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Abstract

Develop multireference quantum embedding theories for chemical
applications
By Nan He

Multireference computations of large-scale chemical systems are typ-
ically limited by the computational cost of quantum chemistry methods.
Quantum embedding schemes are a promising way to extend multirefer-
ence computations to large molecules with strong correlation effects lo-
calized on a small number of atoms. In this dissertation, we develop a
series of quantum embedding schemes named active space embedding the-
ory (ASET) for multireference computations. The schemes include mean-
field active space embedding theory [ASET(mf)], a simple and automatic
approach for embedding any multireference dynamical correlation method
based on a frozen-orbital treatment of the environment; and second-order
active-space embedding theory [ASET(2)] which improves upon mean-
field frozen embedding by treating fragment–environment interactions via
an approximate canonical transformation. We benchmark ASET(mf) and
ASET(2) on various systems, including the N=N bond dissociation in pentyl-
diazene, the S0 to S1 excitation in 1-octene, and the interaction energy
of the O2–benzene complex. In addition, the ASET schemes are used to
study the singlet-triplet gap of p-benzyne and 9,10-anthracyne diradicals
adsorbed on a NaCl surface; the inversion of CO on NaCl(100) surface. De-
spite their simplicity, our results show that ASET schemes are robust and
sufficiently accurate, applicable when the coupling between the fragment
and the environment is in the weak to medium regime. The ASET(2) ex-
plicit treatment of fragment–environment interactions beyond the mean-
field level generally improves the accuracy of embedded computations.
However, it becomes necessary to achieve an accurate description in several
cases. This dissertation also discussed the potential future developments of
ASET.
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Chapter 1

Introduction

1.1 Multireference electronic-structure theories

Electronic Schrödinger Equation Theoretical modeling has become one

of the essential tools for chemists to understand properties and reactions of

molecules. For problems of different scales, different theoretical methods

apply. Electronic structure theories focus on the highly accurate prediction

of electronic states. They are powerful tools for studying reactions of small

to middle-scale molecules. Electronic structure theories are based on the

time-independent electronic Schrödinger equation:

Ĥ |Ψ⟩= E |Ψ⟩ (1.1)
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where for N-electron systems, the Hamiltonian operator can be written as

either

Ĥ =
N

∑
n=1

T̂n +V̂ (1.2)

where T̂n are kinetic operators and V̂ is the potential energy function, or

using second-quantized notation as

Ĥ = ∑
pq

hq
pâ†

pâq +
1
4 ∑

pqrs
⟨pq||rs⟩ â†

pâ†
qâsâr (1.3)

The first and second term of Eq. 1.3 account for one- and two-body elec-

tron interactions, respectively. hq
p is the one-electron integral and ⟨pq||rs⟩

is the two-electron integral. While â† and â are creation and annihilation

operators, respectively.

Solving the electronic Schrödinger equation is not an easy task. One

way to solve this equation is by separating the variables. By separating the

variables, every electron i will have its own eigenvalue and eigenfunction

(φi), and the total wavefunction (Ψ) is the product of all those single elec-

tron eigenfunctions (Ψ = ∏
N
i=1 φi) However, since the N-electron wavefunc-

tion is not generally a product, this separation step is an approximation,

which means that we assume that the single-electron movement is indepen-

dent of the movement of other electrons. This treatment is called the mean-

field approximation. Due to the antisymmetric nature of the fermions, it is

more convenient to represent the N-electron wavefunction Ψ using a basis
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of Slater determinants:[158]

Ψ(x1,x2, . . . ,xN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) · · · φN(x1)

φ1(x2) φ2(x2) · · · φN(x2)

...
... . . . ...

φ1(xN) φ2(xN) · · · φN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
≡ |φ1,φ2, · · · ,φN⟩

≡ |1,2, . . . ,N⟩.

(1.4)

The next step to solving the Schrödinger equation is to make assumptions

about the structure of the solution. The most straightforward form is a so-

lution function containing only one Slater determinant. In the next section,

we will discuss this approach.

Single-Reference Methods Here we will start discussing the Hartree-

Fock approach, together with all the context used in the following chap-

ters. The Hartree-Fock method utilizes the mean-field approximation men-

tioned above and uses the single Slater determinant as the guess to the

wave function.[69, 53] The core procedure of the Hartree-Fock approach is

the variational optimization of the orbital wavefunctions, which minimize

the total energy. This variational optimization is equivalent to solving a set

of self-consistent field equations for the Fock matrix and orbitals:[145]

F̂φi = εiφi. (1.5)
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In practice, the molecular orbitals are expressed on a linear combination of

atomic orbital (AO) basis functions,

φp(r) =
AO

∑
µ

χµ(r)Cµ p, (1.6)

where Cµ p denotes the coefficient matrix. Since the AOs are not orthogo-

nal, the Hartree-Fock self-consistent field equations in the AO basis is rep-

resented as,

FC = SCE, (1.7)

where S is the AO overlap matrix, and E is the eigenvalues (orbital ener-

gies). We can then obtain the final orbital energies E and corresponding

orbital wavefunctions C by solving this general eigenvalue problem.

Methods like Hartree-Fock are referred to as single-reference (SR) meth-

ods, since they build the solution starting from a single Slater determinant.

Due to the mean-field approximation, the Hartree-Fock solution ignores the

electron correlation completely. However, there are different approaches to

reclaim those correlations. Starting from the Hartree-Fock solution, post-

SCF theories like Møller–Plesset perturbation (MP2) theory, configuration

interaction (CI) theory, coupled-cluster (CC) theory, and many other theo-

ries can partially or fully recover the ignored correlation.[128, 156, 154] It

is worth mentioning that besides those wavefunction theories (WFT) men-

tioned above, there are also other approaches to approximately solve the
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electronic Schrödinger equation. One alternative solution is density func-

tional theory (DFT), which uses density instead of energy to formulate an

SCF scheme. In analogy to the Hartree-Fock equation, the self-consistent

scheme is formulated to the Kohn-Sham equation.[153] In this equation,

free electron-gas density is treated as the zeroth-order solution, and the

higher-order interactions are added by including local density, the gra-

dient of local density, and other corrections to the exchange-correlation

functional. Though the assumption of DFT is different from the mean-

field approximation, DFT is still generally considered a single-reference

method.[40]

Though by increasing the order of CI and CC, single reference meth-

ods can approach the full numerical solution of the electronic Schrödinger

equation, the cost is forbiddingly expensive. In practice, we generally trun-

cate theories to explicit two-body interactions. The coupled-cluster with

singles, doubles, and perturbative triples (CCSD(T)) is regarded as the

"golden standard" in computational chemistry.[154]

Single-reference methods are cheap and straightforward. Those WFT

and DFT methods have been used in various applications. However, the

computational modeling of chemical processes that involve the formation

and breaking of bonds, transition metal catalysts, and electronically excited

states remains challenging. In these cases, a single-reference (mean-field)

description of electron correlation cannot correctly describe the multide-

terminantal nature of the wave function and often yield qualitatively in-
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correct predictions.[117] A minimal example is the H2 bond dissociation.

When H2 is at its equilibrium bonding distance, a single Slater determinant

|1100⟩ (underline marks spin-down) is a good approximation since other

determinants are not important. However, when H2 is stretched to the dis-

sociation distance, any one of |1100⟩, |1001⟩, |0110⟩, and |0011⟩ is not a

good approximation. In this case, the more physical electron configuration

should be a linear combination of these determinants.

Multi-Reference Methods Many multireference (MR) methods have

been developed to overcome the limitations of single-reference methods.

One of the basic approach is the multi-configurational self-consistent-field

(MCSCF) method.[144, 146, 183] In MCSCF, a linear combination of Slater

determinants forms the configuration state function (CSF). During the SCF

iterations, we not only optimize the MO coefficients but also the coefficients

of configuration state functions.

The cost of multireference methods depends on the number of determi-

nants. A general practice to apply multireference theories is to select a set

of MO as active orbitals and the electrons inside as active electrons (Some-

times their combination is called "active space"), among which all possible

determinants are treated explicitly, while determinants involving inactive

orbitals/electrons are ignored. For n active orbitals and N active electrons
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[CAS(n,N)] with S total spin, there are

Ndets =

(
n

N/2+S

)(
n

N/2−S

)
, (1.8)

determinants, and

NCSF =
2S+1
N +1

(
n+1

N/2−S

)(
n+1

N/2+S+1

)
. (1.9)

configuration state functions. This NCSF is the cost factor that will be

multiplied by the computational cost of single-reference counterparts. It

can be seen that the cost grows exponentially with the size of the ac-

tive space. Therefore, we choose the minimal possible active spaces for

the problem we study in practice. The active space should capture the

strong electron correlation but keep its size small. The electron correla-

tion not captured by an active space, mainly dynamical correlation, will

then be corrected using perturbation theory,[52, 59, 5, 6] configuration

interaction,[167, 168, 169] coupled cluster theory,[134, 121, 85, 130, 93,

44] and other alternatives.[124, 162, 22, 56, 113, 142] Their cost is also

scaled both with the size of the active space (n and N) and the number of

inactive orbitals (core C and virtual V ). Additionally, it is worth mention-

ing that numerous generalizations of single-reference methods have been

proposed that are applicable beyond the domain of conventional single-

reference methods.[140, 87, 97, 170, 155, 36]
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1.2 Quantum embedding theories

As mentioned in the previous section, the computational cost of multirefer-

ence methods is generally higher than that of single-reference methods. In

many cases, this vital limitation prevents applications to real-world chem-

ical problems involving large transition metal complexes, solvated species,

enzyme reaction centers, and molecules adsorbed on surfaces. Nonethe-

less, in complex systems, the central quantity of interest is often a local

property, such as a reaction barrier for rearranging a small number of atoms

or an electronic excitation localized to a chromophore. These situations

can often be accurately described by an embedding scheme that partitions

the entire system into a set of atoms or localized orbitals (fragment, A)

treated at a higher level of theory and a complementary set (environment,

B) treated with a lower-level method. Such a multi-level treatment can

significantly reduce the computational cost, and it offers an avenue for

large-scale multireference computations on complex chemical systems.

Embedding schemes mainly vary in three aspects: i) the way a system

is partitioned into a fragment and the environment, ii) the level at which

individual subsystems are treated, and iii) the approximation of the inter-

action between the fragment and the environment. Among the earliest

embedding methods, classical schemes treat the environment and its inter-

action with the fragment at the level of molecular mechanics (MM).[166,

33, 81, 143, 160, 135, 151, 136] In QM/MM approach, the fragments are
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generally computed with QM theory adding an MM-level external poten-

tial field generated by the environment. For example, if the environment is

characterized as point charges, the fragment Hamiltonian is formulated as

hQM-MM
i = hQM

i − ∑
j∈L1

q j

ri−Rj
, (1.10)

where hi is the Hamiltonian components of the ith electron, q j are envi-

ronment point charges, ri and Rj are their corresponding positions. In

practice, to keep the fragment and the environment separated, any bond

between the fragment and the environment will be broken, and the dan-

gling electrons are capped using hydrogen.[166, 33] Classical QM/MM ap-

proaches are suitable for massive systems like protein and solute-solvent

systems. However, their rough treatment and uncontrolled approxima-

tion of the fragment-environment boundaries leads to inaccuracy descrip-

tion of fragment-environment electronic interactions. Quantum embedding

schemes improve upon classical approaches by treating both the fragment

and the environment quantum-mechanically (QM).[114, 165] In quantum

embedding, the wavefunction or density of both the fragment and the envi-

ronment are generated explicitly. Among the simplest quantum embedding

schemes one counts density embedding based on density functional the-

ory (DFT) pioneered by Carter and co-workers,[64, 89, 88, 79, 78] and

the more recent projector-based embedding methods based on DFT.[122,

63, 105, 106, 73, 26, 74] In the basic DFT embedding schemes, the non-
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additive kinetic potential (NAKP) enforces Pauli exclusion between the

electrons of fragments and the environment.[80] However, this approach

will break down when fragment-environment densities significantly over-

lap with each other, limiting the usage of basic density embedding schemes

to weakly interacting systems.[105] The projector-based embedding solves

this problem by creating mutually orthogonal fragment and environment

MO orbitals.[105] A simple way to enforce the orthogonality is to intro-

duce a level-shift operator to the environment’s local orbitals:

µPB = µSγ
BS, (1.11)

where µ is a positive scalar, S and γB are AO overlap matrix and envi-

ronment one-body density matrix, respectively. It is worth mentioning

that there are many variants on how to construct PB and how to local-

ize MOs.[73, 26, 74] If WFT methods are used for the fragment and DFT

for the environment (WFT-in-DFT), the fragment one-electron Hamiltonian

will be formed as:

hA-in-B(γA,γB) = h+vemb(γ
A,γB)+µPB, (1.12)

where h is the standard one-electron hamiltonian, and vemb is the embed-

ding potential from the corresponding DFT theory. Higher level WFT com-

putations are then performed using hA-in-B as the effective one-body Hamil-
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tonian.

Other quantum embedding methods focuse on capturing the electron

correlation between fragments and the environment to higher levels. Green’s

function-based embedding schemes, such as dynamical mean-field theory

(DMFT)[194, 58, 94] and self-energy embedding (SEE)[101] generalize

static schemes and can be used in situations where the fragment and the

environment are strongly coupled, both in applications to molecular sys-

tems and solid-state problems. DMFT features a self-consistent scheme in-

volving the fragment (impurity) local Green’s function G(R0,ω) and local

self energy Σ(ω) via a hybridization ∆(ω). Details of this scheme can be

found in Ref. 194. This scheme is powerful at capturing strong electron

correlation. However, its complexity and cost make its application difficult.

Density matrix embedding theory (DMET),[190, 92, 91, 18] is a simpler

and more economical alternative to DMFT in which self-consistent bound-

ary conditions are imposed on the one-body density matrix. DMET was

formally justified using a Schmidt decomposition of the wave function, and

it is usually implemented as an iterative scheme. The wavefunction is fac-

torized into the fragment (A) and the environment (B) using a Singular

Value Decomposition (SVD) as:

|Ψ⟩=
NA

∑
α

λα |Ãα⟩⊗ |B̃α⟩ (1.13)

where NA is the fragment basis size, Ãα and B̃α are bath wavefunction trans-
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formed using the SVD transformation matrices. Note that only additional

NA orbitals from the environment are needed to form the embedding bath

in this orthogonalization scheme. The self-consistent scheme enforces the

condition

min ||Dbath, low
A+B −Dbath, high

ÃB̃
|| (1.14)

where Dbath, low
A+B is the density evaluated using low-level theory for the frag-

ment and the environment limited to the embedding bath; while Dbath, high
ÃB̃

is the density in the embedding bath computed using high-level theory. It-

eratively minimizing the density differences gives the final density, and the

embedding energy is then evaluated using this density and the high-level

theory.

The above mentioned quantum embedding schemes, together with many

other variants,[20, 32, 179, 193, 54, 39, 28, 50, 192] can be combined with

both density functional theory and wave function approaches; their useful-

ness has been demonstrated in several recent applications.[74, 2, 16, 184,

133, 21, 98, 61, 14, 89, 88, 82, 57]

Most of the embedding approaches mentioned above focus on treat-

ing the fragment with a high-level single-reference method, with a few

exceptions.[60] In contrast, embedding schemes explicitly tailored for mul-

tireference methods have received less attention. Pham, Bernales, and

Gagliardi,[139] recently proposed a complete-active-space DMET (CAS-

DMET) that generalizes the original formalism of Knizia and Chan to a mul-
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tireference embedding approach. This goal is achieved by partitioning the

active and inactive orbitals inside the DMET fragment and then perform-

ing a complete active space self-consistent field (CASSCF) computation as

a higher-level method. Following the traditional DMET treatment,[91] the

DMET environment (the “bath”) is identified using a mean-field (single

determinant) description of the union of the fragment and environment.

However, this CAS-DMET strategy was found to be problematic in dissocia-

tion limit, yielding qualitatively inaccurate dissociation curves. In a follow-

up paper,[76] Hermes and Gagliardi overcame this problem by replacing

the low-level mean-field description with one based on a localized active

space self-consistent field (LASSCF). LASSCF corresponds to a simplified

version of CASSCF in the DMET framework, where the active space is a di-

rect product of active spaces on fragments, and orbitals are optimized self

consistently. The LASSCF-based DMET elevates the description of the bath

to a multi-determinantal level, which provides better results for bond dis-

sociation curves. A recent work by Coughtrie and co-workers[30] proposed

an elegant and straightforward frozen-orbital embedding scheme that fo-

cused on post-MCSCF calculations. In this scheme, the CASSCF reference

is optimized for the entire system (fragment + environment). Dynamical

correlation in the fragment was treated with internally-contracted multiref-

erence coupled-cluster theory (icMRCC),[67, 45], and an additive scheme

based on multireference second-order perturbation theory (MRPT2)[52, 6]

was used to account for the interaction and dynamical correlation in the
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environment.

1.3 Limitations of current embedding theories

An essential problem in the generalization of mean-field-based embedding

schemes to multireference theories is reconciling the conventional parti-

tioning of orbitals according to a fragment-based criterion (e.g., as de-

fined in DMET) with the active space partitioning adopted in multiref-

erence calculations. In mean-field-based embedding methods, molecular

orbitals are partitioned into two separate spaces that span the fragment

and environment, with each of these divided into occupied and virtual

sets. In approaches based on a mean-field picture, this step is commonly

done by first localizing occupied and virtual orbitals separately and then

assigning them to the fragment or environment according to some prop-

erty, e.g., partial atomic charges.[73, 26, 180, 27, 15] Virtual space projec-

tion and truncation techniques have been explored to analyze excited-state

orbitals.[116, 35] These techniques are also applied in embedding, like pro-

jected atomic orbitals (PAOs),[141] intrinsic atomic orbitals (IAOs),[90]

or concentrically local orbitals,[28] often applied to identify a set of vir-

tual orbitals that span the fragment. However, the orbital space is further

partitioned into the core, active, and virtual spaces in multireference com-

putations. In most cases, this separation is done manually, though there

are techniques that can automate this step.[161, 7, 148, 41, 147] Previous

work on CAS-DMET[139] suggests that orbital localization and projection
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based on a mean-field reference[91] is suboptimal since the resulting or-

bitals are not variationally optimal. This observation suggests that the use

of a correlated reference (e.g., MCSCF) may be a better starting point for

multireference embedding schemes.

The other significant problem is the correlation treatment. A common

feature of quantum embedding methods is to approximate the fragment-

environment interaction with a static or frequency-dependent effective one-

body term (for some exceptions see Refs. 49, 132, and 152). However,

a one-electron treatment of the fragment-environment interaction ignores

cross fragment-environment correlation and pure environment correlation

effects and may neglect orbital relaxation effects if the environment is

frozen. Consequently, an embedding approach could lead to inaccurate

results when the orbital response or correlation effects contribute signif-

icantly to differential properties of the fragment, for example, in excited

states or weakly bound systems. The orbital response may be captured

using methods like DFMT, DMET, and SEET, but this generally involves a

self-consistent iterative procedure that raises the risk of numerical issues

related to the convergence of these procedures. Within a given embedding

scheme, the only way to systematically reduce the error introduced by this

approximation is to make the fragment larger so as to include more atoms

into the higher-level computation.
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1.4 Structure of this dissertation

In this dissertation, we develop a set of systematically improvable active

space embedding theories (ASET). Chapter 2 focuses on the orbital pro-

jection and the simplest form of ASET, which we denote as ASET(mf), a

zeroth-order embedding scheme based on a mean-field treatment of the

environment. In Chapter 3, a theory to systematically improve ASET is

presented, and an ASET(2) scheme is formulated using the perturbation

theory. In Chapter 4, ASET is applied to a practical chemistry problem: CO

inversion on NaCl(100). In Chapter 5, some ongoing works and possible

further developments of ASET are discussed.
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Chapter 2

Mean-field Active Space

Embedding Theory: ASET(mf)

2.1 Introduction

This chapter discusses the simplest form of ASET, ASET(mf). This chapter is

mainly based on a published work; see Ref. 71. (Publisher: AIP; Publishing

Date: Mar 7, 2020; Rights managed by AIP Publishing.)

