚 for net one with REB and the ETBD overlap. 

The intercept of the quadric changeover surface is not identical to that of the ETBD, though the 

difference is minor compared to the difference between the ETBD and the baseline 

implementation of net one. 
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Figure 15. Outcomes from repeating experiment one and adding REB. The outputs after adding REB are much more like the 

ETBD in sensitivity and in changeover profiles. The REB constant was tuned to replicate the ETBD on the data points on each 

graph where the mutation rate is 10%.  

 Experiment two, phases one through three, are repeated using the same settings used for 

the repetition of experiment one. The outcomes from these experiments support the claim of 

increased similarity between net one with REB and the ETBD as compared to the baseline 

implementation.  
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Figure 16. Outputs from repeating experiment two phase one while adding REB to net one. The x-axis on each graph is the 

reinforcement ratio between two RR schedules, and the y-axis is the preference for the richer schedule expressed as the fraction 

of target behaviors on the richer alternative. The graphs are split by the richer alternative from RR 2 to RR 15. Each data point 

represents five thousand generations. 
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 See Figure 16 for graphs of the outputs from repeating experiment two phase one. Each 

graph shows how the three AOs prefer the richer alternative in a series of unequal concurrent 

RR-RR schedules. There are five graphs separated by the richer RR schedule to make it easier to 

compare preference. In all graphs, the orange line (net one with REB) is closer to, and the blue 

line (net one baseline) is farther away from, the grey line (ETBD).  

 

 

Figure 17. Outputs from repeating phases two and three from experiment two while adding REB to net one. The x-axis on each 

graph is the reinforcement ratio between two RR schedules, and the y-axis is the preference for the richer schedule expressed as 

the fraction of target behaviors on the richer alternative. Both graphs show preference for one alternative when an AO is 

exposed to concurrent equal RR schedules. Each schedule repeats for four data points, and each data point represents five 

thousand generations. Schedules on the top graph are 160/5/160, and schedules for the bottom graph are 

2/3/4/5/10/20/40/80/160/320/640. 
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 See Figure 17 for a graph of the outputs from repeating phases two and three. In both 

graphs, the similarities between the orange and grey lines are apparent, and the blue line sits far 

beneath the other two.  

Discussion of REB 

 REB does indeed seem to bring the outputs of net one into close alignment with those of 

the ETBD. So, to the extent that the ETBD’s behavior record replicates that of live animals, REB 

brings net one closer to what would be expected from live behavior. It is important to address 

whether this added reinforcement is ad hoc or can be justified on theoretical grounds.   

 There seems to be a biological correlate to REB, which is the “standard” STDP (recall 

that STDP refers to spike timing dependent plasticity) that occurs in the absence of 

reinforcement or punishment. The first experiments on STDP (Bi & Poo, 1998) did not 

incorporate any measures of neuromodulatory transmitters, nor did these experiments try to 

manipulate those transmitters. STDP experiments started in the unsupervised paradigm. 

Experiments showed that repeated stimulation of a presynaptic neuron followed by a 

postsynaptic neuron would lead to increased strength of the synapse connecting them regardless 

of consequences.  

 In net one, reinforcement is modeled by switching synapses between weights of positive 

and negative one, and in net two it is modeled as a graded change of weight. Net two’s graded 

weight change is based on neuromodulated STDP, so it would make sense that unmodulated 

STDP should have a correlate in net two. This correlate would add a small amount of 

“reinforcement” after every action, which is exactly what REB does.  
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 There may be a second correlate to REB in dopamine (DA) signaling. DA is a 

neurotransmitter that is heavily implicated in reward processing (Berridge & Robinson, 1998). In 

particular, phasic DA signals, which are brief spikes of DA concentration at latencies of 70-100 

ms in the midbrain, are associated with presentation of rewarding stimuli (Schultz, 2015). A 

common interpretation of the role of dopamine is that it signals reward prediction error, which, 

in operant learning situations, leads to changes in the weights of synapses responsible for the 

behavior that preceded the reward (Bayer & Glimcher, 2005; Joel, Niv, & Ruppin, 2002; 

