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Abstract

Statistical Methods for Evaluating Continuous and Functional Diagnostic Markers
By Jeong Hoon Jang

The proposed statistical research in this dissertation is motivated by a renal study
conducted at Emory University. The study consists of kidneys with suspected ob-
struction, whose initial diagnoses were provided by nuclear medicine experts and
residents. This study also includes functional markers (renogram curves) that have
been collected as a noninvasive mean of interpreting kidney obstruction. The over-
arching scientific goal of this study is two-fold: (1) to understand the reliability of
experts’ and residents’ interpretations of kidney obstruction; and (2) to evaluate the
diagnostic utility of renogram curves for detecting kidney obstruction.

First research topic aims at developing new agreement indices based on root mean
square of pairwise differences (RMSPD) that can be used to quantify agreement
among multiple heterogeneous raters. The advantages of the proposed indices are:
(1) interpretations are tied to the measurement scale; (2) satisfactory agreement is
conveniently determined via pre-specified tolerable RMSPD. The proposed indices
are applied to the Emory renal study to quantify the reliability in interpretations of
kidney obstruction.

Quantitative features of functional markers (maximum, time to minimum, average
velocity, etc.) are increasingly being used to diagnose diseases. Second research topic
aims to study their alignment according to an ordinal reference test. I propose a class
of summary functionals, which flexibly represent various quantitative features, and
study its alignment via broad sense agreement (BSA, Peng et al., 2011). Asymptotic
properties of the proposed BSA estimator are established. This work is applied to
the Emory renal study to unveil quantitative features of renogram curves that closely
replicate experts’ interpretations.

Third research topic aims to assess the diagnostic accuracy of quantitative features
based on area under the receiver operating characteristic curve (AUC). I propose a
non-parametric AUC estimator that addresses discreteness and measurement error
in functional data and establish its asymptotic properties. To describe the hetero-
geneity of AUC in different subpopulations, I propose a sensible adaptation of a
semi-parametric regression model, whose parameters can be estimated by the pro-
posed estimated estimating equations. This work is applied to the Emory renal study
to identify quantitative features with high AUCs, and to investigate their relationship
with patients’ characteristics.
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2

1.1 Background

Diagnostic markers are measurable indicators of the presence of a certain disease or

medical state. Well-known examples include complete blood count, antigen level, oxy-

gen level, diagnostic surveys (self-reported or physician-diagnosed) and many more.

A quality of disease management and clinical decision-making heavily depends on

the availability of good diagnostic markers. However, most markers are imperfect for

detection of relevant disease or infection. Thus, rigorous evaluation of a diagnostic

marker is a high priority in many clinical research programs.

An agreement study is concerned with assessing the performance, reliability and

validity of a novel or generic marker by comparing its clinical measurements against

the final true diagnoses or target (gold standard) values. In this dissertation, we aim to

develop a set of novel agreement indices that can quantify inter-rater reliability among

multiple heterogeneous raters and have simple interpretation tied to the original scale

of measurement.

With advancements in technology, more and more cutting-edge, non-invasive med-

ical devices are being used to diagnose and monitor diseases. The increasing com-

plexity of data they generate, however, often pose unique statistical challenges for

establishing a clinically interpretative relationship between the data-derived mark-

ers and disease pathology. In this dissertation, we focus on one such type of data,

namely functional markers which are increasingly being produced by modern devices.

Specifically, we develop novel statistical methods for systematically extracting im-

portant, interpretative features and patterns from functional markers, and rigorously

evaluating their diagnostic utility.
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1.2 Literature Review

1.2.1 Statistical methods for assessing agreement

The introduction of a new diagnostic marker is fundamental to the advancement of

healthcare. The proposed adoption of a new marker into routine clinical practice

essentially requires rigorous assessment of its acceptability, and this amounts to eval-

uating the accuracy and precision of its clinical measurements. As such, an agreement

study is commonly conducted in clinical settings to evaluate the reliability and valid-

ity of a new marker by comparing its clinical measurements against the designated

gold standard or target values taken on the same subjects (Lin et al., 2002). In this

section, we review statistical methods used to assess agreement.

Categorical or ordinal scale

Cohen’s kappa coefficient (κ) has been widely used assess the agreement of binary

(Cohen, 1960) or categorical (Fleiss, 1971) outcomes between two raters. κ is a chance-

corrected measure of agreement that is calculated from the observed and expected

frequencies on the diagonal of a square contingency table. The formula to calculate

κ is

κ =
p0 − pe
1− pe

= 1− 1− p0
1− pe

,

where p0 is the relative observed agreement among raters and pe is the hypothetical

probability of chance agreement. A value of 0 for κ indicates agreement equivalent

to chance and a value if 1 indicates perfect agreement.

Fleiss’ kappa coefficient (Fleiss, 1971, Kraemer, 1980) is an extension of the Co-

hen’s kappa coefficient that can assess agreement among more than two categorical

raters. Similar to the original kappa coefficient, the Fleiss’ kappa coefficient can be in-

terpreted as expressing the extent to which the observed amount of agreement among

raters exceeds what would be expected if all raters provide measurements completely
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randomly.

In many reliability and validity studies, clinical measurements are often on an or-

dinal scale. With ordinal measurements, the weighted kappa coefficient (Cohen, 1968)

is a popular chance-corrected measure of agreement. The measure is computed using

a predefined table of weights which quantifies the degree of disagreement between the

two raters; this approach allows counting disagreements differently by setting higher

weights to represent higher disagreement.

The aforementioned measures can provide a good overall summary of agreement

among categorical- or ordinal-scale raters, but may suffer from a loss of precision due

to the potential variations of agreement among different subpopulations. Investigators

thus may wish to assess the degree of agreement taking into account clinical and/or

demographic covariates. Several generalized estimating equations (GEE) approaches

have been proposed to model kappa or weighted kappa as a function of covariates

(Gonin et al., 2000, Klar et al., 2000, Williamson et al., 2000). The GEE approach

is particularly advantageous because it requires minimal assumption of the data and

enables estimation and inferences for the kappa estimates to be done simultaneously

(Banhart et al., 2001, Lin et al., 2007).

Continuous scale

Clinical measurements are usually in numerical forms or continuous data, such as

blood pressure, glucose level, oxygen level, etc. To date, a considerable body of

research has sought to develop statistical methods in assessing agreement between

continuous raters. Bland and Altman (1986, 1999) advocated the use of a graph-

ical method to plot the difference scores of two continuous measurements against

the mean for each subject and to quantify agreement by studying the mean differ-

ence and constructing limits of agreement. Intraclass correlation (Bartko, 1966) and

within-subject coefficient (Lee et al., 1989) are traditional measures of agreement for
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continuous data.

The concordance correlation coefficient (CCC) is one of the most popular scaled

indices for assessing agreement between paired continuous raters (Lin, 1989, 1992).

Specifically, let Y1 and Y2 be denote a pair of continuous measurements produced by

two raters from the same subject, with means µ1 and µ2, variances σ2
1 and σ2

2, and

covariance σ12 (finite second moments). Lin (1989) defined the measure as

CCC = 1− E[(Y1 − Y2)2]
σ2
1 + σ2

2 + (µ1 − µ2)2
=

2σ12
σ2
1 + σ2

2 + (µ1 − µ2)2
, (1.1)

where E[(Y1 − Y2)
2] is the mean squared deviation (MSD) that characterizes the

degree of discordance between Y1 and Y2. CCC takes into account both accuracy and

precision in measurements, and can be characterized by its ease of representation,

in which 1 (-1) represents a perfect (perfectly reversed) agreement, and 0 represents

no agreement. A GEE approach was introduced to model covariate-adjusted CCC

(Banhart et al., 2001). Furthermore, Banhart et al. (2002) introduced the overall

concordance correlation coefficient (OCCC), which is a generalization of the CCC in

the presence of multiple raters.

Intuitively, a good diagnostic utility of a continuous marker may be warranted if

a large proportion of its measurements are within a predetermined boundary from

target values. In this context, a set of unscaled agreement indices, which directly

incorporates MSD as a performance criterion, was proposed (Lin, 2000, Lin et al.,

2002). Lin (2000) introduced the total deviation index (TDI) that describes an ac-

ceptable/tolerable range of absolute difference such that a predetermined proportion

of the absolute differences between paired continuous measurements taken on the

same subject is within that acceptable range. Specifically, let |D| = |Y1 − Y2| denote

the absolute difference so that E(D2) represents the MSD. Then, given predetermined

proportion π0, the solution to π0 = Pr(|D| < x) = Pr(D2 < x2) defines the TDIπ0 ,
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that is,

TDIπ0 =
√
G−1(π0),

where G(·) is the cumulative distribution function (CDF) of D2 and G−1(·) is the

inverse function of G(·). For estimation and inference, (Lin, 2000) assumed that

D is normal with mean µd = µ1 − µ2 and variance σ2
d = σ2

1 + σ2
2 + σ12, so that G

represents the cumulative noncentral chi-squared distribution with 1 degree of freedom

and noncentrality parameter µ2
d/σ

2
d. For non-normal data, several non-parametric

approaches for estimation and inference of the TDI were introduced (Choudhary,

2010, Perez-Jaume and Carrasco, 2015, Lin et al., 2016).

Coverage probability (CP) is a reciprocal concept, in which a proportion of the

absolute differences within a pre-specified acceptable range is computed. Both TDI

and CP measures were extended through a mixed ANOVA model to allow evalua-

tion of agreement among multiple raters (Lin et al., 2007). Recently, Banhart (2016)

proposed relative area under the coverage probability (RAUCPC) as an aggregated

agreement index in the presence of multiple predetermined acceptable/tolerable ab-

solute differences. The index is scaled in nature but based on a series of CP values

evaluated over the range of absolute differences.

Functional scale

With the advancement in data collection technology, more and more clinically appli-

cable markers are being collected as functional curves. Herein the measurements on

a subject are assumed to be realizations of a continuous underlying process that are

sampled at dense discrete time points (or points on other continua). The individual

datum is thus the whole function (curve), rather than its value at any particular point.

A comprehensive overview of recently developed functional data analysis (FDA) tools

and their interesting applications can be found in the book by Ramsay and Silverman

(2005) and references therein.
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Li and Chow (2005) extended the traditional CCC measure defined in (1.1) to

allow assessment of agreement between paired functional markers. The authors char-

acterized the degree of discordance between the two functional markers by their MSD,

which was newly defined based on the functional inner product. Specifically, let Y1

and Y2 be the two functional markers defined on some probability functional space

F , and denote Y1(t) and Y2(t) as their respective realizations on t ∈ T , a finite closed

real interval. Then the functional inner product in F can be defined as (Li and Chow,

2005)

< Y1, Y2 >= E

∫
T
Y1(t)Y2(t)w(t)dt,

where w is a nonrandom weight function that takes non-negative values on T . Using

this notion of inner product, Li and Chow (2005) defined the CCC for assessing

agreement between Y1 and Y2 as

CCC =
2 < Y1 − E(Y1), Y2 − E(Y2) >

||E(Y1)− E(Y2)||2 + ||Y1 − E(Y1)||2 + ||Y2 − E(Y2)||2
,

where ||Y || =
√
< Y, Y >. This extended CCC measure possesses same characteristics

as those of two continuous random variables (Lin, 1989); for instance, its value of 1

(-1) represents a perfect (perfectly reversed) agreement, and its value of 0 represents

no agreement. Note that the weight function allows to assign different importance to

different parts of T .

More recently, Rathnayake and Choudhary (2016) proposed a methodology for

constructing pointwise and simultaneous tolerance bands for functional measure-

ments, as an extension of tolerance intervals for univariate measurements that have

been widely used to assess individual bioequivalence (Brown et al., 1997, Chow and

Liu, 2008).
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Different scales

In some clinical studies, there is no guarantee that measurements produced by two

raters are on the same scale, even though they measure and represent the same

biological process or disease severity. For instance, in many mental health studies,

researchers are very interested in replacing one diagnostic instrument with another

less costly (surrogate) diagnostic instrument for more effective detection of psychiatric

disorders; however, the two instruments often have different scales due to distinctive

structures and point systems in their respective questionnaires (Peng et al., 2011,

Rahman et al., 2017). All the approaches described above are not applicable in such

cases, because they require measurements to be on the same scale.

Recently, Peng et al. (2011) proposed a broad sense agreement (BSA) framework,

which is designed to evaluate the capability of interpreting a continuous measurement

in an ordinal scale, and thus extends the classical framework of agreement. Let X

and Y denote a continuous measurement and Y an ordinal measurement of a common

outcome variable from the same subject, respectively. Peng et al. (2011) stated that

order consistency is a crucial requirement for perfect broad sense agreement, that is,

if X(∗k) denotes the randomly selected X given Y = k (k = 1, 2, . . . , K), a perfect

broad sense agreement (disagreement) case implies X(∗1) < X(∗2) < · · · < X(∗K)

(X(∗1) > X(∗2) > · · · > X(∗K)) with probability 1.

Let {R1, R2, . . . , RK} denote the ranks of {X(∗1), X(∗2), . . . , X(∗K)}. Then the

following index quantifies the degree of BSA between Y and X (Peng et al., 2011):

ρbsa(X, Y ) = 1−
E
{ K∑
k=1

(k −Rk)
2
}

E
{ K∑
k=1

(k −Rk)2 | X⊥Y
} ,

where E(·) denotes the expectation and E(· | X⊥Y ) denotes the expectation given

that X and Y are independent. This index is basically a scaled measure of discrep-
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ancy between the observed ranks and the expected ranks under perfect BSA among

continuous measurements. The index always takes a value between -1 and 1, with 1

(or -1) representing perfect broad sense agreement (disagreement), and 0 representing

independence between X and Y .

To accommodate potential variations of BSA among different subpopulations,

Rahman et al. (2017) recently proposed a non-parametric regression framework that

allows for nonlinear covariate effects on BSA. This new method provides a robust tool

for further investigating population heterogeneity in the alignment between ordinal

and continuous measurements.

1.2.2 Statistical methods for evaluating diagnostic accuracy

of markers

Accurate diagnosis and monitoring of diseases heavily rely upon an availability of

good markers. Statistically determining whether a certain marker is good or not

amounts to rigorously evaluating its ability to discriminate between the diseased and

non-diseased status. In this section, we review statistical methods for evaluating

markers based on their discriminating ability for diagnosing disease.

Binary scale

Let Y denote a binary marker value that gives either a positive (Y = 1) or negative

(Y = 0) result for a particular patient whose disease status is given by D, where

D = 1 if diseased and D = 0 if non-diseased. The most common way of reporting the

diagnostic accuracy of a binary marker is using sensitivity and specificity. Sensitivity

(true-positive) is the probability of a positive result given disease is present, denoted

Pr(Y = 1 | D = 1), and specificity (true-negative) is the probability of a negative

result given disease is absent, denoted Pr(Y = 0 | D = 0). Some people prefer to

use the positive predictive value Pr(D = 1 | Y = 1) and negative predictive value
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Pr(D = 0 | Y = 0) which indicate the likelihood of the disease and non-diseased

state of a patient given the positive and negative marker values, respectively. These

values, however, may give misleading conclusion regarding the accuracy of markers as

they depend on the prevalence of disease P (D = 1); extremely high (low) prevalence

may result in spuriously large (small) positive predictive values (Altman and Bland,

1994).

Continuous scale

Receiver operating characteristic (ROC) analysis can be used to evaluate the diagnos-

tic accuracy of continuous markers (Pepe, 2003). Now let Y denote the value of a con-

tinuous marker. We will assume that Y > c indicates a classification into state D = 1,

where c is a certain cutoff value. The ROC curve is a popular tool for visualizing the

diagnostic accuracy of a continuous marker. It plots 1-specificity Pr(Y > c | D = 0)

on the x-axis versus the corresponding sensitivity Pr(Y > c | D = 0) on the y-axis

versus at each possible cutoff point c (Pepe, 2000).

There is a convenient mathematical form for the ROC curve which facilitates

further investigation into many of its properties. Let F (c) = Pr(Y > c | D = 1) and

G(c) = Pr(Y > c | D = 0) denote the survival functions for Y given the diseased and

non-diseased status, respectively. Then, the ROC curve can be written as

ROC(t) = F{G−1(t)}, (1.2)

where t represents a fixed level of 1-specificity (point on the x-axis of the ROC curve)

on a given threshold c, that is, G(c) = t (Pepe, 1997).

The empirical ROC curves can be obtained by connecting the observed 1-specificity

and sensitivity pairs. But often the empirical ROC curve are quite jagged, and the

smoothed version is desired. There are several parametric and non-parametric meth-
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ods for the estimation of the smooth ROC curve (Zou et al., 1997, Pepe, 2003, Peng

and Zhou, 2004). The most common way of obtaining a smooth ROC curve is using

a binormal model. Suppose that continuous marker values given the disease status

is normally distributed; that is, Y | D = d ∼ N(µd, σ
2
d), d = 0, 1. Then the smooth

ROC curve can be obtained via equation (1.2), which can be re-written under the

binormal model as

ROC(t) = Φ

(
µ1 − µ0 + σ0Φ

−1(t)

σ1

)
,

where Φ(·) denotes the cumulative distribution function (CDF) of a standard normal

distribution.

Often, the performance of a marker may depend on patient characteristics. As

such, various regression modelling approaches have been proposed to assess possible

covariate effects on the ROC curve. One popular approach is to formulate a regression

model for the marker value given each disease status and induce the regression form

of the ROC curve (Pepe, 1998, Farraggi, 2003, Rodŕıguez-Álvarez et al., 2011). For

instance, under the binormal model, we can set µD = α0+α1D+α2X+α3DX, where

X denotes a covariate, and induce the regression model for the ROC curve as

ROCX(t) = Φ
(
β0 + β1Φ

−1(t) + β2X
)

where β0 = −α1/σ1, β1 = σ0/σ1 and β2 = −α3/σ1. This approach has been further

extended to evaluate a longitudinal marker (Zheng and Heagerty, 2004) and adjust

for functional covariates (Inácio et al., 2012). Another approach is to formulate

a regression model that directly evaluates the covariate effects on the ROC curve

(Alonzo and Pepe, 2002, Cai, 2004). More recently, Janes and Pepe (2009) introduced

a covariate-adjusted ROC curve which is a measure of covariate-adjusted classification

accuracy.

The area under the ROC curve (AUC) summarizes performance information of
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a marker across all threshold values. An AUC of 1 represents a perfect marker,

while AUC of 0.5 represents a worthless marker (e.g., coin flip). It has been shown

that AUC is equivalent to the probability of a marker value of a randomly selected

diseased subject is greater than that of a randomly selected non-diseased subject

(Bamber, 1975). Empirical AUC can be obtained by numerically integrating (e.g.,

trapezoidal rule) the empirical ROC curve. AUC can be also computed based on the

smooth ROC curve. For instance, under the binormal assumption, the AUC takes

the form of

AUC = Φ

(
µ1 − µ0√
σ2
0 + σ2

1

)
.

Several regression modelling approaches have been developed to systematically assess

covariate effects on AUC (Pepe, 1998, 2003, Dodd and Pepe, 2003).

1.2.3 Latent class models for evaluating diagnostic accuracy

of markers under no gold standard

Until now, we have focused on statistical methods for evaluating diagnostic accuracy

of a marker when a gold standard is available for verifying disease status. For many

diseases, however, neither the true disease status nor a gold standard test is available.

In some cases, the disease itself is not easily detectable due to its complex biological

mechanism underlying its trait; in other cases, a gold standard test may be too

invasive or expensive to perform without a definitive symptom that directly reflects

the presence of the disease. Disease diagnosis thus often relies upon information

obtained from imperfect or subjective diagnostic markers. In this section, we review

statistical methods using latent class models for evaluating diagnostic accuracy of

single or multiple markers in the absence of a gold standard.
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Notations and general formulation of the model

Let Yi = (Yi1, Yi2, . . . , Yip)
T denote the vector of p marker values for individual i

(i = 1, 2, . . . , n), with Yij denoting the jth marker value (j = 1, 2, . . . , p). Let Di

be the true unknown binary indicator of disease for patient i, where Di = 0 means

diseased, Di = 0 means non-diseased, and π = Pr(Di = 1) represents the prevalence

of a disease. Assuming Di as the latent class, a general formulation of the likelihood

of the latent class model is given by

L(Y|θ) =
n∏
i=1

{
πP (Yi|Di = 1,θ) + (1− π)P (Yi|Di = 0,θ)

}
, (1.3)

where θ is a vector of unknown prevalence and marker parameters, and P (Yi|Di =

di,θ) = P (Yi1, Yi2, . . . , YiP |Di = di,θ) denotes the joint probability density function

(PDF) of Yi givenDi = di (di = 0, 1). For each subject i, this is a finite mixture model

with mixing proportions π and 1−π and two component distributions P (Yi|Di = 1,θ)

and P (Yi|Di = 0,θ). Approach to parameter estimation and inference based on the

likelihood function (1.3) differs depending the distribution of Yi, or more broadly,

depending on whether the marker values are binary or continuous.

Binary scale

Suppose that we have binary markers for each ith subject, that is, a positive result

on the jth marker is denoted by Yij = 1 and a negative result by Yij = 0. Then, αj =

Pr(Yij = 1 | Di = 1) is the sensitivity, and βj = Pr(Yij = 0 | Di = 0) is the specificity

of the jth marker. When the conditional independence can be assumed, that is, the p

markers are independent of each other given the true disease status, jth marker value

given ith individual disease status (Yij | Di = di) follows an independent Bernoulli

distribution with success probability Pr(Yij = 1|Di = di). Thus, the likelihood in
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(1.3) takes the simplest form:

L(Y|θ) =
n∏
i=1

[
π

p∏
j=1

{
α
yij
j (1− αj)1−yij

}
+ (1− π)

p∏
j=1

{
(1− βj)yijβ

1−yij
j

}]
. (1.4)

This is called the conditional independence model or the two latent class model, and

the parameters θ = [α1, . . . , αp, β1, . . . , βp, π]T in (1.4) can be estimated by the EM

algorithm (Dempster et al., 1977) or the quasi-Newton method (Thisted, 1988). The

conditional independence model was first implemented in Hui and Walter (1980),

where the authors provided identifiability conditions and maximum likelihood (ML)

estimates with two diagnostic markers and two populations (with different preva-

lences).

The conditional independence assumption, however, is often violated in practice,

especially among markers based on a common biological phenomenon. Several authors

have demonstrated that it is important to account for such conditional dependence,

if it exists, in order to achieve unbiased estimation of the prevalence of disease and

accuracy of the diagnostic markers (Vacek, 1985, Torrance-Rynard and Walter, 1997).

Qu et al. (1996) proposed a Gaussian random effects (GRE) model which induces

a positive correlation among marker values. Specifically, the probability of testing

positive on jth marker depends on both the disease status Di = di of the subject and

the Gaussian latent variable ui, through a probit regression model

Pr(Yij = 1 | Di = di, ui) = Φ(ajdi + bjdiui), (1.5)

where ui is a subject-specific random effect that follows a standard normal distribu-

tion, Φ is the CDF of a standard normal variate, ajdi and bjdi are diagnostic accuracy

parameters, and the two unobserved random variables di and ui are assumed to

be independent of each other. By integrating the equation (1.5) over the standard

normal variate ui, we can estimate the sensitivity and specificity of the markers as
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αj = Φ(aj1/
√

1 + bj1) and βj = Φ(−aj0/
√

1 + bj0), respectively. The likelihood of

the model (1.5) is given by

L(Y|θ) =

p∏
i=1

∫ (
π

p∏
j=1

[
Φ(aj1 + bj1ui)

yij{1− Φ(aj1 + bj1ui)}1−yij
]

+ (1− π)

p∏
j=1

[
Φ(aj0 + bj0ui)

yij{1− Φ(aj0 + bj0ui)}1−yij
])
φ(ui)dui,

which can be easily derived from the equation (1.3) by noticing that the diagnostic

markers are conditionally independent given both di and ui. Herein, φ denotes the

PDF of a standard normal variate, and EM algorithm can be used to obtain the ML

estimates of the parameters θ = [a10, . . . ap0, a11, . . . ap1, b10, . . . bp0, b11, . . . bp1, π]T

Several other latent class models have been proposed for evaluating the accuracy

of binary markers. Torrance-Rynard and Walter (1997) introduced additional param-

eters in the joint probabilities of the marker values to capture pairwise conditional

dependence between markers. Yang and Becker (1997) used marginal models to ac-

count for the dependencies within each latent class. Albert et al. (2001) proposed a

finite mixture (FM) formulation to flexibly model the dependence between markers.

More recently, Xu and Craig (2009) proposed a probit latent class model that allows

a general correlation structure between diagnostic markers.

Some authors considered a Bayesian approach to parameter estimation and infer-

ence in the latent class model. The crux of this approach is to augment the likelihood

function (1.3) with latent disease data, and consider the complete-data likelihood

L(Y, D|θ) =
n∏
i=1

{
πP (Yi|Di = 1,θ)

}di{(1− π)P (Yi|Di = 0,θ)
}1−di ,

which allows derivation of the augmented data posterior (Tanner and Wong, 1987).

Then the Gibbs sampler algorithm which alternates between sampling θ and D from

the respective full conditional distributions can be adopted to obtain marginal pos-
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terior densities of the parameters (Joseph et al., 1995, Dendukuri and Joseph, 2001).

Under the conditional independence assumption, Joseph et al. (1995) proposed a

Bayesian approach to obtain interpretative posterior distributions for each of the di-

agnostic accuracy parameters relative to a given prior distribution. This Bayesian

framework has been further extended to allow dependence between markers via fixed

and random effect models (Dendukuri and Joseph, 2001), incorporate multiple latent

variables (Dendukuri et al., 2009) and facilitate meta-analysis of the accuracy of the

markers (Dendukuri et al., 2012).

However, caution must be exercised in the use of latent class models to estimate

diagnostic accuracy (Albert and Dodd, 2004, Collins and Albert, 2016). Firstly, one

should always check whether the model is identifiable, that is, its number of pa-

rameters does not exceed its degrees of freedom (Collins and Huynh, 2014). The

conditional independence model is identifiable if p ≥ 3, and the GRE and FM models

are identifiable if p ≥ 4 (Albert and Dodd, 2004). If the model is unidentifiable, a

good strategy is to adopt a Bayesian approach, which can naturally incorporate avail-

able information about each parameter in the form of a prior distribution and allow

distinguishing between the numerous possible solutions by updating of its posterior

(Dendukuri and Joseph, 2001).

Secondly, one should be aware that estimates of diagnostic accuracy are biased

under a misspecified dependence structure between markers, and that existing model

diagnostic checking tools (e.g., likelihood comparison) may not be able to distinguish

between dependence structures unless there are a very large number of markers (Al-

bert and Dodd, 2004, Collins and Albert, 2016). One approach for improving model

performance would be to exploit results from the best available reference markers

with high diagnostic accuracy, if they exist (Albert, 2009). Given that there is rea-

sonably high consensus consensus among the best available markers, Zhang et al.

(2012) showed that the model becomes remarkably robust to misspecification of the
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conditional dependence structure.

Continuous scale

A latent class modeling approach has been proposed to estimate ROC curves and AUC

statistics in the absence of a gold standard (Choi et al., 2006a, Wang et al., 2006).

In this approach the dependent marker values are assumed to be jointly normally

distributed conditional on unknown/latent disease status, that is, Yi | Di = di ∼

Np(µdi ,Σdi), where µdi = [µdi,1, . . . , µdi,p]
T is a vector of conditional means of the

marker values and Σdi = {σ2
di,uv
}p×p (u, v = 1, . . . , p) is a conditional covariance

matrix of the marker values with σ2
di,uv

= Cov(Yiu, Yiv). Accordingly, the likelihood

function (1.3) for this model becomes

L(Y|θ) =
n∏
i=1

{
πφ(yi;µ1,Σ1) + (1− π)φ(yi;µ0,Σ0)

}
,

where φ(·;µ,Σ) is the PDF of a multivariate normal variate with mean µ and covari-

ance Σ.

Given the parameters θ = {µ0,µ1,Σ0,Σ1}, the ROC curve of the jth marker

(j = 1, . . . p) can be constructed by plotting the following pairs over the range of

cutoff values c ∈ (−∞,∞):

[
1− Φ

(c− µ0j

σ0j

)
, 1− Φ

(c− µ1,jj

σ1,jj

)]
.

The AUC for the jth marker can be computed as

AUCj = Φ

(
µ1j − µ0j√
σ2
0,jj + σ2

1,jj

)
.

Choi et al. (2006a) and Wang et al. (2006) proposed a Bayesian approach to estimate

and make inferences about the ROC curves and the AUC statistics in the absence of
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a gold standard. More recently, a Bayesian latent class model for combining multiple

markers under no gold standard has been proposed (Yu et al., 2011, Jafarzadeh et al.,

2016).

One of the main goals in a statistical study of diagnostic markers is to develop a

simple screening method that clinicians can use to make decisions about the disease

status of patient. It is traditional to dichotomize marker values at the cutoff point

that optimizes a trade-off between sensitivity and specificity (Pepe, 2003). This ap-

proach, however, has been criticized due to an inherent information loss and issue of

replicability in dichotomization (Altman and Royston, 2006, Royston et al., 2006).

Several authors recommended the use of predictive probability of disease based on

values of single or multiple markers as an alternative diagnostic criterion, both for

patients in the current dataset and for hypothetical future patients in the absence of

a gold standard (Choi et al., 2006b, Jones et al., 2009, Jafarzadeh et al., 2016). Here,

a Bayesian classifier that allocates each patient based on the posterior probability

of disease given his/her marker values is developed; that is, a patient with marker

value Yi is diagnosed with the disease if Pr(Di = 1 | Yi) ≥ k, for some pre-specified

probability k ∈ (0, 1).

1.3 Motivating Data

Obstruction to urine drainage from kidney (kidney obstruction) is a serious clinical

problem that can lead to irreversible loss of renal function if not properly treated

(Taylor, 2014). In recent years, diuresis renography have been widely adopted as an

efficient, cost-effective and non-invasive approach to evaluate suspected kidney ob-

struction. Diuresis renography is performed by an intravenous injection of a gamma

emitting tracer, 99mTc-Mercaptoacetyltriglycine (MAG3), that is rapidly removed

from the blood by the kidneys and then travels down the ureters from the kidney to
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the bladder. Photons emitted by tracer are then imaged and quantified in a region of

interest (ROI) over each side of kidney, producing a set of renogram curves (Taylor

et al., 2012). Baseline renogram curves are initially collected for patients referred for

suspected obstruction. MAG3 photon counts over the region of interest (ROI) in each

kidney are measured at 59 distinct time points over a period of 24 minutes. Each pa-

tient further receives an intravenous injection of furosemide, a potent diuretic, and a

second (post-furosemide) renogram curve are obtained with an additional 20 minutes.

Herein, MAG3 photon counts are measured at 40 time points using a framing rate

of 30 seconds. The top left and right columns of Figure 1.1 respectively depict base-

line and post-furosemide renogram curves of 275 kidneys stored in Emory University

Hospital’s archived database.

There are several important, interpretative patterns of the renogram curves that

are known to strongly related to the renal function; for example, the speed of initial

MAG3 uptake in the kidney, the rate of MAG3 excretion to the bladder, etc (Mettler

and Guiberteau, 2012). To illustrate, consider the baseline renogram curve of a

non-obstructed kidney in the bottom left panel of Figure 1.1 (see solid lines). The

curve is characterized by a quick uptake and excretion of MAG3. On the other

hand, the baseline renogram curve of an obstructed kidney is characterized by a

prolonged period of MAG3 accumulation with no or poor excretion (see dashed lines

in the bottom left panel of Figure 1.1), a trend which persists throughout the post-

furosemide renogram (see dashed lines in the bottom right panel of Figure 1.1).

However, in practice, a high kidney-to-kidney variability in renogram curves is typ-

ical as seen from the top panel of Figure 1.1, and many show less distinctive patterns.

For instance, the renogram of the “equivocal” kidney in Figure 1.1 (see dotted lines)

show patterns somewhat between those of non-obstructed and obstructed kidneys.

Therefore, in many cases, accurate diagnosis of kidney obstruction using quantitative

features of renogram curves requires substantial expertise in renal physiology and
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Figure 1.1: Top panel represents baseline (left) and post-furosemide (right) renogram
curves of 275 kidneys. The bottom panel presents baseline (left) and post-furosemide
(right) renogram curves of kidneys that are diagnosed as “non-obstructed” (solid
lines), “obstructed” (dashed lines) and “equivocal” (dotted lines).
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MAG3 pharmacokinetics (Taylor and Garcia, 2014). Unfortunately, a vast majority

of diuresis renography scan interpretations are conducted by general radiologists in

the United States at sites that perform fewer than 3 studies/week, and their lack of

training and limited experience increase the error rate of the diagnosis (Taylor et al.,

2008b, 2012, Taylor and Garcia, 2014, Taylor, 2014).

To assist practicing radiologists in limiting their errors and making correct inter-
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pretation of kidney obstruction using diuresis renography, the researchers at Emory

University undertook a project in which the goal was to develop decision support

systems (DSS) and computer assisted diagnosis (CAD) tools (Taylor et al., 2008a).

It is important to note that a gold standard for the detection of kidney obstruction,

by which the CAD can be directly evaluated, is virtually nonexistent. A decision by a

surgeon to operate or not operate may be considered a gold standard for the diagnosis

of kidney obstruction; however, this surgical outcome is biased and cannot therefore

be used, because it is directly influenced by the corresponding scan interpretation

(obstructed versus non-obstructed). Thus, extra care is warranted when developing

a CAD based on data collected from diuresis renography scans.

The study consisted of 275 kidneys from 145 patients (75 men [52%], 70 women

[48%]; mean age, 58 years; SD, 16 years; range, 18-87 years), who were referred to

the clinic with suspected kidney obstruction, and underwent a minor modification of

the diuretic renography protocol recommended by an international consensus panel

(O’Reilly et al., 1996). Baseline and post-furosemide renogram curve data were ex-

tracted from the ROI over each side of kidney. In addition, three nuclear medicine

experts, each of whom had more than 20 years of experience in academic nuclear

medicine, and three nuclear medicine residents, as a surrogate of practicing radi-

ologists, were asked to provide both continuous ratings (from -1 to 1, with values

approaching 1 indicating greater confidence in diagnosis of obstruction) and ordinal

ratings (1: non-obstructed; 2: equivocal; 3: obstructed) on each kidney’s obstruction

status. Their ratings were based on a review of the images, renogram curve and

their quantitative features, as well as other clinical variables. Note that although nu-

clear medicine experts are widely recognized to provide best available interpretations,

inter-rater variability among them still exists as their interpretations do not always

agree with each other (Taylor et al., 2008c).
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1.4 Statistical Problems and Contributions

The overarching scientific goal of the Emory renal study described in Section 1.3 is

two-fold: (1) to understand the reliability in experts and residents interpretations

of kidney obstruction; and (2) to extract useful information from and evaluate the

diagnostic utility of renogram curves for detection of kidney obstruction.

The need to assess agreement exists in various clinical studies where quantify-

ing inter-rater reliability is of great importance. Use of unscaled agreement indices,

such as total deviation index (TDI) and coverage probability (CP) are recommended

for two main reasons: (1) they are intuitive in a sense that interpretations are tied

to the original measurement unit; (2) practitioners can readily determine whether

the agreement is satisfactory by directly comparing the value of the index to a pre-

specified tolerable coverage probability or absolute difference (Lin, 2000, Lin et al.,

2002). However, the unscaled indices were only defined in the context of comparing

two raters or multiple raters that assume homogeneity of variances across raters (Lin

et al., 2007). However, this homogeneity is highly unlikely to hold in practice, espe-

cially when the goal especially when the goal is to assess inter-rater agreement among

newly introduced raters with unknown measurement characteristics. For instance,

every radiologist and expert has different experience and expertise, and there is no

unscaled agreement index that can quantify agreement among heterogeneous multi-

ple raters. In Chapter 2, we develop a set of new agreement indices based on root

mean square of pairwise differences that can be used to quantify inter-rater reliability

among multiple raters with heterogeneous measurement processes.

With advancements in technology, more and more cutting-edge, non-invasive med-

ical devices are being used to diagnose and monitor diseases. The increasing com-

plexity of data they generate, however, often pose unique statistical challenges for

establishing a clinically interpretative relationship between the data-derived markers

and disease pathology. In this dissertation, we specifically focus on one such type of
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data, namely functional markers. The unit of observation of each functional marker

is a smooth continuous curve (function) defined on a time or space continuum and its

flexible and dynamic structure contains a rich source of clinical information (Ramsay

and Silverman, 2005). It is thus typical in clinical research to describe and diagnose

a disease using a set of “quantitative features” that characterize various dynamic, in-

terpretative patterns of a functional marker, such as area under the curve, maximum

value, time to reach maximum value and average velocity.

However, in many clinical settings, the selection and application of these features

have been based on ad hoc blending of intuition and past practice without much

scientific justification. For instance, in renal studies, although renogram curves and

their several quantitative features (e.g., time to half MAG3 maximum) are frequently

used to describe and diagnose kidney obstruction, establishing a scientifically justi-

fied relationship between these features and the underlying obstruction mechanism

is of ongoing interest to prevent inappropriate patient management and unnecessary

surgery (Bao et al., 2011, Taylor and Garcia, 2014). In Chapter 3, we develop a novel

framework that can systematically extract various quantitative features of functional

markers (renogram curves) and evaluate their diagnostic utility by rigorously assess-

ing their alignment with an ordinal gold standard test (interpretations provided by

nuclear medicine experts) based on BSA. In Chapter 4, we develop a novel statis-

tical approach to assess the diagnostic accuracy of quantitative features based on

AUC and describe the heterogeneity of AUC in different subpopulations by a sensible

adaptation of a semi-parametric regression model.

In Chapter 5, we develop a novel statistical framework for systematically ex-

tracting dynamic changing patterns of functional markers via functional principal

component analysis and evaluate their diagnostic utility absent gold standard under

a latent binormal model. For multivariate functional markers, we propose to utilize

a multivariate functional principal component analysis approach to characterize their
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joint changing patterns. And if results from an imperfect reference test are avail-

able, we propose utilizing a functional partial least squares approach to exploit this

information and achieve superior diagnostic performance.



25

Chapter 2

Overall Indices for Assessing

Agreement Among Multiple Raters
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Portions of this chapter were previously published as Jang JH, Manatunga AK,

Taylor AT, Long Q. Overall indices for assessing agreement among multiple raters.

Statistics in Medicine. 2018;37:4200–4215. https://doi.org/10.1002/sim.7912, and

have been reproduced with permission. Copyright is held by John Wiley & Sons.

2.1 Introduction

In various clinical studies, researchers are often interested in assessing agreement on

clinical measurements taken on the same subjects using different raters. For contin-

uous measurements, the use of a graphical method to plot the difference scores of

two measurements against the mean for each subject has been advocated (Bland and

Altman, 1986). However, this is a purely descriptive method and cannot provide in-

ference regarding agreement. To overcome such limitations, scaled agreement indices,

such as intraclass correlation coefficient (ICC) (Bartko, 1966), concordance correlation

coefficient (CCC) (Lin, 1989) and its extensions (King and Chinchilli, 2001, Banhart

et al., 2002, 2005, Lin et al., 2007) were introduced to assess agreement among two or

more raters. Use of these scaled agreement indices has gained popularity in practice

for their simplicity and ease of representation.

