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Abstract 

 

Context-dependent Encoding of Descending  

Neurons in Drosophila  

By Jirui Qiu 

 

Animals exhibit a wide variety of behaviors. How these behaviors are initiated, sustained, 

and modulated, though, remains largely unknown. For a substantial number of animals, 

including Drosophila, descending neurons communicate signals from the brain to local 

circuits to generate motor outputs. However, little is known about the associations between 

descending neurons and behavior outputs. Now the combination of optogenetic techniques 

and an unsupervised measurement of animal behaviors permits us to study the behavioral 

effects of stimulating individual descending neurons in freely moving Drosophilae. Our 

study finds evidence supporting the theory that these induced behavioral effects are 

context-dependency. Previous behavioral statuses can affect the behavioral effects induced 

by activating individual descending neurons. 

Our study applies mutual information as a main approach to measuring the 

correlations between behavioral probability distributions, and to characterizing context-

dependency. To further explore the properties of context-dependency, we then apply 

multiple statistical methods to analyze the experimental results. Based on information 

theory, we study the general principles of the signal transmission within the neural network 

and possible theoretical hypotheses for the context-dependency. This thesis aims to provide 



 
 

insights into how the brain modulates animal behaviors, and pave the way toward a deeper 

understanding toward the functioning of the neural network. 
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Chapter 1  

Introduction 

1.1 Introduction 

To survive in a given environment, animals must adaptively perform behaviors, spanning 

from the stereotyped ones, like grooming [1] and courtship singing [2], to complex and 

environment-based ones, like foraging [3], [4] and crossing obstacles [5]. These behaviors 

result from the interactions between local motor circuits and higher-order processing 

centers in the brain [6]. Although numerous efforts have been invested in investigating how 

animals generate, adapt and maintain behaviors [7], [8], little is known about the exact 

associations between the neural network and the behavior outputs.  

Descending neurons in Drosophila provide a feasible system for the study of the 

encoding process within the neural network. Serving as the bottleneck of signal 

transmissions, descending neurons transmit the signals from the brain to the ventral nerve 

chord to generate motor outputs. These descending signals play a critical role in the 
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coordination and adaption of behaviors, like navigating complex terrains [9]. Now 

optogenetic techniques permit precise stimulations of individual descending neurons, and 

enable us to study the encoding process. 

According to our results, depending on the pre-stimulation behavioral states of 

Drosophila, the stimulation of a specialized group of descending neurons can induce varied 

behavioral effects. Thus, our hypothesis is that the behavioral effects of stimulating 

descending neurons are context-dependent. Based on information theory, we then study the 

general principles of the signal transmission within the neural network and the possible 

theoretical basis of context-dependency. Further studies have been proposed to investigate 

whether the context-dependency only works for a distinct population of descending 

neurons or constitutes a general principal in the whole neural system, and to explore its 

application in modelling neural network.  

1.2 Background 

1.2.1 Drosophila 

Drosophila melanogaster, a fly species, has become a popular model organism for 

behavioral research due to several factors. First, Drosophilae are robust and easy to raise 

in the laboratory environment. In addition, the availability of genetic tools enable the 

expression of the targeted genes in a tissue-specific manner. Finally, the relatively high 

transparency of flies’ cuticles under red light and the availability of optogenetic techniques 

at the corresponding wavelengths enable quick and precise control over the activation of 

neurons.  



  3 

1.2.2  Descending neurons 

In insects, while the majority of sensory processing tasks are 

conducted by the brain, motor circuits are mostly located in 

the ventral nerve cord. To generate appropriate behavior 

outputs, command signals therefore must be transmitted 

from the brain to the motor circuits in the ventral nerve cord 

to modulate behaviors. In Drosophila, there exist 

approximately 550 pairs of descending neurons [10] (Figure 

1), which extend a single axon from the sensory-processing 

brain regions to the ventral nerve cord. Each segment of the 

ventral nerve cord constitutes of a pair of ganglia, which 

serve as local processors and modulate motor outputs.   

In Drosophila, researchers have associated several descending neurons with 

specific behavior outputs, like courtship singing and altering walking directions [11]. Also, 

how the descending control manipulates the behavioral choice has been widely discussed, 

like the competitive mechanism between forward and backward stepping [12].  

1.2.3 Optogenetic Techniques 

Optogenetics techniques, which use optically-activated proteins to manipulate neuronal 

function, have been developed rapidly in recent years [13]. In the past, thermogenetic tools 

were widely used in neuronal activation. However, since this approach relies on a change 

of temperature to manipulate neural activities, it suffers from a lack of temporal precision 

and intensity [14]. Optogenetic techniques provide an approach to stimulating or inhibiting 

a distinct population of neurons in freely moving animals with millisecond precision.  

Figure 1 Anatomical structure 

of a descending neuron. 
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Although a substantial number of light-sensitive proteins have been engineered, the 

most popular one is channelrhodopsin, which contains the light-isomerizable all-trans-

retinal. When the all-trans-retinal absorbs a photon, it undergoes a conformational change 

to 13-cis-retinal and permits the inflow of ions. However, within milliseconds, 13-cis-

retinal would automatically relax back to all-trans-retinal, blocking the inflow of ions. Thus, 

in order to activate the channelrhodopsins, the fruit flies must be reared with food 

containing retinal. For different types of channelrhodopsins, the corresponding activation-

required light wavelengths may vary. For example, Channelrhodopsin-2 is capable of 

transducing millisecond long flashes of blue light (475 nm) into spike trains. 

Although optogenetic techniques have been widely applied in mammalian 

behavioral studies, the applications of such techniques in Drosophila were relatively 

limited due to two factors. First, to regulate the neural activities inside the brain tissue, the 

ideal lights must be capable of penetrating the skin (the cuticle in Drosophila) to reach the 

deep brain structure, so no surgeries would be needed to thin the skin or implant optical 

fibers. Previous research has found that the penetration of blue light through the cuticle is 

relatively weaker (~2%) due to intrinsic blue absorption by the retinal chromophore [15], 

when compared to longer wavelengths such as red light (~7%) [16]. Second, the 

stimulation light sometimes would reach photosensitive regions in the eyes and induce 

strong innate behavioral artifacts. Thus, the application of channelrhodopsins in 

Drosophila was only confined to particular cases, where the light could be blocked from 

reaching the eyes, or the side effects of visual stimulation would not affect the experiments.  