Schultz, 2015; Schultz, Dayan, & Montague, 1997). However, an alternative (but not mutually 

exclusive) interpretation is that phasic dopamine spikes occur when a non-aversive consequence 

is caused by a behavior; in other words, dopamine helps an agent figure out which events are 

under its control (Redgrave & Gurney, 2006; Redgrave, Gurney, & Reynolds, 2008). In this 

interpretation, phasic DA leads to the repetition of behaviors that produce changes in the 

environment, and successive pairings of behaviors with their caused stimuli confirm that the 

agent is responsible for those stimuli (Redgrave et al., 2008). This effect of DA would produce a 

behavioral record that appeared as if some non-reinforced behaviors had actually been 

reinforced. This the effect that REB provides. This “behavioral stickiness” should crop up as 

increased preference during equal RR-RR schedules and decreased changeover rates during RI-

RI schedules, for instance; REB causes the agent to be more likely to stay where it is. Indeed, 

these effects emerge when REB is added (see figures 14 and 16).   

 To sum up, there is theoretical and empirical support to the idea that adding REB to net 

one would make its outputs resemble animal behavior. The theoretical support is from the 

similarities with STDP and phasic DA, and the empirical support is from the similarities between 
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its outputs and the outputs of the ETBD. However, it is unlikely that REB would have the 

desired effect on net two due.  

Conclusions 

 This paper showed how the ETBD can be translated into a stochastic neural network. A 

simpler version of the ETBD, genetic algorithm A (see Appendix A), is procedurally identical to 

network one. The differences between the output patterns of network one and the ETBD were 

shown to be dependent on the structural differences between the ETBD and genetic algorithm A. 

Specifically, the resampling of the behavioral population at each tick plays a key role in behavior 

patterns under RR-RR and RI-RI schedules. This resampling was simulated in network one by 

adding a REB constant, which is a small amount of reinforcement dispensed unconditionally 

after every time step.  

 Applying REB in artificial agents might bring about more similarity between their 

behavior records and those of biological agents. Adding REB and reinterpreting reward as a 

measure of control over the environment would allow an agent to discover what it is able to 

accomplish with its actions. This reinterpretation would fit nicely with the options framework of 

hierarchical reinforcement learning (Veeriah et al., 2021), where an RL agent attempts to 

discover sequences of behavior patterns that produce results relevant to the agent’s long term 

goals.  

 At the same time, this paper showed how a further extension with real-valued synapses 

and STDP-like learning rules failed to replicate the outputs of the ETBD. This failure indicates 

that there is a process within the ETBD that is not captured by the dynamics of network two.  
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Limitations 

Computational and Structural Limitations 

 An unanswered question about nets one and two is where one might look in a nervous 

system to find a copy of the algorithms. The ETBD has no direct analogue to a neural process, so 

there is no need to look for one.30  Networks one and two are mere caricatures of biological 

networks, so it is unlikely that any biological process has only the functions of the networks in 

this paper. More work is needed to answer this question. 

 Indeed, there may be more than one reasonable answer. For instance, a single cortical 

minicolumn has ~100 neurons (Favorov & Kelly, 1994a, 1994b), which is the same size as 

network one, so there may be a natural extension of network one that maps its structure and 

function onto a minicolumn. However, given the abstractness of what behaviors mean in these 

studies, it is possible that the best match is a brain region somewhere high up in the motor 

hierarchy. This interpretation would require each binary neuron from net one to correspond to an 

interconnected cluster of biological neurons, and outputs would be lower-level clusters in the 

hierarchy.  

 Another possible answer is that there is nothing in the brain that functions like networks 

one or two. It may be the case that the output similarities between the ETBD and those of 

 

 

30 However, there are researchers who describe processes like reproduction and mutation in neural networks. 

Fernando and colleagues ((Fernando, Goldstein, & Szathmary, 2010; Fernando, Karishma, & Szathmary, 2008; 

Fernando et al., 2012; Fernando, Vasas, Szathmary, & Husbands, 2011) argue for the neuronal replicator hypothesis, 

which describes a mechanism for how small groups of neurons copy their patterns onto other groups.  Edelman 

(1987) argues for neural Darwinism, which states that networks compete for access to stimuli, and those that are 

unable to latch onto a reliable source of stimulation will be cannibalized by other more active networks.  
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animals exist only on a computational level and not a structural one (McDowell, 2013b). As 

such, the “ladder” from the ETBD to a biologically plausible network may not exist, or there 

may be several rungs missing. These gaps would correspond to large deviations between 

successive models that could not be bridged without theoretically or empirically unsound 

additions. 