While being simple, scaled agreement indices have been criticized for several lim-

itations. The main problem with these methods is that they are very sensitive to

sample heterogeneity, sometimes resulting in counterintuitive interpretations (Bland

and Altman, 1986, Atkinson and Nevill, 1997). For example, absurdly high values

of ICC and CCC can be obtained even for a highly varied sample, where relative

magnitude of between-subject variability to the total population variability is large.

Moreover, scaled indices do not provide the interpretation terms of the original mea-

surement unit and there is not a set ground for determining how high these indices

should be in order to qualify as satisfying agreement.
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As a formal alternative, unscaled agreement indices such as total deviation in-

dex (TDI) (Lin, 2000) and coverage probability (CP) (Lin et al., 2002) were intro-

duced. TDI describes an acceptable/tolerable range of absolute difference such that

a pre-specified proportion of the absolute differences between paired measurements

is within the acceptable range. CP is a reciprocal concept, in which a proportion of

the absolute differences within a pre-specified acceptable range is computed. Using

unscaled indices has three key advantages: a) they provide direct intuitive interpreta-

tion tied with the original measurement unit; b) satisfactory agreement can be easily

determined by directly comparing their values to a pre-specified acceptable range of

distance or coverage probability; c) formal statistical inferences can be made based

on their estimates. CP has been recommended as the preferred choice of agreement

index for assessing reproducibility in a core lab setting (Banhart et al., 2016).

All of aforementioned unscaled agreement indices were only defined in the context

of comparing a pair of raters. In the presence of multiple raters and replicated mea-

surements for each subject, several extended unscaled agreement indices such as inter-

and total-TDI (inter- and total-CP) have been proposed (Lin et al., 2007). These in-

dices were expressed as functions of variance components through a mixed analysis

of variance (ANOVA) model. Although it is possible to quantify agreement among

multiple raters using inter- and total-TDI (inter- and total-CP), the ANOVA model

assumption severely restricts the degree of heterogeneity that actual measurement

processes may exhibit. Specifically, this assumption imposes a compound symmetry

covariance structure shared by all measurements from different raters. However, it is

highly unlikely for the assumption to hold in practice, especially when the goal is to

assess inter-rater agreement among newly introduced raters with unknown measure-

ment characteristics.

Consequently, a formal tool that is unscaled in nature and able to assess inter-

rater agreement among multiple raters that exhibit highly heterogeneous variabilities
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in measurement processes would be desirable, but has been lacking in literature. For

example, data from a renal study demonstrate the need of such a statistical frame-

work. In absence of a gold standard, it is generally accepted that the best available

interpretation of renal scans comes from experienced experts, but inter-observer vari-

ability still exists as their interpretations do not always agree with each other (Taylor

et al., 2008c). Practicing radiologists at U.S. hospitals often have marked variabil-

ity in their interpretations compared to experienced readers due to the fact that

their training in nuclear medicine was limited to 3-4 months (Taylor et al., 2008c,

Taylor and Garcia, 2014). An analysis was thus carried out to quantify the interob-

server agreement among practicing radiologists and better understand the nature of

diagnostic variability present in a real-world clinical practice with renal scans. It is

also of interest to determine if a new intervention with educational training called

CAD (computer-assisted diagnosis) would reduce the interobserver variability among

practicing radiologists. However, every radiologist and expert has different experience

and expertise, and there is no unscaled agreement index that can incorporate possible

heterogeneous variabilities in respective interpretation processes.

In this chapter, we propose a set of overall indices based on root mean square of

pairwise differences (RMSPD) that are unscaled and can be used to assess agreement

among multiple raters in the presence of heterogeneity of measurements. Recently, rel-

ative area under coverage probability curve (RAUCPC) was introduced as a summary

agreement index that is scaled and summarizes agreement based on more than one

pre-specified absolute differences (Banhart, 2016). Accordingly, we propose another

overall agreement index based on RMSPD that is scaled and extends the concept of

RAUCPC in the presence of multiple raters. A challenging aspect of using RMSPD

to define an agreement index is that its explicit analytical expression for the inverse

distribution is unavailable when a general covariance structure is considered. To this

end, we propose to adopt an approximate distribution and the details are described
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in Section 2.2. We propose maximum likelihood and bootstrap approaches for esti-

mation and inference. In Section 2.3, we conduct simulation studies to evaluate the

performance of the proposed approaches. In Section 2.4, we illustrate the application

of our methods via application to a renal study. We present a summary in Section

2.5.

2.2 Methods

2.2.1 Existing unscaled and summary agreement indices for

two raters

Let Y1 and Y2 be measurements from the same subject taken by first and second rater,

respectively. Then the absolute difference |D| = |Y1 − Y2| represents a distance, the

extent to which paired measurements deviate from each other. Under this setting,

higher proportion of paired measurements with smaller |D| implies better agreement

between the two raters. TDI is defined as the range of absolute difference between

paired measurements such that a pre-specified proportion (π0) of observations has

absolute differences within that range Banhart et al. (2005). In other words, for

0 < π0 < 1, TDIπ0 is defined as the solution to π0 = P (|D| < TDIπ0) = P (D2

< TDI2π0), that is,

TDIπ0 =
√
G−1(π0),

where G(·) is the cumulative distribution function of D2 and G−1(·) is the inverse

function of G(·).

CP is the reciprocal of TDI Lin et al. (2002). Here, the practitioner first specifies

the maximum acceptable/tolerable range of absolute difference between paired mea-

surements and computes the proportion of observations within this predetermined

range. Let d denote the pre-specified acceptable absolute difference between paired
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measurements. CP is defined as

CPd = P (|D| < d) = P (D2 < d2) = G(d2).

Recently, Banhart (2016) proposed relative area under the coverage probability

(RAUCPC) as a summary agreement index between two raters in the presence of

multiple acceptable absolute differences. The index is scaled in nature, but utilizes

information based on a series of estimated coverage probabilities. For example, a

practitioner may be interested in quantifying agreement based on certain varying ac-

ceptable distance criteria: a) 100π
(1)
0 % of observations should have absolute difference

less than d(1); b) 100π
(2)
0 % of observations should have absolute difference less than

d(2); c) 100π
(3)
0 % of observations should have absolute difference less than d(3). Denote

δmax as a priori maximum acceptable range of distance such that P (D < δmax) ≈ 1.

Rather than comparing CPd to the preset π
(s)
0 at every pre-specified absolute difference

d(s), s = 1, 2, 3, the area under the coverage probability curve CP(d) = P (D < d),

0 ≤ d ≤ δmax, can be used for simultaneous comparison. Specifically, RAUCPC is

defined as

RAUCPC =

∫ δmax

0
CP(x)dx

δmax

,

where the area under the coverage probability curve is scaled relative to δmax so that

0 ≤ RAUCPC ≤ 1.

2.2.2 Overall agreement indices for multiple raters

Let Yj denote a random variable representing a measurement from rater j, (j =

1, ..., k). We assume that the k × 1 vector of measurements Y = [Y1, Y2, ..., Yk]
T has

finite first and second moments with k × 1 mean vector µ = [µ1, µ2, ..., µk] and k × k

covariance matrix Σ. The covariance matrix Σ may take an unstructured form so that

all k raters can exhibit heterogeneous measurement processes. In this manuscript, we
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consider root mean square of pairwise differences (RMSPD) as an extended measure

of distance that describes overall deviance among measurements taken by k (≥ 2)

raters:

Dk =

√
2

k(k − 1)

∑
1≤p<q≤k

(Yp − Yq)2. (2.1)

Dk is the square root of the average squared difference between all possible pairs of

k raters, where the square root is taken to preserve the measurement unit. We note

that Dk reduces to |D| when k = 2, but in (2.1), we have expressed the deviation of

measurements between any two raters in terms of the squared difference as opposed

to the absolute difference used in conventional definitions of TDI and CP. The pro-

posed RMSPD (Dk) basically summarizes the degree of deviation of measurements

among multiple raters by taking into account all possible pairwise comparisons of

their measurements based on the squared difference.

Based on (2.1), we propose a novel unscaled agreement index, the overall deviation

index (ODI), for measuring agreement among k raters. For 0 < π0 < 1, ODIπ0,k is

defined as the solution to π0 = P (Dk < ODIπ0,k) = P (D2
k < ODI2π0,k), that is,

ODIπ0,k =
√
F−1(π0), (2.2)

where F (·) is the cumulative distribution of D2
k and F−1(·) is the inverse function

of F (·). Putting into words, this means that 100π0% of observations have RMSPDs

among k raters smaller than or equal to ODIπ0,k. Thus, the lower the ODI value, the

better the agreement among measurements from multiple raters.

As in the case of the original CP, we propose the overall coverage probability

(OCP) as the reciprocal of ODI. Initially, the acceptable RMSPD among k raters

(dk) is predetermined. Then the proportion of observations within this acceptable
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range is computed to quantify agreement. Specifically, OCP is defined as

OCPdk,k = P (Dk < dk) = P (D2
k < d2k) = F (d2k). (2.3)

OCPdk,k thus measures the proportion of observations that have RMSPDs among k

raters less than or equal to dk. Thus, higher OCP value suggests better agreement

among measurements from multiple raters.

As for a scaled summary agreement index (Banhart, 2016) we propose to use the

relative area under the overall coverage probability curve (RAUOCPC) in the presence

of multiple raters. For example, consider the three varying acceptable distance criteria

as presented in section 2.1. For the case of multiple raters, each absolute difference

d(s) is now replaced by RMSPD d
(s)
k , s = 1, 2, 3. Denote δmax,k as a priori maximum

acceptable RMSPD such that P (Dk < δmax,k) ≈ 1. Rather than comparing OCPk(dk)

to the preset π
(s)
0 at every pre-specified RMSPD d

(s)
k , the area under the overall

coverage probability curve OCPk(dk) = P (Dk < dk), 0 ≤ d ≤ δmax,k, can be used for

simultaneous comparison. Specifically, RAUOCPC is defined as

RAUOCPCk =

∫ δmax,k

0
OCPk(x)dx

δmax,k

, (2.4)

so that 0 ≤ RAUOCPC ≤ 1, with higher values indicating better agreement. There-

fore, RAUOCPC can be used as a convenient tool to simultaneously compare each

OCP to the multiple predetermined acceptable/tolerable RMSPDs.

Note that, when k = 2, ODIπ0,2 = TDIπ0 , OCPd2,2 = CPd and RAUOCPC2 =

RAUCPC. Thus, the ODI, OCP and RAUOCPC are natural extensions of TDI, CP

and RAUCPC, respectively.
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Parametrization

In previous literature Lin (2000), Lin et al. (2002), Banhart (2016), D was assumed

to follow a normal distribution (D2 to follow a non-central chi-square distribution) in

order to define, estimate and perform inference on TDI, CP and RAUCPC. Likewise,

formulations of ODI, OCP and RAUOCPC as in definitions (2.2), (2.3) and (2.4),

respectively, require an appropriate parametrization of F (d2k) and its inverse F−1(π0).

Define a (k−1)×k matrix A = {au,v}(k−1)×k, where au,v = 1 for u = v, au,v = −1

for u + 1 = v and au,v = 0 otherwise. Then X = AY = [Y1 − Y2, Y2 − Y3, ..., Yk−1 −

Yk]
T = [X1, X2, ...Xk−1]

T represents the (k − 1)× 1 vector of distinct pairwise differ-

ences with (k − 1) × 1 mean vector µd = Aµ = [µ1 − µ2, µ2 − µ3, ..., µk−1 − µk]T =

[µd1, µd2, ..., µd,k−1]
T and (k − 1) × (k − 1) covariance matrix Σd = AΣAT. We as-

sume that X is normally distributed as MNk−1(µd,Σd), a weaker assumption than

imposing normality on Y. Then D2
k can be expressed as a quadratic form in normal

variates X (see Appendix A.1). Specifically,

D2
k =

2

k(k − 1)

∑
1≤p<q≤k

(Yp − Yq)2 = XT
{ 2

k − 1
(AAT)−1

}
X = XTBX, (2.5)

where B = 2
k−1(AAT)−1 with rank(B) = k − 1. If Σd is non-singular, it can be

shown that the exact distributional form of D2
k can be expressed as a weighted sum

of chi-square variables (Imhof, 1961):

D2
k ∼

k−1∑
r=1

λrχ
2
hr,δr . (2.6)

The λr are the distinct non-zero eigenvalues of BΣd, the hr their respective orders

of multiplicity, the δr are squares of certain linear combinations of µd1, µd2, ..., µd,k−1,

the χ2
hr,δr

are independent non-central chi-square random variables with hr degrees of

freedom and non-centrality parameter δr.
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However, computing F (d2k) and its inverse F−1(π0) using exact distributional form

(2.6) is not straightforward except in some special cases. In order to readily define

and estimate the proposed overall unscaled agreement indices, we propose to adopt

the approximate distribution of D2
k as opposed to its exact distribution (see Section

2.5 for a more detailed discussion). Specifically, we propose to approximate F (d2k)

and F−1(π0) using a single non-central chi-square random variable χ2
l,δ, where the

degrees of freedom l and the non-centrality parameter δ are determined by the first

four cumulants of D2
k Liu et al. (2009). Specifically, let κt denote tth cumulant of

D2
k. Then κt can be directly expressed as a function of parameters (µd,Σd) from the

assumed multivariate normal distribution on the distinct pairwise differences (Liu

et al., 2009, Provost and Mathai, 1992):

κt(µd,Σd) = 2t−1(t− 1)!
[
trace{(BΣd)

t}+ tµd
T (BΣd)

t−1Bµd

]
.

Accordingly, the mean, standard deviation, skewness and kurtosis of the distribu-

tion of D2
k can be defined in terms of the cumulants. We omit (µd,Σd) for ease of

representation:

µQ = κ1, σQ =
√
κ2, β1 =

κ3

κ
3/2
2

β2 =
κ4
κ22
.

We can initially write

F (d2k) = P (D2
k < d2k) = P

(
D2
k − κ1√
κ2

<
d2k − κ1√

κ2

)
.

Then, the above probability can be approximated using a single non-central chi-square

random variable χ2
l,δ as

P

(
χ2
l,δ − µ∗

σ∗
<
d2k − κ1√

κ2

)
= P

{
χ2
l,δ <

(
d2k − κ1√

κ2

)
σ∗ + µ∗

}
,
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where µ∗ = E(χ2
l,δ) = l+δ and σ∗ = SD(χ2

l,δ) =
√

2(l + 2δ). Here, parameters l and δ

are determined so that skewnesses of D2
k and χ2

l,δ are equal and the difference between

their kurtoses are minimized. Let s1 = κ3/
√

8κ
3/2
2 , s2 = κ4/12κ22 and a =

√
l + 2δ. It

can be shown that if s21 > s2 Liu et al. (2009),

a =
1

(1−
√
s21 − s2)

, δ = s1a
3 − a2 and l = a2 − 2δ,

and if s21 ≤ s2,

a =
1

s1
, δ = 0 and l = a2.

Thus, F (d2k) and its inverse F−1(π0) can be approximated as

F (d2k) ≈

χ2

{(
d2k − κ1(µd,Σd)√

κ2(µd,Σd)

)
√

2a(µd,Σd) + l(µd,Σd) + δ(µd,Σd), l(µd,Σd), δ(µd,Σd)

}

and

F−1(π0) ≈
√
κ2(µd,Σd)[χ

2(−1){π0, l(µd,Σd), δ(µd,Σd)} − l(µd,Σd)− δ(µd,Σd)]√
2a(µd,Σd)

+ κ1(µd,Σd),

where χ2(·, l, δ) is the cumulative distribution function of the non-central chi-square

distribution with l degrees of freedom and non-centrality parameter δ, and χ2(−1)(·, l, δ)

is the inverse function of χ2(·, l, δ). It is important to note that both quantities are

completely determined by the parameters (µd,Σd).

By adopting the proposed parametrization and plugging in approximated values

of F (d2k) and F−1(π0), definitions (2.2), (2.3) and (2.4) become

ODIπ0,k =

[√
κ2{χ2(−1)(π0, l, δ)− l − δ}√

2a
+ κ1

]1/2
, (2.7)
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OCPdk,k = χ2
{(d2k − κ1√

κ2

)√
2a+ l + δ, l, δ

}
, (2.8)

and

RAUOCPCk =

∫ δmax,k

0

χ2

{(
x2 − κ1√

κ2

)
√

2a+ l + δ, l, δ

}
dx

δmax,k

. (2.9)

Compound Symmetry Case

Suppose Y has a mean vector µ and a compound symmetry covariance structure

Σ = σ2(1− ρ)Ik + σ2ρ1k1T
k . Note that Ik is a k× k identity matrix and 1k is a k× 1

vector with only 1’s as its elements. This represents the case in which multiple raters

share common variabilities in respective measurement processes. Assume that the

vector of distinct pairwise differences X is normally distributed as MNk−1(µd,Σd)

with Σd = AΣAT = σ2(1 − ρ)AAT. Consequently, by (2.5) and the relationship

between normal and chi-square distribution, and noting that Σ−1
d = 1

σ2(1−ρ)(AAT)−1,

D2
k = XTΣ−1

d X =

∑
1≤p<q≤k

(Yp−Yq)2

kσ2(1−ρ) ∼ χ2
k−1,γ, where χ2

k−1,γ denotes a non-central a chi-

square random variable with k − 1 degrees of freedom and non-centrality parameter

γ =

∑
1≤p<q≤k

(µp−µq)2

kσ2(1−ρ) . In other words, when measurements follow a compound symmetry

covariance structure, F (d2k) and its inverse F−1(π0) can be computed using exact

distributional form as

F (d2k) = P

{
(k − 1)D2

k

2σ2(1− ρ)
<

(k − 1)d2k
2σ2(1− ρ)

}
= χ2

{
(k − 1)d2k
2σ2(1− ρ)

, k − 1,

∑
1≤p<q≤k

(µp − µq)2

kσ2(1− ρ)

}

and

F−1(π0) =

{
2σ2(1− ρ)

k − 1

}
χ2(−1)

{
π0, k − 1,

∑
1≤p<q≤k

(µp − µq)2

kσ2(1− ρ)

}
.

By adopting the exact parametrization assuming compound symmetry covariance
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structure, definitions (2.2), (2.3) and (2.4) become

ODI
(C)
π0,k

=

[{2σ2(1− ρ)

k − 1

}
χ2(−1)

{
π0, k − 1,

∑
1≤p<q≤k

(µp − µq)2

kσ2(1− ρ)

}]1/2
, (2.10)

OCP
(C)
dk,k

= χ2

{
(k − 1)d2k
2σ2(1− ρ)

, k − 1,

∑
1≤p<q≤k

(µp − µq)2

kσ2(1− ρ)

}
, (2.11)

and

RAUOCPC
(C)
k =

∫ δmax,k

0

χ2

{
(k − 1)d2ik
2σ2(1− ρ)

, k − 1,

∑
1≤p<q≤k

(µp − µq)2

kσ2(1− ρ)

}
dx

δmax,k

. (2.12)

When there are no replicates from respective raters, definitions (2.10) and (2.11)

are the same quantities as Inter-TDI and Inter-CP (or Total-TDI and Total-CP)

proposed by Lin et al. (2007), respectively, which are based on the mixed ANOVA

model.

2.2.3 Estimation

Let Yi (i = 1, ..., n) be the vector of measurements for subject i. Then Xi = AYi is

the vector of distinct pairwise differences for the same subject. Denote µ̂d and Σ̂d as

the (bias-adjusted) maximum likelihood estimators for the parameters in MN(µd,Σd)

distribution. Specifically, µ̂d = [µ̂d1, µ̂d2, ..., µ̂d,k−1]
T = [X1, X2, ..., Xk−1]

T

= 1
n

[ n∑
i=1

Xi1,
n∑
i=1

Xi2, ...,
n∑
i=1

Xi,k−1

]T
and Σ̂d = 1

n−1

n∑
i=1

(Xi − µ̂d)(Xi − µ̂d)T .

We propose to estimate ODIπ0,k, OCPdk,k and RAUOCPCk by replacing pa-

rameters κ1(µd,Σd), κ2(µd,Σd), a(µd,Σd), l(µd,Σd) and δ(µd,Σd) in definitions

(2.7), (2.8) and (2.9) by their maximum likelihood (ML) estimates κ̂1 = κ1(µ̂d, Σ̂d),

κ̂2 = κ2(µ̂d, Σ̂d), â = a(µ̂d, Σ̂d), l̂ = l(µ̂d, Σ̂d) and δ̂ = δ(µ̂d, Σ̂d). Therefore by

the invariance property of ML estimators, we can express the ML estimators of the
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proposed overall unscaled agreement indices as

ÔDIπ0,k =

[√
κ̂2{χ2(−1)(π0, l̂, δ̂)− l̂ − δ̂}√

2â
+ κ̂1

]1/2
, (2.13)

ÔCPdk,k = χ2
{(d2k − κ̂1√

κ̂2

)√
2â+ l̂ + δ̂, l̂, δ̂

}
, (2.14)

and

̂RAUOCPCk =

∫ δmax,k

0

χ2

{(
x2 − κ̂1√

κ̂2

)
√

2â+ l̂ + δ̂, l̂, δ̂

}
dx

δ̂max,k

. (2.15)

RAUOCPC can also be estimated using the non-parametric method as suggested

by Banhart for the RAUCPC case (Banhart, 2016). We first order the unique ob-

served RMSPDs among k raters as d1,k < d2,k < ... < dn,k with dn,k < δmax,k. Define

ocp1,k < ocp2,k < ... < ocpn,k as the estimated overall coverage probabilities, where

ocpi,k denotes the proportion of all possible RMSPDs less than or equal to di,k, i =

1, 2, ..., n. Then the empirical overall coverage probabilities can be drawn as a series of

straight lines connecting (d0,k, ocp0,k), (d1,k, ocp1,k), ..., (dn,k, ocpn,k), (dn+1,k, ocpn+1,k)

where d0,k = 0, ocp0,k = 0, dn+1,k = δmax,k and ocpn+1,k = ocpn,k. The non-parametric

estimator for RAUOCPCk is the area under these straight lines scaled by δmax,k.

Specifically, the estimator is given as

̂RAUOCPC
non-parm

k =

n+1∑
i=1

(di − di−1)(ocpi−1 + ocpi−ocpi−1

2
)

δmax,k

. (2.16)

2.2.4 Inference

One-Sample

Let θk be one of the three proposed overall unscaled agreement indices and β =

(µd,Σd) be its associated parameter. Denote θ̂k and β̂ as their ML estimators, re-
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spectively. Also let I be the observed Fisher information matrix for β and G =

∂g{θk(β)}
∂β

∣∣∣
β=β̂

be the gradient vector of the index evaluated at the ML estimator,

where g represents a monotone transformation of the parameter that is adopted

to accelerate convergence to asymptotic normality. Since ODIπ0,k ∈ [0,∞) and

OCPdk,k,RAUOCPCk ∈ [0, 1], we use the natural log transformation for the for-

mer index, and the logit transformation for the latter indices. Then, from asymptotic

normality of ML estimators and delta method, we have g(θ̂k) ∼ AN(g(θk), G
T I−1G),

where (GT I−1G)1/2 = ŜE{g(θ̂k)} denotes the standard error estimate.

Since the analytical form of (GT I−1G)1/2 is complicated, we propose bootstrap

approach for standard error estimation. Specifically, we can take B bootstrap samples

from the observed data at the subject level with replacement, compute g(θ̂k)
(b) for

each bootstrap sample b = 1, 2, ..., B, and obtain bootstrap estimate of the standard

error,

ŜEB{g(θ̂k)} =

[
1

B

B∑
b=1

{
g(θ̂k)

(b) − g(θ̂k)B

}2
]1/2

, (2.17)

where g(θ̂k)B = 1
B

B∑
b=1

g(θ̂k)
(b). Note that sampling on the subject level is essential as

we should account for correlated measurements within a subject.

Suppose we postulate that agreement among k raters based on the ODI is sat-

isfactory if approximately 100π0% of observations have RMSPDs among the raters

less than a predetermined constant L0. Here, L0 denotes the maximum RMSPD that

we are willing to tolerate, and accept that all k raters exhibit homogeneity in the

measurement processes. We would accept satisfactory agreement with a type I error

α if the 100(1− α)% upper confidence limit of ODIπ0,k, that is,

UODIπ0,k,1−α
= exp

{
log(ÔDIπ0,k) + z1−α(ŜEB{(log(ÔDIπ0,k)}

}
, (2.18)

is less than L0, where bootstrap standard error estimate is calculated from (2.17) and
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z1−α denotes the 100(1− α)th percentile of a standard normal distribution.

For the OCP, the lower confidence limit is preferably calculated because ensuring

acceptable agreement with respect to OCP often involves a null proportion π0, which

we would deem too small as to conclude satisfactory agreement. Specifically, using

the bootstrap standard error estimate (2.17), the 100(1− α)% lower confidence limit

of OCPdk,k is computed as

LOCPdk,k,1−α
= h

[
logit(ÔCPdk,k)− z1−αŜEB

{
logit(ÔCPdk,k)

}]
, (2.19)

where h(·) = exp(·)
1+exp(·) . Then given type I error rate of α and tolerable RMSPD dk, we

accept that k raters produce reasonably homogeneous ratings on a given subject if

(2.19) is greater than π0.

For the RAUOCPC, consider three multiple acceptable RMSPDs (d
(1)
k , d

(2)
k , d

(3)
k )

and denote δmax,k as a priori maximum acceptable RMSPD such that P (Dk <

δmax,k) ≈ 1. Initially, the area under the ÔCPk(dk), 0 ≤ dk ≤ δmax,k, can be visually

compared to the area under straight lines that connect points formed by a series of

preset RMSPDs with the corresponding overall coverage probabilities, for example

connecting points (0,0), (d
(1)
k , π

(1)
0 ), (d

(2)
k , π

(2)
0 ), (d

(3)
k , π

(3)
0 ) and (δmax,k, 1). The larger

size of the former area would suggest satisfying agreement among k raters. Testing

whether the difference between sizes of the two areas is statistically significant is

equivalent to testing whether RAUOCPCk is greater than T0, which denotes the size

of the latter area scaled by δmax,k. Thus, we can focus on deriving the 100(1 − α)%

lower boundary. Specifically, after obtaining the bootstrap standard error estimate

from (2.17), the 100(1− α)% lower confidence limit of RAUOCPCk is computed as

LRAUOCPCk,1−α = h
[
logit( ̂RAUOCPCk)− z1−αŜEB

{
logit( ̂RAUOCPCk)

}]
. (2.20)

If (2.20) is greater than T0, we can conclude satisfactory agreement among k raters
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based on the three varying acceptable distance criteria. Note that 100(1−α)% lower

boundary based on the non-parametric RAUOCPC estimate can be computed in a

similar manner.

Two-Sample

Now suppose we are interested in comparing degrees of inter-rater agreement among

measurements on the same set of subjects between two groups of raters using one

of the three proposed overall unscaled indices. This scenario often arises when the

goal of a study is to evaluate the performance of a group of new raters relative to a

group of best standard raters in terms of inter-rater agreement. Suppose θ
(1)
k and θ

(2)
k

measure agreement among the first and second groups of k raters, respectively. We

form a null hypothesis

H0 : θ
(1)
k = θ

(2)
k , or equivalently, H0 : g(θ

(1)
k ) = g(θ

(1)
k ),

against the alternative hypothesis

H1 : θ
(1)
k 6= θ

(2)
k , or equivalently, H0 : g(θ

(1)
k ) 6= g(θ

(1)
k ).

Using the asymptotic property of ML estimators, we can formulate the Wald test

statistic as

g(θ̂
(1)
k )− g(θ̂

(2)
k )

SE{g(θ̂
(1)
k )− g(θ̂

(2)
k )}

=
g(θ̂

(D)
k )

SE{g(θ̂
(D)
k )}

∼ AN(0, 1),

under the null hypothesis. Since the analytical form of the standard error is compli-

cated, we estimate the standard error by bootstrap approach. See Appendix A.2 for

detailed steps of the two-sample hypothesis testing procedure.
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2.3 Simulations

We conducted simulation studies to assess the performance of the proposed ap-

proaches to evaluate agreement via overall unscaled agreement indices. We assumed

that there are four raters and the data are generated from a multivariate normal

distribution with mean µ = (µ1, µ2, µ3, µ4) and covariance matrix Σ, for both com-

pound symmetry and unstructured scenarios. Under both scenarios, a total of 1000

simulated data sets were generated. We considered sample sizes of 20 and 60. To

evaluate the performance of inference based on bootstrap approach, 1000 bootstrap

samples were used to compute standard error estimates and one-sided 95% confidence

intervals.

Under the compound symmetry scenario, data were generated from a multivariate

normal distribution with mean µ = (µ1, µ2, µ3, µ4) = (3.5, 3.5, 3.5, 4.2) and compound

symmetry covariance matrix with common variance σ2 = 0.25 and common correla-

tion coefficient ρ = 0.8. Specifically, the compound symmetry covariance matrix

was defined as Σ = {σu,v} where σu,v = 0.25 if u = v and σu,v = 0.2 if u 6= v,

u, v = 1, 2, 3, 4. Thus first three raters exhibit homogeneity in respective measure-

ment processes. However, the fourth rater represents a heterogeneous measurement

process in which ratings are consistently overestimated as evidenced by its larger

mean.

Under the unstructured scenario, data were generated from a multivariate normal

distribution with mean µ = (µ1, µ2, µ3, µ4) = (3.5, 3.5, 3.5, 4.2) and unstructured

covariance matrix defined as Σ = {σu,v}, where σ1,1 = σ2,2 = σ3,3 = 0.30, σ1,2 =

σ1,3 = σ2,3 = 0.24, σ4,4 = 0.15 and σ1,4 = σ2,4 = σ3,4 = 0.08. Again, the first three

raters exhibit homogeneity in measurement process with common covariances among

themselves. However, the fourth rater is allowed to exhibit stronger heterogeneity in

the measurement process by adding further flexibility in the data generation process.

Not only its mean is larger compared to first three, but its variance is smaller, and its
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linear relationship with others is relatively weak as evidenced by smaller covariances

in relation to other raters.

Table 2.1: Simulation results for ODI based on 1000 simulated data sets under com-
pound symmetry (CS) and unstructured scenarios (UN). “Relative bias” represents

sample mean of 1000 values of 100 ∗ {(ÔDI−ODI)/ODI}, where ÔDIs are obtained
through anti-transformations. “Std of estimate” represents standard deviation of
1000 ÔDIs. “Mean of SE” estimate represents mean of 1000 bootstrap standard er-
rors. “CP” represents the proportion of 1,000 estimated 95% upper confidence limits
computed by (2.18) that are greater than the true value.

True Relative Std of Mean of
Scenario n Statistics value bias(%) estimate SE estimate CP

CS 20 ODI0.80,4 0.7056 -0.2474 0.0642 0.0611 0.916

ODI
(C)
0.80,4 -0.5809 0.0608 0.0597 0.923

ODI0.90,4 0.7827 0.4463 0.0659 0.0631 0.932

ODI
(C)
0.90,4 -0.7953 0.0608 0.0587 0.922

60 ODI0.80,4 0.7056 -0.0707 0.0369 0.0364 0.942

ODI
(C)
0.80,4 -0.0731 0.0368 0.0357 0.940

ODI0.90,4 0.7827 0.0493 0.0382 0.0376 0.941

ODI
(C)
0.90,4 -0.0229 0.0346 0.0348 0.946

UN 20 ODI0.80,4 0.8416 0.2438 0.0966 0.0952 0.923

ODI
(C)
0.80,4 -3.5240 0.0940 0.0896 0.854

ODI0.90,4 0.9855 0.0933 0.1025 0.0948 0.910

ODI
(C)
0.90,4 -6.7998 0.0918 0.0867 0.764

60 ODI0.80,4 0.8416 -0.0169 0.0565 0.0565 0.944

ODI
(C)
0.80,4 -3.0690 0.0548 0.0534 0.841

ODI0.90,4 0.9855 0.1131 0.0566 0.0563 0.948

ODI
(C)
0.90,4 -6.4116 0.0519 0.0515 0.621

Table 2.1 shows the simulation results for ODI and ODI(C) under both scenar-

ios. We considered two widely used pre-specified coverage probabilities: π0 = 0.80

and 0.90. Under the compound symmetry scenario, both ODI and ODI(C) estimates
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yielded almost identical results, as expected for normal data with compound symme-

try covariance structure. All absolute relative biases are less than 1%, implying that

our proposed estimation approach provides reasonable unbiased estimates even for a

sample size as small as 20. The 95% coverage is slightly less than the nominal level for

sample size of 20, possibly due to the underestimation of standard errors as compared

to empirical counterparts. The 95% coverage is very close to the nominal level for

sample sizes of 60 or greater (not shown). Under the unstructured scenario, ODI es-

timates again have negligible bias. The coverage of true ODI based on one-sided 95%

confidence interval is 92% or less with sample size of 20, but a coverage of 94% or 95%

is generally achieved for sample sizes of 60 or greater. However, ODI(C) estimates are

biased underestimating the true ODI. This results in very poor coverage probabilities,

especially when π0 = 0.90. Under both scenarios, estimated standard errors rapidly

approach their empirical counterparts as the sample size increases, confirming that

our bootstrap procedure provides valid and robust standard error estimates.

Table 2.2 shows the simulation results for OCP and OCP(C) under both scenar-

ios. We considered two different preset RMSPDs among four raters: d4 = 0.8 and

0.9. Under the compound symmetry scenario, both OCP and OCP(C) estimates show

good performances, as expected under the correct model specification. Each absolute

relative bias is less than 1%, indicating the consistency of the point estimates. The

95% coverage is slightly greater than the nominal level, possibly due to the overesti-

mation of standard errors. However, coverage probabilities are all generally around

95% in almost every situation. Under the unstructured scenario, OCP estimates are

virtually unbiased even for a small sample size of 20. The 95% coverage of true OCP

is close to the nominal level for all sample sizes. However, OCP(C) estimates are

biased overestimating the true OCP, and the bias in fact increases for larger sample

sizes. As a result, coverage probabilities are in general noticeably below the desired

nominal rate, especially when d4 = 0.9. We should also remark that standard error
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Table 2.2: Simulation results for OCP based on 1000 simulated data sets under com-
pound symmetry (CS) and unstructured scenarios (UN). “Relative bias” represents

sample mean of 1000 values of 100∗{(ÔCP−OCP)/OCP}, where ÔCPs are obtained
through anti-transformations. “Std of estimate” represents standard deviation of 1000

ÔCPs. “Mean of SE” estimate represents mean of 1000 bootstrap standard errors.
“CP” represents the proportion of 1,000 estimated 95% lower confidence limits com-
puted by (2.19) that are smaller than the true value.

True Relative Std of Mean of
Scenario n Statistics value bias(%) estimate SE estimate CP

CS 20 OCP0.80,4 0.9162 -0.6576 0.6210 0.6339 0.959

OCP
(C)
0.80,4 0.2728 0.6090 0.6359 0.953

OCP0.90,4 0.9742 -0.6919 0.8839 0.9061 0.965

OCP
(C)
0.90,4 -0.1471 0.8606 0.8760 0.951

60 OCP0.80,4 0.9162 -0.3581 0.3485 0.3516 0.958

OCP
(C)
0.80,4 -0.0220 0.3350 0.3373 0.950

OCP0.90,4 0.9742 -0.2610 0.4860 0.5002 0.963

OCP
(C)
0.90,4 -0.0546 0.4282 0.4465 0.959

UN 20 OCP0.80,4 0.7620 -0.1722 0.4467 0.4683 0.964

OCP
(C)
0.80,4 1.6989 0.5597 0.6017 0.939

OCP0.90,4 0.8465 -0.4474 0.5333 0.5643 0.963

OCP
(C)
0.90,4 3.8343 0.6981 0.7353 0.898

60 OCP0.80,4 0.7620 -0.1676 0.2177 0.2214 0.951

OCP
(C)
0.80,4 2.3916 0.3147 0.3261 0.914

OCP0.90,4 0.8465 -0.2431 0.2996 0.2999 0.950

OCP
(C)
0.90,4 4.0765 0.3728 0.3840 0.807

estimate increases as d4 increases in any scenario, and this indicates less precision

in OCP estimates for a relatively large pre-specified RMSPD compared to the range

of data. Under both scenarios, estimated standard errors quickly approach their

empirical counterparts as the sample size increases.

Table 2.3 shows the simulation results for RAUOCPC under both scenarios. We
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Table 2.3: Simulation results for RAUOCPC based on 1000 data sets under com-
pound symmetry (CS) and unstructured scenarios (UN). “Relative bias” represents

sample mean of 1000 values of 100∗{( ̂RAUOCPC−RAUOCPC)/RAUOCPC}, where
̂RAUOCPCs are obtained through anti-transformations. “Std of estimate” represents

standard deviation of 1000 ̂RAUOCPCs. “Mean of SE” estimate represents mean of
1000 bootstrap standard errors. “CP” represents the proportion of 1,000 estimated
95% upper confidence limits computed by (2.20) that are greater than the true value.

True Relative Std of Mean of
Scenario n Statistics value bias(%) estimate SE estimate CP

CS 20 RAUOCPC4 0.4889 -0.5872 0.1388 0.1318 0.940

RAUOCPC
(C)
4 0.1358 0.1356 0.1326 0.924

RAUOCPCnon-parm
4 4.0914 0.1332 0.1322 0.848

60 RAUOCPC4 -0.1392 0.0789 0.0781 0.948

RAUOCPC
(C)
4 -0.0930 0.0799 0.0777 0.939

RAUOCPCnon-parm
4 1.4879 0.0792 0.0785 0.892

UN 20 RAUOCPC4 0.4544 -0.7209 0.2080 0.1978 0.928

RAUOCPC
(C)
4 -5.0134 0.2368 0.2223 0.955

RAUOCPCnon-parm
4 4.5911 0.2220 0.2199 0.861

60 RAUOCPC4 -0.1624 0.1195 0.1167 0.941

RAUOCPC
(C)
4 -5.0183 0.1317 0.1339 0.988

RAUOCPCnon-parm
4 0.7797 0.1271 0.1301 0.928

first fixed δmax = 1.1. Under the compound symmetry scenario, both parametric

methods provide virtually unbiased estimates for each sample size, as expected for

normal data generated under the compound symmetry covariance structure. Empir-

ical coverage rate of the one-sided 95% confidence interval is reasonably close to the

nominal value even for a small sample size of 20, indicating fast convergence of the

estimates to the normal distribution. On the other hand, the non-parametric method

overestimates the true RAUOCPC, but the bias decreases as sample size increases.

95% coverage rate is 90% or less, though reasonable coverage of 92% is generally

achieved for a sample size of 100 (not shown). Under the unstructured scenario, it



47

should be highlighted that the RAUOCPC(C) estimates significantly underestimate

the true RAUOCPC. Moreover, their empirical coverage rates indicate that the nom-

inal confidence tends to be overestimated, with values close to 100%. In contrast, the

proposed parametric approach results in much smaller values of bias and coverage

probabilities that approach 95% as sample size increases. We should also point out

that the performance of non-parametric method is relatively poor for a sample size

of 20, but it significantly improves in terms of bias and coverage rate as the sample

size increases. Standard error estimates are close to their empirical counterparts in

any situation.