To handle these problems, researchers engineered red-shifted variants of 

channelrhodopsin [17], such as CsChrimson (590 nm) [18], whose excitation spectrum is 
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red-shifted 45 nm more than previous channelrhodopsins. CsChrimson permits control 

over neural activity in freely moving Drosophila, at wavelengths that are believed not to 

interfere with normal visual function. For 5-ms impulses of red light (625 nm), the 

CsChrimson can reliably elicit light-driven spikes at frequencies of at least 20 Hz. This 

discovery of CsChrimson permits control over neural activity in freely moving Drosophila, 

at wavelengths that are believed not to interfere the normal visual function. In our data set, 

the red LED light (627 nm) was turned on throughout the stimulation period at the level of 

5 mW/cm2 . Although the channelrhodopsins were kept open all the time, due to the 

occasional inhibitory effects from other neurons, the targeted descending neuron might not 

keep firing through the stimulation period. 

1.2.4 GAL4-UAS system 

To ensure that the genes of the CsChrimson only express in a tissue-specific manner and 

would not interfere with the normal functioning of other parts, the GAL4-UAS system was 

applied to control the expressions of the CsChrimson. Since its development in 1993, the 

GAL4-UAS system has been wildly used in the studies of genes’ expression and 

functioning within organisms, like Drosophila [19].  

The GAL4-UAS system incorporates two components, the GAL4 gene and the 

UAS (Upstream Activation Sequence). Originally serving as the yeast transcription 

activator protein, GAL4 can bind to the UAS and activate gene expression of the targeted 

genes, which are next to the UAS. In Drosophila, although GAL4 is not normally present, 

geneticists have engineered a substantial number of its genetic varieties, called GAL4 lines. 

Under the control of a driver gene, each line can express GAL4 in a tissue specific manner. 
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Thus, despite the occurrence of the GAL4 gene in each single cell within the organism, 

GAL4 is only generated in specific cells to trigger the gene expression of the targeted genes.  

However, the standard (Generation 1) GAL4 lines usually express in more than one 

cell type. To achieve cell-type specificity, the split-GAL4 approach [20] was devised to 

confine the expression to the overlap in the expression patterns of two standard GAL4 lines. 

In this method, two lines are made to each express half of the GAL4 protein, which is 

inactive by each line itself. Only in the cells where both promoters are active, the two 

halves self-assemble by the leucine zipper into functional GAL4 proteins and activate the 

target genes. Our current data set includes approximately two hundred split GAL4 lines, 

targeting varied individual descending neurons in Drosophila. 

1.2.5 Behavioral analysis 

As the observable output of the neural system, animal behavior can be measured at varied 

time-scales of resolution, constituting of location, trajectory, posture and so on. Starting 

with raw recorded data (often videos), behavioral analysis classifies animal movements to 

generate detailed behavioral descriptions. Depending on whether the representations of 

targeted behaviors have been previously established, behavioral analysis can be divided 

into two groups, supervised behavioral analysis and unsupervised behavioral analysis. 

For supervised behavioral analysis, researchers must encode their intuition about 

behaviors by manually annotating part of the data set, which could later serve as classifiers 

to automatically label behaviors. This analysis method shows reliable performance when 

the data set is relatively small and has been successfully applied to multiple areas, like the 

behavioral sequences of mice [21], [22]. However, supervised behavioral analysis has two 
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serious drawbacks. First, this analysis method required a large amount of training examples. 

With the data set increasing and more behavioral annotations added, the training process 

could consume excessive time and energy in order to reach a certain degree of precision. 

Second, the behavior measurements are only confined to the ones that are believed to be 

important. Thus, there potentially exists a number of biases and artifacts.  

Attempts to circumvent this obstacle lead to the development of unsupervised 

behavioral analysis, which establishes the representations of behaviors without manual 

annotation. The capability of identifying the hidden structure of the data set allows the 

discovery of structures that researchers are not explicitly looking for. Unsupervised 

behavioral analysis has been successfully applied to the study of various kinds of animals, 

such as C.elegans [23], mice [24] and Drosophila [25]. 

1.3 Methods 

1.3.1 Unsupervised Behavioral Analysis 

Our study adopts an unsupervised behavior analysis method [25] to map the recorded 

behaviors of Drosophila into the two-dimensional behavioral space (Figure 2). Based on 

the assumption that a considerable number of animal behaviors consist of stereotyped 

actions, this analysis method utilizes the underlying structure within the postural movement 

data to categorize behaviors in a meaningful and discrete manner.  

The central concept of this method is to view animal behaviors as a trajectory 

travelling through the high-dimensional behavioral space constructed by postural dynamics. 

In this space, stereotyped behaviors correspond to the locations that the trajectory 

repeatedly hovers around. On the other hand, non-stereotyped behaviors coincide with the 
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intervals between the stereotyped behaviors in the behavioral space that the trajectory 

quickly travels through. For Drosophila, stereotyped behaviors were found to incorporate 

more than one hundred varied types and occupy approximately fifty percent of the recorded 

time. 

Within the framework of this analysis method, starting from the raw recorded 

videos, the images of the Drosophila are first segmented from the background frame by 

frame [26]. During this procedure, the images are aligned rotationally and translationally 

via cross-correlation to a template image, in which the wings and legs of the fruit fly are 

manually removed. Then the size of the images is adjusted to occupy the same number of 

pixels. With the application of principal component analysis (PCA), the images are 

decomposed into thousands of eigenvectors, among which, fifty with the largest 

eigenvalues are selected to represent the principal postural modes. In order to characterize 

the inherent dynamics of behaviors, these components undergo a wavelet transformation 

to generate spectrograms, through which feature vectors are constructed. For the wavelet 

transformation, there exist 25 frequency channels spaced between 1 and 50 Hz. Thus, 

timescales of characterized behaviors are between 0.02 second and 1 second. These 

behaviors whose timescales are larger than 1 second are not considered in our current study. 

Using t-Distributed Stochastic Neighbor Embedding (t-SNE), the spectrograms are then 

embedded into the two-dimensional behavioral space. By repeatedly mapping recorded 

raw data into the 2-dimentional space, a behavioral map containing the description of the 

postural characteristics of Drosophila, is generated. Within this map, each point 

corresponds to a unique motion and nearby points represent similar motions. Based on the 

local density maximum, the behavioral space is split into hundreds of regions, each of 
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which represents a particular stereotyped behavior. By manually examining the videos of 

the behaviors within each region, these behavioral regions can be generally categorized 

into six groups, representing varied behavior types (Figure 2).  

 

Figure 2 Behavioral space, where regions are clustered into varied groups with 

different color. 

