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Abstract 

 
Web Tool for Clinic Trio-Based Sequence Data Analysis to Identify Potential Pathogenic 

Variants for Rare Genetic Diseases 

By  Kevin Johnson 
 

An important tool in the diagnosis of rare genetic diseases is whole exome or genome 

sequencing (WES/WGS). It is believed that many rare genetic diseases are caused by rare 

variations in the patients’ genome. Typically, clinical WES/WGS is done for patients and their 

parents in an attempt to find potential pathogenic variations. Advanced bioinformatics skills are 

needed to analyze these WES/WGS data. Variant annotations about the variant position in a 

gene, biological functions, and possible pathogenicity need to be referred to from genomic 

databases. WES/WGS data with variant annotation need to be cleaned, filtered, and presented in 

a meaningful way. An automated web tool for the processing and analysis of trio-based 

WES/WGS data could help clinicians diagnose rare genetic diseases. I have developed a 

workflow process that automatically, which will create a table of possibly pathogenic variants 

and display the output table alongside the input WES/WGS data in a webtool. The tool makes the 

process of variant identification and visual review easier and quicker in the diagnosis of rare 

genetic diseases. 
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 Introduction 

 Rare diseases are typically defined as those that affect around 1 in 2,000 individuals 

(0.05%)1. It is estimated that up to 80% of these rare diseases have an important genetic 

component2. Determining the exact cause of a genetic disorder can improve disease management 

and lead to better patient outcomes. It is observed that in general clinical settings using next 

generation sequencing (NGS) for whole exome or genome sequencing (WES/WGS), the 

diagnostic rate for rare genetic diseases varies between 20% and 50%3. Providing convenient 

tools to help clinicians analyze WES/WGS data could improve the diagnostic rate and patient 

outcomes.   

 Genetic diseases can be mono-genetic (primarily caused by a single gene), poly-genetic 

(caused by multiple genes), or caused by a structural chromosomal abnormality. Mono-genetic 

disorders can be further classified as due to Mendelian inheritance, de novo mutation, or both. 

Mendelian means the mutation in question follows Mendelian inheritance and is present in one 

or both of the parents, at least in carrier form. De novo mutations are spontaneous changes to the 

genome, typically occurring early in embryonic development. Sometimes a disorder requires two 

copies of an allele, and one can be inherited and one can be a de novo mutation. De novo 

mutations are of special concern, as they are rarer and subject to less evolutionary pressure and 

could be more likely than inherited variants to cause rare genetic diseases4. Structural 

chromosomal abnormalities are where large pieces or entire chromosomes are duplicated or 

missing and depending on the change can determined before birth or will need sequencing to 

determine.  Polygenic disorders can have many causal mutations, each with small effects that 

combine to a pathogenic phenotype, these polygenetic diseases are more common than rare 



 

       

diseases5. Rare genetic diseases are more likely to be related to mono-genetic or small structural 

chromosomal changes than to polygenic effects6. 

 Nowadays, the process for determining a genetic cause for a rare disease would use the 

sequencing tools of WES/WGS. WGS data provides information on the entire genome while 

WES focuses on the exome, or protein coding regions. A typical workflow involves sequencing 

patients and their parents, aligning sequencing data to a reference genome, determining variants 

present in the family, obtaining annotation information about the variants, filtering variants, and 

finally outputting a report for the identification of potentially pathogenic variants and genes. 

 On average, an individual will have around 5 million total variants and 500,000 variants 

on known regulatory regions7.  The vast majority of these variants are benign. To be useful to 

clinicians, variant data needs to be cleaned, filtered, and presented in a meaningful way. Before 

Variants can be filtered, information about the variants needs to be compiled. Using that 

information, a filtering scheme needs to be able to identify possibly pathogenic variants. Various 

methods exist to attempt to quantify how likely a variant is to be pathogenic but there is not a 

formalized test or process. Instead, variants are typically ranked or filtered according to their 

differing attributes with common, or likely benign variants removed. 