Our simulation studies show that estimates of the compound symmetry case over-

all unscaled agreement indices are largely biased and have very poor coverage of the

true values when the underlying covariance structure is not strictly compound sym-

metry. Because it is usually rare to assess agreement among multiple raters that

assume homogeneity of all variabilities in measurement processes, we recommend us-

ing the proposed approach, defined absent any restriction on the covariance structure,

for estimation and inference in most practical situations.

2.4 Renal Study

Renal scans in nuclear medicine (diuresis renography) play an important role in the

determination of kidney obstruction which is a condition that may lead to loss of

kidney function (Taylor, 2014), Diagnosis of kidney obstruction using renal scans

is generally a difficult problem for the following reasons: (1) there is currently no

good gold standard for detecting kidney obstruction; and (2) correct interpretation of

renal scans requires a deep understanding of renal physiology and technetium-99m-

mercaptoacetyltriglycine (99mTc-MAG3) pharmacokinetics.

In the absence of a gold standard, it is generally accepted that the best available
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interpretation comes from an expert with broad expertise and extensive experience

in academic nuclear medicine. Although interobserver variability still exists between

different nuclear medicine experts, it is generally considered to be minimal (Taylor

and Garcia, 2014). The vast majority of the 590,000 renal scans performed annually

in the United States are interpreted by general radiologists, who have less than 4

months training and experience in interpretations of renal scans and thus have marked

variability in their interpretations compared to experienced readers (Taylor et al.,

2008c, Taylor and Garcia, 2014). For instance, a survey shows that different practicing

radiologist may disagree on the interpretation of the same scan between 9% and 72%

of the time (Jaksić et al., 2005).

Given the background, a pilot study was conducted at Emory University with the

goal of gaining better insight into the nature of diagnostic variability present in a real-

world clinical practice using renal scans. In this respect, the goal of the study is to

quantify the interobserver variability in the population of practicing radiologists. The

nuclear medicine residents with a minimum of one year of formal training in nuclear

medicine were recruited in the pilot study as a surrogate for practicing radiologists.

Three nuclear medicine experts who have more than 20 years of experience in nuclear

medicine were also recruited. It has been recognized that residents may not perform

as well as experts due to their lack of training and limited experience (Taylor et al.,

2008c, Taylor and Garcia, 2014, Erdogan et al., 2014).

An intervention called “Computer Assisted Diagnosis” (CAD) was recently intro-

duced by Emory researchers to minimize errors and reduce the interobserver variabil-

ity among practicing radiologists. The CAD analyzes renal image data and provides

a second opinion about the diagnosis with reasoning. Having a second opinion with

reasoning is thought to minimize the interobserver variability among radiologists.

Thus, it is also of interest to determine if the CAD intervention would reduce the

interobserver variability among radiologists.
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Thirty five patients with suspected obstruction (20 females, mean age ± SD, 58.7

± 15.8y) in either right or left kidney were randomly selected. Their scans from

70 kidneys (35 left kidneys and 35 right kidneys) were independently interpreted by

the three groups of raters: a) three nuclear medicine experts each with 20+ years of

experience (“Experts”); b) three nuclear medicine residents each having completed a

minimum one of their three year nuclear medicine residency (“Residents”); c) same

three residents with subsequent access to CAD (“Residents + CAD”). Raters scored

each kidney of a scale of -1 to +1.

We first performed a series of preliminary data analyses to investigate the struc-

ture of data and check relevant statistical assumptions. The multivariate normality

assumption of pairwise differences within each group of raters was assessed based on

chi-square Q-Q plots (not shown) and Doornik-Hansen’s test of multivariate normal-

ity Doornik and Hansen (2008), and no significant departure from the assumption

was found for all five sets of pairwise differences (p-value range: 0.07 to 0.51) except

within experts in left kidneys (p-value = 0.01). Heterogeneous variabilities appeared

to exist, especially among the three residents, whose sample variances ranged from

0.2 to 0.5 in both kidneys. Presence of such heterogeneity was further confirmed

by the Morgan-Pitman test for comparing variances between correlated samples (all

p-values < 0.05).

Table 2.4 presents the estimates of ODI0.9,3 and OCP0.5,3 for the three groups of

raters, and results of their pairwise across-group comparisons based on two-sample

hypothesis tests. The pre-specified RMSPD of d3 = 0.5 was determined based on a

clinically important squared pairwise difference between any paired ratings that may

disagree on the obstruction status, with the consultation of a nuclear medicine expert,

Dr. Taylor, from Emory University. Statistical inference is based on 1000 bootstrap

samples. Note that all ODI estimates were rounded to one decimal place to reflect the

unit of measurement, while all OCP estimates were rounded to two decimal places.
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The three experts showed high agreement for both kidneys as expected. Specifi-

cally, based on the ODI estimates, 90% of ratings from the three experts had RMSPDs

less than 0.5 (95% upper limit = 0.6) for the left kidney and less than 0.4 (95% upper

limit = 0.5) for the right kidney. Or equivalently, based on the OCP estimates, about

91% (95% lower limit = 72%) of ratings for the left kidney and almost 98% (95%

lower limit = 92%) of ratings for the right kidney had RMSPDs less than 0.5. Agree-

ment among the three residents is significantly worse than that of the three experts

for both left and right kidneys as evidenced by significantly higher ODI estimates

and significantly lower OCP estimates (all p-values < 0.001). However, agreement

among residents dramatically improves after given access to the CAD. For this group

(“Residents + CAD”), approximately 90% of ratings had RMSPDs less than 0.7 and

0.6 (95% upper limits = 1.0 and 0.8) in left and right kidneys, respectively. Or equiv-

alently, at least 72% (95% lower limit = 53%) of ratings for the left kidney and 77%

(95% lower limit = 61%) of ratings for the right kidney had RMSPDs less than 0.5.

Results of pairwise across-group comparisons based on two sample hypotheses tests

show that agreement among residents with CAD was significantly better than that

among the same residents before access to CAD (all p-values < 0.001). Moreover,

the interobserver agreement among the residents with CAD resembles that among

the experts, as we find that the differences between two groups are not significant for

the left kidney (p-values = 0.107 and 0.191).

Figure 2.1 shows three estimated overall coverage probability curves with paramet-

ric RAUOCPC estimates (95% lower limits) and results of their pairwise across-group

comparisons comparisons for left and right kidneys, respectively. Note that a priori

maximum acceptable difference was set to 1. We can first visually verify that the

experts have the highest agreement as evidenced by the largest area under the curve,

closely followed by the residents with CAD. The area under the curve is smallest for

the residents without access to CAD, indicating that their agreement is worst among
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Figure 2.1: Overall coverage probability curves based on left (Left) and right (Right)
kidneys from renal study data. The solid lines indicate the estimated overall coverage
probability curves for experts; the dotted lines indicate the estimated overall coverage
probability curves for residents + CAD; and the dashed lines are indicate estimated
overall coverage probability curves for residents.

the three groups. The three experts have highest estimated RAUOCPC as 0.71 (95%

lower limit = 0.64) for the left kidney and as 0.79 (95% lower limit = 0.74) for the

right kidney. The residents have significantly lower estimates as compared to those of

experts for both left and right kidneys (all p-values < 0.001), though the agreement

significantly improves with CAD (all p-values < 0.001). Moreover, agreement among

residents with CAD closely matches that of the experts for left kidney (p-value =

0.106). Our preliminary results suggest that although there exists high interobserver

variability in the interpretations of renal scans among practicing radiologists, use of

CAD significantly reduces their interobserver variability and results in the degree of

variability being close to that among the experts.
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2.5 Discussion

We have proposed several overall agreement indices (ODI, OCP and RAUOCPC),

which are practically useful for assessing agreement among multiple raters. The key

is to quantify disagreement among measurements using a new comprehensive mea-

sure of distance that represents the root mean square of pairwise differences (RMSPD)

among measurements provided multiple raters. The proposed overall unscaled indices

defined without any assumption regarding the covariance structure among measure-

ments provide great flexibility in a sense that practitioners can quantify agreement

even among multiple raters with highly heterogeneous variabilities in respective mea-

surement processes. Overall unscaled indices are tied to the original measurement

scale and can be compared against pre-specified acceptable/tolerable RMSPDs to

determine satisfying agreement. Thus, they are easily explained to non-statistical

practitioners and can serve as a useful alternative or complement to existing scaled

indices in various clinical study settings.

Definitions and interpretations of unscaled agreement indices depend on the choice

of an extended measure of distance that quantifies the degree of disagreement among

multiple raters. In this manuscript, we have proposed the use of RMSPD (Dk) as

defined in (2.1). A possible alternative to this measure is the average of pairwise

absolute differences among multiple raters, that is, D∗k = 2
k(k−1)

∑
1≤p<q≤k

|Yp − Yq|. Dk

and D∗k quantify inherently different aspects of the spread of data and each has its own

merits. One advantage of D∗k is its robustness (less sensitive to the outliers) compared

to Dk, which depends on moments of the distribution. The proposed measure Dk,

on the other hand, has better mathematical and asymptotic properties in connection

with various widely-used statistical models and probability distributions.

For practitioners, we note that the square root of acceptable/tolerable squared

difference that one is willing to impose between a typical pair of measurements can

serve as an interpretable reference level based on RMSPD. In practice, reference
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standard data can serve as a guidance to set up an acceptable RMSPD value. For

instance, expert rating data on selected patients with suspected obstruction have been

available over the years at Emory University Hospital, and RMSPD value based on

such data may guide the choice of the acceptable value.

We used Liu et al.’s approach (Liu et al., 2009) to approximate the distribution

of D2
k (squared RMSPD) under two rationales: 1) we can rely on nearly all statistical

packages to easily obtain its quantile function (inverse of a cumulative non-central

chi-square distribution function), which is used to define a series of overall unscaled

agreement indices; 2) the reasonably high accuracy of approximation was demon-

strated in simulation studies. We may consider using exact distributional form (2.6)

or other approximation approaches. However, these alternatives either have a com-

plicated form from which the quantile function is not readily obtainable or yield

poor approximation results as compared to Liu et al.’s approach (Liu et al., 2009).

For instance, since exact distribution form (2.6) has as an infinite series representa-

tion (Kotz et al., 1967), we can compute F by truncating the series after N terms,

but obtaining F−1 is a burdensome task because it involves inverting a infinite se-

ries. Another approach uses numerical inversion of the characteristic function of D2
k

to approximate the cumulative distribution function (Imhof, 1961). However, ob-

taining F−1 is extremely difficult as it involves inverting an analytically intractable

integral. There exist other moment-based approximation approaches, such as the ex-

tension of Pearson’s three-moment central χ2 method (Imhof, 1961, Pearson, 1959).

This approach essentially provides a central χ2 approximation to non-negative D2
k by

matching the third-order moments. Its approximate distribution form is simple, as it

only requires an inversion of a central χ2 cumulative distribution function. However,

the current approach produces better approximation results for the tail probabilities

since it further requires a best match of the fourth-order moments (Liu et al., 2009).

Our proposed approach assumes distinct pairwise differences to follow a multi-
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variate normal distribution in defining overall unscaled agreement indices, which is

a weaker assumption then imposing normality on measurements themselves. Such

assumption is a natural conceptual extension to the traditional TDI case in which

the difference between paired measurements is assumed to follow a univariate normal

distribution. In the event that there are potential violations to the normality as-

sumption, appropriate transformation can be applied to the measurements to ensure

that the distributional assumption likely holds. It is important to note that inter-

pretations should then be in terms of the transformed scale. Recently, several novel

non-parametric methods for estimation and inference of the TDI were introduced

(Choudhary, 2010, Perez-Jaume and Carrasco, 2015, Lin et al., 2016). It is of future

interest to develop similar non-parametric approach for our proposed indices to deal

with non-normal data.
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Chapter 3

Assessing Alignment Between

Functional Markers and Ordinal

Outcomes Based on Broad Sense

Agreement
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Portions of this chapter were previously published as Jang JH, Peng L, Manatunga

AK. Assessing alignment between functional markers and ordinal outcomes based on

broad sense agreement. Biometrics. 2019;1-13. https://doi.org/10.1111/biom.13063,

and have been reproduced with permission. Copyright is held by International Bio-

metric Society.

3.1 Introduction

Statistical methods for characterizing alignment between paired measurements in the

same scale are well-established in the agreement literature. For instance, with paired

categorical or ordinal data, the kappa coefficient or the weighted kappa coefficient

(Cohen, 1960, 1968, Fleiss, 1971, Kraemer, 1980); with paired continuous measure-

ments, intraclass correlation coefficient (ICC) (Bartko, 1966) and concordance corre-

lation coefficient (CCC) (Lin, 1989) are popular measures of agreement. Some raters,

however, may use different measurement processes with distinctive point systems,

resulting in paired measurements with different scales (e.g., continuous and ordinal).

The aforementioned methods cannot be applied in such cases, because they require

measurements to be on the same scale. Recently, Peng et al. (2011) proposed a broad

sense agreement (BSA) framework that is specifically designed to characterize align-

ment between continuous and ordinal measurements. The BSA measure proposed

by Peng et al. (2011) is scaled between -1 and 1, with its value equaling 1 (or -1)

representing a perfect broad sense agreement (or disagreement). The high value of

the BSA measure closer to 1, the higher the capability of interpreting the continuous

scale according to the ordered categories of interest.

With the advancement in data collection technology, more and more observations

are being collected as functional markers, each of which consists of repeated measure-

ments that are densely sampled over a time or other continua (Ramsay and Silverman,
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2005). In literature on traditional agreement, a few popular indices have been general-

ized in the presence of functional markers. Li and Chow (2005) proposed an extended

CCC that can evaluate agreement between paired functional markers. Following the

formulation of a traditional CCC that involves paired univariate measurements (Lin,

1989), the authors characterized the degree of agreement between the two functional

markers by their expected squared distance, which is defined based on the functional

inner product. More recently, Rathnayake and Choudhary (2016) proposed a con-

cept of tolerance bands for functional markers, as an extension of univariate tolerance

intervals that have been used to evaluate agreement in clinical measurement meth-

ods (Choudhary, 2008). Specifically, the authors proposed simultaneous bands that

always contain a certain proportion of entire individual curves with pre-specified

confidence. These methods, however, are limited to comparing between functional

measurements. To our knowledge, no systematic research addresses the question of

how to assess alignment between a functional marker and an ordinal outcome. The

recent work by Peng et al. (2011) provides a promising tool to address such a question,

which is the focus of this paper.

Our work is motivated by data collected in a renal study. Obstruction to urine

drainage from kidney (kidney obstruction) is a serious clinical problem that can lead

to irreversible loss of renal function if not properly treated. In the diagnosis of kidney

obstruction, 99mTc-Mercaptoacetyltriglycine (MAG3) is injected to a patient and pho-

ton counts in each kidney are measured during the renal scan period, producing a set

of renogram curves (Taylor et al., 2008c). The first renogram curves (called baseline)

represent the MAG3 photon counts detected during the initial period of 24 minutes

(see the left panel in Figure 3.1). Second renogram curves (called post-furosemide)

are also obtained with an additional 20 minutes after an intravenous injection of

furosemide, a potent diuretic (see the right panel in Figure 3.1). In the absence of

a gold standard for the presence of kidney obstruction, consensus ordinal ratings on
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Figure 3.1: Representative Renogram curves for three kidneys. The solid lines are
from a kidney rated as “non-obstructed” by expert consensus; the dashed lines are
from a kidney rated as “equivocal”; and the dotted lines are from a kidney rated as
“obstructed”.
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each subject’s obstruction status (1: non-obstructed; 2: equivocal; 3: obstructed)

were further collected from a group of nuclear medicine experts as the best available

standard.

A good alignment between the renogram curves and the consensus ordinal ratings

would suggest an improved diagnostic utility of renogram curves in detecting sus-

pected kidney obstruction. One ad-hoc approach is to compute the BSA measures

between the observed photon counts on the curves and the ordinal ratings at each

discrete time point. However, the interpretation of a set of pointwise BSA estimates

that fluctuate in time is not always straightforward. For instance, crossings of the

baseline renogram curves in Figure 3.1 will imply their varying degrees of alignment

with the ordinal ratings over time. The resulting pointwise BSA estimates at different

time points may only provide an inconclusive picture of the overall diagnostic utility

of the renogram curves themselves.
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Often in clinical practice, several quantitative features of functional curves (e.g.,

pharmacokinetic area under the curve, AUC) are used for the interpretation of mark-

ers or diseases. This is indeed the case with renogram curves which can be charac-

terized by several important features that are inherent in its functional nature and

are also related to the severity of the kidney obstruction. Common examples include

maximum MAG3 photon count, time to reach maximum MAG3 photon count, etc.,

which are frequently derived from the renogram curves to help physicians evaluate

possible kidney obstruction (Bao et al., 2011). From this perspective, a more sub-

stantive interest in studying the relationship between functional and ordinal scales is

to identify an important quantitative feature of the functional marker that aligns well

with the corresponding ordinal rating. Thus, our goal is to develop a framework based

on BSA that can assess and compare alignment of various quantitative features of

functional markers according to their ordinal outcomes, and ultimately help identify

quantitative features that have good diagnostic utility.

In this manuscript, our strategy is to adopt a general class of summary functionals,

each of which flexibly captures a different quantitative feature of a functional marker,

such as AUC, the evaluation of a function or its derivatives at certain points or the

point that reaches a maximum/minimum of a functional marker. This approach

allows studying alignment between a large class of important quantitative features

of a functional marker and an ordinal outcome. Following this idea, we provide an

inferential framework for comparing a pair of candidate summary functionals in terms

of their importance on the ordinal outcome. It is worth noting that there are some

complications in the estimation and inference of the proposed framework. That is,

each functional marker is not directly observable continuously in time; rather, each

observation is collected at discrete time points with some possible measurement error.

In such a situation, extra work in constructing the functional estimate is warranted

to ensure desirable asymptotic properties of the corresponding BSA estimator.
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The remainder of the Chapter is organized as follows. In Section 3.2, we first

review the existing BSA framework, followed by an introduction of a general class

of summary functionals and our proposed framework based on BSA for measuring

alignment of functional markers according to their ordinal outcomes. Nonparamet-

ric estimators and their asymptotic properties, and subsequent inferential procedures

including variance estimation and construction of confidence intervals are also pre-

sented. In Section 3.3, we illustrate the proposed framework based on BSA using

several concrete classes of summary functionals. In Section 3.4, we describe the infer-

ential framework for comparing summary functionals regarding their alignment with

the ordinal outcomes. In Section 3.5, we report the results of a simulation study

conducted to evaluate the performance of the proposed approaches. The application

of our methods to a renal study is illustrated in Section 3.6. Finally, we conclude

with some remarks in Section 3.7.

3.2 Methods

3.2.1 Review of broad sense agreement

The concept of broad sense agreement (BSA) was introduced by Peng et al. (2011) as

to characterize the alignment of continuous measurements X according to their estab-

lished ordered categories Y . Let DX and DY be the domain of X and Y , respectively.

Perfect broad sense agreement (or disagreement) between X and Y is defined as the

existence of an increasing (or decreasing) step function Ψ from DX and DY such that

Y = Ψ(X) with probability of 1. That is, if X(∗k) denotes the randomly selected X

given Y = k (k = 1, 2, . . . , K), a perfect broad sense agreement (disagreement) case

implies X(∗1) < X(∗2) < · · · < X(∗K) (X(∗1) > X(∗2) > · · · > X(∗K)) with probability 1.

An index for measuring the degree of BSA was proposed (Peng et al., 2011). The

index quantifies the discrepancy between the observed and expected ranks under per-
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fect BSA among a group of continuous measurements. Specifically, denote the ranks

of {X(∗1), X(∗2), . . . , X(∗K)} by {R1, R2, . . . , RK}. Then the proposed BSA measure is

defined as

ρbsa(X, Y ) = 1−
E
{ K∑
k=1

(k −Rk)
2
}

E
{ K∑
k=1

(k −Rk)2 | X⊥Y
} , (3.1)

where E(·) denotes the expectation and E(· | X⊥Y ) denotes the expectation given

that X and Y are independent. ρbsa(X, Y ) always takes a value between -1 and 1,

with 1 (or -1) representing perfect broad sense agreement (disagreement). A value

close to 0 indicates independence between X and Y .

A non-parametric estimator of the BSA measure ρbsa(X, Y ) was proposed (Peng

et al., 2011). The basic idea is to adopt the stratified resampling idea and examine

all possible groups of K observations of (X, Y ) with distinct Y values. Define ΘK as

the sample space of {R1, · · · , RK} which consists of K! permutations of the elements

of
−→
k = [1, . . . , K]′. Suppose the observed data consist of n pairs of (Xi, Yi), i =

1, . . . , n. Let nk =
∑n

i=1 I(Yi = k) and
∑K

k=1 nk = n, and denote X(∗k),sk as the sthk

(1 ≤ sk ≤ nk) continuous measurement among those that fall into the kth ordinal

category. Denote
−→
R(·) as a mapping from DKX to ΘK :

−→
R(−→x ) = [r1, . . . , rK ]′, where

−→x = [x1, . . . , xK ]′ ∈ DKX and rk =
∑K

m=1 I(xk ≥ xm) representing the rank of xk

among {x1, . . . , xK}. Then it can be shown that the estimator takes the form of

(Peng et al., 2011)

ρ̂bsa(X, Y ) = 1−

( K∏
k=1

nk

)−1 n1∑
s1=1

· · ·
nK∑
sK=1

∣∣∣∣−→k −−→R(X(∗1),s1 , . . . , X(∗K),sK )
∣∣∣∣2

(K3 −K)/6
, (3.2)

where || · || is a Euclidean norm in RK . Asymptotic properties of the estimator have

also been established (Peng et al., 2011).
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3.2.2 General formulation of the summary functional

Without loss of generality, we take the domain of the function marker X as a time

interval T and accordingly denote X(t) as a continuous measurement at time t ∈ T .

For a nonnegative integer ω, define Fω = {f : T → R; f is square integrable and

ω-times continuously differentiable at any t ∈ T }, and assume X ∈ Fω. A general

formulation of the summary functional of X is simply defined as a map from Fω to

R, that is, φ : Fω → R. Our approach is to consider this general formulation of

the summary functional that encompasses a wide class of quantitative features of a

functional marker; we defer discussion of its specific examples until Section 3.3.

3.2.3 Proposed BSA framework

First, we aim to investigate how a chosen quantitative feature of functional markers is

informative about their corresponding ordinal outcomes. To achieve this, we propose

an extended BSA framework, under which the degree of alignment between the chosen

quantitative feature of a functional marker and the ordinal outcome is characterized

by

ρbsa(φ(X), Y ),

where φ(X) is a summary functional. We see that the index is now essentially based

on the comparison between the ranks of {φ(X(∗1)), φ(X(∗2)), · · · , φ(X(∗K))} and their

anticipated ranks under the perfect BSA scenario (1, 2, · · · , K) (see (3.1)). Thus, the

closer ρbsa(φ(X), Y ) is to 1, the better the alignment between the chosen quantitative

feature of a functional marker captured by the summary functional φ(X) and the

ordinal outcome Y .
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3.2.4 Nonparametric estimation

Suppose that n functional markers X1, X2, . . . Xn are directly observable. Then, given

a reasonable choice of a quantitative feature to be analyzed, this in turn implies that

n summary functionals φ(X1), φ(X2), . . . , φ(Xn) can be obtained for each subject. In

such a case, it is straightforward to assess their alignment with the given ordinal

outcomes Y by estimating the BSA measure using (3.2) with X replaced by φ(X).

In reality, however, each functional marker Xi (i = 1, . . . , n) is not observed

continuously in time; instead, a set of continuous measurementsXi(tij) (j = 1, . . . , Ni)

are observed with possible measurement error as Wi(tij) at Ni discrete time points

{(ti1, ti2, . . . , tiNi) ∈ T : ti1 < ti2 < · · · < tiNi}. We can express this using the

following model

Wi(tij) = Xi(tij) + εi(tij), (3.3)

where the random measurement error εi(t) follows an independent and identical dis-

tribution with E(εi) = 0 and Var(εi) = σ2
e < ∞ for each t, mutually independent of

the true function Xi. We assume that Ni →∞ as n→∞ for all i, that is, Ni = Ni,n

is a sequence that tends to infinity. For ease of presentation, we omit the subscript

n.

Accordingly, the true value of each summary functional φ(Xi) is unknown but

can be estimated based on the observed data as φNi(Wi). For instance, a summary

functional that captures the AUC of a functional marker, that is, φ(Xi) =
∫
Xi(t)dt,

cannot be directly computed; instead, it may be constructed as a Riemann sum of

the observed data points as φNi(Wi) =
∑Ni−1

j=1 Wi(tij)(ti,j+1− tij). The observed data

thus consist of n independently distributed pairs of estimated summary function-

als of interest and their respective ordinal outcomes {φN1(W1), Y1}, {φN2(W2), Y2},

. . . , {φNn(Wn), Yn}.

We propose to estimate ρbsa(φ(X), Y ) by ρ̂bsa(φN(W ), Y ), which, under formu-
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lation (3.2), is based on the stratified resampling scheme that examines all possible

groups of K observations {φN(W ), Y } with distinct Y values. Specifically, the non-

parametric estimator takes the form of

ρ̂bsa(φN(W ), Y )

= 1−

( K∏
k=1

nk

)−1 n1∑
s1=1

· · ·
nK∑
sK=1

∣∣∣∣−→k −−→R{φN(W(∗1),s1), . . . , φN(W(∗K),sK )}
∣∣∣∣2

(K3 −K)/6
,

(3.4)

where
−→
k = [1, . . . , K]′,

−→
R(·) is mapping from DKφ to ΘK :

−→
R(−→w) = [r1, . . . , rK ]′,

−→w = [φN(w(∗1)), . . . , φN(w(∗K))]
′ ∈ DKφ and rk =

∑K
m=1 I{φN(w(∗k)) ≥ φN(w(∗m))}

representing the rank of φN(w(∗k)) among {φN(w(∗1)), . . . , φN(w(∗K))}. Note that all

the subscripts of N have been dropped in the right-hand side of the equation (3.4)

for ease of representation; that is, φN(∗k),sk
(W(∗k),sk) ≡ φN(W(∗k),sk) for all k.

There are two potential sources of sampling error in the estimation of ρbsa(φ(X), Y )

using ρ̂bsa(φN(W ), Y ) given by (3.4). The first source of error stems from the basic

formulation of the BSA statistic where a stratified resampling scheme is adopted to

estimate the similarity between the observed ranks of summary functionals and their

anticipated ranks under the scenario of perfect BSA. The second source of error comes

from replacing the true summary functionals φ(X) with their estimates φN(W ) and

is thus specific to our situation involving functional markers. It is important that

both sources of error are taken into consideration when studying the (asymptotic)

properties of the proposed estimator (3.4).

3.2.5 Asymptotic properties

In Theorem 3.2.1, we establish the consistency and asymptotic normality of the pro-

posed estimator ρ̂bsa(φN(W ), Y ) given by (3.4), provided that the consistency of the

estimator φNi(Wi) for φ(Xi) holds for all i. Its proof is provided in Appendix B.1.
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Theorem 3.2.1. Suppose sup1≤i≤n |φNi(Wi) − φ(Xi)| ≤ Op(PN), where PN is a

nonnegative sequence. (i) If PN → 0 as n → ∞ and the regularity conditions

A1-A3 provided in Appendix B.1 hold, ρ̂bsa(φN(W ), Y ) is a consistent estimator for

ρbsa(φ(X), Y ). (ii) If
√
nPN → 0 as n→∞ and the regularity conditions A1, A2 and

A4 provided in Appendix B.1 hold, when |ρbsa(φ(X), Y )| < 1,
√
n{ρ̂bsa(φN(W ), Y )−

ρbsa(φ(X), Y )} has an asymptotic normal distribution with mean zero and variance

σ2
bsa, where σ2

bsa is defined in Appendix B.1.

The key idea of the proof is to consider the decomposition ρ̂bsa(φN(W ), Y ) −

ρbsa(φ(X), Y ) = T1 + T2, where T1 = ρ̂bsa(φN(W ), Y ) − ρbsa(φN(W ), Y ) and T2 =

ρbsa(φN(W ), Y ) − ρbsa(φ(X), Y ). The consistency and asymptotic normality of the

first term T1 can be readily established as for the univariate case (Peng et al.,

2011) given any fixed N as n → ∞. T2 can be shown negligible provided that

sup1≤i≤n |φNi(Wi)− φ(Xi)| ≤ Op(PN), where PN and
√
nPN approach 0 as n goes to

infinity.

3.2.6 Estimation of standard error and confidence interval

We propose to estimate asymptotic variance of ρ̂bsa(φN(W ), Y ) using the jackknife

method, given the rather complicated analytic form of σ2
bsa. The consistency of the

jackknife estimator is guaranteed by the fact that
√
n{ρ̂bsa(φN(W ), Y )−ρbsa(φ(X), Y )}

is, asymptotically, a U-statistic (Arvesen, 1969). Specifically, let ρ̂
(−i)
bsa (φN(W ), Y ) be

the BSA estimate based on the sample with the ith pair {φNi(Wi), Yi} removed. The

jackknife variance estimator is then given by

ŝ2J =
n− 1

n

n∑
i=1

{
ρ̂
(−i)
bsa (φN(W ), Y )− 1

n

n∑
p=1

ρ̂
(−p)
bsa (φN(W ), Y )

}2

. (3.5)

Note that the validity of the jackknife formula (3.5) is due to the fact that both

Var(T2) and Cov(T1, T2) (T1 and T2 are defined in Section 3.2.5 under Theorem 3.2.1)
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are asymptotically negligible given a consistent estimator of φ(X). Furthermore,

other non-parametric methods such as the bootstrap, half-sampling or subsampling

can be used for estimating the asymptotic variance; see Efron (1981) for details of

other applicable methods.

One may use normal approximation to construct confidence intervals (CIs) of

ρbsa(φ(X), Y ). Since ρbsa(φ(X), Y ) ∈ [−1, 1], adopting Fisher’s Z-transformation

may accelerate the convergence of ρ̂bsa(φN(W ), Y ) to asymptotic normality, especially

when ρ̂bsa(φN(W ), Y ) is close to the boundary. Specifically, let g(a) = 0.5× ln{(1 +

a)/(1 − a)}, g′(a) = dg(a)/da, and g−1(·) denote the inverse function of g(·). Using

the delta method, the 100(1− α)% CI for ρbsa(φ(X), Y ) can be constructed as

[
g−1
(
g̃ − z1−α/2 · g̃′ŝJ

)
, g−1

(
g̃ + z1−α/2 · g̃′ŝJ

)]
, (3.6)

where g̃ ≡ g{ρ̂bsa(φN(W ), Y )}, g̃′ ≡ g′{ρ̂bsa(φN(W ), Y )} and z1−α/2 denotes the

100(1− α/2)th percentile of N(0, 1).

3.3 Illustration of the Proposed BSA Framework

In this section, we illustrate the proposed framework based on BSA using three special

classes of summary functionals that are relevant and of importance in various clinical

settings.

3.3.1 Three special cases of summary functionals

Suppose that the functional marker X is ω-times continuously differentiable (see

Section 3.2.2). We denote X(ν) as its νth derivative (0 ≤ ν ≤ ω − 2), with X(0) = X.
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AUC-type funtionals. AUC-type functionals are often used in practice to sum-

marize a functional marker. Specifically, they take the form

φ(X) := φ
[ν]
AUC(X) =

∫
T
X(ν)(t)dt.

Setting ν = 0 and ν = 1 above gives the area under a crude curve (crude AUC) and

the area under the first derivative of a curve (first derivative AUC), respectively.

Magnitude-specific functionals. Another important quantitative feature of a

functional marker or its (higher-order) derivative is its magnitude associated with

a specific argument value t. Accordingly, given t∗ ∈ T , a magnitude-specific func-

tional can be expressed as

φ(X) := φ
[ν]
MAG(t∗)(X) = X(ν)(t∗).

A unique maximum or minimum magnitude of a functional marker sometimes

provides useful information and can be expressed as a summary functional as defined

below:

φ(X) := φ
[ν]
MAX(X) = sup

t∈T
X(ν)(t) or φ(X) := φ

[ν]
MIN(X) = inf

t∈T
X(ν)(t).

Time-specific functionals. Time to attain a certain threshold value η of a func-

tional marker or its (higher-order) derivative is often of great interest for researchers.

Such a quantitative feature can be readily captured by a time-specific functional that

maps the space of functional markers to the relevant time domain, i.e., φ : Fω → T ⊂

R:

φ(X) := φ
[ν]
TIME(η)(X) = inf{t ∈ T : X(ν)(t) = η}.

In many practical situations, researchers are interested in investigating the timing
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of a unique maximum of a curve. This quantitative feature can be appropriately

captured using a time-specific functional of the form

φ(X) := φ
[ν]
tMAX(X) = arg sup

t∈T
X(ν)(t).

An analogous form holds for the time at which a unique minimum value is achieved.

The interpretation of a perfect BSA scenario (i.e. ρbsa(φ(X), Y ) = 1) differs

depending on a chosen summary functional. For instance, if φAUC(X) is adopted, a

perfect BSA scenario implies φAUC(X(∗1)) < · · · < φAUC(X(∗K)). In other words, with

probability 1, functional markers that are indexed with higher ordinal values have

greater crude AUC than those of other functional markers indexed with lower ordinal

values. Analogous interpretations hold with respect to the magnitude-specific and

time-specific summary functionals.

3.3.2 Nonparametric estimation of the special-case summary

functionals

Assume without loss of generality that T = [0, 1]. As illustrated in model (3.3), we

do not observe the true functional marker Xi (i = 1, . . . , n) in practice, but collect

its realized values at Ni discrete times points 0 = ti1 < ti2 < · · · < tiNi = 1 with

measurement error as Wi.

Several smoothing techniques are available to estimate the true functional marker

Xi based on noisy observations Wi (e.g., kernel smoothing, spline, moving average

and so on). For instance, a popular approach is to use smoothing splines (e.g., cubic

B-splines) to approximate the true function. The coefficients for the spline basis

functions are estimated as the solution to the penalized least squares problem that

aims to explicitly control the trade-off between fidelity to the data and roughness

of the function estimate. An excellent reference on smoothing splines is Green and
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Silverman (1994).

In our work, we opt to a non-parametric smoothed estimate of the true underlying

function X
(ν)
i using the following kernel estimator (Gasser and Müller, 1979, 1984,

Müller, 1984, 1985):

Ŵ
[ν]
i (t) =

1

bν+1
Ni

Ni∑
j=1

∫ dij

di,j−1

Kν

(t− u
bNi

)
du ·Wi(tij), (3.7)

where di,j−1 = (tij + ti,j−1)/2 (di0 = 0, dNi = 1) and bNi is a smoothing parameter

(bandwidth) satisfying bNi → 0, NibNi → ∞ as Ni → ∞ for all i. Kν is a kernel

function of order (ν, ω) defined on a compact support [−1, 1] and takes on zero values

on the boundary points (see Appendix B.2). This so-called Gasser-Müller kernel esti-

mator is widely recognized for its computational efficiency and good asymptotic prop-

erties (Gasser and Müller, 1984, Müller, 1984). Furthermore, it provides relatively

accurate first or higher-order derivative estimates even with a number of observed

time points as small as 15 (Gasser et al., 1991). Thus, we propose to build a non-

parametric estimator φNi(Wi) for each of the three special-case summary functionals

φ(Xi) based on the Gasser-Müller kernel estimator (3.7) as following.

AUC-type funtionals. This type of summary functional can be estimated by the

following Riemann sum of Ŵ
[ν]
i with respect to the output design points {ti1, . . . , ti,Ni}:

φNi(Wi) := φ
[ν]
Ni,AUC(Wi) =

Ni−1∑
j=1

Ŵ
[ν]
i (tij)(ti,j+1 − tij).

Magnitude-specific funtionals. Given a specific time point t∗ ∈ T , a general

magnitude-specific functional can be directly estimated by its empirical counterpart

of Ŵ
[ν]
i :

φNi(Wi) := φ
[ν]
Ni,MAG(t∗)(Wi) = Ŵ

[ν]
i (t∗).
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Analogously, the unique maximum or minimum value of a functional marker and its

(higher-order) derivatives can be estimated as (Gasser and Müller, 1984)

φNi(Wi) := φ
[ν]
Ni,MAX(Wi) = sup

t∈T
Ŵ

[ν]
i (t) or φNi(Wi) := φ

[ν]
Ni,MIN(Wi) = inf

t∈T
Ŵ

[ν]
i (t).

Time-specific funtionals. Assume that X
(ν)
i attains a certain threshold value η.

Then, its timing can be non-parametrically estimated by its empirical counterpart of

Ŵ
[ν]
i :

φNi(Wi) := φ
[ν]
Ni,TIME(η)(Wi) = inf{t ∈ T : Ŵ

[ν]
i (t) = η}.

If Ŵ
[ν]
i does not attain η, we define φ

[ν]
N,TIME(η)(Wi) = 0. Similarly, the timing of a

unique maximum can be estimated by (Gasser and Müller, 1984):

φNi(Wi) := φ
[ν]
Ni,tMAX(Wi) = inf{t ∈ T : Ŵ

[ν]
i (t) = sup

u∈T
Ŵ

[ν]
i (u)}.

In Appendix B.3, we provide and prove a theorem that states the consistency

of each of the above estimators. Then by Theorem 3.2.1 from Section 3.2.5, this

in turn establishes the consistency and asymptotic normality of the corresponding

non-parametric BSA estimator.

3.4 Statistical Test for Selecting a Summary Func-

tional

Our aim for this section is to identify quantitative features of a functional marker that

are well-aligned with an ordinal scale of interest. Given that the ordinal scale reason-

ably reflects the severity of a certain clinical outcome, this effort amounts to producing

sensible function-based biomarkers for understanding and assessing the same clinical

mechanism in future studies. To address this objective, we develop a hypothesis test-
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ing procedure for comparing the BSAs of different competing quantitative features of

a functional marker. Specifically, suppose we are interested in determining whether

a particular type of a summary functional φ1(X) leads to a significantly better align-

ment with an ordinal outcome than that of a competing summary functional φ2(X).

For simplicity, let ρbsa,1 and ρbsa,2 denote the true BSA measures based on two differ-

ent summary functionals φ1(X) and φ2(X) , respectively. The null and alternative

hypotheses can be formulated as

H0 : ρbsa,1 = ρbsa,2 vs. H1 : ρbsa,1 > ρbsa,2.

Using the asymptotic property of the proposed estimator and the delta method,

we can formulate the Wald test statistic as

TN,n =

√
n
{
g(ρ̂bsa,1)− g(ρ̂bsa,2)

}
V̂J

=
DN,n

V̂J

d−−→ N(0, 1), (3.8)

where g(a) = 0.5× ln{(1+a)/(1−a)} (Fisher’s Z-transformation) and V̂J denotes the

estimated asymptotic standard error of DN,n. Since the analytical form of the stan-

dard error is complicated, the jackknife method is used to estimate VJ . Specifically,

let D̂
(−i)
N,n denote the estimate for DN,n obtained from the data excluding (Wi, Yi).

