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Abstract

Predicting Rare Clinical Events in Complex and Dynamic Environments
By Azade Tabaie

Traditional machine learning classification algorithms assume a balanced proportion
of classes in the data. However, class-imbalanced data is a challenge for training pre-
dictive models in many fields such as the medical domain. Although patient adverse
outcomes occur rarely, they are worthy of prediction to improve the quality of care
that patients have received; therefore, monitoring systems are needed in the hospital
setting to capture the adverse rare events and improve patient health outcomes.

To that end, machine learning and natural language processing (NLP) techniques
were used along with clinical expert knowledge to address the issue of rare event
classification in a complex environment such as a hospital setting. In particular, two
different patient cohort with distinct characteristics and objectives were investigated.

First, strategies were proposed to predict a rare type of infection among hospi-
talized children with central venous lines (CVLs). This cohort of pediatric patients
are at high risk of morbidity and mortality from hospital acquired infections. Many
serious infections in hospitalized children are likely preventable through interventions
that prevent the infection or identify them early to initiate antimicrobial therapy.
Besides being considered as a rare clinical event, the definitions that have been pro-
posed for bloodstream infection commonly have inadequate sensitivity for clinically
important infections and may be difficult to generalize across electronic health records
(EHR) platforms. To infer the onset of the infection from EHR and eliminate the need
for extensive chart reviews, a surrogate definition for bloodstream infection was pro-
posed and validated. Then, two study designs were tested to improve the prediction
accuracy of the onset of the infection during hospitalization. Finally, a data fusion
approach was undertaken to integrate structured and unstructured information from
EHR to boost the prediction performance. Incremental but meaningful improvements
in the predictions were observed after each step.

Second, an algorithm was proposed to monitor the visits to an emergency de-
partment (ED) to detect intimate partner violence (IPV). IPV is a pervasive social
challenge with severe health and demographic consequences. People experiencing
IPV may seek care in emergency settings. Despite the urgency of this critical pub-
lic health issue, IPV continues to be profoundly underdiagnosed and is considered a
persistent hidden epidemic. IPV is frequently undercoded, undetected without appro-
priate screening tools, and underreported, rendering it a rare encounter in EHRs. The
early and appropriate detection of and response to such cases is critical in disrupting
the cycle of abuse including IPV related morbidity and mortality. Our proposed al-
gorithm benefits from NLP techniques and domain expert knowledge. It can identify
victims of IPV with a high precision by analyzing the recorded provider notes and
patient narratives.

We argue that all the techniques incorporated in this thesis are transferable to
identify other rare clinical events with the ultimate goal of improving the level of care.
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2.2 The predictive models’ performance. (2-A) The Receiver Operating

Characteristic (ROC) plot for pBoost and ElasticNet models applied

to the testing dataset. This plot demonstrates the trade-off between

the sensitivity and specificity of the classifiers. To find the optimum

AUC threshold, the specificity is fixed at 0.80 and the rest of the metrics

are calculated. The selected AUC threshold is marked on each curve.

(2-B) Precision-Recall curve (PRC) for pBoost and ElasticNet mod-
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applying the pBoost model on the testing dataset. This table presents

the True Positive (TP), True Negative (TN), False Positive (FP) and

False Negative (FN) values that are calculated based on the optimal

AUC threshold marked on the ROC plots in part 2-A of this figure.

The total number of PSI and non-PSI records and the total number of

predicted labels of each class are mentioned in the confusion matrix.

(2-D) The confusion matrix associated with the ElasticNet classifier.

(2-E) Two predictive models, ElasticNet and pBoost, are employed to

predict if a given patient encounter will develop PSI during the next 8 h

of hospital stay. The AUC values are reported for testing subsets of the

data. To make a better comparison among the results, the specificity

level is fixed at 0.80 and the rest of the performance measurements

are calculated subsequently. The mean and 95% confidence interval of
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Chapter 1

Introduction

This thesis contribute to approaches for dealing with extreme class-imbalanced clas-

sification problems in complex clinical settings. An imbalanced classification problem

is an example of a classification problem where the distribution of examples across

the known classes is biased or skewed. The distribution can vary from a slight bias

to an extreme imbalance where there is one example in the minority class for hun-

dreds, or thousands of examples in the majority class. The extreme class imbalanced

classification problem is also called rare event classification problem.

With the rapid advancements of technology, implementing artificial intelligent-

based surveillance systems in healthcare facilities is becoming more popular [71, 100,

96, 67]. However, some of the patients’ adverse outcomes that are worthy of prediction

occur rarely and affect the classification performance of the machine learning model

[52, 15, 77].

In this work, we illustrate two examples of rare events in hospitals:

1) Serious bloodstream infection among hospitalized children on central

venous lines. Central venous line (CVL) is an intravascular catheter that terminates

at or close to the heart, or in one of the great vessels that is used for infusion,

withdrawal of blood, or hemodynamic monitoring. Patients with central line are at
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higher risk of experiencing hospital acquired infections such as serious bloodstream

infection, mainly due to having an open wound. This type of infection happens rarely

but contributes to higher morbidity, mortality and hospital length of stay. Every

year, almost 80k new cases are identified and the patients who developed serious

bloodstream infection during hospitalization have 12-25% increased risk of mortality.

Predicting the infection ahead of time helps clinicians better identify patients at

higher risks for serious infection and achieve balance between early intervention and

antimicrobial overuse.

2) Emergency department visits associated with injuries from intimate

partner violence. According to CDC, intimate partner violence (IPV) is defined as

sexual, physical, psychological, or economic violence that occurs between current or

former intimate partners. Individuals who experience IPV experience both short- and

long-term adverse health outcomes such as chronic pain, substance use, and mental

health disorders. In the United States one in four women and one in nine men have

experienced a severe form of IPV at some point in their lifetime; therefore, IPV is not

a rare event. But only a small proportion of victims of IPV seek care for this type

of injuries which make the IPV a rare event in terms of the data that we have. IPV

continues to be underreported and underdiagnosed which makes it critical to identify

the IPV-related medical visits in order to disrupt the cycle of abuse and decrease the

associated morbidity and mortality.

1.1 Motivation

Traditional machine learning classification algorithms assume a balanced proportion

of different classes in the data. However, class-imbalanced data is a challenge when

training predictive models in many fields, such as the medical domain. Studies have

been conducted in this area, and different algorithms have been proposed [56, 38, 34].
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The proposed solutions can be categorized into three subgroups; data level, algorithm

level, and cost-sensitive learning approaches.

The most common data level solutions are oversampling the minority class and un-

dersampling the majority class [50, 45, 55, 60]. While these methods are simple to use

and effective in some cases, they can lead to overfitting to the training dataset (over-

sampling the minority class) or insufficiently learning the majority class’s patterns

(undersampling the majority class). As a result, the Synthetic Minority Oversampling

Technique ( SMOTE) and its family of algorithms have been proposed [20, 37, 72], in

which new synthetic data points from the minority class were generated by the use

of the available ones.

Ensemble learning is an approach at the algorithm level, which mainly consists of

bagging and boosting methods. In ensemble learning, we benefit from fitting many

models instead of one. In bagging, the majority vote of the models is selected as the

final class. In boosting, incorrectly predicted samples are up-weighted in subsequent

training rounds. Extreme Gradient Boosting (XGBoost) [22] and Random Forest [11]

are two of the famous examples of ensemble models.

Most machine learning algorithms assume that all data samples are independent

and identically distributed and have the same weight, regardless of coming from a

minority or majority class. Equation 1.1 presents how loss value is calculated for

a logistic regression model under the aforementioned assumption. In this equation,

L demonstrates loss, y is the true class label which takes the value of zero or one,

and p is the predicted probability of positive class. This assumption is not valid in

modeling class-imbalanced data [99]. Many real-world applications, such as spam and

fraud detection and identifying infection among patients, indicate that misclassifying

a minority class sample is more expensive than incorrectly classifying a data sample

from the majority class.
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L = −y · log(p)− (1− y) · log(1− p) =


− log(p), if y=1

− log(1− p), otherwise

(1.1)

Equation 1.2 presents a modified version of loss function for a binary classifica-

tion task in presence of class-imbalanced data. This approach is called cost-sensitive

learning. Cost-sensitive learning is a field of machine learning that requires defining

and using costs in the training process. In cost-sensitive learning, a misclassification

cost, such as α in Equation 1.2, is assigned to each class so that the cost is higher for

incorrectly classifying the minority class samples [39].

L =


−α log(p), if y=1

−(1− α) log(1− p), otherwise

(1.2)

Complex and dynamic data have been commonly incorporated in training ma-

chine learning models in the medical domain [64, 24]. In such a case, models should

capture the temporal information in the data effectively [40, 89] so that the model

can benefit from it, learn patterns efficiently, and tackle the class-imbalanced classi-

fication problem. The data level solutions would be challenging to use in temporal

data modeling since the data is in the sequence format. On the other hand, ensemble

learning techniques could be inefficient in terms of computational costs. Therefore,

there should be different approaches that apply to temporal data modeling.

This thesis contributes to addressing these challenges and developing pipeline and

model structures that can be incorporated in the case of rare event classification in

various healthcare fields.
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1.2 Aim of this thesis

This thesis aims to provide generalizable methods for solving the problem of rare

event classification in a complex environment such as a hospital setting. To this end,

we selected two different domains, infection prediction in the pediatric population and

identifying intimate partner violence cases among the adult population, and proposed

frameworks transferable to other fields in patient outcome predictions. To achieve our

final aim, the following novel research was performed:

• We define a surrogate definition for a rare type of hospital-acquired infection,

central line-associated bloodstream infection (CLABSI), which can be inferred

from routinely recorded EHRs and eliminate the need for extensive chart re-

views. Then, we propose a method based on machine learning techniques to

identify rare patient adverse outcomes in a complex environment. We evaluate

the method’s effectiveness on the serious infection prediction task using six years

of data associated with hospitalized children with central venous lines (CVLs).

• A method based on deep neural networks, attention mechanism and a modified

loss function to incorporate the temporal information hidden in EHR to predict

a rare adverse outcome in a timely manner. We evaluate the effectiveness of

this method on the serious bloodstream infection prediction using six years of

data associated with hospitalized children with CVLs.

• A method based on deep neural networks and natural language processing tech-

niques to investigate the effect of integrating two data modalities in predicting

rare events in a timely manner. We evaluate the effectiveness of this method

on the serious bloodstream infection prediction using six years of data, includ-

ing structured EHR and recorded clinical notes associated with hospitalized

children with CVLs.
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• A method based on NLP techniques to identify specific rare events from recorded

data in free-text format in a dynamic environment. We evaluate the effective-

ness of this method in detecting emergency department visits associated with

intimate partner violence.

1.3 Thesis outline

The thesis comprises five chapters besides the introduction, all of which (except for

the conclusion) have been published or are under review in key journals in the field

(see section 1.4).

Chapter 2 presents our proposed surrogate definition for CLABSI, which can be

inferred from routinely recorded EHR data. Then, the chapter describes a framework

using retrospective data and machine learning capable of predicting a rare clinical

event such as a serious bloodstream infection. The chapter concludes by presenting

the predictive model’s performance on a large-scale dataset of hospitalized pediatric

patients.

Chapter 3 proposes a window-wise study design that can be employed as a mon-

itoring system in a healthcare facility for timely prediction of the onset of serious

infection among hospitalized children with CVLs. Then, the chapter describes the

proposed method using deep learning, attention mechanisms, and a modified loss func-

tion to diminish the challenges of an extreme class-imbalanced classification problem.

Chapter 4 extends the work presented in Chapter 3 by adding a new data modal-

ity to the input features of the predictive model. This chapter investigates the effect

of coupling structured and unstructured EHR data in predicting rare adverse out-

comes and proposes a method based on NLP techniques to dynamically capture the

embedded information in the provider notes.

Chapter 5 introduces the challenges in detecting the cases of intimate partner



7

violence (IPV) through recorded clinical data and proposes an NLP-based algorithm

to utilize providers’ notes and patient narratives to identify IPV cases among the visits

to the emergency department of a level one trauma center. The chapter concludes by

presenting the results of validating the proposed labeling algorithm through manual

chart reviews.

Finally, Chapter 6 presents a summary of contributions, limitations, and possible

future work.

1.4 List of publications

Work in this thesis has been published in the following journals:

• A. Tabaie, E. W. Orenstein, S. Nemati, R. K. Basu, S. Kandaswamy, G. D.

Clifford, R. Kamaleswaran, “Predicting Presumed Serious Infection among Hos-

pitalized Children on Central Venous Lines with Machine Learning“, Computers

in Biology and Medicine, 2021 May 1;132:104289.

(This publication appears in its entirety in Chapter 2).

• A. Tabaie, E. W. Orenstein, S. Nemati, R. K. Basu, G. D. Clifford, R. Ka-

maleswaran, “Deep Learning Model to Predict Serious Infection among Children

with Central Venous Lines“, Frontiers in Pediatrics. 2021 Sep 15;9:726870.

(This publication appears in its entirety in Chapter 3).

• A. Tabaie, E. W. Orenstein, S. Kandaswamy, R. Kamaleswaran, “A Ma-

chine Learning Pipeline for Integrating Structured and Unstructured Data for

Timely Prediction of Bloodstream Infection among Children with Central Ve-

nous Lines“, Pediatric Research, Under Review.

(This publication appears in its entirety in Chapter 4).

• A. Tabaie, Amy J. Zeidan, Dabney P. Evans, Randi N. Smith, Rishikesan Ka-
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maleswaran, “A Novel Technique for Developing a Natural Language Processing

Algorithm to Identify Intimate Partner Violence in a Hospital Setting“, BMJ

Quality and Safety, Under Review.

(This publication appears in its entirety in Chapter 5).
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Chapter 2

Predicting Presumed Serious

Infection among Hospitalized

Children on Central Venous Lines

with Machine Learning

2.1 Abstract

Background: Presumed serious infection (PSI) is defined as a blood culture drawn

and new antibiotic course of at least 4 days among pediatric patients with Central

Venous Lines (CVLs). Early PSI prediction and use of medical interventions can

prevent adverse outcomes and improve the quality of care.

Methods: Clinical features including demographics, laboratory results, vital

signs, characteristics of the CVLs and medications used were extracted retrospec-

tively from electronic medical records. Data were aggregated across all hospitals

within a single pediatric health system and used to train machine learning mod-

els (XGBoost and ElasticNet) to predict the occurrence of PSI 8 h prior to clinical
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suspicion. Prediction for PSI was benchmarked against PRISM-III.

Results: Our model achieved an area under the receiver operating characteristic

curve of 0.84 (95% CI = [0.82, 0.85]), sensitivity of 0.73 [0.69, 0.74], and positive

predictive value (PPV) of 0.36 [0.34, 0.36]. The PRISM-III conversely achieved a

lower sensitivity of 0.19 [0.16, 0.22] and PPV of 0.30 [0.26, 0.34] at a cut-off of 10. The

features with the most impact on the PSI prediction were maximum diastolic blood

pressure prior to PSI prediction (mean SHAP = 3.4), height (mean SHAP = 3.2),

and maximum temperature prior to PSI prediction (mean SHAP = 2.6). Conclusion:

A machine learning model using common features in the electronic medical records

can predict the onset of serious infections in children with central venous lines at least

8 h prior to when a clinical team drew a blood culture.

2.2 Introduction

Children with central venous lines (CVLs) are at high risk of morbidity and mortality

from hospital acquired infections (HAI), including central-line associated bloodstream

infections (CLABSIs) and sepsis. While specific definitions for these entities exist in

pediatrics, they often have inadequate sensitivity for clinically important infections

and may be difficult to generalize across electronic medical record (EMR) platforms

[51, 5]. The presumed serious infection (PSI) case definition was developed initially

by adult sepsis epidemiologists to allow for retrospective surveillance of infection

and organ dysfunction that could be applied across diverse EMRs [83, 85, 84]. It is

defined as at least one blood culture draw followed by at least four consecutive days

(or fewer if the patient dies or is transferred out) of antimicrobial agents that were not

administered in the week prior to the blood culture draw. The definitions for PSI, as

well as organ dysfunction, were adapted for pediatrics by Hsu et al. [42] and have been

validated [107]. Successful prediction of PSI, or sepsis in general, among hospitalized
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children or the adult population could lead to decreased costs while improving the

quality of care [69, 82, 71].

Many serious infections and adverse outcomes in hospitalized children are likely

preventable through interventions that prevent PSIs or identify them early to initiate

antimicrobial therapy. On the other hand, excessive use of antimicrobials can lead

to adverse events and worsening antimicrobial resistance. In this setting, predictive

models to identify patients at the highest risk for serious infections can help clinicians

better achieve the balance between early intervention and antimicrobial overuse.

Machine learning models have been used to address clinical problems [52, 26,

9]. Most of these models have employed biomarkers or clinical risk predictions to

predict the onset of events [92, 44]. The deployment of machine learning models and

early recognition of the adverse events decreased the mortality and morbidity among

patients [85, 79]. However, there are still open challenges about developing machine

learning models for low prevalence outcomes [88]. Within the pediatric domain, a

recent study reported the incidence of CLABSI in pediatric cardiac ICUs to be 0.32%

among children aged between 1 and 18 years [98], representing tremendous challenge

for classical machine learning techniques which assume a balanced distribution of

cases and controls. These limitations suggest that there is a need to develop robust

machine learning algorithms that can adequately predict low prevalence conditions,

particularly for pediatric cohorts.

Class-imbalanced data classification is a challenge of training predictive models

in many fields such as the medical domain. Studies have been done in this area, and

different algorithms have been proposed [56, 38, 34]. The proposed solutions mainly

include sampling techniques [50, 50, 55, 60], such as oversampling the minority class

or undersampling the majority class, and employing ensemble learning approaches

[11].

This paper introduces our proposed framework named pBoost which was devel-
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oped based on our adapted study design and contributes both clinically and techni-

cally to the literature. From the clinical perspective, we incorporated a novel case

definition to identify the pediatric patient with CVL who were at a higher risk of

experiencing a serious infection episode during their hospitalization time. From the

technical point of view, we proposed a framework that can perform a series of tasks

such as data engineering, data preprocessing and feature transformation to model hy-

perparameter tuning, providing multiple performance metrics and the most influential

features. We further highlight clinical features which contributed the PSI prediction

using data from the EMR. This study was conducted according to Emory University

protocol number 19-012.

2.3 Methods

We proposed pBoost framework which performs multiple tasks; feature engineering,

data preprocessing (e.g., feature transformation, missing values imputation, remov-

ing multicollinearity, etc.), optimize the classifier setting with Bayesian optimization

technique, provide performance metrics and the features with the most significant

effect on the model’s decision-making process. The GitHub repository for pBoost

framework is publicly available.

We performed a retrospective cohort study of all hospitalized patients with a CVL

at a single pediatric health system. Patients were included in the cohort if they were

admitted to one of three freestanding children’s hospitals between January 1st, 2013

and December 31st, 2018 and had a central line documented in the system before or

at the time of admission or received at least one CVL during the hospitalization. We

extracted data routinely available across electronic health records systems including

demographics, vital signs, laboratory values, prior diagnoses, medication adminis-

trations, microbiology results, respiratory support, CVL properties, and CVL care
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documentation. The full set of data collected are listed in Appendix A.

PSI T0 time is defined as the first specimen collection time associated with a

blood culture after a central line is inserted, followed by four days of new antibiotic

administration. For the patients who already had a CVL at the time of admission,

we considered all the blood cultures on their records. For patients who had a CVL

placed during the hospitalization, we only included blood cultures after their first

central line was inserted (Figure 2.1-A). A patient may develop multiple PSIs during

the stay at the hospital. We disregarded the first and last 12 h of the hospitalization

then selected a random event time in the intermediate period to limit selection bias

from specific admission/discharge workups.

Data was preprocessed, and machine learning features developed as described

in Supplemental Appendix A and Figure 2.1-C. Model development was performed

using XGBoost [22] and logistic regression with a L1L2 regularization also known as

ElasticNet [112] (Figure 2.1-D). ElasticNet has the ability to identify more important

features and penalize the less informative ones, and XGBoost is a scalable tree-based

boosting technique that is popular for supervised machine learning involving highly

imbalanced (i.e. low prevalence) and missing data. Additional details on the machine

learning algorithms are described in Supplement Appendix A.

We calculated Area Under the Receiver Operating Characteristic curve (AUC)

and Area Under the Precision-Recall Curve (AUCpr) performance metrics. AUC is

a commonly used measure to present binary classification results. In the presence of

a class-imbalanced dataset, AUCpr can provide a more informative insight into the

classifier’s performance relevant to clinician decision-making. We then calculated the

true positive and true negative classification rates for each classification model.