Evidentiary Limitations 

 To the extent that the ETBD’s outputs have been shown to match up with those of live 

organisms, the benchmarks set in Table 1 are reasonable goals for a biological network. 

However, some of the findings of the ETBD have not been replicated in live animals (e.g., 

changeover patterns found by McDowell et al., 2012), and some of the predictions of the ETBD 

are more detailed or precise than what has been established by animal studies (e.g., preference 

during unequal RR-RR schedules found by McDowell & Klapes, 2018). If future studies refute 

these findings of the ETBD in live animals, this set of benchmarks will need to be updated.  

Future Directions 

Improving Net Two 

 While the gap between net one and the ETBD is narrowed by adding REB, there was no 

attempt in this paper to address whether a similar alteration to net two would have the same 

effect. When examining the outcomes of experiment two for RR values below five, net two had 

increased preference for richer or equal alternatives as compared with the ETBD. Hypothetically, 

adding REB to net two would further increase this preference, pushing the results of net two 

farther away from those of the ETBD. Thus, it seems unlikely that solely adding REB to net two 

would improve the situation. Alternate points of attack would be needed. 
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 One such point may be found by examining how information accumulates across the 

network as successive reinforcement occurs. In net one, whenever there is a reinforcer, all 

synapses are eligible for a change, and the probability of change equals the reinforcement 

magnitude. So, if a reinforcer with magnitude 𝜌 is obtained, then at the next time tick 

approximately 20𝜌 of the synapses31 connected to the next pair of activated hidden nodes will 

have been altered by the reinforcer. For typical values of 𝜌 this means around four to ten 

synapses active at the next time step will have been altered. However, following reinforcement in 

net two, only the synapses that are connected to the two activated hidden nodes are eligible for 

change. At the next step only an expected 40/𝑘 of the synapses32 connected to activated nodes 

will change, where 𝑘 is the total number of hidden nodes. For 𝑘 =  27, fewer than two activated 

synapses at the next time step will change on average. As a result, weight changes due to 

reinforcement are concentrated in fewer synapses. A solution to bring net two in line with net 

one might be to increase the number of active hidden nodes at every time step while also 

reducing the strength of reinforcement at each synapse. This would create more eligible synapses 

and a more rapidly diffusing and less concentrated change in weights. 

 Another difference between nets one and two is the variability of reinforcement and 

mutation effects across eligible synapses. In net one each synapse has a specified probability of 

changing for each reinforcement or mutation. For mutation, this probability is usually 0.1%, and 

 

 

31 There will be two active nodes at the next step, each with ten synapses. If the fraction of changed synapses equals 

ρ, then there will be 2 ∗ 10 ∗ ρ changed synapses observed at the next time step on average.  
32 The fraction of all synapses changed will be 2/𝑘. There are twenty synapses connected to active hidden nodes at 

the next time step, so the average number of observed changed synapses will be 40/𝑘. 
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for reinforcement it is usually between 20% and 50%. Contrastingly, in net two each eligible 

synapse has a 100% probability of changing. As a result, there is more uncertainty added to the 

distribution of weights in net one, and it may be the case that this added uncertainty contributes 

to its behavioral outcomes. A way to increase the variability of weight changes in net two would 

be to add or multiply by a random variable as opposed to a fixed value when reinforcement or 

mutation occurs. An exponentially distributed random variable might work for reinforcement, 

and a beta distribution might work for mutation.  

Beyond Nets One and Two  

 The project started by this paper aims to build connections from a genetic algorithm up to 

a realistic simulation of a biological network. Net two is a rung on a ladder that hopefully will 

reach between the ETBD and biologically plausible networks. After figuring out what alterations 

are necessary to get net two producing the same results as net one, net two will be expanded on 

to include structures that are more consistent with real neurons and networks. There are many 

constraints that might be added to net two to move to the next step in the ladder.  

 For instance, net three might include separate populations of inhibitory and excitatory 

neurons in accordance with Dale’s rule (Catsigeras, 2013; Strata & Harvey, 1999). It might 

contain recurrent connections and act like a liquid state machine (Maass et al., 2002), making 

information about timing and delay available for later use. Doing so would require net three to 

run in continuous time, which might lead to using any of several suitable models of neurons 

(Izhikevich, 2004). Net three might simulate interactions between multiple networks with 

reentrant connections, modeling the neural darwinism of Edelman (1987). It might use 

populations as readouts instead of single neurons, allowing for graded responses (Valente et al., 
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2021). Or, it might add storage akin to the prefrontal cortex and learn how to open and close 

gates to information, replicating some hypothesized functions of the basal ganglia (O'Reilly & 

Frank, 2006). 