Then the jackknife estimate of the asymptotic variance of DN,n is given by

V̂ 2
J =

n− 1

n

n∑
i=1

(
D̂

(−i)
N,n −

1

n

n∑
p=1

D̂
(−p)
N,n

)2
.

Therefore, the null hypothesis can be rejected when the absolute value of TN,n is

greater than the 100(1− α)th percentile of the standard normal distribution.
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3.5 Simulations

We conducted simulations studies to assess the performance of the proposed ap-

proaches to evaluate alignment between functional markers and ordinal outcomes.

Specifically, finite-sample performances of BSA estimators based on three special

cases of summary functionals (AUC-type, magnitude-specific, and time-specific) were

assessed. Initially, for the ordinal outcomes, we set K = 3 and generate Y from

the multinomial distribution with equal probabilities, that is, Pr(Y = k) = 1/3,

k = 1, 2, 3.

Given each Y = k, the true functional markersX are generated over a time interval

T = [0, 1] under five different scenarios depending on the type of a summary functional

to be analyzed. For the AUC-type summary functionals, we generate X(t) as a

Gaussian process with mean functions µ(t) = k (scenario 1) and µ(t) = kt (scenario

2). Scenarios 1 and 2 represent a constant and improving degrees of alignment in

terms of the crude AUC over the time interval, respectively. Performances based on

the magnitude-specific summary functionals are evaluated using a Gaussian process

with mean function µ(t) = ksin(πt), whose unique maximum value 1 is attained

at time 1/2 (scenario 3). Note that all Gaussian processes are generated with a

common covariance function Cov(X(s), X(t)) = exp{−(s−t)2}, s, t ∈ T . We consider

two scenarios for evaluating the finite-sample performance based on the time-specific

summary functionals. In scenario 4, if Y = 1, X(t) = sin(2πt) with probability 1;

if Y = 2, X(t) = sin(0.25πt) with probability 1; and if Y = 3, X(t) = sin(0.5πt)

with probability 1. In scenario 5, if Y = 1, X(t) = sin(2πt) with probability 1;

if Y = 2, X(t) = sin(0.66πt) with probability 1; and if Y = 3, X(t) = sin(πt)

with probability 1. Time to reach η = 1/2 and time to reach the maximum value 1

are the quantitative features of interest in scenarios 4 and 5, respectively. Figure 3.2

illustrates the representative curve sample (one for each ordinal category), the type(s)

of summary functional we are targeting and the corresponding true BSA value(s) for
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each of the five scenarios.

To assess the sensitivity of the proposed framework to varying density of time

points, we consider the following five study designs: (a) unbalanced design with

Ni following a Poisson distribution with mean 20; (b) unbalanced design with Ni

following a Poisson distribution with mean 40; (c) balanced design with Ni = 20 per

subject; (d) balanced design with Ni = 40 per subject; and (e) balanced design with

Ni = 60 per subject. Except for the two fixed endpoints (ti0 = 0 and tiNi = 1), the

Ni number of observation times in all these study designs are randomly drawn from

a uniformly distributed grid Tgrid = {(u− 1)/119, u = 1, . . . , 120} separately for each

subject.

In order to mimic as closely as possible a real situation, we further contaminate the

generated functional markers based on the model (3.3) at each time point, assuming

that the measurement errors ε are independent and identically distributed N(0, 0.1)

random variables. In all configurations, we obtain the Gasser-Müller kernel estimators

(3.7) evaluated on 300 output design points using a polynomial kernel of degree

2 (Müller, 1984) and an automatically adapted global “plug-in” bandwidth that is

asymptotically optimal with respect to the mean integrated square error (MISE)

(Gasser et al., 1991). Standard error estimates and 95% CIs are computed based on

the formulas (3.5) and (3.6), respectively. Results presented in Table 3.1 are based

on 1000 simulated datasets of size n = 40 and 60.

From Table 3.1, we see that the proposed method exhibits satisfactory finite-

sample performance. Empirical biases are generally low, implying that the corre-

sponding BSA estimates quickly converge to the respective true values. But they do

tend to be slightly larger for magnitude- and time-specific summary functionals when

the data are highly sparse; see cases (a) and (c). Therefore, when magnitude-specific

or time-specific summary functional is considered, we recommend using functional

markers that are collected on at least average of 25 time points to produce reliable
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BSA estimates. The estimated standard errors rapidly approach the empirical stan-

dard deviations as sample size increases in all configurations, suggesting that the

jackknife procedure based on the Fisher’s Z-transformation works well regardless of

the study design and choice of a summary functional. Likewise, the 95% CIs have

coverage probabilities that are all close to the nominal level.

We further evaluate the performance of the hypothesis testing procedure presented

in Section 3.4. Specifically, empirical rejection rates of H0 are obtained under the two

selected scenarios from above and are presented in Table B.1 of Appendix B.4. In

summary, the empirical rejection rates are very close to the nominal level of 0.05

when H0 is correct and demonstrates adequate power if otherwise. Furthermore,

the simulation study in Table 3.1 is repeated at the level of the first derivative of

functional markers, and its results are presented in Table B.2 of Appendix B.4.

3.6 Renal Study

In this section, we apply the proposed approaches to the motivating renal study data

described in Section 3.1. In the absence of a gold standard for detection of kidney

obstruction, it is generally accepted that the nuclear medicine experts provide the

best available interpretation of renal scans (Taylor and Garcia, 2014). Unfortunately,

a vast majority of scan interpretations are conducted by general radiologists in the

United States, and their lack of training and limited experience increase the error rate

of the diagnosis (Taylor et al., 2008c). Under such circumstances, several quantitative

features, such as maximum MAG3 photon count, time to reach maximum MAG3 pho-

ton count, etc., are derived from the baseline and post-furosemide renogram curves to

assist readers arrive at correct diagnosis of kidney obstruction (Taylor et al., 2008c,

Bao et al., 2011), and it is of ongoing interest to rigorously establish their connection

with the underlying obstruction mechanism to prevent inappropriate patient man-



78

agement and unnecessary surgery.

The study was thus designed to assess and improve the diagnostic utility of the

baseline and post-furosemide renogram curves under the proposed framework. A total

of 108 patients (54 men [50%], 54 women [50%]; mean age, 57 years; SD, 17 years;

range, 18-87 years), that is, 216 kidneys (108 kidneys from each side), with suspected

kidney obstruction were enrolled in the study. Three selected nuclear medicine experts

were asked to provide an ordinal rating of the obstruction status in each kidney.

Their consensus ordinal rating was determined by majority of vote unless there was

substantial disagreement. At baseline, 145 kidneys (68 left kidneys and 77 right

kidneys) were rated as “non-obstructed” (Y = 1), 12 kidneys (7 left kidneys and 5

right kidneys) were rated “equivocal” (Y = 2) and 59 kidneys (33 left kidneys and

26 right kidneys) were rated as “obstructed” (Y = 3).

Baseline renogram curves were initially collected for patients referred for suspected

obstruction (see the left panel of Figure 3.1). MAG3 photon counts in the region of

interest (ROI) around each kidney were measured at 59 distinct time points over

a period of 24 minutes. Each patient further received an intravenous injection of

furosemide, a potent diuretic, and a second (post-furosemide) renogram curve was

obtained with an additional 20 minutes (see the right panel of Figure 3.1). Herein,

MAG3 photon counts were measured at 40 time points using a framing rate of 30

seconds. Note that both curves have equally-sparsed domains for all subjects; that

is, tij ≡ tj and Ni ≡ N for all i.

Our choice of quantitative features for both renogram curves was mainly guided

by available a priori scientific information. Specifically, Bao et al. (2011)’s study

suggests that a set of quantitative features that reflects the degree of MAG3 excretion

from kidneys at baseline is strongly related to the obstruction status. Based on this

information, we considered four quantitative features of the baseline renogram: a)

crude AUC (φAUC); b) first derivative AUC (φ
[1]
AUC); c) time to maximum of the crude
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curve (φtMAX); and d) minimum rate of change (φ
[1]
MIN). Furthermore, Eskild-Jensen

et al. (2004) showed that MAG3 accumulates in the ROI without any excretion for the

first 2-3 minutes regardless of the obstruction status. By combining this information

with the empirical findings we drew from the patterns of the baseline renogram curves,

we not only estimated each AUC-type functional on the entire time period T , but

also estimated it over the two sub-time intervals, T1 = [0, 10] and T2 = [10, 24],

dichotomized at the ten minute milestone. For the post-furosemide renogram curves,

Bao et al. (2011) suggests the importance of their overall MAG3 intensity in detecting

kidney obstruction. Accordingly, two quantitative features were chosen: a) crude

AUC (φAUC); and b) maximum of the crude curve (φMAX).

We first obtained the Gasser-Müller kernel estimates (3.7) of the crude (ν = 0)

renogram curves and their first derivatives (ν = 1) using a polynomial kernel of

degree 2 and 3, respectively (Müller, 1984). In both cases, the Gasser-Müller kernel

estimators were evaluated on 300 design points using a data-driven global bandwidth

that is asymptotically optimal with respect to MISE (Gasser et al., 1991).

Table 3.2 presents the BSA estimates between the four selected summary func-

tionals (SFs) of baseline renogram curves and the experts’ consensus ordinal ratings

in each side of the kidney. Crude AUCs exhibit poor alignment with the experts rat-

ings in both left (estimated BSA = 0.04; 95% CI = -0.13 to 0.20) and right (estimated

BSA = -0.02; 95% CI = -0.15 to 0.12) kidneys. Similar conclusions can be drawn

at the level of each sub-time interval. First derivative AUCs show a slightly better

alignment in both left (estimated BSA = 0.32; 95% CI = 0.15 to 0.47) and right (es-

timated BSA = 0.15; 95% CI = -0.03 to 0.32) kidneys, but each of the BSA estimates

is not large enough to conclude its diagnostic utility. However, a further analysis at

the sub-time interval level unveils a noticeably better alignment of the first derivative

AUCs evaluated on T2 (φ
[1]
AUC,T2), especially in the left kidneys (estimated BSA = 0.76;

95% CI = 0.60 to 0.86). Results of the hypothesis tests suggest that the degree of
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Table 3.2: Estimated BSA measures based on four types of summary functionals (SFs)
and results of hypothesis tests comparing their BSA values for baseline renogram data.
P-values listed in the last column are from testing equality of BSA measures evaluated
on two different sub-scan periods.

Kidney SF Estimated BSA (95% CI) P-value

T = [0, 24] T1 = [0, 10] T2 = [10, 24]

Left φAUC 0.04 (-0.13, 0.20) -0.15 (-0.31, 0.01) 0.19 (0.02, 0.35) <.001

φ
[1]
AUC 0.32 (0.15, 0.47) 0.02 (-0.15, 0.18) 0.76 (0.60, 0.86) <.001

φtMAX 0.58 (0.38, 0.73) – – –

φ
[1]
MIN 0.69 (0.52, 0.80) – – –

Right φAUC -0.02 (-0.15, 0.12) -0.14 (-0.26, -0.01) 0.07 (-0.07, 0.20) <.001

φ
[1]
AUC 0.15 (-0.03, 0.32) -0.03 (-0.17, 0.12) 0.51 (0.30, 0.67) <.001

φtMAX 0.37 (0.16, 0.54) – – –

φ
[1]
MIN 0.45 (0.27, 0.60) – – –

* P-values from testing equality of BSA measures (φ
[1]
AUC,T2 vs. Other type SFs)

φtMAX φ
[1]
MIN

Left φ
[1]
AUC,T2 0.045 0.314

Right φ
[1]
AUC,T2 0.178 0.544
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alignment of the first derivative AUCs evaluated on T2 is significantly stronger than

those evaluated on T1 in both kidneys (both P-values < .001). Furthermore, both

times to maximum value of the crude curves and minimum rates of change exhibit

good alignment with the experts consensus in both kidneys. Hypothesis test results

shown at the bottom of Table 3.2 suggest that their BSA values are as good as those

of the first derivative AUCs evaluated on T2 (all P-values are close to or greater than

0.05).

Table 3.3: Estimated BSA measures based on two types of summary functionals
(SFs) and results of hypothesis tests comparing their BSA values (P-value) for post-
furosemide renogram data.

Estimated BSA (95% CI)

Kidney φAUC φMAX P-value

Left 0.73 (0.57, 0.84) 0.67 (0.49, 0.80) 0.004

Right 0.55 (0.37, 0.69) 0.48 (0.30, 0.63) 0.002

Table 3.3 presents the BSA estimates between the two selected summary func-

tionals (SFs) of baseline renogram curves and the experts ratings in each side of the

kidney. Crude AUCs over the entire scan period are well aligned according to the

expert consensus in both left (estimated BSA = 0.73; 95% CI = 0.57 to 0.84) and

right (estimated BSA = 0.55; 95% CI = 0.37 to 0.69) kidneys. Maximum values are

also well aligned with the expert ratings, but its degree falls short of that of the crude

AUCs (both P-values < 0.01).

These results suggest a high diagnostic utility of the first derivative AUCs in the

baseline renogram curves during the last 15 minutes of the scan period. Specifically,

a relatively high positive overall rate of change in the baseline renogram curve at

this period strongly suggests that the kidney is obstructed as implied by the experts.

Considering the significant time and cost involved in performing the post-furosemide
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scan (Taylor et al., 2008c), such finding can serve as a useful guideline for replicating

experts’ opinions on kidney obstruction and determining the need for the second scan

in many practical settings. If the post-furosemide renogram curve is available for the

patient, then the crude AUC over the entire scan period provides a firm basis for

diagnosing kidney obstruction.

3.7 Discussion

In this Chapter, we propose a novel framework based on BSA that is practically useful

for assessing alignment between an ordinal measurement and quantitative features

that are commonly derived from functional markers. Our strategy is to adopt a

general class of summary functionals that can flexibly incorporate multiple types of

quantitative features in a systematic manner. Smoothing techniques, such kernel

and spline methods, can be employed to account for the sampling variability and

measurement error in observed functional data. In addition to estimation, we also

address hypothesis testing for comparing a pair of candidate summary functionals in

terms of their importance on the ordinal outcome. As suggested by the motivating

example of the renal study, this research endeavor may help rigorously evaluate the

usefulness of existing or novel quantitative features derived from the renogram curves

for detecting kidney obstruction.

In practice, a priori scientific basis for generating functional data can dictate the

choice of summary functions. This is indeed the case in our renal study. If a kidney

operates normally, urine drains rapidly down the ureter to the bladder. With this

concept, MAG3 is injected to the body to track how MAG3 travels down the ureter

from the kidney to the bladder, and the renogram curve is generated by repeatedly

measuring the MAG3 photon count inside the kidney over time. Hence, certain parts

of the curve depict how fast the MAG3 is removed from the kidney, how long it
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takes the MAG3 to produce maximum activity, etc., all of which provide a detailed

account of the functional aspects of the kidney (ability to excrete, absorb, etc.). Other

examples can be found in pharmacokinetic studies where the objective is to quantify

the absorption, distribution, metabolism, and excretion of drug compounds over time

in the body. The three common important quantitative features of a plasma drug

concentration-time curve that are widely used to address this objective are: AUC

(total drug exposure over time), Cmax (the peak plasma concentration) and tmax

(time to reach Cmax) (Craig and Stitzel, 2004). In summary, the nature of a scientific

experiment can guide the choice of summary functionals while providing sensible

interpretations for them.
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Chapter 4

Evaluating Quantitative Features

of Functional Markers Based on

Area Under the Receiver

Operating Characteristic Curve
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4.1 Introduction

A quality of disease management and clinical decision-making heavily depends on the

availability of good diagnostic markers. With advancements in technology, more and

more cutting-edge, non-invasive medical devices are being used to diagnose and mon-

itor diseases. The increasing complexity of data they generate, however, often pose

unique statistical challenges for establishing a clinically interpretative relationship

between the data-derived markers and disease pathology.

In this Chapter, we specifically focus on one such type of data, namely functional

markers which are increasingly being produced by modern devices. The unit of ob-

servation for each functional marker is a smooth continuous curve (function) defined

on a time or space domain, and its flexible and dynamic structure is a rich source

of clinical information (Ramsay and Silverman, 2005). It is thus typical in clinical

research to describe and diagnose a disease using a set of “quantitative features” that

characterize various dynamic, interpretative patterns of a functional marker, such as

area under the curve, maximum value, time to reach maximum value and average

velocity. Examples of their usage can be found in many biomedical fields, including

pharmacokinetics (Craig and Stitzel, 2004), Alzheimer’s disease study (Weiner et al.,

2012) and cardiac safety assessment (Zhou and Sedransk, 2013).

The wide-usage of quantitative features of functional markers for diagnostic pur-

poses calls for the need to rigorously evaluate their diagnostic utility. For instance,

consider the renal study that has motivated our work. Obstruction to urine drainage

from a kidney (kidney obstruction) is a serious clinical problem that can lead to

irreversible loss of renal function if not properly treated. In recent years, diuresis

renography has been widely used as a high-tech, non-invasive procedure to screen

and diagnose of kidney obstruction (Taylor et al., 2008c). The procedure begins

with an intravenous injection of a gamma emitting tracer, Technetium-99m Mercap-

toacetyltriglycine (MAG3), that is rapidly removed from the blood by the kidneys
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Figure 4.1: Top panel represents baseline (left) and post-furosemide (right) renogram
curves of 275 kidneys. The bottom panel presents baseline (left) and post-furosemide
(right) renogram curves of kidneys that are diagnosed as “non-obstructed” (solid
lines), “obstructed” (dashed lines) and “equivocal” (dotted lines).
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and then travels down the ureters from the kidney to the bladder. Photons emitted

by tracer are then imaged and quantified in a region of interest (ROI) over each side of

kidney, producing a set of renogram curves (functional markers) (Taylor et al., 2012).

The first renogram curve (called baseline) represents the MAG3 photon counts de-

tected at 59 time points during an initial period of 24 minutes. The second renogram

curve (called post-furosemide) is obtained at 40 time points during an additional

period of 20 minutes after an intravenous injection of furosemide, a potent diuretic.

The top left and right columns of Figure 4.1 respectively depict baseline and post-

furosemide renogram curves of 275 kidneys stored in Emory University Hospital’s

archived database.

There are several important, interpretative patterns of the renogram curves that

are known to strongly related to the renal function; for example, the speed of initial

MAG3 uptake in the kidney, the rate of MAG3 excretion to the bladder, etc (Mettler

and Guiberteau, 2012). To illustrate, consider the baseline renogram curve of a

non-obstructed kidney in the bottom left panel of Figure 4.1 (see solid lines). The

curve is characterized by a quick uptake and excretion of MAG3. On the other

hand, the baseline renogram curve of an obstructed kidney is characterized by a

prolonged period of MAG3 accumulation with no or poor excretion (see dashed lines

in the bottom left panel of Figure 4.1), a trend which persists throughout the post-

furosemide renogram (see dashed lines in the bottom right panel of Figure 4.1).

A common procedure to assist physicians arrive at prompt and accurate diagnosis

of kidney obstruction is to derive and study a set of quantitative features (e.g., time

to maximum MAG3, maximum MAG3, etc.) that adequately reflect the aforemen-

tioned patterns (Taylor et al., 2012). For example, time to maximum MAG3 for an

obstructed kidney is typically large, given its lack of absorption capacity. However,

a high kidney-to-kidney variability in renogram curves is typical as seen from the

top panel of Figure 4.1, and many show less distinctive patterns. For instance, the
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renogram of the “equivocal” kidney in Figure 4.1 (see dotted lines) show patterns

somewhat between those of non-obstructed and obstructed kidneys. Therefore, in

many cases, accurate diagnosis of kidney obstruction using quantitative features of

renogram curves requires substantial expertise in renal physiology and MAG3 phar-

macokinetics (Taylor and Garcia, 2014).

Unfortunately, a majority of diuresis renography scans in United States are in-

terpreted by general radiologists who have less than 4 months of training in nuclear

medicine (Taylor and Garcia, 2014). The ensuing clinical problem is that these ra-

diologists tend to select and utilize features based on ad hoc blending of intuition

and past practice without proper guidance and scientific justification (Taylor et al.,

2008c). Many radiologists compensate their limited experience by overrelying on a

single feature such as the time to half-maximum. In fact, such näıve and uninformed

reliance on a single feature is currently a leading cause of erroneous diagnosis, inappro-

priate patient management and unnecessary renal surgery (Taylor et al., 2008c). It is

thus of interest to rigorously evaluate the diagnostic accuracy of various quantitative

features of renogram curves and establish scientifically justified guidance regarding

their selection and application.

In cases where a new technology is implemented and optimal thresholds are not

verified, the area under the ROC curve (AUC) is often a preferred summary measure

that aggregates diagnostic performance information for all thresholds (Pepe, 2003,

Dodd and Pepe, 2003). It is thus sensible to apply AUC to evaluate quantitative

features of newly emerging functional markers. There are three notable challenges

for working with functional markers in general (Wang et al., 2016): 1) their infinite-

dimensional structure renders parametric modeling too restrictive and calls for the

need to adopt semi- or non-parametic approaches; (2) their true functional form

should be recovered from discrete, repeated and error-prone observations; and (3)

they belong to a space of square-integrable functions (non-Euclidean space), posing
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additional complications in theory. Of course, one can choose to bypass these chal-

lenges by directly using observed repeated data (raw MAG3 photon counts over the

scan period) to calculate quantitative features and obtain their AUC. But doing so

fails to account for possible measurement error and may produce biased results. This

näıve approach also ignores inherent smoothness of data, by which existence of several

useful derivative-level features (e.g., average and maximum velocity) is conceptually

and mathematically justified.

The goal of this Chapter is to develop a novel statistical framework for evaluating

quantitative features based on AUC, while appropriately addressing the aforemen-

tioned challenges that are unique to functional markers. Our strategy is to represent

different types of quantitative features by summary functionals (Jang et al., 2019),

defined as a set of mappings from a space of square-integrable functions to a real line.

This approach offers both mathematical rigor and conceptual flexibility for studying

AUC of a large class of important, widely-used quantitative features, including func-

tional area under the curve (FAUC), magnitude-specific and time-specific types. For

accurate estimation of AUC, we propose a two-stage procedure in which a quanti-

tative feature of interest (summary functional) is first appropriately estimated from

discrete, error-prone measurements, and then plugged into a Mann-Whitney type

statistic. We also provide an inferential framework for comparing diagnostic utility

of a pair of candidate quantitative features.

Pathological mechanisms of many diseases are prone to a large population hetero-

geneity. As such, the use of covariate-specific AUC has been advocated to tailor the

use of certain markers to specific high-benefit subpopulations (Pepe, 1998, Janes and

Pepe, 2008). In our motivating renal study, a normal range of several quantitative

features of renogram curves has been found to vary substantially with age (Esteves

et al., 2006), suggesting potential variations in the diagnostic accuracy of these fea-

tures among different age groups. Therefore, we propose a sensible adaptation of a
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semi-parametric AUC regression framework introduced by Dodd and Pepe (2003) to

systematically assess covariate effects on the diagnostic accuracy of various quantita-

tive features. There are some important subtlety in formulating estimating equations

for our regression model involving quantitative features. That is, outcomes are based

on pairwise comparisons of features which are not directly observed but should be

estimated from data. This demands extra work to establish asymptotic properties of

the regression parameter estimates.

The remainder of the Chapter is organized as follows. In Section 4.2, we review

the concept of summary functionals and present the estimation procedure based on

appropriate kernel smoothing. In Section 4.3, we propose a framework for evaluating

the diagnostic accuracy of a wide class of quantitative features (summary function-

als). We study the asymptotic properties of the proposed two-stage AUC estimator

and develop inferential procedures including variance estimation, confidence intervals

and hypothesis testing. In Section 4.4, we introduce a semi-parametric AUC re-

gression framework for quantitative features. We propose estimating equations that

appropriately account for unobserved outcomes and carefully study their asymptotic

properties. In Section 4.5, we report the results of a simulation study conducted to

evaluate the performance of the proposed approaches. The application of our meth-

ods to a renal study is illustrated in Section 4.6. Finally, we conclude with some

remarks in Section 4.7.
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4.2 Representing Quantitative Features via Sum-

mary Functionals

4.2.1 General formulation of a summary functional

Let Xi denote the functional marker of ith subject, defined on the closed, bounded

domain (time interval) T ⊂ R. In this notation, Xi(t) denotes Xi evaluated at a

given time point t ∈ T . We assume that Xi belongs to a functional space Fω = {f :

T → R; for nonnegative integer ω, f is square integrable and ω-times continuously

differentiable at any t ∈ T }.

Jang et al. (2019) recently introduced a concept of summary functional that can

flexibly represent various quantitative features of a functional marker. Summary

functional is defined as a mapping from Fω to R, that is, φ : Fω → R. Different

choice of the mapping (functional form) φ leads to different quantitative features;

for instance, φ(Xi) =
∫
T Xi(t)dt and φ(Xi) = supt∈T Xi(t) denotes the FAUC and

maximum value of the ith functional marker, respectively.

4.2.2 Three special (widely-used) cases of summary function-

als

In this section, we introduce three classes of summary functionals that represent

widely-used quantitative features. Denote X
(ν)
i as its νth derivative (0 ≤ ν ≤ ω − 2),

with X
(0)
i = Xi.

FAUC-type funtionals. FAUC-type functionals summarize the functional marker

over an entire (T ) or specified portion (T ∗ ⊂ T ) of the time domain. They take the

form

φ(Xi) := φ
[ν]
FAUC(T )(Xi) =

∫
T
X

(ν)
i (t)dt.
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Setting ν = 0 and ν = 1 above gives the area under a crude curve (crude FAUC) and

the area under the first derivative of a curve (first derivative FAUC), respectively.

Magnitude-specific functionals. Another important quantitative feature of a

functional marker its magnitude at a specific point in time (milestone). Given t∗ ∈ T ,

a general form of the magnitude-specific functional (accommodating first and higher-

order derivative levels) is

φ(Xi) := φ
[ν]
MAG(t∗)(Xi) = X

(ν)
i (t∗).

A unique maximum or minimum magnitude of the functional marker often provides

useful information and can be expressed as a summary functional as defined below:

φ(Xi) := φ
[ν]
MAX(Xi) = sup

t∈T
X

(ν)
i (t) or φ(Xi) := φ

[ν]
MIN(Xi) = inf

t∈T
X

(ν)
i (t).

Time-specific functionals. Time to attain a certain threshold value η of the func-

tional marker is often clinically significant and can be captured by a time-specific func-

tional that maps the space of functional markers to the time domain, i.e., φ : Fω → T .

That is,

φ(Xi) := φ
[ν]
TIME(η)(Xi) = inf{t ∈ T : X

(ν)
i (t) = η}.

The timing of a maximum or minimum value can be investigated using a time-

specific functional of the form

φ(Xi) := φ
[ν]
tMAX(Xi) = arg sup

t∈T
X

(ν)
i (t) or φ(Xi) := φ

[ν]
tMIN(Xi) = arg inf

t∈T
X

(ν)
i (t).
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4.2.3 Estimation of summary functionals

In reality, the true functional marker Xi is not observed continuously in time; rather,

an error-prone proxy Wi is observed at Ni discrete time points {(ti1, ti2, . . . , tiNi) ∈

T : ti1 < ti2 < · · · < tiNi}. Accordingly, the true value of each summary functional

φ(Xi) is unknown and should be estimated based on the observed data as φNi(Wi).

The first step is to estimate the true functional marker Xi based on discrete

noisy observations Wi. Several smoothing techniques, including kernel smoothing,

moving average and smoothing splines, can be employed. For instance, smoothing

splines (e.g., cubic B-splines) approximate the true function using the coefficients

obtained via penalized least squares methods that aim to explicitly control the trade-

off between fidelity to the data and roughness of the function estimate. An excellent

reference on smoothing splines is Green and Silverman (1994).

In our work, we opt to a non-parametric smoothed estimate of the true under-

lying functional marker using the Gasser-Müller (GM) kernel estimator which has

well-established asymptotic properties (Gasser and Müller, 1984, Müller, 1984, 1985).

Herein, true Xi and observed Wi are related via the following functional measurement

error model:

Wi(tik) = Xi(tik) + εi(tik), k = 1, . . . , Ni, (4.1)

where the random measurement error εi(t) follows an independent and identical dis-

tribution (iid) with E(εi) = 0 and Var(εi) = σ2
e <∞ for each t, mutually independent

of Xi. Under model (4.1), the GM kernel estimator is given as

Ŵ
[ν]
i (t) =

1

bν+1
Ni

Ni∑
k=1

∫ dik

di,k−1

Kν

(t− u
bNi

)
du ·Wi(tij), (4.2)

where di,k−1 = (tik + ti,k−1)/2 (di0 = 0, dNi = 1), and bNi is a bandwidth satisfying

bNi → 0, NibNi → ∞ as Ni → ∞. Kν is a kernel function of order (ν, ω) defined

on a compact support [−1, 1] and takes on zero values on the boundary points. This
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estimator (4.2) is well known for its computational efficiency, producing accurate first

or higher-order derivative estimates with a number of observed time points as small

as 15 (Gasser et al., 1991).

Given a quantitative feature of interest and the corresponding summary functional

φ(Xi), we propose to build its non-parametric estimator φNi(Wi) based on the GM

kernel estimator (4.2). Specifically, the estimators for the three special-case sum-

mary functionals (FAUC-type, magnitude-specific, and time-specific) are listed in the

following.

FAUC-type funtionals. This type of summary functional can be estimated by the

following Riemann sum of Ŵ
[ν]
i with respect to the output design points {ti1, . . . , ti,Ni}:

φNi(Wi) := φ
[ν]
Ni,FAUC(Wi) =

Ni−1∑
k=1

Ŵ
[ν]
i (tik)(ti,k+1 − tik).

Magnitude-specific funtionals. Given a specific time point t∗ ∈ T , a general

magnitude-specific functional can be directly estimated by its empirical counterpart

of Ŵ
[ν]
i :

φNi(Wi) := φ
[ν]
Ni,MAG(t∗)(Wi) = Ŵ

[ν]
i (t∗).

Analogously, the unique maximum or minimum value of a functional marker and its

(higher-order) derivatives can be estimated as (Gasser and Müller, 1984)

φNi(Wi) := φ
[ν]
Ni,MAX(Wi) = sup

t∈T
Ŵ

[ν]
i (t) or φNi(Wi) := φ

[ν]
Ni,MIN(Wi) = inf

t∈T
Ŵ

[ν]
i (t).

Time-specific funtionals. Assume that X
(ν)
i attains a certain threshold value η.

Then, its timing can be non-parametrically estimated by its empirical counterpart of

Ŵ
[ν]
i :

φNi(Wi) := φ
[ν]
Ni,TIME(η)(Wi) = inf{t ∈ T : Ŵ

[ν]
i (t) = η}.
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If Ŵ
[ν]
i does not attain η, we define φ

[ν]
N,TIME(η)(Wi) = 0. Similarly, the timing of a

unique maximum can be estimated by (Gasser and Müller, 1984):

φNi(Wi) := φ
[ν]
Ni,tMAX(Wi) = inf{t ∈ T : Ŵ

[ν]
i (t) = sup

u∈T
Ŵ

[ν]
i (u)}.

Jang et al. (2019) showed that each of the above (three special-case) summary

functional estimators φNi(Wi) based on the GM kernel estimator (4.2) converges

in probability to the true values φ(Xi) as Ni → ∞. Specifically, given bNi =

O{(logNi/Ni)
1/(2ω+1)}, the convergence rates for FAUC and magnitude summary

functionals are of the order Op(BNi), and the rate for time-specific summary func-

tionals is Op(Bθ
Ni

), where BNi = (logNi/Ni)
(ω−ν)/(2ω+1) and 0 < θ ≤ 1, suggesting

that the latter generally have slower convergence rates.

4.3 AUC Analysis of Quantitative Features

4.3.1 Formulation and estimation

In this section, we aim to evaluate the diagnostic utility of quantitative features of

a functional marker for classifying “diseased” and “non-diseased” states (groups),

denoted as D and D, respectively. Let XD
i and XD

j (i = 1, . . . , nD; j = 1, . . . , nD;

n = nD + nD) respectively denote functional markers of subjects from D and D.

Functional markers are assumed to be iid within groups and mutually independent

between groups. Given a quantitative feature of interest, we directly consider the

corresponding summary functionals φ(XD
i ) and φ(XD

j ), and assume that larger sum-

mary functional values indicate greater likelihood of disease (“positive” if summary

functional value exceeds some given cutoff value c).

The ROC curve plots false-positives (1-specificity) versus true-positives (sensitiv-

ity) for varying cutoff values c: {Pr(φ(XD
j ) > c),Pr(φ(XD

i ) > c)}. The area under
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the ROC curve (AUC) summarizes performance information across all cutoff values

and is equal to

AUC(φ) := θ(φ) = Pr(φ(XD
i ) > φ(XD

j )), (4.3)

which represents a probability that a summary functional value of a randomly selected

diseased subject is greater than that of a randomly selected non-diseased subject

(Bamber, 1975). Note that we are assuming Pr(φ(XD
i ) = φ(XD

j )) = 0 as summary

functional values (quantitative features) are continuous. AUC(φ) = 1 corresponds to

a quantitative feature (captured by φ) that perfectly classifies subjects into the two

states, while AUC(φ) = 0.5 denotes a feature that performs no better than chance.

The closer AUC(φ) is to 1, the better the overall diagnostic performance of the feature

of interest.

If true functional markers (XD
i and XD

j ’s) were completely observable, a non-

parametric Mann-Whitney type statistic that compares the true summary functional

value of each diseased subject to that of every other non-diseased subject in pairs

would estimate θ(φ):

θ̂(φ) =
1

nDnD

nD∑
i=1

nD∑
j=1

I{φ(XD
i ) > φ(XD

j )}, (4.4)

where indicator function I(·) equals 1 if the bracketed expression is true and 0 oth-

erwise.

In practice, however, functional markers from both groups are observed at discrete

time points with measurement error as {WD
i (tik), k = 1, . . . , Ni} and {WD

j (tjk), k =

1, . . . , Nj}. Accordingly, the estimated summary functionals (see Section 4.2.3 for

examples) should replace the true ones in (4.4) as:

θ̂(φN) =
1

nDnD

nD∑
i=1

nD∑
j=1

I{φNi(WD
i ) > φNj(W

D
j )}. (4.5)
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Ties can be handled by adding 0.5 ·I{φNi(WD
i ) = φNj(W

D
j )} to the kernel of (4.5); we

omit the term without loss of generality. There are two potential sources of sampling

error in the estimation of θ(φ) using θ̂(φN). The first source of error stems from

using a two-sample Mann-Whitney statistic (4.4) to estimate the probability in (4.3).

The second source of error comes from replacing the true summary functionals with

their estimates and is specific to our situation involving functional markers. It is

important that both sources of error are taken into consideration when studying the

(asymptotic) properties of the proposed estimator (4.5).

4.3.2 Asymptotic properties

In Theorem 4.3.1, we state that the proposed estimator θ̂(φN) given by (4.5) is a

consistent estimator of θ(φ) and asymptotically normal, as long as we can estimate

the summary functional value of each subject using observed data.

Theorem 4.3.1. Suppose sup1≤i≤nD |φNi(W
D
i )− φ(XD

i )| ≤ Op(PD
N ) and

sup1≤i≤nD
|φNj(WD

j ) − φ(XD
j )| ≤ Op(PD

N ), where PD
N and PD

N are nonnegative se-

quences. Let PN = max(PD
N , P

D
N ) and n = nD+nD. (i) If PN → 0 as n→∞ and the

regularity conditions (A1)–(A3) provided in Appendix C.1 hold, θ̂(φN) is a consistent

estimator for θ(φ). (ii) If
√
nPN → 0 as n→∞ and the regularity conditions (A1),

(A4) and (A5) provided in Appendix C.1 hold,
√
n{θ̂(φN)− θ(φ)} converges to mean

zero normal distribution with variance σ2
θ(φ).

The explicit formula for σ2
θ(φ) as well as the proof of the above theorem is given in

Appendix C.1. The key idea of the proof is to consider the decomposition θ̂(φN) −

θ(φ) = T1 + T2, where T1 = θ̂(φN) − θ(φN), T2 = θ(φN) − θ(φ) and θ(φN) =

Pr(φNi(W
D
i ) > φNj(W

D
j )). Given sufficiently large fixed Ni and Nk values, the con-

sistency and asymptotic normality of the first term T1 can be established based on

generalized U-statistics theory; T2 can be shown negligible as n = nD + nD → ∞.
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Note that since FAUC-type, magnitude-specific and time-specific summary function-

als can be consistently estimated using observed data (via GM kernel estimator; see

Section 4.2.3), the consistency and asymptotic normality of their AUC estimators are

guaranteed by Theorem 4.3.1. To see this, set supiB
θ
Ni

= PD
N and supj B

θ
Nj

= PD
N .

4.3.3 Statistical inference

Given the rather complicated analytic form of σ2
θ(φ), we recommend a bootstrap ap-

proach for its estimation. Note that here the bootstrap sample is drawn separately

from each group (D and D) with replacement. Other non-parametric methods such

as the jackknife, half-sampling or subsampling can also be used; see Efron (1981) for

details of other applicable methods. The validity of the non-parametric approaches to

asymptotic variance estimation is due to the fact that both Var(T2) and Cov(T1, T2)

(T1 and T2 are defined in Section 4.3.2 under Theorem 1) are asymptotically negligible

given that summary functionals can be consistently estimated. Note that the consis-

tency of the jackknife estimator is guaranteed by the fact that
√
n{θ̂(φN)− θ(φ)} is,

asymptotically, a U-statistic (Arvesen, 1969).

One can use normal approximation to construct confidence intervals (CIs) of

AUC(φ). Since the scale for the AUC is restricted to (0, 1), adopting a logit transfor-

mation may accelerate the convergence of θ̂(φN) to asymptotic normality, especially

when it is close to the boundary. Define l(x) = ln{(x/(1− x)}, l′(x) = dl(x)/dx and

l−1(·) as the inverse function of l(·). Using the delta method, the 100(1−α)% CI for

AUC(φ) is constructed as

[
l−1
(
l̃ − z1−α/2 · l̃′ŝ

)
, l−1

(
l̃ + z1−α/2 · l̃′ŝ

)]
,

where l̃ ≡ l{θ̂(φN)}, l̃′ ≡ l′{θ̂(φN)}, and z1−α/2 is the 100(1 − α/2)th percentile of

N(0, 1).
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Suppose we are interested in selecting a quantitative feature that is more likely

to provide useful information about a patients disease state relative to others. To

address this objective, we develop a hypothesis testing procedure that can determine

whether a particular feature, captured by the summary functional φ1, leads to a

significantly better AUC than that of a competing feature captured by φ2. The null

and alternative hypotheses are

H0 : AUC(φ1) = AUC(φ2) vs. H1 : AUC(φ1) > AUC(φ2),

respectively. Let φN1 and φN2 respectively denote the estimated versions of φ1 and

φ2. The hypothesis can be tested based on the following Wald test statistic:

TN,n =

√
n
[
l{θ̂(φN1)} − l{θ̂(φN2)}

]
V̂J

d−−→ N(0, 1),

where the denominator term V̂J represents the estimated asymptotic standard error

of the numerator. V̂J can be obtained by bootstrapping the observations at the

subject level. Given the significance level of α, the null hypothesis is rejected when

|TN,n| > z1−α.