We evaluated the importance of variables in the machine learning method by using

SHaply Additive exPlanations (SHAP) [63, 62] values for pBoost which is a validated

interpretability tool for machine learning models that provides the average marginal
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Figure 2.1: Summary of the methods. (1-A) A cohort of patients with CVL and demo-
graphic, clinical, and laboratory characteristics were extracted from the EMR database.
(1-B) If an encounter has a PSI, the time of PSI (tPSI) is marked as the event time and the
prediction time is set at 8 h prior (tPSI- 8 h). Minimum and maximum of the time-variant
variables, such as laboratory results and vital signs, are considered from 24 h prior to the
prediction time. If a patient encounter does not have a PSI, the first and last 12 h of patient
information is ignored. Then a random point in time is selected as the hypothetical event
time, and the prediction time is set at 8 h prior. (1-C) There were 338 features extracted in
the study. To eliminate the features without a significant effect on the outcome, we applied
LASSO feature selection, which led to a 249-dimensional feature space. (1-D) XGBoost and
ElasticNet models were employed to predict if a patient will develop PSI during the next 8
h from the prediction time using the selected 249 features. Cross-validation and Bayesian
optimization were applied in the training process of both models in order to find the best
settings of the predictive models and avoid overfitting.
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contribution of each feature to the prediction. Equation 2.1 demonstrates the SHAP

calculations in which f is the classification model, F is the complete set of features, S

is a subset of F , and feature i is the feature that we want to calculate its contribution

to the outcome of the classification model. fS∪{i}(xS∪{i}) is the classification outcome

using S and feature i while fS(xS) is the outcome of the model withholding feature

i. Therefore, the classification results with all possible combinations of feature in F ,

with and without feature i, is calculated and weighted by |S|!(|F |−|S|−1)!|F |! . Then, φi will

be the marginal contribution of feature i on the outcome of the classification model

f and represents the SHAP value of feature i.

φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(xS∪{i})− fS(xS)] (2.1)

We compared the performance of the pBoost model to PRISM-III [78]. We calcu-

lated PRISM-III during the 24-hour interval prior to the PSI prediction start time.

As demonstrated in Figure 2.1-B, the 24-hour time period before the start of the pre-

diction is the same interval that the dynamic features for the ElasticNet and pBoost

models are collected.

To assess the performance of PRISM-III in predicting PSI during the next 8 hours,

we calculated the performance metrics of PRISM-III to predict PSI using different

cut-off values on the training dataset. We then applied the optimal cut-off values on

the testing dataset for performance comparisons.

This manuscript was prepared using the guidelines provided by Leisman et al. [53]

for reporting of prediction models.

2.4 Results

We initially screened a total of 97,424 patient encounters associated with 15,704

patients, of which 65,766 encounters were excluded due to having length-of-stay less
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than 24 h. After applying the exclusion criteria mentioned in section 3, a total of

27,137 unique encounters were thus eligible to be included in the analysis. A total

of 2,749 neonates, 4,076 infants, 5,580 toddlers and preschoolers, 6,500 children, and

8,232 adolescents met eligibility criteria. Figure A.1 in Supplement Appendix A

presents the CONSORT diagram for this study.

To test the statistically significant difference between the features from PSI and

non-PSI group, We applied Wilcoxon rank sum test and chi-squared test on the

numerical and binary features, respectively. We observed a statistically significant

difference between the median of age, weight, height, length of stay (LOS), and race

in PSI and non-PSI groups, while there was no statistical difference in patients’ sex

between PSI and non-PSI groups (Table 2.1). The median age of patients in the PSI

group was 2.9 years (IQR = [0.18, 11.8]), whereas in the non-PSI group, the median

age was 6.5 years (IQR = [1.3, 13.6]). The median LOS for a patient with PSI was

30 days (IQR = [18.4, 54.2]), compared to 4.8 days (IQR = [3.1, 9.3]) for non-PSI.

Table 2.1: Cohort characteristics
PSI non-PSI p-value

Age (years) (Median [25th, 75th]) 2.9 [0.2, 11.8] 6.5 [1.3, 13.6] < 0.001
Weight (Kg) (Median [25th, 75th]) 13.1 [3.8, 37.6] 20.9 [9.5, 46.2] < 0.001
Height (cm) (Median [25th, 75th]) 89.9 [51.9, 142.3] 115 [72.5, 153.5] < 0.001

Length of Stay (LOS) (Median [25th, 75th]) 30 [18.4, 54.2] 4.8 [3.1, 9.3] < 0.001
Gender

Male (%) 45.9 45.4 0.52
Race

Asian (%) 3.4 4 0.07
Caucasian (%) 49.7 54.9 < 0.001

African American (%) 41 35.3 < 0.001
American Indian or Alaska Native (%) 0.3 0.2 0.22
Native Hawaiian or Pacific Islander (%) 0.1 0.2 0.21

Other (%) 5.5 5.4 0.79
Insurance Status
Commercial (%) 33.7 40.2 < 0.001

Public - Medicaid (%) 62.9 55.8 < 0.001
Public - non-Medicaid (%) 2.8 3.1 0.47

Self-pay (%) 0.6 0.9 0.02
ICU Admission (%) 70.5 41.1 < 0.001

Placed on Extracorporeal Membrane Oxygenation (%) 8.3 1.3 < 0.001
Mortality (%) 0.08 0.05 0.53

The results of the classifiers are presented in Figure 2.2 pBoost performed best in
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the testing dataset, with an average AUC of 0.84 (95% CI = [0.82, 0.85]) and AUCpr

of 0.52 [0.51, 0.53] compared to the AUC of 0.79 [0.78, 0.79] And AUCpr of 0.38 [0.36,

0.39] for ElasticNet (p < 0.001). When fixing the specificity of both models at 0.80,

the sensitivity of pBoost was 0.73 [0.69, 0.74] compared to sensitivity of 0.64 [0.62,

0.66] for ElasticNet (p < 0.001). The PPV of the pBoost model, 0.36 [0.34, 0.36],

was slightly higher that the ElasticNet 0.33 [0.32, 0.34] (p < 0.001). However, the

NPVs were nearly the same (pBoost 0.94 [0.94, 0.95], ElasticNet 0.93 [0.93, 0.94], p

< 0.001).

Comparing the confusion matrices of pBoost and ElasticNet models in Figure 2.2,

true positive cases increased while false positive and false negative cases decreased

when employing pBoost instead of ElasticNet model.

Explanability: We identified which features contributed most to the prediction

of PSI (Figure 2.3). The maximum value of the diastolic blood pressure in the 24

h prior to the prediction period was on average the leading predictor of PSI risk.

The next most important features were height, maximum temperature, minimum

Hemoglobin and minimum pulse oximetry. Multiple Complete Blood Count (CBC)

components were also important for PSI prediction.

Comparison to PRISM-III: Table 2.2 demonstrates the performance of PRISM-

III in predicting PSI. At a PRISM-III score of 10, the sensitivity was 0.19 [0.16, 0.22],

a drop of 54% compared to pBoost, the PPV (0.30 [0.26, 0.34]) was reduced by 6%,

and the NPV (0.88 [0.87, 0.90]) was 6% worse for the same comparison. Reducing

the cut-off to 5 improved the sensitivity (0.48 [0.44, 0.51]); however, there was an

13% drop in PPV (0.17 [0.15, 0.19]) and 1% improvement in NPV (0.89 [0.88, 0.90]).

Sensitivity analysis of age groups: We compared PSI prevalence and model

performance across all age groups. The highest and lowest PSI prevalence, 25.5%

and 9.7%, were observed in neonates and children, respectively. We investigated the

performance of pBoost model on each age group broken down by male and female
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Figure 2.2: The predictive models’ performance. (2-A) The Receiver Operating Character-
istic (ROC) plot for pBoost and ElasticNet models applied to the testing dataset. This plot
demonstrates the trade-off between the sensitivity and specificity of the classifiers. To find
the optimum AUC threshold, the specificity is fixed at 0.80 and the rest of the metrics are
calculated. The selected AUC threshold is marked on each curve. (2-B) Precision-Recall
curve (PRC) for pBoost and ElasticNet models applied to the testing dataset. A PRC
plots the positive predictive value (precision or PPV in the y-axis) against the true positive
rate (recall or sensitivity in the xaxis). In class-imbalanced data classification, it is more
informative to look at both ROC and PRC to consider the trade-off between PPV and sen-
sitivity. (2-C) The confusion matrix of applying the pBoost model on the testing dataset.
This table presents the True Positive (TP), True Negative (TN), False Positive (FP) and
False Negative (FN) values that are calculated based on the optimal AUC threshold marked
on the ROC plots in part 2-A of this figure. The total number of PSI and non-PSI records
and the total number of predicted labels of each class are mentioned in the confusion matrix.
(2-D) The confusion matrix associated with the ElasticNet classifier. (2-E) Two predictive
models, ElasticNet and pBoost, are employed to predict if a given patient encounter will
develop PSI during the next 8 h of hospital stay. The AUC values are reported for testing
subsets of the data. To make a better comparison among the results, the specificity level
is fixed at 0.80 and the rest of the performance measurements are calculated subsequently.
The mean and 95% confidence interval of each metric are reported.
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Figure 2.3: Feature importance from pBoost model This figure presents the top 20 features
according to the pBoost model using SHAP values. In tree-based models, there are different
criteria to sort features based on their effect on the outcome. Employing SHAP values in
tree-based models, such as pBoost, is the most reliable and consistent way to calculate
feature importance. SHAP values do not provide the direction of the effect, so there is no
information regarding if an important feature positively or negatively affects the outcome.
The min or max mentioned in the feature names, refers to the minimum or maximum of
the time-variant variables, such as laboratory results or vital signs, during the 24 h prior to
the PSI prediction time.
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Table 2.2: Performance of PRISM-III score as the clinical benchmark to predict PSI in
the next 8 hours of hospitalization. On the training dataset, different cut-off points are
examined for the PRISM-III threshold such that if a PRISM-III score of a patient is equal
or greater than that threshold, then the predicted value will be that patient will develop
PSI in the next 8 hours of hospital stay. We selected the PRISM-III cut-off values that lead
to better sensitivity and specificity values. Then, check the selected threshold performances
on the testing dataset. The mean and 95% confidence interval for each metric is presented
in this table.

cut-off value = 5 cut-off value = 6 cut-off value = 7 cut-off value = 8 cut-off value = 9 cut-off value = 10

Train Test Train Test Train Test Train Test Train Test Train Test
Sensitivity

Mean 0.50 0.48 0.45 0.44 0.35 0.34 0.29 0.28 0.23 0.22 0.19 0.19
[95%CI] [0.48, 0.52] [0.44, 0.51] [0.43, 0.47] [0.40, 0.47] [0.34, 0.37] [0.30, 0.38] [0.27, 0.31] [0.24, 0.31] [0.22, 0.25] [0.19, 0.25] [0.17, 0.20] [0.16, 0.22]

Specificity
Mean 0.64 0.64 0.68 0.68 0.82 0.82 0.86 0.87 0.90 0.91 0.93 0.93

[95%CI] [0.63, 0.64] [0.62, 0.65] [0.67, 0.69] [0.67, 0.70] [0.81, 0.82] [0.80, 0.83] [0.86, 0.87] [0.86, 0.88] [0.90, 0.91] [0.90, 0.91] [0.93, 0.94] [0.92, 0.94]
PPV
Mean 0.18 0.17 0.18 0.18 0.23 0.22 0.25 0.24 0.27 0.27 0.29 0.30

[95%CI] [0.17, 0.18] [0.15, 0.19] [0.17, 0.19] [0.16, 0.19] [0.22, 0.24] [0.20, 0.25] [0.23, 0.26] [0.21, 0.27] [0.25, 0.29] [0.23, 0.30] [0.27, 0.31] [0.26, 0.34]
NPV
Mean 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.88 0.88 0.88 0.88

[95%CI] [0.89, 0.90] [0.88, 0.90] [0.88, 0.89] [0.88, 0.90] [0.89, 0.90] [0.88, 0.90] [0.88, 0.89] [0.88, 0.89] [0.88, 0.89] [0.87, 0.89] [0.88, 0.89] [0.87, 0.90]
F-1 Score

Mean 0.26 0.25 0.26 0.26 0.28 0.27 0.27 0.26 0.25 0.24 0.23 0.23
[95%CI] [0.25, 0.27] [0.23, 0.27] [0.24, 0.27] [0.23, 0.27] [0.27, 0.29] [0.24, 0.30] [0.25, 0.28] [0.23, 0.29] [0.23, 0.26] [0.21, 0.27] [0.21, 0.25] [0.20, 0.27]

(Tables A.3 to A.8 in Supplemental Digital Content). The pBoost model performed

best on adolescents with average AUC of 0.84 [0.83, 0.85] with slight drop in per-

formance in other age groups; an average AUC of 0.81 [0.80, 0.83] for children, 0.80

[0.78, 0.82] for toddlers and infants, and 0.74 [0.72, 0.76] for neonates.

2.5 Discussion

In this study, we developed a novel algorithm to predict the risk of PSI among hos-

pitalized children using readily available features from the EMR. The pBoost model

has a high NPV and a PPV of nearly three times the baseline PSI prevalence. We

found that diastolic blood pressure, height, temperature, and CBC components were

the most useful clinical variables for predicting PSI, consistent with other measures of

patient acuity. The pBoost model is based on the XGBoost method, which enhances

prediction of low prevalence events through boosting, where misclassified cases from

one round of model training are weighted more heavily in subsequent rounds. This

approach outperformed the ElasticNet model which does not have any boosting struc-

ture. Both models had statistically superior performance in predicting PSI compared
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to PRISM-lll alone. While PRISM-III score is a wellestablished clinical benchmark,

we included more features in the pBoost framework that may help with boosting the

prediction performance of the machine learning model. Moreover, a machine learning

model does not have the limitation of the clinical benchmark and can learn the pat-

terns for PSI positive and negative patient conditions regardless of their PRISM-III

score. The superior performance of the pBoost framework demonstrated the potential

of machine learning techniques to inform infection prevention and management.

PSI is a relatively new definition of serious infection compared to sepsis and

CLABSI. However, its simplicity and ease of implementation is advantageous par-

ticularly in pediatrics. In our study, we found that patients with PSI had a longer

LOS (median of 30 days vs. 4.8 days, pvalue < 0.001), were more likely to be ad-

mitted to the ICU (70.5% vs. 41.1%, p-value < 0.001), more likely to be placed on

extracorporeal membrane oxygenation (8.3% vs. 1.3%, p-value < 0.001), and a higher

mortality rate (0.08% vs. 0.05%, p-value = 0.53). We also found that PSI was more

common in African Americans (41% vs. 35.3%, p-value < 0.001) and those with Medi-

caid insurance (0.62.9% vs. 55.8%, p-value < 0.001), consistent with health disparities

seen in adult patients with sepsis [19]. Thus, efforts aimed at predicting, preventing

and managing PSI are likely to improve outcomes for children.

Diastolic blood pressure had the largest contribution to the PSI prediction, con-

sistent with prior studies of early predictors of pediatric sepsis [47]. Other studies in

pediatric or adult sepsis prediction identified body temperature [48, 52], hemoglobin

[87], SpO2 [52], platelet count [87] and systolic blood pressure [65] as the features

with significant impacts on sepsis prediction, which were aligned with our findings

from investigating important features by mean SHAP values.

The predictive performance of pBoost as measured by AUC was superior to other

models of pediatric sepsis relying on EMR data alone. Le et al. [52] and Desautels et

al. [27] achieved an AUC of 0.73 to predict pediatric severe sepsis four hours prior to
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the onset using boosted ensembles of decision trees. Several factors may contribute

to higher AUC in our model; first, PSI has higher prevalence than severe sepsis and

may be easier to predict. Second, we restricted our population to patients with CVL

which increases the prevalence of the serious infection and may facilitate prediction.

Finally, in our study we used a much broader range of features which may provide

additional predictive power compared to vital signs and a small set of laboratory

values.

Limitations: Our study has several important limitations. First, even though

our data was derived from a large multi-hospital tertiary pediatric health system, it

represents a single instance of the EMR and may reflect workflows specific to this

setting. Therefore, any practices and procedures that are unique to the system may

bias the outcomes of the model if applied to an external site. Second, we investigated

only two methods of predictive modeling specifically to handle imbalanced (i.e. low

prevalence) data. Deep learning approaches may improve on the performance achieved

with XGBoost and ElasticNet. We also did not consider unstructured data, which

may contain further information about the patient’s acuity and infection risk. This

represents a future opportunity to improve on the performance of our model. Third,

our patient cohort represents a highly diverse population that is unique to the South,

U.S.A, and therefore may limit the generalizability to other clinical contexts. Finally,

our approach used a lookback method in which we compared performance of the

model 8 h prior to known PSI events with 8 h randomly selected from encounters

without PSI. This “lookback” method is a standard practice in the development and

validation of many predictive models, but it nonetheless increases the prevalence

of the event in our sample compared to what would be observed clinically moving

forward in time. Thus, the PPVs of our models may be higher than what might

be seen in prospective validation where predictions may be assessed at regular time

intervals throughout a hospitalization.
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Recent studies have suggested that machine learning algorithms can outperform

clinical rules-based criteria [111]. In our study, the pBoost achieved a sensitivity

and PPV (0.73 [0.69, 0.74] and 0.36 [0.34, 0.36]) higher than the benchmark using

PRISM-lll (0.19 [0.16, 0.22] and 0.30 [0.26, 0.34], p-values < 0.001) at a cut-off of

≥ 10. This indicates that the improved performance of pBoost can meaningfully

improve clinical decision making by alerting clinicians earlier, thereby allowing for

more rapid intervention and by that potentially improving outcomes.
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Chapter 3

Deep Learning Model to Predict

Serious Infection among Children

with Central Venous Lines

3.1 Abstract

Objective: Predict the onset of presumed serious infection, defined as a positive

blood culture drawn and new antibiotic course of at least 4 days (PSI*), among pe-

diatric patients with Central Venous Lines (CVLs).

Design: Retrospective cohort study. Setting: Single academic children’s hospital.

Patients: All hospital encounters from January 2013 to December 2018, excluding the

ones without a CVL or with a length-of-stay shorter than 24 hours.

Interventions: None.

Measurements and Main Results: Clinical features including demograph-
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ics, laboratory results, vital signs, characteristics of the CVLs and medications used

were extracted retrospectively from electronic medical records. Data were aggregated

across all hospitals within a single pediatric health system and used to train a deep

learning model to predict the occurrence of PSI* during the next 48 hours of hospi-

talization. The proposed model prediction was compared to prediction of PSI* by

a marker of illness severity (PELOD-2). The baseline prevalence of line infections

was 0.34% over all segmented 48-hour time windows. Events were identified among

cases using onset time. All data from admission till the onset was used for cases and

among controls we used all data from admission till discharge. The benchmarks were

aggregated over all 48 hour time windows [N=748,380 associated with 27,137 patient

encounters]. The model achieved an area under the receiver operating characteristic

curve of 0.993 (95% CI = [0.990, 0.996]), the enriched positive predictive value (PPV)

was 23 times greater than the base prevalence. Conversely, prediction by PELOD-2

achieved a lower PPV of 1.5% [0.9%, 2.1%] which was 5 times the baseline prevalence.

Conclusion: A deep learning model that employs common clinical features in

the electronic health record can help predict the onset of CLABSI in hospitalized

children with central venous line 48 hours prior to the time of specimen collection.

3.2 Introduction

Central line-associated bloodstream infections (CLABSIs) are a major cause of healthcare-

associated infections among hospitalized children and contribute to increased morbid-

ity, length of hospital stay, and cost [73, 80]. The U.S. Centers for Disease Control

and Prevention (CDC) estimates that approximately 80,000 new CLABSIs occur in

the United States every year, and data show a 12%-25% increased risk of mortality

in hospitalized patients who develop a CLABSI [86, 32]. Early identification of the
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onset of infections such as CLABSI or sepsis can prevent adverse outcomes, reduce

costs, and improve the quality of care [69, 82].

While specific definitions for entities such as CLABSI and sepsis exist in pediatrics,

they often have inadequate sensitivity for clinically important infections and may

be difficult to generalize across electronic medical record (EMR) platforms [51, 5].

Presumed serious infection (PSI), which is used in both adult and pediatric sepsis

surveillance systems, is defined as a blood culture being obtained (regardless of the

result) followed by new antimicrobial agents started within 2 days of the blood culture

(i.e., agents that were not being administered prior to the blood culture) that are

administered for at least 4 consecutive days or until time of death or transfer to

another hospital [42, 84, 98]. This PSI definition captures suspicion for infection

(as identified by obtaining a blood culture) along with sufficient antimicrobial use

to distinguish empirical treatment of a suspected infection from definitive treatment.

Successful prediction of PSI, or sepsis in general, among hospitalized children or the

adult population could expedite recognition and initiation of therapy [69].

Machine learning models have the potential to predict the onset of infection prior

to clinical suspicion, allowing clinicians to take preventive measures and reduce mor-

tality and morbidity [52, 26, 85, 79]. However, one of the main challenges in employing

machine learning models in the clinical domain is that many events worthy of predic-

tion are uncommon, also known as the extremely class-imbalanced dataset problem

[88]. For example, in the pediatric cardiac intensive care unit (ICU), Alten et al.

found that hospital acquired infection occurred in 2.4% of CICU encounters at a rate

of 3.3/1000 CICU days [2]. To date, studies to predict CLABSI onset have mainly

investigated known clinical risk factors associated with the infection and developed

discriminative models based on non-temporal data [31, 75]. While these approaches

may be able to predict if a CLABSI will occur during an entire hospital visit or

not, their performance likely decreases when considering the next 48-72 hours of a
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patient’s care. Real-time predictions that estimate the risk of an adverse event in

a defined time window are more useful clinically, but they are more challenging to

develop because the prevalence of the event in a defined time window is lower than

its prevalence across an entire hospital stay [71, 104]. Currently a CLABSI prediction

tool does not exist and instead providers use either subjective information or derived

metrics such as severity of illness scores. In pediatrics, a commonly used severity of

illness score is the PEdiatric Logistic Organ Dysfunction (PELOD) score. PELOD

has been used to predict death and need or duration of intensive care unit resources

[54].