 These filtered variants along with their functional annotations can then be included in a 

report of possibly pathogenic variants to provide clinicians additional information, especially for 

the cases no known pathogenic variants are identified. To help clinicians make diagnosis with the 

report, visual review of the variant annotation information along with their raw WES/WGS 

variant call files or aligned sequence read files is needed. Variant review can help check the 

region of a variant to see nearby genes or check the sequence depth to confirm a variant. A few 



 

       

tools already exist to allow clinicians and researchers to visually inspect sequencing data and 

review variants, including the Integrative Genomics Viewer (IGV)8. 

 Here we introduce a web tool that simplifies the process of variant filtering and visual 

review. The webtool combines the functionality of IGV with an interactive table that allows the 

user to explore possibly pathogenic variants and their functional annotations. The webtool 

displays filtered, annotated variants and presents those variants along with a viewing instance of 

the genome. The table of variant locations and attributes is linked to the viewing instance 

allowing for quicker review of variants and their attributes. 

Methods 

 A pipeline was developed to annotate and filter genetic variants called from WES/WGS 

raw read data and saved as variant call files (VCFs). The current process of annotating and 

filtering the data in the developed pipeline is outlined in figure 1.  An output file containing a 

subset of potential pathogenic variants and their functional annotations is generated by the 

pipeline. A webtool developed using R Shiny then visualizes the output file of the pipeline, along 

with the corresponding VCF and aligned sequence files. The process was  used on a trial data set 

received from a clinical setting. 

 

 

 

 

 

 

 



 

       

Figure 1 Data pipeline for Pathogenic Variant Identification 

Sequencing and Variant Calling 

 WGS/WES on the proband (patient) and close family members is the first step of most 

NGS workflows. The data is then aligned to a reference genome. Variant calling is the process of 

determining the differences in the target sequence from a reference DNA sequence. Sequencing, 

alignment, and variant calling yield the candidate variants that could be related to the rare 

disease. 

 The current process for the webtool is functional for both WGS and WES on a single 

individual or multiple related individuals. The data is expected in the form of a variant call 

format file. A VCF file only stores variations from a reference genome rather than an entire 

sequence9. Using a bioinformatics package, Samtools, multiple samples can be merged into a 

single file for use in the annotation process10. 

Annotation 

 Annotation is the process of labeling known biological function information to the target 

data set of genetic variants. Often this includes the variants’ locations and if they are on or near 

known coding regions. Common annotation software will categorize variant locations as 

intergenic regions, introns, exons, splice donors and splice acceptors, three and five prime 



 

       

untranslated sites, and ncRNA coding sites. Many of the variants will be on intergenic regions 

and will not directly code for genes. However, some intergenic variants have been known to 

cause changes in gene expression and effect disease phenotypes11. Variants can also be located 

on genes. Variants can be located on introns, where they will not code for amino acids and on 

exons, where they will code amino acids. Variants can also be in regions where non-coding RNA 

(ncRNA) is coded. ncRNA is RNA that will ultimately not be translated into protein. Most 

ncRNA has no known function, but some ncRNA can affect gene expression12. Variants can also 

occur on splice acceptor and donor sites. These are areas at the beginning and ends of exons and 

introns where transcripts will be spliced together. Variants can also be located on three prime 

untranslated regions or five prime untranslated regions. These are areas right before or after start 

and stop codons. Where a variant is located can be important to determine the possible effects a 

variant could have. Variants located in coding regions or that affect the starting or stopping of 

transcription may be likelier to cause disease. However, variants in these locations may not 

always have deleterious effects.    

 Annotation sources will often provide the coding effect a variant will have. Annotations 

will describe a variant as synonymous, non-synonymous, indel-frameshift, indel-nonframeshift, 

startLoss, stopLoss, and stopGain. Synonymous variants will not change the amino acid coded 

for on a codon, while non-synonymous variants will. Changing an amino acid may change the 

protein and lead to loss of function for a gene. Indel-frameshift variants are insertions or 

deletions that will change the reading frame during transcription, often leading to a non-

functional protein. StartLoss and stopLoss variants are single variations on start or stop codons. 

StopGain variants are single nucleotide variations that lead to a new stop codon being created. 



 

       

Variants that interfere with the starting and stopping of transcription are more likely to lead to 

non-functional proteins. 