1.3.2 Data Set 

Our current data sets of Drosophila were contributed by our collaborators at Janelia 

Research Campus, and consist of approximately two hundred GAL4 lines. Each line 

corresponds to the activation of a particular population of descending neurons, and consists 

of twelve individual fruit flies. Although the genes of the twelve flies are exactly the same, 

only six are reared with food containing retinal. For other six control flies, the 

channelrhodopsins cannot function without retinal. Each ground-based fly is recorded in a 

circular arena by 100-Hz high-speed camera for thirty cycles, each of which consists a 

period of LED-on for 45 seconds and LED-off for 15 seconds, thus yielding 1.8×105 

movie frames per individual.  



  10 

1.3.3 Mutual Information 

For two random variables 𝑋 and 𝑌, the mutual information 𝐼(𝑋; 𝑌) is the Kullback–Leibler 

divergence (relative entropy) between the joint probability distribution 𝑝(𝑥, 𝑦) and the 

product of marginal distributions 𝑝(𝑥)𝑝(𝑦) [27]: 

 𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) log2
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑦∈𝑌𝑥∈𝑋 .  (1) 

It measures the mutual dependence between the two random variables 𝑋 and 𝑌. Another 

common expression of the mutual information is: 

 𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌). (2) 

Intuitively, the mutual information 𝐼(𝑋; 𝑌) is the deduction in the variability of the variable 

𝑋 given the information of the variable 𝑌.  

1.3.4 Estimation of Mutual information 

For the calculation of entropy [28], [29], if we randomly draw N sample out of K accessible 

states, the relation between resulted frequency 𝑓𝑖 for state 𝑖 and the corresponding intrinsic 

probability 𝑝𝑖 can be expressed as 𝑓𝑖 = 𝑝𝑖 + 𝛿𝑓𝑖 . Thus, the corresponding estimate of the 

entropy can be written as    

 𝐻𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = − ∑ 𝑓𝑖 log2 𝑓𝑖𝑖 = − ∑ (𝑝𝑖 + 𝛿𝑓𝑖) log2(𝑝𝑖 + 𝛿𝑓𝑖)𝑖 .  (3) 

With the application of the Taylor expansion, the equation becomes 

 
𝐻𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = − ∑ 𝑝𝑖log2𝑝𝑖

𝐾
𝑖=1 − ∑ [log2𝑝𝑖

𝐾
𝑖=1 +

1

ln 2
]𝛿𝑓𝑖 −

1

2
∑ [

1

𝑝𝑖ln 2
𝐾
𝑖=1 ](𝛿𝑓𝑖)2 +

⋯.  

(4) 

Since it is a random Poisson process, we expect 〈𝛿𝑓𝑖〉 = 0 and 〈(𝛿𝑓𝑖)2〉 =
𝑝𝑖

𝑁
. Thus, when 

computing the average of the entropy estimate, we find 
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 〈𝐻𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒〉 = 𝐻𝑡𝑟𝑢𝑒 −
𝐾

(2 ln 2)𝑁
+ ⋯.  (5) 

By substituting equation (5) into the mutual information 𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) −

𝐻(𝑋, 𝑌), the expression of the mutual information can be written as  

 〈𝐼(𝑋; 𝑌)𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒〉 = 𝐼(𝑋; 𝑌)𝑡𝑟𝑢𝑒 +
𝐾𝑋,𝑌−𝐾𝑋−𝐾𝑌

(2 ln 2)𝑁
+ ⋯.  (6) 

Since the number of accessible states 𝐾𝑋,𝑌 for the joint distribution 𝑝(𝑥, 𝑦) is usually much 

larger than the sum of 𝐾𝑋  and 𝐾𝑌 , 〈𝐼(𝑋; 𝑌)𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒〉  is expected to decrease with the 

increase of N.  
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Chapter 2  

Results 

2.1 Context-dependent Behavioral Transitions 

One of the questions we are interested in is how animal behaviors would alter upon the 

activation of descending neurons. Here, we apply mutual information to study the 

associations between the pre-stimulation and intra-stimulation behavior probability 

distributions.  

Based on the two-dimensional behavioral space, our pre-stimulation samples 

correspond to behavior probability distribution within the intervals, 1-5s before the ignition 

of the LED light. We neglect the period directly adjacent to the initiation of the optogenetic 

stimulation, because the animal behaviors can be relatively abnormal near the stimulation. 

To generate the intra-stimulation samples, we then apply the Wilcoxon signed-rank test to 

identify the significantly upregulated regions in the behavior space in the 0-3s of the 

stimulation. The criterion is that for each GAL4 line, the median of the intra-stimulation 
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point density in the behavioral space must be significantly not equal to zero. Also, the 

median of the point density in experimental group must be significantly not equal to the 

ones in the control group. Among these points, we select the connected upregulated regions 

and neglect the downregulated ones.   

After the establishment of samples, we then must associate the intra-stimulation 

significantly upregulated regions to the pre-stimulation distributions in the behavioral 

space. For each stimulation period, we mark the point with highest density in the behavioral 

map, and measure its distance to each of the regulated regions. In most of the cases, the 

point would be assigned to the closest region. However, if the distances all surpass the 

threshold, whose squared value is set to 10 pixels for a square image with length equal to 

101 pixels, no assignment would be conducted.  

2.2 Shuffling 

To study whether these correlations are simply the consequences of the sampling noise, we 

apply shuffling method to search for GAL4 lines with significantly upregulated mutual 

information. In the shuffling method, the correspondence between the pre-stimulation 

distributions and intra-stimulation regions is permutated for each shuffling. Each pre-

stimulation distribution is randomly paired to a significant upregulated region. After each 

shuffling, the mutual information would be recalculated. For each GAL4 line, the shuffling 

procedure is repeated for one thousand times. Based on the shuffling results, we select the 

lines whose original mutual information is larger than nighty-five percent of the shuffled 

ones. Among the 98 GAL4 lines with multiple regions, 16 are found to match this criterion 

(Figure 3).  
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Figure 3 Shuffling results for lines with more than one significant regions. The 

lines are ranked based on the percentage of shuffling values less than the original 

ones. Error bars represent the range of the shuffling results. The lines, whose 

original value of mutual information is larger than ninety-five percent of the 

shuffling results, are marked as red. 

2.3 Estimating Mutual Information 

Although the shuffling method enables the detection of the significance level, it is still a 

relatively conservative and imprecise method. To achieve a more precise assessment of 

significance, we estimating the true mutual information for all GAL4 lines with two 

significant regions.  
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Figure 4 Estimation of the value and variance of mutual information. A. Mutual 

Information vs 1/N. Blue squares represent the mean of the mutual information for 

the subsamples at each 𝑚, where the sample size is 180/𝑚. Red line is the linear 

fitted line and the red square represents the estimation of the mutual information. 