Most traditional machine learning algorithms assume a balanced distribution of

negative and positive samples in the data (i.e., a prevalence close to 50%). Deep learn-

ing models have the potential to overcome these limitations as they are more capable

of finding patterns in extremely class-imbalanced high-dimensional data. However,

deep learning models are commonly thought of as impossible to understand, overly

complex, and not pragmatic. These models’ lack of explainability may reduce their

implementation effectiveness even with good predictive performance.

In this study, we aimed to develop a pragmatic deep learning framework that

can adequately predict the onset of presumed bloodstream infection in children with

a central line during the next 48 hours of their hospitalization. At each point of

prediction, the model provides insights to its decision-making process by outputting

the effect of the most influential features on the predicted outcome.

3.3 Material and Methods

3.3.1 Study Design

A retrospective cohort study was conducted which included all hospitalized patients

with a central venous line (CVL) at a single tertiary care pediatric health system.
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The inclusion criteria for patients were (1) admission to one of three freestanding

children’s hospitals between January 1st, 2013 and December 31st, 2018, (2) having a

documented CVL at some point during the hospitalization (e.g., present and not yet

removed at the time of admission or placed during the hospitalization), and (3) having

length-of-stay longer than 24 hours. As described earlier, our goal is not to identify

causes of presumed bloodstream infection associated with CVL, but rather predict the

infection among patients with CVL. The predictive model was developed as it would

be applied in clinical practice; therefore, we included both patients whose line was

placed within the local health system or before admission. If CVL was placed within

the local health system, information about line placement, such as sterile technique,

was included. For patients whose line was not placed within the local health system,

those data were not available to the model, just as they would not be available in the

EHR when making a prediction in real clinical practice. This study was conducted

according to Emory University protocol number 19-012.

3.3.2 Outcome Definition

We defined our primary outcome as a presumed serious infection (PSI) along with

a laboratory confirmed bloodstream infection defined as a positive blood culture

[42, 84]. We reviewed this definition through informal interviews with 2 pediatric

infectious disease specialists, 1 pediatric critical care physician, 1 neonatologist, and

1 pediatric hematology/oncology specialist to validate its appropriateness and clinical

utility. From this point, we referred to PSI with positive blood culture as PSI* for

clarity reasons.

3.3.3 Feature Extraction

The extracted features from the EHR were demographics, laboratory results, vital

signs, prior diagnoses, microbiology results, medications, respiratory support, CVL
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information, and CVL care documentation. We focused on features anticipated to be

routinely recorded in the EHR across centers. The full list of extracted features and

the preprocessing steps are available in Appendix A and Appendix B, respectively.

As initial deep learning techniques are often exploratory, it is true that many vari-

ables would on the surface seem unrelated. While biopathophysiologic links can in-

deed be created related to escalating PEEP (e.g., worsening microvascular/endothelial

injury in the pulmonary vasculature potentially related to cytokine storm/inflammation

as a response to a brewing infection or pulmonary edema from endovascular injury

and leak and fluid delivery) – the beauty of a deep learning model approach is it

reduces clinician bias that a variable (or set of variables) is or is not related to the

outcome of interest. As the literature shows – many models have been able to identify

constellations of variables that would go otherwise unheeded as heralds to a patient

event [98, 75].

3.3.4 Window-Wise Study Design

The onset of PSI* is defined as a positive blood culture time after a CVL was inserted,

succeeded by a new antibiotic administration for at least four days. Hospitalized pa-

tients in the cohort could have a CVL at the time of admission or received at least

one during hospitalization time. We restricted our analysis to blood cultures with

specimen collection timestamps while the patient had a CVL during hospitalization.

A patient may become infected multiple times during a single hospitalization. How-

ever, for the purposes of this analysis, we censored hospitalizations after the first PSI*

event for a patient if present.

To predict the onset of PSI* in a real-time setting, we used a window-wise study

design (Figure 3.1). We started monitoring a patient from admission or first line

insertion time, whichever was earlier. We then aimed to predict whether a patient

would have a PS* in the next window of 48 hours; this prediction window was selected
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to give health providers enough time to intervene to potentially prevent a PSI*, for

example by removing high risk CVLs or other interventions. Every 8 hours, the

model would incorporate new information obtained and make another prediction for

the subsequent 48 hours. The 8 hour sliding window was selected to reflect the cadence

of shift changes and rounds, particularly in the ICUs at our institution. Even if the

windows do not correspond specifically to shift changes and rounds, we nonetheless

felt that more frequent updates would yield more relevant information for clinicians.

All 48 hour windows that included a PSI* time were labeled as positive and the rest

were negative.

The patient encounters were split into training (80%) and testing (20%). The

train-test split procedure is used to estimate the performance of machine learning al-

gorithms when they are used to make predictions on data not used to train the model.

We followed the commonly used 80-20 split in order to provide enough examples for

the models to learn. Additionally, 10% of the training set was used as the validation

set to optimize the model’s settings and tune the model’s hyperparameters. After

preprocessing the data and removing collinearity, there were 135 features to feed into

the prediction model. The list of 135 features and the details on preprocessing are

described in Appendix B. The PSI* prevalence in the window-wise study was 0.34%,

meaning that approximately 1/300 of the 48 hour time windows contained the onset

of a PSI*.
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Figure 3.1: The window-wise study design. If a patient had a documented CVL that was
not documented as removed at the time of admission, the start point of the analysis would
be the admission time. Otherwise, the start point would be the first line insertion time.
The prediction window was 48 hours with an 8 hour sliding window until the end of the
patient’s hospitalization or removal of the last CVL. When the onset of CLABSI occurred
within a 48 hour prediction window, that window was considered positive (red), while the
rest (blue) were labeled as negative. The prediction was performed at the start of each
arrow.

3.3.5 Models

Real-time prediction of PSI* is an extremely class-imbalanced problem (see below).

To tackle this challenge, we started with a Long Short-Term Memory (LSTM) model

[40, 89], a recurrent neural network model capable of dealing with long sequences

of data that has performed well for adult sepsis prediction [91]. To improve the

performance of this model on an extremely class-imbalanced dataset, we hypothesized

that:

Hypothesis 1: Penalizing false positives and false negatives in the optimization

function (focal loss) will improve model performance. In extremely class-imbalanced

modeling, the model is biased towards the majority class which in our case is not hav-

ing an onset of PSI*. In machine learning models, a loss function value is a measure of

how far off a model’s prediction is from the actual outcome value, and the algorithms

are optimized to minimize this value. Focal loss reduces the loss of well-classified

examples, emphasizing the false positives and negatives [59]. We hypothesized that

a focal loss function would improve performance relative to traditional methods for
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dealing with imbalanced data such as under-sampling the majority class.

Hypothesis 2: Incorporating an attention mechanism will improve model perfor-

mance. An attention mechanism in deep learning assigns attention weights to source

data at each time point, allowing the model to focus only on information relevant to

the next prediction [6].

To evaluate these hypotheses, we developed and evaluated the following machine

learning models: (1) a simple Bidirectional LSTM with binary cross-entropy, (2) a

simple Bidirectional LSTM that was trained with an under-sampled majority class

to make the labels more balanced, (3) a Bidirectional LSTM with Focal loss, and (4)

a Bidirectional LSTM with Focal loss and an attention mechanism. More details on

the proposed model are presented in Appendix B.

3.3.6 Performance Metrics

For each model, we calculated the Area Under the Receiver Operating Characteristics

Curve (AUROC), sensitivity, specificity and accuracy. We also calculated metrics that

are more informative in extremely class-imbalanced data classification models such as

Area Under Precision-Recall Curve (AUPRC), positive predictive value (PPV), neg-

ative predictive value (NPV) and F-1 score. The 95% confidence interval estimation

for each metric was calculated using bootstrapping.

3.3.7 Model Explainability

Decision making process of a deep learning model is often assumed to be overly

complex. However, there are several ways to illuminate the decisions a model makes.

It is also achievable to understand which features are the most salient in a model’s

prediction.

We estimated feature importance for each prediction by employing Shaply Addi-

tive exPlanations (SHAP) values, a method for explaining predictive models based



33

on game theory [63]. SHAP values presents the contribution of each feature to the

model’s decision-making process and their effect size on the predicted outcome. These

SHAP values can be summarized across the cohort or calculated for an individual

model prediction to inform clinicians of the features influencing a specific prediction,

providing model transparency and observability to the end user [68].

3.3.8 Clinical Benchmark

To make the model relevant, we compared performance against an existing model

used for prediction of illness in hospitalized children. In the absence of a discrete

prediction model used for prediction of line or bloodstream infections, we used the

PEdiatric Logistic Organ Dysfunction 2 (PELOD-2) score. The PELOD-2 score has

been validated for prediction of morbidity and mortality in hospitalized children. We

calculated PELOD-2 at every prediction point, then considered different cut-off values

to identify the PSI* positive windows (28). Applying the same threshold values on the

testing set, we predicted the PSI* positive windows by the use of the corresponding

PELOD-2 values for each prediction window.

Pediatric Risk of Mortality III (PRISM-III) has also been validated for mortality

prediction in hospitalized children [78]. Calculating PRISM-III score enables the

physicians to identify which patients require more urgent care and interventions. We

investigated the differences in PRISM-III components across PSI* and non-PSI* time

windows.

This manuscript was prepared using the guidelines provided by Leisman et al. [53]

for reporting of prediction models.
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Figure 3.2: Inclusion flowchart. The final number of patient visits that we used in training
and testing the machine learning models were 27,137.

3.4 Results

In total, 97,424 patient encounters associated with 15,704 patients were extracted

from the EHR. Of these, 70,287 encounters were excluded due to length-of-stay

less than 24 hours (most likely representing appointments for patients with existing

CVLs). A total of 2,749 neonates (age less than 28 days), 4,076 infants (age between

28 days and one year), 5,580 toddlers and preschoolers (age between one and five

years), 6,500 children (age between five and 12 years), and 8,232 adolescents (older

than 12 years) met eligibility criteria. Figure 3.2 presents the associated CONSORT

diagram.

Table 3.1 presents the cohort characteristics. There was a statistically significant

difference between the median age, weight, and height with PSI* patients younger

and smaller. Length of stay was significantly longer in patients with PSI*African

American race and Medicaid insurance were significantly more common in patients

with PSI*. There was no statistically significant difference in gender between PSI*
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and non- PSI* groups. Moreover, statistical tests were performed to investigate if

there were statistically significant differences between the components of PELOD-2

and PRISM-III between PSI* and non-PSI* groups across time windows (Appendix

B).

Table 3.1: Cohort characteristics
PSI* non-PSI* p-value

Age (years) (Median [25th, 75th]) 3.6 [0.2, 12.6] 6.1 [1, 13.4] < 0.001
Weight (Kg) (Median [25th, 75th]) 14.3 [3.8, 40.9] 20 [8.5, 45.3] < 0.001
Height (cm) (Median [25th, 75th]) 93 [52, 149] 112 [69, 152] < 0.001

Length of Stay (LOS) (Median [25th, 75th]) 36 [23, 69] 5 [3, 13] < 0.001
Gender

Male (%) 44.8 45.5 0.737
Race

Asian (%) 4.1 3.9 0.796
Caucasian (%) 46.7 54.3 < 0.001

African American (%) 43.8 35.9 < 0.001
American Indian or Alaska Native (%) 0.4 0.2 0.292
Native Hawaiian or Pacific Islander (%) 0.2 0.2 0.992

Other (%) 4.7 5.5 0.465
Insurance Status
Commercial (%) 34.5 39.4 0.025

Public - Medicaid (%) 62.1 56.6 0.013
Public - non-Medicaid (%) 2.9 3 0.933

Self-pay (%) 0.39 0.9 0.224
ICU Admission (%) 63.9 44.7 < 0.001

Placed on Extracorporeal Membrane Oxygenation (%) 8.7 2.1 < 0.001
Mortality (%) 0.20 0.06 0.19

The results of the four predictive models are presented in Table 3.2. Our proposed

model, the Bidirectional LSTM with Focal loss and attention mechanism, outper-

formed the rest of the models with AUROC of 99.3% [99.0%, 99.6%] and AUPRC of

13.9% [10.6%, 18.0%]. The ROC and Precision-Recall curves of all trained models

are presented in Figure 3.3. Fixing the sensitivity of all models to 85% to select a

threshold, our proposed model’s specificity was 99.4% [99.2%, 99.5%], F-1 was 9.9%

[7.1%, 13.8%] and PPV was 7.7% [5.7%, 10.3%] which is 23 times the baseline PSI*

prevalence (0.34%). All performance metrics except for sensitivity and NPV were sta-

tistically different from the other models’ metrics (p < 0.001). Moreover, the model

generated 0.049 [0.044, 0.054] false alarms per patient per day. In other words, there
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should be 34 positive PSI* per 10,000 48 hour time windows (prevalence of 0.34%).

The results of the proposed model indicated that per 10,000 predictions which lead

to X number of positive predictions, 7.7% of X will be the number of PSI* windows

that were correctly predicted as positive. Besides, 99.9% of non-PSI* windows were

correctly predicted as negative ones. Moreover, 85% of true PSI* were predicted

correctly while 15% of the true PSI* time windows were predicted as negative ones.

Table 3.2: Performance metrics of the deep learning models in predicting PSI* in the next
48 hours of hospitalization. The two numbers in the brackets present the estimated 95%
confidence interval using bootstrap sampling.

BiLSTM BiLSTM + Under-sampling BiLSTM + Focal Loss BiLSTM + Focal Loss + Attention

Train Test Train Test Train Test Train Test
AUROC

Mean (%) 88.4 89.3 88.3 85.7 92.8 91.1 99.7 99.3
[95%CI] [86.7, 89.9] [86.6, 91.5] [86.8, 89.6] [82.5, 88.2] [90.8, 94.8] [86.8, 94.9] [99.6, 99.7] [99.0, 99.6]

Sensitivity
Mean (%) 85.1 85.3 85.1 81.1 85.1 83.3 85.1 72.9
[95%CI] [85.0, 85.2] [78.3, 91.6] [85.0, 85.2] [72.7, 88.4] [85.0, 85.2] [75.3, 90.2] [85.0, 85.2] [62.8, 82.1]

Specificity
Mean (%) 84.3 84.2 84.0 83.2 93.6 93.2 99.4 99.4
[95%CI] [83.6, 85.2] [83.2, 85.2] [83.3, 84.7] [82.4, 83.9] [92.5, 94.7] [92.0, 94.3] [99.2, 99.6] [99.2, 99.5]

PPV
Mean (%) 0.4 0.4 0.4 0.3 1.0 0.9 9.4 7.7
[95%CI] [0.3, 0.4] [0.3, 0.5] [0.3, 0.4] [0.3, 0.4] [0.8, 1.2] [0.7, 1.1] [6.9, 12.5] [5.7, 10.3]

NPV
Mean (%) 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
[95%CI] [99.9, 99.9] [99.9, 99.9] [99.9, 99.9] [99.9, 99.9] [99.9, 99.9] [99.9, 99.9] [99.9, 99.9] [99.9, 99.9]
Accuracy
Mean (%) 84.3 84.2 84.0 83.2 93.5 93.1 99.4 99.3
[95%CI] [83.6, 85.2] [83.2, 85.2] [83.3, 84.7] [82.4, 83.9] [92.5, 94.7] [92.0, 94.3] [99.2, 99.6] [99.2, 99.5]
F-1 Score
Mean (%) 0.8 0.8 0.8 0.7 3.3 2.6 58.0 16.1
[95%CI] [0.7, 0.9] [0.6, 0.9] [0.7, 0.9] [0.6, 0.8] [2.3, 4.2] [1.4, 3.9] [46.0, 70.8] [10.4, 22.5]
AUPRC

Mean (%) 0.4 0.4 0.3 0.3 3.9 3.2 80.7 41.2
[95%CI] [0.3, 0.4] [0.3, 0.5] [0.3, 0.4] [0.2, 0.3] [3.1, 4.7] [1.9, 5.3] [76.3, 84.6] [30.7, 50.2]

Explainability: For the final model, we calculated SHAP values of each feature

at every prediction point. Figure 3.4 presents the most important features for a

specific timestamp in which the model predicted positive PSI*. For this patient,

temperature had the highest effect size on the predicted outcome, followed by rinse

agent, which was used to remove germs from the mouth, and platelet count.

Comparison to PELOD-2: The performance of PELOD-2 in window-wise pre-

diction of PSI* is presented in Table 3.3. The cut-off points that yield higher perfor-

mance metrics are listed. On the testing set, the best PPV was achieved at a cut-off

point of PELOD-2 = 8 (1.5% [0.9%, 2.1%]) which was almost 5 times the baseline
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Figure 3.3: (Top) Receiver Operating Characteristics curves for all four models tested in
the window-wise study. (Bottom) Precision-Recall curve for all the models tested in the
window-wise study. In both plots, our proposed model which is the Bidirectional LSTM
with Focal loss and attention mechanism achieved the highest area under curve.
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Figure 3.4: Feature importance plot based on SHAP values for an example prediction in
which the model predicted the patient would develop a CLABSI within the next 48 hours.

prevalence. At this cut-off value, the sensitivity was 3.2% [1.8%, 4.5%], specificity was

99.2% [99.2%, 99.3%], F-1 was 2% [1.2%, 2.9%]. Comparing to the proposed model,

there were lower values achieved for PPV (6.2% drop), sensitivity (69.7% drop), F-1

(7.9% drop) but specificity of PELOD-2 model was almost similar to the proposed

model.

3.5 Discussion

Many important clinical events where accurate predictions could improve outcomes

such as sepsis, deterioration, or cardiac arrest are rare, especially in pediatrics [108,

28, 103]. The prevalence of these conditions would be even lower if estimated over 48

hour time intervals during hospitalization instead of only counting the final outcome

over an entire hospital stay. The techniques described in this study would likely

translate to prediction of other clinical events with extreme class imbalance.
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Table 3.3: Performance of PELOD-2 score in predicting PSI* in the next 48 hours of hos-
pitalization. Different thresholds are selected for the PELOD-2 values. If a score exceeded
the threshold, the predicted outcome for that patient would be developing PSI* during the
next 48 hours of hospitalization. The two numbers in the brackets present the estimated
95% confidence interval using bootstrap sampling.

PELOD-2 Threshold=4 PELOD-2 Threshold=6 PELOD-2 Threshold=8 PELOD-2 Threshold=10

Train Test Train Test Train Test Train Test
Sensitivity
Mean (%) 46.0 52.0 6.6 7.4 2.0 3.2 0.7 0.6
[95%CI] [44.0, 47.8] [48.4, 55.9] [5.6, 7.6] [5.5, 9.5] [1.5, 2.6] [1.8, 4.5] [0.4, 1.0] [0.0, 1.2]

Specificity
Mean (%) 83.2 82.7 97.2 97.1 99.2 99.2 99.8 99.9
[95%CI] [83.1, 83.2] [82.5, 82.8] [97.2, 97.3] [97.0, 97.2] [99.2, 99.2] [99.2, 99.3] [99.8, 99.8] [99.8, 99.9]

PPV
Mean (%) 0.9 1.1 0.8 0.9 0.8 1.5 1.2 1.5
[95%CI] [0.9, 1.0] [1.0, 1.2] [0.7, 0.9] [0.7, 1.2] [0.6, 1.1] [0.9, 2.1] [0.6, 1.8] [0.0, 3.1]

NPV
Mean (%) 99.8 99.8 99.7 99.6 99.7 99.6 99.7 99.6
[95%CI] [99.8, 99.8] [99.8, 99.8] [99.7, 99.7] [99.6, 99.7] [99.7, 99.7] [99.6, 99.7] [99.7, 99.7] [99.6, 99.7]
Accuracy
Mean (%) 83.0 82.5 96.9 96.8 98.9 98.9 99.5 99.5
[95%CI] [82.9, 83.1] [82.4, 82.7] [96.9, 97.0] [96.7, 96.9] [98.9, 98.9] [98.8, 98.9] [99.5, 99.5] [99.5, 99.5]
F-1 Score
Mean (%) 1.8 2.1 1.4 1.7 1.2 2.0 0.8 0.9
[95%CI] [1.7, 1.9] [1.9, 2.4] [1.2, 1.7] [1.2, 2.1] [0.9, 1.5] [1.2, 2.9] [0.5, 1.3] [0.0, 1.8]

We developed a novel algorithm to predict a presumed serious infection in a hos-

pitalized pediatric patient within 2 hospital days. Besides having a decent predictive

performance, our proposed model employed SHAP values which explained the effect

of the salient features on the risk of a PSI* event. Moreover, the SHAP values present

the most influential features specific to a patient in a given time; therefore, these val-

ues can dynamically change through time as the condition of a patient changes. SHAP

values give insight to the model’s decision-making process by providing transparency

and observability to the end-user of the features most important to model prediction.