ASET(mf) is a simple non-iterative frozen-orbital embedding scheme

that assumes a zeroth-order CASSCF or MCSCF reference as a starting point

that correctly describes the qualitative features of the entire system under

study. Like in the embedding scheme of Coughtrie and co-workers,[30] in

ASET(mf), the active orbitals from a CASSCF/MCSCF reference are treated

separately and kept fixed. However, instead of using intrinsic bonding or-
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bitals (IBOs)[90] and PAOs[141] to define occupied and virtual orbitals,

our approach employs a generalization of the DMET orbital partitioning

scheme. As our study shows, the use of a correlated reference to partition

the orbitals significantly improves the convergence of properties with re-

spect to the number of fragment orbitals. Given an MCSCF reference, the

ASET(mf) scheme is designed so that all steps are fully automated. Our

procedure treats the interaction of the fragment and the environment via

a frozen-orbital embedding. However, future extensions of this method

may be devised in which a low-level correlated treatment is extended to

the environment (Chapter 3) or in which the environment is treated at the

DFT level. We note that a similar single-reference version of frozen-orbital

embedding based on a mean-field reference was also recently studied by

Knizia[102] and Claudino and Mayhall.[27]

We combine ASET(mf) with the driven similarity renormalization group

multireference second-order perturbation theory (DSRG-MRPT2) recently

developed in our group,[107, 109] which we use to describe correlation

effects in the fragment. Several benchmark computations are presented to

test the accuracy of the ASET(mf). We study the C-C dissociation curve in

ethane interacting with a methane molecule, and the N=N bond-breaking

curve in pentyldiazene, as examples of problems with weak and strong cou-

pling to the environment. To demonstrate the potential of this embedding

scheme, we apply it to study the single-triplet gap of small arynes[181] ad-

sorbed on a NaCl surface, which was recently examined experimentally by
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Schuler and et al.[150] in a study of Bergman cyclization.

This chapter is structured as follows. In Sec. 2.2, we introduce the de-

tails of embedding orbital partitioning based on mean-field and MCSCF

references. In Sec. 2.3, we go over the ASET(mf) equations and implemen-

tations. In Sec. 2.4, we benchmark ASET(mf) using bond-breaking reac-

tions and apply it to study the singlet-triplet gap of p-benzyne and 9,10-

anthracyne adsorbed on a NaCl surface. Finally, in Sec. 2.6, we summarize

this chapter and discuss extensions of ASET(mf).

2.2 Orbital Partition

The ASET(mf) procedure generally starts with a CASSCF computation on

the full system. In this section, we will discuss the partition procedure of

ASET(mf), which is used to partition inactive orbitals into the fragment and

environment. We assume that the molecular orbitals {φp(r), p = 1, . . . ,N}

are represented by a linear combinations of an atomic orbitals (AO) basis

{χµ(r),µ = 1, . . . ,K},

φp(r) =
AO

∑
µ

χµ(r)Cµ p, (2.1)

where Cµ p denotes the coefficient matrix. The CASSCF orbitals are sub-

divided into core (C), active (A), and virtual (V) sets. In the embedding

procedure, we rotate and partition the core and virtual orbitals into sub-

spaces belonging to the fragment (A) and the environment (B). To define

a projector onto the fragment space, the user selects a list of atoms that
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belong to this set. Based on this choice, a projector can be constructed as

P̂A = ∑
µ,ν∈A

|χµ⟩S−1
µν ⟨χν | , (2.2)

where the summation is restricted to AOs χµ and χν centered on atoms in

A and the Sµν = ⟨χµ |χν⟩ are AO overlap matrix elements. Following the

DMET partitioning procedure,[190] we perform separate unitary rotations

of core and virtual orbitals to maximize the overlap with the fragment pro-

jector. To this end, we form the overlap matrix of the MOs projected onto

A (PA
pq)

PA
pq = ⟨P̂A

φp|P̂A
φq⟩= ⟨φp| P̂A |φq⟩ . (2.3)

and separately solve the following eigenvalue problem for the core-core

and virtual-virtual blocks of PA
pq,

∑
q

PA
pqUqr = λrUpr p,q ∈ X, (2.4)

where X ∈ {C,V}. The eigenvectors Uqp define unitary transformations

onto the basis of rotated MOs

φ
′
p(r) = ∑

q
φq(r)Uqp, (2.5)

while the eigenvalues λp = ⟨φ ′p| P̂A |φ ′p⟩ lie in the range λp ∈ [0,1] and mea-

sure the overlap of the density |φ ′p|2 with the fragment. In DMET, the stan-
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dard partitioning procedure assigns orbitals φ ′p that satisfy the condition

λp > τ to the fragment, where τ is a given threshold. By the end of this

procedure the orbitals are partitioned into five sets: 1) fragment doubly

occupied (CA), 2) fragment active (AA), 3) fragment virtual (VA), 4) envi-

ronment occupied (OB), and 5) environment virtual (VB). To include cases

where the environment contains unpaired electrons, the environment oc-

cupied (OB) orbitals are not necessarily assumed to be doubly occupied.

Since after rotation and partitioning the orbitals are no longer canonical,

we separately diagonalize each of the five diagonal blocks of the averaged

Fock matrix This partitioning is illustrated in Fig. 2.1.

Virtual (V)
Orbital
rotation

Active (A)

Core (C)

Frozen
core

Frozen
core

Environment
virtual (VB)

Virtual (VA)

 Active (AA)

Core (CA)

Environment
occupied (OB)

Orbital
rotation

AB
FragmentEnvironment

Figure 2.1 Illustration of the orbital partitioning employed in the active space embed-
ding scheme (ASET(mf)).

After rotation and partitioning the orbitals we canonicalize the orbitals
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by separately diagonalizing each of the five diagonal blocks of the averaged

Fock matrix

f q
p = hq

p +∑
rs
⟨pr||qs⟩γs

r , (2.6)

where hq
p are one-body integrals, ⟨pq||rs⟩ are standard antisymmetrized

two-electron integrals, and γs
r is the CASSCF one-body density matrix. Or-

bitals in each of the five subspaces are rotated according to the unitary

transformation that diagonalizes each block of f q
p . Frozen orbitals (both

doubly occupied and virtual) are not projected onto the fragment but are

semi-canonicalized independently. Our tests show that semi-canonicalization

of frozen orbitals has no impact on the embedding energy, but could be im-

portant for the formulation of energy gradients.[106]

Here we show several examples to clarify this procedure. Firstly, we

partition a minimal case with four hydrogen atoms step-by-step, using the

first two H atoms as the fragment and the other two as the environment.

The Hartree-Fock solution of H4 on the STO-3G basis consists of four MOs:

MO matrix MO 1 MO 2 MO 3 MO 4
κ1 0.2469 0.5380 0.8625 0.8185
κ2 0.4056 0.3939 -0.6014 -1.4914
κ3 0.4056 -0.3939 -0.6014 1.4914
κ4 0.2469 -0.5380 0.8625 -0.8185

The partition procedure needs to rotate and find 2 of those four orbitals

that belong to fragment A. To evaluate the projector P̂A =∑µ,ν∈A |χµ⟩S−1
µν ⟨χν |,

the first step it to compute S−1
µν . In H4, the AO overlap matrix is:
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S κ1 κ2 κ3 κ4

κ1 1.0 0.6208 0.2221 0.0596
κ2 0.6208 1.0 0.6208 0.2221
κ3 0.2221 0.6208 1.0 0.6208
κ4 0.0596 0.2221 0.6208 1.0

Since 1 and 2 are the fragment sites, the S−1
µν is:

S−1
µν κ1 κ2

κ1 1.6271 -1.0101
κ2 -1.0101 1.6271

Therefore, the projector P̂A is

P̂A = 1.63 |κ1⟩⟨κ1|−1.01 |κ1⟩⟨κ2|−1.01 |κ2⟩⟨κ1|+1.63 |κ2⟩⟨κ2| . (2.7)

For all MOs (Eq. 2.1), the projector matrix elements will be:

Ppq = 1.63
A+B

∑
i, j

ci ⟨κi| |κ1⟩⟨κ1| |κ j⟩c j (2.8)

−1.01
A+B

∑
i, j

ci ⟨κi| |κ1⟩⟨κ2| |κ j⟩c j (2.9)

−1.01
A+B

∑
i, j

ci ⟨κi| |κ2⟩⟨κ1| |κ j⟩c j (2.10)

+1.63
A+B

∑
i, j

ci ⟨κi| |κ2⟩⟨κ2| |κ j⟩c j. (2.11)
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A matrix representation of the procedure is:

P = CT SA+B,A(SA,A)−1SA,A+BC (2.12)

The resulting P matrix for the H4 embedding is:

P φ1 φ2 φ3 φ4

φ1 0.7561 0.3620 -0.1540 -0.1721
φ2 0.3620 0.4432 0.3087 0.1431
φ3 -0.1540 0.3087 0.5731 0.3545
φ4 -0.1721 0.1431 0.3545 0.2275

After diagonalization, the eigenvalues of this matrix are:

Eigs λ

φ
′
1 0.9940

φ
′
2 0.2053

φ
′
3 0.7947

φ
′
4 0.0060

If we choose a threshold t = 0.5, then φ
′
1 and φ

′
3 are the fragment (A)

orbitals, and φ
′
2 and φ

′
4 are the environment (B) orbitals.

Next, we show a more sizable example containing an active space. In

Fig. 2.2, we show the result of the partitioning procedure applied to 1-

butene using a minimal basis set. In this example, the active orbitals are

chosen to be the π/π∗ orbitals, and the fragment contains the HC1−−C2

group. The resulting AA space contains the π/π∗ orbitals, while the CA

and VA include core and valence orbitals of the HC1−−C2 group, together
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with orbitals that extend slightly onto carbon C3.

O
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Figure 2.2 ASET(mf) embedding orbitals of 1-butene computed with τ = 0.5 and the
STO-3G basis. Orbitals with λp ≥ τ are assigned to the fragment (A) while orbitals
with λp < τ are assigned to the environment (B). See Fig. 2.1 for the definition of the
orbital spaces.

One potential concern of this partitioning procedure is that by optimiz-

ing the overlap of the fragment orbitals with the fragment atomic orbital

basis, a dependence on the basis set is introduced. To investigate this aspect

of the localization procedure, we consider the 1-fluorobutane molecule and

include the F atom in the definition of the fragment. We then use the sum

of all the fragment orbitals squared, ρA(r) = ∑p |φ A
p (r)|2, as a proxy for the

size of the fragment orbital space. In Fig. 2.3 we plot ρA(r) for a series of

Dunning basis sets[189] using two threshold values for partitioning the or-

bitals: t = 0.5 (default) and 0.01. With the default choice of the threshold,
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the number of fragment orbitals (NA) is identical in all cases to the number

of basis functions on the fragment atoms (NBF). However, we also observe

that ρA(r) slightly extends to nearby environment atoms as the basis set in-

creases, especially when diffuse functions are added. The smaller threshold

value leads instead to selecting more fragment orbitals than those included

in the fragment atomic basis, and ρA(r) across up to three bonds in the

largest basis set. These results suggest that fragment selection with the

default threshold is generally robust. One way to improve upon the cur-

rent partitioning approach would be to truncate the virtual fragment space

favoring orbitals that contribute the most to capturing the dynamical cor-

relation of the fragments. In Sec. 2.4, the impact of different basis sets on

the embedding computation results is presented and discussed further.

2.3 The ASET(mf) scheme

After the projection procedure, the final orbitals are partitioned into five

sets: the core/active/virtual orbitals of the fragment (CA, AA, and VA)

and the occupied/virtual orbitals of the environment (OB and VB). For the

convenience of the following discussions, these five orbital spaces and the

corresponding indices used to label MOs are shown in Fig. 2.4.

The zeroth-order picture adopted in ASET corresponds to the wave

function ansatz

|ΨASET(mf)
A+B ⟩= |ΨA⟩⊗ |ΦB⟩ (2.13)
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Threshold t = 0.5 Threshold t = 0.01

cc-pVDZ

cc-pVTZ

cc-pVQZ

aug-cc-pVDZ

aug-cc-pVTZ

aug-cc-pVQZ

cc-pVDZ

cc-pVTZ

cc-pVQZ

aug-cc-pVDZ

aug-cc-pVTZ

aug-cc-pVQZ

NBF: number of basis functions on the fragment
NA: number of orbitals partitioned into the fragment (including frozen core)

NBF: 14
NA: 14

NBF: 30
NA: 30

NBF: 55
NA: 55

NBF: 23
NA: 23

NBF: 46
NA: 46

NBF: 80
NA: 80

NBF: 14
NA: 18

NBF: 30
NA: 34

NBF: 55
NA: 59

NBF: 23
NA: 30

NBF: 46
NA: 53

NBF: 80
NA: 86

Figure 2.3 Sum of the fragment orbitals squared, ρA(r) = ∑p |φ A
p (r)|2, computed for

1-fluorobutane using various basis sets and two values of the partitioning threshold. All
plots of ρA(r) use an isocontour value equal to 0.05.

Fragment Environment

Orbital Labels

Figure 2.4 Molecular orbital spaces and indices used in this dissertation.
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where ΨA is the fragment wave function and ΦB is the environment wave

function, approximated with the Slater determinant

|ΦB⟩=
OB

∏
m

â†
m |−⟩ (2.14)

To obtain the ASET(mf) Hamiltonian, we start from the total Hamiltonian

of the fragment plus environment (ĤA+B) in the CASSCF MO basis

ĤA+B = ∑
pq

hq
pâp

q +
1
4 ∑

pqrs
⟨pq||rs⟩ âpq

rs (2.15)

where products of Fermionic creation (â†
p) and annihilation (âp) operators

are compactly expressed as âpq···
rs··· ≡ â†

pâ†
q · · · âsâr. Normal-ordering the Hamil-

tonian with respect to ΦB and keeping only the operator part that involves

fragment orbitals, we arrive at the ASET(mf) Hamiltonian

Ĝ = EOE/B +
A

∑
pq

h̃q
p{âp

q}ΦB +
1
4

A

∑
pqrs
⟨pq||rs⟩{âpq

rs }ΦB (2.16)

Here the subscript “ΦB” indicates normal ordering with respect to the state

|−A⟩⊗ |ΦB⟩, where |−A⟩ is the vacuum fragment state. The quantity EOE/B

is the energy contribution due to the frozen and environment occupied or-

bitals and h̃pq are matrix elements of an effective one-body operator defined

as

h̃q
p = hq

p +
OB

∑
m
⟨pm||qm⟩ (2.17)
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This effective one-electron operator accounts for the interaction of the frag-

ment electrons with the environment electrons frozen in the mean field

state ΦB. The total ASET(mf) energy is obtained by performing a high-

level multireference computation using the Hamiltonian Ĝ. The resulting

energy may be expressed as the sum of the CASSCF energy (EA+B
0 ) and an

energy correction from the high-level MR computation [δEA
MR(Ĝ)]:

EASET(mf)-[MR] = EA+B
0 +δEA

MR(Ĝ) (2.18)

Note that the definition of the ASET(mf) Hamiltonian depends on the CASSCF

solution used to define the orbital partitioning. Therefore, there are differ-

ent ways to generalize this embedding approach to computations on mul-

tiple electronic states.

Lastly, we comment on the computational cost of ASET(mf). The pro-

jector PA
pq itself can be computed and diagonalized efficiently with a cost

that scales as ∑X N3
X where X indicates one of the five orbital spaces re-

sulting from the partitioning of the orbitals. This estimate excludes the

cost of semi-canonicalizing the orbitals (dominated by a Fock matrix build)

and integral transformation. Therefore, the overall computational cost of

ASET(mf) is typically negligible compared to that of high-level multirefer-

ence computations on the fragment.
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2.4 Modelling weak interactions and bond-breaking

using ASET(mf)

Firstly, we brief the computational settings used by all applications in this

section. The ASET(mf) approach was implemented in Forte,[48] an open-

source package that implements several multireference electronic structure

methods. CASSCF orbitals and the corresponding one- and two-electrons

integrals were obtained using Psi4[159] and imported into Forte. The em-

bedding single-point energies in Sec. 2.4 and Sec. 2.5 are computed using

the cc-pVDZ basis set,[189] unless otherwise specified. The equilibrium

geometries of 1-octene, ethane, and pentyldiazene used in Sec. 2.4 are

optimized with Psi4 at the B3LYP/cc-pVDZ level of theory.[12, 104] Ge-

ometries of p-benzyne and 9,10-anthracyne optimized in vacuum at the

CASSCF(2,2)-DSRG-MRPT3/cc-pVDZ level of theory (using 3-point finite-

difference gradients) are taken from Ref 109. All transition energies com-

puted in this work refer to vertical excitation, whereby all molecules are

kept fixed at their respective singlet geometries. Optimized structures for

p-benzyne and 9,10-anthracyne adsorbed on NaCl were obtained by trans-

lating the gas-phase molecular geometries along the axis normal to the

surface plane while constraining the geometry of the molecules, the NaCl

atoms, and the relative orientation of the two. Initial orientations for p-

benzyne and 9,10-anthracyne on the surface were selected manually. The
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DSRG-MRPT2 computations are performed using Forte and selecting the

flow parameter value s = 0.5. The p-benzyne and 9,10-anthracyne compu-

tations employed a density-fitted implementation of the DSRG-MRPT2[68]

using the JK fitted and MP2 fitted cc-pVDZ auxiliary basis.[176, 70]

Firstly, we compare the accuracy of embedded computations using our

approach that preserves the CASSCF active orbitals with the conventional

DMET orbital partitioning based on a mean field reference. In the mean-

field scheme, occupied and virtual orbitals are first separately rotated to

fragment orbitals and then partitioned into core, active, and virtual sets. As

a consequence, active orbitals loose their variational character. To compare

these approaches, we compute the excitation energy for the lowest excited

singlet state of 1-octene. We select an active space that includes the π/π∗

orbitals, and fragment A is defined by the atoms C1−−C2 and the hydrogens

bonded to them (see Fig. 2.5).

As shown in Fig. 2.5, as the number of orbitals included in A increases,

the DSRG-MRPT2 excitation energy in both embedded computations ap-

proach the value of a full calculation on the entire molecule using the

respective reference orbitals. The ASET(mf) scheme shows both faster

convergence and a less pronounced dependence of the energy with re-

spect to the size of the fragment space. To investigate the different con-

vergence behavior we examine the active orbitals generated by the two

approaches, which are plotted on the right of Fig. 2.5. A comparison of

the two partitioning schemes shows that the π/π∗ CASSCF(2e,2o) orbitals
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extend slightly beyond the fragment boundary. In contrast, the orbitals

based on a mean-field partitioning are strictly localized within the fragment

boundary. This observation suggests that the mean-field orbital partitioning

requires additional orbitals in order to span the space of the variationally

optimal π/π∗ CASSCF(2e,2o) orbitals.

ASET
(2e,2o)

active space

ASET
no active
orbitals

S0/S1 DSRG-MRPT2 Excitation Energy

Number of orbitals included in the fragment

ASET(2e,2o)
π/π* orbitals
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τ = 0.9
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π/π* orbitals

with no
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Figure 2.5 Excitation energy error of 1-octene computed with ASET(mf) and DSRG-
MRPT2 (vertical axis, eV) computed with respect to the full DSRG-MRPT2 using the
cc-pVDZ basis set. Comparison of ASET(mf) with an active space containing two
electrons in two orbitals (2e,2o) and ASET(mf) with no active orbitals as a function of
the fragment orbitals [dim(CA)+dim(AA)+dim(VA)] (horizontal axis)

.

Our second test of the ASET(mf) scheme focuses on bond-breaking pro-

cesses. Key to the accurate description of bond breaking with embed-

ding schemes is defining fragment orbitals that properly span the bond-

ing/antibonding pairs relevant to a given process. In this section, we

study two examples of bond breaking: a) C-C single-bond dissociation
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of an ethane molecule interacting weakly with a methane molecule, and

b) N=N double-bond dissociation in pentyldiazene. These two examples

test the accuracy of ASET(mf) in cases where the coupling of the frag-

ment/environment is weak and strong, respectively. In all following com-

putations, we manually select only the fragment atoms and select fragment

orbitals using the projection described in Sec. 2.2 and the threshold τ = 0.5.

σ* antibonding
(LUMO)

Ethane

Pentyldiazene

σ bonding

π* antibonding

π bonding

σ* antibonding

Figure 2.6 Active orbitals used for the ethane and pentyldiazene bond-breaking test
cases. These orbitals are not localized and projected during the ASET(mf) computa-
tions.

In the first case, we consider a model system with one ethane molecule

(fragment, A) and one methane molecule (environment, B) located 4.7 Å

away from the closest ethane carbon atom. We study the dissociation of the

ethane C−C bond using an active space composed of a pair of σ/σ∗ C−C

orbitals (shown in Fig. 2.6) along the entire dissociation path. Fig. 2.7
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shows the difference between the potential energy curve computed with

DSRG-MRPT2 embedded via ASET(mf) and the full DSRG-MRPT2 results.

As shown in the inset of Fig. 2.7, the energy difference between these two

curves is of the order of 0.2 Eh, due to the neglect of correlation on the

environment in the ASET(mf) computation. However, after shifting, the

differences between the two curves are found to be continuous, with a

maximum deviation less than 0.03 kcal/mol. The excellent performance

of ASET(mf) for this example is, as expected, due to the weak interaction

between fragment and environment. We also verified that when all orbitals

are included in the fragment, the embedded DSRG-MRPT2 results recover

the full DSRG-MRPT2 description.