B. The estimation of the variance is based on the law 𝑙𝑜𝑔 𝜎2(𝑚) = 𝐴 + 𝑙𝑜𝑔 𝑚. 

For each 𝑚, the variance is calculated for the mean mutual information. This is 

repeated 10 times to average the variance at each 𝑚 (blue squares). Then a linear 

regression is done to estimate the variance of the original data set by setting 𝑚 =
1. 

To estimate the mutual information, we divided the 𝑁  samples in each line 

nonoverlapping subsamples of size 𝑁/𝑚, with the inverse data fraction 𝑚 = 2,3, … ,6. We 

calculated the mutual information for each subsample and evaluated the variance of the 

calculated mutual information for each 𝑚. We repeated 10 independent partitions at each 

𝑚 to average the mean and the variances. Then, based on equation (6), a linear regression 

was done to estimate the mutual information for each line (Figure 4A). To estimate the 

variance, we fit the variance to the 1/(sample size) law log 𝜎2(𝑚) = 𝐴 + log 𝑚 and found 

the variance for the original dataset by setting 𝑚 = 1 (Figure 4B). 

A B 
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Figure 5 A. The distribution of the estimated mutual information for GAL4 lines 

with two significant regions. The lines are ranked based on the value of the 

estimated mutual information triangular dots correspond to the values of the 

estimated mutual information, and the error bars represent the standard deviation. 

B. The corresponding shuffling results, for the lines in figure A, are ranked in the 

same order.    

Based on the results of estimated mutual information for all 63 GAL4 lines with 

two significant regions (Figure 5A), we found that largest mutual information turns out to 

be 0.12 ± 0.01 bit. Given one of the upper bounds of the mutual information for two-

region lines is ln 𝑛𝑟𝑒𝑔𝑖𝑜𝑛 = 1 bit, this value is relatively large. The exact same line also 

turns out to be statistically upregulated in the bootstrapping results (Figure 5B). 

To compare the results for experimental groups with the ones for control groups, 

we repeat the same procedure to estimate mutual information for control groups within 

each line (Figure 6). In 49 of 63 GAL4 lines, mutual information has larger values in 

experimental groups than control groups. Thus, the activation of descending neurons 

A 

B 
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overall tends to enhance context-dependency in animal behaviors. On the other hand, for 

the GAL4 lines exhibiting significantly high mutual information for experimental groups, 

the results of the control group are relatively smaller. It confirms that the behavioral 

activation of the corresponding descending are significantly context-dependent.  

Figure 6 Estimated Mutual information of both experimental and control groups. 

The red dots represent the results, and error bars correspond to the corresponding 

standard deviation. The black line denotes the case when data points have equal 

values for both control groups and experimental groups. In 49 of 63 GAL4 lines, 

mutual information has larger values in experimental groups than control groups. 

To investigate the actual behavior status underlying the context-dependency, we 

compare pre-stimulation behavior probability distribution and significant intra-stimulation 

regions in behavioral space. For example, in the GAL4 line with third largest fitted mutual 

information (Figure 7), although the pre-stimulation behavioral distributions for both 

regions have a large weight over the anterior-movement area, the distributions show varied 

weights over wing movements and locomotion gaits for varied upregulated regions. For 

Region 1, when the pre-stimulation behavior probability distribution has a large weight 

over the wing movements, the intra-stimulation upregulated regions occupied large area of 
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the idle and slow movements. Although it also covers part of the areas related to the 

locomotion gaits, these areas are adjacent to the part corresponding to idle and slow 

movements, thus representing relatively slow locomotion. For Region 2, when the pre-

stimulation has a large weight over the locomotion gaits, the intra-stimulation upregulated 

region also occupies part of the locomotion gaits, corresponding to fast movements. Based 

on these behavioral transition relations, it seems that depending on the previous behavioral, 

the activation of the descending neuron triggers the enhancement of varied behaviors. 

Preferences over slow behaviors induce the enhancement of relatively slow movements, 

while fast behaviors transit to fast movements.  

 

Figure 7 The Pre-stimulation mean behavior probability distribution and the 

significantly upregulated intra-stimulation regions. The left plots are the pre-

stimulation behavior probability distribution on the behavioral space. The left plots 

show the intra-stimulation statistically upregulated regions, whose contours are 

marked by white lines. 
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2.4 Comparison of Behavioral Effects 

To investigate the context-dependency on a neural basis, one of the fundamental questions 

is what factors contribute to the differences between the behavioral effects upon the 

activation of varied descending neurons. To study the problem, we first found several 

GAL4 lines, whose corresponding descending neurons descend to the same single segment 

in the ventral nerve cord from varied brain regions. Here, we aim to investigate the 

similarities and differences within the behavioral effects, in order to explore the roles of 

both brains regions and the ventral nerve cord in determining the behavioral effects of 

neural stimulations.  

In the data set, there exists eight lines that innervate the same segment in the ventral 

nerve cord called the neck neuropil. For each line, the average density distribution on the 

behavioral map during the first three second of the neural stimulation was calculated. In 

order to quantify the similarities between these behavioral maps, for each pair of lines, the 

Jensen-Shannon divergence between their density distributions was calculated. The 

Jensen-Shannon divergence is a smoothed and symmetrized version of the Kullback-

Leibler divergence (relative entropy), 𝐷𝐾𝐿(𝑃 ∥ 𝑄) = ∑ 𝑃(𝑖)𝑖 log
𝑃(𝑖)

𝑄(𝑖)
. For discrete 

probability distribution, the Jensen-Shannon divergence is defined to be 

𝐷𝐽𝑆(𝑃 ∥ 𝑄) =
1

2
𝐷𝐾𝐿(𝑃 ∥ 𝑀) +

1

2
𝐷𝐾𝐿(𝑄 ∥ 𝑀), where 𝑀 =

1

2
(𝑃 + 𝑄). (7) 

Based on the obtained Jensen-Shannon divergence, we applied the k-medoids 

algorithm [30] to cluster the data set into two groups (Figure 8). Similar to the k-means 

algorithm, k-medoids algorithm attempts to minimize the within-cluster sum of squares, 

∑ ∑ ‖𝒙 − 𝝁𝑖‖
2

𝒙∈𝑆𝑖

𝑘
𝑖=1 . But instead of calculating the mean of the data points within a cluster 
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to be the center of the observations, k-medoids algorithm adopts one of these data points 

as the center of the cluster.  

 

Figure 8 Kullback-Leibler divergence between each pair of lines. k-medoids 

algorithm was employed to cluster the lines into two groups, whose contour is 

marked as red. For two distributions, the more similar the distributions are. the 

smaller Kullback-Leibler divergence becomes. 