Insight into the model’s focus for a specific prediction allows the end user to calibrate

trust in the prediction.

Predictive models intended for use in clinical environments must recognize the

complex adaptive systems in which they will be implemented [68, 57]. The sensitivity

and PPV of the model can inform the appropriate time in workflow where the model

would be most useful. Our model demonstrates strong enrichment (i.e., the PPV is 23

times higher than the baseline prevalence of PSI*) while maintaining good sensitivity,
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but the PPV is nonetheless quite low – only 1 of every 13 predictions developed a

PSI* in the subsequent 48 hours. This apparent low PPV is in large part due to the

window-wise design which lowers the apparent prevalence of PSI* relative to using an

entire encounter as the unit of analysis. Thus, we anticipate this model would be more

likely to be used as a non-interruptive monitoring system (e.g., displayed on patient

lists) that can segregate out low-risk patients (NPV 0.999) while informing clinicians’

estimate of the risk of PSI* in order to make decisions about line maintenance and

interventions. Similarly, the model could direct attention for teams reviewing vascular

access across a unit or a hospital to improve the efficiency of PSI* prevention efforts.

In our study cohort, PSI* was more common in African American patients and

those with Medicaid insurance. While this analysis was not designed to describe dis-

parities or their sources, this finding was nonetheless consistent with health disparities

seen in adult sepsis patients [19]. Model performance was not significantly different by

patient race or insurance status (Appendix B). We also performed sensitivity analysis

based on patient age and included the results in Appendix B.

Our study has important strengths and limitations. We also had several limita-

tions. First, our data was associated with a single pediatric health system and may re-

flect the particular structure and patient mix of this setting. While we extracted EHR

features expected to be available across systems, the external application of our model

on other health systems may be biased. Nonetheless, limiting to structured EHR data

likely reduces the technical barriers to implementation in a real-time system. Sec-

ond, our model was developed and evaluated based on a retrospective cohort. While

we attempted to simulate prospective implementation using a window-wise design,

predictive performance may deteriorate when implemented in real time. Third, we

have not evaluated how these predictions would supplement clinical decision-making

when clinicians determine to remove a CVL or change their interventions. Thus, it is

possible that implementation at this or even a higher level of predictive performance
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may not change outcomes. Fourth, we included patients with CVLs placed prior to

admission. While inclusion of CVLs placed prior to admission may lower predictive

performance since the model has fewer data available, we nonetheless felt it important

to include as this reflects the decision-making clinicians must make in reality about

all CVLs whether placed locally or not. Finally, we benchmarked our comparison

versus a standard of illness score. While not intended for the prediction of infections,

PELOD, along with other scores such as the Pediatric Risk of Mortality (PRISM)

and Pediatric Index of Mortality (PIM) scores are currently the only standard that

exist to identify the risks of morbidity and mortality in hospitalized children. Thus,

it would not be expected for these scores to have strong predictive performance for

PSI* associated with CVL. Nonetheless, we demonstrate our model’s additional value

when applied to this use case compared to existing severity scores.

We only included structured data in our analyses while unstructured data are

known to have benefits when used in predictive models. Including text data or wave-

form data in subsequent iterations may improve our prediction outcomes.
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Chapter 4

A Machine Learning Pipeline for

Integrating Structured and

Unstructured Data for Timely

Prediction of Bloodstream

Infection among Children with

Central Venous Lines

4.1 Abstract

Background: Hospitalized children with central venous lines (CVLs) are at higher

risk of hospital acquired infections. Information in electronic health records (EHR)

can be employed in training deep learning models to predict the onset of these in-

fections. We investigated the effect of incorporating clinical notes in addition to

structured EHR data to predict serious bloodstream infections, defined as a positive
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blood culture followed by at least four days of new antimicrobial agent administra-

tion, among hospitalized children with CVLs.

Methods: Structured EHR information and clinical notes were extracted for a

retrospective cohort including all hospitalized patients with CVLs at a single tertiary

care pediatric health system from 2013-2018. Deep learning models were trained to

determine the added benefit of incorporating the information embedded in clinical

notes in predicting serious bloodstream infection.

Results: A total of 24,351 patient encounters met inclusion criteria. The best-

performing model restricted to structured EHR data had a specificity of 0.951 and

positive predictive value (PPV) of 0.056 when sensitivity was set to 0.85. The addi-

tion of contextualized word embeddings improved the specificity to 0.981 and PPV

to 0.113.

Conclusions: Integrating clinical notes with structured EHR data improved the

prediction of serious bloodstream infections among pediatric patients with CVLs.

4.2 Introduction

Children with central venous lines (CVLs) are at higher risk of the adverse outcomes

associated with hospital acquired infections such as central line-associated blood-

stream infection (CLABSI) and sepsis. The U.S. Centers for Disease Control and

Prevention estimates that approximately 80,000 new CLABSIs occur in the United

States every year, and hospitalized patients who develop CLABSI have a 12%-25%

increased risk of mortality [86, 32].
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The increasing use of electronic health records (EHRs) in the healthcare domain

along with advanced computational techniques lead to the opportunities to create re-

liable and generalizable population-level monitoring systems which incorporate rou-

tinely captured clinical data without the need to conduct resource-intensive chart

reviews [106, 98, 52, 66]. In recent years, a number of studies have been conducted on

the application of advanced analytics of structured EHR data to improve detection

and prediction of the adverse outcomes in the hospital [82, 71, 79]. In our own work,

we used structured EHR data to predict presumed serious infections (PSI) and serious

bloodstream infections in hospitalized children [98, 97].

Clinical notes written by health providers are rich sources of a patient’s health

status through hospitalization time. While this information has previously been in-

accessible to predictive models, more recent natural language processing (NLP) tech-

niques show promise in harnessing the information embedded in unstructured EHRs

for aiding clinical decisions [43, 1, 110]. Incorporating structured and unstructured

EHR data can boost predictive performance and lead to more accurate results. For

example in adult sepsis prediction, Amrollahi et al. integrated structured and un-

structured EHR data to predict the onset of sepsis among ICU patients [3]. The

results showed an improvement in the predictive model’s performance compared to

only using the structured EHR data. Similarly, Liang et al. incorporated clinical notes

to train a disease classifier to predict a clinical diagnosis for pediatric patients [58].

However, these approaches have not been applied to serious bloodstream infections

in hospitalized children.

In this study, we investigated the added benefit of integrating structured EHR data

with unstructured data gleaned from clinical notes in predicting serious bloodstream

infection, defined as a positive blood culture coupled with at least 4 days of new

intravenous antibiotics, among hospitalized children with CVLs. We propose a data

fusion approach and predictive model that can be employed prospectively in the
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pediatric ward to predict the risk of a serious bloodstream infection developing during

the next 48 hours of the hospitalization.

4.3 Material and Methods

4.3.1 Study Population

Electronic health records, including structured and unstructured data, were extracted

for a retrospective cohort of all hospitalized patients with a central venous line (CVL)

at a single tertiary care pediatric health system. The inclusion criteria were admis-

sion to one of three freestanding children’s hospitals between January 1st, 2013 and

December 31st, 2018, having a documented CVL at some point during the hospi-

talization, having length-of-stay longer than 24 hours and having recorded clinical

notes. A complete list of structured information extracted from EHRs is included in

Appendix A. This study was approved by the Emory University Institutional Review

Board (protocol number 19-012).

4.3.2 Outcome Definition

PSI was initially proposed as a part of pediatrics sepsis surveillance definition by Hsu

et al. [42] and has previously been validated [107]. Among pediatric patients, PSI

was defined as a blood culture drawn and new antibiotic course of at least 4 days

(fewer if patients die or are transferred to hospice or another acute care hospital).

The minimum of 4 days of antibiotic administration was selected to minimize the

false positives from patients for whom the suspected infection was not confirmed and

had the empirical treatment stopped. Our primary outcome of serious bloodstream

infection was defined as a PSI along with a laboratory confirmed bloodstream infection

defined as a positive blood culture [42, 84]. We reviewed this definition through

informal interviews with 2 pediatric infectious disease specialists, 1 pediatric critical
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care physician, 1 neonatologist, and 1 pediatric hematology/oncology specialist to

validate its appropriateness and clinical utility. From this point, we referred to PSI

with positive blood culture as serious bloodstream infection (SBI).

4.3.3 Data Preprocessing

We used a window-wise study design, as presented in Figure 4.1, to predict the onset

of SBI in a real-time setting. The start point of the study was the admission time

or line insertion time, whichever was earlier. We aimed to predict whether the pa-

tient would develop SBI in the next 48-hour window; the 48-hour prediction window

provides enough time for health providers to intervene and potentially prevent a SBI

event. In the proposed study design, the SBI prediction was done every 24 hours using

the most recent information. The 24-hour sliding window was selected to ensure that

the recorded clinical notes of a patient were updated. If a 48-hour sliding window

included an onset of SBI, that window was considered as a positive one. Overall,

the prevalence of the positive windows was 0.35% which indicated an extremely im-

balanced data problem. Stratified sampling was used to split patient encounters to

training (80%) and testing (20%) sets. Moreover, 10% of the training patient en-

counters were employed as the validation set to optimize the hyperparameters of the

models.

Structured EHR Data. Initially, the structured data included 252 features.

The numerical features were transformed, imputed and standardized. The categorical

features were one-hot-encoded. We removed multicollinearity with a threshold of 0.8.

Finally, there were 129 features from the structured data to include in the analysis.

Appendix C includes more details on the preprocessing steps along with a list of the

selected features.

Unstructured EHR Data. All the provider notes recorded for a patient dur-

ing the same time-window were concatenated. To reduce the effect of the redundant
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Figure 4.1: Window-Wise Study Design. If a patient had a documented CVL at the time
of admission, the start point of the analysis would be the admission time. Otherwise, the
start point would be the first line insertion time. The prediction window was 48 hours with
a 24 hour sliding window until the end of the patient’s hospitalization or removal of the last
CVL. When the onset of SBI occurred within a 48 hour prediction window, that window
was considered positive (red), while the rest (blue) were labeled as negative. The prediction
was performed at the start of each arrow. “CC BY 4.0”

parts of the clinical notes, we selected the sections with more discriminative informa-

tion such as history of present illness, impression and plan, patient active problem

list, medical decision making, etc. After that, common text preprocessing steps were

applied in which all text was transformed to lower case and extra white spaces, punc-

tuations and numbers were removed. Finally, the clinical notes were matched with

the corresponding structured data through the text recording timestamps.

4.3.4 Feature Extraction from Clinical Notes

There are two main approaches to incorporate a pre-trained language model in the

predictive models; first, fine-tuning a pre-trained language model for down-stream

tasks, second, calculating the contextualized word embeddings and feeding them as

features to a classification or regression model. We followed the latter approach as it

empowered the integration of structured data and clinical notes.

The BERT model has yielded remarkable performance in the clinical domain com-

pared to ELMo and non-contextual embeddings [93]. Recent studies have demon-

strated that using a domain-specific model achieves better performance compared to

nonspecific embeddings; therefore, we employed the Clinical BERT model, which was

pre-trained on approximately two million clinical notes in MIMIC-III dataset [46], to
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Figure 4.2: Data Fusion Diagram. The most informative sections of the clinical notes
recorded for a patient at the time of prediction were selected and provided to the Clinical
BERT model to calculate the contextualized word embeddings using the last hidden layer of
the model. Then, the 768 dimensional contextualized word embeddings were concatenated
with the 129 dimensional features from the structured EHR at every prediction point. The
Bidirectional LSTM model with the attention mechanism and Focal loss incorporated the
897 dimensional input to predict if a SBI will occur during the next 48 hours of this patient’s
hospitalization. “CC BY 4.0”

acquire the contextualized word embeddings for the clinical notes in our cohort [1]. To

assess the performance of the contextual word embeddings from the Clinical BERT

model, we also extracted text features through the term frequency-inverse document

frequency (TF-IDF) method.

Figure 4.2 demonstrates our approach to integrate the clinical notes with the rest

of the structured clinical features to train the predictive models.

4.3.5 Predictive Models

Model Structure: We employed Bidirectional Long Short-Term Memory (BiLSTM)

model as BiLSTMs can look at the information prior and successor of a given word

in the note which is closer to human reading abilities and yields strong performance

in the NLP domain [3].
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Loss Function: There are two types of observations in a classification task; hard

and easy. The hard observations are defined as the ones that confound the predictive

model. These are the examples that the model should focus on to improve its overall

performance. The extreme class-imbalanced problem in this study (prevalence of

0.35%) required a strategy to assign more weight to the minority class observations

while taking the easy/hard examples into consideration to ultimately improve the

true positive and true negative predictions. We employed Focal loss as a solution to

this obstacle [59]. Focal loss is a loss function to lessen the weight of easy examples

while intensifying the penalization in the case of an incorrect classification of hard

examples.

Attention Mechanism: Attention mechanism in deep learning was motivated

by how humans pay attention to different regions of an image or correlate words in

a sentence [6]. When it comes to a class-imbalanced classification task, it is cru-

cial to attend to the more prominent parts of the input sequence to achieve better

results. Since we had long sequences of structured and unstructured data, the atten-

tion mechanism was incorporated to train the model to further attend to the more

relevant parts of the input and explain the relationship between words in the context.

Training Process: We trained five models with the following input features

to evaluate the benefit of integrating structured EHRs with clinical notes; (1) struc-

tured data, (2) extracted features from unstructured data with TF-IDF, (3) extracted

contextualized word embeddings from unstructured data using Clinical BERT, (4)

structured data along with the TF-IDF features, (5) structured data and the contex-

tualized word embeddings. We trained all the models with a batch size of 128, Adam

optimizer, and dropout regularization. The hyperparameters of the models (e.g.,

learning rate, dropout rate, number of neurons for each layer, etc.) were tuned by

Bayesian optimization method. Appendix C includes the details on model training,

structure and optimization
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4.3.6 Statistical Analysis

To check the statistically significant difference of features’ values between SBI and

non-SBI groups, Wilcoxon rank-sum test for numerical features and Chi-squared test

for categorical features were applied. Moreover, the estimated 95% confidence interval

of the models’ performance metrics were calculated through bootstrapping method.

This manuscript was prepared using the guidelines provided by Leisman et al. [53]

for reporting of prediction models.

4.4 Results

For this study, 97,424 patient encounters associated with 15,704 patients were ex-

tracted from the EHR. Among these patient encounters, there were outpatient ap-

pointments and hospital outpatient department visits for patients with existing CVLs;

therefore, 73,073 patients encounters were excluded from the cohort due to length-

of-stay less than 24 hours or not having recorded clinical notes. After applying these

exclusion criteria, a total number of 2,733 neonates (age less than 28 days), 5,383

infants (age between 28 days and one year), 4,286 toddlers and preschoolers (age

between one and five years), 5,625 children (age between five and 12 years), and

6,324 adolescents (older than 12 years) were included in the analysis. Figure 4.3

demonstrates the associated CONSORT diagram.

The demographic and clinical characteristics of the patients in our study are listed

in Table 4.1. SBI patients were younger (median = 3.1 years vs. 5.8 years, p < 0.001),

with lower weights (13.6 Kg vs. 19.3 Kg, p < 0.001), shorter heights (90.3 cm vs.

110.2 cm, p < 0.001), more African Americans (44.3% vs. 36.3%, p < 0.001), and less

Caucasian (47.1% vs. 54.1%, p = 0.002). Overall, SBI patients had higher hospital

length-of-stay (36.7 days vs. 6.1 days, p < 0.001), had higher ICU admissions (65.4%

vs. 48.2%, p < 0.001), p < 0.001), and had a higher rate of having Medicaid health
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Figure 4.3: Patient Encounter Inclusion Flowchart. The final number of patient visits that
were employed in training and testing the machine learning models was 24,351. “CC BY
4.0”

insurance (62.5% vs. 57.1%, p = 0.02) while having a lower rate in Commercial health

insurance (34.2% vs. 38.9%, p = 0.03). The mortality rate was higher among SBI

patients but there were no statistically significant differences for this feature among

the two groups (0.2% vs. 0.06%, p = 0.22). Other features were comparable between

SBI and non-SBI groups (p > 0.05).

Statistical tests were performed to assess statistical significance between the com-

ponents of PEdiatric Logistic Organ Dysfunction (PELOD-2) score and Pediatric

RISk of Mortality (PRISM-III) Score between SBI and non-SBI groups across time

windows [54, 78]. PELOD-2 was primarily designed to describe the severity of organ

dysfunction and PRISM-III was developed to predict the risk of mortality among the

pediatric population. The results are presented in Appendix C.

To assess the benefit of incorporating the clinical notes in SBI prediction, five

predictive models with different inputs were trained. The performance metrics are
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Table 4.1: Cohort characteristics
SBI non-SBI p-value

Age (years) (Median [25th, 75th]) 3.1 [0.2, 12.1] 5.8 [0.8, 13.3] < 0.001
Weight (Kg) (Median [25th, 75th]) 13.6 [3.6, 38.6] 19.3 [7.7, 44.6] < 0.001
Height (cm) (Median [25th, 75th]) 90.3 [51, 149] 110.2 [66, 152] < 0.001

Length of Stay (LOS) (Median [25th, 75th]) 36.7 [23.2, 71.3] 6.1 [3.3, 14] < 0.001
Gender

Male (%) 45.3 45.8 0.82
Race

Asian (%) 3.5 3.9 0.64
Caucasian (%) 47.1 54.1 0.002

African American (%) 44.3 36.3 < 0.001
American Indian or Alaska Native (%) 0.4 0.2 0.27
Native Hawaiian or Pacific Islander (%) 0.2 0.2 0.97

Other (%) 4.5 5.3 0.44
Insurance Status
Commercial (%) 34.2 38.9 0.03

Public - Medicaid (%) 62.5 57.1 0.02
Public - non-Medicaid (%) 3.1 3.1 0.93

Self-pay (%) 0.2 0.8 0.12
ICU Admission (%) 65.4 48.2 < 0.001

Mortality (%) 0.2 0.06 0.22

presented in Table 4.2. The model which coupled the structured clinical features with

word embeddings from Clinical BERT model outperformed the rest of the models

with highest specificity of 0.981 with 95% CI = [0.980, 0.982], positive predictive

value (PPV) of 0.113 [0.09, 0.137], negative predictive value (NPV) of 0.999 [0.999,

0.999], accuracy of 0.980 [0.978, 0.981], F-1 score of 0.195 [0.159, 0.231] and area

under the precision-recall curve (AUPRC) of 0.282 [0.188, 0.366]. Figures 4.4 and

4.5 demonstrate the associated receiver operative characteristics and precision-recall

curves for all the five models applied on the testing dataset, respectively.

Using the word representation from the last four hidden layers of the Clinical

BERT model (instead of only using the last hidden layer) did not improve the models’

performance while it added to the computational costs.
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Figure 4.4: Receiver Operating Characteristics curves (ROC curves) for all the models
tested in this study. Incorporating the structured information in EHR achieved the highest
area under the curve. “CC BY 4.0”

Figure 4.5: Precision-Recall curves (PRC curves) for all the models tested in this study.
Incorporating the structured information in EHR integrated with the contextualized word
embeddings from the Clinical BERT model achieved the highest area under the curve. “CC
BY 4.0”
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Table 4.2: Performance metrics of the deep learning models in predicting SBI in the next
48 hours of hospitalization. The two numbers in the brackets present the estimated 95%
confidence interval using bootstrap sampling.