4.4 Covariate-specific AUC Analysis of Quantita-

tive Features

The diagnostic accuracy of a quantitative feature may depend on patient character-

istics. In this section, we extend our framework to adjust for covariates and further

investigate population heterogeneity in AUC of quantitative features.
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4.4.1 Model Formulation

Suppose both functional marker and covariate data, (XD
i ,Z

D
i ) and (XD

j ,Z
D
j ), are

available for study subjects from D and D. The covariate-specific AUC of a quanti-

tative feature φ of interest, AUCij(φ), is defined as the probability that the φ value

of a randomly selected diseased subject with covariate value ZD
i = zDi is greater than

that of a randomly selected non-diseased subject with covariate value ZD
j = zDj . That

is,

AUCij(φ) := θij(φ) = Pr(φ(XD
i ) > φ(XD

j ) | ZD
i = zDi , ZD

j = zDj ). (4.6)

In many cases, investigating the AUC between diseased and non-diseased subjects

with a common covariate value ZD
i = ZD

j = z is of subtantiative scientific interest.

Under this setting, the covariate-specific AUC (4.6) becomes:

AUCz(φ) := θz(φ) = Pr(φ(XD
i ) > φ(XD

j ) | ZD
i = ZD

j = z). (4.7)

Given definition (4.7), we propose to conduct a covariate-adjusted AUC analysis

of quantitative features based on an appropriate adaptation of the semiparametric

regression model introduced by Dodd and Pepe (2003):

AUCZ(φ) := θZ(φ) = g−1(ZTβ), (4.8)

where g(·) is a monotone link function (e.g., logit and probit). β is a p-vector of un-

known parameters that quantify covariate effects on the AUC. To illustrate, consider

the model that uses a logit link function with a single covariate Z: logit{θz(φ)} =

β0 + β1Z. Here, exp(β0 + β1z) = AUCz(φ)/{1−AUCz(φ)} denotes the AUC odds in

a subpopulation defined by covariate value Z = z, and accordingly exp(β1) represents

the AUC odds ratio between subpopulations corresponding to Z = z + 1 and Z = z.

For instance, if Z = 0 and Z = 1 respectively denote males and females, exp(β1) is
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the AUC odds ratio (OR) for the quantitative feature φ in females versus males. If

β1 > 0, then φ is better at classifying diseased and non-diseased females than between

diseased and non-diseased males.

4.4.2 Estimated estimating equations

Define Uij = I{φ(XD
i ) > φ(XD

j )} (i = 1, . . . , nD; j = 1, . . . , nD; n = nD + nD) such

that

E(Uij | ZD
i ,Z

D
j ) = Pr(φ(XD

i ) > φ(XD
j ) | ZD

i ,Z
D
j ) = g−1{(ZD

i )TβD0 + (ZD
j )TβD0 }

= g−1(Zβ0), if ZD
i = ZD

j = Z.

This suggests that if the true functional markers were available for all subjects, our

model (4.8) would correspond to a generalized linear regression model for the binary

variables Uij restricted to (i, j) pairs with ZD
i = ZD

j = Z. Accordingly, the estimating

equations for the regression parameters β in (4.8) are given by

Sn(β) =

nD∑
i=1

nD∑
j=1

∂θij
∂β

Ω−1ij (Uij − θij)I(ZD
i = ZD

j ) =

nD∑
i=1

nD∑
j=1

Sij(β), (4.9)

where θij = g−1{(ZD
i )TβD + (ZD

j )TβD} = g−1(ZTβ) (for ZD
i = ZD

j = Z pairs),

and Ωij = θij(1 − θij) is a variance function. Since E{Sn(β0)} = 0, the estimat-

ing equations (4.9) are the classic score equations for binary regression, except that

Uij’s are cross-correlated. Under some moderate conditions, Dodd and Pepe (2003)

showed that the estimators β̂ obtained from solving Sn(β) = 0 are consistent and

asymptotically normal.

The estimating equations (4.9), however, cannot be used as the true functional

markers are unavailable in practice. Accordingly, we propose to replace the compo-

nents in (4.9) by their respective proxy versions based on estimated summary func-
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tionals (see Section 4.2.3) and obtain the parameter estimates based on the following

estimated estimating equations:

SNn(β) =

nD∑
i=1

nD∑
j=1

∂θij
∂β

Ω−1ij (UNij − θij)I(ZD
i = ZD

j ) =

nD∑
i=1

nD∑
j=1

SNij(β), (4.10)

where UNij = I{φNi(WD
i ) > φNj(W

D
j )}.

4.4.3 Estimation with continuous covariate

When the covariates are continuous or data are too sparse within covariate stata,

the estimated estimating equations (4.10) may not be efficient or feasible as there

may be few or no pairs from D and D with the identical covariate value. In such

a case, the strategy is to temporarily consider estimated estimating equations (4.10)

derived from a model that takes the form of g{θij(φ)} = β0 + β1Z
D
i + β2(Z

D
i − ZD

j ),

and replace I(ZD
i = ZD

j ) with I(||ZD
i − ZD

j || ≤ η) to consider additional pairwise

comparisons Uij with covariates that are sufficiently close to each other (Dodd and

Pepe, 2003, Liu and Zhou, 2013). Note that this model reduces to our target model

(4.8): g{θz(φ)} = β0 + β1z for ZD
i = ZD

j = z. Thus, our goal remains the same: to

estimate β1, which describes how the AUC for diseased and-nondiseased subjects at

the same covariate level changes as that covariate varies.

There is a trade-off between bias and efficiency as η varies (Dodd and Pepe,

2003). By specifying large η, pairs with further-apart covariate values can be used

for estimation to achieve high efficiency. But doing so imposes more structure in the

model and may introduce some bias if the structure is misspecified. Small η imposes

a less restrictive structure in the model but may be less efficient. One can choose the

value of η manually or in a data-driven manner. With regards to the latter, we first

note that conventional cross-validation approaches to select optimal bandwidth for

smoothing in usual regression models cannot be applied as pairwise comparison data



103

UNij with ZD
i = ZD

j = z are not always available. Hence, for our case, we propose to

utilize the fact that θ(φ) = E{θZ(φ)} and choose η as

ηopt = arg min
η
|θ̂(φN)− θ̂∗(φN)|, (4.11)

where θ̂∗(φN) = n−1
∑n

k=1 g
−1(β̂0 + β̂1zk), with zk coming from the pooled sample of

diseased and non-diseased subjects. In practice, a grid search can be performed to

compute θ̂∗(φN) over candidate η values and select ηopt.

4.4.4 Asymptotic properties

Denote β̂N as the solution to SNn(β) = 0. Theorem 2 summarizes the large sample

distribution properties of β̂N .

Theorem 4.4.1. Suppose φNi(W
D
i )

p→ φ(XD
i ) and φNj(W

D
j )

p→ φ(XD
j ) as Ni, Nj →

∞ for all i = 1, . . . , nD and j = 1, . . . , nD. Then under the regularity conditions (B1)–

(B8) and Lemmas C.2.1–C.2.4 provided in Appendix C.2, β̂N
p→ β0 and

√
nDnD
n

(β̂N−

β0)
d→ N (0, Σβ) as n → ∞, where Σβ = Q−1ΣQ−1. The forms of Q and Σ are

given in Appendix B.

The proofs of Lemmas C.2.1–C.2.4 are given in Appendix C.2. Consistency is

established by demonstrating that the original estimating equations (nDnD)−1Sn(β),

whose solution is consistent, and the estimated estimating equations (nDnD)−1SNn(β)

converge in probability to the same limit uniformly for β within the neighborhood

of β0. Asymptotic normality is proved by applying the Projection Theorem of U-

statistics (Serfling, 1980) to express (nDnD)−1SNn(β) as the sum of independent

random variables and considering its Taylor expansion about β0. Note that although

the explicit forms of Σ and Q are available in Appendix B, a bootstrap or jackknife

variance estimate can be used for convenience. For instance, the jackknife estimator
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is given by (Shao, 1992)

Σ̂β =
n− p
n

n∑
k=1

(β̂
(−k)
N − β̂N)(β̂

(−k)
N − β̂N)T ,

where β̂
(−k)
N is the estimate of β based on the data with kth observation, {φNk(wk), zk},

from the pooled sample of diseased and non-diseased subjects removed.

4.5 Simulations

We conducted simulation studies to evaluate the finite sample performance of the pro-

posed methods. Firstly, the performance of the AUC estimator (4.5) and its inference

procedures described in Section 4.3 was assessed. We considered three widely-used

summary functionals (FAUC-type, magnitude-specific, time-specific) introduced in

Section 4.2.2.

We first generated the disease status of each subject using a Bernoulli distribution,

Bernoulli(0.5). The true functional markers X were generated over a time interval

T = [0, 1] under four different scenarios. In Scenario 1, we generated X(t) by a

Gaussian process with mean functions µD(t) = 1 and µD(t) = 2 for the non-diseased

and diseased subjects, respectively. Likewise, in Scenario 2, X were generated as

a Gaussian process, but this time with time-varying mean functions µD(t) = t and

µD(t) = 2t. In Scenario 3, a Gaussian processes with periodical mean functions

µD(t) = sin(πt) and µD(t) = 3 sin(πt) were used to generate X. Note that a co-

variance function Cov(X(s), X(t)) = exp{−(s − t)2}, s, t ∈ T was used for the

first three scenarios. In Scenario 4, we generated X(t) = sin(2πt) with probability

2/3 and X(t) = sin(2
3
πt) with probability 1/3 for the non-diseased, and generated

X(t) = sin(πt) with probability 1 for the diseased. In all four scenarios, we obtained

error-prone proxy data W by further contaminating the generated X under model
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(4.1); the measurement errors ε were iid generated fromN(0, 0.12). Different summary

functional types was considered under different scenarios: φFAUC under Scenarios 1

and 2; φMAG(0.5) and φMAX under Scenario 3; and φtMAX under Scenario 4.

For each scenario, we considered the following five study designs to assess the

sensitivity of the proposed framework to varying density of observed time points:

(20U) unbalanced design with Ni (and Nj) following a Poisson distribution with mean

20; (40U) unbalanced design with Ni following a Poisson distribution with mean 40;

(20B) balanced design with Ni = 20; (40B) balanced design with Ni = 40; and (60B)

balanced design with Ni = 60. Except for the two endpoints (0 and 1), the Ni

observation times in all these study designs were randomly drawn from a uniformly

distributed grid Tgrid = {(u− 1)/59, u = 2, . . . , 59} separately for each subject.

We estimated the true markers X using GM kernel estimators (4.2) with a polyno-

mial kernel of degree 2 (Müller, 1984) and an automatically adapted global “plug-in”

bandwidth that is asymptotically optimal with respect to the mean integrated square

error (MISE) (Gasser et al., 1991). Standard errors were estimated via bootstrap

with 1000 resamples, and 95% CIs were computed based on the logit transformation

as described in Section 4.3.3.

Table 4.1 presents the simulation results based on 1000 replicates for each scenario

with sample size n = 40 and 100. Our proposed estimation approach provides virtu-

ally unbiased estimates even for a small sample size (n = 40) and number of observed

time points (Ni ≈ 20). The bootstrap standard error estimation is generally an ac-

curate estimator of the empirical standard deviation of AUC estimates regardless of

the study design and the choice of the summary functional. In all configurations,

the empirical coverage probabilities rapidly approach the nominal level 0.95 as the

sample size increases.

Next, we considered the semiparametric AUC regression model of the form

AUCz(φ) = g−1(β0 + β1z), where g is a probit or logit link, and examined the fi-
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nite sample performance of the regression coefficient (slope) estimate β̂1 obtained by

solving the estimated estimating equations (4.10). The disease status of each subject

was first generated from Bernoulli(0.5). In the first three scenarios, we consider a

binary covariate Z (1 or 0), which is generated from Bernoulli(0.5). In Scenario A,

we generated X given Z = z on T = [0, 1] as a Gaussian process with mean functions

µD(t) = 0.5 + 2z and µD(t) = z. In Scenario B, X given Z = z was generated by a

Gaussian process with µD(t) = 0.5+2z+sin(πt) and µD(t) = z+sin(πt). In Scenario

C, if non-diseased, X(t) = sin(2πt) with probability p = {1+exp(−1−0.68z)}−1 and

X(t) = sin(2
3
πt) with probability 1 − p; if diseased, X(t) = sin(πt) with probability

1.

In the next three scenarios, we considered a continuous covariate Z, which we

draw from Uniform(0, 10). X given Z = z was generated as a Gaussian process with

µD(t) = 0.5+0.2z and µD(t) = 0.1z in Scenario D, and µD(t) = 0.5+0.2z+sin(πt) and

µD(t) = 0.1z + sin(πt) in Scenario E. In Scenario F, if non-diseased, X(t) = sin(2πt)

with probability p = {1 + exp(−1− 0.068z)}−1 and X(t) = sin(2
3
πt) with probability

1− p; if diseased, X(t) = sin(πt) with probability 1.

Under such settings, the true model is: the probit regression model in Scenarios A,

B, D and E; and the logistic regression model in Scenarios C and F. In every scenario

involving Gaussian processes, we set Cov(X(s), X(t)) = exp{−(s − t)2}, s, t ∈ T .

All X’s were further contaminated by measurement errors generated from N(0, 0.12).

The types of summary functionals we considered were: φFAUC under Scenarios 1 and

4; φMAG(0.5) under Scenarios 2 and 5; φtMAX under Scenarios 3 and 6. The same five

study designs (20U)–(60B) utilized in the above no-covariate case. For continuous

covariates, the estimated estimating equations (4.10) utilized pairwise comparisons

Uij with covariates less than 5 units apart, that is, η = 5. GM kernel estimator

based on polynomial kernel of degree 2 and automatically adapted bandwidth that

optimizes MISE (Müller, 1984, Gasser et al., 1991) was used. Standard errors were
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estimated via jackknife.

Simulation results based on 1000 replicates with sample size n = 200 and 300 are

presented in Table 4.2. Relative biases tend to be slightly larger when data are highly

sparse (20U and 20B), but rapidly diminish with increasing number of time points.

Relative biases in other cases are all smaller than or close to 3%, suggesting that

the regression slope estimates obtained from our proposed approach are reasonably

unbiased in a finite sample setting. For φFAUC and φMAG(0.5), the estimated standard

errors based on the jackknife method generally agree well with the empirical standard

deviations. The 95% confidence intervals have coverage probabilities close to the

nominal level. For φtMAX, a coverage of 95% or 96% is generally achieved in the

continuous covariate case. In the binary covariate case, coverage probabilities are

close to 97% with Ni ≤ 40 and n = 200, but they rapidly approach the nominal level

as Ni and n increase. In summary, our practical recommendation is to perform semi-

parametric regression analysis using functional markers that are, on average, collected

on at least 20 time points (preferably 40 time points for time-specific features) to

ensure accurate estimation and inference.

Finally, we evaluated and compared the finite-sample performance of the manual

and proposed data-driven approaches for selecting η when continuous covariates are

involved. We first followed the data generation scheme given by Scenario D above.

The primary model is AUCz(φFAUC) = Φ(β0 + β1z) = Φ(0.381 + 0.076z), where

β1 describes the effect of one unit increase in z on the AUC between diseased and

non-diseased subjects of the same covariate value (zD = zD = z). As described in

Section 4.4.3, β1 was estimated using the estimated estimating equations 4.10 derived

from a temporary model AUCz(φFAUC) = Φ{β0 + β1z
D + β2(z

D − zD)}, which can

accommodate diseased and non-diseased pairs with covariate values within η units

apart. The top panel of Table 4.3 reports the mean of 1000 mean squared errors

(MSEs) of β1 based on manually chosen η = 2 and η = ∞, and data-driven η that
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Table 4.3: Mean of 100×MSEs of β1 from the primary model AUCz(φFAUC) = Φ(β0 +
β1z) = Φ(0.381+0.076z) computed for 1,000 simulated datasets, given correctly (top-
panel) and incorrectly (bottom-panel) specified structure of the temporary model

AUCz(φFAUC) = Φ{β0 + β1z
D + β2(z

D − zD)}. η values were chosen either manually
(η = 2 and η =∞) or by a data-driven (D-D) approach that minimizes (4.11) of each
generated dataset. D denotes the five study designs (20U)–(60B) for the observed
time domain.

n = 200 n = 300

D η = 2 η =∞ D-D η = 2 η =∞ D-D

Correct model structure

(20U) 0.181 0.169 0.174 0.103 0.096 0.101

(40U) 0.163 0.150 0.158 0.108 0.096 0.100

(20B) 0.167 0.154 0.162 0.112 0.104 0.110

(40B) 0.157 0.148 0.152 0.116 0.112 0.115

(60B) 0.159 0.154 0.158 0.104 0.094 0.100

Incorrect model structure

(20U) 1.125 0.848 0.214 0.745 0.619 0.120

(40U) 0.914 0.764 0.192 0.700 0.607 0.123

(20B) 1.016 0.801 0.202 0.730 0.624 0.123

(40B) 0.964 0.745 0.189 0.697 0.608 0.131

(60B) 0.945 0.785 0.188 0.771 0.633 0.131

minimizes (4.11) of each generated dataset. MSEs are largest for η = 2 due to

low efficiency. On the other hand, setting η = ∞ results in the smallest MSEs as

this not only ensures maximum efficiency but also produces small bias under the

correct specification of the model structure. The performance of data-driven η falls

in between.

We additionally considered the case where the model structure is misspecified.

Specifically, we now assume that covariates depend on the disease status and gener-

ated them from N(5, 3) and N(5.1, 3) for non-diseased and diseased subjects, respec-

tively. In this case, β1 from the temporary model no longer accurately represents β1

from the primary model as the former characterizes the effect of zD whose expecta-
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tion is now different from that of the common covariate z. Thus, the estimator is

asymptotically biased, and the corresponding MSEs for pre-fixed η = 2 and η = ∞

are much larger than the previous case (see the bottom panel of Table 4.3). On

the other hand, our proposed data-driven approach, which fully exploits information

from each pooled sample in selecting η, produces robust estimates with much smaller

MSEs, suggesting its utility in various practical situations.

4.6 Application to Renal Study

In this section, we apply the proposed method to the renal study described in Section

4.1. Diagnosing kidney obstruction with diuresis renography requires a thorough

understanding of renal physiology and MAG3 pharmacokinetics (Taylor and Garcia,

2014). Due to limited resources, however, a vast majority of diuretic renography

scans in United States are interpreted by general radiologists who have less than 4

months of training in nuclear medicine, resulting in increased erroneous diagnoses

(Taylor et al., 2008c). A common practice to assist radiologists arrive at correct

diagnosis is to compute and analyze simple interpretative features of the baseline and

post-furosemide renogram curves, such as time to reach half-maximum MAG3 photon

count, maximum MAG3 photon count, etc. (Taylor et al., 2008c, Bao et al., 2011).

Under such circumstances, the scientific goal of the renal study is three-fold: 1) to

evaluate diagnostic utility (AUC) of quantitative features that are currently widely

used in practice; 2) to identify and evaluate new features that can be equally or even

more important; 3) and identify subpopulation for whom certain features are more

useful.

To study these goals, diuresis renography data of 275 kidneys from 145 patients

(75 men [52%], 70 women [48%]; mean age, 58 years; SD, 16 years; range, 18-87 years)

were randomly selected from the Emory University Hospital’s archived database.
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All kidneys have complete baseline and post-furosemide renogram curve data. The

obstruction status of each kidney was determined based on diuretic renography scan

interpretation provided by Dr. Andrew Taylor from Emory University who has more

than 20 years of experience in nuclear medicine. 200 kidneys were diagnosed as non-

obstructed (D), and 75 kidneys were diagnosed as obstructed (D) by this method.

Several quantitative features of renogram curves reflective of obstruction severity

were considered. For baseline renogram curves, we selected features that characterize

the speed of initial MAG3 uptake or the rate of its eventual excretion into the bladder,

both of which are known to strongly relate with the obstruction status (Mettler and

Guiberteau, 2012). Specifically, we considered time to reach half-maximum MAG3

(φ 1
2
tMAX; which is widely used in practice), time to reach maximum MAG3 (φtMAX)

and minimum velocity (φ
[1]
MIN). For post-furosemide renogram curves, two features

that characterize the overall MAG3 intensity were considered: functional area under

the curve (φFAUC) and maximum MAG3 (φMAX). All summary functionals were

estimated based on the Gasser-Müller kernel estimates (4.2) of the crude (ν = 0)

renogram curves and their first derivatives (ν = 1) using a polynomial kernel of

degree 2 and 3, respectively (Müller, 1984), and an automatically adapted global

“plug-in” bandwidth that optimizes MISE (Gasser et al., 1991). Standard errors

were estimated by bootstrap resampling (1,000 samples).

Table 4.4 presents the AUC estimates of the selected summary functions of the

baseline and post-furosemide renogram curves. For the baseline renogram, AUC of

φ 1
2
tMAX is 0.797 (95% CI: 0.723–0.856), suggesting its moderate diagnostic utility.

AUCs of the two newly identified summary functionals, φtMAX and φ
[1]
MIN are 0.855

(95% CI: 0.801–0.897) and 0.812 (95% CI: 0.742–0.866), respectively. Especially,

the AUC of φtMAX is statistically significantly higher than that of φ 1
2
tMAX (P-value

= 0.045). Taylor et al. (2008c) noted that hospitals can save time and medical costs

required to perform a furosemide administration if the baseline renogram alone can
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Table 4.4: Estimated AUCs of the summary functionals (SFs) of the baseline and
post-furosemide renogram curves. SE: standard error, CI: confidence interval.

SF AUC (SE) 95% CI

Baseline Renogram

φ 1
2
tMAX 0.797 (0.034) [0.723, 0.856]

φtMAX 0.855 (0.024) [0.801, 0.897]

φ
[1]
MIN 0.812 (0.031) [0.742, 0.866]

Post-furosemide Renogram

φFAUC 0.892 (0.023) [0.838, 0.930]

φMAX 0.856 (0.027) [0.794, 0.902]

exclude kidney obstruction in practice. Our findings thus have potential clinical im-

plications for more prompt, accurate and economical detection of kidney obstruction

in many practical settings. For the post-furosemide renogram, both φFAUC (AUC:

0.892; 95% CI: 0.838–0.930) and φMAX (AUC: 0.856; 95% CI: 0.794–0.902) have good

diagnostic utility for discrimination between obstructed cases and non-obstructed

controls.

Next, we conducted a semiparametric regression analysis (4.8) to identify certain

age and gender groups for whom a given quantitative feature is more useful. The

primary model of interest is logit{θ(φ)} = β0 + β1age + β2sex, where age is binary

age group (65 years & older vs. younger) and sex denotes gender (male vs. female).

We also considered a three-category age group: under 50 (50-), 50-64 and 65 & older

(65+); specifically, the model is logit{θ(φ)} = β0 + β1age1 + β2age2 + β3sex, where

age1 and age2 are dummy variables that represent “50- years” and “ 65+ years”

groups, respectively. The regression parameters were estimated as the solution to the
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estimated estimating equations (4.10), and the standard errors were obtained by the

jackknife method.

Table 4.5: Estimated AUC odds ratios (OR) of φ
[1]
MIN derived from the baseline

renogram. Model 1 included binary age group (65+ years vs. younger) and gen-
der (male vs. females). Model 2 included categorical age group (50- years, 50-64
years and 65+ years) and gender. SF: summary functional, CI: confidence interval.

SF Covariate AUC OR (95% CI) P-value

Model 1: logit{θ(φ)} = β0 + β1age+ β2sex

φ
[1]
MIN Age (65+ years/younger) 2.95 (1.10, 7.87) 0.03

Gender (male/female) 0.66 (0.27, 1.62) 0.36

Model 2: logit{θ(φ)} = β0 + β1age1 + β2age2 + β3sex

φ
[1]
MIN Age 50- years 2.30 (0.74, 7.20) 0.15

Age 65+ years 4.76 (1.49, 15.21) 0.01

Age 50-65 years (reference) - -

Gender (male/female) 0.59 (0.23, 1.51) 0.27

Estimated AUC odds ratios of φ
[1]
MIN derived from the baseline renogram curve is

are listed in Table 4.5. For the first model that includes binary age group and gender

(Model 1), the estimates indicate that the AUC odds of φ
[1]
MIN are 3 times higher for

65+ year-old patients than for younger patients (AUC odds: 2.95; 95% CI: 1.10–7.87),

holding gender fixed. The estimates of the second model (Model 2) indicate that AUC

odds of φ
[1]
MIN for 65+ year-old patients are 4.8 times higher than those of 50-64 year-old

patients (AUC odds: 4.76; 95% CI: 1.49–15.21). These findings suggest that φ
[1]
MIN of

the baseline renogram has superior diagnostic utility for detecting kidney obstruction

in elderly patients, especially compared to those who are middle-aged (50-65 years).
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We also fit the model with a continuous age covariate, but the result is inconclusive at

the 5% significant level, perhaps due to no significant difference in AUC between 50-

year-old patients and other age groups. The classification ability of other summary

functionals listed in Table 4.4 does not depend on patient characteristics.

4.7 Discussion

Functional markers are increasingly being collected in biomedical studies to better

understand complex diseases. In many medical practices, their various quantitative

features are derived and studied as they represent important interpretative and patho-

logical information, but are often naively relied upon without appropriate scientific

justification. As such, we have developed a much-needed framework that can rig-

orously evaluate quantitative features based on AUC and appropriately guide their

selection and application in practice. We adopted a concept of a summary func-

tional that provides mathematical rigor and flexibility in representing a wide class of

quantitative features. We proposed a two-stage AUC estimator that appropriately

addresses discreteness and measurement error in observed data and established its

asymptotic properties. To systematically describe the heterogeneity of AUC of quan-

titative features in different subpopulations, we proposed a sensible adaptation of a

semi-parametric regression model, whose parameters can be estimated and inferred

by our estimated estimating equations.

One main contribution of the proposed framework is the provision of a systematic

tool to examine new quantitative features that are potentially highly informative,

but have not been used in previous clinical settings. For instance, application of our

framework to a renal study in Section 4.6 shows that AUCs of time to maximum

and functional area under the curve, which are not used by radiologists in practice,

are over 0.85. This shows the potential for identifying new quantitative features of
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renogram curves that allow better detection of kidney obstruction, and our proposed

method provides a new promising way to facilitate and justify such findings.

Although the proposed framework is illustrated by a specific example, its ap-

plication could be extended to other clinical studies where functional markers are

frequently collected. For example, a plasma drug concentration-time curve, which

consists of drug concentration in blood plasma densely measured over an active drug

exposure time period, is frequently collected in the field of pharmacokinetics. (Craig

and Stitzel, 2004). Commonly derived quantitative features from this curve to study

the way the body deals with the drugs include: AUC (total drug exposure over time),

Cmax (the peak plasma concentration of a drug after administration) and tmax (time to

reach Cmax), which can all be captured and consistently estimated using appropriate

summary functionals. Therefore, the proposed framework can be readily applied to

evaluate the diagnostic utility of these quantitative features and shed useful scientific

insight in many drug-related studies.
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Chapter 5

A Novel Statistical Approach to

Evaluate Functional Markers

Without a Gold Standard
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5.1 Introduction

Researchers in public health and biomedical fields are often interested in evaluating

diagnostic and prognostic accuracy of diagnostic markers (Pepe, 2003). Usefulness

of binary marker tests is generally assessed based on its sensitivity (probability of a

positive test given disease is present) and specificity (probability of a negative test

given disease is absence). The diagnostic accuracy of continuous markers is evaluated

by receiver operating characteristic (ROC) analysis. Specifically, the ROC curve

plots the estimated sensitivity versus specificity probabilities evaluated at all possible

cutoffs. The area under the ROC curve (AUC) is a measure of the average accuracy;

an AUC of 1 represents a perfect marker, while AUC of 0.5 represents a worthless

marker (e.g., coin flip).

The estimation of aforementioned performance metrics is straightforward when

the true disease status or gold standard test is available. For many diseases, however,

it is difficult or impossible to establish definitive diagnosis due to complex clinical

conditions, or a gold standard test may be too invasive or expensive to administer.

To estimate diagnostic accuracy without a gold standard, a latent class modeling

approach that treat the true disease status as a latent variable has been proposed (Hui

and Walter, 1980, Hui and Zhou, 1998, Collins and Huynh, 2014). Hui and Walter

(1980) built a two-component latent class model to estimate sensitivity and specificity

of two binary tests, assuming that they are conditionally independent given disease

status. Qu et al. (1996) proposed a random effect latent class model with normally

distributed random effects to introduce conditional dependence between tests. More

recently, Xu and Craig (2009) proposed a probit latent class model that allows a

general correlation structure between tests. For continuous markers, a multivariate

latent binormal model has been widely used to estimate the ROC curve and AUC

without a gold standard (Choi et al., 2006a, Yu et al., 2011, Jafarzadeh et al., 2016).

With the advancement in data collection technology, more and more clinically
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applicable markers are being collected as functional data (functional markers). Their

units of observation are smooth continuous curves (or functions) defined on a con-

tinuum (e.g., time or space) but sampled at discrete grids (Ramsay and Silverman,

2005). It is typical in clinical research to use a set of scalar metrics that summarize

certain characteristics of a functional marker, such as area under the curve, max-

imum value and time to reach maximum value, to describe a disease or biological

phenomenon; examples of their usage can be found in pharmacokinetics (Craig and

Stitzel, 2004), Alzheimer’s disease study (Taylor and Garcia, 2014), cardiac safety as-

sessment (Zhou and Sedransk, 2013) and so on. The selection and application of these

metrics, however, are mostly based on ad hoc blending of intuition and past practice

without rigorous justification. Moreover, enormous information loss may result when

aggregating the high-dimensional functional data into a scalar metric.

A more sensible approach to evaluate and utilize functional markers will be to

incorporate their inherent dynamic nature that is not fully characterized by some

simple scalar metrics. That is, various changing patterns of functional markers that

relate to their overall intensity, maximum value, rate of change and many more all

constitute valuable information about the curve and may better explain and predict

the disease progression. Yan et al. (2017) proposed a functional principal component

analysis (FPCA) approach to extract changing patterns of functional markers, and

then used them as covariates in a Cox proportional hazards model to make dynamic

prediction of disease progression. A similar FPCA-based approach was used by Li

and Luo (2017) to incorporate functional markers as covariates in a joint model of lon-

gitudinal and time-to-event data. These existing approaches, however, focus entirely

on prediction or association, and to our knowledge, no systematic research exists on

how to effectively evaluate diagnostic and prognostic accuracy of functional markers

under no gold standard.

Our work is motivated by data collected in the renal study. Obstruction to urine



120

Figure 5.1: Representative baseline and post-furosemide renogram curves for two
kidneys. The solid lines are from a kidney interpreted as non-obstructed, and the
dotted lines are from a kidney interpreted as obstructed by a nuclear medicine expert.
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drainage from a kidney (kidney obstruction) is a serious clinical problem that can lead

to irreversible loss of renal function if not properly treated. The diagnosis of kidney

obstruction is not straightforward, mostly because there is no consensus in the field

on what constitutes the gold standard (Taylor et al., 2008c). In recent years, nuclear

medicine renal scans have been widely adopted as a cost-effective and non-invasive

approach to detect kidney obstruction. Renal scans start with an intravenous injec-

tion of 99mTc-Mercaptoacetyltriglycine (MAG3) into a kidney to monitor how MAG3

travels down the ureter from the kidney to the bladder. Then, a set of renogram

curves is generated by repeatedly measuring the MAG3 photon count inside the kid-

ney over time (Bao et al., 2011). The first renogram curve (called baseline) represents

the MAG3 photon counts detected at 59 time points during an initial period of 24

minutes (see the left panel in Figure 5.1). The second renogram curve (called post-

furosemide) is obtained at 40 time points during an additional period of 20 minutes

after an intravenous injection of furosemide, a potent diuretic (see the right panel in
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Figure 5.1).

Current diagnostic practice focuses on several changing patterns of the renogram

curves that depict how fast the MAG3 exits a kidney, how long it takes the MAG3

to produce maximum activity, etc., all of which are strongly related to the functional

aspects of the kidney (ability to excrete, absorb, etc.). Accordingly, interpretation of

renogram curves requires a thorough understanding of renal physiology and MAG3

pharmacokinetics (Taylor and Garcia, 2014). However, a majority of renal scans in

United States are interpreted by general radiologists who have less than 4 months

of training in those fields, resulting in increased erroneous diagnoses (Taylor et al.,

2008c). It is thus of interest to help radiologist improve their diagnosis by evaluating

and increasing the diagnostic utility of renogram curves.

In this Chapter, we develop an integrative framework consisting of the following

three steps: (1) systematically extract important changing patterns of functional

markers (e.g., renogram curves); (2) rigorously evaluate their usefulness for detecting

the disease (e.g., kidney obstruction) without a gold standard; and (3) predict the

disease status of a future subject (not in the original dataset) using their functional

marker data. In the first step, we propose using FPCA to extract the changing

patterns of each subject’s functional marker. FPCA is an extension of multivariate

principal components analysis which examines the variability of a sample of curves

and characterizes each of their changing patterns (Rice and Silverman, 1991, Yao

et al., 2003, Ramsay and Silverman, 2005, Yao et al., 2005, Yao and Lee, 2006).

Advantage of using FPCA is two-fold. Firstly, FPCA provides a systematic approach

to capture the changing patterns by first extracting those that explain most variability

in the data. Secondly, FPCA provides a natural way of overcoming the intrinsic

infinite-dimensionality of functional markers, which presents both conceptual and

mathematical difficulties in their use. Specifically, a finite-dimensional representation

(FPCA scores) of each subject’s functional marker can be obtained by projecting the
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function onto a subspace spanned by a finite set of orthonormal eigenfunctions (FPCA

basis functions) determined by the observed data. Herein, each FPCA basis function

traces a particular changing pattern of a curve, and the corresponding FPCA score

describes how strongly the functional marker follows this pattern.

It is possible that some clinical studies collect several functional markers (possi-

bly with different domains) per observation unit. For example, in our renal study,

the renogram data for each kidney consist of baseline and post-furosemide renogram

curves. Given so-called multivariate functional marker data, we propose an approach

based on multivariate functional principal component analysis (MFPCA), recently

introduced by Happ and Greven (2018), to extract several joint changing patterns of

the multivariate functional markers that may be predictive of a disease outcome. By

using MFPCA, the aforementioned advantages of the FPCA approach for univariate

functional markers carry over to the context of multivariate functional marker data.

That is, the joint changing patterns (MFPCA basis functions) and the corresponding

MFPCA scores can be obtained in a systematical manner.

In the second step, we propose using a multivariate binormal latent model to

estimate ROC curves and their areas of the obtained FPCA or MFPCA scores in

the absence of a gold standard. This amounts to identifying and evaluating changing

patterns of a functional marker that are important for understanding and predicting

the latent disease status. In the third step, we propose to use marker information

gained from the original data to first compute FPCA scores of a new subject and

combine these scores in a way that produces an optimal composite test with maximum

predictive power under the binormal model (Su and Liu, 1993). Then, given the

composite test value, a prediction rule based on the predictive probability of disease

can be established.

Although a gold standard is absent, there are situations where information from

an imperfect reference test that is highly accurate but subject to small error, such as
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diagnostic results from an expert or values of a well-established marker, is available

on the same subjects. In the motivating renal study example, there are diagnostic

results (scores on the severity of kidney obstruction) on each kidney from three nuclear

medicine experts. These experts all had more than 20 years of experience in full-time

nuclear medicine, published multiple articles on renal nuclear medicine, were invited

to present renal nuclear medicine educational sessions at national radiology meetings,

and chaired a panel responsible for the development of guidelines dealing with aspects

of renal nuclear medicine. In past marker studies, diagnostic results from imperfect

reference tests have been employed to robustify the estimation of diagnostic accuracy

of new tests (Albert, 2009, Zhang et al., 2012). In this Chapter, we propose to exploit

the imperfect reference test, if available, using functional partial least squares (FPLS)

(Delaigle and Hall, 2012) to more efficiently extract changing patterns that are related

to the disease mechanism and ultimately achieve superior prediction performance

compared to the FPCA approach.

The remainder of the Chapter is organized as follows. In Section 5.2, we briefly

review FPCA (and MFPCA) for functional markers and obtain FPCA scores that

characterize several changing patterns of functional markers that are potentially im-

portant for describing and predicting the underlying disease. Then, we build a multi-

variate binormal model for estimating the diagnostic accuracy of FPCA scores without

a gold standard. A method for predicting the disease status of a new subject based

on a composite test is also introduced in this section. In Section 5.3, we propose

a FPLS approach for incorporating an imperfect reference standard test to improve

the efficiency of prediction. In Section 5.4, we conduct extensive simulation studies

to evaluate the finite-sample performance of the proposed estimation, inference and

prediction procedures. The application of the proposed framework to a renal study

is illustrated in Section 5.5. A discussion follows in Section 5.6.
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5.2 A FPCA Approach for Evaluating Functional

Markers Without a Gold Standard

5.2.1 FPCA for univariate functional markers

Let Xi (i = 1, . . . , n) denote the ith subject’s functional marker, which is assumed

to be an independent random realization of a square-integrable process defined on

a compact time interval T ⊂ R; that is, Xi : T → R is assumed to be in L2(T ).

In this notation, Xi(t) represents a value of the function Xi evaluated at a given

time point t ∈ T for all i. Let µ(t) = E{Xi(t)} denote the mean function of Xi(t)

and V (s, t) = cov{Xi(s), Xi(t)} be its covariance function between two time points

s, t ∈ T . For notational convenience, we will assume that µ(t) = 0 for all t ∈ T .

Given that V (s, t) is symmetric and non-negative definite, Mercers theorem (Hall

and Wang, 2006) implies a spectral decomposition

V (s, t) =
∞∑
k=1

λkφk(s)φk(t),

where φk are orthonormal eigenfunctions in L2(T ) corresponding to the eigenvalues λk

for λ1 ≥ λ2 ≥ · · · ≥ 0. Note that φk is orthonormal with respect to the space L2(T ),

that is,
∫
T {φk(t)}

2dt = 0 and
∫
T φr(t)φk(t)dt = 1 for r 6= k. These eigenfunctions

form an orthonormal basis of the space L2(T ), and so we may use the Karhunen-Loeve

decomposition (Yao et al., 2005) to represent each random function Xi as

Xi(t) =
∞∑
k=1

ξikφk(t), (5.1)

where φk is referred to as kth functional principal component (kth FPCA basis func-

tion), and ξik =
∫
T Xi(t)φk(t)dt is the kth FPCA score of Xi. The fact that φj and

φk are orthogonal for j 6= k implies that the random variables ξik, 1 ≤ k <∞, are un-
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correlated with mean zero and variance λk. The eigenvalue λk represents the amount

of variability in functional marker data explained by the kth FPCA basis function

φk.

In practice, truncated version of the expansion (5.1), that is, optimal K-dimensional

approximations to Xi (Yao et al., 2005, Kokoszka and Reimherr, 2017)

Xi(t) ≈
K∑
k=1

ξikφk(t), (5.2)

are used. The number of components K can be determined based on the proportion

of explained variance, Akaike information criterion (AIC) or cross-validation. Details

of how to choose K can be found in Rice and Silverman (1991), Yao et al. (2005) and

Yan et al. (2017).

