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Abstract
Matching is not an Emergent Property of the OpeRagerve
John P. Berg

Matching theory has been highly successful in diesg behavior at equilibrium across
a wide variety of live organisms. Despite this ®85; the dynamics from which
equilibrium behavior emerge are not well understddgmerous dynamic models of
behavior have been proposed and while some havesoeeessful in accounting for
particular types of behavior, only recent advanoemputational modeling, namely the
McDowell (2004) model of selection by consequenbasge produced results that
account for a wide variety of behavior. CataniaD&dound that a computational model
of the operant reserve (Skinner, 1938) producelistieabehavior in initial, exploratory
analyses. Although Catania’s operant reserve caatipnl model demonstrated
potential to simulate varied behavioral phenomémamodel was not systematically
tested. The current project replicated the Catarudel, clarified its capabilities through
systematic testing, and determined the extent iohwihproduces behavior
corresponding to matching theory. Significant dagas from both classic and modern
matching theory were found in model behavior acedlssonditions. The results suggest

that a simple, dynamic operant model does not sitaukalistic steady state behavior.
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Matching is not an Emergent Property of the OpeRaderve
A wide range of live organism behavior at equilifn has been shown to
correspond to the mathematical function,

R= kr ’
r+r,

(1)

originally proposed by Herrnstein (1970) (McDowéi§88). This function describes a
hyperbolic shape wheRis the response ratethe reinforcement rat&,the maximum
response rate, amdthe reinforcement rate due to extraneous behakgration 1 is one
equation of matching theory, which accounts for apus of 99 percent of the variance in
pooled, single-alternative, live animal data (Mc@iw2005). Although Equation 1
describes behavior on single alternative schedtéésted functions account for
concurrent schedules as well (Herrnstein, 1970).

Despite the success of matching theory (i.e. Eqndt), recent work by
McDowell (2005) has shown that the alternative, rietldted function,

R= —, (2)
roele

consistently outperforms Equation 1 in terms ofpat variance accounted for (pVAF)
and production of randomly distributed residualewfitting the function to data from

live organisms. Equations 1 and 2 differ in terrhthe exponentg, and bias parameter,
b. The difference follows from the functions thatuatjons 1 and 2 were derived from.

Equation 1 was derived from the matching equation,

R _ 1
R+R, n+r,’ )




where theRs refer to the rate of responding andrtheefer to the rate of reinforcement
for a two-alternative concurrent schedule (HeriinstE970). Although the matching
equation originally provided a good fit with liveganism data (Herrnstein, 1961) it
could not account for certain types of behavior@mpmena, namely undermatching and
bias. (For a full description of undermatching &b in relation to matching theory see

Baum, 1979). Thus, the revised matching equation,

Rl
with additional parametera,andb, was proposed. Equation 4 and derivative functions
(including Equation 2) have become known as “modaheatching theory” as opposed to
“classic matching theory” described by Equatiomd ds derivative functions (including
Equation 1) (McDowell, 2005). Although classic ntatg theory describes live
organism data well, in general, some equation fdrave been problematic. In contrast,
modern matching theory and related functions ansistent with all known data. Thus,
the modern matching functions may represent a meneral account of equilibrium
behavior (McDowell, 2005).

Although matching theory has been useful in undeding behavior at
equilibrium, it only provides a description of b&la in terms of a mathematical
function, albeit a well supported one. It doespralvide an account of the dynamic
processes from which steady-state behavior emefgasis end, a dynamic model of
behavior is needed.

A variety of dynamic models have been proposeddwthave been widely
supported. Models such as optimization (Baum, 188t))incentive theory (Killeen,

1982) have shown efficacy in modeling certain typilsehavior such as behavior on



single-alternative schedules and chained behawitirgdo not generalize to fit other types
of behavior. Other models based on concepts sustigshing principles (Myerson &
Hale, 1988) and regulatory principles (Hanson & bBamake, 1983) predict the response-
reinforcement relationship to follow a non-hyperbdunction form. However, a large
body of evidence from live-organisms suggeststtiatelationship between response
and reinforcement rates is hyperbolic in form (Med, 1988). Overall, many models
have fit a particular type of behavior well butkad generalization to a wide variety of
behaviors and environments. This limited success diot provide solid evidence for a
fundamental dynamic process.

Several criteria must be met for a dynamic modeldmonstrate success in
representing a fundamental behavioral processhé)model must produce or predict
behavior that corresponds to matching theory, whaiso far been most successful in
describing a wide variety of live-organism behavibnus, behavior at equilibrium must
be described by a matching function form such askgns 1 or 2. 2) Dynamic model
data at equilibrium must bdeestdescribed by a matching theory function form.
Alternative function forms have not, in generaleb@bserved to describe live-organism
behavior at equilibrium successfully (McDowell, B)83) In conjunction with Criterion
2, the residuals resulting from the data-functibmiust be random. Regardless of the
pVAF, non-random residuals indicate that a functioes not accurately describe the
data and hence, that an alternative function maydxe appropriate (McDowell, 2005).
4) The model must not be so flexible that any baral’phenomena can be modeled by
simply changing enough parameters. 5) The modet aaeount for a wide variety of

behavioral phenomena including behavior on schedeleresentative of common



behaviors and common molecular (momentary or diseesponse level) phenomena. At
a minimum, both single-alternative and concurrandom-interval schedules must be

accounted for given their ubiquitous presence @érésearch literature.

The McDowell Computational Model of Selection byn§smuences

To date, the computational model of selection hyseguences proposed by
McDowell (2004) has been the only dynamic moddetiavior to meet all criteria
mentioned previously. Single-alternative sched(iésDowell, 2004; McDowell and
Caron, 2007), concurrent schedules (McDowell, Cakaiubekova, and Berg, in press),
and some molecular behavioral phenomenon (Kulukeelaomd McDowell, 2008) have
been successfully simulated and found consistetht watching theory and live-organism
data. In addition to the wide variety of behavioc@unted for, the model also has been
shown to be robust in its ability to simulate babaveven after gross changes to some
parameters, the model still produces realistic behgMcDowell, 2004).

The McDowell computational model implemented BSkinner’'s (1981) idea of
behavioral selection by consequences by meangenetic algorithm. These
computational devices have been used to develogl solutions to a wide variety of
problems including animal feeding patterns (Baftgnn, Giraldeau, 1997), predicting
consumer buying patterns (Hurley, Moutinho, & Stamdy 1995), predicting S&P 500
performance (Allen & Karjalainen, 1999), and op#ing satellite communications
(Salcedo-Sanz & Bousono-Calzon, 2005). Essentigéiggtic algorithms work by
evaluating a set of solutions to a problem by medissfitness function, which tests the

solution’s adequacy for solving the problem. Salnsi selected by the fitness function



are then “mated” and “offspring” created by combgparts from two or more potential
solutions into a new amalgamated solution, whicly than subjected to random
mutation depending on the particular genetic atgori Typically, the process is repeated
until an end-state criterion is met (Rowland anddatein, 2006). Many variations of this
basic approach are used in the implementation rétgealgorithms.

The computational model of selection by consequepoaposed by McDowell
(2004) created a virtual organism with behaviopesented by 100 integers with values
between 0 and 1023. The 100 integers made up tluahMdrganism’s behavior
repertoire. The range of 0 to 1023 integer valuas 8plit into several sub-ranges. Each
sub-range represented a behavior class. Duringitsaation of the genetic algorithm,
one behavior was randomly picked from the 100-bemaepertoire to be emitted. If the
behavior’s integer value fell within a specific laefor class, that class was considered
activated. This would be analogous in the real-tvtwla rat pressing a lever, for
example. Because emitted behaviors were randortdgted at each iteration of the
model, the chance of a behavior class being aetivat each iteration was dependent on
the number of behaviors currently in that class.és@mple, if 40 out of the 100
behaviors in the repertoire fell within a partiautdéass during an iteration of the model,
the probability of the class being activated dutimgf iteration would be 40/100, which is
A4,

One or more behavior classes were selected ag tdagses. Behaviors emitted
from target classes were reinforced on randomvuatgRI) schedules by means of a
genetic algorithm selection procedure, which hadatfiect of shifting the distribution of

behaviors towards or into the target class. Thecsieh procedure employed a fithness



function to increase the probability that a behawviear or in the target behavior class
would be selected as a parent to “mate” and produedated “offspring” behavior.
During iterations where behaviors outside a tactpets were emitted, or when a target-
class behavior was emitted but reinforcement wasvailable as determined by the RI
schedule, parents were chosen randomly.

Mating was accomplished by first choosing two patmEhaviors to mate either
by means of the selection function or randomly. paeent behavior integers were
converted to ten-position binary form, which is athod of representing numbers with
only 1's and 0’s. For example, the integer 25 mpesition binary form is 0000011001
while 500 is 0111110100 and 724 is 1011010100. &ffspring” behavior was created
by randomly selecting which parent’s bits (i.e. 4/l 0’s) would be passed onto the
offspring for each position in a ten-position bjaumber representation. The mating
process was repeated until 100 new “offspring” bedrg, representing the new virtual
organism behavior repertoire, were created. Im@ Step, the new behaviors in the
repertoire were subjected to mutation.

One iteration of the McDowell computational modehsisted of behavior
emission, possible reinforcement, mating, and rartatn contrast to other applications
of genetic algorithms, the McDowell model did npesify an end state or attempt to
maximize any quantity. The model produced behdvased only on the simple rules
inherent in the model.

The initial results from the McDowell computatiomabdel are promising. The
response-reinforcement relationship follows a higpke shape and fits the matching

functions well for both single-alternative and coment schedules (McDowell, 2004;



McDowell and Caron, 2007; McDowell et al., in pre€ehavioral phenomena such as
undermatching and realistic inter-response timgidigions have been shown to be
emergent properties of the model as well (McDowell Caron, 2007; Kulubekova and
McDowell, in press).