Numerical Data TF-IDF Word Embeddings Numerical Data Numerical Data
+ TF-IDF + Word Embeddings

Train Test Train Test Train Test Train Test Train Test
AUROC

Mean (%) 0.979 0.975 0.848 0.829 0.859 0.830 0.989 0.958 0.989 0.970
[95%CI] [0.975, 0.982] [0.969, 0.982] [0.834, 0.858] [0.788, 0.858] [0.841, 0.874] [0.784, 0.867] [0.988, 0.992] [0.944, 0.970] [0.986, 0.991] [0.961, 0.979]

Sensitivity
Mean (%) 0.850 0.814 0.850 0.841 0.850 0.821 0.850 0.586 0.850 0.673
[95%CI] [0.817, 0.881] [0.744, 0.883] [0.810, 0.879] [0.767, 0.908] [0.818, 0.878] [0.750, 0.890] [0.828, 0.880] [0.511, 0.671] [0.819, 0.884] [0.589, 0.751]

Specificity
Mean (%) 0.951 0.951 0.668 0.662 0.698 0.693 0.982 0.981 0.982 0.981
[95%CI] [0.950, 0.952] [0.948, 0.953] [0.664, 0.672] [0.648, 0.669] [0.694, 0.701] [0.685, 0.699] [0.982, 0.983] [0.979, 0.982] [0.981, 0.983] [0.980, 0.982]

PPV
Mean (%) 0.058 0.056 0.009 0.009 0.010 0.010 0.145 0.099 0.142 0.113
[95%CI] [0.051, 0.064] [0.044, 0.068] [0.008, 0.010] [0.007, 0.011] [0.009, 0.011] [0.007, 0.012] [0.130, 0.157] [0.082, 0.123] [0.128, 0.157] [0.09, 0.137]

NPV
Mean (%) 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.999 0.999
[95%CI] [0.999, 0.999] [0.999, 0.999] [0.999, 0.999] [0.999, 0.999] [0.999, 0.999] [0.999, 0.999] [0.999, 0.999] [0.998, 0.999] [0.999, 0.999] [0.999, 0.999]
Accuracy
Mean (%) 0.951 0.950 0.669 0.662 0.698 0.693 0.982 0.979 0.982 0.980
[95%CI] [0.950, 0.952] [0.948, 0.953] [0.665, 0.673] [0.649, 0.669] [0.695, 0.702] [0.686, 0.700] [0.981, 0.982] [0.978, 0.980] [0.981, 0.982] [0.978, 0.981]
F-1 Score
Mean (%) 0.108 0.105 0.018 0.018 0.019 0.019 0.248 0.169 0.243 0.195
[95%CI] [0.097, 0.119] [0.084, 0.126] [0.016, 0.020] [0.014, 0.022] [0.017, 0.021] [0.015, 0.023] [0.226, 0.265] [0.142, 0.203] [0.222, 0.266] [0.159, 0.231]
AUPRC

Mean (%) 0.314 0.202 0.019 0.016 0.043 0.020 0.556 0.201 0.646 0.282
[95%CI] [0.266, 0.359] [0.142, 0.279] [0.017, 0.022] [0.012, 0.024] [0.030, 0.058] [0.013, 0.028] [0.523, 0.596] [0.145, 0.250] [0.606, 0.693] [0.188, 0.366]

4.5 Discussion

In this study, we evaluated the effect of coupling clinical notes with the structured

clinical features (e.g., demographic, physiological, and laboratory test results, etc.)

in predicting the onset of SBI, defined as a culture drawn associated with a positive

test result followed by at least four days of new antimicrobial agent administration,

among pediatric patients with CVLs. The proposed deep learning model predicts

if a hospitalized patient with CVL will develop SBI during the next 48 hours of

hospitalization. Our model had a PPV of 0.113, which is 32 times greater the baseline

prevalence of SBI across the 48-hour time windows, and a very high NPV 0.999 which

presents the strength of the model in ruling out the patients with lower risk of the

infection. Incorporating the clinical notes improved the specificity (0.951 vs. 0.981,

p < 0.001), PPV (0.056 vs. 0.113, p < 0.001), accuracy (0.950 vs. 0.980, p < 0.001),

F-1 score (0.105 vs. 0.195, p < 0.001) and AUPRC (0.202 vs. 0.282, p < 0.001)

compared to the model which employed only the information from structured EHRs.

However, incorporating clinical notes did result in a reduction in sensitivity in the

test data set from 0.81 when using structured data only down to 0.67 when adding
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word embeddings. Because SBI is a rare event in this window-wise data set, both

models nonetheless maintain an NPV of 0.999.

The predictive performance of our proposed model and study design outperformed

the performance of the prior models trained to predict CLABSI. Most of these mod-

els were based on a retrospective case control study and did not incorporate the

temporal information in EHRs. Training a Random Forest predictive model based

on non-temporal data, Beeler et al. obtained AUROC of 0.87 in predicting CLABSI

among adult, pediatric and neonatal patients [7]. Sung et al. trained a CLABSI pre-

diction model using Gradient Boosting Trees which attained AUROC of 0.77 among

pediatric cohorts receiving cancer medications [95]. Our model and study design had

characteristics that may have contributed to achieving better predictive performance;

first, we only included the pediatric patients with a documented CVL at the time of

admission or at some point during hospitalization. Second, we extracted and incor-

porated an extensive set of features recorded in EHR. Third, we used the information

embedded in the clinical notes through a state-of-the-art NLP framework. Finally,

we trained a deep learning model capable of including the temporal information while

dealing with low prevalence classification problem by using a loss function specifically

designed for extreme class-imbalanced classification and attention mechanism to focus

on the most predictive parts of the input sequence at every prediction point.

Previous studies have been done to investigate the added benefit of integrating

clinical notes to the structured EHR data in predicting patient clinical outcomes.

Amrollahi et al. utilized structured and unstructured EHR information to model ca-

pable of timely prediction of sepsis which outperformed the model trained only on

the structured data [3]. In a similar study, Goh et al. developed an artificial intelli-

gence algorithm incorporating the two data modalities and concluded that the model

performance improved after integrating the clinical notes to the input features [36].

In another study, Horng et al. conducted a research to demonstrate the incremen-
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tal benefit of using free text data in addition to vital sign and demographic data to

identify patients with suspected infection in the emergency department [41].

Limitations Our study has several limitations. First, while we intentionally

extracted EHR features that are routinely recorded across systems, the external ap-

plication of the proposed model, which was trained within a single pediatric health

system, on other health systems may be biased. Second, the deep learning field is very

dynamic and new models are introduced every day; therefore, the model structure

that we applied to tackle low prevalence classification problems and extract contextu-

alized word embeddings may not reflect all the capacity of deep learning application

in predicting this adverse outcome. Third, in some cases, the clinical notes are up-

dated with delay. This delay in recording clinical notes may affect the performance

of the model. Finally, the Clinical BERT model used for extracting contextualized

word embeddings has a limitation in the number of words it can take in each of the

recorded clinical notes at every prediction point. This limitation requires extensive

text preprocessing to only include the parts describing the patient’s health condition

at the moment and exclude history and administrative sections.
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Chapter 5

A Novel Technique for Developing

a Natural Language Processing

Algorithm to Identify Intimate

Partner Violence in a Hospital

Setting

5.1 Abstract

Importance: Hospital settings need a sensitive screening tool to identify intimate

partner violence cases among the visits to the emergency department.

Objective: To develop an algorithm using natural language processing to identify

cases of intimate partner violence among emergency department encounters.

Design: Observational cohort study.

Setting: Unstructured clinical provider, nursing and social worker notes were

extracted from hospital electronic health records. The recorded clinical notes and
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patient narratives were screened for a set of 23 situational terms, derived from the

literature on intimate partner violence, along with an additional set of 49 extended

situational terms, extracted from known intimate partner violence cases. We com-

pared the effectiveness of the proposed model with the capability of ICD-9/10 codes

in detecting such cases.

Participants: In total, 1,064,735 patient encounters (405,303 patients) who vis-

ited the emergency department of a level one trauma hospital from January 2012 to

August 2020 were included in the analysis.

Main Outcomes and Measures: The outcome was identification of an intimate

partner violence-related encounter.

Results: In this study, we utilized the information embedded in unstructured

electronic health records to develop a natural language processing algorithm that

employs the recorded clinical notes to identify the intimate partner violence visits

to the emergency department. Employing a set of 23 situational terms along with

49 extended situational terms, the algorithm successfully identifiedy 7,399 intimate

partner violence-related visits representing 5,975 patients; the algorithm achieved

99.5% precision in detecting positive cases.

Conclusions and Relevance: Using a set of pre-defined intimate partner violence-

related situational terms, we successfully developed a novel natural language process-

ing algorithm using unstructured data capable of identifying intimate partner violence

visits with high precision.

5.2 Introduction

Intimate partner violence (IPV) is defined as sexual, physical, psychological, or eco-

nomic violence that occurs between current or former intimate partners [16]. Nearly

30% of women globally have experienced IPV making it a serious public health con-
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cern [74]. IPV is a significant contributor to violence related injury and a leading

cause of femicide, the intentional killing of women based solely on their gender [70].

Although men may experience IPV, women are disproportionately affected [17]. In

the United States (U.S.) one in four women and one in nine men have experienced a

severe form of IPV at some point in their lifetime [105].

Individuals who experience IPV experience both short and long-term adverse

health outcomes such as chronic pain, substance use, and mental health disorders

[25, 12, 102, 29]. Victims of IPV may seek care for IPV related injuries in health care

settings which makes recognition and intervention in these facilities critical [81, 30].

Yet, IPV is profoundly underdiagnosed in healthcare settings, limiting identification

and response efforts. A number of screening tools have been successfully developed

to detect IPV, however, screening tools are not yet universally implemented [14, 101].

Emerging efforts have focused on using machine learning to aid in detection of con-

ditions including non-accidental trauma and IPV [4, 8, 76]. Khurana et al. proposed

a machine learning algorithm that utilizes radiologic findings of high-risk injuries (ex

injury location and patterns specific to IPV) to identify patients who are at high risk

of IPV [49]. Using the 2016 South African Demographic and Health Survey dataset,

Amusa et al. developed a machine learning model using country-specific self-reported

survey data to capture common characteristics contributing to IPV [4].

Information captured in the electronic health records (EHRs) including, but not

limited to, clinical notes, radiology reports, and imaging tests has been widely used to

predict adverse outcomes for specific medical conditions. These data have also been

used to a limited extent to detect IPV based on radiologic findings IPV [21]. In this

study, we propose a novel natural language processing (NLP)-based algorithm using

data embedded in EHR notes to detect Emergency Department (ED) encounters for

IPV.
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5.3 Methods

5.3.1 Study Population

We extracted EHR data for all ED encounters at an urban U.S. based level-one

trauma center from January 2012 to August 2020. These unstructured data included

chief complaint alongside provider, nursing and social worker notes (ED triage, ED

notes, ED provider, ED progress, history and physical, consults, assessment and plan,

addendum, miscellaneous); structured data including International Classification of

Diseases (ICD-9 or ICD-10) codes, procedure and billing codes, admission diagno-

sis, disposition, patient status, and date of birth were also extracted. This study

was conducted according to the Emory University Institutional Review Board Study

Protocol 00000432.

5.3.2 Detecting IPV Cases

We attempted to use the structured data to identify IPV-related visits to the ED;

these attempts were followed by use of the unstructured data to develop our NLP-

based algorithm for identifying the IPV-related visits to the ED. Here we describe

our three iterative approaches to identify IPV-related visits. Figure 5.1 demonstrates

a summary of the different approaches in this analysis.
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Figure 5.1: Three methods for developing a natural language processing algorithm to iden-
tify intimate partner violence in a hospital setting. “CC BY 4.0”

Approach 1: ICD-9/ICD-10 Codes

In the first approach, IPV-related ICD-9 (2012-September 2015) and ICD-10 (Octo-

ber 2015-August 2021) codes were identified by the study team (Table 5.1). In our

analysis, if at least one of the ICD-9/ICD-10 codes appeared in an encounter, the

visits were identified as a case of IPV.

Table 5.1: ICD-9 and ICD-10 used to identify cases of intimate partner violence.
ICD-9 Codes ICD-10 Codes

Code Diagnosis (Dx) Name Code Diagnosis (Dx) Name

995.83 Adult sexual abuse T76.21XA Adult sexual abuse, suspected, initial encounter
995.83 Adult rape T76.51XA Adult forced sexual exploitation, suspected, initial encounter
995.82 Adult emotional abuse T76.11XA Adult physical abuse, suspected, initial encounter
995.81 Adult physical abuse T74.11XA Adult physical abuse, confirmed, initial encounter
995.8 Adult abuse T74.21XA Adult sexual abuse, confirmed, initial encounter

E967.0 Perpetrator T74.51XA Adult forced sexual exploitation, confirmed, initial encounter
E967.9 Perpetrator T71.9XXA Asphyxiation due to unspecified cause, initial encounter
994.7 Asphyxiation and strangulation T71.163A Asphyxiation due to hanging, assault, initial encounter

- - T71.193A Asphyxiation due to mechanical threat to breathing due to other causes, assault, initial encounter

Approach 2: IPV Situational Terms

IPV is stigmatized and often undisclosed by those experiencing it; health care providers

may also have varying levels of awareness and comfort in dealing with IPV. As a result

ICD-9/ICD-10 codes are inconsistently used and frequently undercoded. Therefore,
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additional IPV-related situational terms were utilized to identify patients experienc-

ing IPV. In our second approach, IPV situational terms were derived from existing

IPV literature, including validated terms from IPV risk assessment instruments and

from clinician expertise [33, 13, 94]. If any of the situational terms were captured in

a clinical note, the visit was classified as IPV. The 23 IPV situational terms included:

“domestic violence, intimate partner violence, spouse abuse, battered woman, domes-

tic abuse, spousal abuse, intimate partner abuse, battered, violence against women,

domestic assault, domestic dispute, problems with spouse or partner, maltreatment by

spouse or partner, neglect and abandonment by spouse or partner, assault by husband,

assault by partner, assault by wife, assault by spouse, assault by boyfriend, assault

by girlfriend, assault by significant other, referral to partnership against domestic

violence, resources or shelter for domestic violence.”

Approach 3: IPV Extended Situational Terms

Finally, additional IPV-related terms were identified through review of notes from

confirmed IPV encounters. These extended terms included specific descriptions of

various forms of physical abuse (i.e. attack, strike, strangle) also derived from the

literature [74, 33, 13, 94]. If any of the situational or extended situational terms

were captured in a clinical note, the visit was classified as IPV. The 49 IPV extended

situational terms included: “intimate partner homicide, femicide, intimate partner

death, spousal homicide, ipv, dv, domestic violence resources, assault by so, assault

by domestic partner, assault by ex, assault by bf, assault by gf, strangle by boyfriend,

strangle by girlfriend, strangle by wife, strangle by husband, strangle by spouse, stran-

gle by domestic partner, strangle by partner, strangle by significant other, strangle by

so, strangle by ex, strangle by bf, strangle by gf, strike by boyfriend, strike by girlfriend,

strike by wife, strike by husband, strike by spouse, strike by domestic partner, strike

by partner, strike by significant other, strike by so, strike by ex, strike by bf, strike by
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gf, attack by boyfriend, attack by girlfriend, attack by wife, attack by husband, attack

by spouse, attack by domestic partner, attack by partner, attack by significant other,

attack by so, attack by ex, attack by bf, attack by gf, violence against women.”

5.3.3 Data Preprocessing

Members of the study team completed a manual review of charts identified as positive

IPV cases in real-time relative to each approach. During the application of approaches

2 and 3, a number of text based scenarios identified in unstructured clinical notes led

to false positive IPV cases. As a result, several data preprocessing steps were required

to prepare the data prior to application of the algorithm. These include general and

task-specific text preprocessing steps along with negation and history detection.

General and Task-Specific Preprocessing

The following text-based scenarios led to false positives: 1) auto-populated IPV

screening questions (whether completed or blank) and 2) auto-populated past medi-

cal, obstetric or psychiatric history reflecting a history of IPV unrelated to the iden-

tified encounter. As a result, task-specific text preprocessing was required for these

scenarios. Prepositions and time indications were removed from the text to make

clinical notes consistent. For example, “assaulted last night by her husband” was

changed to “assault by husband.” Additionally, general text preprocessing steps were

performed including transforming all text to lowercase, and removing numbers, extra

white spaces and words with less than two characters.

Negation Detection

Encounters in which the patient denied a history of IPV were incorrectly labeled as

IPV given the inclusion of IPV terminology. To omit these false positives, we applied

a negation detection algorithm which is a simplified version of NegEx software [18]. In
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this approach, negation words and terminating tokens are defined. When a negation

word is detected, any word between the negation word and the next terminating token

is negated. For example, if the text includes: “Patient denies drug, alcohol use and

intimate partner violence”, denies is the negation word and period is the termination

token. Therefore, applying the negation detection algorithm results in “Patient denies

drug neg, alcohol neg use neg and neg intimate neg partner neg violence neg.” As a

result, such cases were excluded from situational and extended IPV terms and thus

not labeled as IPV. Table 5.2 includes a list of negation words as well as termination

tokens in our analysis designed according to the literature [41].

Table 5.2: Negation words and terminations tokens for a natural language processing algo-
rithm to identify cases of intimate partner violence in a hospital setting.

Negation Words Termination Tokens

”denies”, ”denied”, ”deny”, ”no”, ”?”, ”.”, ”-”, ”;”,
”non”, ”not”, ”without”, ”unable” ”:”, ”+”, ”and”, ”but”,

”complains”, ”did”, ”except”, ”has”,
”per”, ”pt”, ”reports”, ”secondary”, ”states”

History Detection

The algorithm initially detected encounters in which a patient had a history of IPV

as described in the text (separate from the auto-populated history). Following a

similar approach as in negation detection, encounters with a history of IPV included

in the text were not labeled as IPV as this was not the reason for the ED encounter.

IPV history detection tokens are listed in Table 5.3. For example, “Patient reports a

history of IPV during previous pregnancy but not currently” was not labeled as IPV.

Punctuations were removed at the end of this step.
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Table 5.3: History words and termination tokens for a natural language processing algorithm
to identify cases of intimate partner violence in a hospital setting.

History Words Termination Tokens

“history of”, “hx of”, “h/x of”, “ho of”, ”?”, ”.”, ”-”, ”;”,
“h/o of”, “hx”, “h/x”, “h/o”, “ho” ”:”, ”+”, ”and”, ”but”,

”complains”, ”did”, ”except”, ”has”,
”per”, ”pt”, ”reports”, ”secondary”, ”states”

5.3.4 NLP Algorithm Application

To validate the performance of the proposed NLP algorithm, manual chart reviews

were conducted for the identified IPV cases. Manual review was conducted for nearly

25% of the identified IPV cases.

5.4 Results

During the study period (January 2012 - August 2020) there were 1,064,735 ED

encounters (405,303 patients). To identify IPV visits, all ICD-9 and ICD-10 codes

and data from unstructured notes were used to investigate the performance of the

three aforementioned approaches.

5.4.1 Approach 1: ICD-9/ICD-10 Codes

The first approach using only ICD-9 and ICD-10 codes resulted in the identification

1,404 IPV visits representing 1,299 patients over a nine year time period. Based on

clinician expertise and anecdotal experiences at the hospital site, this number of cases

was significantly lower than expected given the duration of time. Additionally, during

manual review of these cases, a number of encounters were found to be unrelated to

IPV. Some cases were indicative of elder abuse, reflecting the inaccuracy of relying

exclusively on ICD-9 and ICD-10 codes as these codes are often used inconsistently or

inappropriately. Notably, during the manual review of positive IPV cases identified
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through approach 3 and confirmed by manual review, a number of true IPV encounters

did not have an associated IPV ICD-9 or ICD-10 code verifying that these codes are

under- or inappropriately utilized.

5.4.2 Approaches 2 and 3: IPV Situational Terms Extended

Situational Terms

In our next approach, we defined a set of 23 IPV-related situational terms. If any

of these terms appeared in a visit’s recorded clinical notes, the visit was labeled as

IPV. The second approach using IPV situational terms yielded 6,437 IPV visits re-

flecting 5,280 patients. Building on this approach, we added more mechanism-related

terminology (i.e. attack, strike, strangle) to the set of the 23 terms referred to as

IPV extended situational terms. The third approach using IPV extended situational

terms identified 7,399 IPV-related visits representing 5,975 patients. Relative to the

use of ICD codes, these approaches had significantly improved accuracy in identifying

true IPV cases, with extended situational terms identifying more positive IPV cases

without a notable difference in identifying false positives. For Approach 3, manual

chart reviews were conducted for a random subset of 1,798 (25%) identified cases to

validate the results of the algorithm. Considering the 1,798 identified cases, 1,790

(99.5%) were confirmed IPV visits, only five (0.3%) reported a history of IPV or do-

mestic violence, two (0.1%) were incorrectly labeled as IPV, and there was a concern

of IPV for only one (0.1%) visit.

Figure 5.2 presents the result of applying the three approaches, ICD-9/ICD-10

codes, IPV situational terms and IPV extended situational terms, to identify IPV

cases.
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Figure 5.2: The number of identified IPV cases using the three approaches. “CC BY 4.0”

5.5 Discussion

We successfully developed a novel NLP algorithm using EHR data to identify IPV

encounters in a hospital setting. We explored three different NLP approaches using:

1) ICD-9/ICD-10 codes, 2) a set of 23 IPV-related situational terms, and 3) a set of 49

IPV-related extended situational terms. Among the three approaches incorporated

in this study, the use of ICD-9/ICD-10 codes alone identified the fewest IPV visits

over a 9-year time interval. IPV visits were significantly under-coded and in some

cases, IPV-related codes were used for non-IPV related visits. This approach is not

sufficient for the accurate and meaningful identification of IPV-related visits. The

second and third approaches using unstructured EHR data appropriately identified a
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larger number of IPV encounters. While the second approach led to identifying more

IPV cases, we used expert knowledge to expand the IPV situational terms and added

the extended situational terms to capture additional IPV cases among the visits to

ED. As a result, the third approach using extended situational terms generated the

largest number of true IPV visits achieving a 99.5% precision.

In a study conducted by Chen et al., the authors generated an NLP predictive

algorithm using radiology reports from confirmed IPV cases [21]. IPV labels were

identified using IPV injury patterns and predictive words from radiologic findings.

This study differed from ours in that it relied only on radiologic findings to develop

an algorithm rather than clinical notes. The information obtained in clinical notes

provides greater context and IPV specific terminology, and is more inclusive of indi-

viduals who may not undergo radiologic imaging. Thus, our algorithm may be able

to detect more cases by utilizing a more expansive source of clinian information. Sim-

ilar to our study, Blosniche et al. used clinical notes to identify transgender related

terminology in order to better identify transgender patients [10]. The methodology

differed in that they first used transgender based ICD codes to identify patients and

then used clinical notes from these encounters to identify transgender-related terms.