 Annotation sources can add more information in addition to variant sites and possible 

coding effects of variants. The exact amino acid coded for, the exact codon and transcript the 

variant is on, and outside databases entries on variants can be included. Outside databases can 

give frequency of a variant among certain populations or if a variant has been flagged as 

pathogenic in any clinical databases. Often annotation will add genome wide variant scores that 

attempt to predict conservation and deleteriousness. These scores are based on algorithms that 

attempt to predict the conservation or deleterious effects of variants. Deleterious scores try to 

measure harmful variants. Conservation scores try to measure how quickly or slowly a region of 

the genome evolves, with the assumption that slowly evolving regions are evolutionary 

important and variants in these regions could be harmful. 

 In this project, the variants were annotated using Bystro and the Variant Effect Predictor 

(VEP) tool from the Ensembl Genomes Project 13 14. The annotation process will refer to 

databases from the NCBI Reference Sequence (refSeq) project, the Single Nucleotide 

Polymorphism Database (dbSNP), the Clinvar database, and the genome Aggregation Database 

(gnomAD). 

 The refSeq database was used for information about the structural effect of variants and 

the location in the genome15. The dbSNP was used for additional information about single 

nucleotide polymorphisms including unique identifiers16. Clinvar was important to access for 

information on disease causing or pathogenic variants17. GnomAD gave information on allele 

frequency in different populations needed for filtering18. 

 



 

       

Filtering  

 Annotated variants need to be filtered to identify the possibly pathogenic variants. It is 

generally agreed upon which variables to use as filters, but the exact thresholds used can vary. 

Filtering typically takes place in two stages, primary and secondary. Primary filtering typically 

accounts for read quality, minor allele frequency, coding effects of variants, and if available 

family segregation. Not all variants are of the same quality and sequencing tools will give some 

sort of quality score reflecting the probability that a variant exists a location. Minor allele 

frequency refers to how often a variant appears in a given sub-population. Rarer variants are 

more likely to be disease causing and a minor allele frequency of 1% is often the upper limit of 

filtering19. Family segregation is powerful for identifying de novo variants and relies on parental 

sequencing data being available. Secondary filtering is based off genome wide variant scores. 

 Before the webtool can display data, output from both Bystro and VEP annotation are 

read into and filtered by an R script. The webtool displays the resulting table. The filtering 

scheme is based on existing literature and was separated into primary and secondary filtering. 

The primary filter was based on VCF quality scores, allele frequency,  family segregation, allele 

function, allele site type, and the variants presence in the clinvar database. The secondary filter 

used cadd, phastCons, and phyloP scores. 

 The first filter was removing variants below a certain quality score threshold. The VCF 

quality scores were based on a PHRED scaling20. 

 PHRED quality =−10𝑙𝑜𝑔 (𝐵𝑎𝑠𝑒𝑐𝑎𝑙𝑙𝑖𝑛𝑔𝑒𝑟𝑟𝑜𝑟𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦)  

  A higher quality implies a lower error probability. A quality score of 10 corresponds to 

90% accuracy and 20 to 99%. Variants with a quality score below 20 were excluded. Family 

segregation means variants were excluded if they were not present in the target individual, only 



 

       

present in their parents. Variants could exist on multiple transcripts and therefore could have 

multiple values for certain fields. Variants were excluded if they did not have a listed function in 

refSeq and were only located on intergenic sites. Novel variants or variants with allele frequency 

of less than 1% in gnomad were included in the final output table. 

 For secondary filtering, three different genome wide variant scores were used; cadd, 

phastCons, and phyloP. Cadd is the Combined Annotation Dependent Depletion score for 

determining the deleteriousness of simple insertions, deletions, or single nucleotide variants21. 