The Catania Operant Reserve Computational Model

Catania (2005) presented a computational modetlo&tior based on Skinner’s
(1938) theory of the operant reserve. In brief,ghaciple of the operant reserve is that
the instantaneous probability of behavior emissarlated to the current level of the
reserve. With a full reserve, there is a 100 pearpesbability of that behavior being
emitted. Thus a reserve that is 50 percent fullld/correspond to a 50 percent
probability of a behavior being emitted and soTime reserve is depleted by a finite
amount with each behavior emission that is nofoeced. Conversely, if an emitted
behavior is reinforced, the operant reserve lavakases. In general, those behaviors
that are reinforced increase the operant resevet \¢hile those that are not deplete it.
When behaviors are reinforced, the operant redevet increases resulting in an
increased probability that the behavior will be #edl in the future.

Catania (2005) implemented the operant reservecongutational model that
combined Skinner’s original theory of the operaaderve and a decay function. Like
Skinner’s theory, the Catania computational modeka to the reserve when behaviors
were reinforced and subtracted from it when theyewmt. However, the model relied on
several parameters key to the model’s functionatity decay function, the maximum

size of the reserve, the increment and decremesat and the definition of time.



Catania’s greatest change to the original theoth@fperant reserve was the
decay function that, in essence, gave the digigdmmism short term memory. Each
increment to the reserve, resulting from a reirgarent event, depended on the number
of responses preceding reinforcement where eaplomse contributed to the increment
by an amount determined by the decay function. Tiesponses closest in time to the
reinforcement added more to the operant reserveditbresponses that occurred further
in time. At some point, determined by the decaycfiom, a previous response would not
add anything to the operant reserve because itagadistant from the point in time that
reinforcement occurred. To avoid overlapping ddoagtions, Catania did not extend
the decay function past a previous reinforcemelis Way if reinforcement occurred at
Time 1 followed shortly by reinforcement at Timetf2e behaviors previous to the Time
1 reinforcement would contribute to the operaneres by an amount determined only
by the decay function at Time 1 without any additimom the Time 2 function. Figure 1
graphically illustrates this concept.

Catania (2005) used the reciprocal decay function,

p=—, (5)

c
d,
wherep was the incremental contribution of a responseas the maximum possible
incremental contribution of a response, dn@vas the time from the reinforcement event
to the response. Reinforcement events occurredglthie time-step immediately after a
response making the minimum valuedgequal to one. The total increment to the

reserve at each reinforcement event was the suimmattithe incremental contributions

of all previous responses provided a previous oeggiment event did not truncate the



decay function. Catania considered alternativetfandorms such as an exponential or
hyperbolic but only used the reciprocal form fanglicity.

The maximum size of the reserve and the incremeditdecrement sizes are
related parameters. The increment and decremestt s&n be defined in terms of
percentages of the maximum reserve. For examgdl@Qa®-unit increment to a reserve
with a size of 100,000 units is one percent whike ¢ame increment to a reserve of
200,000 units would be .5 percent. Catania (20@8ed the size of all three parameters,
but not in a systematic manner despite notingdhahging these parameters relative to
each other could create a model with coarser er faehavior. Thus, in a model with a
reserve small in comparison to the increment orefaent size, each response would
have a greater impact on the output of the moded. dpposite would be true for a large
reserve.

The final parameter, time, was arbitrarily setGatania (2005). Each step in a
simulation was made equivalent to 0.2s where eghconsisted of one opportunity for
the model to emit a response. However, the tingeaonds was not used consistently
throughout the model and the analyses of the metiehavior. Catania (2005) did not
specify why the 0.2s number was used but futurdampntations of the model may
benefit from a consistent use of time.

Catania (2005) simulated behavior on random int€dRE, random ratio (RR),
fixed interval (FI), concurrent, and several otbelnedules of reinforcement. However,
no systematic method was used to run simulati@pmrt data, or evaluate the
effectiveness of the model. Catania supported idiglity of the model by mainly

presenting qualitative observations of extinctianves and response patterns for
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behavior on various schedules. These analysesalsranot representative of all model
behavior. Catania admittedly only published sekcésults that provided evidence the
simulated contingencies could be implemented, hatldorrespondence to live-organism
behavior could be obtained. Few analyses were gatwe in nature and those primarily
consisted of illustrations that some but not alits were similar to live-organism
behavior. Catania (2005) did report some consistenih matching theory but again the
published analyses were not representative, mdeghonstrating that successful
outcomes were possible. Based on Catania (20@5yability of the model remains to
be demonstrated by a systematic and rigorous ev@hua
Comparing the McDowell and Catania Computationalddis

McDowell's genetic algorithm model and Catania’®@mt reserve model differ
in structure. While the genetic algorithm dealdwdatrepertoire of behaviors, the operant
reserve model primarily simulates a single behaWawever, the two models have three
fundamental similarities: 1) the output from eacbdel is based on the probability of
emission of target behavior(s), 2) the probabiitymission is increased after
reinforcement, and 3) unreinforced responses deerd@ probability of emission. The
operant reserve model calculates the emission pilitlgdoy comparing the current to the
total level of the reserve. Additions to the regetiue to a reinforcement event increase
the future probability of emission. The geneticagithm model does not specifically
calculate a probability but the output of the madeled to an indirectly calculated
probability. The number of behaviors falling witharclass divided by the total number of
behaviors, which was 100 in the simulations rebbtg McDowell (2004), corresponds

to the probability of emission. The fitness funatemployed by McDowell serves the
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purpose of stochastically increasing the numbdrebfaviors that fall into the target
behavior class. The addition of behaviors withia tdrget class increases the probability
of emission. Unreinforced responses implement ranoh@ting, in comparison to mating
determined by a fitness function. Random matinghsstically decreases the number of
behaviors in a target class, which correspondstkeceease in the probability of future
emission.

It is possible that the fundamental principleslisabove underlie the basic
functionality of the two models albeit from disttrapproaches. While the McDowell
model has been shown to meet criteria for a vidifeamic model, the Catania model has
not. In the case that the Catania model can mesettriteria, evidence that the
fundamental properties underlying both models are dynamic behavioral processes
will be strengthened.

Purpose of the Current Project

The current project attempted to replicate the amereserve model proposed by
Catania (2005), clarify the capabilities of the raboais it currently exists, and determine
the extent to which it produces behavior correspantb matching theory. All
simulations focused on random interval (R1) scheglalf reinforcement. This was also
the schedule implemented by McDowell (2004) taafif test the evolutionary model
for correspondence with matching theory.

Replication of the model was achieved by adaptiogehfunctions reported by
Catania (2005) for use in the current study. Mdmidlavior was compared to results

presented by Catania to ensure successful replica&rimarily, cumulative response
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records from the replicated model and results publil in Catania (2005) were
qualitatively compared for similarities.

Although Catania (2005) defined time as 0.2s pemmaational cycle, this
definition was abandoned in the current projecegiits arbitrary nature. Instead, all time
was referenced in computational “ticks” where & tecone opportunity for the model to
emit a response. This definition of time is simi@one used by McDowell (2004).

Multiple forms of the decay function were implemeshand evaluated for their
impact on model behavior. The single parameteprecal function seen in Equation 5
served as a primary function that other functioas wompared against. A single
parameter exponential function of the form,

p=ce®, (6)
was be evaluated. In this equatipmns the incremental contribution of a resportse,
affects the maximum incremental contribution, dpd the time from the response to the
reinforcement event. The parametevas manipulated such that the maximum
contribution of a response is similar to that @& thciprocal function. A single parameter

hyperbola of the form,
P=—" (7)

with parameters, c,anddysimilar to the Equation 6 was evaluated. Againgahemeter
¢ was manipulated to make the maximum contributiiom i@sponse equivalent to the
same value in the reciprocal function seen in Hqondi. Finally, a single parameter

linear function of the form,

p=-d,+c, (8)
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was implemented. In this equatigns the incremental contribution of a resportsis,

the maximum increment contribution, athglis the time from the response to the
reinforcement event. The parameter ¢ was manipglitatenake the maximum increment
contribution similar to the reciprocal function.

The maximum reserve size was set at 100,000 white the increment and
decrement sizes were varied. This allowed the &ffeicvarying the relative sizes of the
increment and decrement to the maximum reserveize evaluated. Increments and
decrements were measured in percentages of thenmaxieserve size. Changes in the
increment and decrement size were expected tothéestability of behavior where
larger values correspond to greater instability.

Given that the model’s correspondence with matgtheory was of primary
interest, equilibrium states of responding weredpoed by running the model until
examination of time-series of response rates redesteady-state behavior. A range of
possible Rl schedules were arranged to determaendximum time for steady-state
behavior to be reached. Data collected beforentlaisimum time point was not
considered in matching analyses.

Following precedence set by McDowell (2004), 11sBtedules with mean
intervals of 1, 2, 3, 5, 8, 10, 18, 25, 68, 112 20 time ticks were arranged and
Equations 1 and 2 fit to the response rate vernforcement rate data. To reduce
measurement error, 20,000 model cycles were ruedon schedule beyond the

maximum time taken to achieve steady-state behavior
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Methods
Subject

The participant was a digital organism with oneadwatr governed by the
principles of an operant reserve. Probability ofssmon at each computational tick was
directly proportional to the current level of treserve. Responses decreased the reserve
level while contingent reinforcement increasedréserve level.

Apparatus and Materials

Software to implement the digital organism and ecandhe experiments was
written in VB.net and run on computers using WindoX¥ operating system. Computers
had at least 498-Mhz Pentium Il processors with BB of RAM and 5 GB of hard
disk space.