To examine the results of the clustering, the corresponding intra-stimulation 

distributions on the behavioral map have been drawn for comparison (Figure 9). As 

expected, within each cluster, the overall shapes of the distributions look rather similar, 

while across clusters, the distributions exhibit relatively different patterns. For the first 

cluster, the distributions occupy large areas corresponding to the fast locomotion gaits, 

while in the second cluster, the behaviors show preferences over the anterior and slow 

movements, during which flies usually stand still or move relatively slow. This binary 

pattern of intra-stimulation behavior probability distribution attracted our attention. One 

hypothesis is that depending on the type of descending neurons, the effects of activation to 

the connected segments in the ventral nerve cord could be either excitatory or inhibitory. 

The amplitude of these effects may also vary across the descending neurons. However, 
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based on the relative small data sets, it is currently impossible to determine the validity of 

this hypothesis and will be potential directions for the future study.  

 

Figure 9 The intra-stimulation behavior probability distribution in the behavior 

space for the lines within different groups. The first row corresponds to the first 

group with five lines, while the second row shows the case for the three lines in 

the second group. 
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Chapter 3  

Discussion 

3.1 Introduction  

After the discovery of the context-dependency, the following question is why animals 

choose to conduct behaviors in a context-dependent manner. Here, we mainly focus on the 

theoretical basis originated from information theory, and briefly discuss the biological 

basis of this context-dependency.  

3.2 Theoretical Basis from Information Theory 

For most neurons, the input signals are received by the dendrites and then processed by the 

cell body. The processed signals are then transmitted through the axon to the dendrites of 

nearby neurons. These interactions between neurons establish the neural network. Here we 

apply information theory to investigate the general principles governing the signal 
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transmission within the neural network and the theoretical basis for the context-dependency 

of behaviors.   

3.2.1 Information Transmission within Neural Networks 

For the information transmission within organisms, although the links between the input 

signals and final output can be complex, one interesting question is how the amount of 

contained information changes throughout this process. 

 For random variables 𝑋, 𝑌, 𝑍, a Markov chain 𝑋 → 𝑌 → 𝑍 can be formed if the joint 

probability function can be denoted as  

𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑥)𝑝(𝑦|𝑥)𝑝(𝑧|𝑦). (8) 

Thus, 𝑝(𝑥, 𝑧|𝑦) =
𝑝(𝑥,𝑦,𝑧)

𝑝(𝑦)
= 𝑝(𝑥|𝑦)𝑝(𝑧|𝑦), which means that given the value of 𝑌, the 

variables 𝑋 and 𝑍 are conditionally independent, so the corresponding mutual information 

between variables 𝑋 and 𝑍 given 𝑌 is equal to 0, 𝐼(𝑋; 𝑍|𝑌) = 0. On the other hand, the 

mutual information between the variable 𝑋 and variables 𝑌, 𝑍 can be expanded in two ways: 

𝐼(𝑋; 𝑌, 𝑍) = 𝐼(𝑋; 𝑍) + 𝐼(𝑋; 𝑌|𝑍). (9) 

                   = 𝐼(𝑋; 𝑌) + 𝐼(𝑋; 𝑍|𝑌). (10) 

Due to the nonnegativity of mutual information, we have 𝐼(𝑋; 𝑌|𝑍) ≥ 0. Based on the 

conditions 𝐼(𝑋; 𝑍|𝑌) = 0 and 𝐼(𝑋; 𝑌|𝑍) ≥ 0, the induced inequation can be written as  

𝐼(𝑋; 𝑌) ≥ 𝐼(𝑋; 𝑍). (11) 

This useful theorem demonstrates that the further processing of the 𝑌 cannot increase the 

amount of information of 𝑋.  
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For organisms, the more the outside stimuli are processed, the more information is 

lost through the process. Thus, in order to convey more information towards the outside 

stimuli, the final outputs are required to be generated within fewer steps. If this number is 

too large, the organism would become insensitive and unresponsive to the outside stimuli. 

This insensitivity can restrain the organism’s ability to quickly respond to changes and 

sometimes reduce the chance to survive. This theorem basically sets an upper bound of the 

number of processing steps within an organism. However, despite the loss of information, 

most organisms in the nature are equipped with complex neural networks with multiple 

and complex layers. Thus, the following problem is why a substantial number of organisms 

chose to develop a brain for information processing through evolution.  

3.2.2 Comparisons of Neural Networks with Varied Number of Layers 

To study the potential benefits of this multi-layer structure, we first review the previous 

developments of neural networks [31] and study the limitations induced by the neural 

networks with only one layer. Here, we examine the performance of the single-layer 

perceptron neural network, which acts as one of the classic binary classifiers.   

 

Figure 10 Multiple-input neuron model. The individual inputs 𝑝1, 𝑝2, …𝑝𝑅 are 

combined based on the weight elements 𝑤1,1 , 𝑤1,2 , …𝑤1,𝑅 . The bias 𝑏 is then 

added to the combine result to generate the net input 𝑛, which is then processed by 

the transfer function 𝑓 to produce the output 𝑎. 
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 First, we start with the single-neuron perceptron network with multiple inputs. For 

this multiple-input neuron model (Figure 10), the individual inputs 𝑝1, 𝑝2, …𝑝𝑅 are added 

based on the weight elements 𝑤1,1, 𝑤1,2, …𝑤1,𝑅 in the weight matrix 𝐖. This combined 

result then adds the bias 𝑏 to generate the net input 𝑛: 

𝑛 = 𝑝1𝑤1,1 + 𝑝2𝑤1,2 + ⋯ + 𝑝𝑅𝑤1,𝑅 + 𝑏. (12) 

The bias 𝑏 is a constant and represents the mean activity level of the neuron without the 

external inputs. Equation (8) can also be written in the matrix and vector form: 

𝑛 = 𝐖𝒑 + 𝑏. (13) 

Then, this net input 𝑛 is processed by the transfer function 𝑓 to generate the output 𝑎 =

𝑓(𝑛). While 𝐖 and 𝑏 can be adjusted through the training algorithm based on the training 

data set, the transfer function 𝑓(𝑛)  is usually chosen by the designer. Three most 

commonly used transfer functions are hard-limit transfer function 𝑓(𝑛) = {
0, 𝑛 < 0
1, 𝑛 ≥ 0

, linear 

transfer function 𝑓(𝑛) = 𝑛 , and log-sigmoid transfer function 𝑓(𝑛) =
1

1+𝑒−𝑛 , which 

transforms the input into the output between 0 and 1. In this section, the hard limit transfer 

function is applied.  