Cadd scores are scaled similarly to PHRED scores. A cadd score of 20 implies a variant is in the 

1% most deleterious variants and 30 would be among the 0.1%. A cutoff of 15 was used in line 

with recommendations from cadd’s creators, but pathogenic cutoffs are understood to be fairly 

arbitrary. Both phastCons and phyloP are algorithms that give conservation scores22. PhastCons 

accounts for the effects of neighboring bases while phyloP does not. PhyloP is scaled 0 to 1 with 

values nearer to 1 evolving slowly. Phylop is scaled from -20 to 30 with positive values evolving 

slower than expected and negative values evolving faster. Variants were included if they had 

phyloP scores above 3 or PhastCons scores greater than or equal to 0.9. A variant was filtered out 

only if was below all three score thresholds. 

 Additionally, any variant with a clinvar entry with a clinical significance rating other than 

“benign” was automatically included in the final outcome, regardless of any other field values. 

Clinvar designates the clinical significance of variants in line with recommendations of the 

American College of Medical Genetics and Genomics and the Association for Molecular 

Pathology23. Clinvar also includes information about number of submitters and the review status 

of the variant. 

 



 

       

Additional Merges  

 After filtering, some additional cleaning and merges take place. This only applies to 

filtered variants. Gnomad Loss of Function (lof) tables are designed to give additional 

information about frameshift, splice donor, splice acceptor, and stop-gain variants24. Specifically, 

these tables aim to give more information about whether variants cause loss of function for the 

proteins they code for. These tables added probability of loss of function intolerance (pLI) scores 

and observed expectation ratios (oe). PLI scores attempt to identify genes that are cannot tolerate 

truncating mutations. A gene that changes phenotypes after a single loss of function mutation is 

known as a haploinsufficient gene, and pLI can be interpreted as the probability of a gene being 

haploinsufficient.  Oe ratios show the difference in the amount of observed LoF variants to the 

expected amount of LoF varaints if the rate of LoF variants was solely governed by chance. 

 Information from the Human Gene Nomenclature Committee was added to get gene 

descriptions and allow links to be created to outside sources. Links were created to the Gene 

Cards website (https://www.genecards.org), pubmed (https://pubmed.ncbi.nlm.nih.gov), the 

Online Mendelian Inheritance in Man data base (OMIM)(https://www.omim.org), the Human 

Gene Mutation Database(HGMD)(www.hgmd.cf.ac.uk),the dbsnp database 

(www.ncbmi.nlm.nig.gov/snp), and gnomAD (https://gnomad.broadinstitute.org). 

Visualization using the Webtool 

 The webtool takes as inputs, the filtered variant table obtained from the annotation and 

filtering process described above and files containing sequencing information. The webtool was 

developed using the shiny package for R25 26. The webtool has two major components, an IGV 

instance and an interactive table of possibly pathogenic variants. The table is searchable and sort-

able across all columns and includes five different options to control the variables displayed. The 



 

       

table is also linked to the IGV instance, and clicking on an entry in the table will focus the IGV 

instance around that variant’s coordinates. The webtool can incorporate sequencing data from 

VCF and BAM files. The IGV instance allows the user to set coordinates to view, customize the 

display of sequencing data, and save images of the current instance. IGV functionality was 

incorporated using the ivgshiny package27. Genetic data was handled using functions from the 

GenomicAlignments and VariantAnnotation packages28 29. The interactive data table was created 

using functions from the DT package and functions from the tidyverse package were used in 

general data preparation30 31. 

Results 

 From the trial data set, it was believed the patient may have a CTCF related disorder. 

CTCF disorders are still the subject of ongoing research but variants on the CTCF gene have 

been linked with rare genetic diseases32. These results are not a formal test of sensitivity or 

specificity but more of a proof of concept trial project. This data was made available in the form 

of compressed reference alignment map (CRAM) file. Variant calling was done by the lab that 

sequenced the data and VCF files were also made available. The filtering process started with 

606,315 candidate variants. 

 The final output table had 3,276 variants and 46 columns of information. A data 

dictionary with field descriptions and some possible output values is included in appendix A. 

 The variants could be associated with multiple transcripts, so could be associated with 

various site types and could have various coding effects. The difference in site type between the 

filtered variants and all variants is shown in table 1. The difference in coding effect between the 

filtered variants and all variants is displayed in table 2. Filtered results contain fewer variants on 



 

       

exonic sites and more variants on all other sites. Filtered results contain fewer variants with no 

known effect and more variants with any other coding effect.  