5.2.2 FPCA for multivariate functional markers (MFPCA)

Consider multivariate functional marker data where p ≥ 2 univariate functional mark-

ers X
(1)
i , . . . , X

(p)
i such that X

(m)
i ∈ L2(Tm) (m = 1, . . . , p) are collected for each

subject i = 1, . . . , n. The simplest approach to evaluating multivariate functional

markers is to apply univariate FPCA (see Section 5.2.1) to each functional element

X(m), m = 1, . . . , p. However, there often exists a non-negligible correlation between

the univariate FPCA scores extracted from different functional elements, capturing

joint variation among multivariate functional data only indirectly and making inter-

pretation of the results difficult (Happ and Greven, 2018).

To directly address potential covariation among different functional elements, sev-

eral authors have proposed an approach based on multivariate FPCA (MFPCA)

(Berrendero et al., 2011, Chiou et al., 2014, Jacques and Preda, 2014, Happ and

Greven, 2018). Among different approaches for MFPCA, we use the approach pro-

posed by Happ and Greven (2018) where a multivariate functional object Xi that
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combines p different functional markers X
(1)
i , . . . , X

(p)
i defined on respective time in-

tervals T1, . . . , Tp is considered, that is,

Xi(t) = [X
(1)
i (t(1)), . . . , X

(p)
i (t(p))]T ∈ Rp,

where t = [t(1), . . . , t(p)]T ∈ T ∗ = T1 × · · · × Tp and Xi ∈ H = L2(T1)× · · · × L2(Tp).

Accordingly, the mean vector µ(t) = E{Xi(t)} = [E{X(1)
i (t(1))}, . . . , E{X(p)

i (t(p))}]T

and the matrix of covariances C(s, t) = E{Xi(s) ⊗Xi(t)}, s, t ∈ T ∗ with elements

Clm(s(l), t(m)) = cov{X(l)(s(l)), X(m)(t(m))}, l,m = 1, . . . , p, can be defined (Happ and

Greven, 2018). For simplicity of notation, assume that µ(t) = 0 for all t ∈ T ∗.

After establishing that H is a Hilbert space, and Clm(s(l), t(m)) is symmetric and

non-negative definite, Happ and Greven (2018) provides a multivariate version of

Mercer’s theorem that implies a spectral decomposition

Cmm(s(m), t(m)) =
∞∑
k=1

υkψ
(m)
k (s(m))ψ

(m)
k (t(m)), sm, tm ∈ Tm, (5.3)

where functions {ψ(m)
k ,m = 1, . . . , p} altogether form an orthonormal eigenfunction

ψk = [ψ
(1)
k , . . . , ψ

(p)
k ]T ∈ H corresponding to eigenvalues υk for υ1 ≥ υ2 ≥ · · · ≥ 0.

Note that ψk is orthonormal with respect to the space H, that is,∑p
m=1

∫
Tm{ψ

(m)
k (t(m))}2dtm = 0 and

∑p
m=1

∫
Tm ψ

(m)
r (t(m))ψ

(m)
k (t(m))dtm = 1 for r 6= k.

The decomposition (5.3) provides a basic tool to prove the following multivariate

Karhunen-Loeve decomposition (Happ and Greven, 2018):

Xi(t) =
∞∑
k=1

γikψk(t), t ∈ T ∗, (5.4)

where ψk is referred to as kth multivariate functional principal component (kth MF-

PCA basis function), and the uncorrelated random variable

γik =
∑p

m=1

∫
Tm X

(m)
i (t(m))ψ

(m)
k (t(m))dtm with mean zero and variance υk is referred to
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as the kth MFPCA score of Xi. The eigenvalue υk represents the amount of variabil-

ity in multivariate functional marker data explained by the MFPCA basis function

ψk.

Analogous to the univariate case, we adopt a truncated approximation for Xi

given as

Xi(t) ≈
K∑
k=1

γikψk(t), t ∈ T ∗, (5.5)

where the appropriate truncation lag K can be chosen based on the proportion of

explained variance (Ramsay and Silverman, 2005, Yao et al., 2005).

We end this section by discussing the relationship between univariate and multi-

variate Karhunen-Loeve decompositions (Happ and Greven, 2018). Consider the uni-

variate Karhunen-Loeve decomposition (5.2) for each mth functional element X
(m)
i

of Xi: X
(m)
i (t(m)) =

∑Km
k=1 ξ

(m)
ik φm(t(m)). For K ≤

∑p
m=1Km = K+, let Z denote a

K+×K+ matrix consisting of Kl×Km blocks Z(lm) for entries Z
(lm)
rk = cov(ξ

(l)
ir , ξ

(m)
ik )

with r = 1, . . . , Kl, k = 1, . . . , Km and l,m = 1, . . . p. Then the positive eigenval-

ues of Z correspond to the positive eigenvalues υ1 ≥ υ2 ≥ · · · ≥ 0 in (5.3). The

eigenfunctions in (5.3) are determined by their univariate counterparts:

ψ
(m)
k (t(m)) =

Km∑
r=1

[ck]
(m)
r φ(m)

r (t(m)), (5.6)

where [ck]
(m) ∈ RKm denotes the mth block of an orthonormal eigenvector ck corre-

sponding to eigenvalue υk of Z. The MFPC scores are given by

γik =

p∑
m=1

Km∑
r=1

[ck]
(m)
r ξ

(m)
ir . (5.7)

Proofs for above representations are given in Happ and Greven (2018).
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5.2.3 Estimated FPCA scores: a lower dimensional repre-

sentation of a functional marker

In practice, each functional marker Xi is not observed continuously in time; instead,

it is observed at N discrete time points {Xi(tj), tj ∈ T , i = 1, . . . , n, j = 1, . . . , N}.

The mean function µ(t) and convariance function V (s, t) can be consistently esti-

mated with the observed data by µ̂(t) =
∑n

i=1Xi(t)/n. and V̂ (s, t) =
∑n

i=1{Xi(s)−

µ̂(s)}{Xi(t)− µ̂(t)}/(n− 1), respectively (Kokoszka and Reimherr, 2017). Then, the

estimated eigenvalues λ̂k and estimated FPCA basis functions (eigenfunctions) φ̂k are

solutions to the functional eigenequation (Castro et al., 1986)

∫
T
V̂ (s, t)φ̂k(t)dt = λ̂kφ̂k(s),

where φ̂k are restricted to be orthonormal with respect to the space L2(T ), and the

integral can be approximated by a quadrature rule. Finally, a numerical integration

can be used to estimate the corresponding scores as

ξ̂ik =

∫
T
{Xi(t)− µ̂(t)}φ̂k(t)dt. (5.8)

For sparse (N < 20) and potentially irregularly sampled functional markers, the

principal analysis by conditional estimation (PACE) algorithm can be used to es-

timate the mean function, covariance function, FPCA basis functions and FPCA

scores (Yao et al., 2005). Specifically, the PACE algorithm uses one-dimensional

and two-dimensional kernel smoothers to estimate the mean function and covariance

function (using off-diagnoal elements), respectively, and performs eigenanalysis on

the smoothed covariance to estimate the FPCA basis functions and corresponding

eigenvalues. Then, after projecting smoothed covariance on a positive semi-definite

surface (Hall et al., 2008), FPCA scores can be estimated based on its conditional
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expectation given observed data. Please see Yao et al. (2005) and Liu and Müller

(2009) for more information.

φ̂k and ξ̂ik are referred to as the optimal empirical orthonormal basis functions and

coefficients in the sense of minimizing
∑n

i=1 ||xi −
∑K

k=1 ξ̂ikφ̂k||2, that is, the distance

between infinite-dimensional functional objects xi and their projections onto a K-

dimensional space spanned by {φ̂k, k = 1, . . . .K} (Kokoszka and Reimherr, 2017).

Thus, the first K estimated FPCA scores ξ̂i = [ξ̂i1, . . . , ξ̂iK ] are often used as the

lower-dimensional representation of a functional marker Xi, where K is chosen based

on the proportion of explained variance, Akaike information criterion (AIC) or cross-

validation (Rice and Silverman, 1991, Yao et al., 2005, Yan et al., 2017). Each φ̂k

traces a unique changing pattern of a curve on T , and ξ̂ik describes how strongly Xi

follows this pattern; thus, ξ̂i can be used as a collection of scalar markers for disease

in subsequent ROC analysis.

To estimate the MFPCA, we exploit the relationship between univariate and mul-

tivariate FPCA for Karhunen-Loeve decompositions outlined in the last paragraph

of Section 5.2.2 (Happ and Greven, 2018). First, for each functional element X
(m)
i

of a multivariate functional marker Xi, apply the aforementioned method for estima-

tion of univariate FPCA to obtain FPCA basis functions φ̂
(m)
k and the corresponding

scores ξ̂ik, i = 1, . . . , n, m = 1, . . . , p, k = 1, . . . , Km for suitably chosen truncation

lags Km. Second, the block matrix Z is estimated by Ẑ = (n − 1)−1ΞTΞ, where

Ξ is a n × K+ matrix with each row consisting of (ξ̂
(1)
i1 , . . . , ξ̂

(1)
iK1
, . . . , ξ̂

(p)
i1 , . . . , ξ̂

(p)
iKp

).

Third, eigenanalysis of Ẑ gives estimated eigenvalues υ̂k and estimated orthonormal

eigenvectors ĉm. Finally, we plug in above estimates to the equations (5.6) and (5.7)

to estimate MFPCA basis functions and the corresponding scores by

ψ̂
(m)
k (t(m)) =

Km∑
r=1

[ĉk]
(m)
r φ̂(m)

r (t(m)) and γ̂ik =

p∑
m=1

Km∑
r=1

[ĉk]
(m)
r ξ̂

(m)
ir ,
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respectively, for tm ∈ Tm and k = 1, . . . , K+.

As in the univariate case, the first K estimated MFPCA scores γ̂i = [γ̂i1, . . . , γ̂iK ]

can be used as the lower-dimensional representation of a multivariate functional

marker Xi, where the choice of Km and K ≤ K+ can be guided by the proportion

of explained variance, Akaike information criterion (AIC) or cross-validation (Happ

and Greven, 2018). Herein, each ψ̂k = [ψ̂
(1)
i1 , . . . , ψ̂

(p)
ik ]T can be viewed as a covarying

pattern of p curves on respective time domains T ∗ = {T1, . . . Tp}, and γ̂ik describes

how strongly Xi follows this pattern; therefore, γ̂i can be used as a collection of scalar

markers for disease in subsequent ROC analysis.

5.2.4 FPCA-based ROC analysis without gold standard

In this section, we describe an ROC approach for evaluating the diagnostic accuracy of

univariate or multivariate functional markers based on their estimated FPCA scores

without a gold standard. For a chosen number of principal components K, let ζ̂i =

[ζ̂i1, . . . , ζ̂iK ]T represent either an estimated univariate FPCA score vector ξ̂i or an

estimated MFPCA score vector γ̂i extracted from the ith subject’s univariate or

multivariate functional marker, respectively. Since each ζ̂ik represents a strength of

distinct changing pattern of a functional marker, which is often predictive of a disease,

a vector ζ̂i can be viewed as a set of useable scalar markers whose diagnostic accuracy

can be assessed using ROC curves and AUC.

Let Di denote a binary indicator of disease for the ith subject with Di = 1 if

the subject is diseased and Di = 0 otherwise. Because the gold standard test is not

available, the disease status Di is latent. Hui and Walter (1980) showed that a latent

model for two binary non-gold standard tests on a single population is not identifiable,

but using two or more populations with different prevalences can circumvent the

problem of non-identifiability. In our case, we assume that the disease prevalence

depends on covariates as an alternative to using multiple populations (Jones et al.,
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2009, Yu et al., 2011). Specifically, denoting the covariate vector of the ith subject

by wi, the disease prevalence is assumed to follow a logistic model

Pr(Di = 1 | wi) = πi =
exp(wT

i β)

1 + exp(wT
i β)

, (5.9)

where β is the vector of coefficients.

Assume that FPCA scores ζ̂i is conditionally independent of covariates wi given

Di and follow the multivariate binormal latent model given as:

Di | wi ∼ Bernoulli(πi), ζ̂i | Di = d ∼ NK(µd,Σd) (d = 0, 1) (5.10)

where πi = P (Di = 1 | wi) is the disease prevalence provided in (5.9), and NK(µd,Σd)

represents a K-variate normal distribution given true disease status D = d with mean

vector µd = [µd1, . . . , µdK ]T and covariance matrix Σd = {σd,kk′} (k, k′ = 1, . . . , K).

We will follow the convention that each FPCA score for diseased subjects tends

to be greater than those for non-diseased subjects, that is, µ1k > µ0k. The ROC

curve of kth score ζik can be expressed by plotting pairs of 1-specificity (x-axis) and

sensitivity (y-axis) for given cutoff values c ∈ (∞,∞), namely,

ROCk(c) =

[
1− Φ

(
c− µ0k√
σ0,kk

)
, 1− Φ

(
c− µ1k√
σ1,kk

)]
, (5.11)

where Φ(·) denotes a cumulative distribution function (cdf) of the standard normal

distribution. The AUC is frequently interpreted as the probability that a score of a

randomly chosen subject from the diseased group (ζ̂+k ) is higher than that of a chosen

subject from the nondiseased group (ζ̂−k ) (Krzanowski and Hand, 2009). Thus, the

AUC of kth score ζ̂ik can be calculated under the binormal model as

AUCk = Pr(ζ̂+ik > ζ̂−ik) = Φ

(
µ1k − µ0k√
σ0,kk + σ1,kk

)
. (5.12)
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Note that in real-world applications, we usually do not have a priori information on

whether FPCA scores ζ̂ik of diseased subjects are on average higher or lower than

those for non-diseased subjects. Thus, if µ1k < µ0k, we can simply re-define the two

diagnostic accuracy measures by taking one minus the coordinates of the ROCk(c) in

(5.11) and 1− AUCk in (5.12).

To assess overall accuracy of a functional marker, it is desirable to combine infor-

mation carried by multiple scores using their linear combination, where the composite

test ζ̂∗i = aT ζ̂i. For the weight vector, we choose a = (Σ1 + Σ0)
−1(µ1 − µ0), which,

under the binormal model (5.10), is known to provide the best linear combination of

the scores in the sense that AUC is maximized among all possible linear combinations

(Su and Liu, 1993). The corresponding AUC based on such construction (“combined

AUC” or “cAUC”) is

cAUC = Φ
{√

aT (µ1 − µ0)
}
. (5.13)

5.2.5 Estimation and inference of the ROC model

Let θ = (β,µ1,Σ1,µ0,Σ0) denote the collection of all parameters to be estimated.

For estimation, we consider the complete data G = {(wi, Di, ζ̂i), i = 1, . . . , n}, which

include covariates, latent disease status and estimated FPCA scores for n subjects.

Then the complete-data likelihood function is given by

Lc(θ | G) =
n∏
i=1

{πig(ζ̂i | µ1,Σ1)}Di{(1− πi)g(ζ̂i | µ0,Σ0)}1−Di , (5.14)

where g(·|µd,Σd) (d = 0, 1) denotes the K-variate normal density with mean µd and

covariance Σd given the true disease status Di = d. Here, we employ expectation-

maximization (EM) algorithm (Dempster et al., 1977) to find the maximum likelihood

(ML) estimates of θ by maximizing (5.14). More details regarding the EM algorithm

implementation (E-step & M-step) are given in Appendix D.1.
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Once the ML estimates of the parameters, θ̂, are obtained, they can replace

the corresponding parameters θ in definitions (5.11), (5.12) and (5.13) to estimate

ROCk(c), AUCk and cAUC, respectively. The standard errors of the estimates ÂUCk

and ĉAUC can be estimated based on the observed information matrix and delta

method, and their closed-form formulas are presented in Appendix D.2.

One can use normal approximation to construct confidence intervals (CIs) of AUCk

and cAUC. Since AUC measures are bounded between 0 and 1, adopting a logistic

transformation may accelerate the convergence of the corresponding AUC estimate

to asymptotic normality, especially when it is close to the boundary. Specifically, let

ÂUC denote either ÂUCk or ĉAUC and ŝ denote its estimated standard error. Define

l(x) = ln{(x/(1 − x)}, l′(x) = dl(x)/dx, and denote l−1(·) as the inverse function

of l(·). Using the delta method, the 100(1 − α)% CI for the AUC measures can be

constructed as [
l−1
(
l̃ − z1−α/2 · l̃′ŝ

)
, l−1

(
l̃ + z1−α/2 · l̃′ŝ

)]
,

where l̃ ≡ l(ÂUC), l̃′ ≡ l′(ÂUC) and z1−α/2 denotes the 100(1 − α/2)th percentile of

N(0, 1).

5.2.6 FPCA-based approach to predict disease status of fu-

ture observations

In this section, we describe an FPCA-based approach to predict disease outcome

Dnew for a new subject (not in the original training dataset) with covariate wnew

and univariate functional marker measurements {Xnew(tj), tj ∈ T , j = 1, . . . , N}.

Firstly, refer to formula (5.8) to compute the new subject’s FPCA scores ξ̂new =

[ξ̂new,1, . . . , ξ̂new,K ]T via numerical integration:

ξ̂new,k =

∫
T
{Xnew(t)− µ̂(t)}φ̂k(t)dt, k = 1, . . . , K, (5.15)
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where µ̂(t) and φ̂k(t) are obtained using the original training dataset following the

procedure described in Section 5.2.3. Secondly, to maximize predictability, com-

pute the new subject’s composite score ξ̂∗new = âT ξ̂new using optimal weights â =

(Σ̂1 + Σ̂0)
−1(µ̂1 − µ̂0) estimated from the training dataset. Thirdly, estimate the

new subject’s predictive probability of disease given wnew and ξ̂∗new using the Bayes

theorem:

P̂r(Dnew = 1 | wnew, ξ̂
∗
new; θ̂)

=
π̂newg(ξ̂∗new | âT µ̂1, â

T Σ̂1â)

(1− π̂new)g(ξ̂∗new | âT µ̂0, â
T Σ̂0â) + π̂newg(ξ̂∗new | âT µ̂1, â

T Σ̂1â)
,

(5.16)

where θ̂ = (β̂, µ̂1, Σ̂1, µ̂0, Σ̂0), â and π̂new = exp(wT
newβ̂)/{1 + exp(wT

newβ̂)} are

obtained from the training dataset, and g(·|âT µ̂d, âT Σ̂dâ) (d = 0, 1) denotes a normal

density function with mean âT µ̂d and variance âT Σ̂dâ. Finally, applying a cutoff (e.g.,

v = 0.5) to the estimated predictive probability yields a method that predicts the

latent disease status of this new subject; that is, the subject is predicted to have

disease if P̂r(Dnew = 1 | wnew, ξ̂new; θ̂) > v.

The proposed prediction method can be easily extended to a new subject with

covariate wnew and multivariate functional marker measurements {X(m)
new(t

(m)
j ), t

(m)
j ∈

Tm, j = 1, . . . , Nm, m = 1, . . . , p}. Let µ̂m(t(m)) =
∑n

i=1Xi(t
(m))/n and ψ̂

(m)
k (t(m))

denote the mth element of the estimated mean function and mth element of the kth

MFPCA basis function, respectively, obtained using the original dataset. The new

subject’s MFPCA scores γ̂new = [γ̂new,1, . . . , γ̂new,K ]T can be computed via numerical

integration as

γnew,k =

p∑
m=1

∫
Tm
{X(m)

new(t(m))− µ̂m(t(m))}ψ̂(m)
k (t(m))dtm, k = 1, . . . , K.

Then, we can combine these MFPCA scores to produce the new subject’s compos-

ite score γ̂∗new = âT γ̂new, which can replace ξ̂∗new in formula (5.16) to calculate the
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corresponding predictive probability of disease P̂r(Dnew = 1 | wnew, γ̂
∗
new; θ̂).

5.3 A FPLS Approach to Incorporate Imperfect

Reference Test

One main limitation of the FPCA approach is that it only takes into account informa-

tion about the functional marker X, and therefore maybe suboptimal for predicting

the latent disease status D. In particular, the first K FPCA basis functions φ1, . . . , φK

contain information only related to the covariance of X, and thus the resulting order

of the principal components may not indicate the order of their predictive power;

that is, all or some of the most important terms explaining the interaction between

D and X might come from later principal components (Delaigle and Hall, 2012). In

this section, we propose incorporating diagnostic result from an imperfect reference

standard via FPLS to efficiently extract changing patterns of a functional marker

that are more relevant for predicting the underlying disease status.

Let Y denote an imperfect reference test score and Yi (i = 1, . . . , n) denote its

independent random realization for each subject. Assume for notational simplicity

that E(Yi) = 0 for all i. Assuming that Yi is a reasonably accurate marker for the

underlying disease status Di, our approach is to treat Yi as a surrogate indicator for

the underlying disease and directly link it with the corresponding univariate functional

marker Xi using the functional linear model given by

Yi =

∫
T
B(t)Xi(t)dt+ ε, (5.17)

where B is a function-valued parameter, and ε is a mean-zero random error term.

The basic idea of FPLS is to maximize the predictive performance of the model

(5.17) by simultaneously decomposing the functional predictor Xi and the scalar
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response Yi in terms of FPLS scores νi1, νi2, . . . that have mean zero and uncorrelated

with eachother.

Xi(t) =
∞∑
k=1

νikρk(t) and Yi =
∞∑
k=1

νikβk + ε,

where ρ1, ρ2, . . . are FPLS basis functions (Preda and Saporta, 2005, Febrero-Bande

et al., 2017). An iterative algorithm proposed by Delaigle and Hall (2012) that sequen-

tially estimates the FPLS scores and basis functions using observed data {(Yi, Xi(tj)),

tj ∈ T , j = 1, . . . , N, i = 1, . . . n} is described in Appendix D.3.

A vector of the first K estimated FPLS scores [ν̂i1, . . . , ν̂iK ]T can then be used as

the lower-dimensional representation of Xi. As with the FPCA scores, each FPLS

score ν̂ik represents how strongly Xi follows the pattern traced by ρ̂k. The main

advantage of the FPLS approach is that the sequence of FPLS scores ν̂ik, . . . , ν̂iK is

naturally sorted in increasing order of importance of explaining the total variance of

Yi (Febrero-Bande et al., 2017), allowing practitioners to efficiently extract features

of functional markers that are highly predictive of the latent disease status.

FPLS-based ROC analysis of functional markers can be proceeded as in the FPCA-

based framework by replacing ζ̂i with the FPLS score vector ν̂i = [ν̂i1, . . . , ν̂iK ]T and

following the procedures described in Sections 5.2.5 and 5.2.5. For a new subject

with covariate wnew and functional marker measurements {Xnew(tj), tj ∈ T , j =

1, . . . , N}, but without the imperfect reference test result, the FPLS scores ν̂new =

[ν̂new,1, . . . , ν̂new,K ]T , the composite test ν̂∗new = âT ν̂new and the corresponding pre-

dictive probability of disease P̂r(Dnew = 1 | wnew, ν̂
∗
new; θ̂) can be computed. See

Appendix D.3 for details.
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5.4 Simulation Study

In this section, we conduct a simulation study with three settings to evaluate the

proposed method. In Setting I, the lower-dimensional representations of (univariate or

multivariate) functional markers, i.e., the estimated FPCA scores ζ̂i = [ζ̂i1, ζ̂i2, ζ̂i3]
T ,

are directly generated from the binormal model given in (5.10). Different values for the

conditional mean (µ1, µ0) and covariance (Σ1, Σ0) parameters are selected in order to

investigate the performance of proposed method given different discriminative abilities

of the FPCA scores. Specifically, we consider three cases: (1) the first two scores

have good (0.8 < AUC < 0.9) discriminative abilities and the last score has moderate

(0.7 < AUC < 0.8) discriminative ability; (2) the first score has good discriminative

ability, and the last two scores have moderate discriminative abilities; and (3) all three

scores have moderate discriminative abilities. Note that in every case, ζi, marginally,

has mean zero and a diagonal covariance matrix with decreasing variances, ensuring

that our data generation scheme is on a par with the classical formulation of FPCA

(Ramsay and Silverman, 2005). Specific values of the parameters for the three cases

are presented in Appendix D.4.

The disease prevalence is assumed to depend on two binary covariates w1i and w2i

according to the logistic model given in (5.9); that is, πi = exp(β1w1i + β2w2i)/{1 +

exp(β1w1i +β2w2i)}, from which the latent disease status of each subject Di is gener-

ated. We set β1 = 2 and β2 = −2 so that the two covariates have equal but opposite

effect on the disease prevalence.

For each case, we simulate M = 1000 samples, each of which consists of n =

200 or 400 subjects, and equal numbers of subjects, n/4, are assigned to the four

subpopulations defined by values of the covariates. The ÂUCk (k = 1, 2, 3) and

ĉAUC are obtained for each sample, and several statistics are calculated to assess the

performance of the proposed method by summarizing the 1000 simulated sets. The

bias of each AUC estimate is calculated as the mean of 1000 differences between the
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estimates and true values (MeanBias), and the empirical standard deviation of the

1000 AUC estimates (EmpSD) is compared to the mean of the 1000 standard error

estimates (MeanSE) in order to investigate the validity of our proposed procedure

based on the observed information matrix and delta method. The actual coverage

rate (Cov95) is calculated as proportion of the 95% CIs (constructed based on logistic

transformation) containing the true AUC value. We eliminated the rare cases (less

than 5%) when convergence or numerical problems occurred in the EM or Newton-

Rahpson algorithm.

The summary of bias, MeanSE and EmpSD and Cov95 are shown in Table 5.1.

For all three cases, we see that the AUC estimates have negligible bias. The estimated

standard errors agree with the empirical standard deviations, suggesting that the pro-

posed approach based on the observed information matrix and delta method provides

fairly accurate standard error estimates. The 95% coverage is close to the nominal

level for all cases, implying that the proposed confidence interval formula based on

the logistic transformation works well even when the AUC value is close to 1. Better

diagnostic accuracy of the FPCA scores tends to increase the speed of convergence of

the AUC estimates to the true value and asymptotic normality, although its impact

is minimal.

In Setting 2, we aim to assess the learning and prediction performance of our

proposed method. Consider univariate functional markers Xi that take the form of

Xi(t) = ξi1 ·
√

2 sin(2πt) + ξi2 ·
√

2 cos(2πt) + ξi3 ·
√

2 sin(4πt) + ξi4 ·
√

2 cos(4πt),

for t ∈ T = [0, 1], and are observed at N = 20 or 60 discrete time points

{(t1, t2, . . . , tN) ∈ T : 0 = t1 < t2 < · · · < tN−1 < tN = 1}. For the sake of achieving

our objective of this simulation study, we generate the true univariate FPCA scores

ξi = [ξi1, ξi2, ξi3, ξi4]
T from the binormal model (5.10). The conditional mean and
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Table 5.1: Simulation results for Setting 1. The averages of 1000 biases (MeanBias)
and standard errors (MeanSE), the standard deviation of the 1000 estimated AUC
estimates (EmpSD) and the proportion 95% CIs containing the true AUC estimate
in 1000 simulations (Cov95) are presented.

Case Sample Size True AUC MeanBias EmpSD MeanSE Cov95

1 200 AUC1 = 0.807 0.001 0.036 0.037 0.961

AUC2 = 0.807 0.000 0.037 0.037 0.955

AUC3 = 0.725 -0.001 0.042 0.042 0.943

cAUC = 0.984 0.000 0.009 0.008 0.955

400 AUC1 = 0.807 0.002 0.026 0.026 0.941

AUC2 = 0.807 0.000 0.026 0.026 0.948

AUC3 = 0.725 -0.002 0.028 0.029 0.957

cAUC = 0.984 0.000 0.006 0.005 0.957

2 200 AUC1 = 0.807 0.000 0.046 0.042 0.925

AUC2 = 0.732 0.001 0.050 0.047 0.945

AUC3 = 0.725 -0.003 0.051 0.048 0.924

cAUC = 0.954 0.001 0.024 0.020 0.922

400 AUC1 = 0.807 0.001 0.031 0.030 0.937

AUC2 = 0.732 0.000 0.034 0.034 0.953

AUC3 = 0.725 -0.002 0.034 0.034 0.947

cAUC = 0.954 0.001 0.015 0.014 0.944

3 200 AUC1 = 0.748 0.003 0.056 0.050 0.930

AUC2 = 0.732 0.003 0.056 0.051 0.926

AUC3 = 0.736 -0.001 0.058 0.051 0.916

cAUC = 0.925 0.008 0.034 0.030 0.910

400 AUC1 = 0.748 0.001 0.040 0.036 0.922

AUC2 = 0.732 0.000 0.039 0.037 0.937

AUC3 = 0.736 -0.001 0.039 0.037 0.940

cAUC = 0.925 0.002 0.026 0.023 0.923
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covariance parameters of the FPCA scores are selected in a way that the first three

scores explain approximately 90% of the total variance in generated data. Three cases

are considered to assess prediction performance under varying diagnostic accuracy

of the first three scores: (1) the first two scores have good discriminative abilities

and the third score has moderate discriminative ability; (2) the first score has good

discriminative ability, and the next two scores have moderate discriminative abilities;

and (3) the first three scores have moderate discriminative abilities. Specific values

of the parameters for the three cases (including the parameter values for the fourth

score) are presented in Appendix D.4.

There are two binary covariates w1i and w2i, and the latent disease variables

Di are generated according to the logistic model (5.9), with β1 = 2 and β2 = −2.

We generate M = 1000 samples, in each of which the training sample size is n1 =

160 or 320, and the testing sample size is n2 = 100. In each training and testing

dataset, equal numbers of subjects (n1/4 and n2/4) are assigned to the four covariate-

defined subpopulations. We first perform FPCA to the generated functional markers

Xi (i = 1, . . . n1) in the training dataset, and obtain the estimated mean function

(µ̂) and the first three estimated FPCA basis functions (φ̂1, φ̂2, φ̂3), which explain

approximately 90% of variability of the data. Since the estimated basis functions are

only unique up to their respective signs (Kokoszka and Reimherr, 2017), we use sk =

sign{
∫
T φk(t)φ̂k(t)dt} to set φ̂k := skφ̂k so that the signs are consistent throughout the

datasets. Then for each subject in the testing dataset, the first three FPCA scores

and the corresponding predictive probability of disease based on the best composite

test are obtained using formulas (5.15) and (5.16), respectively. 0.5 is used as a cutoff

for the predictive probability to determine diseased/nondiseased diagnosis. As in the

first setting, the rare cases where convergence or numerical problems occurred were

eliminated.

The average AUC and cAUC estimates obtained using the first three estimated
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Table 5.2: Simulation results for Setting 2. The averages (over 1000 simulations) of
the AUC and cAUC estimates of the first three estimated FPCA scores in the training
dataset of size n1 = 160 and 320, and the percentages correctly classified (PCC) in
the testing data of size n2 = 100 are presented.

Average Estimated AUC

Training Sample Number of in Training Data Average PCC in

AUCy Size (n1) Time Points (ÂUC1, ÂUC2, ÂUC3), ĉAUC Testing Data

1 160 20 (0.807, 0.827, 0.669), 0.990 94.2%

60 (0.806, 0.812, 0.681), 0.987 93.6%

320 20 (0.806, 0.831, 0.665), 0.989 94.5%

60 (0.806, 0.811, 0.681), 0.985 93.9%

2 160 20 (0.806, 0.762, 0.675), 0.977 91.8%

60 (0.805, 0.738, 0.686), 0.972 91.1%

320 20 (0.806, 0.766, 0.670), 0.970 92.2%

60 (0.806, 0.744, 0.688), 0.964 91.4%

3 160 20 (0.746, 0.736, 0.734), 0.939 86.9%

60 (0.748, 0.729, 0.734), 0.937 86.6%

320 20 (0.748, 0.743, 0.733), 0.935 88.3%

60 (0.748, 0.736, 0.732), 0.932 88.0%
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FPCA scores in the training dataset and the corresponding average percentage of cor-

rect classification (PCC) in the testing dataset over 1000 replications are presented

in Table 5.2. The results show that when one or two scores have good discriminative

abilities, the proposed method can achieve very good prediction accuracy; the aver-

age PCCs in the testing data are above 90% for the first two cases. Furthermore,

our proposed method is found capable of producing satisfactory prediction accuracy

(PCCs > 85%) even when all three scores have only moderate diagnostic accuracy.

The prediction performance generally improves as the training sample size (n1) in-

creases. The average PCC values slightly decrease as N increases implying that the

cAUC tends to be overestimated with relatively small N . Overall, the trend is fairly

consistent across different n1 and N combinations, lending support to the robustness

of the proposed prediction method to the structure and size of the training dataset.

Setting 3 is identical in design to Setting 2, but the goal here is to illustrate the

advantages of the FPLS approach over the FPCA approach provided that the imper-

fect reference test results are available in the training dataset. For this purpose, we

again consider the third case of Setting 2 where the first three FPCA scores, which

explain about 90% of variability in the original functional marker data, have only

moderate discriminative abilities, but the fourth FPCA score, which is not chosen in

the subsequent ROC analysis, has good diagnostic accuracy. This corresponds to a

situation where information about the latent disease status moves further away in the

sequence of principal components. Imperfect reference tests results of training sub-

jects are generated under N(µy,1, σ
2
y,1) and N(µy,0, σ

2
y,0) distributions for the diseased

and nondiseased, respectively, and are used in the iterative algorithm (Delaigle and

Hall, 2012) presented in Appendix D.3 to estimate the first three FPLS scores and the

corresponding AUC estimates. Then, based on the procedure outlined in Appendix

C, we extract and combine the FPLS scores of the functional markers in the testing

dataset to predict their latent disease status. We also investigate the sensitivity of
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the proposed approach to different values of the diagnostic accuracy of the imperfect

reference test by varying µy,1 and µy,0. Values of the parameters used for generating

the imperfect reference tests are presented in Appendix D.4.

Table 5.3: Simulation results for Setting 3. The averages (over 1000 simulations) of
the AUC and cAUC estimates of the first three estimated FPLS scores in the training
dataset of size n1 = 160 and 320, and the percentages correctly classified (PCC) in
the testing data of size n2 = 100 are presented.

Average Estimated AUC

Training Sample Number of in Training Data Average PCC in

AUCy Size (n1) Time Points (ÂUC1, ÂUC2, ÂUC3), ĉAUC Testing Data

0.901 160 20 (0.883, 0.820, 0.638), 0.996 94.9%

60 (0.883, 0.820, 0.638), 0.996 94.9%

320 20 (0.881, 0.828, 0.641), 0.997 95.5%

60 (0.881, 0.828, 0.641), 0.997 95.5%

0.802 160 20 (0.882, 0.806, 0.633), 0.995 94.6%

60 (0.882, 0.806, 0.633), 0.995 94.6%

320 20 (0.881, 0.821, 0.637), 0.996 95.4%

60 (0.881, 0.821, 0.637), 0.996 95.4%

0.700 160 20 (0.876, 0.774, 0.625), 0.989 93.6%

60 (0.876, 0.774, 0.625), 0.989 93.6%

320 20 (0.881, 0.800, 0.630), 0.993 94.9%

60 (0.881, 0.800, 0.630), 0.993 94.9%

0.600 160 20 (0.807, 0.705, 0.612), 0.969 90.8%

60 (0.807, 0.705, 0.612), 0.969 90.8%

320 20 (0.851, 0.735, 0.619), 0.978 93.0%

60 (0.851, 0.735, 0.619), 0.978 93.0%

The results in Table 5.3 show that by incorporating an imperfect reference test via

FPLS, we can efficiently extract a composite test with excellent diagnostic accuracy

(cAUC > 0.95) and accordingly achieve outstanding prediction performance (PCC

> 90%). This demonstrates a clear advantage over the FPCA approach, which only

takes into account information about the variability in functional markers and exhibits
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suboptimal prediction performance below 90% (see the last four rows of Table 5.2).

Also, the first one or two AUC estimates are higher, while the third AUC estimates are

lower than those of the FPCA approach. This finding suggests that most information

about the latent disease status is concentrated in the first few FPLS scores, allowing a

parsimonious interpretation of functional markers. Regarding the sensitivity analysis,

we see that decreasing AUC of the imperfect reference test (AUCy) tends to decrease

the cAUC and prediction accuracy as expected. But the aforementioned benefits of

using FPLS basis remain valid even when AUCy is as low as 0.6, suggesting that the

proposed FPLS approach is applicable over a wide range of scientifically reasonable

values of the diagnostic accuracy of the imperfect reference test.

5.5 Application to Renal Study

In this section, we apply the proposed method to the renal study data described in

Section 5.1. A total of 145 patients (75 men [52%], 70 women [48%]; mean age, 58

years; SD, 16 years; range, 18-87 years), that is, 290 kidneys, with suspected renal

obstruction were enrolled in the study. Only 280 kidneys (138 left kidneys and 142

right kidneys) had complete baseline and post-furosemide renogram curve data, and

were randomly divided into a training set and a testing set with sizes 230 and 50,

respectively. Two covariates were considered in our models: gender (binary) and age

(continuous). Furthermore, diagnoses from three nuclear medicine experts were avail-

able on the same kidneys. Each expert rated a kidney on a scale from -1.0 to +1.0.

Scores approaching -1.0 indicate greater confidence in the absence of obstruction, and

scores closer to 1.0 denote greater confidence in the diagnosis of obstruction. The con-

sensus interpretation (expert consensus rating) of the three experts was determined

by majority vote unless there was substantial disagreement and was considered as the

imperfect reference test. The goal of our data analysis is twofold: 1) to evaluate the
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diagnostic accuracy of renogram curves for renal obstruction using training data; and

2) to utilize this information to predict obstruction status of kidneys in the testing

dataset.

Taylor et al. (2008c) noted that hospitals can save time and medical costs required

to perform a furosemide administration if the baseline renogram alone can exclude

renal obstruction in practice. Therefore, we are first interested in assessing the di-

agnostic accuracy of the baseline renogram curve and predicting obstruction status

of a kidney based upon it. The mean function µ(t), eigenvalue λk and FPCA basis

function φk(t) of the baseline renogram curves in the training dataset were estimated

by the procedure described in Section 5.2.3, and the resulting estimates were used

in equation (5.8) to obtain the corresponding univariate FPCA scores ξ̂ik for each

subject. The first two scores ξ̂i = [ξ̂i1, ξ̂i2]
T , which explain 95% of variability in the

data, were then used in the subsequent ROC analysis. Specifically, we ran the EM

algorithm (see Appendix D.1) using the first two FPCA scores and two covariates

(age and gender), obtained the MLEs, and computed the corresponding AUCs and

their 95% CIs.

Figure 5.2: Three plots related to the ROC and predictive analyses of the first two
FPCA scores extracted from the baseline renogram curves: (a) the first two estimated
FPCA basis functions; (b) the fitted mean curves by obstruction status; and (c) the
predictive probabilities of renal obstruction cross-tabulated against the corresponding
expert consensus ratings.
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Table 5.4: Estimated conditional means (µ̂1k, µ̂0k), AUCs and combined AUC (and
their 95% CIs) of the first two: (1) FPCA scores extracted from baseline renogram
curves; (2) FPLS scores extracted from baseline renogram curves using expert consen-
sus ratings; and (3) MFPCA scores extracted from both baseline and post-furosemide
renogram curves.