Procedure

For all experiments, time was defined in termsarhputational cycles or “ticks.”
Although this definition differs from that used Batania (2005), it is consistent with
experiments conducted by McDowell and colleaguelstarencumbered by any
conversion factors.

Experiment parameters and data from each timeaakstored in comma
separated text files for later analysis. Total expent time, maximum reserve size,
increment size, decrement size, decay functionsahddule information were recorded
in an experiment parameters reference file. Cutierd, current reserve level, responses,
reinforcements, and reserve increments for eaoh tick were recorded in a separate

experiment details table in the database.
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Phase 1 — Programming the model in VB.net

A VB.net program was created to implement the apiereserve model, run
experiments using the model, and perform data aizalyhe data-analysis program
retrieved experiment data saved in the text files saved processed data to Excel files
for further analysis.

The model operated on the following 7-step pseadec

1. At the start of an experiment, initial model paréeng were collected and the
corresponding model variables were set accordingly.

2. For the first and subsequent computational tidkes probability of response
emission was calculated by dividing the currenéres level by the maximum
reserve level.

3. Aresponse was emitted if a randomly generated eumvas larger than the
probability calculated in Step 2. If a response wa#ted, the reserve was
decremented according to the model parameters.

4. The RI schedule was consulted to determine if oea®@ment was available. If it
was, then the reserve increment was calculatedy tisendecay function specified
in the model parameters and added to the reserve.

5. Atime counter was incremented one tick.

6. Data from the computational tick was saved.

7. The computation was returned to Step 2 until trezigied number of ticks in an

experiment has been counted.
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Phase 2 — Replication

A single set of model parameters and a singledsdhevas implemented to
replicate the Catania (2005) operant reserve mathel.reserve size, maximum
increment, decrement sizes, and operant level getreo 100,000 units, 3 percent of the
reserve, 1 percent of the reserve size, and O peoEéhe reserve respectively. The
reciprocal decay function, namely, Equation 5, \eltas the maximum individual
increment, was used to calculate the total incremea to reinforcement. The reserve
level was initially set to 75,000 units and the rladin for 25,000 time ticks on a RI 8
schedule. These specifications are similar to @e®ment used to validate the model
reported in Figure 4 of Catania (2005). Data frtwn teplication experiment was graphed
as a cumulative response record and examined.daéph was considered confirmed if
the cumulative record appeared similar to Figuoé @atania (2005). Aberrations in the
record were examined for possible programming flamgroblems in the model.
Phase 3 — Systematic Model Testing: SchedulesiamueSDecay Functions

The model's behavior was systematically testeddrying model parameters
independent of each other and observing the effEots primary parameters were
tested: first, the effect of varying the reserweelalecrement (DCR) while keeping the
maximum individual increment (MIC) constant; secownarying MIC while keeping
DCR constant; third, the effect of the operant l@fdehavior; and fourth, the effect of
different decay functions. To determine the relatdp between reinforcement rate and
response rate, a set of 11 RI schedule experimétitsnean intervals of 1, 2, 3, 5, 8, 10,
18, 25, 68, 112, and 200 time ticks were run fahaaodel parameter being tested. For

the purposes of this thesis, these 11 experimeititbeveferred to as an experiment set.



17

To determine the effect of DCR on model behaaarollection of 6 experiment
sets was conducted. The MIC was set to 3 percehtrenoperant level kept at O percent
for the 6 sets of experiments while the DCR levatwaried from 3 percent to .3 percent.
One experiment set consisted of the model beingnueach of the eleven RI schedules
mentioned previously for a single combination ofd@lgparameters (i.e. MIC = 3%,
operant level = 0%, DCR = 3%).

The effect of MIC and operant level were testeadgisimilar methodology. To
evaluate the effect of MIC, DCR was set to 1.5%wit0 percent operant level for four
experiment sets where the MIC was varied from &rggnt to 10 percent. The effect of
operant level was evaluated by varying the levéhiee experiment sets of 0, 4, and 8
percent while keeping the MIC and DCR set to 3% Hhdrespectively.

For each collection of experiment sets, the mage run on four different decay
function forms allowing the differential effect tife particular function form to be
evaluated for all model parameter combinations.afqos 5, 6, 7, and 8 (see Table 1)
describe simple reciprocal, exponential, hyperbalrd linear decay functions along with
the conversion factors necessary to obtain the rmmaxi increment values. Figure 2
shows a comparison of the four function forms. &bdecay functions, the time from the
reinforcement event to a particular respomnigewas defined to begin at one for the
response triggering the reinforcement event. TAussponse one tick prior to the
triggering response haddavalue of two and so on.

Phase 4 — Follow-up model testing
Based on the behaviors observed in Phase 3,es sériollow-up experiments

was conducted to investigate notable phenomenaeTéxperiments consisted of
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running 5 repetitions of experiment sets whereahénalyses were inconclusive. The
resulting behavioral data was pooled before armlyidie additional 5 repetitions
increased the power of statistical analyses austitited any consistencies in model
behavior across multiple experiment runs.

Data analysis

In all, 52 experiment sets with 572 total experitsemere conducted in Phase 3.
For Phase 4, a total of 70 experiment sets or Xpéranents were conducted. Each
experiment condition was run for 25,000 time ticksne series analyses of preliminary
model runs revealed that during some experimertsle@n schedules, equilibrium states
were not reached until 2,000 or 3,000 ticks hadioed. For data analysis, the first 5,000
ticks were discarded to ensure that model behdadrsufficient time to reach an
equilibrium state.

Rate and time series data was constructed out®fis@-tick blocks. This 500
tick unit of analysis is similar to the one usedindies by McDowell and colleagues
(McDowell, 2004; McDowell and Caron, 2007; Kulub&koand McDowell, 2008;
McDowell, Caron, Kulubekova, and Berg, in presg)e Total number of responses and
reinforcements collected during a 500 tick windoaswecorded. The number of
responses and reinforcements across all 500 ticlaws in an experiment run was
averaged to obtain the experiment-wise responseeanidrcement rates.

The single-alternative classic and modern matchingtions seen in Equations 1
and 2, respectively, were fitted to the responskramforcement rate data using least
squares regression. Thé&/b expression in Equation 2 was fitted as a singlehatause

values ofre andb will be indeterminate (i.e. for any valuemfchosen, a correspondibg
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could be found that would keep the unif/b, constant) if fitted as separate parameters.
See McDowell (2005) for a further discussion otirfg the modern matching function.
For experiment sets with operant levels higher thean additionaly”, parameter was
added to Equations 1 and 2 to account for the litgbf model behavior to fall below
the operant level.

Function parameters were iterated via MicrosoftdEscSolver add-in tool until a
minimal sum of squares value was obtained. Thesdand modern matching hyperbola
parameters were recorded as well as the perceanearaccounted for (i.e. pVAF ofR
For each fit to model data, the standardized ressdwere plotted against the predicted
response rates and examined for non-random pattemasios were used to determine if
cubic or quartic polynomial trends existed in thsiduals. Because the probability of
fitting a polynomial to any set of data increasgshee polynomial order approaches the
number of data points, single experiment setitsch contained a maximum of 11 data
points, were evaluated fo*®rder polynomial residual trends. Pooled data tsdiom
Phase 4, which consisted of up to 55 data poirgse wvaluated fororder
polynomials. To detect any non-random patternsanobunted for by polynomial curve
fitting, residual plots were visually evaluated.

Finally, the overall effectiveness of the model waaluated by calculating the
probability that the number of significant non-randresidual trends found was due to
random chance (e.g. Type | error) for each decagtion across all parameter

conditions. The binomial probability function,

z k,( - (©)
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givesP, the binomial probability of findingo or more significant results whertotal
tests are performed that each have a probahplityf being due to chance. This method
was similar to that used by McDowell (2004) andllibwed all the results from each
decay function condition to be evaluated in a girigkt together. Calculated binomial
probabilities less than .05 were considered sigguifi evidence that the model, using a
specific decay function, produced behavior incaesiswith matching theory. In other
words, aP < .05 indicated a probability less than 5% thatrthmber of significant

polynomial trends found in a group of behavior dags due to chance alone.

Results

Programming the Model

The model was successfully programmed in VisuaiBaNET 2003.
Approximately 2000 lines of new code were writtenmhplement the model
computationally. When possible, model functionseygrogrammed using equations and
descriptions of functions adapted from Catania $300°0 reduce the possibility of
systematic error in the computational model, ectarcking functions were programmed
to check for model behavior inconsistent with expédehavior and to ensure accurate
data analysis.
Model Verification

The operant reserve computational model was rug3@00 ticks on a Rl 8
schedule of reinforcement with a 0 percent opde@ of behavior, a MIC of 3 percent,
and a DCR of 1 percent. A cumulative response tea@s generated and compared to

results reported in Catania (2005). Figure 3 shawwsulative records with lengths of
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1000 and 10,000 ticks to illustrate the detailed averall model behavior for this
experiment respectively. An examination of the clative record, revealed an overall
steady rate of responding with some minor pertuwhat There were no patterns in the
data that would suggest programming errors or prablin replication of the Catania
model. In sum, the model’s behavior resembleddirganism data and was similar to that
reported in Catania (2005).
Systematic Model Testing — Varying the Decremetitddreserve

The effect of the decrement to the reserve (DGtR) a response was evaluated
in a collection of experiments where the DCR wasedawhile all other model
parameters remained constant. The MIC was sepy@nt of the maximum reserve
size and the operant level to O percent. Six erpEnt sets with the DCR set to .3, 1, 1.5,
2.1, 2.7 and 3 percent, respectively, were rureémh decay function form. Average
response and reinforcement data from each schadtlle experiment set were plotted.
Figure 4 shows results for the reciprocal, expaagrtyperbolic, and linear decay
function forms. For all decay functions, changihg DCR affected the behavior of the
model. At lower DCR values, small increases infagitement rates produced large
changes in the response rate. Increases in DCRa@$u less sensitivity to
reinforcement. As the value of the DCR increasadydr increases in reinforcement rate
were needed to produce the same change in respaaasat the highest DCR level (3
percent) where MIC and DCR were equal, the mogbgiéormance broke down to the
point where the maximum response rate was not \aethidVith a linear decay function,
the lowest DCR level (DCR = .3%) produced very higtes of responding with very

little reinforcement. In fact, the response ratgdreat approximately 325 responses per



22

500 ticks under RI 200 conditions as seen in twetaight panel in Figure 4. This
pattern of very high responding for very lean scheslwas not observed for the other
decay function forms.