The second case we consider involves dissociation of the N−−N bond in

pentyldiazene (CH3(CH2)4−N−−NH), a test case similar to the one used to

assess CAS-DMET.[139] This is a more challenging system since the bound-

ary between fragment and environment cuts through a covalent C−C or

N−C bond. The active space is also larger, requiring at least four orbitals:

the C−C σ/σ∗ and π/π∗ pairs, which are plotted in Fig. 2.6. In Fig. 2.8,

we show the dissociation curve computed using fragments that range from

HN−−N to the full pentyldiazene molecule, selecting the fragment orbitals

using the ASET(mf) approach. As in the previous example, the dissociation

curves for N−−N are also continuous. In Table 2.1 we report the maximum

absolute deviation (MAD) for each shifted curve. Even with the smallest

fragment (HN−−N), the MAD from the shifted full DSRG-MRPT2 curve that
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Figure 2.7 Ethane C-C dissociation curve in the presence of a weakly interact-
ing methane molecule. Absolute energy and error for the full DSRG-MRPT2 and
ASET(mf)/DSRG-MRPT2 (vertical axis, Eh for energy, kcal/mol for error) as a func-
tion of the ethane C-C bond length (horizontal axis). The energy difference curve is
obtained after shifting the ASET(mf)/DSRG-MRPT2 curve so that the energy of the
first point coincides with the full DSRG-MRPT2 energy. Computations use 50 geome-
tries along the C−C bond vector and a 0.1 Å spacing.

is less than 1.5 kcal/mol. Inclusion of one and two CH2 groups reduces this

error to less than 0.4 and 0.1 kcal/mol, respectively.

In Table 2.1, we report the size of the ASET(mf) fragment orbital space

for pentyldiazene together with relative timings for the corresponding DSRG-

MRPT2 computations. Due to the scaling of DSRG-MRPT2 computations,

the reduction in computational cost that follows from the embedding treat-

ment is of the order of 3–10 times for the smallest three fragments. How-

ever, the advantage of the embedding will become even more significant in

applications to larger molecules, or when a more expensive multireference
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method is employed.

Pentyldiazene N=N bond dissociation error
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Figure 2.8 Pentyldiazene N=N dissociation curve. Absolute energy error for the full
DSRG-MRPT2 and ASET(mf)/DSRG-MRPT2 (vertical axis, kcal/mol for error) as
a function of the N=N bond length (horizontal axis) computed with the cc-pVDZ
basis set. The energy difference curve is obtained after shifting the ASET(mf)/DSRG-
MRPT2 curve so that the energy of the first point coincides with the full DSRG-MRPT2
energy. Computations use 35 geometries along the N−−N bond vector.

Lastly, we discuss the accuracy of ASET(mf) and the size of the fragment

orbital basis as a function of basis set size. To this end we have computed

the N=N bond dissociation curve of pentyldiazene using the cc-pVXZ basis

sets up to quadruple ζ quality (X = D,T,Q). To reduce the cost of these com-

putations we have employed a density-fitted implementation of the DSRG-

MRPT2[68] together with the cc-pVXZ-JK and cc-pVXZ-RI auxiliary basis

sets.[176, 70, 178] Potential energy curves for pentyldiazene computed

with different basis sets for the HN−−N and HN−−N−C2H4 fragments are re-

ported in Fig. 2.9. For the HN−−N fragment, the maximum deviation from

the full DSRG-MRPT2 curve (shifted) degrades slightly with the cc-pVTZ
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Table 2.1 Number of ASET(mf) fragment orbitals, relative computational timings for
the DSRG-MRPT2, and maximum absolute deviation (MAD, in kcal/mol) of shifted
potential energy curves. The DSRG-MRPT2 timings exclude the integral transforma-
tion are computed with respect to computations using HN2 as a fragment.

Fragment Orbitals Timing (relative) MAD (kcal/mol)
HN2 33 1.0 1.43
HN2CH2 57 3.3 0.31
HN2C2H4 81 10.4 0.06
HN2C3H6 105 50.8 0.05
HN2C4H8 129 94.3 0.03
HN2C5H11 158 212.4 0.00

basis set (1.86 kcal mol−1) and becomes as large as 3.54 kcal mol−1 for

the cc-pVQZ basis. However, as the fragment size is increased to include

two extra methyl groups, the energy differences are smaller and the basis

set dependence of the error is significantly reduced. The maximum error

using the larger fragment is reduced to 0.24 and 0.39 kcal mol−1 using the

cc-pVTZ and cc-pVQZ basis sets, respectively. As expected, an increase in

fragment size is accompanied by an increases in the number of fragment

virtual orbitals produced by the ASET(mf) procedure. For example, going

from the HN−−N fragment to HN−−N−C2H4, the number of virtual orbitals

obtained with the cc-pVTZ basis is 72 and 186, respectively, which is con-

sistent with the number of basis functions centered on these two fragments.
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Figure 2.9 Pentyldiazene N=N dissociation curve. Comparison of the absolute energy
error with respect to the full DSRG-MRPT2 for the ASET(mf)/DSRG-MRPT2 (vertical
axis, kcal/mol for error) as a function of the N=N bond length (horizontal axis) and
basis set. The energy difference curve is obtained after shifting the ASET(mf)/DSRG-
MRPT2 curve so that the energy of the first point coincides with the full DSRG-MRPT2
energy. Computations use 35 geometries along the N−−N bond vector. The labels XZ
with X = D,T,Q, indicate the cc-pVXZ basis, while the corresponding number in
parenthesis is the total fragment orbitals obtained by the ASET(mf) procedure for the
first point in the curve.

2.5 A study of the products of the Bergmann re-

action using ASET(mf)

In this section, we present an application of ASET(mf) to a realistic prob-

lem involving a multireference computation in the presence of a complex

environment. We study the singlet–triplet splitting of two classical arynes,

p-benzyne and 9,10-anthracyne, and examine the effect that an inert sur-

face has on this property. Arynes have been the subject of several the-
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Figure 2.10 Geometrical arrangement of p-benzyne (1–8) and 9,10-anthracyne (3′,4′)
on a model NaCl surface studied in this work. Sodium and chlorine atoms are repre-
sented with purple and green spheres, respectively.

oretical studies[84, 31, 182, 115, 127] due to their role in the Bergman

cyclization reaction, the process that leads from a diyne to an aromatic di-

radical. Previous experimental studies found the gas-phase singlet–triplet

gap of p-benzyne to be in the range 2–5 kcal/mol.[182, 115, 127] However,

computed singlet–triplet gaps vary for different methods, and even the en-

ergy order of the singlet and triplet state can change depending on the

theoretical treatment.[31, 127] Recent work has shown that the Bergman

cyclization reaction that leads to 9,10-anthracyne (and its reverse) can be

realized on a bilayer NaCl film on Cu(111) by manipulating the molecule

with a CO-functionalized tip of an atomic force microscope.[150] Compu-

tational investigation of the resulting 9,10-anthracyne product suggested a

triplet ground state.[150] This result is a contrast to gas-phase studies of

9,10-anthracyne using various multireference methods that predict a sin-
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glet ground state and a gap close to that of p-benzyne.[109] In this work,

we employ ASET(mf) and DSRG-MRPT2 to study how a NaCl surface af-

fects the singlet–triplet splitting of p-benzyne and 9,10-anthracyne.

To account for the interaction of p-benzyne and 9,10-anthracyne under

the experimental conditions considered in Ref. 150, we begin by construct-

ing a model system with two layers of a 4×4 NaCl lattice, with a fixed

Na-Cl bond length equal to that of the crystal (2.82 Å).[100] In the case of

p-benzyne, we study eight arrangements of the atoms on the NaCl model

surface, six parallel and two perpendicular, as shown in Fig. 2.10. These

include geometries in which the benzene ring is centered on a Cl atom (1,

2), equally distant from Na and Cl atoms (3, 4), centered on a Na atom

(5, 6), or perpendicular to the surface (7, 8). For 9,10-anthracyne we con-

sider only two parallel geometries (3′ and 4′) analogous to the p-benzyne

3 and 4. For each geometry, we compute the vertical (unrelaxed) singlet–

triplet gap (∆EST) as the difference between the triplet and singlet energy,

neglecting corrections due to vibrational zero-point energy. The minimum

active space required to describe these two electronic states contains two

electrons in two orbitals, the bonding and antibonding σ radical orbitals.

These are plotted for two geometries of p-benzyne and 9,10-anthracyne in

Fig. 2.11. In our ASET(mf) treatment, the adsorbate is treated as an embed-

ded fragment at the DSRG-MRPT2 level of theory, while the two 4×4 NaCl

layers belong to the environment. Using the cc-pVDZ basis for p-benzyne,

the ASET(mf) partition results into 104 fragment (A) orbitals (including
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2 active orbitals) and 576 environment (B) orbitals; For 9,10-anthracyne,

there are 236 fragment and 576 environment orbitals.

p-benzyne

9,10-anthracyne

HOMO LUMO

Figure 2.11 CASSCF(2e,2o) active orbitals for p-benzyne and 9,10-anthracyne dirad-
icals for the lowest singlet state.

The relative energy and singlet–triplet splitting of p-benzyne in the vac-

uum and adsorbed on the NaCl surface at the optimum surface distance are

shown in Table. 2.2. Among the molecular orientation considered in this

study, those involving the interaction of the benzene ring with a Cl– ion

(1 and 2) or with the radical carbon atoms interacting with two Cl– ions

(3) are the most stable (in terms of the electron energy), with the latter

being the minimum energy one. In comparison, interaction of the benzene

ring with a Na+ ion (5 and 6) or a radical carbon with two Na+ ions (4)
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Table 2.2 The relative ground state energy (in kcal/mol) and vertical singlet–triplet
gaps (in kcal/mol) of different p-benzyne orientations on the NaCl surface computed
with ASET(mf) and DSRG-MRPT2 using the cc-pVDZ basis.

Geometry Energy (kcal/mol) ∆EST (kcal/mol)
Vacuum – 4.40

1 3.1 3.82
2 3.4 3.97
3 0.0 3.69
4 18.9 4.00
5 26.9 4.28
6 25.2 3.76
7 37.1 3.86
8 21.7 2.82

increases the energy by about 20 kcal/mol. The affinity of radical carbons

for the Cl– sites on the surface is also shown in perpendicular geometries

7 and 8, where radical electron binding with Na+ (7) has a singlet ground

state 15.4 kcal/mol higher than 8. For all adsorbed geometries, the singlet–

triplet gap is smaller than the gas-phase value by 0.12–1.58 kcal/mol, with

slight variation among the different orientations. This result implies that

the NaCl double layer has the net effect of stabilizing the triplet state with

respect to the singlet state. However, at the equilibrium geometry this sta-

bilization is not sufficient to reverse the ordering of these two spin states.

In Fig. 2.12 we show ∆EST values computed for the lowest energy ge-

ometry (3) displaced along the direction normal to the surface (z axis).

These results show that, in contrast to orientation, altering the distance of

p-benzyne from the surface strongly impacts the singlet–triplet splitting. At
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Figure 2.12 Distances to surface and vertical singlet–triplet gaps of p-benzyne (3
geometry) on the NaCl surface computed with ASET(mf) and DSRG-MRPT2 using cc-
pVDZ basis. The subplot shows the singlet and triplet ground state energies. 35 points
are computed ranging from 2.3 Å to 5.7 Å. The lowest-energy adsorption geometry (3)
is marked on both curves.

the equilibrium distance from the surface (3.2 Å), ∆EST is equal to ca. 3.7

kcal/mol. However, when the molecule is brought closer to the surface,

∆EST is reduced, and it can be made as small as 0.2 kcal/mol when the

distance is 2.3 Å. When p-benzyne is displaced away from the surface, the

singlet–triplet gap instead increases to over 4.2 kcal/mol (at z = 5.5 Å),

approaching the ∆EST value in vacuum (4.4 kcal/mol).

Next, we proceed to improve the quality of the model NaCl bilayer with

electrostatic embedding using classical charges. Specifically, we augment

the ASET(mf) description by adding eight replicas of the NaCl 4×4 bilayer,

as shown in Fig. 2.13. The classical charges on Na and Cl (+0.534 and
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−0.534, respectively) were computed via a self-consistent procedure at the

Hartree–Fock/def2-SVP level of theory.[177] Starting from a NaCl 4×4 bi-

layer, we obtain the average Mulliken charge on each atom type. We then

repeat this computation embedding the bilayer in a classical charge field

and obtain new average charges at the Hartree–Fock level. This procedure

is iterated until achieving self-consistency of the classical charges. Although

the point charge field has some impact on the embedding energy, it has a

minor effect on the singlet–triplet gaps. For the most stable geometry of

p-benzyne (3), we find that ∆EST is shifted by just −0.07 kcal/mol. A

more significant shift (−0.15 kcal/mol) is observed for the 7 perpendicular

geometry. Since the first nonzero term in the multipole expansion of ben-

zyne is the quadrupole moment, long-range interactions with replicas of the

NaCl unit cell beyond those included in this extended model decay as the

inverse cube of the distance. Therefore, the sum of these contributions is

expected to be nearly converged already in the extended model with eight

replicas. We numerically estimated the magnitude of the interactions ne-

glected in our model using classical point-charge electrostatic interactions

from DFT and found them to be less than 0.01 kcal mol−1.

Turning to 9,10-anthracyne, we consider two parallel orientations anal-

ogous to the most stable one for p-benzyne using, for convenience, the

optimized distance from p-benzyne computations. The singlet–triplet gaps

computed for these systems are reported in Table 2.3. In vacuum, the ∆EST

of 9,10-anthracyne is lower by 0.95 kcal/mol with respect to that of p-
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benzyne. When 9,10-anthracyne is embedded on a NaCl surface treated at

the ASET(mf) level, the gaps for the 3′ and 4′ geometries are 0.94 and 0.66

kcal/mol lower than those in vacuum, respectively. In Table 2.3 we also

report the relative ground state energies for the two orientations. Similar

to p-benzyne, geometry 3′ is more stable in terms of the total electron en-

ergy, in accordance with the preference for arrangements in which radical

electrons interact with the Cl– sites.

CASSCF(2,2)
(molecule + 4×4 
NaCl 2-layer bulk)

DSRG-MRPT2
(molecule)

MM charge field
(8 replicas of the bulk)

9,10-anthracyne diradical

Figure 2.13 Definition of the fragment, ASET(mf) embedded region, and point-
charges embedding potential used to model the interaction of 9,10-anthracyne diradicals
with a NaCl bilayer surface. For each region we specify the level of theory. Sodium and
chlorine atoms are represented with purple and green spheres, respectively.

In summary, our study suggests that the singlet–triplet gaps of p-benzyne

and 9,10-anthracyne are not significantly perturbed when these molecules

are adsorbed on a NaCl surface and that the singlet state is consistently

the ground state for these systems. This result is in contrast with earlier

DFT studies on 9,10-anthracyne,[150] which predicted a triplet ground

state for the adsorbed molecule. This discrepancy is not surprising, espe-
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Table 2.3 The relative ground state energy (in kcal/mol) and vertical singlet–
triplet splitting (in kcal/mol) of vacuum and adsorbed 9,10-anthracyne computed with
ASET(mf) and DSRG-MRPT2 using the cc-pVDZ basis.

Geometry Energy (kcal/mol) ∆EST (kcal/mol)
Vacuum - 3.45

3′ 0.0 2.51
4′ 14.8 2.79

cially in light of the fact that singlet–triplet gaps of arynes vary significantly

across different DFT functionals.[31, 127] Our study of the products of the

Bergman reaction on a model NaCl surface using the ASET(mf) and the

DSRG-MRPT2 shows the potential of such a combined approach in applica-

tions to large-scale problems that require a balanced description of strong

correlation and environment effects.

2.6 Summary

This chapter introduces an active space embedding theory [ASET(mf) ] to

enable multireference computations on large-scale systems. This scheme

combines mean-field frozen-core embedding with a simple fragment pro-

jection method that preserves the active space orbitals. This separation of

active orbitals from the (localized) embedding orbitals is found to be cru-

cial to accelerating the convergence of multireference computations as a

function of the number of fragment orbitals.

Several examples are studies to examine the advantages of this ap-

proach. Our computation of the excitation energy of 1-octene highlights
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the importance of preserving variationally-optimized active orbitals from

CASSCF in the embedding treatment. We also examine two bond-breaking

problems involving weak (ethane + methane) and strong (pentyldiazene)

coupling between the fragment and environment. In both cases, ASET(mf)

yields curves that are highly parallel to those obtained from a multirefer-

ence computation on the entire system. We also present a study of the

single-triplet gap of p-benzyne and 9,10-anthracyne adsorbed on a NaCl

surface using ASET(mf) augmented with a classical embedding potential.

Contrary to a previous DFT study,[150] our results show that the ground

state of p-benzyne and 9,10-anthracyne adsorbed on a NaCl surface is a

diradical open-shell singlet.

In numerical experiments, we compute the N=N dissociation in pentyl-

diazene using ASET(mf) with DMET or PAOs virtual orbitals (employing

the same number of core, active, and virtual orbitals); the two approaches

are comparable in accuracy. Using a small basis set (cc-pVDZ), DMET vir-

tuals lead to smaller relative errors than PAOs; however, in a larger basis

(cc-pVTZ) more orbitals are included the description of the fragment and

the accuracy of the two approaches becomes nearly identical (max devia-

tion less of ca. 0.1 kcal mol−1).

In summary, ASET(mf) is a simple and powerful embedding scheme

that may significantly expand the domain of application of high-level mul-

tireference methods. Compared to other quantum embedding schemes,

ASET(mf) intentionally avoids the self-consistent optimization of the em-
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bedding potential. This choice leads to a practical and economical one-step

non-iterative embedding scheme that requires minimal user input. How-

ever, by ignoring the coupling between the fragment and environment,

ASET(mf) is expected to be most accurate in the weak- to medium-coupling

regime, especially in situations where electrostatic effects due to the envi-

ronment play a dominant role. Additionally, like other local embedding

schemes, ASET(mf) is best suited to describe systems in which electrons

are localized. For example, in systems with delocalized electrons (e.g.

graphene), orbital partitioning will introduce an artificial localization of

the orbitals and shifts in their energies, which may introduce large errors

in the computation of the correlation energy.

Using ASET(mf) as a baseline, further studies are conducted. In chapter

3, we will improve upon ASET via systematically-improvable treatments

of the fragment/environment interaction based on approximate canonical

transformations and second-order perturbation theory. In chapter 5, we

will explore possible improvements to the partition procedure.
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Chapter 3

Second-order active space

embedding theory: ASET(2)

3.1 Extend ASET using canonical transformation

This chapter explores a systematic approach to improve the description of

the fragment-environment interaction in embedding computations through

a combination of canonical transformations and perturbation theory. This

chapter is mainly based on a published work, with Dr. Chenyang Li’s contri-

bution to the code and implementation. See Ref. 72. (Publisher: American

Chemical Society; Date: Mar 1, 2022; Copyright © 2022, American Chem-

ical Society.)

As mentioned in the previous chapter, in embedding theory, the orbitals

are localized either on the fragment (A) or environment (B), and conse-
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quently, the Hamiltonian for the fragment plus environment (ĤA+B) is the

sum of three terms

ĤA+B = ĤA + ĤB + ĤAB (3.1)

where ĤA is the fragment Hamiltonian, ĤB is the environment Hamilto-

nian, and the fragment-environment interaction is encoded in the term

ĤAB. Note that in the absence of ĤAB, diagonalization of ĤA alone would

be sufficient to determine the energy levels of the fragment. This ob-

servation suggests eliminating ĤAB via a canonical transformation of the

Hamiltonian. Following this transformation, the fragment is described by

an effective Hamiltonian H̄A, of size significantly smaller than the entire

system. Canonical transformations find widespread use in physics and

chemistry. They were first considered in the early works of Brandow,[19]

Westhaus,[187] and Freed,[55] and later developed into practical quan-

tum chemistry methods.[191, 8, 131, 118, 46, 123] Within the setting of

the similarity renormalization group,[175] canonical transformations have

been used to study quantum systems coupled to an environment.[86] Wat-

son and Chan developed a perturbative canonical transformation scheme

to reduce the size of the orbital space down to that of a minimum atomic-

orbital basis while still retaining a qualitatively correct description of phe-

nomena involving valence electrons.[174] Recently, research has been con-

ducted to explore the application of canonical transformation and effective

Hamiltonian techniques in quantum embedding.[119, 23]
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This chapter proposes to formulate a systematically improvable em-

bedding scheme based on the ASET scheme introduced in the previous

chapter.[71] An essential feature of the ASET orbital partition procedure

is the restriction of the orbital localization to non-active orbitals, which im-

proves the accuracy of the resulting embedded Hamiltonian. In ASET(mf),

the embedded Hamiltonian is the sum of the fragment Hamiltonian ĤA

and frozen mean-field contributions from the environment, while the cou-

pling ĤAB is neglected. To improve upon ASET(mf), we propose an em-

bedding scheme that accounts for the fragment-environment interaction

ĤAB via a unitary canonical transformation. This canonical transforma-

tion is realized in a computationally efficient and numerically robust way

using the driven similarity renormalization group (DSRG).[43, 112] The

DSRG has been implemented using both perturbative[107, 109, 111, 68]

and iterative approximation schemes.[108, 195] Combining the DSRG with

ASET(mf) leads to a hierarchy of post-MCSCF multireference embedding

schemes that progressively better account for the fragment-environment

interaction. This chapter focuses on the simplest combination: a one-shot

second-order ASET [ASET(2)] scheme.