However, the study similarly demonstrates that clinician notes can be an important

source of data for labeling encounters that are otherwise difficult to identify or are

socially stigmatized. It should also be noted that the purpose of the study was dif-

ferent in that it sought to identify a population (transgender patients) rather than a

condition or experience (IPV).

Unstructured EHR data with free-text formatting provides a rich source of infor-

mation related to the circumstances of medical visits and related health sequelae. The

data provided in clinical notes can be an important source of information with which

to identify the social and contextual factors surrounding IPV-related visits, as well as

providing an opportunity to appropriately identify IPV visits. The main challenge in
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using this type of data is the unstructured nature of notes, which makes extracting

information a complicated task. As a result, we applied extensive preprocessing steps

to ready these data for the screening process. Sequentially building our algorithm

grounded first in ICD codes, and then complemented by both situational and ex-

tended terms enabled greater specificity in identifying IPV cases when compared to

the use of ICD codes alone; the search and use of relevant terms in clinical notes was

key to the success of this approach. Future efforts to improve our algorithm could in-

corporate active learning to identify a greater number of IPV encounters [109]. This

method is a process of prioritizing the data which needs to be labeled in order to

improve the overall performance of a predictive model.

People experiencing IPV often seek care in hospital settings. Therefore the early

and appropriate detection of and response to such cases is critical in disrupting the

cycle of abuse including IPV related morbidity and mortality. The novel NLP-based

algorithm described in this manuscript is an innovative tool to identify victims of

IPV with accuracy. The algorithm can be utilized in health care settings to identify

victims of IPV for surveillance and intervention purposes. For example, the extent to

which COVID-19 has impacted IPV related health seeking behaviors in the U.S. is still

largely unknown. As identification of IPV in health systems is challenging, application

of this algorithm could assist with understanding the impact of movement related

restrictions during the COVID-19 pandemic on IPV related encounters. Additionally,

this algorithm could be used to develop predictive modeling allowing for the detection

of those at risk of IPV. Early detection during hospital encounters could aid in novel

injury prevention strategies, ensuring those at risk have access to support and social

services.

Limitations: Limitations: This study has limitations. First, the NLP algorithm

utilizes the recorded clinical notes and patient narratives; therefore, the model cannot

detect IPV cases if the patient or health provider did not mention or document any
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of the IPV-related terms. Second, we applied extensive text preprocessing before

moving on to search for IPV situational terms. However, if a patient or provider

stated the history of IPV in a way that is not captured by our history detection

algorithm, the proposed NLP algorithm would identify that case as IPV. Third, the

set of IPV terms that we incorporated are limited. If a patient uses terminology

outside the set of pre-defined IPV situational terms, the algorithm will not identify

the encounter. On the other hand, some terms may be used in a non-IPV context.

For example, domestic dispute can be used in IPV encounters but can also refer to

a conflict among members of a family (e.g., mother and child) and generate false

positives. While our final approach demonstrated superiority over and above the

use of ICD codes alone or the use of situational terms it admittedly still missed some

cases. As conversations about the use of NLP and other technologies continue, debate

over what degree of sensitivity is reasonable for a model such as ours is warranted.

From our perspective, missing any cases is unacceptable. Any future models should

endeavor for even greater sensitivity and precision to ensure that opportunities to

interrupt IPV are not missed.
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Chapter 6

Conclusion

6.1 Summary and Contributions

The work presented in this thesis addressed the issue of extreme class-imbalanced

data classification in hospital settings. Theoretically, this thesis focuses on improving

the predictive performance of the models trained on complex data to predict rare

events in a dynamic environment.

In particular, the work in this thesis focuses on two cases of rare event classification

in the healthcare domain: 1) predicting serious infection among hospitalized children

with CVLs and 2) identifying IPV cases among the visits to the ED of a hospital

system.

6.1.1 Serious Infection Prediction among Hospitalized Chil-

dren

Hospitalized children with CVLs are at high risk of morbidity and mortality from

hospital-acquired infections (HAI), including CLABSIs. Definitions have been pro-

posed for CLABSI in the pediatric domain, but they commonly have inadequate

sensitivity for clinically important infections and may be difficult to generalize across



72

EHR platforms [51, 5]. Many serious infections in hospitalized children are likely pre-

ventable through interventions that prevent them or identify them early to initiate

antimicrobial therapy. On the other hand, excessive use of antimicrobials can lead to

adverse events and worsening antimicrobial resistance; therefore, training predictive

models which can help the health providers in identifying patients at the highest risk

for this type of infection can help clinicians better achieve the balance between early

intervention and antimicrobial overuse. In Chapters 2 to 4, we proposed and validated

a surrogate definition for CLABSI, which can be inferred from EHR information and

eliminates the need for extensive chart reviews. Then, we trained predictive models to

identify the onset of the serious infection, which is considered among the rare patient

adverse outcomes.

In Chapter 2, we proposed a new definition for bloodstream infection among

hospitalized children with CVLs. We defined this type of infection as at least one

blood culture draw followed by at least four consecutive days (or fewer if the patient

dies or is transferred out) of antimicrobial agents that were not administered in the

week before the blood culture draw. This definition was adopted from a pediatric

sepsis definition [42] which has been validated [107]. The positive labels generated

by this definition were validated through patient chart reviews. We also designed

a lookback study to evaluate the performance of an optimized tree-based ensemble

model in predicting the onset of the infection during hospitalization time.

In Chapter 3, we designed a window-wise study to mimic how patients are mon-

itored while hospitalized and identify the patients at higher risk of bloodstream in-

fection at the beginning of each shift in ICU (every 8 hours). In this study design,

we presented a predictive model that incorporated the EHR’s temporal information

to boost its performance. We further applied attention mechanism to help the model

focus on the more informative parts of the information, and a Focal loss function

which is designed for extreme class-imbalanced data classification.
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We evaluated the added benefit of data fusion in predicting bloodstream infection

in Chapter 4. We integrated the unstructured clinical notes recorded at the time of

admission and throughout the hospitalization by employing a pre-trained NLP model

to extract the information embedded in the free-text data [1]. Preserving the same

model structure as Chapter 3, which contained attention layer and Focal loss, and

coupling the two data modalities augmented the prediction task. The improvement

after data fusion has been observed in other studies as well [3, 36, 41].

After achieving decent performance from the predictive model in 3, teams from

Children’s Healthcare of Atlanta (CHOA), Epic and the Biomedical Informatics De-

partment at Emory University have been working towards implementing a near-real

time, prospective surveillance system, as described in Chapter 3, in order to identify

the patients at higher risk of infection at the beginning of each ICU shifts at CHOA.

6.1.2 Identifying IPV Cases among the Visits to ED

IPV is a pervasive social challenge with severe health and demographic consequences.

People experiencing IPV may seek care in hospital settings. Despite the urgency of

this critical public health issue, IPV continues to be profoundly under-diagnosed and

is considered a persistent hidden epidemic. While IPV is rarely observed in a hospital

setting, the early and appropriate detection of and response to such cases is critical

in disrupting the cycle of abuse, including IPV-related morbidity and mortality.

In Chapter 5, we proposed an NLP-based algorithm to identify IPV cases among

the visits to ED of a hospital. Our approach incorporated the information derived

from the literature in the field (including validated terms from systematic reviews)

along with the knowledge from clinician expertise to finalize a set of 23 IPV situational

terms and 49 IPV extended situational terms to screen the recorded provider notes

and patient narratives in ED for any signals of such a violent act. Given the severity

of IPV, timely identification of individuals injured by IPV proves crucially important
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for providing support and social services for this vulnerable population. The novel

NLP-based algorithm described in Chapter 5 is an innovative tool to identify victims

of IPV with 99.5% sensitivity.

6.2 Limitations

The work presented in this thesis has some limitations. The methods presented in

Chapters 2 to 5 were developed and tested offline. The methods were not tested online

at the point of care because this work focused on the development of the functionalities

rather than in the implementation of them. Nevertheless, the obtained results were

designed and developed taking implementation feasibility into consideration.

Besides, the models presented in this work are based on extracted EHR informa-

tion which brings the following challenges and limitations:

6.2.1 Serious Infection Prediction among Hospitalized Chil-

dren

In Chapters 2 to 4, we employed data associated with a single pediatric health system

which may reflect the particular structure and patient mix of this setting. Although

we extracted the EHR features expected to be routinely recorded across the hospitals,

the external application of our model on other health systems may be biased.

While simple to infer from the EHR data, using an easily computable definition

for CLABSI that is not equivalent to the NHSN definition limited validation of the

novel definition used.

Moreover, our models proposed in Chapters 3 and 4 were trained and evaluated

based on a retrospective cohort. While we attempted to simulate prospective imple-

mentation using a window-wise design, predictive performance may deteriorate when

implemented in real time.
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6.2.2 Identifying IPV Cases among the Visits to ED

In Chapter 5, we proposed an NLP algorithm utilizing a set of pre-defined IPV

situational terms and look for the signs of an IPV situation; therefore, the model

cannot detect IPV cases if the patient or health provider did not mention or document

any of the IPV-related terms.

While our approach achieved high sensitivity, it admittedly still missed some cases.

We applied extensive text preprocessing before moving on to search for IPV situational

terms. However, if a patient or provider stated the history of IPV in a way that is

not captured by our history detection algorithm, the proposed NLP algorithm would

identify that case as IPV.

Furthermore, the set of IPV terms that we incorporated are limited. So, if a

patient uses terminology outside the set of pre-defined IPV situational terms, the

algorithm will not be able to capture that case which leads to having false negatives.

6.3 Future work

This work helps support the development of generalizable approaches to address class-

imbalanced classification problem in the clinical settings.

In Chapter 4, our results demonstrated that data fusion approach can work as a

remedy to the class-imbalanced classification problem. Additionally, we will extend

our methods on data fusion and incorporate other data modalities such as waveform

data in subsequent iterations to improve the prediction outcomes.

Similarly for IPV case identification in Chapter 5, we will incorporate other inputs

from patients such as recorded voice and facial expressions captured during the first

patient-healthcare providers’ encounter in ED to improve the accuracy of the IPV

detection algorithm and prevent missing any cases.

As conversations about the use of NLP and other technologies continues debate
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over what degree of sensitivity is reasonable for a model such as ours is warranted.

From our perspective, missing any cases is unacceptable. Given that, another future

step of our work is to apply active learning to identify additional IPV cases among

the visits to ED [109]. This method is a special case of machine learning in which a

learning algorithm can interactively query a user to label new observations with the

desired outputs.

The focus of the work presented on IPV case identification in Chapter 5 have

been on assigning labels of IPV and non-IPV to the ED visits. After improving the

accuracy of this algorithm, we will extend or work by training a predictive model that

can utilize the labels learned from the retrospective data and act as a screening tool

to detect IPV cases from the recorded health providers notes and patient narratives in

ED. We will transfer the knwoledge learned in predicting serious infection in pediatric

cohort to identify cases of IPV among adult population in ED and employ similar

predictive model structure with attention mechanism and Focal loss. Any future

models should endeavor for even greater sensitivity to ensure that opportunities to

interrupt IPV are not missed.
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Appendix A

A.1 Features

The complete list of the features extracted from CHOA database is mentioned in

the following. To preserve the models’ reproducibility, we selected the features that

are available across all healthcare systems; therefore, we incorporated patient and

encounter level, central line property and microbiology information, current medica-

tions, antibiotic administration, laboratory results and measured vital signs.

Features extracted from CHOA clinical database:

• Patient-Level data: Name, DOB, MRN, Sex, Race, Ethnicity, Zip Code, Ges-

tational Age, Birth Weight, Primary Language.

• Encounter-Level data: CSN, Admission Date/Time, Discharge Date/Time, De-

partment(s), All diagnoses prior to admission date, All Diagnoses prior to dis-

charge date, Admission Diagnoses, Hospital Diagnoses, Flags (Oncology Di-

agnoses, BMT Diagnoses, Transplant Diagnoses, Short Gut Syndrome, NEC,

DiGeorge, SCID, Downs, Heterotaxy), Insurance status, Admission Weight,

Admission Height, Caregiver cognitive factors including ability to read

• ICU Admission-Level data: Time of transfer into ICU, Time of transfer out of

ICU, Flags (PICU, CICU, NICU, Technology-dependent ICU)

• Co-morbidities variable: Presence and number of pediatric complex care condi-
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tions (see R package or original citation)

• PRISM-3 at 1st PICU admission, PIM-2 at 1st PICU admission, SNAPPE-2 at

NICU admission

• ECMO/Bypass variable: ECMO Start Time, ECMO End Time, Cardiac Bypass

Start Time, Cardiac Bypass End Time

• Bone Marrow Transplant Level Data Variable: HCT Type, Transplant Date,

Presence of Acute GVHD, Presence of Chronic GVHD

• Line Properties Variable: Line Insertion Date, Line Type, SITE Location,

Gauge, Needle Length, Patient Prep, Insertion Bundle Complete?, Site Prep,

Patient Tolerance, Inserted By, Discharged with Line/Drain/Tube, Removal

Date/Time

• Line Timestamped Data Variable: Line/Site/Dressing WNL, Status, Line Ex-

ception, Line intervention, Needle Type, Needle -Manufacturer, Needle Gauge,

Needle Length (decimal), Needle Length (fraction), Site exception, Site inter-

vention, Dressing type, Dressing exception, Dressing intervention

• Endotracheal Tube Properties Variable: Placement Date, Placement Time, Air-

way Type, Size, Number of Attempts, Removal Date/Time

• Medication-Level Data Variable: Med name, Med dose, Med route, Med start

date/time, Med stop date/time, Therapeutic Class, Pharmacy class, Pharmacy

Subclass, Chemotherapy?, Antibiotic?, Fluid Bolus?, Dextrose Concentration if

Fluid or TPN?, TPN?, Intralipid?, TPA for catheter clearance?, Blood Prod-

uct? (PRBCs, Platelets, FFP, Cryo, Factor 8, G-CSF, IVIG), Sedation drip,

Vasopressors/Inotropes, Systemic Steroid, Systemic Hydrocortisone, Systemic

Immunosuppressant, Opioid pain medication, Paralytic, Diuretic, Insulin drip,

Insulin intermittent
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• Microbiology Data Variable: Culture Collection Date/Time, Culture Source

(Specimen Description), Culture Source (Special Requests), Blood Culture Date/Time

growth noted, Blood Culture Result – Gram Stain, Blood Culture Result –

Species, Blood Culture Result – Susceptibilities, Respiratory Viral Panel, Res-

piratory Culture, Urine Culture, Stool PCR, Wound Culture, Eye culture

• Non-Micro Lab Data Variables: WBC, RBCS, HGB, HCT, MCV, MCH, MCHC,

RDW, PLATELET COUNT, MEAN PLT VOLUME, AUTOMATED ABS

NEUT, SEG, BAND, LYMPHOCYTE, MONOCYTE, METAMYELOCYTE,

MYELOCYTE, Ammonia, Arterial pH, Arterial pO2, Arterial pCO2, Arterial

O2 sat, Arterial Base Deficit, Venous pH, Venous pO2, Venous pCO2, Venous

O2 sat, Venous Base Deficit, Capillary pH, Capillary pO2, Capillary pCO2,

Capillary SaO2, Capillary Base Deficit, Lactate, Troponin, BNP, Cortisol, Na

– lab, Na – gas, K – lab, K - gas, Cl – lab, HCO3 – lab, HCO3 – gas, BUN, Cr,

BUN/Cr, Glucose - lab, Glucose - gas, Ca – lab, Ionized Ca – gas, Magnesium,

Phosphorus, AST, ALT, Albumin, Total Protein, Alk Phos, GGT, Bilirubin,

INR, PT, PTT, Anti-Xa, Fibrinogen, D-Dimer, AT3, Activated Clotting Time,

CRP, ESR, CPK

• Presence and time of radiology studies: Chest X-ray, CT (any), Ultrasound

(any), Abdominal X-Ray

• Immunization Data Variable: Immunizations received prior to hospital admis-

sion date, Immunizations received during hospital encounter

• Vital Signs Variable: Core Temperature, Temperature, Heart Rate, Respiratory

rate, Arterial line BP, Non-invasive BP, SpO2, ET CO2, CVP, Capillary Refill

• Other Time-Stamped Data Variable: Tooth Brushing (Mouth Care), Rinse

Agent, Bath (including CHG Bath), High touch surface clean protocol, Linen

change, Patient Behaviors, Parent/Caregiver Behaviors, Parent/Caregiver In-

volvement, Braden Q score, CAPD scores, Current SBS (State Behavioral
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Score), Desired SBS, WAT score, NIRS Left, NIRS Right, Oxygen Mode, FiO2

(%), Oxygen Flow (lpm), Type of Mechanical Ventilation, CPAP Pressure,

Bilevel Pressures (IPAP/EPAP), Oxygenation Index, PaO2/FiO2, Type of Me-

chanical Ventilation, Ventilator Mode, Ventilator Rate, Set PIP, Measured PIP,

PEEP, Tidal Volume Set, Tidal Volume Exhaled, Mean Airway pressure, Minute

Ventilation, Spontaneous Rate, Inspiratory Time, Rise Time (slope), Pres-

sure Support, Sensitivity, APRV Pressure High, APRV Pressure Low, APRV

Time High, APRV Time Low, APRV Ventilator Rate, APRV Mean Airway

Pressure, APRV Dump Volume, APRV Minute Volume, HFOV Hertz, HFOV

DeltaP/Amplitude, HFOV Mean Airway Pressure, HFOV Inspiratory Time

(%), Nitric Oxide Start/Stop, Inhaled Nitric Oxide, Urine Output (mL), Uri-

nary Frequency, Bladder Scan, Emesis, Emesis (Frequency), Stool (measured),

Stool frequency, Bladder Pressure, Output CVVH Ultrafiltrate, HD Positive

Ultrafiltrate, HD Negative Ultrafiltrate, PD Positive Ultrafiltrate, PD Negative

Ultrafiltrate, Time on, Time off, Time of order placement, Procedure name,

Procedure start time, Procedure end time, Mucus fistula placement date, Flu-

oroscopy of mucus fistula.
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A.2 Inclusion Flowchart

Figure A.1: Inclusion flowchart. The final number of patient visits that we used in training
and testing the machine learning models were 27,137. “CC BY 4.0”

A.3 Data Preprocessing

After combining all the information to the input variables, the data were prepro-

cessed for modeling. Orders for laboratory tests are non-random, and their ordering

frequency or absence may convey information about provider suspicion for infection.

In order to control for such bias, we included an indicator flag for each laboratory

value, such that any missing value could be incorporated within the model. This

ensures that during the model training, ‘missing not at random’ variables are appro-

priately flagged and controlled across both PSI and non-PSI groups [61].

Moreover, we took the following steps for the preprocessing part:

• To reduce the effect of the outliers, we calculated the 0.5 and 99.5 percentiles

of the features. These two values performed as the lower and upper bounds,
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respectively. Any value below the lower bound was replaced with the lower

bound and any value above the upper bound was replaced with the upper bound.

• Numerical features were transformed to push their distribution more towards

the normal distribution. Log or square root transformation was applied at this

point.

• Missing information was imputed by the associated mean values.

• Features were scaled by subtracting the feature’s mean value and dividing by

the corresponding standard deviation.

Binary and categorical variables were one-hot encoded, to measure distinct aspects

of these variables and to ensure that these categorical variables are appropriately

distinguished from continuous measures.

Performing all the preprocessing steps lead to having a 338-dimensional feature

space. Finally, LASSO feature selection was applied to remove features with negligible

impact on the outcome. The final predictive models’ input included 249 features which

are listed in the following.