The overall shape of the model behavior data wgshptotic in form for all decay
function types with the exception of experimenssehere the DCR was equal to the
MIC (DCR = 3%). Under these conditions, the dataned a straight line for the
reciprocal, exponential, and hyperbolic decay fiomctonditions as seen in Figure 4. For
the linear decay function, the shape for this cohmaliwas curvilinear and possibly
asymptotic but this latter assertion could not tweficmed because the model behavior
did not achieve the maximal rate of responding.

The type of decay function affected the degreefiwh the DCR affected model
behavior. For reciprocal, exponential, and hypechd¢cay functions, changes in the
DCR produced proportional changes in model behasalustrated by the consistent
spacing of the data across different DCR level grpnt sets in Figure 4. The behavior
of the model with a linear decay function was mdhkelifferent. The difference between
model behavior for DCR values .3, 1, 1.5, 2.1 afdp2rcent was much smaller than
model behavior using curvilinear decay functiondenthe same DCR conditions.
Additionally, the model’s behavior was greatly atted by a DCR equal to the MIC
(DCR = 3%) when compared to a DCR 10 percent Idinen the MIC (DCR = 2.7%).
The small decrease in DCR relative to the MIC poadlbehavior much more sensitive
to changes in reinforcement rate as seen in therlaght panel in Figure 4. This
sensitivity to DCR values close to the MIC levelsily observed in experiment sets

using linear decay functions.
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The classic and modern matching equations wesalfib all experiment set data,
the equations’ parameters were collected, percaidnce accounted for fRcalculated,
and residuals from each fit plotted and evaluatechdn-random patterns. The equation
parameters and?Ralues for all fits can be found in Table 2. THevBlues ranged from
.89 to 1.00 (rounded to two decimal placegylq = .99) for classic matching fits and
between .96 and 1.081¢in = 1.00) for modern matching fits. This result talkdone
would have indicated a high level of corresponddgnaeatching theory with the modern
matching equation describing the data best. Howewaluation of the residuals revealed
systematic deviations from both matching equataymé under most conditions.

Figures 5 through 8 show classic and modern magodguations fit to
experiment data from reciprocal, exponential, higpkec, and linear decay function
conditions respectively (MIC = 3%, operant levéd%, and DCR = 1%). These
conditions were chosen because they appeareddogedhe most realistic behavior.
The bottom plot shows the residuals resulting fthenfits. For reciprocal, exponential,
and hyperbolic decay functions the best fit clagsatching equation clearly deviates
from the model data despite high Walues. The poorness of fit is reflected in tha-no
random patterns of residuals and significant payiabtrends for the majority of model
conditions. While the modern matching equation deed the data better, a close
inspection also revealed systematic deviationschvirvere again reflected in non-random
patterns in many of the residuals.

The cause of these systematic departures fronmihé@yperbolic forms was
apparent in the plots of the experiment set datalé/Nthe classic matching equation

describes a hyperbolic function shape with a siiglection point, the experiment set
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data for the reciprocal, exponential, and hypediwmiodel conditions had two inflection
points as seen in Figures 5 through 7. One of timlsetion points was at high response
rate similar to location described by the classitahing equation. The second inflection
point appeared at lower response rates and wagfhetted in the classic matching
equation. Although the modern matching equationddxditional parametera,andb,
and fit the experiment set data better than thesaaequation, the non-random residual
patterns indicated that the experiment data wabesttdescribed by this function form
either. Additionally, the second inflection poinasvindicative of overmatching.
Although Figures 5 through 7 show results from DI@R value (1%), similar non-
random patterns were observed in the residuals ¢tagsic and modern equation fits to
most experiment sets with curvilinear decay fundias seen in Figures 9, 10, and 11.
In contrast to the reciprocal, exponential, andengplic decay function forms,
classic and modern equation fits to model behawmier a linear function form condition
produced much better fits’Ralues for both classic and modern equation fits 99
or above for all experiment sets. Figure 8 showssit and modern equation fits to
model behavior for MIC, operant level, and DCR eslof 3, 0 and 1 percent
respectively. The second inflection point obsermvechodel behavior under curvilinear
decay function forms was not present. Both classec modern equations with best-fit
parameters adhered closely to the data. A quakt&valuation of the residuals in Figure
8 did not immediately reveal any non-random pagieHowever, the model’s response
rate was highly sensitive to reinforcement rateanridese conditions. As shown in
Figure 8, there was data for response rates neaanéd above 400 but none in between

those values. Given this lack of data, the claastt modern equation fits to the data were
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effectively for response rates above 400 respgoseS00 ticks. An examination of the
residuals for all DCR levels under linear decayction conditions, indicated similar
gaps in model data for other DCR levels (see Fig@je Additionally, significant
polynomial trends were found for 4 of 6 DCR valtested for both classic and modern
matching functions.
Systematic Model Testing — Varying the IncremetiiédReserve

The effect of the maximum individual contributi@MIC) was evaluated in a
collection of experiments where the MIC was vabed other model parameters held
constant. DCR was set to 1.5 percent while opdeast remained at O percent for all
experiments in the collection. This DCR value wiagsen because the model appeared to
perform best under these conditions and it allofeec slightly different parameter value
than that tested while systematically varying tiH&RD Four experiment sets where the
MIC was set to 1.5, 3, 5, and 10 percent, respagtiwere run for each decay function
form. Average response and reinforcement data &aom schedule in the experiment
were plotted. Figure 13 shows the results for edlay function forms and MIC levels.
For reciprocal, exponential, and hyperbolic deaactions, different MIC levels affected
model behavior. Higher MIC levels were associatétl greater sensitivity to
reinforcement rate for all MIC levels except wheifCOMvas equal to DCR (1.5%). In
results mirroring those obtained from varying DCBntioned previously, model
performance deteriorated to the point where theimam rates of reinforcement and
responding were not achieved when MIC was equBIGR. In contrast to the curvilinear
decay functions, changes in MIC did not productetices in model behavior when the

decay function was linear as seen in the lowert pitt of Figure 13. The only exception
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to this was when MIC equaled DCR level, but the efedbehavior broke down under
this condition did not reach the maximum reinfore@and response rates.

For all decay function conditions, the overallghaf the data was asymptotic in
form with the exception of experiment sets wheee@DCR was equal to the MIC (MIC =
1.5%). Under equal MIC/DCR conditions, the datarfed a straight line for the
reciprocal, exponential, and hyperbolic decay fioms and a curvilinear line for the
linear decay function. These results were simdahbse obtained when varying DCR.
The second inflection point was observed agairsults from the reciprocal,
exponential, and hyperbolic functions. The sevenitthis inflection point appeared to
vary with MIC level. At lower MIC levels, the seadinflection point was more
pronounced than at higher MIC levels.

With a linear decay function, the effect of a MEvél equal to the DCR was very
pronounced. As mentioned previously, model behalgberiorated when the MIC
equaled the DCR. However, increasing the MIC frolhdercent and equal to the DCR
to 3 percent, changed the model behavior signifigas seen in the lower right plot in
Figure 13.

The classic and modern matching equations weeslfiti all experiment set data,
the equations’ parameters were collectedyaues calculated, and the residuals plotted
and evaluated for non-random patterns. The equpticameters and’Ralues for all fits
can be found in Table 3. For the classic fitSy&lues ranged from .80 to 1.00 (rounded
to two decimal placesMdn = .995). R values for modern fits were all above .88dh =
1.00). Significant non-random patterns were nohtboonsistently in either classic or

modern matching fits (see Table 3). The linear gdgaction condition appeared to have
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the best fits with very high®values and only one condition with evidence ofistiaally
or visually significant non-random residuals.

Figures 14, 15, 16, and 17 show the residual pbotall experiment sets with the
DCR set to 1.5 percent, operant level set to Ogrmeey@and variable MIC.. For the linear
decay function condition, a non-random patterresfduals was evident for the modern
fit when the MIC was 3 percent as seen in the igit plot in Figure 17. When the MIC
was 5 and 10 percent, no systematic trends werediately obvious in the residuals.
However, there were large gaps in the responsalatitedue to the model’s sensitivity to
reinforcement rate for MIC levels of 5 and 10 petc&lo data were available below a
response rate of approximately 350 responses [eti&3. Thus, the classic and
modern equation fits were only for response rabesa 350.
Systematic Model Testing — Varying the OperantiLeve

The effect of the operant level of behavior waaleated in a collection of
experiments where operant level was varied whiteomodel parameters were held
constant. The MIC and DCR were set to 3 percentlamercent, respectively, while the
operant level was set to 0, 4, and 8 percent getlbxperiment sets for each decay
function form condition. These MIC and DCR valuesr&chosen because they appeared
to produce the most realistic behavior as obseirv@devious experiments. Average
response and reinforcement data from each schadtlle experiment were plotted.
Figures 18 to 21 show the results from the recigregponential, hyperbolic, and linear
function forms. Changes in the operant level preduthanges in model behavior for all
decay function forms. The changes in model behaveye similar for reciprocal,

exponential, and hyperbolic function forms. Incesag operant level increased the
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effect of the inflection point seen at lower respemnates. Higher operant levels also
changed the y-axis intercept of the data. Theszsfican be seen in the lower plots of
Figures 18, 19, and 20.