3.2 ASET(2) scheme

ASET perturbation theory. To improve upon ASET(mf), we use the frame-

work of unitary effective Hamiltonian theory to improve the treatment

of fragment-environment interactions. A canonical transformation of the
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Hamiltonian via the exponential of an anti-Hermitian operator Â leads to a

transformed Hamiltonian (H̄) that is the sum of operators that act on A, A

+ B, and B

H̄ = e−Â ĤA+B eÂ = H̄A + H̄AB + H̄B (3.2)

The purpose of this transformation should be twofold. First, is to diagonal-

ize away terms that couple the fragment and environment

H̄AB = 0 (3.3)

When this condition is imposed, H̄ does not contain a direct fragment-

environment interaction term; however, the physical interaction between

the fragment and the environment is still present and it is accounted by the

terms H̄A and H̄B terms. The second purpose of the canonical transforma-

tion is to eliminate the coupling of the environment state with all fragment

excited determinants (Φ′B), that is

⟨Φ′B| H̄B |ΦB⟩= 0 (3.4)

When these conditions are satisfied, then the energy of the system is the

sum of the energy of the fragment Hamiltonian (obtained by diagonalizing

H̄A) plus the energy of the environment (⟨ΦB| H̄B |ΦB⟩). To achieve these

two goals, the operator Â must contain terms that couple A and B and terms
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that involve only second quantized operators acting on B

Â = ÂAB + ÂB (3.5)

Like in the ASET(mf) scheme, we assume that the correlation within frag-

ment (A) will be treated by a higher-order multireference method. There-

fore, we always consider ÂA to be zero. In effective Hamiltonian theory,

this condition is equivalent to excluding internal excitations.

It is important to point out that Eq. (3.3) corresponds to a Fock-space

condition, that is, it is imposed directly on the normal-ordered operator

components of H̄AB. Such an approach is known to be prone to the intruder-

state problem, and therefore, we employ the driven similarity renormal-

ization group (DSRG) formalism,[107] which in practice solves a set of

equation similar to Eq. (3.3):

H̄AB = R̂(s) (3.6)

where R̂(s) is a term that regularizes the equations for diverging energy

denominators and s is a parameter that controls the extent to which the el-

ements of H̄AB are suppressed. An analogous set of equations also replaces

Eq. (3.4). The use of the DSRG framework mainly affects the equations

that determine the operator Â. Therefore, the scheme presented here is

general in the sense that could be easily adopted to other regularization
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schemes or Hamiltonian partitionings. A thorough discussion of the DSRG

is outside the scope of this work, and we refer the curious readers to a

recent review.[107, 112]

In practice, Eqs. (3.3) and (3.4) can only be satisfied approximately

and the costs of an embedding procedure should be minimized to ensure

its applicability to large systems. Therefore, we propose to use low-order

perturbation theory to perform the canonical transformation. The starting

point is partitioning the full Hamiltonian ĤA+B into a sum of a zeroth-order

[Ĥ(0)] and a first-order [Ĥ(1)] term

ĤA+B = Ĥ(0)+ξ Ĥ(1) (3.7)

where ξ is the perturbation ordering parameter. Both Ĥ(0) and Ĥ(1) can be

further separated into contributions involving A, AB, and B, for example,

Ĥ(0) = ĤA,(0) + ĤAB,(0) + ĤB,(0). The zeroth-order ASET wave function is

defined to be the CASSCF reference. Following a standard approach, per-

turbative corrections to the transformed Hamiltonian H̄ may be obtained

by expanding the operator Â and energy E in a power series in ξ and trun-

cating the ASET equations [Eq. (3.2) and (3.6)] to a finite order.

Second-order ASET: ASET(2). To develop a perturbative ASET scheme

with H̄ truncated to second order, we begin by partitioning the full Hamil-

tonian in a way consistent with the choice of reference. We first normal

order ĤA+B with respect to the CASSCF wave function (Ψ0) using the ap-
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proach of Mukherjee and Kutzelnigg.[99] The resulting Hamiltonian may

be written as

ĤA+B = EA+B
0 +

A+B

∑
pq

f q
p{âp

q}Ψ0 +
1
4

A+B

∑
pqrs
⟨pq||rs⟩{âpq

rs }Ψ0 (3.8)

where the generalized Fock matrix elements f q
p are given by Eq. (2.6) and

EA+B
0 is the total CASSCF energy. Following the semicanonicalization step

in the ASET procedure, the generalized Fock matrix has the block structure

shown in Fig. 3.1, where all blocks on the diagonal are diagonal, blocks

that couple virtual orbitals to the doubly occupied orbitals are zero due to

the CASSCF stationarity condition, and the remaining blocks are nonzero.

Fock matrix in MO basis
after semi-canonicalization

Figure 3.1 Structure of the generalized Fock matrix in a semi-canonical basis after the
ASET orbital localization procedure. Blocks corresponding to the frozen-core environ-
ment orbitals are not shown in this figure.

We use a diagonal Fock partitioning in which the ASET zeroth-order
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operator is given by

Ĥ(0) = EA+B
0 +

A

∑
u

εu{âu
u}Ψ0 +

B

∑
p

εp{âp
p}Ψ0 (3.9)

where εp = f p
p . Note that Ĥ(0) contains no terms that couple the fragment

and the environment. The first-order Hamiltonian may be written as the

sum of three terms ĤA,(1), ĤB,(1), and ĤAB,(1) involving operators that act

on A, B, and A + B, respectively.

We consider orbital relaxation and correlation effects up to two-body

terms, and express Â in terms of single and double substitution operators

T̂1 and T̂2 as:

Â = Â1 + Â2 = T̂1− T̂ †
1 + T̂2− T̂ †

2 (3.10)

The excitation operators contain only those components that couple A and

B (T̂ AB), and excitations exclusively on B (T̂ B). For example, in the case of

single excitations, we define these two blocks as

T̂ AB
1 =

A

∑
u

VB

∑
e

tu
e {âe

u}Ψ0 +
OB

∑
m

A

∑
u

tm
u {âu

m}Ψ0 (3.11)

and

T̂ B
1 =

OB

∑
m

VB

∑
e

tm
e {âe

m}Ψ0 (3.12)

The two terms that enter T̂ AB
1 capture orbital relaxation effects involving A

and B, and physically correspond to charge-transfer excitations that move
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electrons between the fragment and environment. Instead, T̂ B
1 describes

orbital rotations within the environment. The double excitation operator

T̂2 can be similarly partitioned into contributions from A and B, and B alone.

Physically, T̂ AB
2 accounts for charge-transfer excitations coupled to a single

excitation on A or B and the product of one single excitation on A and one

on B. The remaining term, T̂ B
2 , instead captures correlation effects in the

environment.

It is easy to see that by taking the sum of the zeroth- and first-order

transformed Hamiltonians one obtains an embedding approach equivalent

to mean-field ASET. The first nontrivial correction to ASET(mf) is found

at second-order in perturbation theory. When the zeroth- through second-

order terms are combined, we obtain the following Hamiltonian

H̄ [2] = Ĥ +[Ĥ, Â(1)]+
1
2
[[Ĥ(0), Â(1)], Â(1)]

= H̄ [2]
0 +

A+B

∑
pq

H̄q,[2]
p {âp

q}Ψ0 +
1
4

A+B

∑
pqrs

H̄rs,[2]
pq {âpq

rs }Ψ0 (3.13)

This expression ignores three-body contributions that arise already in single-

commutator terms. Note also, that although the second-order operator Â(2)

also enters Eq. (3.13), this operator does not contribute to the fragment

portion of H̄ [2] and, therefore, it is not shown.

In the second line of Eq. (3.13), we express H̄ [2] using second-quantized

operators normal-ordered with respect to the CASSCF reference. The second-
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order energy (H̄ [2]
0 ) contains several fully connected terms that enter also in

second-order DSRG multireference perturbation theory (DSRG-MRPT2).[107]

However, in our standard (and most efficient) implementation of ASET(2),

we neglect the contributions from the three-body density cumulant (a rank

six tensor with indices running over all fragment orbitals) to all terms in

H̄ [2]. This approximation does not introduce artifactual intruder states,[107]

and as shown in the Results section, its impact on the accuracy of ASET(2)

is negligible. The one- and two-body components of H̄ [2] labeled by frag-

ment orbital indices may be written as the sum of the bare integrals plus

corrections as

H̄v,[2]
u = f v

u +
1
2
(
C̄v,(2)

u +C̄u,(2)
v

)
(3.14)

H̄xy,[2]
uv = ⟨uv||xy⟩+ 1

2
(
C̄xy,(2)

uv +C̄uv,(2)
xy

)
(3.15)

where detailed expressions for C̄v,(2)
u and C̄xy,(2)

uv are reported in Sec. 3.3.

These quantities depend on the first-order amplitudes, given by

t i,(1)
a =

[
f i
a +

A

∑
ux

∆
x
ut iu,(1)

ax γ
x
u
]1− e−s(∆i

a)
2

∆i
a

(3.16)

t i j,(1)
ab = ⟨ab||i j⟩ 1− e−s(∆i j

ab)
2

∆
i j
ab

(3.17)

where the denominators are defined as ∆i
a = εi−εa and ∆

i j
ab = εi+ε j−εa−εb.

In the implementation section (Sec.3.3), we provide the detailed equation
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for those terms.

Any high-level multireference computation on the fragment requires

only the component of the ASET(2) Hamiltonian spanning the fragment

orbitals. Moreover, to include the effect of the (frozen) environment elec-

trons, it is also necessary to normal order H̄(2) respect to the state |−A⟩⊗

|ΦB⟩. The resulting dressed Hamiltonian (Ḡ) is expressed as

Ḡ = EA+B,[2]+
A

∑
uv

h̄v,[2]
u âu

v +
1
4

A

∑
uvxy

h̄xy,[2]
uv âuv

xy (3.18)

where EA+B,[2] contains the environment correlation energy

EA+B,[2] = H̄ [2]
0 −

A

∑
xy

H̄y,[2]
x γ

x
y −

A

∑
uvxy

H̄xy,[2]
uv (

1
4

γ
uv
xy − γ

u
x γ

v
y ) (3.19)

and the dressed integrals h̄v,[2]
u and h̄xy,[2]

uv are defined as

h̄v,[2]
u = H̄v,[2]

u −
A

∑
xy

H̄vy,[2]
ux γ

x
y (3.20)

h̄xy,[2]
uv = H̄xy,[2]

uv (3.21)

The energy expression for ASET(2)-[MR] can be written as:

EASET(2) = EA+B
0 +δEAB

c,ASET(2) +δEB
c,ASET(2) +δEA

MR(Ḡ) (3.22)

Where δEX
c,ASET(2) is the ASET(2) correlation energy contribution from the
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fragment-environment or environment (X = AB or B), while δEA
MR(Ḡ) is the

correlation energy correction from the high-level MR computation using

the dressed Hamiltonian. Explicit expressions for δEB
c,ASET(2) and δEAB

c,ASET(2)

are presented in Sec. 3.3. In comparison to ASET(mf), ASET(2) contains

additional contributions from the fragment-environment and environment

correlation [δEAB
c,ASET(2) + δEB

c,ASET(2)] and it uses the dressed Hamiltonian

Ḡ in the high-level MR computation instead of the frozen Hamiltonian Ĝ.

When all fragment orbitals are taken to be active and the fragment

Hamiltonian is diagonalized at the full configuration interaction level, ASET(2)

becomes equivalent to a second-order multireference perturbation theory,

specifically, the partially-relaxed variant of DSRG-MRPT2.[107] In this limit

it is possible to compare ASET(2) with other multireference perturbation

theories. A previous study[109, 110] found that in comparison to CASPT2[3,

4, 24] and partially-contracted NEVPT2[5, 6] DSRG-MRPT2 is slightly less

accurate. For example, the nonparallelism error along the dissociation en-

ergy curves of F2, H2O2, C2H6, and N2 computed with the DSRG-MRPT2

has a mean value of 5.3 kcal mol−1 vs. 2.5 and 3.2 kcal mol−1 for CASPT2

and NEVPT2, respectively.

Generalization to excited states and reference relaxation. The ASET(2)

procedure may be readily generalized to treat excited states. In the simplest

approach, we employ the same ASET orbital partitioning for all electronic

states, and use ground-state or state-averaged CASSCF orbitals to define

the fragment and the environment. Then, for each electronic state, the cor-
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responding fragment RDMs are generated from CASCI solutions within the

active space, and the Fock matrix is semi-canonicalized differently for each

state. The ASET(2) correction in turn uses the density and Fock matrix for

each specific CI root, and the δEAB
c,ASET(2) and δEB

c,ASET(2) corrections will

acquire state-specific character. Similarly, the dressed Hamiltonian Ḡ will

be different for different states.

Alternatively, a more accurate representation of excited states may be

obtained by defining a different orbital partitioning for each state using

state-specific CASSCF solutions. This alternative procedure leads to more

accurate results but increases the cost of the ASET(2) procedure. Another

possible approach is to enforce self-consistency in ASET(2) embedding in

high-level MR theories that account for reference relaxation effects. This

approach consists in taking the updated CASCI coefficients, recomputing

the RDMs, and re-evaluating the ASET(2) energy and dressed Hamiltonian

(without change the fragment orbitals). This procedure could then be iter-

ated until the ASET(2) energy does not change from one cycle to the next.

In this paper, we test both approaches to orbital partitioning but we do not

investigate the self-consistent version of ASET(2).

Analysis of the ASET(2) Hamiltonian. It is instructive to analyze some

of the contributions to the ASET(2) Hamiltonian and understand the role

of the exponential terms in Eqs. (3.16) and (3.17). Consider for exam-

ple, the effective two-electron interaction, H̄xy,(2)
uv . The first contribution to

this quantity is given by the contraction of a modified two-body integral
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(ṽey
uv = ⟨uv||ey⟩ [1+ e−s(∆uv

ey )
2
]) with a single excitation from the fragment to

the environment virtual orbitals (tx
e)

H̄xy,(2)
uv ←

VB

∑
e

ṽey
uvt

x
e , u,v,x,y ∈ A (3.23)

This correction can be interpreted physically as the combination of a charge-

transfer excitation (φx→ φe, from tx
e) combined with a two-electron scatter-

ing interaction that brings the electron back to the fragment (φeφy→ φuφv,

from ṽey
uv). Because the tensor tx

e involves indices on both the fragment and

the environment, this may be also understood as an orbital relaxation (re-

hybridization) effect. Figure 3.2 represents diagrammatically the effective

interaction in terms of the bare interaction plus corrections, where the first

correction shown corresponds to the contribution from Eq. (3.23). Note

Charge-transfer
excitation

Bare
interaction

E�ective
interaction

= + + + ...

Double local
excitation/spin-�ip

Figure 3.2 Diagrammatic representation of the fragment effective two-electron inter-
action H̄. The first term is the bare Coulomb interaction (v), while the second term
corresponds to the contributions from Eq. (3.23). The vertical gray line separates the
fragment (A) from the environment (B). Tensors are indicated with circles, while ten-
sor indices are represented with incoming (upper indices) and outgoing (lower indices)
lines.

that if the fragment (φx) and environment (φe) orbitals become degener-
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ate, the exponential term in Eq. (3.16) will suppress this excitation. This is

an essential feature of ASET(2), because in general there is no guarantee

that the fragment and environment orbitals will be non-degenerate.

Note that the modified interactions for the fragment orbitals are, in a

sense, independent of orbital occupation. For example, the contribution

to H̄xy,[2]
uv considered above exists even if orbital φx is unoccupied in the

CASSCF reference. Even though these excitations do not contribute to the

reference energy (as it can be seen by analyzing the contributions to the

expectation value of H̄ [2] with respect to the CASSCF reference), they still

play an important role since they modify interactions between electrons if

orbital φx is occupied.

3.3 ASET(2) implementation

Hamiltonian terms. we provide detailed equations to evaluate the ASET(2)

Hamiltonian. Introducing the modified first-order integrals

f̃ a
i = f a

i +
[

f a
i +

A

∑
ux

∆
x
ut iu

axγ
x
u
]
e−s(∆i

a)
2

(3.24)

ṽab
i j =⟨i j||ab⟩ [1+ e−s(∆i j

ab)
2
] (3.25)
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the second-order energies under the embedding partition are given by

δEB
c,ASET(2) = f̃ e

mtm
e +

1
4

ṽmn
e f te f

mn (3.26)

δEAB
c,ASET(2) = f̃ e

u tv
e γ

u
v + f̃ v

mtm
u η

u
v

+
1
2

λ
xy
uv [ f̃

e
x tuv

ey − f̃ v
mtum

xy + ṽev
xyt

u
e − ṽuv

myt
m
x ]

+
1
2

ṽe f
mutmv

e f γ
u
v +

1
2

ṽev
mntmn

eu η
u
v +

1
4

ṽe f
xutyv

e f γ
x
y γ

u
v

+
1
4

ṽvy
mntmn

ux η
u
v η

x
y + ṽve

mxt
my
ue γ

x
y η

u
v

+
1
2

ṽve
yzt

wx
ue γ

y
wγ

z
xη

u
v +

1
2

ṽvy
mwtmz

ux γ
w
z η

u
v η

x
y

+
1
8
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Here, γu
v , ηu

v = δ u
v − γu

v , and λ uv
xy are the elements of the one-particle density

matrix, one-hole density matrix, and the two-body density cumulant intro-

duced in Ref. 99, respectively. In Eqs. (3.26) and (3.27), we have adopted

Einstein’s convention for summation over repeated indices and the orbital

labelings are shown in Fig. 2.4. Note that in the expression for δEAB
c,ASET(2)

[Eq. (3.27)] each term involves amplitude tensors with at least one frag-

ment index.

The intermediates C̄v,(2)
u and C̄xy,(2)

uv that enter in the definitions of H̄v,[2]
u
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and H̄xy,[2]
uv [see Eq. (3.14)] are
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x jt
y j
ubη

b
a η

x
y

− ṽvw
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uvt

xy
weγ

w
z

+
1
2
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The operator P−(p,q) acting on a function f (p,q) that depends on indices

p and q yields P−(p,q) f (p,q) = f (p,q)− f (q, p). We also point out that in

Eqs. (3.27)–(3.29) the excitations within the fragment are ignored: tv
u = 0

and txy
uv = 0,∀u,v,x,y ∈A. Moreover, since the operator Ĥ(0) is diagonal, the

contribution from the commutators [Ĥ(0), Â(k)],k = 1,2 to H̄v,[2]
u and H̄xy,[2]

uv is
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null.

Implementation details. Our implementation of ASET(2) takes advan-

tage of our DSRG-MRPT2 code to compute the tensor elements of H̄ [2]. Any

higher-order multireference method ([MR]) can then be used to diagonal-

ize the H̄ built by ASET(2) downfolding. We denote this combination of

approach as ASET(2)-[MR].

The ASET(2) procedure consists of the following steps:

1. Select the active orbitals and run a CASSCF computation on A +

B. This computation returns the reference energy EA+B
CASSCF, and the

CASSCF wave function. Optionally, one may decide to use a mean-

field wave function instead of CASSCF (e.g., Hartree–Fock or Kohn–

Sham DFT).

2. Form the embedding orbitals using the fragment projector P̂A. This

partitioning leaves the original active orbitals (AA) fixed.

3. Compute the singles and doubles amplitudes by solving Eqs. (3.16)

and (3.17).

4. From the amplitudes compute the scalar second-order energy (H̄ [2]
0 )

and the matrix elements of H̄ [2]. Transform the matrix elements of

H̄ [2] into the one- and two-body dressed integrals. The resulting

dressed integrals (h̄) span only the spaces {AA, CA, VA }.

5. Run a high-level [MR] computation using the dressed integrals (h̄)
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with the space AA treated as active, while CA and VA are closed and

virtual sets, respectively.

The first two steps of the ASET(2) procedure are common to ASET(mf).

Note that step 3 is equivalent to running a DSRG-MRPT2 computation with

core, active, and virtual orbital sets chosen to be {OB }, {AA, CA, VA },

and {VB }, respectively. Therefore, our implementation takes advantage

of existing optimized routines to evaluate the most expensive steps of the

ASET(2) procedure.