95% CI of

Renogram Method Score (µ̂1k, µ̂0k) AUC AUC

Baseline FPCA ξ̂1 (7.61,−5.39) AUC1 = 0.925 [0.813, 0.972]

ξ̂2 (2.73,−1.93) AUC2 = 0.832 [0.772, 0.878]

0.37ξ̂1 + 0.63ξ̂2 – cAUC = 0.997 [0.991, 0.999]

Baseline FPLS ν̂1 (8.07,−5.75) AUC1 = 0.960 [0.881, 0.987]

ν̂2 (2.34,−1.67) AUC2 = 0.779 [0.690, 0.849]

0.40ν̂1 + 0.49ν̂2 – cAUC = 0.997 [0.991, 0.999]

Both MFPCA γ̂1 (34.09,−25.44) AUC1 = 0.924 [0.815, 0.971]

γ̂2 (2.87,−2.13) AUC1 = 0.672 [0.544, 0.779]

0.05γ̂1 + 0.11γ̂2 – cAUC = 0.965 [0.926, 0.984]

Each of the first two FPCA basis functions (φ̂1, φ̂2) shown in the first figure of

Figure 5.2 represents a particular changing pattern, and the corresponding FPCA

score ξ̂ik (k = 1, 2) describes how strongly the baseline renogram curve from subject

i follow this pattern. The AUC of respective FPCA scores, that is, the diagnostic

accuracy of respective changing patterns of the baseline renogram curve, is presented

in Table 5.4. We see that the first FPCA score has excellent AUC (AUC1 = 0.925, 95%

CI = [0.813, 0.972]) with larger mean for the obstructed (µ̂11 = 7.61 vs. µ̂01 = −5.39),

suggesting that a relatively low MAG3 count during the first five minutes of the scan,

followed by its high and increasing trend in the later period, is highly predictive of

renal obstruction. The second FPCA score, which has good AUC (AUC2 = 0.832,

95% CI = [0.772, 0.878]) with larger mean for the obstructed (µ̂11 = 2.73 vs. µ̂01 =

−1.93), provides a similar story. The only difference is in the prolonged period (first

13–15 minutes) of relatively low MAG3 counts being predictive of renal obstruction.

To better understand how these two changing patterns characterize the base-



147

line renogram curve by obstruction status, we plotted the ”fitted mean curve” for

each obstructed and unobstructed kidney, that is, X̂obs(t) = µ̂11φ̂1(t) + µ̂12φ̂2(t) and

X̂un(t) = µ̂01φ̂1(t) + µ̂02φ̂2(t), respectively. The second figure of Figure 5.2 presents

the fitted mean curves given each obstruction status. We see that the curve for the

obstructed kidney gradually increases over the entire scan period. On the other hand,

the curve for the nonobstructed kidney is characterized by a quick uptake of MAG3

followed by its slow drainage over time. This coincides with known knowledge about

renography interpretations (compare with the curve patterns in the left panel of Fig-

ure 5.1) and is a clear evidence that our proposed framework can extract changing

patterns of baseline renogram curves related to the obstruction mechanism.

The optimal composite test performs the best compared to the individual scores

(cAUC = 0.997; 95% CI = [0.991, 0.999]), and can be used to predict the obstruction

status of the kidneys in the testing dataset. We first assigned the FPCA scores

ξ̂new = [ξ̂new,1, ξ̂new,2]
T for each testing kidney using formula (5.15) and derived the

composite score âξ̂new using the optimal weight â = [0.36, 0.63]T estimated from the

training dataset. Then, the corresponding predictive probability of obstruction was

computed by formula (5.16).

It is not straightforward to evaluate the performance of the proposed prediction

method on the testing dataset due to the fact that the true obstruction status (gold

standard) is unknown. As an alternative, we cross-tabulated the predictive proba-

bilities against the expert consensus ratings, and the resulting plot is shown in the

third figure of Figure 5.2. We can see that the predicted obstruction status generally

agrees well with the expert ratings; that is, kidneys with higher expert ratings tend

to have higher predictive probabilities. However, there are handful of kidneys who

have negative expert ratings but are predicted to be obstructed (predictive probability

greater than 0.5), because their baseline renogram curves are close in shape to that

of obstructed kidneys. This is mostly due to the fact that experts have also taken
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into account their post-furosemide renogram curves to diagnose renal obstruction as

their baseline renogram alone could not exclude the disease.

Figure 5.3: Three plots related to the ROC and predictive analyses of the first two
FPLS scores extracted from the baseline renogram curves: (a) the first two estimated
FPLS basis functions; (b) the fitted mean curves by obstruction status; and (c) the
predictive probabilities of renal obstruction in the testing dataset cross-tabulated
against the corresponding expert consensus ratings.
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To better extract features of the baseline renogram curve that are relevant to

predicting renal obstruction, a FPLS approach using expert consensus ratings as an

imperfect reference test was applied to the training dataset. Specifically, we consid-

ered a functional linear model (5.17) with expert consensus as the response variable

and baseline renogram curve as the explanatory function and ran the iterative al-

gorithm presented in Appendix D.3 to extract the FPLS basis functions and the

corresponding FPLS scores.

The first two FPLS basis functions, ρ̂1(t) and ρ̂2(t), are presented in the first

figure of Figure 5.3, and the resulting conditional mean and AUC estimates of the

first two FPLS scores are reported in Table 5.4. The changing patterns of the first

two FPLS scores are similar to those of the first two FPCA functions discussed above.

Accordingly, the AUC estimates of the first two FPLS scores (AUC2 = 0.960, 95%

CI = [0.872, 0.988]; AUC1 = 0.780, 95% CI = [0.641, 0.876]) are close to those of the

first two FPCA scores, though the information about the obstruction status is more
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concentrated in the first FPLS component. This illustrates that the FPLS approach

can capture relevant information with fewer terms, thus allowing a parsimonious

interpretation of functional markers. The fitted mean curves are consistent with the

typical patterns of obstructed and unobstructed kidneys (see the second figure of

Figure 5.3). The predictive probability of obstruction based on the composite FPLS

test (cAUC = 0.997, 95% CI = [0.993, 0.999]) was obtained for each testing kidney

and is plotted against the expert consensus ratings in the third figure of Figure 5.3.

Figure 5.4: Plots related to the ROC analysis of the first two MFPCA scores jointly
extracted from the baseline and post-furosemide renogram curves. First row: the
first two estimated MFPCA basis functions; Second row: the fitted mean curves by
obstruction status.
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In practice, a baseline renogram curve often alone cannot exclude renal obstruc-

tion, requiring a joint analysis of both baseline and post-furosemide renogram curves

for accurate diagnosis. We thus treated the renogram data as multivariate functional

markers X(t), where the baseline and post-furosemide renogram curves constitute the

first element X(1) and second element X(2), respectively. Then, MFPCA was used

to extract the covarying patterns of both renogram curves potentially relevant for

diagnosing renal obstruction. Specifically, we obtained the estimated MFPCA basis

functions ψ̂k = [ψ̂
(1)
k , ψ̂

(2)
k ]T and scores γ̂i = [γ̂i1, γ̂i2]

T for each training kidney based

on the univariate FPCA expansion of each of the renogram curves. We then selected

the first two components that explain 98% of variability in the data. The first two

MFPCA basis functions are shown in the first row of Figure 5.4, and the AUC esti-

mates of the corresponding MFPCA scores are listed in Table 5.4. We can see that

the first MFPCA score has excellent diagnostic accuracy (AUC1 = 0.924, 95% CI =

[0.815, 0.971]) with larger mean for the obstructed (µ̂11 = 34.09 vs. µ̂01 = −25.44).

This implies that the following changing pattern of each of the renogram curves is

highly predictive of renal obstruction: 1) a relatively low MAG3 count during the

first ten minutes of the baseline renogram, followed by its high and increasing trend

in the later period; and 2) an elevated MAG3 count over the entire period of the

post-furosemide renogram.

We further plotted the fitted mean curves of the baseline and post-furosemide

renogram curves given each obstruction status, X̂obs(t) = µ̂11ψ̂1(t) + µ̂12ψ̂2(t) and

X̂un(t) = µ̂21ψ̂1(t) + µ̂22ψ̂2(t), to better understand how their changing patterns

jointly characterize obstructed and unobstructed kidneys (see the second row of Figure

5.4). The fitted mean curves of the baseline renogram closely resemble those of the

univariate approaches (FPCA and FPLS). For the post-furosemide renogram, we

see that the fitted mean curve of obstructed kidneys maintains a consistently high

level; this perfectly agrees with medical knowledge about renal obstruction such that
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obstructed kidneys suffer from improper drainage for a prolonged period of time

(compare with the curve patterns in the right panel of Figure 5.1).
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Figure 5.5: The predictive probabilities of renal obstruction in the testing dataset
based on the first two MFPCA scores. They are cross-tabulated against the corre-
sponding expert consensus ratings.

To predict obstruction status of testing kidneys by using information from both

baseline and post-furosemide renogram curves, we considered an optimal compos-

ite test based on combination of the first two MFPCA scores with weights â =

[0.05, 0.11]T . The use of this composite test is justified by the fact that it has excel-



152

lent discriminative ability (cAUC = 0.965, 95% CI = [0.926, 0.984]) in the training

dataset. The predictive probability of disease for each testing kidney was computed

based on the newly derived composite score âγ̂new and two covariate values. In the

absence of a gold standard, the predictive probabilities were cross-tabulated against

the corresponding expert consensus for evaluation, and the resulting plot is shown in

the third row of Figure 5.5. We can see that the predictive probabilities agree bet-

ter with the expert consensus compared to the univariate approaches. Specifically,

the predictive probabilites of kidneys that were in the upper-left corner (low expert

rating but high predictive probability) in the previous analyses are now closer to 0,

suggesting that the MFPCA approach overcomes the uncertainty in diagnosis posed

by inconclusive baseline renogram curves and provides a firm basis for closely repli-

cating experts’ opinions in practice by incorporating both renograms for prediction.

5.6 Discussion

In this Chapter, we focused on the dynamic, interpretative changing patterns of func-

tional markers that are potentially useful for understanding the disease progression

and develop a statistical framework for rigorously evaluating their diagnostic and

prognostic utility without a gold standard. Specifically, we employed a FPCA ap-

proach to capture several changing patterns of functional markers in a systematic

and parsimonious manner. For multivariate functional marker data, we proposed to

utilize a MFPCA approach to characterize their joint changing patterns. Once the

changing patterns are extracted, ROC analysis can be performed based on a multi-

variate latent binormal model in which the unknown true disease status is treated

as a latent variable. We further extended the framework to allow prediction of a

new subject’s disease status based on an optimal composite test. If results from an

imperfect reference test are available, we proposed utilizing a FLPS approach to ex-
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ploit this information and achieve superior prediction performance compared to the

FPCA approach. The ROC performance metrics can be estimated via EM algorithm,

and their standard errors are can be computed based on the observed information

matrix.
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Chapter 6

Future Research
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In Chapter 2, we have introduced a set of indices (ODI, OCP and RAUOCPC)

that quantifies agreement among multiple raters by expressing the distance (RM-

SPD) among their clinical measurements. In future work, we plan to develop a

semi-parametric method to describe the distribution of the distance over time and

the influence of covariates on this distribution. Specifically, let Yi1t and Yi2t denote

measurements of the ith subject (i = 1, . . . , n) at time t (t = 1, . . . , Ti) from two

raters. For a given time t, the distance between the paired measurements can be

characterized by the absolute error Dit = |Yi1t − Yi2t|, which reflects the error of one

rater with respect to the other. Using this characterization, Lin (2000) proposed

to quantify agreement between the two methods using TDI, which is defined as the

solution to τ = P (Dit < TDIτ ) given 0 < τ < 1. The smaller the TDIτ value, the

better the agreement between the two methods. An appealing feature of TDI is its

interpretation tied to the original measurement unit.

The extension of TDI to a longitudinal study has not been done and will be

the focus of future research. We will propose to longitudinally model the TDI with

respect to baseline (e.g., gender, weight, site, etc.) and time-dependent covariates

(e.g, patients CD4 count over time). Define the conditional TDIτ given xit at time t

as TDIτ (t | xit) = inf{d : P (Dit ≤ d | xit) ≥ τ}. We will consider a semi-parametric

marginal regression model

TDIτ (t | xit) = xTitβτ , (6.1)

where βτ is a vector of unknown regression coefficients (function of τ) that allows

inhomogeneous covariate effects on TDI across different τ values. The model (6.1)

marginally specifies the relationship between TDIτ and covariates at time t. A positive

coefficient indicates that an increase in a corresponding covariate impairs agreement.
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We will estimate βτ by solving a system of estimating equations of the kind

n−1
n∑
i=1

Ti∑
t=1

xit(τ − I(Dit − xTitβτ ≤ 0)) = 0, (6.2)

which assumes the working independent correlation matrix but yields consistent esti-

mates (He et al., 2003, Yin and Cai, 2005). We can extend (6.2) to explicitly account

for correlation to enhance efficiency (Jung, 1996, Tang and Leng, 2011, Leng and

Zang, 2014). We will use bootstrap procedures to make inference; for example, we

can generate a bootstrap by randomly selecting n subjects with replacement.

In Chapter 3, we have developed a statistical framework based on BSA to study

alignment between various quantitative features of a functional marker and an ordi-

nal gold standard test. It is possible that variations of BSA exist among different

subpopulations of subjects, and our framework can be extended in several ways to

adjust for covariates that characterize these subpopulations. Suppose we are inter-

ested in examining whether the BSA values are the same over two covariate levels

(strata), say males and females. Then given a chosen summary functional, the null

hypothesis H0 : ρbsa,M = ρbsa,F (BSA measures for males and females, respectively)

can be tested based on the procedure described in Section 3.4. That is, one can use a

Wald-type test statistic (3.8) based on the two BSA estimates computed for the two

gender groups. Recently, Rahman et al. (2017) proposed a non-parametric regression

framework that enables a further investigation into population heterogeneity in BSA

by allowing nonlinear covariate effects. The nonparametric regression approach for

BSA can be extended to evaluate the potential variations in the alignment between

a functional marker and an ordinal scale according to a continuous covariate.

In practical situations, predicting ordinal response using quantitative features of

a functional marker may be of great interest. We expect that fitting a generalized lin-

ear model with ordinal measurements as response and summary functionals with high
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BSA values as predictors provides a basic framework for prediction, provided vari-

able selection and multicollinearity are addressed appropriately. Future work needed

in this direction includes extending our framework to select candidate quantitative

features in a purely data-driven manner as well as further investigating the possibil-

ity of combining multiple summary functionals to reduce dimension and maximize

prediction performance.

In Chapter 4, we have proposed a statistical framework for evaluating the diag-

nostic accuracy of quantitative features using AUC and describing its heterogeneity

among different subpopulations. The proposed framework assumes an existence of

already widely-used quantitative features or those that are newly chosen based on a

priori scientific information. But this is not always the case in some studies, espe-

cially for those that involve recently introduced devices. Future work thus includes

extending the proposed framework to select candidate quantitative features in a purely

data-driven manner using modern analytic methods, e.g., tree-based methods. In the

long term, we plan to derive an empirical summary functional form that produces

maximum AUC given any functional marker data.

Our framework can be extended to evaluate features from a 2D image marker,

which is a generalization of a 1D functional marker considered in our work. For in-

stance, radiomics is an emerging field which seeks to take full advantage of all the

information contained in multiple medical imaging modalities (Florez et al., 2018).

Several quantitative features are derived to identify important regions of interest and

discriminate normal healthy pattern from abnormal pattern: run length, intensity,

distance zone entropy, coarseness, gray-level variance and many more. The main

challenges are to identify a sensible smoothing method that allows accurate and ef-

ficient estimation of these features from observed pixel-wise data and to formulate

a generalized summary functional concept that projects images not only to a real

number space but also to a space of arrays and vectors.
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Appendix A

A.1 Derivation of quadratic form (2.5)

In this section, we derive the quadratic form the extended measure of distance Dk in

terms of distinct pairwise differences X. Firstly, consider

∑
1≤p≤q≤k

(Yp−Yq)2 =
∑

q=2,...,k

(Y1−Yq)2 +
∑

q=3,...,k

(Y3−Yq)2 + ...+
∑
q=k

(Yk−1−Yq)2. (A.1)

Also, define a (k−1)×(k−1) matrix Ms with (m,n)th element given as: {Ms}mn = 0 if

min(m,n) < s−1, and {Ms}mn = k−max(m,n) otherwise. Then, we can express the

first and second terms on the right-hand side of equation (A.1) as
∑

1≤p≤q≤k
(Yp−Yq)2 =

XTM1X and
∑

q=3,...,k

(Y2 − Yq)
2 = XTM2X, respectively. Repeat such computa-

tion till the last term on the right-hand side of equation (A.1). Then add the

results to re-express the left-hand side of equation (A.1) as
∑

1≤p<q≤k
(Yp − Yq)

2 =

XT(
∑

s=1,...,k−1
Ms)X, where (m,n)th element of the matrix

∑
s=1,...,k−1

Ms can be de-

rived as: {
∑

s=1,...,k−1
Ms}m,n = m(k−n) if 1 ≤ m ≤ n ≤ k−1, and {

∑
s=1,...,k−1

Ms}m,n =

n(k−m) if 1 ≤ n < m ≤ k− 1. By applying some basic linear algebra, we find that∑
s=1,...,k−1

Ms = adj(AAT), where adj(AAT) denotes the adjugate matrix of AAT.
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Consequently, we can derive quadratic form (2.5) as

∑
1≤p<q≤k

(Yp − Yq)2 = XTadj(AAT)X =⇒ XT(AAT)−1X =

∑
1≤p<q≤k

(Yp − Yq)2

k

=⇒ XT
{ 2

k − 1
(AAT)−1

}
X = D2

k,

by noting that det(AAT) = k and (AAT)−1 = adj(AAT)/det(AAT).

A.2 Steps for two-sample hypothesis testing

Step 1: Denote X
(1)
obs as observations from a first group of raters and X

(2)
obs as observations

from a second group of raters. Take B bootstrap samples from the observed

data matrix X
(1)
obs and X

(2)
obs at the subject level with replacement, respectively.

Step 2: Compute g(θ̂
(1)(b)
k ) and g(θ̂

(2)(b)
k ) for each bootstrap sample X

(1)(b)
obs and X

(2)(b)
obs ,

respectively, b = 1, 2, ..., B.

Step 3: Compute B differences g(θ̂
(D)(b)
k ) = g(θ̂

(1)(b)
k )− g(θ̂

(2)(b)
k ), b = 1, 2, ..., B

Step 4: Compute the standard deviation of B differences between the two ODI esti-

mates, which gives a bootstrap estimate of the standard error:

ŜEB{g(θ̂
(D)(b)
k )} =

[
1

B

B∑
b=1

{
g(θ̂

(D)(b)
k )− g(θ̂

(D)(b)
k )B

}2]1/2
, (A.2)

where g(θ̂
(D)(b)
k )B = 1

B

B∑
b=1

g(θ̂
(D)(b)
k ).

Step 5: Given type I error rate of α and bootstrap standard error estimate (A.2), reject

the null hypothesis if ∣∣∣∣∣ g(θ̂
(D)
k )

ŜEB{g(θ̂
(D)
k )}

∣∣∣∣∣ ≥ z1−α/2,
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and conclude that degrees of agreement are not equal between two groups of

raters.
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Appendix B

B.1 Proof of Theorem 3.2.1

We adopt the notation provided by Peng et al. (2011). Let ZNi = (φNi(Wi), Yi) and

Ωn,K = {(s1, . . . , sK) : 1 ≤ sk ≤ n, s1, . . . , sK are distinct}. For (m1, . . . ,mK) ∈

Ωn,K , define

ψ(ZNm1 , . . . , ZNmK ) = I{(Ym1 , . . . , YmK ) ∈ ΘK}

×
K∑
p=1

[
Ymp −

K∑
q=1

I{φNmp (Wmp) ≥ φNmq (Wmq)}
]2
.

Denote pk = Pr(Y = k) for k = 1, . . . , K, CK = (K3 −K)/6 and γK = 1/(CK ·

K!). Define h(ZNm1 , . . . , ZNmK ) = 1 − ψ(ZNm1 , . . . , ZNmK )γK(
∏K

k=1 pk)
−1, h1(zN1)

= E{h(zN1, ZN2, . . . , ZNK)} and h̃1(zN1) = h1(zN1)− ρbsa(φN(W ), Y ).

Furthermore, let

DNpq = φN(W(∗p))− φN(W(∗q)) and Dpq = φ(X(∗p))− φ(X(∗q)),

for p, q = 1, . . . , K and p 6= q. Then it has been shown that the true BSA measures

with respect to ρbsa(φN(W ), Y ) and ρbsa(φ(X), Y ) can be written as (Dai et al., 2015):

ρbsa(φN(W ), Y ) =

2
K−1∑
q=1

K∑
p=q+1

(p− q)Pr(DNpq > 0)

CK
− 1 (B.1)
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and

ρbsa(φ(X), Y ) =

2
K−1∑
q=1

K∑
p=q+1

(p− q)Pr(Dpq > 0)

CK
− 1, (B.2)

respectively.

The regularity conditions include:

(A1) pk > 0 for k = 1, . . . , K;

(A2) Var{h1(ZN1)} > 0;

(A3) 0 is the continuity point for the distribution function of Dpq;

(A4) E|h̃1(ZN1)|3 <∞;

We first prove the consistency of the proposed estimator by considering two sep-

arate parts:

ρ̂bsa(φN(W ), Y )− ρbsa(φ(X), Y )

= ρ̂bsa(φN(W ), Y )− ρbsa(φN(W ), Y ) + ρbsa(φN(W ), Y )− ρbsa(φ(X), Y ) = T1 + T2

(B.3)

Firstly, by assuming conditions A1 and A2, and regarding φN(W ) as a continuous

random variable for fixed Ni values, it follows from the proof of Theorem 1 in Peng

et al. (2011) that T1 → 0 as n→∞. Secondly, φN(W(∗p))
d→ φ(X(∗p)) (provided that

PN → 0 as n → ∞), implies [φN(W(∗p)), φN(W(∗q))]
T d→ [φ(X(∗p)), φ(X(∗q))]

T (since

φN(W(∗p)) and φN(W(∗q)) are independent), which in turn implies that DNpq
d→ Dpq

by the continuous mapping theorem. Then, under condition A3, we obtain by (B.1)

and (B.2) that

T2 =
2

CK

K−1∑
q=1

K∑
p=q+1

(p− q)
{
Pr(DNpq > 0)− Pr(Dpq > 0)

}
→ 0, as n→∞.

Therefore, ρ̂bsa(φN(W ), Y ) is a consistent estimator for ρbsa(φ(X), Y ).

Now we prove the asymptotic normality of the proposed estimator. Consider the
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decomposition:

√
n
∣∣ρ̂bsa(φN(W ), Y )− ρbsa(φ(X), Y )

∣∣ =
√
nT1 +

√
nT2,

where T1 and T2 are defined as in (B.3). Under conditions A1 and A2, by applying

the projection method of the U-statistic (Shao, 2003) and some standard asymptotic

arguments, it can be shown as for the proof of Theorem 2 in Peng et al. (2011) that

T1 =
1

n

n∑
i=1

ξNi + o(n−1/2),

where

ξNi = Kh̃1(ZNi)− E{ψ(ZN1, . . . , ZNK)} ×

K∑
k=1

γK ·
( ∏
1≤j≤K,j 6=k

pj
)
· {I(Yi = k)− pk}

( K∏
k=1

pk
)2 ,

given fixed Ni values. Furthermore, under condition A4, it is straightforward to infer

that E|ξNi|3 < ∞. Then, noting that ξN1, . . . , ξNn are independent, we can invoke

the Liapounov’s Central Limit Theorem to obtain (Greene, 2011):

√
nT1

d−→ N(0, σ2
bsa),

where σ2
bsa = limn→∞ n

−1
n∑
i=1

E(ξ2Ni).

To complete the proof, it now suffices to show that
√
nT2 → 0 as n → ∞ and

invoke the Slutsky’s theorem. Suppose supi |φNi(Wi)− φ(Xi)| ≤ P ∗N with probability

1 for some P ∗N ≤ Op(PN). Furthermore, let D be the support of Dpq and f be the
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density function of Dpq such that |f(x)| ≤M, ∀x ∈ D for some 0 ≤M <∞. Then,

Pr(DNpq > 0) = Pr{φN(W(∗p)) > φN(W(∗q))}

≤ Pr{P ∗N − φ(X(∗q)) > −P ∗N − φ(X(∗p))}

= Pr(Dpq > −2P ∗N).

This implies that

|Pr(DNpq > 0)− Pr(Dpq > 0)| ≤ |Pr(Dpq > −2P ∗N)− Pr(Dpq > 0)|

=
∣∣∣ ∫ ∞
−2P ∗N

f(u)du−
∫ ∞
0

f(u)du
∣∣∣

≤M · 2P ∗N ≤ Op(PN),

for some 0 ≤ M < ∞. Therefore, provided that
√
nPN → 0 as n → ∞, we can

establish by (B.1) and (B.2) that

√
nT2 =

2
√
n

CK

K−1∑
q=1

K∑
p=q+1

(p− q)
{
P (DNpq > 0)− P (Dpq > 0)

}
≤M∗ ·

√
n · Op(PN) −→ 0, as n→∞,

where M∗ is some constant such that 0 ≤M∗ <∞.

B.2 Specification of Kernel Function

Kernel function Kν of order (ν, ω) is defined as a Lipschitz continuous function char-

acterized by vanishing (ω − 2) moments (Gasser and Müller, 1984, Müller, 1984,
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1985):

∫
Kν(u)uqdu =


0, 0 ≤ q ≤ ω − 1, q 6= ν,

(−1)νν!, q = ν,

C, q = ω,

where C =
∫
Kν(u)uωdu 6= 0. If ω = ν + 2, Kν is called a standard kernel function;

if ω > ν + 2, Kν is called a higher-order kernel (Beran et al., 2013).

B.3 Consistency of the estimators for the three

special-case summary functionals

The following theorem establishes the consistency of the estimators for the three

special-case summary functionals discussed in Section 3.3.

Theorem B.3.1. Suppose that φ(Xi) (i = 1, . . . , n) is one of AUC-type, magnitude-

or time-specific functionals, and φNi(Wi) is its estimator defined in Section 3.3. Then,

under the conditions B1 and B2, if the regularity conditions C1-C2, C3-C4 and C5-

C6 hold for AUC-type functionals, magnitude-specific functionals and time-specific

functionals, respectively, we have |φNi(Wi)− φ(Xi)| = Op(βθNi), where 0 < θ ≤ 1 and

βNi (defined below) is a function of bandwidth bNi that approaches zero as Ni → ∞

for a suitable choice of bNi.

This theorem implies that each estimator for three special formulations of sum-

mary functionals is consistent; that is, φNi(Wi) satisfies the condition in Theorem

3.2.1 by setting supi β
θ
Ni

= PN .

The first step of the proof of this theorem is to establish the consistency of the

Gasser-Müller kernel estimators. Assume the following preliminary conditions.

(B1) E|ε1|r <∞ for some r > 2;

(B2) lim inf
Ni→∞

Nib
k
Ni
> 0, lim inf

Ni→∞
N

1−2/r
i bNi(logNi)

−1 > 0.
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Let βNi = bω−νNi
+ {(logNi)/(Nib

2ν+1
Ni

)}1/2. Then, it follows from Lemma 2.2 of Müller

(1985) that

sup
t∈[0,1]

|Ŵ [ν]
i (t)−X(ν)

i (t)| = O(βNi) a.s.. (B.4)

If the bandwidth is chosen as bNi = O{(log Ni/Ni)
1/(2ω+1)}, we can establish that

βNi = (log Ni/Ni)
(ω−ν)/(2ω+1), which goes to zero as Ni →∞.

Based on this result, we prove that each of the estimators for the three special

cases of summary functionals is consistent in the following subsections. For the sake

of simplicity, we will drop the index i throughout the proof.

B.3.1 AUC-type functionals

Consider the collection P of partitions of the time interval [0, 1], that is, P consists

of a finite sequence of output design points of the form 0 = t1 < t2 < · · · < tN = 1.

Then the total variation of any realization ŵ[ν] of Ŵ [ν] is given by

TV (ŵ(ν)) = sup
{N−1∑
j=1

|ŵ[ν](tj+1)− ŵ[ν](tj)| : (t1, t2, . . . , tN) ∈ P
}
.

Provided that TV (ŵ[ν]) is finite, it has been shown that (Hua and Wang, 1981)

∣∣∣ ∫ 1

0

ŵ[ν](t)dt−
N−1∑
j=1

ŵ[ν](tj)(tj+1 − tj)
∣∣∣ < TV (ŵ[ν]) max

0≤j≤N−1
|tj+1 − tj|. (B.5)

Now let G denote the space consisting of the Gasser-Müller kernel-based estimators

Ŵ (ν) and assume the following regularity conditions:

(C1) sup
ŵ[ν]∈G

TV (ŵ[ν]) = Op(1);

(C2) max
0≤j≤N−1

|tj+1 − tj| = O(1/N).
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Then, by conditions C1 and C2, and using (B.4) and (B.5), it follows that

∣∣φ[ν]
N,AUC(W )− φ[ν]

AUC(X)
∣∣ =

∣∣∣N−1∑
j=1

Ŵ [ν](tj)(tj+1 − tj)−
1∫

0

X(ν)(t)dt
∣∣∣

<
∣∣∣N−1∑
j=1

Ŵ [ν](tj)(tj+1 − tj)−
1∫

0

Ŵ [ν](t)dt
∣∣∣

+
∣∣∣ 1∫
0

Ŵ [ν](t)dt−
1∫

0

X(ν)(t)dt
∣∣∣

< TV (ŵ[ν]) max
0≤j≤N−1

|tj+1 − tj|+Op(βN)

= Op
( 1

N

)
+Op(βN).

B.3.2 Magnitude-specific functionals

For a general magnitude-specific summary functional, it is obvious to see that

|φ[ν]
N,MAG(t∗)(W )− φ[ν]

MAG(t∗)(X)| = Op(βN) for a given time point t∗ ∈ [0, 1] by (B.4).

We now turn to establishing the consistency of φ
[ν]
N,MAX(W ). Let tmax and t̂max

denote the times at which the maximum values are achieved by X(ν) and Ŵ [ν], re-

spectively. Then, under the following conditions

(C3) ∃ a and b (0 < a < tMAX < b < 1) such that X(ν) is monotonously increasing on

[a, tMAX] and monotonously decreasing on [tMAX, b],

(C4) ∃ c > 0 and θ ≤ 1 such that |X(ν)(t)−X(ν)(tmax)| > c|t− tmax|θ,

it follows from Lemma 2.2 of Müller (1985) that |φ[ν]
N,MAX(W )− φ[ν]

MAX(X)| =

|Ŵ [ν](t̂max)−X(ν)(tmax)| = Op(βN) given that X(ν) has a unique maximum. On the

other hand, assuming that X(ν) is monotonously decreasing (increasing) on [a, tMAX]

([tMAX, b]) and |X(ν)(t) − X(ν)(tmin)| > c|t − tmin|θ in place of condition C3 and

C4, respectively, a similar proof establishes |φ[ν]
N,MIN(W ) − φ[ν]

MIN(X)| = |Ŵ [ν](t̂min) −

X(ν)(tmin)| = Op(βN) given that X(ν) has a unique minimum.
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B.3.3 Time-specific functionals

Firstly, under conditions C3 and C4, it follows from Lemma 2.3 of that Müller (1985)

|φ[ν]
N,tMAX(W )− φ[ν]

tMAX(X)| = Op(βθN) and |φ[ν]
N,tMIN(W )− φ[ν]

tMIN(X)| = Op(βθN).

We now turn to establishing the consistency of a general time-specific summary

functional φ
(ν)
N,TIME(η)(W ). Let tη and t̂η denote the times at which X(ν) and Ŵ [ν]

attain a threshold value η, respectively. Similar to the conditions outlined in Lemmas

2.3 and 2.4 of Müller (1985), we assume:

(C5) ∃ a and b (0 < a < tη < b < 1) such that X(ν) is strictly monotonous on [a, b];

(C6) ∃ c > 0 and θ ≤ 1 such that |X(ν)(t)−X(ν)(tη)| > c|t− tη|θ.

Given that η is a unique threshold value that X(ν) attains, we can always find δ > 0

such that |X(ν)(tη)−X(ν)(u)| > δ a.s. for u /∈ [a, b]. For sufficiently large N , we have

cβN < δ and thus

|X(ν)(tη)−X(ν)(t̂η)| = |X(ν)(tη)− Ŵ [ν](t̂η) + Ŵ [ν](t̂η)−X(ν)(t̂η)|

≤ |X(ν)(tη)− Ŵ [ν](t̂η)|+ |Ŵ [ν](t̂η)−X(ν)(t̂η)|

< |η − η|+ δ

= δ a.s.,

which implies that t̂η ∈ [a, b] a.s. With out loss of generality, assume Ŵ [ν](t̂η) −

Ŵ [ν](tη) ≥ 0. Then, it follows that

|t̂η − tη|θ < c−1|X(ν)(tη)−X(ν)(t̂η)|

≤ c−1|Ŵ [ν](t̂η)− Ŵ [ν](tη) +X(ν)(tη)−X(ν)(t̂η)|

≤ c−1|Ŵ [ν](t̂η)−X(ν)(t̂η)|+ |X(ν)(tη)− Ŵ [ν](tη)|

= Op(βN).

Therefore, |φ[ν]
N,TIME(η)(W )− φ[ν]

TIME(η)(X)| = Op(βθN).
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B.4 Additional Simulations

B.4.1 Evaluation of the proposed hypothesis testing proce-

dure

We examined the empirical rejection rates of the hypothesis testing procedure pre-

sented in Section 3.4. Firstly, consider testing the null H0: ρbsa(φAUC,1(X), Y )

= ρbsa(φAUC,2(X), Y ), where φAUC,1(X) and φAUC,2(X) are based on the sub-time

intervals T1 = [0, 0.5] and T2 = [0.5, 1], respectively. Data are generated under

the first two scenarios presented in Section 3.5. The empirical rejection rates in

scenario 1 represent the empirical sizes of the test as the two true BSA measures

based on the respective sub-time intervals are equal, that is, ρbsa(φAUC,1(X), Y )

= ρbsa(φAUC,2(X), Y ) = 0.690. On the other hand, the empirical rejection rates

in scenario 2 correspond to the empirical power of the test as the BSA increase over

time, that is, ρbsa(φAUC,1(X), Y ) = 0.212 and ρbsa(φAUC,2(X), Y ) = 0.566.

We further consider a hypothesis test that involves comparing BSA measures

that arise from two different types of summary functionals. Specifically, the null hy-

pothesis H0: ρbsa(φAUC(X), Y ) = ρbsa(φMAG( 1
4
)(X), Y ) is tested using data generated

under scenario 2; that is, the empirical power of the test that compares between

ρbsa(φAUC(X), Y ) = 0.425 and = ρbsa(φMAG( 1
4
)(X), Y ) = 0.208 is assessed.

Data are generated under the five study designs (a) – (e) used in Section 3.5 to

simulate varying density of time points. We adopt the same measurement error model

and smoothing technique that are used in Section 3.5. The empirical rejection rates

are calculated as the proportion of 1000 simulated data sets of size n = 40 and 60 for

which the null hypothesis is rejected with significance α = 0.05.

Empirical rejection rates for respective null hypotheses (H0) reported in Table B.1

demonstrate satisfactory performance of the proposed hypothesis testing procedure.

In scenario 1, the empirical rejection rates rapidly approach the nominal level of 0.05
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Table B.1: Simulation results on empirical rejection rates of the proposed hypothesis
testing procedure.N denotes the five study designs: (a) unbalanced design with Ni

following a Poisson distribution with mean 20; (b) unbalanced design with Ni fol-
lowing a Poisson distribution with mean 40; (c) balanced design with Ni = 20; (d)
balanced design with Ni = 40; and (e) balanced design with Ni = 60.

Rejection Rate Rejection Rate

Scenario True Values N (n = 40) (n = 60)

1 ρbsa(φAUC,1(X), Y ) (a) 0.035 0.039

= ρbsa(φAUC,2(X), Y ) (b) 0.043 0.050

= 0.690 (c) 0.042 0.046

(d) 0.031 0.049

(e) 0.034 0.040

2 ρbsa(φAUC,1(X), Y ) = 0.212 (a) 0.868 0.977

vs. (b) 0.856 0.964

ρbsa(φAUC,2(X), Y ) = 0.566 (c) 0.857 0.984

(d) 0.863 0.975

(e) 0.872 0.985

2 ρbsa(φAUC(X), Y ) = 0.425 (a) 0.843 0.980

vs. (b) 0.853 0.978

ρbsa(φMAG( 1
4
)(X), Y ) = 0.208 (c) 0.834 0.976

(d) 0.857 0.985

(e) 0.845 0.986
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as sample size increases. In scenario 2, the empirical power of the test under both

cases appears satisfactory even with relatively small sample size and sparse data.

B.4.2 Finite-sample performance at the first derivative level

of the summary functionals

We conducted further simulation studies to assess the finite-sample performance of

the proposed approaches to evaluate alignment between the summary functionals

based on the first derivatives of functional markers and the corresponding ordinal out-

comes. Following the lines of previous simulation study in Section 3.5, performances

of BSA estimators based on three special cases of summary functionals (AUC-type,

magnitude-specific, and time-specific) were assessed. We first set K = 3 and generate

ordinal outcomes Y from the multinomial distribution with equal probabilities, that

is, Pr(Y = k) = 1/3, k = 1, 2, 3.

Given each Y = k, the true functional markers X are generated over a time

interval T = [0, 1] under five different scenarios depending on the type of a sum-

mary functional to be analyzed. For the AUC-type summary functionals, we gen-

erate X(t) as a Gaussian process with mean functions µ(t) = kt (scenario 1) and

µ(t) = (k/2)t2 (scenario 2). Scenarios 1 and 2 represent a constant and improving

degrees of alignment in terms of the first derivative AUC over the time interval, re-

spectively. Performances based on the magnitude-specific summary functionals are

evaluated using a Gaussian process with mean function µ(t) = −(k/π)cos(πt), whose

unique maximum value 1 is attained at time 1/2 (scenario 3). In all configurations

involving the generation of Gaussian processes (scenarios 1-3), we adopted a common

covariance function Cov(X(s), X(t)) = exp{−(s − t)2}, s, t ∈ T . We consider two

different scenarios for evaluating the finite-sample performance based on the time-

specific summary functionals. In scenario 4, if Y = 1, X(t) = −(2π)−1cos(2πt) with

probability 1; if Y = 2, X(t) = −(0.25π)−1cos(0.25πt) with probability 1; and if
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Y = 3, X(t) = −(0.5π)−1cos(0.5πt) with probability 1. In scenario 5, if Y = 1,

X(t) = −(2π)−1cos(2πt) with probability 1; if Y = 2, X(t) = −(0.66π)−1cos(0.66πt)

with probability 1; and if Y = 3, X(t) = −π−1cos(πt) with probability 1.