 Each addition should be studied carefully to make sure that outputs are what might be 

expected. The pattern of outputs in net one deviated significantly from those of the ETBD for an 

unexpected reason, and the outputs of net two diverged even more. Any addition to these 

networks is likely to encounter unexpected deviations due to their complexity. Finding 

theoretically and empircally sound alterations that overcome these deviations, and doing so 

without overfitting to outputs, will be a challenge.    
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Appendix A 

Definition of Network One 

 A set of synapses fully connect ten output neurons to 𝑘 hidden neurons (See Figure 18). 

Unless otherwise specified, 𝑘 is one hundred. Output neurons have fixed indices from one to ten 

that decide the readout order. Synapse weights can only be negative or positive one. Upon 

initialization of the network, each synapse has a randomly selected weight. There are no other 

connections between neurons, and there are no inputs to the network.  

 All neurons have binary states that update at each time step. The value one corresponds to 

“on” and zero corresponds to “off.” Output depends on current input, and the output at the 

current time does not depend on the outputs or inputs at earlier times.  

 At each time step, exactly two hidden neurons fire, chosen uniformly without 

replacement from the pool of hidden neurons. Each output neuron sums the incoming synapse 

weights from only the fired hidden neurons. If the sum is positive, the output neuron fires. If 

negative, it does not fire. If zero, it has a 50% chance of firing. The output of network one is the 

sequence of ones and zeroes corresponding to the ordered sequence of on/off states of output 

neurons. This sequence is passed to an environment that determines the consequences of the 

output.  

 If the emitted sequence obtains a reinforcer from the environment, then all synapses 

connecting hidden and output neurons undergo a reinforcement rule: 

• If the output neuron fired, then the synapse weight becomes positive one with probability 

ρ and is unchanged otherwise.  
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• If the output neuron did not fire, then the synapse weight becomes negative one with 

probability ρ and is unchanged otherwise. 

 A mutation rule is then applied to all synapses. With probability 𝜑/10, a synapse will 

change sign, otherwise it stays the same. 33  

 In summary, the sequence of operations at each time step is as follows: fire two random 

hidden neurons → fire output neurons → generate behavior from output bits → query 

environment → apply reinforcement rule → apply mutation rule. 

 

 

Figure 18. Structure of network one. There are k hidden neurons fully connected to ten output neurons. 

Genetic Algorithm A 

 This algorithm is identical to the operations of network one.  

1. Randomly initialize a population of one hundred bitstrings, each of length ten. 

 

 

33 Division by ten is necessary since in the ETBD the mutation rate is per behavior, not per synapse. 
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2. Mate two behaviors using universal crossover and emit the offspring.  

3. If the emitted behavior e obtains a reinforcer of magnitude ρ, apply the following rule 

to every behavior b in the population: for every bit in the genome of b that differs 

from the corresponding bit in e, flip the bit in b with probability ρ. 

4. Mutate each bit of each behavior in the population with probability 𝜑/10.  

5. Repeat steps 2-4 until a prespecified condition is true. 

Relevant Differences with the ETBD  

 Selection rules are different between this genetic algorithm and the ETBD. When there is 

a reinforcer after a behavior emitted at location 𝑒, then the likelihood of behavior 𝑏 becoming a 

parent in the ETBD is inversely proportional to phenotype distance, which is min (|𝑏 −

𝑒|, 1024 − |𝑏 − 𝑒|). In genetic algorithm A, the reinforced behavior is one of the parents for 

every pair. Each behavior in the population becomes a parent of exactly one child, but the 

percent of bits contributed depends on the magnitude of reinforcement. Stronger reinforcers 

cause the reinforced behavior to push more of its bits into the next generation.  

 In the ETBD, when there is no reinforcement, the set of behaviors will still update. 

Populations are resampled from an implied distribution over a set of hyperplanes. The implied 

distribution will vary at each tick due to genetic drift. Unexpectedly, this difference caused an 

observable effect in behavior outputs.  

Definition of Network Two 

 Network two has the same topology as network one (see Figure 18) but 𝑘 is free to vary. 