In step 4, the RDMs of the fragment are required to compute the ASET(2)

Hamiltonian. We employ the RDMs obtained from a CASCI computation in

the fragment active space (AA), which for the ground state is equivalent to

the CASSCF RDMs. The one-body RDMs in the fragment contains only two

contributions from the core and active blocks

γ
v
u = δuv u,v ∈ CA

γ
v
u = γ

v
u(CASCI) u,v ∈ AA

(3.30)

The two-body RDM (and the corresponding cumulant) is similarly recon-

structed from the CASCI 2-RDM as

γ
xy
uv = δuxδvy−δuyδvx u,v,x,y ∈ CA

γ
yv
xu =−γ

vy
xu = . . .= γ

y
x δuv u,v ∈ CA,x,y ∈ AA

γ
zw
xy = γ

zw
xy (CASCI) w,x,y,z ∈ AA

(3.31)
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As mentioned above, we neglect contributions that arise from the three-

body density cumulant as these are expensive to evaluate and lead to mi-

nor improvements to the ASET(2) energy. It is important to note that these

contributions only amount to a shift in the correlation energy and do not

change the renormalized interaction produced by the canonical transfor-

mation. More specifically, the three-body cumulant (λ
xyz
uvw, see Ref. 99) con-

tributes to the δEAB
c,ASET(2) term and may be expressed in terms of the dou-

bles amplitudes and modified two-electron integrals (ṽ, defined in Sec. 3.3)

as:

δEAB
c,ASET(2)←

1
4

A

∑
uvwxyz

(
OB

∑
m

ṽuv
mzt

mw
xy +

VB

∑
e

ṽwe
xy tuv

ez

)
λ

xyz
uvw (3.32)

The effect of this approximation is easy to analyze for the excitation energy

of a molecule at a fixed geometry. In this case, the neglected term intro-

duces a shift in the excitation energy that is dominated by a term linear in

the difference in the three-body cumulant of the two electronic states. We

numerically examine the effect of this approximation in our discussion of

the excitation energy of 1-octene.

Computational cost and truncation of environment. In addition to

the cost of the high-level MR computation, in a conventional four-center

integral implementation of ASET(2), the most expensive step of the em-

bedding procedure is step 4, where an integral transformation is required.

The cost for the transformation scales as N5 while the evaluation of the

ASET(2) amplitudes and the MP2-like energy contribution δEB
c,ASET(2) is
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dominated by a step that scales as N2
OB

N2
VB

when the number of fragment

orbitals is small compared to the environment. The highest-scaling term

with respect to the number of fragment orbitals has a computational cost

proportional to N4
AN2

VB
, with NA being the number of fragment orbitals. This

analysis accounts for the savings introduced by neglecting the three-body

density cumulant, which scale as N6
ANVB. Another approximation avail-

able in our implementation is neglecting the expensive contributions due

to excitations in the environment, corresponding to the term δEB
c,ASET(2) in

Eq. (3.22). Since the term δEB
c,ASET(2) shows only a weak dependence on

the electronic state of the fragment (this dependence entering via the one-

body density matrix in the denominators), this approximation is especially

accurate when computing the energy difference between electronic states

at a fixed geometry. However, we find that when describing bond-breaking

processes and modeling weak interactions, δEB
c,ASET(2) may be significant

and cannot be neglected. Similar ideas have been explored in a recent

study by Kowalski on Subsystem Embedding Subalgebra Coupled Cluster

(SES-CC) theory.[10] They describe the amplitude as different groups or

subalgebra and use this classification to develop an efficient subsystem em-

bedding scheme.

3.4 Application examples

Computational details. Firstly, we brief the computational details of this

section. The ASET(2) embedding was implemented in the open-source
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package FORTE.[48] The one- and two-electrons integrals necessary to run

the CASSCF computations were obtained from PSI4.[159] All DSRG com-

putations were performed using FORTE. The zeroth-order symmetry adapted

perturbation theory (SAPT0) computations in Sec. 3.4 are computed us-

ing PSI4.[77, 62, 159] Guess active orbitals used in CASSCF optimizations

were selected using the atomic valence active space (AVAS) technique.

[149] Unless otherwise specified, all computations adopted the cc-pVDZ

basis set[189] and the DSRG flow parameter in both ASET and DSRG-

methods was set to s = 0.5 E−2
h . For each example, the ASET(2)-[MR-

LDSRG(2)] computations employed the density-fitting (DF) implementa-

tions using the cc-pVDZ-JKFIT and -RI auxiliary basis sets for CASSCF and

environment DSRG computations, respectively.[68, 195, 176, 70] For all

pentyldiazene, octene and O2–benzene examples, the core 1s orbitals of C,

N, and O are frozen in the CASSCF computations and in the ASET(2) proce-

dure. The equilibrium geometries of 1-octene and pentyldiazene were opti-

mized at the B3LYP/cc-pVDZ level of theory[12, 104] using PSI4. The ben-

zene geometry is taken from CCCBDB without further optimization.[83]

N-N bond dissociation in pentyldiazene. We begin by investigating

the performance of the ASET(2) method on bond-breaking processes by

computing the nitrogen double-bond dissociation of pentyldiazene.[139,

76, 71] For this example, we select an active space that spans four N−−N

bonding/antibonding orbitals (σ ,σ∗,π,π∗) obtained from a CASSCF(4e,4o)

computation.
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Figure 3.3 Pentyldiazene bond dissociation computed with ASET(2)-[DSRG-MRPT3]
and ASET(2)-[MR-LDSRG(2)]. a) The Non-Parallelism Error (NPE) of ASET(mf)-
[DSRG-MRPT3] computations to full DSRG-MRPT3 using different number of orbitals
in A (NA) and different fragment definitions. b) The corresponding ASET(2)-[DSRG-
MRPT3] results. c) The error curves of ASET(2)-[MR-LDSRG(2)] against full MR-
LDSRG(2); results plotted against N−−N bond length (Å). Each curve shows a different
partition of the pentyldiazene molecule and the partition threshold is fixed at t = 0.5.
The curves are shifted to align at the R0 geometry (the gray circle). Timings for a
single update of the MR-LDSRG(2) amplitudes are shown by the T values (in seconds).
All computations here use DSRG flow parameter s = 0.5 E−2

h and cc-pVDZ basis.

The standard approach for selecting the fragment orbitals includes all

those orbitals that when projected onto the fragment basis have a norm

greater than a fixed threshold t. Four different fragment definitions are in-
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vestigated: 1) −N2H, 2) −CH2N2H, 3) −(CH2)2N2H, and 4) −(CH2)3N2H.

In this test, we use DSRG-MRPT3 as the fragment solver, and quantify the

relative errors using the non-parallelism error (NPE). The NPE measures

the degree to which a potential energy curve is parallel to a reference curve,

independently of any constant energy shift, and it is defined as

NPE = max
r

∆E(r)−min
r

∆E(r) (3.33)

where ∆E(r) is the deviation of the energy from it reference value at a N−−N

bond distance r (obtained by translating all atoms accordingly).

To compare the performance of ASET(mf) and ASET(2), we build two

NPE heatmaps (Fig. 3.3a and Fig. 3.3b) using DSRG-MRPT3 as a fragment

solver and different number of fragment orbitals (NA = 25, 50, 75, 100,

125). The heatmap entries are shown only when the number of frag-

ment orbitals is greater than or equal to the number of basis functions

on the fragment. A comparison of the two heatmaps shows that although

ASET(2)-[DSRG-MRPT3] generally yields a smaller NPE than ASET(mf)-

[DSRG-MRPT3]—with improvements as large as ca. 1.5 kcal mol−1—the

gains in accuracy are limited and not guaranteed to be systematic. For ex-

ample, using the −(CH2)2N2H fragment, ASET(mf)-[DSRG-MRPT3] has a

slightly smaller NPE (by at most 0.05 kcal mol−1) than ASET(2)-[DSRG-

MRPT3] when NA = 75 and 125.

The approach followed in ASET to select the fragment orbitals is based
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on applying a fixed threshold to the eigenvalues of the fragment projec-

tor [Eq. (2.2)]. With the standard threshold (t = 0.5), the fragments for

the four embedding partitions (1–4) contain 31, 54, 77, and 100 orbitals,

and the ASET(2)-[DSRG-MRPT3] NPE is equal to 1.28, 0.36, 0.14, and

0.06 kcal mol−1, respectively. Hence, the fragment −CH2N2H is sufficient

to achieve a chemically accurate NPE (error less than 1 kcal/mol) using

ASET(2).

A typical scenario when running embedded computations is that of hav-

ing only a fixed amount of computational resources available, which im-

poses limits on the number of fragment orbitals that can be treated with a

high-level computations. In this case one may ask: How should the frag-

ment be chosen to minimize the NPE? To answer this question, we consider

the error trends in the heatmaps moving along the vertical axis (corre-

sponding to a fixed value of NA). For both versions of ASET, we find that

NPE decreases as the fragment includes more atoms, suggesting that a good

alternative to the standard threshold-based partitioning may be to fix NA

and maximize the size of the fragment (while ensuring that NA is greater

than the number of basis functions on the selected fragment). However,

when the fragment size is fixed and more orbitals are included (moving

along the horizontal axis in the top plots in Fig. 3.3) we observe that the

accuracy of a computation does not always increase. This non-monotonic

behavior is likely caused by the fact that the orbitals are ordered accord-

ing to their overlap with the projector and not their contribution to their
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energetic contribution.

Next, we consider the cost-saving enabled by ASET(2) when using a

more expensive fragment solver. Here we consider the MR-LDSRG(2) method,

which requires the iterative solutions of equations that scale proportionally

to the sixth power of the number of fragment orbitals and that can quickly

become a computational bottleneck in applications to large molecules. Dis-

sociation curves as a function of the N−−N bond length are shown in Fig. 3.3c.

The left panel of this figure shows the energy difference between the ASET(2)-

[MR-LDSRG(2)] and full MR-LDSRG(2) energy for all fragment partition-

ings using a cc-pVDZ basis. In this case, fragments are selected using the

partition threshold t = 0.5 at all geometries. The dissociation curves com-

puted with ASET(2)-[MR-LDSRG(2)] are smooth and continuous for all

partitions and rapidly converge to the full MR-LDSRG(2) result. The NPE

for the −N2H fragment is 1.56 kcal mol−1, and it is further reduced to 0.72,

0.24, and 0.07 kcal mol−1 when one, two, or three CH2 groups are included

into the fragment, respectively. Compared to the full MR-LDSRG(2) disso-

ciation energy (113.8 kcal mol−1), the error introduced by embedding is

around 1% of the dissociation energy with −N2H fragment, and it is only

0.1% with the larger −(CH2)3N2H fragment. These results demonstrate a

robust and consistent converging behavior for ASET(2), which is similar to

the one seen for frozen mean-field ASET(mf) embedding.[71]

The computational timings for different partitions are also presented by

the T values in Fig. 3.3c. Because MR-LDSRG(2) is an iterative scheme,
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we report both the average time for an iteration and the average number

of iterations required for each fragment choice (obtained from computa-

tions of the entire dissociation curve). The single-step cost for the −N2H,

−CH2N2H, −(CH2)2N2H, and −(CH2)3N2H fragment grows rapidly, from

about 22 seconds to 349 seconds. The respective average number of MR-

LDSRG(2) iterations are 10, 9, 10, and 12, showing that different partition-

ings do not significantly affect the convergence rate of the MR-LDSRG(2).

Compared to the cost of the embedded MR-LDSRG(2) computation, the

cost of preparing the ASET(2) dressed Hamiltonian is minor. These tests

demonstrate the potential of using ASET(2) to reduce the computational

cost of multireference computations, especially when the fragment solver

is a computationally expensive method such as FCI or MR-LDSRG(2).

Lastly, we discuss the contribution of the environment correlation [δEB
c,ASET(2)]

term. The differences in NPE from ignoring δEB
c,ASET(2) are −0.15, −0.37,

−0.15,−0.05 kcal/mol for the−N2H (31 NA),−CH2N2H (54 NA),−(CH2)2N2H

(77 NA), and −(CH2)3N2H (100 NA) fragments, respectively. It is inter-

esting that for the N−−N dissociation path of pentyldiazene, ignoring the

δEB
c,ASET(2) term actually reduces the NPE and improves the results signifi-

cantly.

π→ π∗ Excitation energy of 1-octene. Our next example is an applica-

tion of ASET(2) to study the S0 to S1 (π→ π∗) local-excitation of 1-octene,

a system used in several previous embedding studies.[120, 71] Our compu-

tations treat the terminal−C−−CH2 as the fragment and the rest of molecule
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h .

as the environment. We use this partitioning to accentuate the differences

between the methods compared here.

This example illustrates the complexity of treating multiple electronic



77

states with an embedding theory, and in particular the important role played

by orbital relaxation effects. Excitation energies computed with various

combinations of reference orbitals, embedding scheme, and fragment solvers

as a function of the ASET selection threshold, are shown in Fig. 3.4a. To-

gether with these data, we also report the excitation energy computed with

CASSCF and the DSRG-MRPT3 using ground-state (GS) or state-specific

(SS) orbitals. The simplest embedding approach we consider uses ground

state RHF orbitals as a starting point for ASET. As shown in Fig. 3.4a, with

GS RHF orbitals both ASET(mf) (green curve) and ASET(2) (red curve)

show large errors when the fragment space is small, and slightly underes-

timate the DSRG-MRPT3 (GS) excitation energy.

Employing ground-state CASSCF orbitals, leads to more accurate exci-

tation energies, especially in the case of ASET(2) (orange curve) even for a

small number of fragment orbitals. As the fragment orbital space increases

in size, the ASET results based on RHF and ground-state CASSCF orbitals

tend to cluster around the DSRG-MRPT3 results computed with ground-

state CASSCF orbitals. This clustering reflects the fact that in both cases

the active orbitals are not optimized to describe the π → π∗ singlet state.

The last set of data that we analyze is based on a state-specific CASSCF

treatment of both the ground and excited state. These results show very

fast convergence for ASET(2) (brown curve), while a somewhat erratic

behavior for ASET(mf) (purple curve). Among all of these combinations,

both the ASET(2) based on ground-state or state-specific CASSCF orbitals
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offer well-converged excitation energies with modest fragment spaces and

improve upon their mean-field analogs.

Next, we compare ASET(mf) and ASET(2) combined with a more ac-

curate high-level MR treatment based on the MR-LDSRG(2). Fig. 3.4b

shows the ASET(mf)-[MR-LDSRG(2)] and ASET(2)-[MR-LDSRG(2)] exci-

tation energy versus the number of fragment virtual orbitals, and compares

them to the full MR-LDSRG(2) excitation energy. We see again that one

advantage of ASET(2) over ASET(mf) is the more rapid convergence of

the excitation energy with number of fragment orbitals. For example, with

18 fragment virtual orbitals, ASET(mf)-[MR-LDSRG(2)] predicts the exci-

tation energy to be 11.22 eV. The corresponding ASET(2)-[DSRG-MRPT2]

prediction (9.73 eV) is much closer to the full MR-LDSRG(2) result (10.14

eV). To reach an excitation energy with similar accuracy, it is necessary to

include at least 30 virtual orbitals in the ASET(mf)-[MR-LDSRG(2)] com-

putation (10.51 eV).

Lastly, we investigate the errors introduced by neglecting the contribu-

tions from the three-body cumulants (λ3) to the ASET(2) energy. To this

end, we have computed the change in excitation energy when including

λ3 in the ASET(2)-[DSRG-MRPT2] approach. Computations using 18, 22,

and 26 fragment virtual orbitals show that the shift in excitation energy is

of the order of 0.001 eV or less. We have also tested the effect of neglecting

the environment correlation energy [δEB
c,ASET(2)] and found its effect on the

excitation energy to be of the order of 0.001 eV for 18–26 fragment orbitals
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and gradually becoming smaller as more virtual orbitals are included in the

fragment.
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Figure 3.5 Singlet–triplet gaps of the perpendicular O2–benzene complexes computed
using ASET(mf)-[MR-LDSRG(2)], ASET(2)-[MR-LDSRG(2)], Mk-MRCCSD(T), and
the full MR-LDSRG(2). The variable R is defined as the distances from benzene center
of mass to the closest oxygen atom of O2. The singlet–triplet gap is computed as
EδST = ES−ET. All DSRG computations use the cc-pVDZ basis and the DSRG flow
parameter s = 0.5 E−2

h .

Interaction energy and singlet–triplet gap of the O2–benzene com-

plex. In the examples consider so far, a mean-field treatment of embedding
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already captures the dominant effects of the environment on the fragment,

and adding second-order corrections via ASET(2) improves the accuracy,

especially in computations of excited states. However, there are situations

where a perturbative treatment beyond the mean-field level is necessary to

achieve a qualitatively correct description of molecular properties. In this

example, we study the O2–benzene complexes, a weakly interacting sys-

tem used in early DFT studies to benchmark the importance of dispersion

corrections.[65, 186]

Our first test focuses on the singlet-triplet gaps of O2 for both parallel

and perpendicular geometries as a function of the distance from the ben-

zene molecule. The active space for this system is comprised of the valence

orbitals of the two oxygen atoms, with starting guesses selected using the

AVAS technique.[149] We employ the ASET(mf) and ASET(2) schemes to

compute the singlet–triplet gap of O2 (fragment, A) interacting with ben-

zene (environment, B), using MR-LDSRG(2) as the higher-level multirefer-

ence theory. The singlet–triplet gap, defined as ∆EST(R) = ES(R)−ET(R),

for the perpendicular configuration as a function of the O2–benzene dis-

tance (R) is shown in Fig. 3.5. Both O2 and benzene geometries were

kept fixed as R varies. For this example, reference interaction energies

were computed using Mukherjee’s multireference coupled cluster with sin-

gles, doubles, and perturbative triples [Mk-MRCCSD(T)].[47] In the Mk-

MRCCSD(T) computations, the reference wave function was defined by

an active space containing two π∗ orbitals of O2. Using this active space,
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the triplet state Mk-MRCCSD(T) potential energy curve of the O2–benzene

system is found to be in excellent agreement with the one from single-

reference CCSD(T).

Figure 3.5 shows that ASET(mf) predicts almost no change in the gap as

a function of R, while ASET(2) predicts a relative stabilization of the singlet

state as large as 0.05 eV in the range of R values between 1.8 Å and 3.5

Å. In the range of geometries considered, the full MR-LDSRG(2) computa-

tions show a 0.03 eV stabilization of the singlet state relative to the triplet

ground state, while Mk-MRCCSD(T) predicts this value to be slightly larger

(0.06 eV). Compared to these reference results, only the embedding com-

putations based on ASET(2) shows a good quantitative agreement. This

example shows that in certain cases, the contribution of weak correlation

terms from the environment cannot be captured thoroughly by a simple

frozen-core embedding scheme based on a mean-field or a CASSCF refer-

ence. In this example, low-order perturbative corrections that account for

weak interactions with the environment seem to capture the bulk of the

differential contributions in the singlet–triplet gap.

The ASET(2) scheme not only improves computations of local proper-

ties of the fragment, but can also produce more accurate fragment-environment

interaction potentials. To illustrate this point we compute the ground-state

interaction energy, defined as Eint = ET(R)−ET(R = 1000Å), for the parallel

configuration of O2–benzene, since it is more stable than the perpendicu-

lar one. The experimental interaction energy of triplet O2 with benzene
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is around 1 kcal/mol,[186] and it is dominated by weak Van der Waals

interactions that cannot be modeled by mean-field treatments without the

inclusion of dispersion corrections.
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Figure 3.6 Interaction energy of parallel O2–benzene complexes computed using
ASET(mf)-[MR-LDSRG(2)], ASET(2)-[MR-LDSRG(2)], full MR-LDSRG(2), SAPT0,
Mk-MRCCSD, and Mk-MRCCSD(T). The variable R is defined as the distances
from benzene center to the geometrical center of O2. The interaction energy is
Eint = ET(R)−ET(R = 1000Å). All computations use cc-pVDZ basis. In DSRG com-
putations the flow parameter is set to s = 0.5 E−2

h .
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Following the previous example, we treat O2 as the fragment and ben-

zene as the environment. Figure 3.6 shows the interaction energy of triplet

O2 and benzene at their respective fixed geometries computed using ASET(mf)

and ASET(2) as the embedding method and MR-LDSRG(2) as the high-

level multireference theory. For both ASET approaches, we report compu-

tations with 26 fragment orbitals (obtained using a threshold t = 0.5) and

with 6 additional benzene π/π∗ orbitals. We also provide reference curves

computed with Mk-MRCCSD(T) and an open-shell version of symmetry-

adapted perturbation theory (SAPT0).[77, 62]

Using the default threshold, the mean-field ASET(mf) captures only a

fraction of the dispersion interaction, resulting in very shallow potential

for the O2–benzene complex. The ASET(2)-[MR-LDSRG(2)] curve shows

a modest improvement over the corresponding mean-field treatment, cap-

turing qualitatively the profile of the full MR-LDSRG(2) curve, with this

agreement becoming more accurate at long distances (R> 4.5 Å). However,

including the additional benzene π/π∗ orbitals into the fragment leads to

significant improvements in the ASET(mf) and ASET(2) curves. In par-

ticular, the ASET(2) curve (red) predicts an equilibrium interaction energy

similar to that of SAPT0 (ca.−0.5 kcal mol−1) and is indistinguishable from

the Mk-MRCCSD(T) one when R > 4.5 Å. These results show that the com-

bination of a higher-level embedding treatment of fragment-environment

interactions with a more targeted choice of the fragment orbital space may

provide a path to performing accurate computations of interaction ener-
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gies.