Table 1. Site Type of Filtered Variants 

Site Type Filtered Variants All Variants 

exonic 1,171 (30.17%) 112,045 (4.99%) 

intronic 1,805 (46.5%) 1,743,514 (77.45%) 

intergenic 3 (0.08%) 288,614 (12.82%) 

ncRNA 561 (14.46%) 20,655 (0.92%) 

spliceAcceptor 14 (0.03%) 468 (0.02%) 

spliceDonor 17 (0.03%) 529 (0.02%) 

UTR3 190 (4.89%) 59,947 (2.66%) 

UTR5 120 (3.09%) 25,372 (1.13%) 

Total Transcripts 3881 2,251,144 

 

Table 2 Coding Effects from Variants 

Coding Effect Filtered Variants All Variants 

! (No known effect) 2,435 (67.47%) 744,688 (86.94%) 

Indel-Frameshift 54 (1.50%) 2,539 (0.30%) 

Indel-nonFrameshift 54 (1.50%) 10,421 (1.22%) 

nonSynonymous 740 (20.50%) 45,656 (5.33%) 

Synonymous 295 (8.17%) 5,276 (0.62%) 

startLoss 1 (0.03%) 56 (0.0065%) 

stopGain 28 (0.78%) 326 (0.038%) 

stopLoss 2 (0.06%) 129 (0.015%) 

Total Transcripts 3,609 856,577 

 

  Variants on multiple transcripts were associated with multiple scores. Max scores 

were used for filtering. Cadd, phastCons, and phyloP scores are displayed on figure 2 and table 

3. Filtered variants had higher values for all scores. 



 

       

Figure 2. Maximum Genome Wide Scores in Unfiltered Variants. Red lines represent filter 

levels. A) cadd, B) phyloP, and C) phastCons 

A 

 

B 

 

 

C 

 



 

       

Table 4 Means in Filtered and All Variants for cadd, phyloP, and phastCons. 

Score Filtered Variants All Variants 

Cadd 12.36(8.37) 3.73(4.02) 

phyloP 2.07(2.45) -0.31(1.25) 

phastCons 0.79(0.37) 0.09(0.23) 

 

Variants were only included if they were present in the proband. Proband variants shown 

by parental status at displayed in table 5.   

 

Table 5 Proband Variants by Parental Alleles. 

 Father 

Mother Not Present  Heterozygote Homozygote 

Not Present 845 635 44 

Heterozygote 581 889 60 

Homozygote 62 44 116 

 

The webtool correctly functions and displays both a table of variants and an IGV instance 

with sequencing data. These aspects of the webtool can be seen on Figure 3. 

 

 

 

 

 

 

 

 



 

       

Figure 3. Webtool with Bam file loaded 

 

Using the webtool, it was explored if there were any variants related to CTCF or in the 

region of the CTCF gene. Using the webtool a nonSynonymous variant on an exonic coding 

region for the CTCF gene was identified (figure 4). This variant had a phastCons score of 1, 

phyloP score of 3.3, and a cadd score of 27. The variant was novel to the gnomad database but 

had an entry in Clinvar. The clinvar entry was “likely pathogenic” with only 1 submitter and no 

assertion criteria provided. The allele was included in a submission without evidence but an 

interpretation was included. 

Figure 4 Example of variant identification process. 



 

       

 

Discussion 

 I have developed a pipeline to annotate and filtered WES/WGS data, and a webtool to 

visualize the output annotated file of a subset of potential pathogenic variants along with their 

VCF and sequence read files. Source code for the replication of the variant viewer is publicly 

available as is the R code for the filtering scheme. The command line codes for running the VEP 

annotation is also included in a read-me file. Currently the source code and instructions for the 

tool are available at the github page https://github.com/joh11045/variant_viewer/.    

 The filtering strategy did change the distribution of site types and coding functions of the 

variants. The variants included in the final table had a lower proportion of intergenic and intronic 

sites and a higher proportion of every other site type. Similarly, the proportion of variants with 

no known coding effect fell while all other coding effects rose.  Filtered variants had higher 



 

       

genome wide scores for the three algorithms used compared to all variants. The final table 

created from the filtering strategy represents about 0.5% of the variants present in the family trio. 