Each functional markers are generated with measurement error under the five

study designs (a) – (e) provided in Section 3.5. We obtain the Gasser-Müller ker-

nel estimators of the first derivatives evaluated on 300 output design points using a

polynomial kernel of degree 3 (Müller, 1984) and an automatically adapted global

“plug-in” bandwidth that is asymptotically optimal with respect to the mean inte-

grated square error (MISE) (Gasser et al., 1991). Results presented in Table B.2 are

based on 1000 simulated datasets of size n = 40 and 60.

From Table B.2, we see that the empirical biases maintain a pretty high level

when data are sparse and are generally greater than those obtained in Table 3.1

from Section 3.5. This is partly due to a slower rate of convergence for estimated

summary functionals involving the first derivative of functional markers. Therefore,

we recommend using functional markers collected at least 40 time points to obtain

reliable BSA estimates, especially when magnitude-specific or time-specific summary

functional is considered. Despite slower convergence, we see that empirical biases

eventually approach 0 as the sample size and number of time points increase. Like-

wise, the estimated standard errors and coverage probabilities approach the empirical

standard deviations and nominal level of 95%, respectively, as the sample size and

number of time points increase, suggesting that the proposed estimation and inference

procedures work fairly well at the level of the first derivative of functional markers.
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Appendix C

C.1 Proof of Theorem 4.3.1

For simplicity of notation, let θ = θ(φ), θN = θ(φN), θ̂ = θ̂(φ) and θ̂N = θ̂(φN).

Denote hij = I{φ(XD
i ) > φ(XD

j )}, hNij = I{φNi(WD
i ) > φNj(W

D
j )}, hN11 = E(hNij |

WD
i = wD), hN12 = E(hNij | WD

j = wD), h̃N11 = hN11 − θN , h̃N12 = hN12 − θN ,

hN11i = E(hNij | WD
i ) and hN12j = E(hNij | WD

j ). The regularity conditions include:

(A1) φNi(W
D
i ) (i = 1, . . . , nD) and φNj(W

D
j ) (j = 1, . . . , nD) are iid within groups

and mutually independent between groups, given sufficiently large Ni and Nj

values;

(A2) Ni, Nj → ∞ as n → ∞, that is, Ni = Ni,n and Nj = Nj,n are sequences that

tend to infinity;

(A3) E{|hNij|(log+ |hNij|)} <∞;

(A4) nD/n→ λ as n→∞, where λ ∈ (0, 1);

(A5) 0 < Var(hNij) <∞.

• Proof of consistency

Consider the decomposition:

θ̂N − θ = (θ̂N − θN) + (θN − θ) = T1 + T2 (C.1)
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For sufficiently large fixed Ni and Nj values, θ̂N is a two-sample U-statistic under

condition A1 and is an unbiased estimator of θN . Then by conditions (A1) and (A2)

and the strong law of large numbers for generalized U-statistics (Sen, 1977), we have

T1
a.s.−→ 0 as n→∞.

Secondly, φNi(W
D
i )

d→ φ(XD
i ) and φNj(W

D
j )

d→ φ(XD
j ) for all i and j (provided

that PN → 0 as n → ∞) imply [φNi(W
D
i ), φNj(W

D
j )]T

d→ [φ(XD
i ), φ(XD

j )]T as n →

∞ under conditions (A1) and (A2). Then, by the continuous mapping theorem,

φNi(W
D
i )− φNj(WD

j )
d→ φ(XD

i )− φ(XD
j ) as n→∞, which in turn implies that:

T2 = θN−θ = Pr(φNi(W
D
i ) > φNj(W

D
j ))−Pr(φ(XD

i ) > φ(XD
j )) −→ 0, as n→∞,

given that 0 is a continuity point of the distribution of φ(XD
i ) − φ(XD

j ). Therefore,

(C.1) converges in probability to zero as n → ∞, establishing that θ̂N is consistent

for θ.

• Proof of asymptotic normality

Consider the decomposition:

√
n
(
θ̂N − θ) =

√
nT1 +

√
nT2,

where T1 and T2 are defined as in (C.1). By the method of projection of U-statistics

(Serfling, 1980) and some standard asymptotic arguments, it can be shown, for suffi-

ciently large fixed Ni and Nj values, that

√
nT1 =

√
n

nD

nD∑
i=1

(hN11i − θN) +

√
n

nD

nD∑
j=1

(hN12j − θN) + op(1)

=
( n

nD

) 1√
n

nD∑
i=1

(hN11i − θN) +
( n

nD

) 1√
n

nD∑
j=1

(hN12j − θN).

Then, under conditions (A1), (A4) and (A5), and noting that hN11i and hN12j are
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independent across i and j, respectively, and mutually independent, we have

√
nT1

d−→ N(0, σ2
θ(φ)) as n→∞,

where

σ2
θ(φ) = lim

n→∞

{1

λ
σ2
N10 +

1

1− λ
σ2
N01

}
,

with

σ2
N10 = Cov(hNij, hNil), j 6= l,

σ2
N01 = Cov(hNij, hNlj), i 6= l.

To complete the proof, it now suffices to show that
√
nT2 → 0 as n → ∞

and invoke the Slutsky’s theorem. Suppose supi |φNi(WD
i ) − φ(XD

i )| ≤ P̃D
N and

supj |φNj(WD
j )− φ(XD

j )| ≤ P̃D
N with probability 1 for some P̃D

N , P̃
D
N ≤ Op(PN). Fur-

thermore, let D be the support of φ(XD
i )− φ(XD

j ), and f be the density function of

φ(XD
i )− φ(XD

j ) such that |f(x)| ≤M, ∀x ∈ D for some 0 ≤M <∞. Then,

θN = Pr(φNi(W
D
i )− φNj(WD

j ) > 0)

= Pr{φNi(WD
i )− φ(XD

i )− φ(XD
j ) > φNj(W

D
j )− φ(XD

i )− φ(XD
j )}

≤ Pr{P̃D
N − φ(XD

j ) > −P̃D
N − φ(XD

i )}

= Pr{φ(XD
i )− φ(XD

j ) > −P̃D
N − P̃D

N }

which implies

|θN − θ| ≤ |Pr{φ(XD
i )− φ(XD

j ) > −P̃D
N − P̃D

N } − Pr(φ(XD
i )− φ(XD

j ) > 0)|

=
∣∣∣ ∫ ∞
−P̃DN −P̃

D
N

f(u)du−
∫ ∞
0

f(u)du
∣∣∣

≤M · (P̃D
N + P̃D

N ) ≤ Op(PN).
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Therefore, provided that
√
nPN → 0 as n→∞, we can establish that

√
nT2 → 0 as

n→∞.

C.2 Proof of Theorem 4.4.1

Without loss of generality, consider the estimating equations and estimated estimating

equations of the form:

Sn(β) =

nD∑
i=1

nD∑
j=1

Ψij(Uij − θij) =

nD∑
i=1

nD∑
j=1

Sij(β),

and

SNn(β) =

nD∑
i=1

nD∑
j=1

Ψij(UNij − θij) =

nD∑
i=1

nD∑
j=1

SNij(β),

where Ψij = (∂θij/∂β)Ω−1ij . Let β̂ and β̂N denote the solutions of Sn(β) = 0 and

SNn(β) = 0, respectively. The regularity conditions include:

(B1) For a given φ, [{φ(XD
i ), ZD

i }, i = 1, . . . , nD] and [{φ(XD
j ), ZD

j }, j = 1, . . . , nD]

are iid within groups and mutually independent between groups. The same

assumptions hold for [{φNi(WD
i ), ZD

i }, i = 1, . . . , nD] and [{φNj(WD
j ), ZD

j }, j =

1, . . . , nD] given sufficiently large fixed Ni and Nj values;

(B2) Ni, Nj →∞ as n→∞, i.e., Ni ≡ Ni,n and Nj ≡ Nj,n are sequences that go to

infinity;

(B3) nD/n→ λ as n→∞, where λ ∈ (0, 1);

(B4) The parameter space of β, denoted as Θ, is compact in Rp, and there exist

unique β0 ∈ Θ such that E{Sn(β0)} = 0;

(B5) The matrix E{∂Sij(β0)/∂β
T} is negative-definite;
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(B6) g(·) is monotone increasing and three-times differentiable with bounded deriva-

tives.

(B7) The covariate space is bounded.

(B8) There exists ε > 0 such that Ωij > ε for β ∈ N ≡ Nδ(β0) = {β : ||β−β0|| < δ};

• Preliminary lemmas

We first state lemmas that are used in subsequent proofs.

Lemma C.2.1. 1
nDnD

∂
∂β
Sn(β), 1

nDnD

∂2

∂β∂βT
Sn(β), ∂

∂β
E{ 1

nDnD

∂
∂β
Sn(β)},

1
nDnD

∂
∂β
SNn(β), 1

nDnD

∂2

∂β∂βT
SNn(β) and ∂

∂β
E{ 1

nDnD

∂
∂β
SNn(β)} are uniformly bounded

for β ∈ N .

The uniform boundedness of the six terms follow from (B6)–(B8) (Dodd and Pepe,

2003).

Lemma C.2.2. For fixed β ∈ N , 1
nDnD

Sn(β)− 1
nDnD

SNn(β)
p→ 0 as n→∞.

Proof : Consider the decomposition:

1

nDnD
Sn(β)− 1

nDnD
SNn(β)

=

[
1

nDnD
Sij(β)− E{Sij(β)}

]
+

[
E{SNij(β)} − 1

nDnD
SNn(β)

]
+
[
E{Sij(β)} − E{SNij(β)}

]
= A1 + A2 + A3.
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Firstly, we consider A1 and its decomposition as the following:

A1 =
1

nDnD
Sn(β)− E{Sij(β)}

=

[
1

nDnD
Sn(β)− 1

nD

∑
i

E{Sij(β) | φ(XD
i )}

]

+

[
1

nD

∑
i

E{Sij(β) | φ(XD
i )} − E{Sij(β)}

]

= B1 +B2,

where E{Sij(β) | φ(XD
i )} is a random variable that is independent across i. For B1,

we have:

B1 =
1

nDnD
Sn(β)− 1

nD

∑
i

E{Sij(β) | φ(XD
i )}

=
1

nD

∑
i

[
1

nD

∑
j

Sij(β)− E{Sij(β) | φ(XD
i )}

]
.

Since the terms inside the square bracket [·] are iid across j for fixed i, we can apply

the weak law of large numbers (WLLN) to establish that B1
p→ 0 as n→∞. B2

p→ 0

as n→∞ can be also established by applying WLLN. Hence, A1 = B1 + B2
p→ 0 as

n→∞.

For sufficiently large fixed Ni and Nj values and given (B1), we can similarly show

that A2
p→ 0 as n → ∞. In this case, we decompose A2 using independent random

variables E{SNij(β) | φNi(WD
i )} and apply WLLN to each decomposition as above.

Now consider A3. Under conditions (B2), (B6)–(B8) and assuming φNi(W
D
i )

p→
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φ(XD
i ), φNj(W

D
j )

p→ φ(XD
j ) as n→∞ and Pr(φ(XD

i ) = φ(XD
j )) = 0, it follows that

A3 = E{Sij(β)} − E{SNij(β)}

= E [Ψij(Uij − θij)−Ψij(UNij − θij)]

≤M · E(Uij − UNij), for some 0 < M <∞

= M [Pr{φ(XD
i ) > φ(XD

j )} − Pr{φNi(WD
i ) > φNj(W

D
j )}] −→ 0 as n→∞.

Hence, the lemma is proved.

Lemma C.2.3. E{∂SNij(β0)/∂β
T}−E{∂SNij(β0)/∂β

T} → 0 as n→∞ for β ∈ N .

Proof : Under conditions (B1), (B2), (B6)–(B8) and assuming φNi(W
D
i )

p→ φ(XD
i ),

φNj(W
D
j )

p→ φ(XD
j ) as n→∞ and Pr(φ(XD

i ) = φ(XD
j )) = 0, it follows that

E{∂SNij(β)/∂βT} − E{∂Sij(β)/∂βT}

= E

[
∂

∂βT
{Ψij(UNij − θij)} −

∂

∂βT
{Ψij(Uij − θij)}

]
=
∂Ψij

∂βT
· E(UNij − Uij)

≤M{E(Uij)− E(UNij)}, for some 0 < M <∞

= M [Pr{φ(XD
i ) > φ(XD

j )} − Pr{φNi(WD
i ) > φNj(W

D
j )}] −→ 0 as n→∞.

Hence, the lemma is proved.

Lemma C.2.4. For sufficiently large fixed Ni and Nj values, 1
nDnD

SNn(β) is asymp-

totically equivalent to the expression

1

nDnD
SPNn(β) =

1

nDnD

nD∑
i=1

nD∑
j=1

Ψij{(ξNi − θij) + (ξNj − θij)},

where ξNi = E{UNij | φNi(WD
i ),ZD

i ,Z
D
j } and ξNj = E{UNij | φNj(WD

j ),ZD
i ,Z

D
j }. In

fact, SPNn(β)− SNn(β) = op(n
3/2).
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Proof : Notice that 1
nDnD

SNn(β) is a two-sample U-statistic under (B1). Then, it

follows from the Projection Theorem of U-statistics (Serfling, 1980) that 1
nDnD

SNn(β)

and

1

nDnD
SPNn(β) =

n∑
i=1

E

{
1

nDnD

n∑
s=1

nD∑
j=1

Ψsj(UNsj − θsj) | φNi(WD
i ),ZD

i ,Z
D
j

}

+

nD∑
j=1

E

{
1

nDnD

n∑
i=1

nD∑
k=1

Ψik(UNik − θik) | φNj(WD
j ),ZD

i ,Z
D
j

}

=
1

nDnD

n∑
i=1

nD∑
j=1

Ψij

[
E
{

(UNij − θij) | φNi(WD
i ),ZD

i ,Z
D
j

}
+ E

{
(UNij − θij) | φNj(WD

j ),ZD
i ,Z

D
j

} ]
=

1

nDnD

nD∑
i=1

nD∑
j=1

Ψij{(ξNi − θij) + (ξNj − θij)},

are asymptotically equivalent. The convergence rate is established in Serfling (1980).

• Proof of consistency

By Theorem 1 of Dodd and Pepe (2003), the solution of Sn(β) = 0 is consistent

under (B1), (B3), (B4)–(B8) and Lemma C.2.1; that is, β̂
p→ β0 as n → ∞. Then,

showing that 1
nDnD

Sn(β) and 1
nDnD

SNn(β) converge in probability to the same limit

uniformly for β ∈ N will ensure that the solution of SNn(β) = 0 is consistent; that

is, β̂N
p→ β0 as n→∞ (Li et al., 2016). Given (B3), we can first find a finite union

of open intervals with known length that cover N . Specifically, for ζ > 0, define

intervals Ck = (βk,βk+1) such that |βk+1 − βk| < ζ for all k and N ⊆ ∪Kk−1Ck. The
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triangle inequality then gives the following:

sup
β∈N

∣∣∣∣ 1

nDnD
Sn(β)− 1

nDnD
SNn(β)

∣∣∣∣
= max

k
sup
β∈Ck

∣∣∣∣∣ 1

nDnD
Sn(β)− 1

nDnD
Sn(βk) +

1

nDnD
SNn(βk)−

1

nDnD
SNn(β)

+
1

nDnD
Sn(βk)−

1

nDnD
SNn(βk)

∣∣∣∣∣
≤ max

k
sup
β∈Ck

∣∣∣∣ 1

nDnD
Sn(β)− 1

nDnD
Sn(βk)

∣∣∣∣
+ max

k
sup
β∈Ck

∣∣∣∣ 1

nDnD
SNn(βk)−

1

nDnD
SNn(β)

∣∣∣∣
+ max

k
sup
β∈Ck

∣∣∣∣ 1

nDnD
Sn(βk)−

1

nDnD
SNn(βk)

∣∣∣∣
= A1n + A2n + A3n

The mean value theorem and uniform boundedness of 1
nDnD

∂
∂β
Sn(β) within N give

the following result for A1n:

A1n = max
k

sup
β∈Ck

∣∣∣∣ 1

nDnD
Sn(β)− 1

nDnD
Sn(βk)

∣∣∣∣
= max

k
sup
β∈Ck

(β − βk) ·
{

1

nDnD

∂

∂β
Sn(β∗)

}
, for β∗ ∈ (βk,β)

≤ ζM1, where M1 <∞

Similarly, for fixed Ni and Nj values. the mean value theorem and uniform bounded-

ness of 1
nDnD

∂
∂β
SNn(β) within N imply A2n < ζM2, where M2 <∞. Finally, Lemma

C.2.2 implies that for any ε > 0 and any γ > 0 there exists a number n0 such that

for all n ≥ n0

Pr

{∣∣∣∣ 1

nDnD
Sn(βk)−

1

nDnD
SNn(βk)

∣∣∣∣ > ε

2

}
<

γ

K
,
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for a given k. This implies that

Pr
(
A3n >

ε

2

)
= Pr

{
max
k

sup
β∈Ck

∣∣∣∣ 1

nDnD
Sn(βk)−

1

nDnD
SNn(βk)

∣∣∣∣ > ε

2

}
= Pr

{
max
k

∣∣∣∣ 1

nDnD
Sn(βk)−

1

nDnD
SNn(βk)

∣∣∣∣ > ε

2

}
<
∑
k

Pr

{∣∣∣∣ 1

nDnD
Sn(βk)−

1

nDnD
SNn(βk)

∣∣∣∣ > ε

2

}
<
∑
k

γ

K
= γ.

Now choose an arbitrarily small ζ such that ζ(M1 +M2) < ε/2. It then follows that

Pr

{
sup
β∈N

∣∣∣∣ 1

nDnD
Sn(β)− 1

nDnD
SNn(β)

∣∣∣∣ > ε

}
≤ Pr (A1n + A2n + A3n > ε) < γ.

Therefore, β̂N is a consistent estimator of β0.

• Proof of asymptotic normality

By Taylor’s expansion, we obtain the following expression:

0 =

√
nDnD
n

1

nDnD
SNn(β̂N)

=

√
nDnD
n

1

nDnD
SNn(β0) +

1

nDnD

∂

∂βT
SNn(β̃)

√
nDnD
n

(β̂N − β0),

where β̃ is an intermediate value between β̂N and β0. By applying Lemma C.2.2 of

Dodd and Pepe (2003), it can be shown that 1
nDnD

∂
∂βT

SNn(β) - E
{∂SNij(β)

∂βT

}
converges

in probability to 0 as n → ∞ for β ∈ N , given sufficiently large fixed Ni and

Nj values. This in turn implies, by Lemma C.2.3 and the Slutsky’s theorem, that

1
nDnD

∂
∂βT

SNn(β) converges in probability to E
{∂Sij(β)

∂βT

}
for β ∈ N . Then since β̂N is
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a consistent estimator of β0 (see above), the following convergence result follows:

− 1

nDnD

∂

∂βT
SNn(β)

p−→ −E
{
∂Sij(β0)

∂βT

}
≡ Q.

Using this result and applying Lemma C.2.4, we can write:

√
nDnD
n

(β̂N − β0) = Q−1
√
nDnD
n

1

nDnD
SPNn(β0) + op(1)

= Q−1
√
nDnD
n

1

nDnD

nD∑
i=1

nD∑
j=1

Ψij{(ξNi − θ0ij) + (ξNj − θ0ij)}

+ op(1)

= Q−1

[
1
√
nD

nD∑
i=1

{
1√
n

1
√
nD

nD∑
j=1

Ψij (ξNi − θ0ij)

}
+ op(1)

+
1
√
nD

nD∑
j=1

{
1√
n

1
√
nD

nD∑
i=1

Ψij (ξNj − θ0ij)

}]

= Q−1

{
1
√
nD

nD∑
i=1

VNi +
1
√
nD

nD∑
j=1

VNj

}
+ op(1)

where

θ0ij = g−1(Zβ0) = E(ξNi) = E(ξNj)

VNi =
1√
n

1
√
nD

nD∑
j=1

Ψij (ξNi − θ0ij)

VNj =
1√
n

1
√
nD

nD∑
i=1

Ψij (ξNj − θ0ij) .

Then, by applying a central limit theorem for triangular arrays to respective sums of

mean-zero independent random variables VNi and VNj (Greene, 2011), we can show

that √
nDnD
n

(β̂N − β0)
d→ N

(
0, Q−1ΣQ−1

)
as n→∞,



185

where

Σ = (1− λ) lim
n→∞

{
1

nD

nD∑
i=1

1

n2
D

nD∑
j=1

nD∑
l=1

ΨijΨ
T
ilCov(ξ

(j)
Ni , ξ

(l)
Ni)

}

+ λ lim
n→∞

{
1

nD

nD∑
j=1

1

n2
D

nD∑
i=1

nD∑
k=1

ΨijΨ
T
kjCov(ξ

(i)
Nj, ξ

(k)
Nj)

}
,

with ξ
(j)
Ni = E{UNij | φNi(WD

i ),ZD
i ,Z

D
j }, ξ

(l)
Ni = E{UNij | φNi(WD

i ),ZD
i ,Z

D
l }, ξ

(i)
Nj =

E{UNij | φNj(WD
j ),ZD

i ,Z
D
j } and ξ

(k)
Nj = E{UNij | φNj(WD

j ),ZD
k ,Z

D
j } .



186

Appendix D

D.1 The EM Algorithm

Let θ = (β,µ1,Σ1,µ0,Σ0) denote the collection of parameters and G = {(wi, Di, ζ̂i),

i = 1, . . . , n} denote the complete data. The complete-data likelihood function is

given by

Lc(θ | G) =
n∏
i=1

{πig(ζ̂i | µ1,Σ1)}Di{πig(ζ̂i | µ0,Σ0)}1−Di ,

from which the complete-data log-likelihood function can be derived as

lc(θ | G) =
n∑
i=1

Diln{πig(ζ̂i | µ1,Σ1)}+ (1−Di)ln{(1− πi)g(ζ̂i | µ0,Σ0)},

where g(· | µd,Σd) (d = 0, 1) denotes the K-variate normal density of ζ̂i with mean

µd and covariance Σd given the true disease status Di = d.

E step

The expected value of the complete-data log-likelihood function l(θ | G) with

respect to the conditional distribution of latent data D = {Di, i = 1, . . . , n} given ob-

served data O = {(wi, ζi), i = 1, . . . , n} under the current estimate of the parameters
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θ(t) can be calculated as

Q(θ | θ(t)) = ED|O,θ(t){lc(θ | G)}

=
n∑
i=1

ED|O,θ(t)(Di)ln{πig(ζ̂i | µ1,Σ1)}

+ ED|O,θ(t)(1−Di)ln{(1− πi)g(ζ̂i | µ0,Σ0)}

=
n∑
i=1

P
(t)
i ln{πig(ζ̂i | µ1,Σ1)}+ (1− P (t)

i )ln{(1− πi)g(ζ̂i | µ0,Σ0)},

where

P
(t)
i = ED|O,θ(t)(Di) = Pr(Di = 1 | wi, ζ̂i;θ

(t))

=
π
(t)
i g(ζ̂i | µ1,Σ1)

(1− π(t)
i )g(ζ̂i | µ0,Σ0) + π

(t)
i g(ζ̂i | µ1,Σ1)

,

with

π
(t)
i =

exp(wT
i β

(t))

1 + exp(wT
i β

(t))
.

M step

The updated estimate θ(t+1) can be obtained by maximizing Q(θ | θ(t)) with

respect to θ. Note that β, (µ0,Σ0) and (µ1,Σ1) can be maximized independently

since they all appear in separate linear terms.

To begin, consider β:

β(t+1) = arg max
β

Q(θ | θ(t)) = arg max
β

n∑
i=1

P
(t)
i ln(πi) + (1− P (t)

i )ln(1− πi)

= arg max
β

n∑
i=1

P
(t)
i ln

{ exp(wT
i β)

1 + exp(wT
i β)

}
+ (1− P (t)

i )ln
{ 1

1 + exp(wT
i β)

}
= arg max

β

n∑
i=1

P
(t)
i wT

i β − ln{1 + exp(wT
i β)}.
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This corresponds to a system of nonlinear equations whose solution cannot be derived

algebraically. Thus, we propose to solve for β(t+1) based on a numerical optimization

technique, namely the Newton-Raphson method. Specifically, let W = [w1, . . . ,wn]T

(i.e., covariate matrix) and P(t) = [P
(t)
1 , . . . , P

(t)
n ]T . It can be shown that the Newton-

Raphson method can be implemented by first setting β(t) = β<0> as the initial value

and then iteratively updating the beta coefficients (over s) using the formula

β<s+1> = β<s> + [WTH<s>W]−1WT (P(t) − π<s>),

where π<s> = [π1<s>, . . . , πn<s>]T is the prevalence of each subject evaluated at the

current estimate β<s>, and H<s> denote a diagonal matrix with elements πi<s>(1−

πi<s>) on the diagonal and zeros everywhere else. The Newton-Rapshon algorithm

continues until there is essentially no change between the elements of β from one

iteration to the next, and the final estimate of β from this algorithm can be used as

the updated estimate β(t+1) in the EM algorithm.

For the next estimates of (µ1,Σ1):

(µ
(t+1)
1 ,Σ

(t+1)
1 ) = arg max

µ1,Σ1

Q(θ | θ(t)) = arg max
µ1,Σ1

n∑
i=1

P
(t)
i ln{g(ζ̂i | µ1,Σ1)}

= arg max
µ1,Σ1

n∑
i=1

P
(t)
i

{
− 1

2
|Σ1| − −

1

2
(ζ̂i − µ1)

TΣ−11 (ζ̂i − µ1)
}
,

so that

µ
(t+1)
1 =

∑n
i=1 P

(t)
i ζ̂i∑n

i=1 P
(t)
i

and Σ
(t+1)
1

∑n
i=1 P

(t)
i (ζ̂i − µ

(t+1)
1 )(ζ̂i − µ

(t+1)
1 )T∑n

i=1 P
(t)
i

.

Similarly, we can obtain:

µ
(t+1)
0 =

∑n
i=1(1− P

(t)
i )ζ̂i∑n

i=1(1− P
(t)
i )
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and

Σ
(t+1)
0 =

∑n
i=1(1− P

(t)
i )(ζ̂i − µ

(t+1)
0 )(ζ̂i − µ

(t+1)
0 )T∑n

i=1(1− P
(t)
i )

.

The E step and M step are repeated until the algorithm converges.

Choice of initial values

The speed of convergence of the EM algorithm and its ability to locate the global

maximum depends on the choice of initial values (Karlis and Xekalaki, 2003). In

our model, only β that determines the subject-specific mixture proportion needs

to be given an informative initial value, as (possibly non-informative) initial values

of other parameters are automatically updated based upon this value and observed

data during the first iteration of the M-step. Accordingly, it is recommended to

set good initial values for β based on a priori knowledge of the covariate effects

on the disease. For other parameters, we can simply assign non-informative initial

values (mean parameters) or begin with estimates obtained by the FPCA (covariance

parameters); that is, µ
(1)
1 = µ

(1)
0 = 0 and Σ

(1)
1 = Σ

(0)
1 = diag(λ̂1, . . . , λ̂K).

D.2 Standard Error Estimation

Firstly, we estimate the covariance matrix of the ML estimates, θ̂, obtained in Ap-

pendix A by the inverse of the observed information matrix evaluated at θ̂, that

is, I−1n (θ̂). Since we have independent data, In(θ̂) can be approximated in terms of

the gradient vector of the observed log-likelihood function (McLachlan and Basford,

1988). Specifically, let f(ζ̂i,wi | θ) denote the likelihood function based on the single

observation vector (wi, ζi); that is,

f(ζ̂i,wi | θ) = πig(ζ̂i | µ1,Σ1) + (1− πi)g(ζ̂i | µ0,Σ0).
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Then the approximation to In(θ̂) is given by

In(θ̂) ≈
n∑
i=1

ĥiĥ
T
i (D.1)

where ĥi = ∂ln{f(ζ̂i,wi | θ)}/∂θ|θ=θ̂ is the gradient vector of the log-likelihood

based on the single observation evaluated at θ = θ̂.

Define

π̂i =
exp(wiβ̂)

1 + exp(wiβ̂)
, τ̂1i =

π̂ig(ζ̂i | µ̂1, Σ̂1)

f(ζ̂i,wi | θ̂)
and τ̂0i =

(1− π̂i)g(ζ̂i | µ̂0, Σ̂0)

f(ζ̂i,wi | θ̂)
.

and consider the partition of the gradient vector ĥi:

ĥi = [ĥi,β, ĥi,µ1
, ĥi,Σ1 , ĥi,µ0

, ĥi,Σ0 ]
T ,

The gradient vectors corresponding to the beta and mean parameters are (d = 0, 1)

ĥi,β =
∂ln{f(ζ̂i,wi | θ)}

∂β

∣∣∣∣
β=β̂

= {τ̂1i(1− π̂i)− τ̂0iπ̂i}wi,

ĥi,µd =
∂ln{f(ζ̂i,wi | θ)}

∂µd

∣∣∣∣
µd=µ̂d

= τ̂diΣ̂
−1
d (wi − µ̂d),

respectively. If the mth element of ĥi,Σd
corresponds to differentiation with respect

to σd,kk′ (k ≤ k′), then it takes the form of

(ĥi,Σd
)m =

∂ln{f(ζ̂i,wi | θ)}
∂σd,kk′

∣∣∣∣
σd,kk′=σ̂d,kk′

=
1

2
τ̂di(2− δkk′)[−(Σ̂

−1
d )kk′

+ {(wi − µ̂d)T σ̂−1dk }{(wi − µ̂d)T σ̂−1dk′},

where δkk′ is Kronecker delta that equals 1 when k = k′ and 0 otherwise, (Σ̂
−1
d )kk′ is

the (k, k′)th element of Σ̂
−1
d , and σ̂−1dk is the kth column of Σ̂

−1
d .
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Now we move on to estimate the standard errors of AUCk and cAUC. Let Φ′(x) =

dΦ(x)/dx, I denote an identity matrix and “◦” denote a hadamard (element-wise)

product of matrices. The standard error of ÂUCk can be obtained using the observed

information matrix In(θ̂) and the delta method as

ŜE(ÂUCk)

=

([
∂

∂θ

{
Φ

(
µ1k − µ0k√
σ0,kk + σ1,kk

)}∣∣∣∣
θ=θ̂

]T
I−1n (θ̂)

∂

∂θ

{
Φ

(
µ1k − µ0k√
σ0,kk + σ1,kk

)}∣∣∣∣
θ=θ̂

) 1
2

,

where elements of the vector ∂
∂θ

{
Φ
(

µ1k−µ0k√
σ0,kk+σ1,kk

)}
are

∂

∂µ1k

{
Φ
( µ1k − µ0k√

σ0,kk + σ1,kk

)}
= Φ′

(
µ1k − µ0k√
σ0,kk + σ1,kk

)
1

√
σ1,kk + σ0,kk

,

∂

∂σ1,kk

{
Φ
( µ1k − µ0k√

σ0,kk + σ1,kk

)}
= −1

2
Φ′

(
µ1k − µ0k√
σ0,kk + σ1,kk

)
(µ1k − µ0k)(σ1,kk + σ0,kk)

− 3
2

∂

∂µ1k

{
Φ
( µ1k − µ0k√

σ0,kk + σ1,kk

)}
= −Φ′

(
µ1k − µ0k√
σ0,kk + σ1,kk

)
1

√
σ1,kk + σ0,kk

,

∂

∂σ0,kk

{
Φ
( µ1k − µ0k√

σ0,kk + σ1,kk

)}
= −1

2
Φ′

(
µ1k − µ0k√
σ0,kk + σ1,kk

)
(µ1k − µ0k)(σ1,kk + σ0,kk)

− 3
2 ,

and 0 elsewhere.

The standard error of ĉAUC can also be obtained using the observed information

matrix and the delta method as

ŜE(ĉAUC)

=

{(
∂

∂θ

[
Φ
{√

aT (µ1 − µ0)
}]∣∣∣∣

θ=θ̂

)T

I−1n (θ̂) · ∂
∂θ

[
Φ
{√

aT (µ1 − µ0)
}]∣∣∣∣

θ=θ̂

} 1
2

,
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where elements of the vector ∂
∂θ

[Φ{
√
aT (µ1 − µ0)}] are:

∂

∂µ1

[
Φ
{√

aT (µ1 − µ0)
}]

= Φ′
{√

aT (µ1 − µ0)
}
· 1√

aT (µ1 − µ0)
· a,

∂

∂Σ1

[
Φ
{√

aT (µ1 − µ0)
}]

= Φ′
{√

aT (µ1 − µ0)
}
· 1

2
√
aT (µ1 − µ0)

· {−2aaT + (aaT ◦ I)}

∂

∂µ0

[
Φ
{√

aT (µ1 − µ0)
}]

= −Φ′
{√

aT (µ1 − µ0)
}
· 1√

aT (µ1 − µ0)
· a,

∂

∂Σ0

[
Φ
{√

aT (µ1 − µ0)
}]

= Φ′
{√

aT (µ1 − µ0)
}
· 1

2
√
aT (µ1 − µ0)

· {−2aaT + (aaT ◦ I)}

and 0 elsewhere. Note that only the upper triangular elements of the

∂
∂Σd

[Φ{
√
aT (µ1 − µ0)}] (d = 0, 1) should be used in the computation.

D.3 Estimation and Prediction for FPLS

Algorithm for estimating FPLS:

The following algorithm for estimating functional partial least squares (FPLS)

has been proposed by Delaigle and Hall (2012). Consider n independent data pairs

X = {(X1, Y1), . . . , (Xn, Yn)}. For i = 1, . . . , n, first introduce the centered data

X
[1]
i (t) = Xi(t) − µ̂(t) and Y

[1]
i = Yi − Ȳ , where µ̂(t) =

∑n
i=1Xi(t)/n and Ȳ =∑n

i=1 Yi/n. Then for k = 1, . . . , K, the algorithm iterates through the following three

steps:
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(1) Estimate the kth FPCA score as

ν̂ik =

∫
T
X

[k]
i (t)δk(t)dt,

where the function δk ∈ L2(T ) is chosen maximize {Ĉov(Y
[k]
i , ν̂ik)}2; that is,

δ̂k(t) =
Ĉov(Yi, X

[k]
i )

||Ĉov(Yi, X
[k]
i )||

=

n∑
i=1

Y
[k]
i X

[k]
i (t)[ ∫

T

{ n∑
i=1

Y
[k]
i X

[k]
i (t)

}2

dt
]1/2 .

(2) Estimate βk and the kth FPLS basis function ρ̂k(t) as:

β̂k =
Ĉov(Y

k]
i , ν̂ik)

V̂ar(ν̂ik)
=

n∑
i=1

Y
[k]
i ν̂ik

n∑
i=1

ν̂2ik

and ρ̂k(t) =
Ĉov(X

k]
i , ν̂ik)

V̂ar(ν̂ik)
=

n∑
i=1

X
[k]
i (t)ν̂ik

n∑
i=1

ν̂2ik

,

respectively.

(3) Calculate:

X
[k+1]
i (t) = X

[k]
i (t)− ρ̂k(t)ν̂ik and Y

[k+1]
i = Y

[k]
i − β̂kν̂ik.

Note that numerical integration methods based on the observed time points

{t1, . . . , tN} can be used to evaluate the integrals.

Prediction for a new subject

Suppose we want to predict the disease status of a new subject (not in the orginal

dataset) with covariate wnew and functional biomarker measurements {Xnew(tj), tj ∈

T , j = 1, . . . , N}, but whose imperfect reference test result is not available. Firstly,

introduce the demeaned functional measurements X
[1]
new(t) = Xnew(t) − µ̂(t), where

the sample mean function µ̂(t) is computed using the original training dataset. Then
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for k = 1, . . . , K, repeat the following two steps:

(1) Estimate the kth FPLS score as

ν̂new,k =

∫
T
X [k]

new(t)δ̂k(t)dt,

where δ̂k is obtained from the above algorithm using the training dataset. Use the

numerical integration methods based on the observed time points {t1, . . . , tN} can be

used to evaluate the integral.

(2) Set

X [k+1]
new (t) = X [k]

new(t)− ρ̂k(t)ν̂new,k

where ρ̂k is obtained from the above algorithm using the training dataset.

Then, we can combine these FPLS scores ν̂new = [ν̂new,1, . . . , ν̂new,K ]T to produce

the new subject’s composite test ν̂∗new = âT ν̂new, which can replace ξ̂∗new in formula

(5.16) to calculate the corresponding predictive probability of disease P̂r(Dnew = 1 |

wnew, ν̂
∗
new; θ̂).

D.4 Parameter Setup for Simulation Settings

* Parameter setup for Setting 1.

Case 1:

µ1 = [1.3, 0.7, 0.4]T , µ0 = [−1.3,−0.7,−0.4]T ,

Σ1 = Σ0 =


4.50 −0.91 −0.52

−0.91 1.30 −0.28

−0.52 −0.28 0.90

 .
Case 2:



195

µ1 = [1.3, 0.5, 0.4]T , µ0 = [−1.3,−0.5,−0.4]T ,

Σ1 = Σ0 =


4.50 −0.65 −0.52

−0.65 1.30 −0.20

−0.52 −0.20 0.90

 .
Case 3:

µ1 = [1, 0.5, 0.4]T , µ0 = [−1,−0.5,−0.4]T ,

Σ1 = Σ0 =


4.5 −0.5 −0.4

−0.5 1.3 −0.2

−0.4 −0.2 0.8

 .

* Parameter setup for Setting 2.

Case 1:

µ1 = [1.3, 0.7, 0.4, 0.5]T , µ0 = [−1.3,−0.7,−0.4,−0.5]T ,

Σ1 = Σ0 =


4.50 −0.91 −0.52 −0.65

−0.91 1.30 −0.28 −0.35

−0.52 −0.28 0.90 −0.20

−0.65 −0.35 −0.20 0.70

 .

Case 2:

µ1 = [1.3, 0.5, 0.4, 0.5]T , µ0 = [−1.3,−0.5,−0.4,−0.5]T ,

Σ1 = Σ0 =


4.50 −0.65 −0.52 −0.65

−0.65 1.30 −0.20 −0.25

−0.52 −0.20 0.90 −0.20

−0.65 −0.25 −0.20 0.70

 .

Case 3:
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µ1 = [1, 0.5, 0.4, 0.4]T , µ0 = [−1,−0.5,−0.4,−0.4]T ,

Σ1 = Σ0 =


4.50 −0.50 −0.40 −0.40

−0.50 1.30 −0.20 −0.20

−0.40 −0.20 0.80 −0.16

−0.40 −0.20 −0.16 0.40

 .

* Parameter setup for Setting 3.

µy,1 = 0.91, µy,0 = −0.91, σ2
y,1 = σ2

y,0 = 1 =⇒ AUCy = 0.901

µy,1 = 0.6, µy,0 = −0.6, σ2
y,1 = σ2

y,0 = 1 =⇒ AUCy = 0.802

µy,1 = 0.37, µy,0 = −0.37, σ2
y,1 = σ2

y,0 = 1 =⇒ AUCy = 0.700

µy,1 = 0.18, µy,0 = −0.18, σ2
y,1 = σ2

y,0 = 1 =⇒ AUCy = 0.600
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