3.5 Summary

In this chapter, We developed a one-shot second-order active-space embed-

ding theory [ASET(2)] that accounts for the interaction of the fragment

and environment beyond the level of frozen-core embedding methods. In

ASET(2), the fragment-environment interaction is included via a canon-

ical transformation truncated to second-order that approximately decou-

ples (block diagonalizes) the full Hamiltonian (fragment + environment).

The ASET(2) procedure produces a downfolded Hamiltonian for the frag-

ment space that accounts for fragment-environment interactions and elec-

tron correlation in the environment treated at the second order.

We test the ASET(2) procedure on three systems to assess the improve-

ment brought to computations of bond dissociation curves, excited states,

and weakly interacting open-shell systems. Our first example—the N−−N

bond dissociation of pentyldiazene—shows that when changes in the elec-

tronic structure are localized on the fragment, ASET(2) brings only modest

improvements over the ASET(mf) frozen mean-field embedding in the com-

puted dissociation curves. In our second example—the excitation energy

of 1-octene—the response of the environment to changes in the fragment

electronic structure plays an important role. In this case, ASET(2) brings

consistent and systematic improvements over ASET(mf), and yields con-

verged excitation energies even with relatively small fragment spaces. In
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our last example—the O2–benzene system—we demonstrate that ASET(2)

can capture important fragment-environment weak interactions in systems

where dispersion plays an important role.

In summary, the ASET(2) scheme offers a one-shot approach to improv-

ing frozen mean-field embedding theories via unitary canonical transfor-

mations. An unexpected and interesting outcome of our study is the obser-

vation that improving the description of fragment-environment interaction

does not always lead to significant improvements in accuracy. This obser-

vation, in turn, suggests that mean-field frozen embedding schemes like

ASET(mf) may already be sufficiently accurate for a wide range of appli-

cations. The remaining major source of errors in embedding approaches

originates from partitioning the system into fragment plus environment,

suggesting the need for improved partitioning schemes. As shown in our

analysis of pentyldiazene, an optimal partitioning strategy should prioritize

identifying the largest fragment compatible with a given number of frag-

ment orbitals. Chapter 5 discusses possible improvements to the partition-

ing strategy using an AO-label-based projector and clustering techniques.

We will also explore whether the ASET scheme can be used for basis set ex-

trapolation, where, instead of using atoms to define a projector, we select

the fragment (A) as a subset of the larger basis sets and put the rest of basis

functions to the environment (B). An interesting avenue of future inquiry is

the extension of ASET to nonperturbative schemes, like the random-phase

approximation, which could be useful to describe fragments coupled to ex-
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tended metallic systems. ASET(2) also shares similar features with down-

folding schemes recently introduced in the context of quantum computing

to reduce the qubits requirements.[11, 9, 126, 38] Therefore, future work

could also explore the application of ASET to bridge real-world chemistry

problems with quantum computers.
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Chapter 4

Studying CO inversion on NaCl

surface using ASET

4.1 Introduction to CO inversion

In this chapter, we will describe an application of ASET to study CO inver-

sion on NaCl(100) surface. This chapter is mainly based on an ongoing

paper, which Dr. Meng Huang contributes to the vibrational analysis sec-

tions. Firstly, we brief the background of this problem. The transformation

between molecules and their isomeric forms is an insufficiently studied area

since this process involves the switching of quantum states.[37] Recently,

the isomerization of CO molecule on a NaCl surface is recently observed in

experiments.[103] From the vibrational emission spectra, signs of config-

uration switch are clearly observed between C-down and O-down isomer.
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The experiment also indicates that the isomerization happens when both

isomers are in high-lying vibrationally excited states. Several theoretical

studies have been conducted to simulate and verify the experimental ob-

servation. Chen et al. computed Potential energy surfaces (PESs) of CO

on NaCl(100) under different coverage, using a periodic model and Den-

sity Functional Theory (DFT).[25] They discovered that the energy order

of the C-down and O-down isomer changes at high vibrationally-excited

states (ν ≈ 40). Sinha and Saalfrank verified their discovery and computed

the 2-D and 3-D anharmonic vibrational eigenstates.[157] Nandi et al. per-

forms a dynamics study for this isomerization using a finite CO-NaCl cluster

model.[129] They highlight that the isomerization may happen at larger

CO-NaCl distances than the conventional isomerization saddle point.

Those studies explain the experiment well; however, they all computed

the potential energy surfaces using single-reference theories, while CO bond

stretch involves significant multideterminantal effects.[34, 188] Single-reference

theory can only predict the qualitatively correct C-O stretch (r) PES around

the equilibrium distance r0, thus limiting their ability to study high-lying

excited states explicitly. This problem can be solved using a multireference

theory for the PES computations. Using multireference computations, an

accurate description of the CO stretch will be available for a wider range of

r, including the extreme r values.

In multireference theory, the orbitals are partitioned into active and

inactive orbitals, and in the small active orbitals, the full Hamiltonian



89

can be built and diagonalized, while the inactive orbitals will be treated

approximately.[117] Studying sizable systems like CO-NaCl adsorption with

multireference theory is challenging. In this case, the CO-CO interactions

and CO-NaCl(100) interactions are dominated by weak van der Waals (vdW)

interactions; using higher-level computations on CO alone is insufficient to

describe the small variations of the potential energy surface (PES). How-

ever, the newly developed quantum embedding theories are possible so-

lutions. As mentioned in previous chapters, in quantum embedding, a

system is partitioned into the fragment and environment, and the orbital

spaces after partition can be treated with high-level and low-level theory,

respectively. Various quantum embedding schemes have been developed

and successfully applied to large chemical systems.[185, 64, 105, 95, 94,

190, 18, 51, 132, 20, 32, 179, 2, 16, 184, 133, 21, 98, 61, 82, 57, 196] The

Active Space Embedding Theory (ASET) is a quantum embedding scheme

that incorporates both the active space partition and quantum embedding

partition.[71] It is shown to reduce the cost of multireference computations

significantly while still keeping the results close to the full multireference

computations.

This chapter will apply the ASET scheme to study the CO isomeriza-

tion, using the multireference second-order perturbative Driven Similarity

Renormalization Group (DSRG-MRPT2) theory as the fragment solver.[107,

109] DSRG is a series of intruder-free multireference theory, guaranteeing

its robustness. This chapter demonstrates how the combination of multiref-
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erence theory and quantum embedding can generate large-scale, highly ac-

curate potential energy surfaces.[43, 111, 68, 112] This procedure would

allow us to study highly vibrationally excited state explicitly. It will provide

a verification of previous studies and new insights on the CO isomerization

system.

This chapter is organized as follows: In Sec. 4.2, we briefly review

the ASET embedding scheme and presented the computational details for

quantum-mechanical computation, classical potential, and vibrational anal-

ysis. In Sec. 4.3, we tested different fragments for the embedding computa-

tion. In Sec. 4.3.1, we use the optimal model to perform a potential-energy-

surface (PES) scan for both single-cO model and a 1/1 full coverage model,

and discuss C-down O-down transition and desorption. In Sec. 4.3.2, we

analyze the vibrationally excited states based on the PES. In Sec. 4.4, we

summarize the results and raise insights.

4.2 Theory Review

4.2.1 Embedding model for CO absorbed on NaCl

In this section we describe the multilevel embedding model used to com-

pute the PES of CO adsorbed on a NaCl surface. Since modeling the CO

molecule over a broad bond length range is key to understanding the iso-

merization process, we start from a complete-active-space self-consistent

field (CASSCF) calculation of CO and a small NaCl cluster. Following Boese
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and Saalfrank,[17] we consider a cluster containing two 3×3 NaCl layers,

with a Na central atom in the surface layer closest to the CO. The active

space is chosen to include eight valence orbitals of CO that maximize the

overlap with the atomic 2s and 2p orbitals of C and O, using the atomic va-

lence active space (AVAS).[148] When applied to an isolated CO molecule,

this procedure yields the active space CASSCF orbitals shown in Fig. 4.1.

These orbitals are always included in the high-level embedding treat-

ment.

After generating CASSCF orbitals, we apply the mean-field version of

our active space embedding theory (ASET).[71] As described in Chapter

2, the ASET scheme is used to localize and separate orbitals into two sets:

fragment (A) and environment (B) orbitals. This partitioning employs the

atomic basis to localize and partition orbitals, and requires the user to spec-

ify a list of atoms assigned to the fragment. To accurately reproduce the in-

teraction of CO with the surface, the orbitals that belong to the CO molecule

and the closest Na and Cl should be included in the fragment space (A). In

Sec. 4.3, we test several embedding models that include the CO molecule

and differ in the extent to which the Na and Cl atoms of the surface are

included in the fragment atom list.

The CASSCF active orbitals (A) are by default included in the fragment

orbital space. The core (C) and virtual (V) virtual orbitals are instead

separately rotated and partitioned into subspaces belonging to the frag-

ment and the environment. This rotation aims to maximize the overlap
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A

B

C

Figure 4.1 The active orbitals of CO around the equilibrium bond distance (A, 1.15
Å), in the recoupling region (B, 1.95 Å), and in the dissociation limit (C, 2.75 Å). The
starting orbitals are selected using the AVAS procedure.

of the fragment orbitals with the basis functions located on the fragment

atoms. A localized orbital is assigned to the fragment if, after projection
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onto the orbital basis, its norm is greater than a threshold t. This criterion

can be interpreted as selecting orbitals for which the probability of finding

an electron on the fragment is greater than t. Note that the active orbitals

are not mixed in this transformation. Due to the size of the NaCl surface,

we optionally freeze some of the fragment-core and environment-occupied

orbitals, in which case these are excluded from the partitioning procedure.

A detailed description of this procedure may be found in Refs. 71 and 72.

After partitioning and localization, ASET produces an effective Hamilto-

nian for the fragment, which provides the input to a high-level multirefer-

ence treatment. The mean-field version of ASET accounts for the fragment-

environment interaction with a static effective one-electron potential. Al-

though this treatment neglects instantaneous fragment-environment fluc-

tuations, a study that introduce this missing effect at the second-order

level in perturbation theory found that the improvement in the energet-

ics is small.[72]

Our high-level multireference treatment is based on the driven-similarity

renormalization group (DSRG) second-order perturbation theory (DSRG-

MRPT2). The DSRG-MRPT2 is derived assuming a diagonal Fock operator.

One feature that characterizes the DSRG, is a controllable diagonalization

of the Hamiltonian that helps avoid intruder-state problems and depends

on the so-called flow parameter s.[42] Compared to other multireference

perturbation theories like CASPT2 and NEVPT2,[4, 5] DSRG-MRPT2 has

the advantage of being robust to small denominators and requiring fewer



94

computational resources as the energy depends only on the three-body den-

sity matrix of the reference.[107, 4, 5] Benchmarks show that these advan-

tages come at the expense of slight loss of accuracy compared to CASPT2

and NEVPT2.[107, 111, 68]

4.2.2 Classical model for external potentials

To simulate the long-range interaction between CO and NaCl both along

the surface and deep into the bulk, we include the electrostatic (external)

potential due to surrounding Na+ and Cl– ions treated as point charges.

The quantum mechanics (QM) cell we used in our computations includes a

NaCl bulk Na9Cl9. As shown in Fig. 4.2, the QM cell is not a classical unit

cell since it has positive (+) and negative (-) phases. This choice of the

cluster guarantees the symmetry of the QM cluster, reducing the number

of points necessary to construct a Potential Energy Surface (PES) signifi-

cantly. As previous research suggested, the electrostatic terms dominate the

CO-NaCl and CO-CO interactions.[103, 129] Therefore, we construct our

external electrostatic potential using point-charge, which would take the

long-range interactions into account. The placements of the point charge

are expanded layer-by-layer; each new layer extends both in 100 plane

(XY) and in (-1, 0, 0) direction (-Z), as shown in Fig. 4.2. The electro-

static energy contribution of the Nth layer to the CO inversion is estimated

through the charge-dipole interaction:
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ELN =− ∑
j∈LN

q jµ cosθ

Re
2 , (4.1)

where q j is the point charges in LN; we use +0.536 for Na+ and -0.536

for Cl– , as optimized in the previous chapter (Chapter 2).[71] µ is the CO

dipole, the dipole is evaluated at different r using CASSCF density matrices.

The dipoles are 0.1269 a.u. (0.3226 D) and -0.3885 a.u. (-0.9874 D) at

r = 1.132 and r = 1.832, respectively. Re is the distance between the point

charge and CO center of charge, and θ is the angle between 1) the dipole

vector and 2) the vector from q j to CO center-of-charge. Note that the CO

center-of-charge has a different trajectory with center-of-mass during the

rotation. The dispersion interactions also plays an important role in this

system, especially for the first MM layer. Since all short-range dispersion

will be handled in the embedding fragment using DSRG-MRPT2, the only

term we need to correct is the long-range attractive potential. Based on

Ref. 125, we use:

Udisp =− ∑
i∈CO

∑
j∈Env

Ci j

r6
i j
, (4.2)

where Ci j are 383.3, 3935.9, 256.6, and 2633.0 for C...Na+, C...Cl– , O...Na+,

and C...Cl– . The unit is KJ/mol*Å6. The set Env includes ASET(mf) envi-

ronment (8 Na+ and 5 Cl– ions) plus all added MM layers. This formula

is similar to a D2 correction in DFT.[66] Here we test how the number of

layers affect the C-down O-down differences. The energy contributions are
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also shown in Fig. 4.2.
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Figure 4.2 An illustration of the QM and MM model. The left plot labels the QM cell
and two corresponding MM cells. The upper-right figure illustrates our definition of
layers. The diagram below them shows how much the dipole interactions and dispersion
interactions each layer contributes. The sizes of each layer (number of atoms) are also
shown.

It can be seen that the dipole contributions are less than 1 cm−1for

LN > 3, and a converging behavior is observed. The dispersion contribu-

tions decay faster; it is under 1 cm−1after the first layer. Therefore, in the

main-text computations, we will use LN = 1 to construct the potential. Ad-

ditional corrections are considered for the adsorption energy analysis, as

discussed in Sec. 4.3.1. Here we estimate the maximum error we can make

with this finite-cluster approximation. When r = 1.832 Å, the CASSCF

dipole reaches 0.3882 a.u., according to Eq. 4.1, the maximum error intro-

duced by ignoring faraway (LN ≥ 2) Na+ and Cl– is 7.9 cm−1, which is not
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significant enough to affect any analysis. The QM-MM Hamiltonian will be:

hQM-MM
i = hQM

i − ∑
j∈L1

q j

ri−Re,j
(4.3)

As shown in Fig. 4.3, in the following computations, this classical external

potential accounts for 17 replicas of the finite NaCl cluster included in the

quantum mechanical computation (153 Na+ and 153 Cl– atoms in total).

QMQM

QMQM
MMMM

MMMMA

B

Figure 4.3 Top (A) and side (B) view of the QM/MM model for CO-NaCl(100).
Carbon and oxygen atoms are represented with gray and red, while Na+ and Cl– ions
are colored with purple and green.
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4.2.3 Vibration models

In order to investigate the inversion of highly vibrationally excited CO, we

computed the vibrational eigenstates using three reduced-dimensionality

models. Keeping the position of the Na and Cl atom fixed, there are six

degrees of freedom for the C and O atoms; in this chapter, we decompose

the coordinates of CO as a center-of-mass (CM) plus rotations and C-O

bond stretching. The six coordinates we employ are shown in Fig. 4.4.

Na+Cl-

Cl-

Cl-

Cl-

Na+ Na+

Na+ Na+

O
C

R

r
θ

α

L

β

X

Y
r: C-O bond length

R: distance between 
CO center-of-mass 
to NaCl surface

L: distance between
CO center-of-mass
projection on the surface
to the origin

θ: C to O to Z-axis angel 
(tilt angel)

α: CO rotation in XY plane
(Azimuthal angel)

β: C-O local rotation 
in XY plane

Z

Figure 4.4 Definition of all 6 coordinates that encompass all possible CO movements
on the NaCl surface.

The simplest model accounts only for the CO stretching mode along the

CO distance (r). The corresponding vibrational Hamiltonian is simply

Ĥ1D =− h̄2

2µ

∂ 2

∂ r2 +V (r) (4.4)
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where µ is the reduced mass of CO and V (r) is the potential computed at

fixed values of the other five coordinates.

The other two models account for the couplings of the CO stretching

mode with other degrees of freedom. They are taken from a previous

study[157] on CO-NaCl based on a DFT potential. The first one involves

the CO distance and the CO tilt angle (θ), where θ = 0 corresponds to CO

oriented with the C atom pointing to the surface. The corresponding model

Hamiltonian, Ĥ2D(r,θ) can be written as

Ĥ2D(r,θ) =−
h̄2

2µ

∂ 2

∂ r2 −
h̄2

2µr2
∂ 2

∂θ 2 +V (r,θ) (4.5)

Here the kinetic energy coupling between the two vibrations is represented

by the dependence of the reduced mass on the bond length of the CO

molecule. The second model involves the CO stretching mode and Z-axis

traslation of the CO center of mass (R). The corresponding model Hamil-

tonian, Ĥ2D(r,R) can be written as

Ĥ2D(r,R) =−
h̄2

2µ

∂ 2

∂ r2 −
h̄2

2M
∂ 2

∂R2 +V (r,R) (4.6)

where M is the total mass of the CO molecule.

To diagonalize these three model Hamiltonians, we employ the one-

dimensional and two-dimensional Discrete Variable Representation (DVR)

method, using the representation of Colbert and Miller.[29] We impose pe-

riodic boundary conditions on the tilt angle (θ ∈ [−π,π]) and use a grid of
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evenly spaced points. The number of grid points is 201 for the 1D model,

59×101 for the 2D(r,θ) model, and 59×59 for the 2D(r,R) model. The

values of potential energy at each DVR grid point are evaluated using cubic

spline interpolations of ab initio energies. The grids used provide a com-

promise between the ability to fully diagonalize the Hamiltonian matrix

and the accuracy of the energy levels, which are converged to less than 0.1

cm−1for highly vibrationally excited states of CO up to quantum number

25.

4.2.4 Computational details

All ASET and DSRG-MRPT2 computations reported in this chapter were

performed with FORTE,[48] using an efficient implementation based on

density-fitted integrals.[111] All computations used integrals, reference or-

bitals, and electrostatic potentials obtained from PSI4.[159] For CASSCF

and DSRG-MRPT2 computations, the density fitting basis sets for C and O

atoms are cc-pVTZ-JKFIT (CASSCF) and cc-pVTZ-RI (DSRG-MRPT2), while

for Na and Cl atoms the smaller cc-pVDZ-JKFIT and cc-pVDZ-RI bases were

selected.[189, 176, 178] For the geometry comparison in Sec. 4.3.1, we

use def2-SVP basis. The core orbitals of C, O, Na and Cl are frozen in all

computations.
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4.3 Model benchmarking and geometry optimiza-

tion

We begin by first benchmarking the accuracy of the ground-state potential

energy curve of CO computed with the DSRG-MRPT methods and compare

it to other electronic structure methods used in previous studies. In Fig. 4.5,

we show the potential curve for a single CO and bond distances ranging

from 0.83 to 2.03 Å using two DFT functionals (PBE, B3LYP),[138, 13, 163]

restricted MP2, and restricted CCSD(T), and the DSRG-MRPT2/3. Note

that the PBE and B3LYP computations cannot be converged beyond the

recoupling region (r values larger than ca. 1.61 Å and 1.73 Å).

The curve in Fig. 4.5 shows no significant difference around the equi-

librium distance; however, significant deviations start to appear in the re-

coupling region (r > ca. 1.5 Å). In particular, B3LYP and PBE computations

cannot be converged beyond a certain point, while MP2 and CCSD(T) start

to show major deviations after 1.62 Å and 1.75 Å, respectively. From the

potential energy curves, we performed DVR computation to obtain vibra-

tional constants and an estimate of the maximum vibrational level (νmax)

that each method allows us to calculate. The results are shown in Table 4.1.

Due to convergence issues, the potentials generated from DFT cannot be

used to compute the threshold for CO inversion on NaCl(100), which is

believed to be around vibrational states ν = 25. MP2 and CCSD(T) gen-
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MP2

CCSD(T)

DSRG-MRPT2

DSRG-MRPT3

B3LYP PBE

ν = 30

ν = 20

ν = 25

ν = 10

B3LYP

PBE

MP2

CCSD(T)

DSRG-MRPT2

DSRG-MRPT3

Figure 4.5 Dissociation curve of a single CO in the gas phase computed using different
methods. The curves are aligned with their respective minimum energy. The scan is
done from 0.83 Åto 2.03 Å, using 50 points in total (more points around 1.13 Åto
capture the minimum). Due to convergence difficulties and lost of continuity, PBE data
beyond 1.61 Å and B3LYP data beyond 1.73 Å are not presented. The vibrational
wavefunctions (10,20,25,30) computed using DSRG-MRPT2 and DVR are shown in
dotted lines. More detailed curves are enlarged and shown in the bottom subplot.

erally underestimate vibrational constants respectively by ca. 33 and 21

cm−1compared to the experimental value. However, both DSRG-MRPT2

and DSRG-MRPT3, show small deviations from experimental frequencies

(ca. 2 and 17 cm−1, respectively). This analysis highlights the necessity of

using multireference methods to accurately compute the potential energy
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Table 4.1 Stretching frequencies of gas-phase CO computed using different
methods. The quantity νmax indicates the maximum vibrational level that can
be computed with each method. classical potential and empirical dispersion
are not included.