 For a perceptron neuron with two inputs, the decision boundary is linear and 

separates the space into two regions based on the outputs (Figure 11). When more inputs 

are added, the linearity of the boundary remains. Due to the induced linear decision 

boundary, the single-neuron perceptron network can only be used to classify the linearly 

separable data. 
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Figure 11 Decision boundary for two-input perceptron neuron model. Based on 

the values of the inputs 𝑝1 and 𝑝2, the space is linearly divided into two parts, 

corresponding to different values of the output 𝑎. 

The following question is whether this limitation can be resolved when more 

neurons are added. By combining several multiple-input neurons, a single-layer neural 

network can be established (Figure 12). Like the multiple-input neuron model (Figure 10), 

𝑅 individual inputs are transmitted to 𝑆 neurons to generate the corresponding outputs 𝑎1, 

𝑎2,… 𝑎𝑆. The transfer function within each neuron is not necessarily needed to be the same.  

 

Figure 12 Single-layer neural network. Based on the multiple-input neuron model 

(Figure 9), a single-layer neural network can be constructed by combining neurons 

influenced by the same set of inputs. 
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In this multiple-neuron perceptron network, each neuron classifies the input signals 

into two categories. Thus, for a single-layer perceptron network with 𝑁 neurons, there exist 

2𝑁 categories. However, although the system simply generates more categories by adding 

neurons, due to the linearity of the decision boundary, this single-layer perceptron neural 

network still fails to solve the linearly inseparable problems. 

 

Figure 13 Multi-layer neural network. The plot shows the structure of a two-layer 

perceptron neural network in vector and matrix notations. The outputs from the 

first layer 𝒂1 serves as the inputs to the second layer to generate the outputs 𝒂2. 

 To overcome the limitations of the single-layer neural network, the multiple-layer 

perceptron neural network was developed. For multiple-layer perceptron neural network, 

the outputs from neurons within one layer serve as inputs to neurons in the next layer. By 

combining several single-layer perceptron neural network together, a multi-layer neural 

network can be constructed. For example, by using vector and matrix notations, a two-layer 

perceptron neural network can be constructed (Figure 13). 
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Figure 14 Performance of two-layer perceptron neural network. A Four data points 

belong to two categories denoted by varied shapes (square and round). B. In a two-

layer perceptron network, the original outputs generated two linear boundaries are 

further processed by the second layer to complete the classification. 

For example, consider the classic exclusive-or (XOR) problem. The four data points 

belong to two categories denoted by different symbols (Figure 14A) and are not linearly 

separable. Due to the linearity of boundaries, a single-layer perceptron neural network fails 

to effectively classify these data points. However, a double-layer network can easily solve 

the problem. In the first layer, two neurons create two decision boundaries (Figure 14B), 

whose outputs are then combined by a second layer to generate the final outputs.    

Thus, the multi-layer network can overcome the approximation limitation of the 

single-layer model and achieve better performance. For example, a network, with a sigmoid 

transfer function on first layer and a linear transfer function on the second layer, exhibits 

outstanding performance in approximating most functions.  

3.2.3 Trade-off between Sensitivity and Complexity 

Although the further processing of the input signals cannot increase the amount of 

contained information, involving multiple layers does equip the system with the ability to 

perform complex input-output tasks. Thus, the processing of information can be considered 

A B 
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as the trade-off between sensitivity and complexity. The reduction of processing steps 

boosts the sensitivity of the outputs and enables the organisms to quickly generate 

corresponding behaviors as a respond to the outside stimuli. Sometimes, when it comes to 

the critical situations, the fast and simple responses enabled by this mechanism can mean 

the difference between death and survival. For example, when an animal touches an object 

with a high temperature, it simply needs to pull back that body part quickly. On the other 

hand, the further processing of the input signals benefits the complexity of the input-output 

correlations and allows organisms to resolve the complicated tasks. 

 However, if the loss of information throughout the processing stage is huge, the 

final outputs would become irrelevant to the input signals and sometimes even seem 

meaningless. Thus, to compensate the loss of information and maintain an adequate amount 

of correlations between the outputs and the changing environment, one approach is to 

receive more input signals at the first stage. On one hand, the number of received input 

signals can be enlarged by integrating the same type of information from the sensors in 

multiple body areas. On the other hand, the amount of inputs can also be increased by 

involving multiple types of sensory signals, like visual, olfactory and auditory information.  

3.2.4 Context-dependency – An Approach to Integrating and 

Compensating the Loss of Information 

Apart from increasing the amount of received input signals, another approach to 

compensating the loss of information is to utilize the previously received information. By 

combing the currently received signals with the former ones, the whole neural system is 

enabled to gather enough information for generating corresponding outputs, while 

maintaining the complexity of the input-output correlations. Thus, the motor outputs of the 
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neural system would become context-dependent and rely on the previous states. On the 

other hand, due to limitations on the amount of originally received signals imposed by the 

number of sensors, the utilization of previous information might be simply targeted at 

integrating more information, instead of compensating the losses.  

 

Figure 15 Implementation of context-dependency. The current input-induced 

effect 𝑎  and the previous state 𝑦(𝑡 − 1)  are further processed to generate the 

output 𝑦(𝑡). 

Although there exist various models involving the dependency of the previous 

states, the exact mechanisms can be complex and is not the focus of the current discussion. 

One of the most straightforward method (Figure 15) to implement the impacts from the 

previous states is to add an additional function 𝑔 to further process the current input-

induced effects 𝑎  with the previous state 𝑦(𝑡 − 1)  to generate the output 𝑦(𝑡) . The 

mathematical expression can be written as  

𝑦(𝑡) = 𝑔[𝑎 + 𝑦(𝑡 − 1)]. (14) 

3.3 Biological Basis of Context-Dependency 

At the biological level, our belief in the context-dependency roots in interactions between 

neural activities. Although the exact details of how the brain makes decisions and 

modulates animal behaviors remain largely unknown, consensuses have been reached 

toward the importance of the complex interactions between neurons. Due to these 

interactions, the alternation of the activity of a single neuron could potentially exert 
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significant impacts upon the whole neural system. On the other hand, the transmission of 

the impacts and signals could not be completed instantaneously. Even from the perspective 

of a single neuron, its activity is regulated by multiple ion channels, whose activation and 

inactivation consume time. Depending on the timing of exerted outside stimulus and its 

own activity state, the corresponding impacts upon neural activities may vary. Thus, we 

assume the behavioral effects of activating individual descending neurons would rely on 

the previous states of the neural system. Although the details concerning these states 

remains a mystery, as the observable outputs of this system, animal behaviors are believed 

to be an appropriate reflection of the internal activities in the neural system.  
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Chapter 4  