 So far this thesis report has outlined a method for filtering variants in an attempt to 

highlight likely pathogenic variants and described the accompanying webtools for variant 

exploration. It stays mostly in line with recommended practices but diverges in a few key places. 

It does not explicitly remove synonymous variants. Synonymous variants have been shown to 

cause rare genetic diseases in some cases33 34. Overall though, most identified variants were non-

synonymous. Additionally, using a soft secondary filter was different, the total number of 

included variants using hard filters would have been 710. The goal of the filtering was to be 

sensitive enough to capture possibly damaging variants rather than more specific about which 

variants to include. 

 The webtool allows for quickly searching and ranking filtered variants and immediately 

seeing their location on the genome. This can allow researchers and clinicians to get a better 

sense of the variants that could be pathogenic. Additionally, the tool allows for the examination 

of the sequencing data. This can allow for better understanding of possible sequencing errors and 

speed up the process of visually confirming variants. 

 This method has a few limitations. This is not a tool that can ultimately determine if a 

variant is casual for a disease, it is only a tool designed to help clinicians and researchers better 

understand their data. This tool is also sensitive to upstream data errors. It is reliant on accurate 

sequencing data. Especially with the potential identification of de novo variants.  Of the 845 

variants not present in either parent, the proband was homogeneous for 83 and heterogeneous for 

the rest. It is unlikely that there would be double de novo mutations on the same site.  “Not 

present” was re-coded from the inherited “missing” value from the Bystro annotation. Missing 



 

       

could represent areas where the genome matches the reference genome and there is no variant or 

areas where there was not enough coverage to have an accurate call. This is problematic for the 

detection of de novo variants. This is an issue that can be resolved by visual inspection of the 

sequencing data, but may not be practical at scale. The returned table is searchable, sortable, and 

allows for different sets data to be displayed on screen. However, the returned table may be 

difficult to navigate as 3,276 variants are returned with over 40 columns of information for each 

variant. It may be necessary to tweak the filtering scheme to return fewer variants. Future 

offerings for the webtool could allow custom filtering of the variants, but currently no such 

functionality exists. 

 Future functionality of the webtool will likely include merging the filtering script and 

webtool display to allow real time filtering of the variants. In addition, the annotation data will 

be reduced to only include VEP annotation data to simplify the filtering script. Updated versions 

will be available on Github. 

 In case of the trial data with the CTCF trio, the webtool was able to identify a 

nonSynonymous variant on an exonic coding region. The variant was not in the gnomad 

database, an indication that it has a very low frequency in the population. The genome wide 

scores associated with the variant indicated that it was likely deleterious and located on a 

conserved region of the genome where variations could be harmful. The webtool also showed 

that the variant was not present in either parent and located directly on the CTCF gene. 

Sequencing data showed it was truly not present in either parent, rather than missing.  The 

proband was heterogeneous, meaning it is likely a de novo mutation. This example illustrates the 

potential benefits and use case for the webtool as an aid in the review of possibly pathogenic 

variants. Better identification of possibly pathogenic variants could lead to better understanding 



 

       

of the underlying biology of the disease. If many possibly pathogenic variants are clustered 

around a single gene, it could mean that gene is important to the disease. Additionally, it could be 

used to identify novel variants on known disease-causing genes. Better understanding around the 

causes of rare genetic diseases will lead to better patient outcomes. 

 In conclusion, I have developed a tool for the viewing and identification of potentially 

pathogenic variants out of free, open-source software. The source code can be freely downloaded 

and the tool can be replicated. This tool could be useful for physicians or geneticists working in a 

clinical setting to identify and treat rare genetic diseases.  