Model νmax ωe (cm−1) ωexe (cm−1)
PBE 20 2129.8 13.5
B3LYP 25-30 2208.4 12.4
MP2 >30 2136.8 16.0
CCSD(T) 30 2148.6 12.6
DSRG-MRPT2 >30 2167.7 12.8
DSRG-MRPT3 >30 2186.4 12.5
Exp.a 2169.8 13.3

a: Experimental value taken from Ref. 103.

curve of CO, especially in the high-energy region relevant to the inversion

of CO.

CO / Na9Cl9
CO-Na9Cl9 / -CO-NaCl4 / Na8Cl5

Figure 4.6 Different cluster models tested. Purple ball indicates Na+ and green ball
indicates Cl– . The transparent atoms are considered as ASET environment. The blue
circle marks a classical electrostatic field as indicated in Fig. 4.2.

In the next step, we identify a model for the CO-NaCl(100) system that

is sufficiently accurate and computationally feasible. In Figure 4.6 we show

the two fragment/environment partitionings of a Na9Cl9 cluster used in the

embedding approach and the full Na9Cl9 cluster. From these we generate
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Table 4.2 Comparison of the embedding models shown in Fig. 4.6. The R is optimized using one-
dimensional scan where all other coordinates are fixed. The ν0 (C-d) and ν0 (O-d) are computed using
a 1-D DVR along r using 100 points between r = 0.83 Å and r = 1.53 Å.

Model Fragment MM Charges R (C-d) R (O-d) ν0 (C-d) ν0 (O-d) ∆ν0

CO - - - - 2147.6 2147.6 0.0
1 CO No 3.61 3.52 2142.5 2134.5 8.0
2 CO−NaCl4 No 3.39 3.18 2146.1 2133.7 12.4
3 CO−Na9Cl9 No 3.37 3.14 2147.2 2133.4 13.8
4 CO Yes 3.71 No adsorption 2140.7 - -
5 CO−NaCl4 Yes 3.44 3.19 2144.3 2132.7 11.6
6 CO−Na9Cl9 Yes 3.41 3.18 2145.8 2131.9 13.9

DFTa - - 3.33 3.11 2136.1 2121.6 14.5
Exp.b - - - - 2149.9 2136.9 13.0

a: from Ref. 25, taking the 1/8 PBE results converted to C12O16 using reduced mass.
b: from Ref. 103, taking the extrapolated results for ν0−1 in the supporting info.

six models and compare their properties with previous experimental and

DFT results.[103, 25] Models 1 and 2 are based on ASET and include in

the definition of the fragment CO and CO−NaCl4, respectively. Model 3

contains the entire Na9Cl9 cluster and it is equivalent to a full correlated

computation without embedding. Models 4–6 correspond to models 1–3

combined with a classical external charge field.

In Table 4.2 we report the definition of the six models and correspond-

ing properties for a single CO molecule adsorbed on NaCl, together with

results for bare CO, previous DFT results, and experimental data.[103, 25]

For each model we compute the equilibrium center-of-mass distance from

the surface for C-down adsorption [R(C-d)] and O-down adsorption [R(O-

d)], the fundamental CO stretching frequency for C-down [ν0(C-d)] and

O-down adsorbed [ν0(O-d)] CO, and the difference between the two fun-

damental CO stretching frequencies, ∆ν0 = ν0(C-d)− ν0(O-d). The equilib-

rium R value is determined by a potential energy scan with 0.01 Å spacing
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and r fixed at 1.13 Å. The corresponding fundamental CO stretching fre-

quency is computed via a 1-dimensional DVR based on a 8-point potential

computed in the range re−0.3 Å to re +0.4 Å at the equilibrium R value.

As can be seen from Table 4.2, the properties obtained from the most

elaborate model (6) are in excellent agreement with previous DFT results

and experimental values, with R(C-d) differing only by 0.08 Å (with re-

spect to DFT) and fundamental frequencies differing from extrapolated ex-

perimental values by less than 5.0 cm−1. The ASET-based model 4 treats

only the fragment [CO-NaCl4]3− at the DSRG-MRPT2 level and accurately

reproduces the features of model 6. Interestingly, model 4 fails to show

O-down absorption for CO, indicating that an explicit treatment of the in-

teraction of CO with the surface atoms in necessary to recover this feature.

When comparing the cost of models 5 and 6 we find that computations with

the latter are around 10 times more expensive than the former, due to the

larger number of correlated MOs in the latter (123 and 292, respectively).

The influence of other NaCl cells are approximated using a classical charge

field of 153 Na+ and Cl– ions. The addition of the MM potential makes

the model more realistic, especially in terms of adsorption energy, which

will be discussed in Sec. 4.3.1. The details of how the ionic charges for this

MM potential were derived are reported in the Appendix. Therefore, due

to its favorable accuracy/cost ratio, we will employ model 5 for our full

PES computations.

Using the embedding model 5, we optimize the geometry of both C-
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down and O-down configurations with a grid-search strategy combined

with polynomial interpolation, and found that the global minimum in both

cases is a perpendicular geometry with r = 1.1325 Å, R = 3.4309 Å, for C-

down (θ = 0◦) and r = 1.1333 Å, R = 3.2198 Å, for O-down (θ = 180◦),

with L = 0 and α and β arbitrary in both cases. This result is in agree-

ment with a previous theoretical study by Meredith and Stone,[125] which

predicted that an isolated CO molecule adopts a perpendicular geometry

with the C atom above a Na+ ion and the more recent work of Boese

and Saalfrank.[17]. In contrast, in a monolayer both experiments[75]

and theory[125, 172, 25, 129] suggest that at low temperatures (below

35 K) the CO molecules assumes a tilted geometry with two possible min-

ima (1× 1 and 2× 1). Furthermore, at temperatures above 35 K, the

CO molecules adopt a 1× 1 structure with all molecules perpendicularly

aligned to the surface. This structure is estimated by theory to lay only 32

cm−1above the most stable monolayer structure.

Perpendicular:
R = 3.359 Å; r = 1.141 Å; L = 0.0 Å; 

θ = 0.0°; α = 0.0° ; ψ = 0.0°.

Tilted:
R = 3.024 Å; r = 1.143 Å; L = 1.463 Å; 

θ = 44.8° ; α = 135.0° ; ψ = 0.0°.

Figure 4.7 The perpendicular and tilted geometries optimized using PBE/def2-SVP.
The coordinates used are defined in Fig 4.4.
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We have found that it is rather difficult for ab initio theories to accu-

rately capture the energy difference between the perpendicular and tilted

geometry of a single CO molecule. To illustrate this point, we consider

two stationary points on the PBE/def2-SVP potential energy surface for

the CO−Na9Cl9 cluster: the perpendicular and tilted geometries shown in

Fig. 4.7. For both geometries we then computed the relative energy, ∆E =

Etilted − Eperpendicular, using various DFT functionals (PBE, SCAN, B3LYP,

PBE0)[138, 163, 13, 1, 164] optionally including Grimme’s D3 dispersion

corrections,[66] MP2, ASET(mf)-[DSRG-MRPT2] and ASET(mf)-[DSRG-

MRPT3] based on model 5,[71, 107, 109] and full DSRG-MRPT2 and DSRG-

MRPT3 computations. As shown in Table 4.3, there is a wide spread in the

compute relative energies. The PBE, SCAN, B3LYP functionals predict that

the tilted geometry is lower in energy, while PBE0 slightly favors the per-

pendicular one. Adding the empirical dispersion correction (D3) leads to

predict the tilted geometry to be more stable for all functionals; however,

the magnitude of the D3 correction ranges from a slight destabilization

(by 5 cm−1for SCAN) to stabilization up to 288 cm−1(B3LYP) of the tilted

geometry. In contrast, MP2 and the ASET-DSRG models are all in agree-

ment with the general consensus between theory and experiment that for

a single CO molecule the perpendicular geometry is more stable, predict-

ing that the tilted geometries to lie 176-217 cm−1above the perpendicular

one.[75, 172] We have also analyzed the long-range dispersion introduced

by MM cells, which is a 20.8 cm−1stabilization of the tilted geometry for the
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Table 4.3 The energy difference between C-down perpendicular and tilted geometries
(Etilted−Eperpendicular) computed using different methods. The "+MM" indicates a
classical potential consisting of 153 Na+ and 153 Cl– ions, as discussed in the Appendix.

Method Etilted−Eperpendicular (cm−1)
PBE + MM -120.4
PBE-D3 + MM -291.6
SCAN + MM -562.5
SCAN-D3 + MM -557.4
B3LYP + MM -205.4
B3LYP-D3 + MM -493.0
PBE0 + MM 36.6
PBE0-D3 + MM -118.2
MP2 + MM 217.2
ASET(mf)-[DSRG-MRPT2] + MM 213.7
ASET(mf)-[DSRG-MRPT3] + MM 176.3
Full DSRG-MRPT2 + MM 288.2

first MM layer and less than 0.4 cm−1for the second and further layers of

NaCl cells. Details of MM cells and dispersion corrections can be found in

Sec. 4.2.2. In the following analysis of the CO inversion based on reduced

dimensionality models, we will therefore consider the potential expanded

around the perpendicular geometry minimum.

4.3.1 Potential energy surface for CO inversion

In this section we investigate the potential energy surface (PES) of CO ad-

sorbed on NaCl(100). We begin by discussing the inversion of an isolated

CO on NaCl(100) and then extend our analysis to a CO monolayer. The

starting point of our investigation of the single CO is the perpendicular

minimum geometry of model 5. We first investigate the dependence of

the energy as a function of the azimuthal angle (α) for three values of
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the tilt angle (θ = 30, 90, 150 degrees). In scanning the energy, we keep

the projection of the CO center-of-mass fixed onto the central Na+ ion by

imposing L = 0 and maintain the CO center-of-mass distance from the sur-

face fixed at the optimum distance for the C-down configuration. Fig. 4.8

shows the results of this analysis. We generally note that for all three tilted

configurations there are four equivalent minima corresponding to diagonal

orientations of the CO molecule (α = 45◦+ k90◦, with k = 0,1,2,3).

Figure 4.8 CO energy surfaces along azimuthal rotations computed using ASET(mf)-
[DSRG-MRPT2] and cc-pVTZ basis.

Based on these considerations, we build a reduced dimensionality po-

tential energy surfaces involving the CO bond length (r), the distance of

the CO center of mass from the NaCl(100) surface (R), and the tilt angle

(θ) defined as the angle between C-O vector and the NaCl(100) normal

vector. In scanning these variables we fix α + β = 45◦ and L = 0, which
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corresponds to a CO oriented diagonally. Our potential energy surface cov-

ers r from 0.832 to 1.832 (Å), R from 2.83 to 4.93 (Å), and θ from 0◦ to

180◦. All data are computed using ASET(mf)-[DSRG-MRPT2], with empir-

ical dispersion and external charge fields included. A total of 3072 points

are computed for the PES, and the entire scan takes less than 40 hours

using 288 CPU cores.

The PES is fitted using Scikit-learn’s polynomial regression module with

cross-validation (0.8:0.2 split, 5 folds) to prevent over-fitting. The final

model consists of 24 parameters. We ensure through cross-validation that

all R2-scores are higher than 0.996, and the root-mean-square errors (RMSE)

for all folds are smaller than 0.01 cm−1. The minima and transition states

are found in this PES using L-BFGS optimization in SciPy, with boundaries

enforced using a exponential penalty beyond the R and r data range.[137,

171] Fig. 4.9 shows four slices of the PES at CO bond lengths r = 0.872,

1.132, 1.432, and 1.732 Å using contour lines at 100 cm−1 energy intervals.

Both C-down (θ = 0◦) and O-down (θ = 180◦) CO geometries corre-

spond to minima, with the former being the global one at r = 1.132 Å and

R = 3.42 Å. There are several important observations to make. Firstly, the

equilibrium center of mass distance, R, varies significantly with respect to

both the bond length and the orientation of the CO. At r = 0.832 Å, the

C-down and O-down CO display minima at R = 3.18 and R = 3.06 Å. When

the r is increased to 1.132, 1.432, and 1.732 Å, the optimal value of R for

C-down CO increase to 3.42, 3.68, and 3.97 Å, respectively. In contrast,
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Zero point 
shift:  
95252 cm-1

Zero point 
shift:  
0 cm-1

Zero point 
shift:  
22449 cm-1

Zero point 
shift:  
50914 cm-1

Figure 4.9 Potential energy surfaces computed using the single CO model using
ASET(mf)-[DSRG-MRPT2]. The 2-D slices of the PES at r = 0.832, 1.132, 1.432, and
1.732 Å are presented. The x-axis is R, and the y-axis is the tilt angle. Each contour
line indicates 100 cm−1. Blue balls mark the minima and the red triangle marks the
transition state. The shifts from the global minimum for each figure are marked.

the optimal R value for O-down CO does not display such large variations,

though its stable adsorption basin becomes flatter with larger r values.

A second important observation concerns the energy difference between

the C-down and O-down equilibrium geometries, which is crucial in de-

termining the energetics CO inversion on the NaCl surface. At r = 0.832,

1.132, 1.432 Å, the C-down geometries are energetically more stable, but
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the energy difference goes from 653.7 cm−1down to 479.6 cm−1and 192.6

cm−1, respectively. When r = 1.732 Å, the O-down geometry becomes

110.9 cm−1lower in energy than the C-down one. Similar observations

are also observed in previous research, where C-down O-down inversion is

observed at r = 1.59 using PBE and periodic models.[25]

Finally, the height of the barrier between the C-down and O-down con-

figurations along the θ coordinate decreases as r increases. When r = 0.832

Å, the barrier height from C-down to O-down is 1196.8 cm−1, while it de-

creases to 843.5 cm−1, 569.7 cm−1, and 305.7 cm−1when r = 1.132, 1.432,

and 1.732 Å, respectively. Therefore, the inversion between C-down and

O-down geometries is facilitated by a lowering of the barrier when the CO

bond length is stretched to 1.7–1.8 Å, in agreement with the dipole-driven

inversion mechanism discussed in the literature.[103, 25, 157, 129] An-

other interesting observation is that the transition states appear at larger

R values compared to the equilibrium R value for both the C- and O-down

configurations. This barrier change indicates that translation of the CO

along the R direction may be coupled to the other degrees of freedom dur-

ing the inversion process. In the next section, we will dive further into this

transition.

The experiment of CO inversion happens with very high CO coverage,

where all Na+ sites are saturated, forming a monolayer or even bi-layer

adsorption.[103] This section will also examine the potential energy sur-

faces at high coverage, using a slightly modified model. As shown in
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Fig. 4.10, four additional CO adsorbed at R = 3.43 Å are added to the QM

cells. These CO will be assigned as QM environment and fixed at the equi-

librium adsorption distances, making the fragment size the same as the

previous embedding computations. Using this model, the potential energy

surfaces of CO inversion under monolayer adsorption (1/1 coverage) can

be simulated. It is worth mentioning that environmental CO makes it more

difficult to generate smooth PES without using state-average computations,

especially for tilted geometries with r longer than 1.5 Å. Therefore, here we

only compute the PES for r = 1.132 and r = 1.432 Å, together with the r-R

PES where θ is fixed at 0◦ and 180◦.

Low Coverage
QM cell

High Coverage (1/1)
QM cell

MR Fragment (A)

Figure 4.10 The model used to study 1/1 coverage of CO on NaCl surface. All Na+

are saturated by C-down CO at R = 3.436, while only the center CO is allowed to move
and other CO are fixed. The fragment is still CONaCl4; the other 4 CO are assigned
as the embedding environment.

The noticeable differences between 1/1 coverage PESs and the previous

computations (Fig. 4.9) include several aspects: 1) the energy differences

between C-down and O-down configurations increase slightly. At r = 1.432
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Å, the C-down O-down differences are around 192.6 cm−1for single-CO

model and 275.8 cm−1for 1/1 high-coverage model. This increase indi-

cates that thermochemically, C-down O-down flip may be harder, and the

vibrational excitation level required for this transition is likely to be higher

than the single-CO model. 2) The barrier between the two configurations

is also slightly higher than the single-CO model, especially with stretched

r. 868.8 cm−1and 758.5 cm−1energy are required for the inversion to hap-

pen at r = 1.132 Å and r = 1.432 Å, respectively, comparing to the 843.5

cm−1and 569.7 cm−1for the single CO model. Therefore, dynamically, the

CO inversion may be more difficult with high coverage than that for the

low coverage.

Zero point
shift: 0 cm-1 Zero point

shift: 22437 cm-1

Figure 4.11 The potential energy surfaces for 1/1 coverage CO on NaCl computed
using ASET(mf)-[DSRG-MRPT2]. Two slices at r = 1.132 Å and r = 1.432 Å are
presented. Each contour line represents 100 cm−1. Blue balls mark the minima and
the red triangle marks the transition state. The shifts from the global minimum are
marked.

An interesting question to ask here is facing this barrier, whether CO
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will desorb instead of flipping to the O-down configuration? In Table 4.4,

we computed all adsorption energies using a 1-D scan along R for different

r. For the equilibrium CO distance (r = 1.132 Å), the C-down adsorption en-

ergy is 1262.8 cm−1and 1442.3 cm−1for single and 1/1 model using 1-layer

MM cells. However, to compare the desorption with the inversion path,

we need the adsorption energy at extended r. Therefore, we investigate

the desorption curve for both single CO and 1/1 coverage CO at r = 1.432

Å and r = 1.732 Å using our model. The results are shown in Fig. 4.12.

For r = 1.432 Å, the C-down is still preferred for both single and 1/1 CO;

the adsorption energy for C-down are 1028.4 cm−1and 1356.2 cm−1, re-

spectively. While for the O-down configuration, the adsorption energy is

849.4 cm−1and 1067.2 cm−1for single and 1/1 CO, respectively. Referring

to Fig. 4.11, under 1/1 coverage, the barrier from C-down to O-down is

758.5 cm−1, and the barrier from O-down to C-down is 485.6 cm−1. These

barriers are significantly lower than the desorption energy. Note that the

inversion barrier presented in our research is an up-limit estimation (since

we don’t follow the MEP), the actual barrier should be even lower. When

we further stretch r to 1.732 Å, the C-down O-down adsorption energy be-

comes reversed; however, both C-down and O-down adsorptions are still

strong. The adsorption energies are 807.7 cm−1and 1218.1 cm−1for single

and 1/1 C-down, and 914.6 cm−1and 1236.6 cm−1for single and 1/1 O-

down, respectively. Therefore, CO inversions are very likely preferred over

desorption in both low and high coverage situations. All above discussions
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are based on 1 layer of external empirical corrections (1 Disp/MM). One

missing factor may be that our model is a finite cluster, which may miss the

interactions from the extended NaCl surfaces (LN ≥ 2). Using the dipole

interaction and empirical dispersion approaches in Appendix, we evaluate

the total electrostatic and dispersion impact of LN = 2 to LN = 9. From

Table 4.4, the extended cells contribute less than 12 cm−1. It is obvious

that the both interactions from the extended NaCl cells do not impact the

adsorption energy significantly. Therefore, the CO desorption from NaCl

surface is not favorable in our model, even with very high-level vibrational

excitations.

Table 4.4 The computed CO adsorption energy. The bare computation indicates
model 2 with no empirical corrections; the "LN = 1 Disp/MM" indicates empirical
dispersion corrections including the embedding environment and the 1st MM layer and
the charge-dipole interactions involving the 1st MM layer; the "LN = 9 Disp/MM"
indicates an additional 8 layers (added to "LN = 1 Disp/MM" model) of classical
corrections including dispersion and charge-dipole interactions. Definition of those
corrections can be found in Appendix.

Configuration r (Å) bare LN = 1 Disp/MM (cm−1) LN = 9 Disp/MM (cm−1)
C-down,single 1.132 1140.4 1262.8 1271.3
O-down,single 1.132 713.3 824.3 829.2
C-down,1/1 1.132 1312.7 1442.3 1451.0
O-down,1/1 1.132 898.9 1009.9 1014.8
C-down,single 1.432 917.0 1028.4 1032.4
O-down,single 1.432 742.5 849.4 858.6
C-down,1/1 1.432 1244.8 1356.2 1360.2
O-down,1/1 1.432 964.3 1067.2 1076.4
C-down,single 1.732 703.0 807.7 809.5
O-down,single 1.732 812.0 914.6 925.8
C-down,1/1 1.732 1109.9 1218.1 1219.8
O-down,1/1 1.732 1141.5 1236.6 1247.7
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C-down (single)

C-down (1/1)

O-down (single)

O-down (1/1)

C-down (single)

C-down (1/1)

O-down (single)

O-down (1/1)

Figure 4.12 The desorption curve for both single CO and 1/1 coverage CO at r = 1.432
Å(left) and r = 1.732 Å(right). For the 1/1 coverage CO, only the center CO desorb,
while other CO are kept fixed. The data are from "LN = 1 Disp/MM" model. All
curves are aligned with respect to their electron energies computed at R = 200 Å.