Laboratory Results: Minimum values of these tests: O2 Saturation Venous,

Albumin, Alkaline Phosphatase, ALT SGPT, Ammonia, Arterial POC PH, AST

SGOT, Atypical Reactive Lymphocyte, Automated ABS Neutrophil, BAND, BNP,

BUN, Calcium, Capillary POC PCO2, Capillary POC PO2, Chloride, Creatinine,

Eosinophils, Erythrocyte Sedimentation Rate, HCO3, Hemoglobin, International Nor-

malized Ratio, Magnesium, MCH, MCHC, MCV, Mean Platelet Volume, Monocyte,

Myelocyte, Platelet Count, POC Calcium Ionized, POC Glucose, POC Lactic Acid,

Potassium, PTT, RBCS, Sodium, Total Protein. Maximum values of these tests:

Albumin, Alkaline Phosphatase, Antithrombin Assay, Arterial Base Excess, Arterial

POC PCO2, Arterial POC PO2, AST SGOT, Atypical Reactive Lymphocyte, Auto-

mated ABS Neutrophil, BAND, Bilirubin Total, CAP Base Excess, Capillary POC
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PCO2, Capillary POC PH, Capillary POC PO2, Chloride, Cortisol, Creatinine, D

Dimer Units, Eosinophils, Glucose, HCO3, Magnesium, MCH, MCHC, Mean Platelet

Volume, Monocyte, Myelocyte, Phosphorus, Platelet Count, POC Calcium Ionized,

POC Lactic Acid, POC Sodium, Potassium, Prothrombin time, RBCS, RDW, SEG,

Sodium, Venous POC PO2, White blood cells. Missing flags for these tests: O2

Saturation Capillary, O2 Saturation Venous, Albumin, Alkaline Phosphatase, ALT

SGPT, Ammonia, Antithrombin Assay, Arterial Base Excess, Arterial POC PCO2,

Arterial POC PH, Arterial POC PO2, AST SGPT, Atypical Reactive Lymphocyte,

Automated ABS Neutrophil, BAND, Bilirubin Total, BNP, BUN, C Reactive Pro-

tein, Calcium, CAP Base Deficit, CAP Base Excess, Capillary POC PCO2, Capillary

POC PH, Capillary POC PO2, Chloride, Cortisol, Creatine phosphokinase, Crea-

tinine, D Dimer Units, Eosinophils, Erythrocyte Sedimentation Rate, Fibrinogen,

Gamma GGT, Glucose, HCO3, Hemoglobin, International Normalized Ratio, Mag-

nesium, MCH, MCHC, MCV, Mean Platelet Volume, Metamyelocyte, Monocyte,

Myelocyte, Phosphorus, Platelet Count, POC Calcium Ionized, POC Glucose, POC

Lactic Acid, POC Potassium, POC Sodium, Potassium, Prothrombin time, PTT,

RBCS, RDW, SEG, Sodium, Total Protein, Troponin, Venous POC PCO2, Tro-

ponin, Venous POC PCO2, Venous POC PH, Venous PO2, White blood cells. Vital

Signs: Capillary Refill Minimum of these features: Core Temperature, Temperature,

Heart Rate, Respiratory Rate, Arterial Line Blood Pressure, SpO2, ET CO2, CVP,

Systolic Blood Pressure, Diastolic Blood Pressure, Glascow Coma Score. Maximum

of these features: Temperature, Heart Rate, Respiratory Rate, Arterial Line Blood

Pressure, SpO2, ET CO2, CVP, Systolic Blood Pressure, Diastolic Blood Pressure,

Glascow Coma Score. Pediatric Risk Scores: PRISM-III score, PELOD-2 score

Demographics: Age < 28 days, 1 year < Age < 4 years, Age < 12 years, Gestational

age, Birth weight, Gender, Race (White, Black or African American, Non-Hispanic

or Latino, Weight, Height, Insurance status (CMO Medicaid, Commercial, Managed
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Care, Medicaid, Self-pay, Shared Service, Tricare) Medications: Chemotherapy,

Fluid Bolus, TPN, Intralipid, TPA for catheter clearance, Sedation Drip Grouper,

Sedation Drip Bolus, Vasopressors Inotropes Grouper, Systemic Steroid Grouper,

Systemic immunosuppressant, Opioid pain medication, Paralytic, Diuretic, Insulin

drip, Insulin intermittent, Mouth care, Rinse agent, Antimicrobial bath. Line Prop-

erties and Line Insertion Information: Gauge, Line type (Central Venous Line,

Peripherally Inserted Central Catheter, Portacath, Power Port, Vascath/Permacath),

Needle length (1 inch, 3/4 inch), Patient preparation (Central Line Insertion Bundle

Completed, Child Life Consult, Comfort measures, Distraction, EMLA, Lidocaine,

Position of comfort, Pre-medicated, Anesthesia Record Information, Sucrose pacifier,

Not applicable due to patient condition, no patient preparation), Insertion Bundle

Complete (Central Line Insertion Bundle Completed, Full Body Drape, Indwelling

Urinary Catheter Insertion Bundle Completed, Sterile Gown, Sterile Prep Drape, No

insertion bundle), Line Site Prep Used (Alcohol, Betadine, EMLA, LMX, Lidocaine),

Patient Tolerance (Agitated, Calm, Cooperative, Crying/consolable, Tolerated well),

Discharged With Line Drain Tube (Yes, No)

A.4 The predictive models

The 249-dimensional input was split into training (80%) and testing (20%) subsets.

Since the data was class-imbalanced, we used stratified sampling to split the data in

a way that the proportion of the minority class observations were the same in both

subsets of the data. The training set was used to train the machine learning models

and optimized the settings through tuning the models’ hyperparameters.

The pBoost framework is developed using the proposed study design, a series of

preprocessing tasks and eXtreme Gradient Boosting algorithm, also known as XG-

Boost [22]. After that, the performance of pBoost was compared with the logistic
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Figure A.2: Steps in training an XGBoost model. XGBoost is a boosting approach based
on additive trees. At each iteration during the model training, a new tree will be added
with the intention of correctly classifying the misclassified samples. “CC BY 4.0”

regression model with L1L2 regularization. The descriptions of the machine learning

algorithms are presented in the following

eXtreme Gradient Boosting algorithm (XGBoost) The eXtreme Gradient

Boosting algorithm, also known as XGBoost, is a boosting approach based on additive

trees [22]. This model underweights the strong learners that classify correctly and

overweights the ones that misclassify the target class. XGBoost is a variant of gradient

boosting algorithms which is computationally efficient [35]. This model is capable of

discriminating the positive class from the negative in extremely imbalanced data

classification problems and achieved decent performance results in machine learning

competitions [23]. XGBoost algorithm is based on additive trees meaning that at

every training iteration the model fixes what it has learned and adds one new tree

at a time. Then, the new tree tries to correctly classify the observations that were

incorrectly classified in the previous training rounds (Figure A.2).

In machine learning algorithms, models have parameters and hyperparameters.

The difference between these two groups is that the parameters are internal to the

model and will be set based on the data but hyperparameters are external to the

model and will not be estimated by the data. To achieve the best performance of



86

a classification model, the hyperparameters should be tuned to have the optimized

settings that lead to the desirable performance metrics. In this work, XGBoost hyper-

parameters such as depth of the trees and learning rate are optimized by employing

Bayesian optimization algorithm [90] and the best setting of the model that achieves

the highest AUC value is selected. The list of the optimized hyperparameters and

their values are listed in the following.

• Learning rate = 0.23

• Maximum depth of the trees = 44

• Scale of positive (minority) class = 259.8

• Alpha (L1 regularization term on weights) = 0.69

• Lambda (L2 regularization term on weights) = 900.9

• Gamma (Minimum loss reduction required to make a further partition on a leaf

node of the tree) = 0.054

• Subsample ration of the training instances = 0.66

• Subsample ratio of columns when constructing each tree = 0.76

• Subsample ratio of columns for each level = 0.31

• Maximum delta step we allow each leaf output to be = 1.66

• Minimum sum of instance weight needed in a child = 5

Regularized Logistic Regression with L1L2 Regularization (ElasticNet)

Logistic regression model is an adapted version of linear regression to perform clas-

sification. By imposing a regularization term, this model can minimize the effect of

the features with less significant effect on the classification outcome. There are three

regularized version of logistic regression model: L1 (LASSO), L2 (Ridge), and L1L2

(ElasticNet).
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In this study, we incorporated ElasticNet which is a weighted average of LASSO

and Ridge. This model can penalize the less significant features by imposing an L1L2

penalty. The model’s hyperparameters were tuned by cross-validation.

The analyses of this research were conducted in MATLAB 2019b and Python 3.6.

A.5 PRISM-III Score

Table A.1: This table presents the mean and standard deviation of PRISM-III score com-
ponents. T-test was applied to test if there is a statistically significant difference between
the mean of these features in PSI and non-PSI groups.

PSI non-PSI p-value

Systolic Blood Pressure (mm Hg)
Infants (mean [std]) 78.3 [16] 81.6 [14.3] < 0.001

Children (mean [std]) 106.5 [15.6] 106.7 [15] 0.09
Diastolic Blood Pressure (mm Hg) (mean [std]) 55.8 [15.5] 57.7 [14.8] < 0.001

Heart Rate (beats per minute)
Infants (mean [std]) 154.1 [20.9] 148.4 [18.9] < 0.001

Children (mean [std]) 121.7 [25.7] 104.5 [24.5] < 0.001
Respiratory Rate (breaths per minute)

Infants (mean [std]) 43.1 [17.1] 44.6 [14.6] < 0.001
Children (mean [std]) 25.7 [9.8] 23.5 [8.2] < 0.001

PaO2/FiO2 (mean [std]) 195.1 [449] 199.1 [580] 0.46
PaCO2 in torr (mm Hg) (mean [std]) 45.7 [10.8] 44.4 [9] < 0.001

Glasgow Coma Score (mean [std]) 12.1 [3.7] 12.3 [3.6] < 0.001
PT/PTT (mean [std]) 0.44 [0.12] 0.44 [0.11] 0.31

Total bilirubin (mg/dL) (mean [std]) 1.8 [3.4] 1.6 [2.9] < 0.001
Potassium (mEq/L) (mean [std]) 4 [0.7] 4.2 [0.7] < 0.001
Calcium (mg/dL) (mean [std]) 8.7 [0.8] 8.9 [0.8] < 0.001
Glucose (mg/dL) (mean [std]) 111.1 [43.5] 103.5 [37.8] < 0.001

Bicarbonate in (mEq/L) (mean [std]) 26.7 [5.9] 26.7 [5.2] 0.99
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A.6 PELOD-2 Score

Table A.2: This table presents the mean and standard deviation of PELOD-2 score nu-
merical components and percentages of the binary component which is the use of invasive
ventilation. T-test and chi-square test were applied to test if there was a statistically sig-
nificant difference between the features in PSI and non-PSI groups.

PSI non-PSI p-value

Glasgow coma score (mean [std]) 12.1 [3.7] 12.3 [3.6] < 0.001

Lactatemia (mmol/L) (mean [std]) 3.2 [7.6] 2.3 [4.5] < 0.001

Mean arterial pressure (mmHg)

Age in month <1 (mean [std]) 65.7 [16.5] 68.6 [16.1] < 0.001

1 < Age in month < 11 (mean [std]) 74.6 [21.2] 81.6 [21.6] < 0.001

12 < Age in month < 23 (mean [std]) 92.3 [18.5] 95.2 [19.6] < 0.001

24 < Age in month < 59 (mean [std]) 97.7 [19.5] 98.6 [16.8] 0.2

60 < Age in month < 143 (mean [std]) 101.5 [17.3] 102.7 [21.5] 0.23

Age in month >= 144 (mean [std]) 113.7 [20.7] 115.7 [25.1] < 0.001

Creatinine (mol/L)

Age in month <1 (mean [std]) 0.61 [0.79] 0.43 [0.49] < 0.001

1 < Age in month < 11 (mean [std]) 0.36 [0.28] 0.3 [0.23] < 0.001

12 < Age in month < 23 (mean [std]) 0.33 [0.38] 0.29 [0.23] < 0.001

24 < Age in month < 59 (mean [std]) 0.29 [0.21] 0.31 [0.42] 0.22

60 < Age in month < 143 (mean [std]) 0.35 [0.4] 0.40 [0.62] < 0.001

Age in month >= 144 (mean [std]) 0.73 [1] 0.75 [1.26] 0.11

PaO2/FiO2 (mmHg) (mean [std]) 195.1 [449] 199.1 [580] 0.46

PaCO2 (mmHg) (mean [std]) 45.7 [10.8] 44.4 [9] < 0.001

Invasive ventilation (% Yes) 11.1% 9.9% 0.21

WBC (109/L) (mean [std]) 11 [15.4] 10.3 [8.2] < 0.001

Platelet (109/L) (mean [std]) 230.2 [175.6] 300.5 [175.4] < 0.001
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A.7 Sensitivity Analysis

In this study, age of the patients is divided into five different groups:

• neonates: 0 - 28 days of age; 2,749 encounters and 25.5% PSI prevalence

• infants: 21 days - 1 year of age; 4,076 encounters and 17.8% PSI prevalence

• toddlers and preschoolers: 1 - 5 years of age; 5,580 encounters and 12.4% PSI

prevalence

• children: 5-12 years; 6,500 encounters and 9.7% PSI prevalence

• adolescents: older than 12 years. 8,232 encounters and 10.7% PSI prevalence

The number of records and the percentage of PSI patients for each group are

mentioned in Table A.3. The chi-squared proportion test was applied to test if the

difference in the proportion of PSI patients in male and female groups were statisti-

cally significant. The associated p-value is listed in the last row of Table A.3.

The highest and lowest PSI prevalence, 25.5% and 9.7%, were observed in neonates

and children, respectively. We investigated the performance of pBoost model on each

age group broken down by male and female (Tables A.3 to A.8). The pBoost model

performed best on adolescents with average AUC of 0.84 [0.83, 0.85] with slight drop

in performance in other age groups; an average AUC of 0.81 [0.80, 0.83] for children,

0.80 [0.78, 0.82] for toddlers and infants, and 0.74 [0.72, 0.76] for neonates.
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Table A.3: The performance metrics of the pBoost model applied to all testing records and
considering male and female patients separately.

All Age Categories

Male Female All
AUROC (Mean [95% CI]) 0.83 [0.82, 0.84] 0.81 [0.79, 0.81] 0.83 [0.82, 0.84]

Sensitivity (Mean [95% CI]) 0.71 [0.68, 0.74] 0.66 [0.63, 0.69] 0.70 [0.67, 0.73]
Specificity (Mean [95% CI]) 0.80 [0.79, 0.80] 0.80 [0.79, 0.80] 0.80 [0.79, 0.80]

PPV (Mean [95% CI]) 0.38 [0.36, 0.39] 0.32 [0.31, 0.33] 0.35 [0.34, 0.36]
NPV (Mean [95% CI]) 0.94 [0.94, 0.95] 0.94 [0.94, 0.95] 0.94 [0.94, 0.95]

F-1 Score (Mean [95% CI]) 0.49 [0.47, 0.51] 0.43 [0.41, 0.44] 0.47 [0.46, 0.49]
Accuracy (Mean [95% CI]) 0.78 [0.78, 0.79] 0.78 [0.77, 0.78] 0.78 [0.78, 0.79]
p-value of chi-squared test 0.2

Table A.4: The performance metrics of the pBoost model applied to all neonates in testing
records and considering male and female neonates patients separately.

Neonates

Male Female All
AUROC (Mean [95% CI]) 0.73 [0.70, 0.76] 0.75 [0.73, 0.78] 0.74 [0.72, 0.76]

Sensitivity (Mean [95% CI]) 0.51 [0.43, 0.58] 0.54 [0.46, 0.61] 0.53 [0.47, 0.58]
Specificity (Mean [95% CI]) 0.79 [0.76, 0.80] 0.79 [0.76, 0.80] 0.79 [0.78, 0.80]

PPV (Mean [95% CI]) 0.50 [0.45, 0.54] 0.44 [0.41, 0.48] 0.47 [0.45, 0.50]
NPV (Mean [95% CI]) 0.80 [0.77, 0.82] 0.85 [0.83, 0.87] 0.83 [0.81, 0.84]

F-1 Score (Mean [95% CI]) 0.50 [0.44, 0.56] 0.49 [0.44, 0.54] 0.50 [0.46, 0.54]
Accuracy (Mean [95% CI]) 0.71 [0.68, 0.73] 0.73 [0.71, 0.75] 0.73 [0.71, 0.74]
p-value of chi-squared test 0.17

Table A.5: The performance metrics of the pBoost model applied to all infants in testing
records and considering male and female infants patients separately.

Infants

Male Female All
AUROC (Mean [95% CI]) 0.84 [0.82, 0.86] 0.75 [0.73, 0.78] 0.80 [0.78, 0.82]

Sensitivity (Mean [95% CI]) 0.72 [0.65, 0.79] 0.56 [0.47, 0.64] 0.64 [0.59, 0.69]
Specificity (Mean [95% CI]) 0.79 [0.75, 0.80] 0.79 [0.76, 0.80] 0.79 [0.77, 0.80]

PPV (Mean [95% CI]) 0.41 [0.37, 0.43] 0.34 [0.30, 0.37] 0.38 [0.36, 0.40]
NPV (Mean [95% CI]) 0.93 [0.92, 0.95] 0.90 [0.89, 0.92] 0.92 [0.91, 0.93]

F-1 Score (Mean [95% CI]) 0.52 [0.48, 0.56] 0.42 [0.37, 0.47] 0.48 [0.44, 0.51]
Accuracy (Mean [95% CI]) 0.77 [0.75, 0.79] 0.75 [0.73, 0.77] 0.77 [0.75, 0.78]
p-value of chi-squared test 0.83
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Table A.6: The performance metrics of the pBoost model applied to all toddlers in testing
records and considering male and female toddler patients separately.

Toddlers and Preschoolers

Male Female All
AUROC (Mean [95% CI]) 0.81 [0.79, 0.83] 0.80 [0.78, 0.82] 0.80 [0.78, 0.82]

Sensitivity (Mean [95% CI]) 0.64 [0.57, 0.70] 0.64 [0.57, 0.71] 0.64 [0.59, 0.69]
Specificity (Mean [95% CI]) 0.79 [0.76, 0.80] 0.79 [0.77, 0.80] 0.79 [0.78, 0.80]

PPV (Mean [95% CI]) 0.31 [0.28, 0.33] 0.29 [0.26, 0.31] 0.30 [0.28, 0.32]
NPV (Mean [95% CI]) 0.94 [0.93, 0.95] 0.94 [0.93, 0.95] 0.94 [0.93, 0.95]

F-1 Score (Mean [95% CI]) 0.41 [0.38, 0.45] 0.40 [0.36, 0.43] 0.41 [0.38, 0.43]
Accuracy (Mean [95% CI]) 0.77 [0.75, 0.78] 0.77 [0.75, 0.78] 0.78 [0.76, 0.78]
p-value of chi-squared test 0.69

Table A.7: The performance metrics of the pBoost model applied to all children in testing
records and considering male and female children patients separately.

Children

Male Female All
AUROC (Mean [95% CI]) 0.83 [0.82, 0.85] 0.80 [0.78, 0.82] 0.81 [0.80, 0.83]

Sensitivity (Mean [95% CI]) 0.75 [0.68, 0.82] 0.63 [0.56, 0.69] 0.69 [0.64, 0.73]
Specificity (Mean [95% CI]) 0.78 [0.72, 0.80] 0.78 [0.75, 0.80] 0.79 [0.77, 0.80]

PPV (Mean [95% CI]) 0.29 [0.25, 0.31] 0.22 [0.20, 0.25] 0.26 [0.24, 0.28]
NPV (Mean [95% CI]) 0.96 [0.95, 0.97] 0.95 [0.95, 0.96] 0.96 [0.95, 0.97]

F-1 Score (Mean [95% CI]) 0.42 [0.38, 0.45] 0.33 [0.30, 0.36] 0.38 [0.36, 0.40]
Accuracy (Mean [95% CI]) 0.78 [0.73, 0.80] 0.77 [0.74, 0.79] 0.78 [0.76, 0.79]
p-value of chi-squared test 0.41

Table A.8: he performance metrics of the pBoost model applied to all adolescents in testing
records and considering male and female adolescent patients separately.

Adolescents

Male Female All
AUROC (Mean [95% CI]) 0.85 [0.84, 0.87] 0.82 [0.81, 0.84] 0.84 [0.83, 0.85]

Sensitivity (Mean [95% CI]) 0.76 [0.70, 0.81] 0.69 [0.64, 0.73] 0.74 [0.70, 0.77]
Specificity (Mean [95% CI]) 0.79 [0.76, 0.80] 0.79 [0.76, 0.80] 0.79 [0.78, 0.80]

PPV (Mean [95% CI]) 0.36 [0.33, 0.38] 0.26 [0.24, 0.28] 0.31 [0.30, 0.33]
NPV (Mean [95% CI]) 0.96 [0.95, 0.96] 0.96 [0.95, 0.96] 0.96 [0.95, 0.96]

F-1 Score (Mean [95% CI]) 0.49 [0.46, 0.51] 0.38 [0.35, 0.40] 0.44 [0.42, 0.46]
Accuracy (Mean [95% CI]) 0.79 [0.77, 0.80] 0.78 [0.75, 0.79] 0.79 [0.77, 0.80]
p-value of chi-squared test 0.04
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Appendix B

B.1 Data Preprocessing

At the time of the study, the data from 2013 to 2018 was provided by the institution,

so we could not acquire 2019 and 2020 data.

After gathering all the windows from the patients’ hospitalization, the data was

preprocessed and ready for model training. Initially, there were 252 features in the

data. No information from discharge was passed to the input of the predictive model.

The following preprocessing steps were done:

• Data capping: to reduce the effect of the outliers, 0.5 and 99.5 percentiles of

each feature were calculated and set as the upper and lower bounds for the

values. Any value above the upper bound was replace with the upper bound

and any value below the lower bound was replaced with the lower bound.

• Transformation: the numerical variables were log or square root transformed to

push their distribution more towards the normal distribution.

• Imputation: the missing values were imputed with the median value of the

corresponding feature.

• Standardization: each feature was scaled by subtracting the corresponding fea-

ture’s mean value and dividing by the associated standard deviation.
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We applied one-hot-encoding to the binary and categorical variables, to measure

distinct aspects of these variables and to ensure that these categorical variables are

appropriately distinguished from continuous measures. Missing laboratory tests could

not be at random, so they may convey information [61]. To capture that information,

we added a binary flag for each laboratory value. The flag is one when the value is

missing and zero otherwise.