Prediction and Experimental Design 

4.1 Introduction 

Our analysis results find evidence supporting the theory that the behavioral effects of 

activating individual descending neurons are context-dependent. To proceed from our 

current findings and explore the command hierarchy within nervous systems, we here 

discuss potential experimental designs and corresponding predictions. Despite the fact that 

part of the experiments or techniques may not be currently available, we aim at 

demonstrating approaches to searching for the potential biological factors contributing to 

this context-dependency, including influences from other neighboring descending neurons, 

the interactions between segments in the ventral nerve cord, and the firing rate of 

descending neurons. 
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4.2 Inhibiting Neighboring Descending Neurons 

In each segment of the ventral nerve cord, multiple descending neuron are connected. The 

activities of these neighboring descending neurons could affect the functioning of the 

activated individual descending neurons. Thus, one possible hypothesis is that the 

influences from neighboring descending neurons contribute to the context-dependent 

encoding of individual descending neurons. The effects induced by activating individual 

descending neurons are modified by the activities of neighboring descending neurons. All 

neural activities are combined together to determine the outputs of the segment in the 

ventral nerve cord. Therefore, depending on the activities of neighboring descending 

neurons, the behavioral effects of activating individual descending neurons may vary.  

To evaluate the validity of the proposed hypothesis that influences from 

neighboring descending neurons contribute this context-dependency, corresponding 

experiments are designed to inhibit the normal functioning of neighboring descending 

neurons, and remeasure animal behaviors when the descending neurons are activated. In 

the designed experiment, for each activated individual descending neurons and its 

connected segments, the neighboring descending neurons would be first identified. During 

the experiment, all these neighboring neurons would be inhibited and become incapable of 

functioning by genetic tools. Then, researchers can activate the individual descending 

neurons by optogenetic techniques, and record animal behaviors. By comparing these 

experimental results with the ones in which neighboring neurons are not inhibited, we can 

determine whether neighboring descending neurons participate in shaping the context-

dependent encoding. If the proposed hypothesis were solid, the induced behaviors by the 

individual descending neurons would no longer depend on the previous behavioral states, 
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even though the induced behavioral effects were context-dependent in the experiment 

without inhibiting neighboring descending neurons.  

4.3 Isolating Segments in Ventral Nerve Cord 

Apart from the influences from neighboring descending neurons, since the segments in the 

ventral nerve cord are interconnected, the interactions between these segments can also 

play a critical role in determining the context-dependent encoding of individual descending 

neurons. Thus, although each segment regulates the functioning of its corresponding body 

part, its functioning can be influenced by the activities of nearby segments. The interactions 

between these segments determine the final behavior outputs. Therefore, depending on the 

states of neighboring segments in the ventral nerve cord, the behavioral effects of activating 

individual descending neurons may vary.  

To test the proposed hypothesis that interactions between segments in the ventral 

nerve cord contribute to the context-dependent encoding, in the designed experiment, all 

connections between segments would be removed, by surgeries or genetic tools, to isolate 

each segment from other influences. Researchers can then activate the individual 

descending neurons and record behavior outputs. The validity of the proposed hypothesis 

can be determined by comparing these experimental results with the ones in which 

segments are not isolated. If the proposed hypothesis were accurate, after the isolation of 

segments in the ventral nerve cord, the induced behavior outputs would no longer depend 

on previous behavioral states, given the fact that the encoding of descending neurons is 

context-dependent when segments in the ventral nerve cord are not isolated from each other.  
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4.4 Descending Neurons at Multiple Firing Rates 

In our current experimental data-sets, although individual descending neurons were 

activated by optogentic techniques during the stimulation periods, the exact firing rates of 

descending neurons were not under accurate measurement or control. However, firing rate 

represents a significant part of neural activities, and might be responsible for the discovered 

context-dependent encoding of descending neurons. One potential hypothesis is that during 

each stimulation period, the optogenetic techniques may induce different firing rates in 

descending neurons, and lead to varied behavioral effects.  

To evaluate the role of firing rates of descending neurons in determining behavior 

outputs, one of the designed experiments is to the record or control the exact spiking 

activities of descending neurons. By repeatedly activating individual descending neurons 

for a substantial number of times, the correspondence relations between firing rates and 

induced behavioral outputs can be built. If the proposed hypothesis were solid and firing 

rates of descending neurons did participate in affecting the final behavior outputs, different 

behaviors would correspond exactly to varied ranges of firing rates. On the other hand, in 

our current experiment, firing rates are bounded by the kinetics of channelrhodopsins, and 

may not cover the normal firing rates of descending neruons. The channelrhodopsin used 

in our current experiment, CsChrimson, has relatively slow kinetics and can only reliably 

drive spikes up to 20 Hz [18]. Thus, it would be interesting to explore the effects of 

descending neurons at higher spiking frequencies and investigate whether new phenotypes 

can be generated, by the application of other channelrhodopsins or techniques.  
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Chapter 5  

Further Studies 

5.1 Alternative quantifications of context-dependency 

To investigate the context-dependent encoding of descending neurons, a significant first 

step is to quantitatively measure and characterize the context-dependency. Thus, one 

important part of the future studies would be to continue searching for appropriate 

parameters for the quantification of context-dependency.  

In our current study, mutual information is applied to quantify the context-

dependency between the pre-stimulation and intra-stimulation behavior probability 

distributions. In the next phase, it would be beneficial to continue improving this 

application of mutual information, in terms of both the selection of time intervals and the 

assignment of the upregulated regions. Despite the successful application of the mutual 

information, future studies should also focus on exploring the other potential parameters 

for the quantification of context-dependency. For example, we previously studied Jensen-
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Shannon divergence between the behavior probability distributions in the adjacent intervals, 

and found that the calculated values always rise during the optogenetic stimulation. Thus, 

the Jensen-Shannon divergence can be a potential parameter for quantifying both the 

behavioral effects of the optogenetic stimulation and the extend of context-dependency.  

5.2 Context-dependency in Multiple Scales 

Currently, the context-dependency is discussed in terms of behavior probability 

distributions. Serving as a general quantification parameter of animal behaviors, 

probability distributions provide a relatively straightforward approach to exploring the 

changes in behaviors. However, the behavior probability distribution only constitutes one 

relatively small segment of animal behaviors. Other factors, like behavioral sequential 

execution, also play a significant role in shaping animal behaviors. Thus, exploring 

context-dependency within these factors would be a potential direction for future studies. 