Synapse weights can be any real value and are initially set to zero. At every time step, two 

neurons chosen uniformly at random from the pool of hidden neurons turn on. Each output 
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neuron sums the incoming synapse weights from the active hidden neurons. The probability that 

an output neuron fires is 

𝑝(𝑦 = 1|𝑥) =
1

1 + 𝑒−4𝑥
 

, where 𝑥 is the sum of synapse weights from the active hidden neurons. The output neurons are 

read in their specified order, “on” corresponding to “one” and “off” corresponding to “zero”, 

which creates a ten-digit binary number. This number is emitted into a user-defined environment. 

 If the emitted behavior obtains a reinforcer of nominal magnitude 𝑚, all synapses from 

the active hidden neurons undergo the following reinforcement rules: if the output neuron fired, 

then increase the synapse weight by a positive value 𝑚 ∗ 𝜃; if the output neuron did not fire, 

decrease the synapse weight by 𝑚 ∗ 𝜃. Synapses from silent hidden neurons do not change. For 

the mutation step, multiply the weight of all synapses by 

1 −
𝜑

5
 

, where 𝜑 is the equivalent mutation rate of the ETBD. 
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Appendix B 

Derivation of Mutation Rule for Network Two 

 Derivation of this rule consists of solving two problems about an ample collection of bits 

that flip with a fixed probability at each time tick. The first problem is solving for the expected 

proportion of ones as a function of the starting proportion, the chance of flipping, and the number 

of elapsed steps. The second problem is how to track this sequence of proportions with a 

“mutation” rule for input weights. An approximation using multiplicative decay causes outputs 

to track the sequence of expected proportions.  

Problem One: Bits in a Mutating Population 

 Initialize a population of 𝑗 bits such that the proportion of ones in this population is equal 

to 𝑘. Bits in the population undergo a sequence of mutations. At each time point, every bit 

independently flips one → zero or zero → one with probability 𝑟. Let the sequence of random 

variables 𝑋𝑖 equal the proportion of ones in the population after 𝑖 mutations. Let the sequence of 

values 𝑎𝑖 equal the expectations of these random variables, 𝑎𝑖 = 𝐸(𝑋𝑖). By assumption, 𝑎0 = 𝑘. 

The desired value is a closed-form solution for 𝑎𝑖.  

 After 𝑖 mutations, there are 𝑗 ∗ 𝑋𝑖 bits equal to one and 𝑗 ∗ (1 − 𝑋𝑖) bits equal to zero. 

Group size multiplied by 𝑟 gives the expected number of bits that mutate out of the group. Group 

size times 1 − 𝑟 gives the expected number of bits left untouched. These values are used to 

calculate the expected number of bits with given values before and after a mutation (see Figure 

19). 
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Figure 19. Expected count of bits in the population with a given value before and after the mutation step. 

 Summing the top row solves for the expected count of ones at time 𝑖 + 1: 

𝑗 ∗ 𝐸(𝑋𝑖+1) =  𝑗 ∗ 𝑋𝑖 ∗ (1 − 𝑟) +  𝑗 ∗ (1 − 𝑋𝑖) ∗ 𝑟. 

 Rearranging terms and dividing by 𝑗 gives 

𝐸(𝑋𝑖+1) =  𝑋𝑖 − 2𝑋𝑖𝑟 + 𝑟. 

 Apply the expectation operator to both sides of the equation. Since the expectation 

operator is linear and idempotent (i.e., 𝐸(𝐸(𝑋)) = 𝐸(𝑋)), 

𝐸(𝑋𝑖+1) =  𝐸(𝑋𝑖) ∗ (1 − 2𝑟) + 𝑟. 

 By the earlier definitions  

𝑎𝑖+1 = 𝑎𝑖 ∗ (1 − 2𝑟) + 𝑟 

 with initial condition 

𝑎0 = 𝑘. 

 This gives a linear recurrence relation. The closed-form solution of this recurrence is: 

𝑎𝑖 = .5 + (𝑘 − .5) ∗ (1 − 2𝑟)𝑖. 