4.3.2 Vibrational analysis (single-CO model)

In this section we perform vibrational analysis based on aforementioned

CO-NaCl(100) potential for an isolated molecule using different vibration

models introduced in Sec. 4.2.3. The eigenvalues of each vibrational model

corresponding to the states with stretching quantum number νr in the range

0–25 are calculated and fitted with a cubic polynomial. The vibrational

constants extracted from this fit are listed in Table 4.5. For CO molecule

in the gas phase, the vibrational constants ωe and ωexe for 13C18O from

our model (2067.1 cm−1, 11.78 cm−1) are in perfect agreement with the

experimentally determined values (2067.8 cm−1, 12.07 cm−1);[103] how-

ever, our predicted value of ωeye (4.76× 10−3 cm−1) is only about half of

the experimentally determined one (9.1× 10−3 cm−1). This suggests that
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our potential leads to sub cm−1accuracy for the prediction of CO 0→ 2

transition frequency , but can deviate by 11 cm−1for the prediction of CO

23→ 25 transition frequency from the experiment.

The simple 1D model based on the PES slice of C-Down geometry (at

R = 3.43 Å with θ = 0◦) and O-down geometry (at R = 3.23 Å with θ

= 180◦) already provides a preliminary description to account for the CO

flipping mechanism, where it successfully predicts the red-shift of the C-

down CO vibration and the blue-shift of the O-down CO vibration, which

has been reported in previous theoretical studies [25, 157]. The energy dif-

ference between the O-down CO and the C-down CO, ∆E0, is 474 cm−1 at

their vibrational ground state, and this difference will be negative when νr

reaches 25 which means the O-down CO will be thermodynamically more

favorable.

The inclusion of the other two degrees of freedom leads to an in-depth

understanding of the CO-NaCl system. The 2D(r,θ) model, which involves

both the CO stretch and CO inversion based on the PES slice at R = 3.43

Å, shows no significant difference in the CO stretching frequency constants

compared to simple 1D models at R = 3.43 Å. This can be rationalized

by the localization of the wavefunctions of the states with no vibration

excitation on the CO inversion, even though the effective inversion barrier

decreases when the CO stretch are highly excited. These wavefunctions

are plotted in Figure S1 of the Supporting Information. In this model ∆E0

is 484 cm−1, where the corresponding ∆E0 for the two 1D model at R =
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3.43 Å is 525 cm−1which indicates a roughly −41 cm−1contribution from

the zero-point energy difference in the CO inversion mode at C-down and

O-down geometry.

C-down, νr = 0

C-down, νr = 10

C-down, νr = 20

O-down, νr = 0

O-down, νr = 10

O-down, νr = 20

Figure 4.13 Vibrational wavefunctions of νr = 0, 10 and 20 states at C-down and
O-down geometries calculated using a two-dimensional mode involving CO stretch and
CO translation with respect to the NaCl surface.

On the contrary, the 2D(r,R) model based on PES slice at θ = 0 and

180◦ lead to a more significant difference. The ωe constants of the O-down

and C-down CO increases for -0.7 cm−1and 0.4 cm−1, which is still rela-

tively close to the 1D value. More importantly, the ωeye constant of the

CO molecules at C-down geometry is only 2.73×10−3 cm−1, which is much

smaller than the one from 1D model. This is due to a slight desorption
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of the CO molecules at the C-down geometry when CO stretch mode is

excited, which can be seen from Figure 4.13 where the wavefunctions of

states with different νr calculated using the 2D(r,R) model are plotted. The

expectation value of R for the wavefunction of C-down CO is 3.45 Å for

νr = 0 state, but increased to 3.66 Å when νr = 20. The wavefunction for

O-down CO has relatively less desorption, where the expectation value of

R increases from 3.21 Å to 3.33 Å as νr increases from 0 to 20, which

is consistent with its less deviated ωeye vibration constants from the 1D

value. This desorption is consistent a simple point charge model, where

the repulsion between surface and CO increases as the dipole moment of

CO increases. Under this model, the ∆E0 is 462 cm−1 and we are unable

to directly observe any CO states at O-down geometry have a lower energy

than the states at C-down geometry with the same νr in our DVR calcula-

tion. The constants from the fit shown in Table 4.5 lead to an estimate of

νr = 37 for the "flipping" to happen.

4.4 Summary

In summary, we build a quantum embedding model to study the CO in-

version PES on NaCl(100) surface using multireference computations. The

computational model uses CONaCl4 as the fragment, Na8Cl5 as the QM en-

vironment, and Na153Cl153 as the MM environment. We found that the op-

timal geometry for both C-down and O-down configurations is vertical, i.e.,

not tilted. As a result, the potential energy surfaces involving three degree-
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Table 4.5 The experiment and theoretical vibrational constants for the 13C18O vibra-
tion. The theoretical constants are computed using different model Hamiltonians based
on the DSRG-MRPT2 potential.

Model ωe (cm−1) ωexe (cm−1) ωeye (10−3cm−1)
Gas Phase 2067.1±0.8 11.78±0.07 4.76±1.86
C-down, 1D 2075.8±0.7 11.55±0.07 9.62±1.68
O-down, 1D(R = 3.23Å) 2063.8±0.8 11.71±0.07 4.49±1.80
O-down, 1D(R = 3.43Å) 2062.6±0.8 11.74±0.07 3.80±1.80
C-down, 2D(r,θ) 2075.6±0.8 11.56±0.07 9.95±1.76
O-down, 2D(r,θ) 2062.4±0.8 11.74±0.07 3.84±1.80
C-down, 2D(r,R) 2075.1±0.8 11.65±0.07 2.73±1.80
O-down, 2D(r,R) 2064.2±0.8 11.72±0.07 3.15±1.81

of-freedom are generated. We confirm that the C-down configuration is

preferable at smaller C-O bond distances from the single-CO PES. In con-

trast, the O-down configuration will be lower in energy for stretched C-O

bond distances (>1.6 Å). The PES also varies significantly with the adsorp-

tion distances. Vibrational analysis shows that the vibration-driven flip does

happen at high vibrationally-excited states. The exact vibrational level for

this flip to happen is around ν = 25, according to a 2-D DVR analysis using

r and θ , or ν = 37, according to a 2-D DVR analysis using r and R. At high

coverage, the energy differences between C-down and O-down geometries

are smaller, making the inversion thermomechanically easier. However,

the barrier between the two configurations increases, which means the in-

version would be dynamically slower. Our model also finds that the CO

desorption energies are generally higher than the inversion barriers even

with stretched r. This observation indicates that desorption is not likely
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during the CO inversion process.

The model used in this chapter still has some limitations. Our results

match the experiment well for C-down configurations but less accurate for

O-down configurations. The reason is mainly due to the O-down config-

urations being flexible in the experiment; their adsorption is not precisely

centered on Na+ but probably involves translations and azimuthal rota-

tions in an extensive range. Those tilted tendencies may be coming from

the CO-CO interactions, which are not computed explicitly in our model.

Advanced geometry optimization or dynamic simulation will provide more

insights into this problem. With the development of analytical gradient for

both quantum embedding and DSRG theory,[106, 173] we hope that this

problem can be simulated better in the future.
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Chapter 5

Improve orbital partition using

modified projectors

5.1 AO basis projector

This chapter will briefly discuss two ongoing works on the possible im-

provement of ASET. The contents and data in this chapter have not been

published.

As discussed in chapter 2 and chapter 3, one main problem of the ASET

localization and projection procedure is that it assigns orbitals based on the

orbital overlap. However, the overlap is not a good indicator of the corre-

lation energy physically. For example, in the computation of O2-benzene

in Chapter 3, the orbitals before localization and partition are shown in

Fig. 5.1. Since we choose O2 as the embedding fragment, it is thus natu-
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ral to partition all orbitals centered on O2 (after localization) to the frag-

ment. However, what would happen if we want to include slightly more

orbitals to describe the O2-benzene interactions better? Chemically, one

Figure 5.1 Molecular orbitals of O2-benzene before localization. Red circles indicate
the expected choice of additional fragment orbitals.

would guess that adding some of the π orbitals of the benzene would be

a good idea. Therefore, we circled six orbitals that are good candidates to

add in Fig. 5.1. However, this fragment partition cannot be achieved suc-

cessfully simply using the threshold-based procedure described in Chapter

2. If we modify the threshold until six more orbitals are included, the or-

bitals that entered the fragment are circled in Fig. 5.2. It is evident that

the partition of the occupied orbitals is as expected (red circle). However,

the virtual orbitals are much more problematic: some high-lying virtual

orbitals are partitioned into the fragment instead of the π∗ orbitals we ex-
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Fragment orbitals

Figure 5.2 Molecular orbitals of O2-benzene after the localization and partition. Red
circles indicate the additional fragment orbitals that are correctly partitioned as ex-
pected. Blue circles are orbitals that enter the fragment partition unexpectedly.

pected. This problem is because the partition procedure is based on the

maximization of the overlap, which is not a good indicator of orbital en-

ergy or importance in many cases. One can manually tweak and put the

expected orbitals into the fragment, as we do in Chapter 3. However, a

more general solution is to implement an improved projector scheme that

allows more flexible and controllable partition. In previous Chapters, we

mentioned an atomic valence active space (AVAS) technique, which selects

active orbitals automatically using an AO subspace. Inspired by this ap-

proach, we propose that the embedding computation can be done similarly,

using the AO subspace instead of the atom for the fragment definition. In

terms of implementation, the scheme will be the combination of:
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• Sa: a set of atoms in the system (C1, H2, O4, ...).

• Sb: a set of AO basis function labels [C2(2pz), H3(1s), ...].

The projector is constructed similarly as

P̂Sa,Sb = ∑
µ,ν∈Sa

⋃
Sb

|χµ⟩S−1
µν ⟨χν | . (5.1)

For the O2-benzene system, the selection of Sa and Sb are ["C1", "O1"]

and ["C2(2pz)", "C3(2pz)", "C4(2pz)", "C5(2pz)", "C6(2pz)", "C7(2pz)"],

respectively. Using this setting and selecting 32 fragment orbitals, we suc-

cessfully obtained the same result as manually picked orbitals (see Fig. 3.6).

The new projector allows higher flexibility for embedding. We tried

two ideas based on this technique: one of them focused on automating

the embedding process using unsupervised learning algorithms. The other

focused on using ASET as a basis set extrapolation algorithm.

5.2 Overlap-distance-based basis selection and

clustering

The first project focused on using clustering, an unsupervised learning al-

gorithm, to create molecular fragments automatically. The goal is to auto-

mate the embedding computations to be used directly onto sizable systems

without manually setting fragments and tweaking orbitals. Based on the

projector proposed in the previous section, we use the AO basis as the la-
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bel; the clustering process should find several exclusive AO subspaces that

will serve as our embedding fragments.

A distance metric is needed to perform clustering. Consider two com-

posites consisting of AO basis sets Si and S j; here are many ways to define

the distance between them. For test purposes, we define:

di j =− log(
∑

Si
µ ∑

S j
ν |Sµν |

NSiNS j

), (5.2)

where NSi and NS j are the cardinal number of Si and S j, and Sµν is the

corresponding AO overlap matrix element. This distance metric creates an

order so that higher total overlap results in shorter distances and vice versa.

There are also flaws in this definition. Firstly, if we consider the distance

of an AO basis function with another basis function in the same atom, the

distance should be 0.0 physically, but in this definition, it is not. However,

this problem is not crucial since we will only use a clustering algorithm that

relies on the relative order of the distances for the following discussions. In

addition to the AO overlap matrix S, one can also add the AO Fock matrix

(F) to the distance matric, with a weight parameter α:

di j =− log(
∑

Si
µ ∑

S j
ν (Sµν +αFµν)

NSiNS j

). (5.3)

This definition involves some level of orbital energy indications in the pro-

cess. One can adjust α to change the AO Fock components’ importance.
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Here we propose one algorithm to cluster the AO subspace based on

Kruskal’s algorithm.[96] The steps are:

• 1. Convert input molecule into a graph G, where each vertex V rep-

resents a basis function or a composite of basis functions. The weight

of edges di j are the distances defined in Eq. 5.2. We ignore small

overlaps (large or infinite di j).

• 2. Sort all edge weights di j.

• 3. Select the shortest edges and merge the edge’s two vertices.

• 4. Check the number of sets or other criteria to decide whether we

terminate the process.

• 5. If the criteria are not met, go back to step 3.

The criteria for termination can be various. The simplest choice is to set a

number-of-fragments Nfrag, when the number of vertices is equal to Nfrag,

we terminate the algorithm. The other approach is to use cluster inertia.

IV =
∑i, j∈V di j

NV
, (5.4)

where ∑i, j∈V is the sum of all edges merged into one vertex, while NV is

the number of vertices merged into this vertex. This metric checks how

"tight" a cluster is. If the system has some naturally defined boundaries, IV

will change rapidly around that range. One can use the "elbow" method
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to determine when it is a good time to terminate the clustering process.

There are also situations where the user knows how large a fragment they

need. This assertation is especially important when doing multireference

computations, where one should estimate how many basis functions are

feasible based on the CPU and memory of the device. For example, from

personal experiences, without density-fitting, the MR-LDSRG(2) can only

compute systems up to 150 basis functions effectively. In this situation, we

may need the algorithm to give us fragments whose sizes are smaller than

100 basis functions. Therefore, the algorithm terminates when the number

of basis functions in the largest cluster reaches the limitation. We provide

three examples to test different scenarios below.

Firstly, we tested the automatic fragmentation procedure on 1-octene

and pentyldiazene; both are examples we have seen in Chapters 2 and

3. In this case, we use both the N f rag criteria and the basis set function

criteria. To simplify the problem, we enforce the AO basis functions that

belong to the same atom to stay in the same cluster. As shown in Fig. 5.3,

it is obvious that the automatic procedure successfully generates fragments

that are well-defined and ready to compute.

Secondly, we tested the situation where a natural boundary exists in the

system. First, a (H2O)13 cluster is placed randomly; then, we perform the

clustering procedure of the AO subspace on the whole system. In this case,

we scan over different Nfrag and focus on the inertia of the single cluster.

As shown in Fig. 5.4, there is a sudden change of the inertia increasing rate
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Size 67
Inertia 1.665

Size 125
Inertia 1.683 Size 67

Inertia 1.665Size 72
Inertia 1.676

Size 53
Inertia 1.640

Terminate at 100 basis
Total inertia: 1.662

Terminate at 2 fragments
Total inertia: 1.677

Size 33
Inertia 1.795

Size 125
Inertia 1.682

Terminate at 2 fragments
Total inertia: 1.696

Size 33
Inertia 1.795

Size 53
Inertia 1.640 Size 72

Inertia 1.676

Terminate at 100 basis
Total inertia: 1.677

Figure 5.3 Automatically generated fragments for 1-octene and pentyldiazene using
both Nfrag and basis functions limit criteria. The fragment inertia and total inertia are
marked.

when Nfrag = 13. Since there are 13 H2O in the cluster, it is very natural to

create 13 fragments each includes one H2O.

Finally, we tested the idea of finding a fragment under a certain budget.

Here we investigate the d-d spin gap of [Fe(H2O)6] +
2 (Fig. 5.5). Assume

our fragment high-level [MR] method can only treat a maximum of 100

basis functions; we set the max cluster size to 100. Another restriction is

that the five 3d orbitals must be within the largest cluster. This restriction

can be imposed by limiting Kruskal’s algorithm to merge edges only when

one of the vertices is in the same cluster with the five 3d orbitals.

The spin gaps computed using different schemes are shown in Table. 5.1.

It is clear that the clustering procedure is more robust during the partition



131

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

0 5 10 15 20

Automatic fragmentation of (H2O)13

N = 13

Number of fragments

In
er

ti
a

(H2O)13

Figure 5.4 Automatic fragmentation of (H2O)13 using clustering. Cluster inertia is
used to determine the optimal Nfrag

.

and localization than the normal procedure. The reason is that in this case,

the clustering procedure automatically picks a better AO subspace for the

localization, while the normal procedure, which picks the Fe atom as the

fragment, is not ideal.

Table 5.1 The d-d gaps of [Fe(H2O)6]
+

2 computed using different embedding schemes
and [MR] methods.

Method d-d Spin Gap (eV)
Full DSRG-MRPT3 1.77
ASET(mf)-[DSRG-MRPT3](Normal partition, t=0.5) 2.80
ASET(2)-[DSRG-MRPT3](Normal partition, t=0.5) 2.33
ASET(mf)-[DSRG-MRPT3](clustering procedure, size NA = 100) 2.26
ASET(2)-[DSRG-MRPT3](clustering procedure, size NA = 100) 1.94

For now, it is still difficult to conclude how good this new algorithm is
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High-spin Low-spin

S = 2 S = 0

[Fe(H2O)6]2+ [Fe(H2O)6]2+

Figure 5.5 The geometries of high-spin and low-spin [Fe(H2O)6]
+

2 .

based on those primitive results; more research is needed to structure this

idea into formal research.

5.3 Basis-set extrapolation using ASET

The other idea to apply ASET is to use it as a tool for basis set extrapolation.

In quantum chemistry, the size of the basis set determines the numerical ac-

curacy of the solution. The general practice is to balance the cost and accu-

racy by selecting the largest basis set sizes so that the computations can run

efficiently. However, using embedding methods, it is possible to compute

results similar to a large basis set, with the computational cost equivalent to

a smaller basis set. Watson and Chan firstly explore this idea,[174] where

they reduce the computational cost to minimum AO basis level while still

retaining qualitatively correct descriptions of phenomena involving valence

electrons which generally need at least double-zeta basis sets to describe
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correctly. With the ASET(2) scheme we developed in chapter 3, we can

push this idea one step forward: embed any small basis into a large basis.

This scheme will provide a new way of extrapolating basis sets closer to the

complete basis set (CBS) limit.

We show here a primitive example of this approach. We set the small ba-

sis as cc-pVDZ and the large basis as cc-pVQZ. Then the embedding scheme

is formulated as follows:

• The whole system (A+B) is computed using cc-pVQZ with a lower-

level theory.

• The fragment (A) will be an AO subspace with a size equal to that of

cc-pVDZ.

• The environment (B) will be all AO labels in cc-pVQZ basis set but

not in the fragment (A).

• Compute the ASET with A embedded in A+B.

One major problem of this scheme is how to pick an AO subspace with

a size equal to that of cc-pVDZ from an AO set generated with cc-pVQZ

basis? There are two approaches: 1) Pick basis functions in cc-pVQZ with

the same ξ in their radical part as cc-pVDZ. 2) After SCF, pick NA lowest

MOs. NA is set to the size of cc-pVDZ basis set in the whole system.

In the following example, we test the first approach on a C2 dissociation

problem. Fig. 5.6 shows the ASET(2)-[DSRG-MRPT3] dissociation curve of
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ASET-[DSRG-MRPT3] C2 dissociation with CASSCF(8,8)

Full DZ: 5.54 eV    ASET(mf): 5.92 eV
Full QZ: 6.26 eV    ASET(2): 6.04 eV

Figure 5.6 C2 dissociation using DZ-in-QZ ASET. The reference wavefunction is
CASSCF(8,8).

C2 computed using a CASSCF(8,8) reference wavefunction; while Fig. 5.7

uses a ROHF reference wavefunction. As shown in both cases, the DZ-in-QZ

ASET(2) results are very close to the full QZ computations. These examples

prove the feasibility of this idea.

5.4 Summary and perspectives

This chapter briefly mentioned two directions I have explored to expand

the ASET theory. One is the automatic fragmentation using a clustering

algorithm; the other involves using ASET for basis set expansion or extrap-

olation. Both ideas seem to work well, and should be persued in the future.

There are more other ideas that we can explore, including
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Full DZ: 6.39 eV    ASET(mf): 5.97 eV
Full QZ: 6.64 eV    ASET(2): 6.61 eV

ASET-[DSRG-MRPT3] C2 dissociation with ROHF

Figure 5.7 C2 dissociation using DZ-in-QZ ASET. The reference wavefunction is
ROHF, then a (8,8) active space is used for DSRG computations.

• Combining ASET with quantum computing: using ASET(2) down-

folded Hamiltonian as the starting point of various quantum algo-

rithms to introduce environment contributions to the quantum com-

putations.

• Using random phase approximation (RPA) as the mean-field level:

This treatment can extend ASET to solid-state problems.

• MR-WFT-in-DFT embedding: incorporate DFT potential into the ASET

downfolding process.

To conclude, ASET is a promising method worth more development in

the future. However, we expect that the most important impact that ASET
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will have is enabling interesting applications to systems that could not be

studied before. Our embedding method can used for a variety of applica-

tions where it is necessary to reduce the cost and focus a high-level mul-

tireference computation to a smaller partition of the system. Given the

simplicity and versatility of ASET, we expect that it has the potential to

become a very impactful method in the landscape of electronic structure

theory.
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