Previous studies have invested a substantial number of efforts in investigating the 

neural modulation of sequential behavior executions, like the suppression hierarchy among 

behavior executions within the grooming sequence in Drosophila [1]. Thus, one of the 

future directions is to expand the study of the context-dependency to multiple scales, 

including both the behavior probability distribution and transitions between behaviors. In 

our previous study, we found that depending on the previous behavioral sequences, the 

following behavioral transition probability would vary. Due to the limitation of the size of 

data sets, we are currently unable to proceed along this direction and explore the context-

dependency in the behavioral sequences. Thus, quantifying the changes in the behavioral 

sequential execution should be a promising study direction for the future studies.  
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5.3 Properties of the Communication Channels 

Serving as the information bottleneck, descending neurons provide useful resources for 

studying the properties of the communication channels. Thus, for future studies, a 

prospective field is how to generalize the properties of the communication channel based 

on the context-dependency, including both the competition between individual descending 

neurons and the integration of multiple neurons. 

For the study of competitions between individual descending neurons, an important 

step is to understand the roles of individual descending neurons. In the neural system, the 

majority of synapses are chemical synapses, which are capable of various signaling, 

including mediating either excitatory or inhibitory effects on postsynaptic cells [32]. As 

illustrated in the Results section, we explore the behavioral effects upon the activation of 

the descending neurons connected to the same single segment in the ventral nerve cord. 

Thus, the next step can be to further explore the impacts of individual descending neurons, 

and investigate the roles of brain regions and segments in the ventral nerve cord, in 

determining behavior outputs. 

Another interesting aspect is the integration of the activities of multiple descending 

neurons. Currently, a substantial number of GAL4 lines have been found to be capable of 

simultaneously expressing in multiple descending neurons. Thus, one of future directions 

is to obtain data sets where multiple descending neurons are simultaneously activated, and 

investigate whether new phenotypes are generated by the simultaneously stimulation to 

study the signal integration process of the communication channels. By repeating this 

process using larger assemblies of descending neurons, in the long term, the final goal is 
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to investigate the general principals underlying the whole neural system and make 

corresponding predictions that could be tested in the experiments.  

5.4 Conclusion 

Within the frame of information theory, the data compression and the noisy-channel coding 

constitute two main topics, where there exists a substantial amount of evidence directly 

related to context-dependency. For example, arithmetic coding [33], a once widely used 

compression method for text files and images, relies heavily on the sequential order of 

codes and usually generates varied results under different contexts. For the future study, 

given such abundant materials and resources, it become relatively important to choose an 

appropriate level and scale. For example, in our current study, the animal behaviors instead 

of direct activities of neurons are studied. In the future, depending on both the technical 

developments and theoretical understanding, different choices might be made and more 

levels can be explored. In current phase, since the details of neural network are still largely 

unknown, scientists usually choose to start from particular cases and then try to generalize 

fundamental principles. This is also part of what we did and tried to do. However, in these 

cases, the biases of the samples should be carefully examined. For the future study, the 

combination of both solid basis of details and fundamental principles would be extremely 

important and useful. 
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Chapter 6  

Summary 

6.1 Results 

Based on an unsupervised measurement of animal behaviors and optogenetic techniques, 

our study aims at exploring the context-dependency within the behavioral effects of 

activating individual descending neurons in Drosophila. To quantify this context-

dependency, we first calculate the mutual information between probability distributions 

between pre-stimulation and intra-stimulation behaviors, and use the shuffling method to 

find 16 out of 98 GAL4 lines have significantly large mutual information. To better 

evaluate the context-dependency within each GAL4 line, we then use statistical method to 

estimate the true mutual information for GAL4 lines with 2 significant regions. Out of these 

63 GAL4 lines, the largest estimated mutual information turns out to be 0.12 ± 0.01 bit. 

Given one of the upper bounds of the mutual information for two-region lines is 

ln 𝑛𝑟𝑒𝑔𝑖𝑜𝑛 = 1 bit, this value is relatively large. By comparing the experimental groups 
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with control groups, 49 out of 63 GAL4 lines have larger mutual information in 

experimental groups than control groups. Based on information theory, we also study the 

general principles of the signal transmission within the neural network, and put forward 

possible theoretical hypotheses for the context-dependency. In the end, we discuss several 

potential experimental designs and directions for future studies. 

6.2 Discussion 

Scientists have been exploring how the brain controls behaviors for a long time. However, 

the lack of both quantification tools and the ability to independently control individual 

neurons have seriously restricted this exploration. Based on the optogenetic techniques, 

our study applied an unsupervised behavior analysis method to precisely quantify the 

behavioral effects upon neural activations. The combination of optogenetic techniques and 

an unsupervised measurement of animal behavior provides a unique opportunity to 

investigate how signals are encoded to generate behavior outputs.  

The encoding process in the neural network has become a heated topic in recent 

years. Several articles have discussed context-dependency in the encoding process at 

multiple levels. For example, researchers have found the evidence of context-dependency 

in the encoding of olfactory behaviors in Drosophila [34], and the context-dependent 

control of vocal acoustics by individual muscles [35]. However, these researches are 

usually confined to particular systems, like olfactory system and the targeted behaviors are 

relatively simple, like attraction or aversion. Based on a newly developed unsupervised 

measurement of animal behaviors, our study focus on systematic behavioral impacts of 

neural stimulations, and concentrate on descending neurons to avoid the involvement of 

other unknown factors, like the brain.  
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In our current study, the corresponding segments of the ventral nerve cord are only 

considered to be the ones that descending neurons are directly linked to, based on the 

anatomical structures. However, these segments are interconnected, and can influence each 

other. Thus, it is relatively difficult to identify which segment plays the major role in 

generating the corresponding behaviors. Investigating the interactions between segments 

in terms of behavior generation can be a potential direction for future studies.  

To explore the general principles of signal transmission within the neural system, a 

critical step is to obtain the distribution of the corresponding parameters for a substantial 

amount of data set. Although the current data set seems relatively smaller for generating 

meaningful principles. we focus on the properties in a small population of descending 

neurons. To generalize fundamental principles, more examination and comparisons are 

needed. 

6.3 Conclusion 

This thesis studies the context-dependency of the behavioral effects upon the optogenetic 

activations of descending neurons in Drosophila. Based on the analysis results, information 

theory is then applied to investigate the signal transmission mechanisms within neural 

networks, and possible theoretical hypotheses for the context-dependency. Combining both 

experimental results and theoretical analysis, this thesis aim to provide insights into the 

functioning of neural systems, and assist the search for the major principles governing the 

functions of the neural system.  
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