The effect of differing operant levels was res#ttto low reinforcement rates. As
can be seen in the top plots of Figures 18, 192éndhe model behavior was similar
across all operant levels except for the lowesifoecement rates. The effect of operant
level under curvilinear decay function conditioppeared to be restricted to the leanest
schedules of reinforcement.

In contrast, the changes in model behavior dugatging operant levels was
markedly different when the decay function wasdm&Jnder zero operant level
conditions, the model’s behavior was split betweerry low rates of responding for the
lowest rates of reinforcement (R1 200, 112, and&®) very high rates of responding on
richer schedules (RI 25 and above) as seen in&@lr Therefore, no reliable data
points existed for response rates below 400 regsopesr 500 ticks. When the operant
level was increased to 4 and 8 percent, the respass for the three leanest schedules
increased markedly as seen in the three data gasters with the lowest response rates
in the lower plot of Figure 21. For all other r@rdement rates, different operant levels
had no appreciable effect.

The classic and modern matching equations wegslfib all experiment set data.
The equation parameters anthRlues for each fit are listed in Table 4. Fossla
equation fits, the Rvalues ranged from .90 to 1.00 (rounded to twardakplaces). For

modern equation fits, Ranged from .99 to 1.00. Figures 22 to 25 show-fieslassic
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and modern equations plotted with experiment datarh 8 percent operant level along
with the residuals from each fit.

For reciprocal, exponential, and hyperbolic deeaycfions, the response-
reinforcement plots showed significant systemagi¢iations from the best-fit classic
matching function despite large Ralues (.90 to .96). These deviations were reft:at
non-random patterns visible in the residual ploid significant polynomial fits (see
Table 4). The modern matching equation fit the expent data comparably better with
all R? values greater than .99. Upon visual inspectimemodern matching residuals
seen in the lower plots of Figures 22, 23, andi@ddt appear to have non-random
patterns. However, when comparing the residualdtieg from fits to data at the three
different operant levels (0, 4, and 8 percent) phtern of residuals was markedly
similar across all three datasets (as seen in €&gB8, 27, and 28) even though the
experiments were conducted independent of each. @beh consistency across
independent experiment runs with different modeapeeters qualitatively suggested that
non-random systematic deviations from the modentinirag equation existed but cubic
polynomial fits could not detect them.

Figure 25 shows model behavior with a linear ddoagtion and 8 percent
operant level along with best-fit classic and madaguation plots. A plot of the residuals
revealed systematic deviations from experiment fitatthe classic and modern matching
equations as seen in the lower portion of FigureP2ynomial fits to the residuals were
significant as well. However, residuals for then@ & percent operant levels did not
contain significant polynomial trends for eitheas$ic or modern matching fits (see

Table 4). Visual inspection did reveal a likely a@mdom pattern for the 4 percent
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condition but not the O percent condition as seethe top and middle panels of Figure
29. Most notably, the model appeared to be higahsgive to reinforcement rate under
all operant levels. As seen in Figure 25, rateesponding did not drop below 150
responses per 500 time ticks despite being ondelaadules of reinforcement at an 8
percent operant level. This effect was also obskforea 4 percent operant level. For the
0 percent condition, no data response data exs®deen 50 and 400 responses per 400
ticks.
Follow-up Model Testing - Five Repetition Experitsen

After the analyses of the single experiments werapleted, an additional series
of experiments with 5 repetitions per model comditwere conducted in an attempt to
clarify if non-random patterns observed qualitdineould be detected with the
additional power of pooled datasets. Given thegres of the second inflection point in
the majority of data produced under curvilinearajeftinction conditions, which has not
been reported in live organism data to date, onky/®repetition experiment was
conducted using a curvilinear decay function. Intcast, all linear conditions were
repeated five times and the pooled data analyzeddio-random patterns.

Reciprocal decay function with 4 percent operauele five repetitions

The operant model was run 5 times with the MICRP@nd operant level set to
3, 1, and 4 percent, respectively, with a reciprdegay function. This condition was
selected for additional repetitions because it peed realistic behavior with no
polynomial trends in the residuals from the matgtrequation fits. However, as noted
previously, similar residual patterns were qualiy observed across model conditions

indicating some systematic patterning in the reslgluAlthough the results were similar
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for both hyperbolic and exponential decay functonditions, the reciprocal form was
selected for further analysis because it was tibaydinction used for all data presented
in Catania (2005) and therefore most relevant jocamparisons.

Behavior data from the 5 repetitions was pooledtaednodern matching
function fit to the data. The residuals from thisifere plotted and analyzed for non-
random patterns using'through &' order polynomials. Figure 30 shows the residuals
from the single experiment set (the top panel) réseduals from the 5 identical, pooled
experiment sets (middle panel), and cubic and guaotynomials fit pooled residuals
(bottom panel). A non-random pattern is not cleddtectable by just evaluating the
single experiment. In contrast, the close groupihigesiduals resulting from the pooled
data fit (middle panel), clearly showed some namdoan pattern. Although this pattern
was easily detectable by qualitative analysis,igoificant trend was present{R .0091,
p = .93) using lower order polynomials (up t8 8rder). However, a quartic polynomial
fit was statistically significant (R= .87,p < .00001). The bottom panel of Figure 33
illustrates the goodness df érder polynomial fit in comparison to & 8rder
polynomial.

Five repetition results for all linear decay fuimst conditions

For each linear decay function condition, the cotaponal model was run 5
times with identical parameters. The resulting skt were pooled within each condition
and analyzed together. Classic and modern matc¢hirggions were fitted to the pooled
data and the resulting residuals plotted and etedufar 4" order polynomial trends. The

matching equation parameters and goodness-offissts can be seen in Table 5.
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Figures 31 and 32 show the residuals from classicmodern matching fits for
each DCR value, respectively, with a MIC of 3 pet@nd an operant level of O percent.
A qualitative inspection revealed clear non-randmatterns for all but one DCR value.
While the residuals for this condition (DCR = .3 dot clearly indicate systematic
deviations from the matching functions, there waslata for response rates less that 250
responses per 500 ticks. Polynomial fits to tlsédeals were significant for all
conditions and matching functions except for wHen@DCR was .3 percent (see Table 5)
indicating pervasive systematic deviations fromhboiatching function forms.

Results for experiment sets varying MIC were samiFigures 33 and 34 show
residuals from classic and modern matching fitsach MIC value, respectively, with a
DCR of 1.5 percent and an operant level of O pérdére plots for both classic and
modern functions clearly showed non-random pattertise residuals. Polynomial fits to
the residuals were significant for all conditionghithe exception of one condition (10
percent MIC and modern matching) which showed radttewards significancep(= .08).

Identical repetitions of experiment sets varyipgm@nt level produced results
indicating some increased model variability wittecgnt levels above 0 percent. Figures
35 and 36 show residuals from classic and modetohime fits for each operant level ,
respectively, with a MIC of 3 percent and a DCRL.gfercent. When the operant level
was 0 percent, the residuals were more closelyaskes together in comparison to the 4
and 8 percent operant levels. However, no datdeskisr response rates lower than 150
responses per 500 ticks for either 4 or 8 percespite lean reinforcement schedules.

Polynomial fits to the residuals indicated sigrafit non-random patterns in only the 0
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percent operant condition. No systematic deviatfoor® classic or modern matching
functions were statistically detected for eithex thor 8 percent operant conditions.
Model Effectiveness within Decay Function Type Aass Conditions

Binomial probabilities were calculated to deterenifthe significant residual
trends, evaluated together, could be due to cha@ieenumber of significant residual
trends observed for each decay function conditayoss all parameter values (i.e. MIC,
DCR, and operant level) was counted and a bingpnaability calculated using
Equation 9. For both classic and modern matchisgdi model data, significant binomial
probabilities were found for all decay functiondizating that the number of non-random
residual patterns was unlikely due to chance (sd#€16). The highest binomial
probability was observed for the modern matchibhgpfiexponential decay model daia,
=.025, where 3 out of 13 experiment sets contanmdrandom residuals. The binomial
probabilities for both classic and modern fitsite@ar decay model data were lower for
the 5 repetition pooled data when compared to fdaa single repetitions indicating that

increased statistical power strengthened the fgslfrom single repetition experiments.

Discussion
Programming and Verification of the Model
A computational model of the operant reserve wasessfully programmed and
model behavior was qualitatively similar to thgbogted in Catania (2005). Cumulative
response graphs created from model behavior wergstent with those published by
Catania (2005). Additionally, response-reinforcetr(&ar) plots generated from the

model using reciprocal decay functions showed endgdef a two inflection points. A
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close inspection of Catania’s (2005) Figure 11 ssgthat this phenomenon, observed in
the current data, is not unique to the current @m@ntation of the model. In sum, there
were no observed differences between the curredehtiehavior and that reported in
Catania (2005).
Systematic Model Testing

The effect of varying the decrement to the reséd@R), maximum individual
increment (MIC), and operant level were evaluatecehich decay function. Global
behavior qualities were consistent for each deaagtfon regardless of DCR, MIC, and
operant level values. For all curvilinear decayctions (reciprocal, exponential, and
hyperbolic), two inflection points were observedisr plots with the exception of when
MIC equaled DCR. The pattern of deviations impbgsrmatching where under-
responding occurs on lean schedules and over-rdsmpaccurs on rich schedules.
While overmatching has been observed in some ligarosm behavior (Aparicio, 2001),
it appears to be an exception to an overall treméitds undermatching. Although under
or overmatching has been most commonly measured gsncurrent schedules, the
additional parametes, in the modern matching single-alternative equeéiocounts for
under or overmatching. Values®f 1 correspond to perfect matching whale 1 anda
> 1 correspond to undermatching and overmatchagpactively. Out of 40 experiment
sets in the current study where MAOCR, only one set produced an undermatching
exponenta < 1. These results suggest that overmatching engergent property of the
operant reserve model that uses curvilinear dagagtibns.