  Bit Before Mutation 

  One Zero 

Bit After Mutation 

One j ∗ Xi ∗ (1 − r) j ∗ (1 − Xi) ∗ r 

Zero j ∗ Xi ∗ r j ∗ (1 − Xi) ∗ (1 − r) 
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 This equation simplifies after performing a change of variables. Define the excess to be 

the expected proportion of ones more than .5; the excess 𝑧𝑖 at time 𝑖 is 𝑧𝑖 = 𝑎𝑖 − .5. After the 

variable change, the recurrence becomes  

𝑧𝑖+1 = 𝑧𝑖 ∗ (1 − 2𝑟) 

with initial condition 

𝑧0 = 𝑘 − .5, 

and the closed-form solution becomes 

𝑧𝑖 = 𝑧0 ∗ (1 − 2𝑟)𝑖. 

So, mutating the population with probability r will multiply the excess by 1 − 2r, and the 

sequence of excesses decays geometrically.  

 The mutation rate per bit, 𝑟, is different from the ETBD’s mutation rate 𝜑. Each behavior 

in the ETBD consists of ten bits and mutation only affects one bit per mutated behavior. So, the 

bitwise mutation rate is 

𝑟 =
𝜑

10
 

. The multiplication factor on the excess is therefore 

1 −
𝜑

5
 

at each time step: 

𝑧𝑖 = 𝑧0 ∗ (1 −
𝜑

5
)

𝑖

 

.  
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Problem Two: Tracking the Excess in the Synapse Weights 

 A value drawn from a population after 𝑖 rounds of mutation will equal one with expected 

probability 𝑎𝑖, defined previously. Network two requires a weight update rule such that outputs 

are like this sequence of population draws. For simplicity, start with the case where there is one 

constantly active hidden neuron and only one output neuron. Refer to the sequence of synapse 

weights by 𝑤𝑖. So, 𝑤𝑖 should update such that “on” probabilities, conditioned on the sum of 

weights equaling 𝑤𝑖, approximate 𝑎𝑖: 𝑝(𝑦 = 1|𝑥 = 𝑤𝑖) ≈ 𝑎𝑖.  

 The transfer function for network two is 

𝑝(𝑦 = 1|𝑥) =
1

1 + 𝑒−4𝑥
. 

Note that 

𝑑𝑝

𝑑𝑥
= 1 

when 𝑥 = 0, and 𝑝(𝑦 = 1|𝑥 = 0) = .5. So, the first-degree Maclaurin polynomial of 𝑝 is 𝑥 + .5. 

In other words, in a sufficiently small neighborhood around 𝑥 = 0, 𝑝 is well approximated by the 

function 𝑥 + .5. Approximate 𝑝 by its Maclaurin expansion and set 𝑥 to a value 𝑤𝑖 that is 

sufficiently close to zero. These substitutions simplify the problem to finding 𝑤𝑖 + 5 = 𝑎𝑖. Thus, 

𝑤𝑖 should equal the excess defined in problem one. This yields the following rule: if the input to 

the transfer function is the excess, then the output approximates the expected proportion of ones.  

 So, to obtain outputs that approximate the sequence of expected proportions of ones, then 

inputs should be the sequence of excesses that correspond to those proportions. From problem 

one, the excess recurrence is: 



ETBD with Stochastic Networks    107 

 

𝑧𝑖+1 = 𝑧𝑖 ∗ (1 −
𝜑

5
) 

. So, viewing the last weight 𝑤𝑖 as the excess in a population at time 𝑖, then multiplying 𝑤𝑖 by 

1 −
𝜑

5
 

gives the excess at the next step. Continuing this process, the outputs will approximate the 

sequence of proportions of ones in the population. Therefore, multiplying the weight by 

1 −
φ

5
 

 at each time step gives outputs that look like draws from a mutating population.  

 Note that this equivalence is not dependent upon the number of weights in the 

summation. Since multiplication distributes over addition, there is no difference in the outcome 

between a single weight of 𝑤 or multiple weights that add to 𝑤. So, this rule may apply to all 

weights simultaneously with the same effect.  

 Therefore, the mutation rule is to multiply all weights by 

1 −
𝜑

5
 

at each time step.  

Discussion 

 This approximation will become less exact the farther the input is from zero. The 

derivative of 𝑝 is maximal when 𝑥 = 0, so the tendency will be for outputs to have less 

sensitivity to changes in input when the input is far from zero. One way to combat this decay in 

sensitivity is to increase the weight decay when inputs are large. A second would be to create a 
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piecewise linear transfer function that has constant derivative between y-values of zero and one 

and is constant outside of this range.  