 

       

Appendix A 
 
Variable Description Values 
chrom Chromosome  
chromEnd Chromosome End Position  
chromStart Chromosome Strart Position  
ID dbSNP id, rs and number  
ref Reference allele (HG 37)  
alt The alternative or nonference allele  
QUAL Quality score from original sequencing  
cDNA Relative cDNA value from VEP 

annotation 
 

refSeq.refAminoAcid Amino Acid code for reference allele  
refSeq.altAminoAcide Amino Acid code for the alternative 

allele 
 

refSeq.codonNumber Codon number  
Gene Gene name  
hgnc.gene.description Gene description from HUGO Gene 

Nomenclature Committee 
 

Father Allele type of the father Heterozygote 
  Homozygote 
  Not Present 
Mother Allele type of the Mother  
Proband Allele type of proband (cannot be not 

present) 
 

pubmed_links link to pubmed 
pubmed.ncbi.nlm.nih.gov 

 

omim_link Link to OMIM www.omim.org  
PhastCons conservation score that includes 

neighboring bases 
 

pLi Probability of loss-of-function 
intolerance; probability that transcript 
falls into distribution of haplo 
insufficient genes 

 

oe_lof Observed over expected ratio for pLoF 
variants in transcript 

 

phyloP conservation score that does not 
include neighboring bases 

 

cadd score for the deleteriousness of a 
variant 

 

gnomad.genomes.af Non-reference allele frequency across 
all populations 

 

gnomad_links link to gnomad 
gnomad.broadinstitute.org 

 

refSeq.nearest.name   



 

       

refSeq.siteType Effect of the alt allele intronic 
  exonic 
  UTR3 
  UTR5 
   spliceAcceptor 
  SplicDonor 
  ncRNA 
  intergenic 
refSeq.exonicAlleleFunction Coding effect of variant Synonymous 
  NonSynonymous 
  indel-nonFrameshift 
  indel-frameshift 
  stopGain 
  stopLoss 
  StartLoss 
clinvar.alleleID Clinvar unique identifier for a variant  
clinvar.clinicalSignificance Significance of a variant in clinvar Benign 
  Pathogenic 
  Likely Benign or 

Pathogenic 
  Conflicting 

interprtations 
  Uncertain 

significance 
clinvar.type Type of variant Single nucleotide 

variant 
  Insertion 
  Deletion 
  NT expansion 
  Duplication 
  Indel 
clinvar.phenotypeList Associated phenotypes for variants at 

this position 
 

clinvar.numberSubmitters Number of submissions in clinvar 
overlapping this position 

 

clinvar.origin Orgin tissue of clinical sample germline 
  somatic 
  unknow; not provided 
clinvar.referenceAllele reference allele for this position in 

clinvar 
 

clinvar.alternateAllele alternative alleles for this position in 
clinvar 

 

clinvar.reviewStatus Level of review supporting clinical 
significance values 

Reviewed by expert 
panel 



 

       

  criteria provided 
multiple submiters no 
conflicts 

  criteria provided 
single submiter 

  criteria provided 
conflicting 
interpretations 

  no assertion criteria 
provided 

   
clinvar.structure.alleleID Clinvar unique identifier for a variant  
clinvar.structure.clinicalSignificance Significance of a variant in clinvar Benign 
  Pathogenic 
  Likely Benign or 

Pathogenic 
  Conflicting 

interprtations 
  Uncertain 

significance 
clinvar.structure.type Type of variant Single nucleotide 

variant 
  Insertion 
  Deletion 
  NT expansion 
  Duplication 
  Indel 
clinvar.structure.phenotypeList Associated phenotypes for variants at 

this position 
 

clinvar.structure.numberSubmitters Number of submissions in clinvar 
overlapping this position 

 

clinvar.structure.origin Orgin tissue of clinical sample germline 
  somatic 
  unknow; not provided 
clinvar.structure.referenceAllele reference allele for this position in 

clinvar 
 

clinvar.structure.alternateAllele alternative alleles for this position in 
clinvar 

 

clinvar.structure.reviewStatus Level of review supporting clinical 
significance values 

Reviewed by expert 
panel 

  criteria provided 
multiple submiters no 
conflicts 

  criteria provided 
single submiter 



 

       

  criteria provided 
conflicting 
interpretations 

  no assertion criteria 
provided 

refSeq.description Gene Descritpition from refSeq 
database 

 

HGMD_link link to Human Gene Mutation 
Database 

 

genecard_link link to genecards.org  
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