Using a linear decay function, the operant resergdel’s behavior was notably

different. No second inflection point was obseruedny R-r plots. However, the
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exponenta, was larger than 1.0 for all but one set of mgdehmeters tested in the 5
repetition follow-up data. This result suggest thse of a linear decay function reduces
the degree of overmatching but does not elimirtaa#ogether.

The model’s sensitivity to changes in the parameiies varied with the type of
parameter. No differences in global model behawiere observed between the three
curvilinear decay functions. The overall shapehef R-r plots and parameters of the
matching equations were very similar in all cunélar decay function conditions. Model
behavior did vary when changing MIC, DCR, and optlavel.

For curvilinear functions, changes in DCR affedteel model’s sensitivity to
reinforcement rate. A wide variety of R-r shapes whtained by varying this parameter.
When DCR = MIC, the maximum response rate waseurthred. The overall shape of
the R-r plot under these conditions appeared t@ $teaight line. A small decrease in the
DCR, relative to the MIC, produced greater senijtito reinforcement rate and more
curvature in the R-r plot. The model became inénegyg sensitive to reinforcement rate
as DCR was decreased until very small increastigeinate of reinforcement produced
very large increases in response rate. For examptEr reciprocal decay function
conditions with a DCR, MIC, and operant level gf33and O percent, respectively, an
increase in the reinforcement rate from 8 to 26fcecements per 500 ticks produced an
increase in response rate from 125 to 444 reinfoeces per 500 ticks. This sensitivity to
changes in reinforcement rate resulted in verydata points for the mid-range of
response rates for many experiment sets. Ovdneliniodel’s response to varying DCR
values made it possible to produce a wide varie®-oplot shapes suggesting that a

variety of live organism behaviors could be simedhtvith the computational model.
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The model’s sensitivity to DCR changes differecewla linear decay function
was used. The greatest difference was observed 8&was close in value to MIC.
Under DCR=MIC conditions, the maximum rate of reggiog was not achieved despite
a maximally rich reinforcement schedule. When til@RDwvas decreased 10 percent
relative to the MIC, model behavior changed notalsiycontrast to a 10 percent decrease
in DCR using a curvilinear decay function, the eindecay function model behavior
immediately became highly sensitive to reinforcetmate. Subsequent decreases in the
DCR, produced much smaller changes in the sertgitivireinforcement when compared
to the same decreases but using a curvilinear deoation. At the lowest DCR relative
to MIC, the model behavior was so sensitive tofogoement that even the lowest
reinforcement rates produced very high rates giareding. Although using the linear
decay function produced less overmatching, theilitato produce a wide range of
sensitivity to reinforcement suggests that the rhodeld only simulate a narrow range
of live organism behaviors.

Changes in MIC while holding DCR constant produsidilar results in all
curvilinear decay function conditions. Again, whdiC=DCR, the model was less
sensitive to reinforcement rates and the maximwspaese rate was not reached despite a
maximum reinforcement rate. Increasing MIC produgeshter sensitivity to
reinforcement rates. Additionally, a wide varietynmodel behavior was produced
through varying MIC.

In contrast, variations in MIC produced minimaholyes in model behavior when
a linear decay function was used. Although the rhades insensitive to reinforcement

rate when MIC=DCR, as previously observed wheningripCR by itself, changes in
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MIC produced no appreciable variation in model h&ravhen MIC > DCR. This result
was unexpected given the success in changing D@PRothuce a variety of behavior and
suggests that DCR has a greater ability to prodheege in a model using a linear decay
function.

Variations in model behavior produced by changdabe operant level were
restricted to the leanest schedules of reinforceéfioerall decay function types. For all
curvilinear decay functions, the second inflectomint curvature and the y-axis intercept
as seen in an R-r plot increased. Higher operaetdaffected both inflection curvature
and y-axis intercept. For a linear decay functemmpperant level greater than 0 percent
produced higher rates of responding for the leasdstdules. These higher rates “filled
in” ranges of response rates that were previoussging when the operant level was set
to O percent. Subsequent and further increasesdaraat level (e.g. 4 vs. 8 percent) did
not produce additionally higher rates of respondorghe leanest schedules as observed
in curvilinear decay function conditions. Thisding suggests that a minimal operant
level is necessary to affect the model but furthereases have no additional affect when
using a linear decay function. It is notable tinat minimum response rate was not
achieved when the operant level was greater th@erdent suggesting that even leaner
schedules may be possible with a linear decay immeind non-zero operant levels.

Fits of the classic and modern matching equatiorxperiment data suggested
that the model behavior was not best accountedyfenatching theory. Non-random
patterns in the residuals from classic matchingagquo fits were observed in 34 of 39
single repetition experiment sets using curvilindacay functions. The modern matching

equation fit the curvilinear decay function datédewith 20 out of 39 experiment sets
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having non-random residual patterns. Despite tbeemental success of the modern
equation in comparison to the classic equatioremg@l non-random patterns were still
not fully explained. For example, a similar patterithe residuals was observed when
comparing across experiment sets with varying ogeeserve levels. However, no
polynomial trends (up to cubic) were significanteTpattern appeared to be high-order,
systematic pattern where standardized residudtsifetl a negative-positive-negative-
positive pattern. Because a single experiment conlg provide up to 11 data points that
could be analyzed, higher-order polynomial trendshsas quartic could not be evaluated
without risking false-positive fits. To obtain thecessary number of datapoints,
additional repetitions of the same experiment veereducted. With 5 repetitions of an
experiment set, up to 55 datapoints could be fited high-order polynomial trends
evaluated.

The data resulting from 5 repetitions of the expent set with 3 percent MIC, 1
percent DCR, and 4 percent operant level undepracal decay function conditions
provided robust evidence that neither the classimn@dern matching equations fit the
model’s behavior data. A qualitative observatiorthef pooled residuals from those 5
repetitions was sufficient to confirm the preseataon-random patterns. If the
residuals were random one would expect to seedonaly distributed cloud with no
observable systematic patterns and no relatioristipeen each repetition’s residuals.
Instead, the residuals from each repetition ofetkgeriment set are clumped together
indicating that similar residual values were ob¢alifirom each repetition of the
experiment set. Interestingly, when the pooleddugs were evaluated for polynomial

trends up to cubic, there were no significant teedbwever, quartic polynomial trend
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was significant. When observing the quartic treamelloverlaid on the pooled residuals,
the high-order, non-random pattern is clearly presgiven the similar pattern of
residuals from single experiment sets under curdr conditions, it is likely that high-
order trends exist in that data as well. Additiaregdetitions of all the curvilinear decay
functions experiment sets were not conducted foerse reasons. First, the presence of a
2"%inflection point in the all the curvilinear decunction data indicated that the operant
model under these conditions did not simulate biehalkat was comparable to live-
organisms. Second, the indication that overmatcaxigted also did not support
correspondence with live-organism data.

In contrast to curvilinear decay function data, ¢iperant model behavior data
under linear decay function conditions from thegk¥repetition experiment sets was
inconclusive. Although non-random residual patesmere found in over 65% of the
matching function fits, the amount of overmatchives less than with curvilinear decay
function conditions and no second inflection peuais found. The 5 additional
repetitions for each linear decay function condifpzovided the power necessary to
thoroughly evaluate the model for correspondendtle matching theory. When the
pooled data from the 5 repetition experiment sets analyzed, non-random residual
trends were found for all but two conditions. whiee operant level was 4 and 8 percent,
a statistically significant polynomial trend in thesiduals was not found for either classic
or modern fits.

It is notable that the Rralues for the classic and modern matching equiditis
were only moderately informative across all experits sets. The?Ralues indicated

that a high proportion of variance was accountedyoboth classic and modern
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equations. The lowest’Ralue was .89 indicating that 89 percent of théavae in the
experiment set data was accounted for by a mataygogtion. With live organisms, this
would be a respectablé Ralue given the variable nature of such data. fitesence of
significant polynomial trends in most of the cutrstudy data suggest that Ralues
alone are not sufficient to establish that a gabkals been achieved. Robust residual
analyses are necessary to establish the existéacgond fit.

Based on the current results, a simple model obfigant reserve is not
sufficient to simulate the behavior of live organss While the model tested in this study
produced behavior that was very similar to thdtvaf organisms, it did not produce
behavior that consistently adhered to matchingrthéginomial probability calculations
indicated that, when considered together, the numib&gnificant non-random patterns
found in the data was unlikely due to chance.rams possible that some combination
of model parameters could reliably produce matchiggavior. Knowing which
parameters to use is unclear based on the cugsuits although the incremental success
of a linear decay function and operant level gnetihan zero suggest that these areas
may warrant further investigation. Given the widage of values currently tested with
minimal success, it is likely that any such “petfemmbination of parameters would be
very sensitive to any deviations from the “perfemtinbination. It is also possible that a
more complex model as summarized by Killeen (1288)d produce realistic behavior.
Even Skinner (1938), in his original conceptualaabf the reserve, envisioned a more
complex model. The added complexity of a complexiehaan be problematic, however.
With each additional component added, the numbposs$ible parameter combinations

increases. Thus, the chance of error (i.e. findipgrticular set of parameters that
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produces realistic behavior when the model itseffat a robust behavior simulator) rises
as well.

The current study raised certain methodologicalicagons as well. Problems
arose when the residuals from a single experimsntld data point maximum) were
evaluated. The residual plots clearly showed nowloen patterns for many model
conditions. Higher order trends were not apparedtgolynomial trend analysis was
limited to lower order trends because the risk & | error. Identical repetitions of
experiment sets proved highly informative. Firgipling the additional repetition data
added power to the residual trend analysis makigigein-order trend analysis possible.
Second, residuals could be compared across ideatipariment set repetitions. If the
residuals were random, then one would expect t@saadom cloud of residuals where
no relationship existed between residuals fromexperiment and another. When the
residuals were similar, they appeared clumped hagein residual plots indicating the
possibility of a systematic pattern. However, tresbnherent in visual inspection of data
is a drawback and quantitative techniques are metdeemove any analytical bias. Work
with live organisms is unlikely to need such anaslysols because of high random error
in such data. As computational models of behavewetbp, the opportunity to simulate
behavior under truly identical conditions will ligerequire the development of new
analysis tools. These tools should take advantatfee@omputational environment and
be able critically evaluate simulated behavior.

Although the model did not reliably produce reaistehavior, it is notable that
the decay function that produced the best behavésra linear one. The result is

surprising because, to date, the decay of memaonyré&vious events has been
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conceptualized as curvilinear with reciprocal, engutial, and logarithmic functions
being proposed as potential decay functions (Catami Shimoff, 1996; Killeen, 1994;
Mazur, 1987). These curvilinear functions are elpselated and therefore it should not
be surprising that there were few differences idetdehavior across hyperbolic,
exponential, and reciprocal decay functions indimeent results. Previous research has
demonstrated preference for stimuli that reducdithe until a reinforcement event
occurs with the degree of preference being propeatito the reduction in time (e.qg.
delay reduction theory, Fantino, 1969). This relaship between degree of stimuli
preference and time until reinforcement has beepgsed to be linear in form (A. Reid,
personal communication, June 5, 2008). Althoughdtbncept of delay reduction is not
directly comparable to calculating the increaseegponse probability by summing
incremental values from a series of previous resgsifas in the current model), it does
provide some indirect evidence that a value ofemponse is linearly related to time until
reinforcement.

Although the current study found evidence that sgtgf the operant reserve
model does not reliably and robustly produce raaltsehavior, several results should be
followed up in future work and an alternative moeedluated. First, all curvilinear decay
function conditions should be evaluated with 5 eixpent set repetitions to evaluate
whether single experiment sets with non-signifidagnds in contain higher-order trends.
Second, other decay functions should be evaluatéda@ampared to the current results.
Specifically, a convex function form, which has been evaluated previously, could be
informative considering the current finding thdess concave function (i.e. linear)

produced more realistic behavior. Multi-paramekecay functions could also prove
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useful by indicating which decay function propestgroduce what type of behavior.
Third, the operant levels should be evaluated &usrtiecause the correspondence with
matching theory improved when the operant level waeased. Fourth, the fundamental
assumptions of the model such as decay functioc#tion should be tested to determine
if their effect on the model. Finally, it should beted that studies with concurrent or
other more complex schedules are not indicateldispbint. It is unlikely that such
experiments would provide useful information givkat the model does not produce

realistic behavior on basic, single alternativeesithes.
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Table 1

Simple decay function forms and constant, c, canerfactors.

Maximum Incrementlfay)

Function Equation Conversion Factor
Reciprocal P :d_co’ (6) ¢ = Imax
Exponential p=ce®, (7) C=e€- Imax
Hyperbolic p= ﬁ , (8) ¢= 2 Ina
Linear p=-d,+c, (9) C = Imax

47
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Table 2

Maximum individual contributions (MIC), maximum imidual contribution to decrement
ratio (MIC:DCR), operant level, parameters of bé&ting classic and modern
hyperbolas, and percent variance accounted féf B classic and modern hyperbalas

Classic hyperbola Modern
Parameters hyperbola parameters
Operant Te
MIC DCR Level k re R k a b R
Reciprocal decay
function
3 3 0 89847 89538 1.00* 31384 1.01 32968 1.00*
3 2.7 0 2454 1942 1.00 1202 1.19 140 1.00*
3 2.1 0 979 427 0.98 7451 0.70 981 0.96*
3 15 0 756 180 0.95* 526 2.35 39537 0.99
3 1 0 644 77 0.94* 511 2.51 19989 0.99
3 0.3 0 560 13 0.89* 497 2.95 1095 1.00*
Exponential decay
function
3 3 0 89853 89532 1.00* 2044 1.10 3029 1.00*
3 2.7 0 2849 2340 1.00 1901 1.06 2038 1.00
3 2.1 0 1069 536 0.99 605 1.70 7682 1.00
3 15 0 813 245 0.97* 545 1.98 11541 0.99
3 1 0 697 124 0.96* 527 2.10 7698 0.99
3 0.3 0 574 22 0.94* 509 2.18 665 0.99
Hyperbolic decay
function
3 3 0 89843 89542 1.00* 7925 1.02 8707 1.00*
3 2.7 0 2041 1523 1.00 1422 1.14 2191 1.00
3 2.1 0 897 328 0.96 542 2.23 51815 0.99
3 15 0 701 125 0.94 506 3.06 467024 1.00
3 1 0 605 45 0.92* 496 3.46 238913 1.00*
3 0.3 0 548 9 0.91* 494 2.79 266 1.00
Linear decay
function
3 3 0 557 188 1.00 544 1.02 192 1.00
3 2.7 0 542 25 0.99* 478 1.92 462 1.00*
3 2.1 0 511 12 1.00* 508 1.05 13 1.00*
3 15 0 515 9 1.00* 498 1.23 16 1.00*
3 1 0 504 5 1.00 403 1.02 5 1.00
3 0.3 0 501 2 1.00* 504 0.93 1 1.00*

* statistically significantf{ < .05) non-random pattern in the residuals
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Table 3

Maximum individual contribution (MIC), decrementGR), operant level,
parameters of best-fitting classic and modern hppks, and percent variance
accounted for (B by classic and modern hyperbolas.

Classic hyperbola Modern
Parameters hyperbola parameters
Operant Te
MIC DCR Level k re R k a b R
Reciprocal
decay function
1.5 15 0 79202 78872 1.00* 122243 0.61 13969 1.00*
3 15 0 756 179 0.95* 527 2.34 37550 0.99
5 15 0 616 59 0.96* 505 2.27 4920 1.00
10 15 0 534 16 0.99* 491 2.06 444 1.00*
Exponential
decay function
1.5 15 0 44382 44033 1.00* 40754 0.66 5930 0.94*
3 15 0 819 249 0.96* 547 1.95 10293 0.99
5 15 0 640 88 0.98 505 2.66 66601 1.00*
10 15 0 577 37 0.97* 498 2.19 1908 1.00
Hyperbolic
decay function
1.5 15 0 369491369183 1.00* 2723 1.02 2808 1.00*
3 15 0 701 124 0.94 506 3.10 527384 0.99
5 15 0 506 8 0.80* 490 3.39 149974 1.00
10 1.5 0 513 10 1.00* 500 1.30 24 1.00
Linear decay
function
1.5 15 0 574 190 1.00 471 1.23 381 1.00
3 15 0 513 9 1.00* 500 1.17 13 1.00
5 15 0 505 8 1.00 508 0.96 7 1.00
10 15 0 507 8 1.00 507 0.99 8 1.00

* statistically significant{ < .05) non-random pattern in the residuals
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Maximum individual contributions (MIC), decremebiQR), operant level,
parameters of best-fitting classic and modern hppks, and percent variance

accounted for (B by classic and modern hyperbolas.

MIC DCR
Reciprocal
decay function

3 1
3 1
3 1
Exponential
decay function
3 1
3 1
3 1
Hyperbolic
decay function
3 1
3 1
3 1
Linear decay
function
3 1
3 1
3 1

Operant
Level

0~ O 0 M~ O

0 M~ O

0
4
8

Classic hyperbola

Modern

Parameters hyperbola parameters
e
k e R k a b yo R
644 77 0.94* 502 2.62 31474 7 0.99
650 80 0.94* 470 3.07 226565 34 1.00
643 76 0.94* 451 3.42 962231 50 1.00
697 124 0.96* 513 2.23 13805 10 0.99
697 125 0.95* 480 2.58 71245 34 1.00
689 119 0.95* 461 2.84 235456 49 1.00
605 45 0 0.92* 492 3.46 243398 3 1.00*
612 48 0 0.90* 474 3.53 344643 26 1.00
607 46 0 0.90* 446 4.20 4597042 47 1.00
504 5 0 1.00 503L.02 5 0 1.00
504 5 0 1.00 5031.00 5 0 1.00
502 5 0 1.00*+ 508 0.93 5 0 1.00*

* statistically significant{ < .05) non-random pattern in the residuals
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Table 5

Maximum individual contributions (MIC), decremebGR), operant level, parameters of
best-fitting classic and modern hyperbolas, anccpet variance accounted for{fby
classic and modern matching functions resultingrfi® repetition pooled data.

Classic hyperbola Modern
Parameters hyperbola parameters
Opera

Ml DC nt y E y

C R Level k e * R k a b ¥ R
Varying DCR

3 3 0 571 188 - 1.00* 533 1.07 233 - 1.00%*

3 2.7 0 527 19 - 0.99* 496 1.42 68 - 1.00*

3 2.1 0 513 12 - 1.00* 500 1.20 21 - 1.00*

3 1.5 0 508 8 - 1.00* 503 1.08 10 - 1.00*

3 1 0 507 6 - 1.00* 498 1.15 8 - 1.00*

3 0.3 0 501 1 - 1.00 500 1.02 2 - 1.00
Varying MIC

15 15 0 572 188 - 1.00* 468 1.24 390 - 1.00

3 15 0 509 9 - 1.00* 503 1.09 11 - 1.00%*

5 15 0 511 9 - 1.00* 500 1.16 13 - 1.00*

10 1.5 0 510 8 - 1.00% 501 1.14 12 - 1.00*
Varying Operant Level

509 6 1.00* 497 1.18 8 0 1.00*%
3 1 0 0
3 1 4 493 5 1 1.00 497 0.99 5 8 1.00
1
3 1 8 485 5 1 1.00 483 1.00 5 2 1.00
9 1

*statistically significantff < .05) non-random pattern in the residuals



Table 6

Binomial probabilities of finding significant residl trends across 13 model
conditions.

Classic Modern
Decay Function K p K p
Reciprocal 11 3.5 x 19 6 2.0x 10
Exponential 10 2.4 x 16 3 .025
Hyperbolic 9 1.2 x 10 4 .003
Linear (1 repetition) 6 2.0 x}0 5 2.9 x 1d
Linear (5 repetitions) 10 2.4 x10 9 1.2 x 18

ki number of significant non-random residual patteinserved
P: binomial probability
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Figure Captions
Figure 1 Top graph shows a reciprocal decay function gradieproduced from Catania
(2005). Responses contribute to the operant redgrae amount determined by the
value of the delay gradient at the time coincideith the response. Bottom graph shows
a truncated delay gradient utilized to avoid oygplag delay gradients.
Figure 2 Comparison of simple reciprocal, exponential,dipolic, and linear decay
function forms.
Figure 3 Single alternative cumulative records of an operaserve computational
model on a RI 8 schedule of reinforcement with@pr@cal decay function, 0 percent
operant level of behavior, a decrement of 1 per@end the maximum increment set to 3
percent of the maximum reserve.
Figure 4 Response-reinforcement plots of a computatiopatant reserve model with
MIC = 3 %, 0 % operant level, and varying DCR (31.5, 2.1, 2.7 and 3 %) for four
decay functions (reciprocal, exponential, hypexyand linear).
Figure 5 Response-reinforcement plot with overlaid classid modern fitted
hyperbolas (top graph) for computational operas¢mee model with reciprocal decay
function, O percent operant behavior level, 3 perddC, and a 1 percent DCR. Bottom
graph shows residuals of classic and modern hypesbo
Figure 6 Response-reinforcement plot with overlaid classid modern fitted
hyperbolas (top graph) for computational operas¢mee model with exponential decay
function, O percent operant behavior level, 3 perddC, and a 1 percent DCR. Bottom

graph shows residuals of classic and modern hypsesbo
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Figure 7. Response-reinforcement plot with overlaid classid modern fitted
hyperbolas (top graph) for computational operas¢mee model with hyperbolic decay
function, O percent operant behavior level, 3 perd4C, and a 1 percent DCR. Bottom
graph shows residuals of classic and modern hypesbo

Figure 8 Response-reinforcement plot with overlaid classid modern fitted
hyperbolas (top graph) for computational operasémnee model with linear decay
function, O percent operant behavior level, 3 perd4C, and a 1 percent DCR. Bottom
graph shows residuals of classic and modern hypesbo

Figure 9 Standardized residuals from six classic and motgperbola fits to operant
reserve computational model behaviors with a reci@rdecay function, O percent
operant behavior level, and 3 percent MIC for sGRDvalues.

Figure 10 Standardized residuals from six classic and nmobgperbola fits to operant
reserve computational model behaviors with a exptaedecay function, O percent
operant behavior level, and 3 percent MIC for sGRDvalues.

Figure 11 Standardized residuals from six classic and nmobgperbola fits to operant
reserve computational model behaviors with a hyperldecay function, O percent
operant behavior level, and 3 percent MIC for s@Mvalues.

Figure 12 Standardized residuals from six classic and modgperbola fits to operant
reserve computational model behaviors with a linksgmay function, O percent operant
behavior level, and 3 percent MIC for six DCR value

Figure 13 Response-reinforcement plots of a computatiopatant reserve model with
DCR = 1.5 percent, 0 percent operant level, angingMIC (1.5, 3, 5 and 10 percent)

for four decay functions (reciprocal, exponentmiperbolic, and linear).
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Figure 14 Standardized residuals from four classic and modgperbola fits to operant
reserve computational model behaviors with a rec@rdecay function, 0 percent
operant behavior level, and 1.5 percent DCR for MIC levels.

Figure 15 Standardized residuals from four classic and mobgperbola fits to operant
reserve computational model behaviors with a exptaedecay function, 0 percent
operant behavior level, and 1.5 percent DCR for MIC levels.

Figure 16 Standardized residuals from four classic and mobgperbola fits to operant
reserve computational model behaviors with a hygerllecay function, 0 percent
operant behavior level, and 1.5 percent DCR for MIC levels.

Figure 17 Standardized residuals from four classic and modgperbola fits to operant
reserve computational model behaviors with a limkgray function, O percent operant
behavior level, and 1.5 percent DCR for four MI@dks.

Figure 18 Effect of varying operant behavior level for camggional operant reserve
model with reciprocal decay function, 3 percent Mé@d a 1 percent DCR. Upper plot
shows entire range of results. Lower plot showslorange of same results.

Figure 19 Effect of varying operant behavior level for camggional operant reserve
model with exponential decay function, 3 percenClVdnd a 1 percent DCR. Upper plot
shows entire range of results. Lower plot showselornge of same results.

Figure 2Q Effect of varying operant behavior level for camggional operant reserve
model with hyperbolic decay function, 3 percent Méd a 1 percent DCR. Upper plot

shows entire range of results. Lower plot showselorange of same results.
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Figure 21 Effect of varying operant behavior level for camggional operant reserve
model with linear decay function, 3 percent MICdanl percent DCR. Upper plot shows
entire range of results. Lower plot shows lowegenof same results.

Figure 22 Response-reinforcement plot with overlaid classid modern fitted
hyperbolas (top graph) for computational operas¢mee model with reciprocal decay
function, 8 percent operant behavior level, 3 perddC, and a 1 percent DCR. Bottom
graph shows residuals of classic and modern hypesbo

Figure 23 Response-reinforcement plot with overlaid classid modern fitted
hyperbolas (top graph) for computational operas¢mee model with exponential decay
function, 8 percent operant behavior level, 3 petrd4C, and a 1 percent DCR. Bottom
graph shows residuals of classic and modern hypesbo

Figure 24 Response-reinforcement plot with overlaid clagsid modern fitted
hyperbolas (top graph) for computational operas¢mee model with hyperbolic decay
function, 8 percent operant behavior level, 3 petrd4C, and a 1 percent DCR. Bottom
graph shows residuals of classic an d modern hgfesb

Figure 25 Response-reinforcement plot with overlaid classid modern fitted
hyperbolas (top graph) for computational operas¢mnee model with linear decay
function, 8 percent operant behavior level, 3 perddC, and a 1 percent DCR. Bottom
graph shows residuals of classic and modern hypesbo

Figure 26 Standardized residuals from classic and modepeopla fits to operant
reserve computational model behaviors with a reciglrdecay function, 3 percent MIC,

1 percent DCR, and three operant behavior levels.
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Figure 27 Standardized residuals from classic and modepeitiypla fits to operant
reserve computational model behaviors with an egptal decay function, 3 percent
MIC, 1 percent DCR, and three operant behaviori¢eve

Figure 28 Standardized residuals from classic and modepeopla fits to operant
reserve computational model behaviors with a hygerillecay function, 3 percent MIC,
1 percent DCR, and three operant behavior levels.

Figure 29 Standardized residuals from classic and modepeopla fits to operant
reserve computational model behaviors with a linkgray function, 3 percent MIC, 1
percent DCR, and three operant behavior levels.

Figure 30 Standardized residuals from modern hyperboldditgperant reserve
computational model behaviors resulting from sir{gde panel) and five identical
(middle panel) experiments sets with a linear déaagtion, 3 percent MIC, and 1
percent DCR. Bottom panel shows cubic and qupdignomial fits to 5 experiment set
pooled data.

Figure 31 Standardized residuals from classic hyperbaotaditoperant reserve
computational model behaviors resulting from figentical experiments with a linear
decay function, O percent operant behavior level, Zpercent MIC for six DCR values.
Figure 32 Standardized residuals from modern hyperboldditgperant reserve
computational model behaviors resulting from figentical experiments with a linear
decay function, O percent operant behavior leve, Z&percent MIC for six DCR values.
Figure 33 Standardized residuals from classic hyperbodaditoperant reserve

computational model behaviors resulting from figentical experiments with a linear
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decay function, O percent operant behavior leved, A5 percent DCR for four MIC
levels.

Figure 34 Standardized residuals from modern hyperboldditgperant reserve
computational model behaviors resulting from figentical experiments with a linear
decay function, O percent operant behavior leved, B5 percent DCR for four MIC
levels.

Figure 35 Standardized residuals from classic hyperbodaditoperant reserve
computational model behaviors resulting from figentical experiments sets with a
linear decay function, 3 percent MIC, 1 percent D@RI three operant behavior levels.
Figure 36 Standardized residuals from modern hyperboldditgperant reserve
computational model behaviors resulting from figentical experiments sets with a

linear decay function, 3 percent MIC, 1 percent DGR three operant behavior levels.
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