To remove collinearity, we set a threshold of 0.8 for pair-wise correlation among

features. If the pairwise correlation between two features exceeded the threshold, we

removed one of them and kept the other one in the input. After removing collinearity

with the threshold of 0.8, the feature space reduced to 135 dimensions. The selected

features are listed in the following.

Laboratory Results: O2 Saturation Capillary, O2 Saturation Venous, Albu-

min, Alkaline Phosphatase, ALT SGPT, Ammonia, Antithrombin Assay, Arterial

Base Excess, Arterial POC PCO2, Arterial POC PH, Arterial POC PO2, AST

SGOT, Atypical Reactive Lymphocyte, Automated Absolute Neutrophil, BAND,

Bilirubin Total, BNP, Blood Urea Nitrogen, C-Reactive Protein, Calcium, CAP

Base Deficit, CAP Base Excess, Capillary POC PCO2, Capillary POC PH, Capillary

POC PO2, Chloride, Cortisol, Creatine Phosphokinase, Creatinine, D-dimer Units,

Eosinophils, Erythrocyte Sedimentation Rate, Fibrinogen, Gamma GGT, Glucose,

HCO3, Hemoglobin, International Normalized Ratio, Magnesium, MCH, MCHC,

MCV, Mean Platelet Volume, Metamyelocyte, Monocyte, Myelocyte, Phosphorus,

Platelet Count, POC Calcium Ionized, POC Glucose, POC Lactic Acid, POC Potas-

sium, POC Sodium, Potassium, PTT, Red Cell Distribution Width, SEG, Sodium,

Total Protein, Troponin, Venous POC PCO2, Venous POC PH, White Blood Cells,

Missing Saturation Capillary, Missing O2 Saturation Venous, Missing Albumin, Miss-

ing Ammonia, Missing Arterial Base Excess, Missing Atypical Reactive Lymphocyte,

Missing Automated Absolute Neutrophil, Missing BAND, Missing BNP, Missing C-
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Reactive Protein, Missing D-dimer Units, Missing Eosinophils, Missing Fibrinogen,

Missing HCO3, Missing Magnesium, Missing Metamyelocyte, Missing Phosphorus,

Missing POC Lactic Acid. Vital Signs: Core Temperature, Temperature, Heart

Rate, Respiratory rate, Arterial line BP, SpO2, ET CO2, CVP, Systolic BP, Dias-

tolic BP, Capillary Refill, GCS, PaO2/FiO2. Mechanical Ventilation: Was the

patient on mechanical ventilation?. Demographics: Age < 28 days, 29 days <

Age < 1 year, 1 year < Age < 4 year, 5 year < Age < 11 year, Age > 12 years,

Gestational Age, Birth Weight, Gender, Race (Asian), Race (White), Race (Black or

African American), Race (American Indian or Alaska Native), Race (Native Hawaiian

or Other Pacific Islander), Ethnicity (Hispanic or Latino), Ethnicity (Non-Hispanic

or Latino), Admission Weight, Insurance Status (CMO Medicaid), Insurance Status

(Commercial), Insurance Status (Managed Care), Insurance Status (Medicaid), Insur-

ance Status (Medicare), Insurance Status (Out of State Medicaid), Insurance Status

(Self-pay), Insurance Status (Shared Service), Insurance Status (Tricare), Caregiver

Cognitive Factors Flag. Medications: Chemotherapy, Fluid Bolus, TPN, Intralipid,

Sedation Drip Grouper, Sedation Drip Bolus, Vasopressors Inotropes Grouper, Sys-

temic Steroid Grouper, Opioid pain medication, Diuretic, Rinse Agent, Antimicro-

bial Bath. Line Properties and Line Insertion Information: Gauge, Line Type

(Apheresis Port Dual)

B.2 Training/Validation/Testing Data Splits

All the models and analysis were performed in Python 3.6. To avoid data leakage, we

split the data to train and test sets based on patient encounters; therefore, if a patient

encounter was selected to be in the training set cohort, there were no information

leakage to the testing set.

The PSI* prevalence across all 48-hour time windows was 0.34% which implied an
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extreme class-imbalanced classification problem. To preserve the same prevalence in

training and testing sets, we used stratified sampling method to split data to training

set (80%) and testing set (20%). There were multiple hyperparameters in our model

which required to be optimized. So, we split the training patient encounters to 90%

and 10% subsets using stratified sampling and incorporated the smaller set as the

validation cohort in the hyperparameter optimization process.

B.3 The Input Structure

We employed a bidirectional Long Short-term Memory (LSTM) model to predict if

there would be a PSI* event during the next 48 hours of hospitalization. We aimed to

use the model every 8 hours to reflect the shift change; therefore, we need the inputs

to be sequences of feature values which was gathered every 8 hours during a patient’s

hospitalization time.

The Bidirectional LSTM model takes a 3-dimensional input in this format: (num-

ber of patient encounters, number of timesteps, number of features) Each patient

had a specific number of windows for prediction as this number increased with higher

length-of-stay. By default, the number of features is fixed but the number of timesteps

can vary. But the model needs a fixed value for the second dimension. To set the

number of timesteps, we considered the maximum number of timesteps that a pa-

tient had in our training cohort which was 168. To have the same sequence length,

we zero padded the information of the patients who had less that 168 timesteps in

their hospital stay. LSTM-based models are designed in a way that they can skip

these padded timesteps so that it will not hurt the model’s outcome.
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Figure B.1: The proposed model structure. “CC BY 4.0”

B.4 Model Specifications

The following figure presents the proposed model structure. We trained a bidirec-

tional LSTM model with Focal loss and attention mechanism which used a batch size

of 128. The hyperparameters of the model were optimized by employing Bayesian

optimization method with 100 epochs and an early stopping criterion if there was no

improve in the model’s performance after 5 iterations. A list of the hyperparameters

along with their optimized value are listed in the following. We did not change the

default parameters of Focal loss (alpha=0.25, gamma=2).

• Adam optimizer with learning rate = 0.1

• Dropout regularization = 0.5

• Number of hidden units in the bidirectional LSTM model = 512

• Number of hidden units in the unidirectional LSTM model = 8

• Hidden units of the dense layer prior to the classification layer = 8

A Sigmoid layer was added for the final classification task.
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B.5 Confidence Interval of Performance Metrics

Bootstrap method with 1000 repetition was used to calculate an estimation of the

95% confidence interval for the performance metrics.

B.6 PELOD-2 Score

Table B.1: This table presents the mean and standard deviation of PELOD-2 score com-
ponents. The comparisons were done across the time windows. T-test and chi-square test
were applied to test if there was a statistically significant difference between the feature
values in windows with PSI* and windows without PSI* in patients’ hospitalization time.

Time windows with PSI* Time windows without PSI* p-value

Glasgow coma score (mean [std]) 11.9 [3.7] 12.3 [3.6] < 0.001
Lactatemia (mmol/L) (mean [std]) 4.1 [7.1] 2.2 [4.4] < 0.001

Mean arterial pressure (mmHg)
Age in month <1 (mean [std]) 71.9 [11.7] 68.9 [15] 0.026

1 < Age in month < 11 (mean [std]) 75 [19.4] 68 [18] < 0.001
12 < Age in month < 23 (mean [std]) 74.7 [30.7] 66.4 [20.8] 0.026
24 < Age in month < 59 (mean [std]) 72.2 [26.9] 74.6 [20.5] 0.311
60 < Age in month < 143 (mean [std]) 85.7 [18.2] 86.9 [19.7] 0.559

Age in month >= 144 (mean [std]) 111.1 [23.3] 107.7 [23.7] 0.008
Creatinine (mol/L)

Age in month <1 (mean [std]) 0.34 [0.23] 0.38 [0.36] 0.108
1 < Age in month < 11 (mean [std]) 0.49 [0.41] 0.49 [0.66] 0.912
12 < Age in month < 23 (mean [std]) 0.32 [0.14] 0.37 [0.31] 0.259
24 < Age in month < 59 (mean [std]) 0.39 [0.47] 0.31 [0.26] < 0.001
60 < Age in month < 143 (mean [std]) 0.24 [0.09] 0.27 [0.14] 0.04

Age in month >= 144 (mean [std]) 0.58 [1.02] 0.58 [0.97] 0.796
PaO2/FiO2 (mmHg) (mean [std]) 25.6 [61.9] 34 [103.7] 0.002

PaCO2 (mmHg) (mean [std]) 47.7 [10.7] 45 [9.6] < 0.001
Invasive ventilation (% Yes) 38.1 34.1 0.002
WBC (109/L) (mean [std]) 8.2 [9.2] 10.4 [8.2] < 0.001

Platelet (109/L) (mean [std]) 166.8 [154.7] 295.3 [182.9] < 0.001
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B.7 PRISM-III score’s components

Table B.2: This table presents the mean and standard deviation of PRISM-III score com-
ponents. The comparisons were done across the time windows. T-test was applied to test if
there is a statistically significant difference between the mean of these features in windows
with PSI* and windows without PSI* in patients’ hospitalization time.

With PSI* Without PSI* p-value

Systolic Blood Pressure (mm Hg)

Infants (mean [std]) 92.8 [16.9] 93.1 [15.8] 0.633

Children (mean [std]) 104.7 [13.4] 105.8 [13.8] 0.013

Diastolic Blood Pressure (mm Hg) (mean [std]) 57.2 [14.6] 57.6 [15] 0.128

Heart Rate (beats per minute)

Infants (mean [std]) 143 [24] 135 [22] < 0.001

Children (mean [std]) 115 [23] 106 [22] < 0.001

Respiratory Rate (breaths per minute)

Infants (mean [std]) 39.8 [14.8] 37.3 [13.7] < 0.001

Children (mean [std]) 24.1 [7.6] 22.8 [6.3] < 0.001

PaO2/FiO2 (mean [std]) 25.6 [61.9] 34 [103.7] 0.002

PaCO2 in torr (mm Hg) (mean [std]) 47.7 [10.7] 45 [9.6] < 0.001

Glasgow Coma Score (mean [std]) 11.9 [3.7] 12.3 [3.6] < 0.001

PT/PTT (mean [std]) 0.43 [0.12] 0.44 [0.11] 0.553

Total bilirubin (mg/dL) (mean [std]) 2 [3.9] 1.6 [2.9] < 0.001

Potassium (mEq/L) (mean [std]) 4 [0.69] 4.1 [0.72] < 0.001

Calcium (mg/dL) (mean [std]) 8.7 [0.8] 8.9 [0.8] < 0.001

Glucose (mg/dL) (mean [std]) 104.8 [37.4] 103.1 [37.9] 0.021

Bicarbonate in (mEq/L) (mean [std]) 27.9 [5.9] 27.1 [5.4] < 0.001
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B.8 Model performance on different patient race

categories

Patients with race category of white

• Training set: PSI* prevalence = 0.31%, number of encounters = 11894, number

of 48-hour windows = 292465

• Testing set: PSI* prevalence = 0.35%, number of encounters = 2917, number

of 48-hour windows = 91717

Patients with race category of black

• Training set: PSI* prevalence = 0.4%, number of encounters = 7707, number

of 48-hour windows = 223528

• Testing set: PSI* prevalence = 0.36%, number of encounters =1951, number of

48-hour windows = 71937

Patients with race category of other

• Training set: PSI* prevalence = 0.3%, number of encounters = 2108, number

of 48-hour windows = 51565

• Testing set: PSI* prevalence = 0.41%, number of encounters = 560, number of

48-hour windows = 17168

Table B.3: This table presents the performance of the proposed model on patients with
different race categories in training and testing subsets of the data.

Race (White) Race (Black) Race (Other)

Train Test Train Test Train Test

AUROC (%) 99.6 [99.5, 99.7] 99.5 [99.3, 99.6] 99.5 [99.4, 99.7] 99.4 [99.1, 99.6] 99.7 [99.4, 99.9] 98.7 [96.4, 99.9]

Sensitivity (%) 84.3 [79.5, 88.5] 76.1 [66.2, 85.5] 85.4 [80.2, 90.2] 77.9 [66.4, 87.8] 85.8 [73.9, 96.1] 75.6 [51.3, 97.1]

Specificity (%) 99.3 [99.3, 99.4] 99.3 [99.3, 99.4] 99.1 [99.1, 99.2] 99.1 [99.0, 99.1] 99.4 [99.3, 99.4] 99.4 [99.3, 99.5]

PPV (%) 7.1 [6.6, 7.6] 7.0 [6.0, 8.1] 8.1 [7.6, 8.7] 6.3 [5.2, 7.4] 6.9 [5.6, 8.2] 8.9 [5.8, 11.9]

NPV (%) 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9]

Accuracy (%) 99.3 [99.3, 99.4] 99.3 [99.3, 99.3] 99.1 [99.1, 99.2] 99.1 [99.0, 99.1] 99.3 [99.3, 99.4] 99.4 [99.3, 99.5]

F-1 Score (%) 13.0 [12.2, 13.9] 12.9 [11.0, 14.7] 14.8 [13.8, 15.8] 11.7 [9.7, 13.6] 12.7 [10.5, 15.0] 15.9[10.7, 21.1]

AUPRC (%) 34.5 [27.4, 42.2] 20.2 [12.4, 29.6] 36.4 [29.4, 43.3] 21.2 [12.2, 32.3] 46.8 [30.8, 63.5] 43.4 [18.1, 67.7]
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A one-way ANOVA test was performed and achieved a p-value of 0.29 for training

and 0.86 for testing datasets. The results indicated no statistically significant differ-

ence between the mean of the model’s predicted probabilities for each race category.

B.9 Model performance on different patient insur-

ance categories

Patients with Commercial insurance

• Training set: PSI* prevalence = 0.34%, number of encounters = 8772, number

of 48-hour windows = 200683

• Testing set: PSI* prevalence = 0.37%, number of encounters = 2105, number

of 48-hour windows = 60620

Patients with Public-Medicaid insurance

• Training set: PSI* prevalence = 0.35%, number of encounters = 12078, number

of 48-hour windows = 347905

• Testing set: PSI* prevalence = 0.35%, number of encounters = 3124, number

of 48-hour windows = 114446

Patients with Public-Medicare insurance

• Training set: PSI* prevalence = 0.41%, number of encounters = 665, number

of 48-hour windows = 15407

• Testing set: PSI* prevalence = 0.27%, number of encounters = 156, number of

48-hour windows = 4707

Patients with Self-pay insurance
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• Training set: PSI* prevalence = 0.19%, number of encounters = 194, number

of 48-hour windows = 3563

• Testing set: PSI* prevalence = 0.64%, number of encounters = 43, number of

48-hour windows = 1049

Table B.4: This table presents the performance of the proposed model on patients with
different insurance status in training and testing subsets of the data.

Commercial Public-Medicaid Public-Medicare Self-pay

Train Test Train Test Train Test Train Test

AUROC (%) 99.6 [99.4, 99.7] 99.4 [98.7, 99.8] 99.6 [99.5, 99.7] 99.3 [99.1, 99.5] 99.8 [99.6, 99.9] 98.9 [97.8, 99.9] 99.9 [99.9, 99.9] 99.9 [99.8, 99.9]

Sensitivity (%) 80.1 [73.8, 85.7] 79.1 [69.1, 88.8] 87.4 [83.0, 91.6] 75.6 [65.9, 84.2] 89.8 [77.0, 99.9] 55.3 [14.3, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9]

Specificity (%) 99.4 [99.4, 99.5] 99.4 [99.4, 99.5] 99.1 [99.1, 99.2] 99.1 [99.0, 99.1] 99.4 [99.3, 99.5] 99.4 [99.2, 99.6] 99.5 [99.4, 99.7] 99.7 [99.4, 99.9]

PPV (%) 8.1 [7.3, 8.9] 8.6 [7.3, 9.9] 7.2 [6.7, 7.6] 6.1 [5.2, 6.9] 9.7 [7.6, 11.8] 4.4 [1.1, 8.9] 5.5 [4.0, 7.6] 25.0 [14.3, 46.7]

NPV (%) 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9]

Accuracy (%) 99.4 [99.4, 99.5] 99.4 [99.4, 99.5] 99.1 [99.1, 99.2] 99.1 [99.0, 99.1] 99.4 [99.3, 99.5] 99.4 [99.2, 99.6] 99.5 [99.4, 99.7] 99.7 [99.4, 99.9]

F-1 Score (%) 14.7 13.3, 16.1] 15.5 [13.3, 17.8] 13.2 [12.5, 14.0] 11.3 [9.6, 12.8] 17.5 [14.0, 21.1] 8.2 [2.0, 16.3] 10.5 [7.7, 14.1] 39.4 [25.0, 63.6]

AUPRC (%) 36.0 [27.4, 44.6] 21.6 [13.4, 32.0] 37.2 [30.6, 43.5] 24.5 [16.1, 34.4] 31.7 [15.6, 53.4] 7.8 [1.6, 25.4] 73.6 [62.2, 90.7] 49.7 [30.2, 90.2]

A one-way ANOVA test was performed and achieved a p-value of 0.09 for train-

ing and 0.13 for testing datasets. The results indicated no statistically significant

difference between the mean of the model’s predicted probabilities for each insurance

status category.

B.10 Sensitivity Analysis

Table B.5 in the following presents the performance of the proposed model on different

patients’ age categories. These categories were defined as:

• Neonates: age < 28 days

• Infants: 29 days < age < 1 year

• Toddlers and Preschoolers: 1 year < age < 4 years

• Children: 5 years < age < 11 years

• Adolescents: 12 years < age
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In deep learning models, as the positive cases increase, we can expect higher PPV

value which is the same story in our analysis. In this study cohort, the prevalence

of PSI* was slightly different across the five aforementioned age categories which

influenced some of the performance metrics. Specifically, PPV and F-1 score increased

as the PSI* prevalence increased. On the other hand, NPV, which is the power of the

model to rule out the negative cases, was not affected by the changes in the prevalence

as there were sufficient NP cases for the model to learn.

Table B.5: This table presents the performance of the proposed model on patients with
different age categories in training and testing subsets of the data. The numbers in the
brackets are the estimated 95% confidence interval calculated by bootstrapping method.

Neonates Infants Toddlers Children Adolescents

Train Test Train Test Train Test Train Test Train Test

PSI* (%) 0.32 0.27 0.39 0.27 0.42 0.44 0.32 0.38 0.30 0.45

AUROC (%) 99.4 [99.2, 99.6] 99.4 [99.1, 99.6] 99.5 [99.3, 99.6] 99.3 [98.8, 99.7] 99.7 [99.5, 99.8] 99.5 [99.2, 99.8] 99.7 [99.6, 99.9] 99.5 [99.2, 99.8] 99.6 [99.4, 99.7] 99.2 [98.5, 99.7]

Sensitivity (%) 94.9 [91.3, 97.7] 92.9 [82.3, 99.9] 87.1 [80.0, 93.1] 84.1 [67.0, 96.8] 79.1 [70.4, 87.1] 75.2 [59.7, 89.7] 86.0 [77.3, 93.7] 68.8 [48.3, 86.3] 77.9 [69.3, 85.4] 69.6 [56.3, 83.0]

Specificity (%) 98.1 [97.9, 98.2] 98.0 [97.9, 98.2] 98.8 [98.7, 98.8] 98.7 [98.6, 98.8] 99.5 [99.5, 99.5] 99.5 [99.5, 99.6] 99.5 [99.5, 99.5] 99.4 [99.4, 99.5] 99.6 [99.6, 99.6] 99.5 [99.5, 99.6]

PPV (%) 6.5 [6.1, 6.9] 5.4 [4.6, 6.1] 7.1 [6.4, 7.7] 4.6 [3.7, 5.4] 9.3 [8.2, 10.4] 10.1 [7.8, 12.5] 7.4 [6.5, 8.2] 6.5 [4.5, 8.4] 8.3 [7.1, 9.4] 9.7 [7.6, 11.7]

NPV (%) 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9] 99.9 [99.9, 99.9]

Accuracy (%) 98.1 [97.9, 98.1] 98.0 [97.9, 98.2] 98.8 [98.7, 98.8] 98.7 [98.6, 98.8] 99.5 [99.4, 99.5] 99.5 [99.5, 99.6] 99.5 [99.5, 99.5] 99.4 [99.4, 99.5] 99.6 [99.6, 99.6] 99.5 [99.5, 99.6]

F-1 Score (%) 12.1 [11.4, 12.8] 10.2 [8.7, 11.5] 13.1 [11.9, 14.2] 8.7 [7.0, 10.2] 16.7 [14.8, 18.6] 17.8 [13.8, 21.9] 13.6 [12.0, 15.1] 11.9 [8.4, 15.2] 15.0 [13.0, 16.9] 17.0 [13.5, 20.4]

AUPRC (%) 26.5 [19.0, 34.1] 14.2 [8.4, 22.7] 34.7 [25.5, 44.0] 14.4 [6.6, 26.0] 45.0 [34.8, 55.0] 46.5 [26.8, 66.5] 50.5 [38.7, 61.6] 35.4 [16.2, 56.9] 35.4 [24.9, 46.6] 18.4 [9.3, 30.6]
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Appendix C

C.1 Clinical Notes

The following clinical note types and their associated recording timestamps were

extracted from Children’s Healthcare of Atlanta database:

Notes, Progress Nursing, Progress Respiratory, CIRU Progress Notes, Procedures,

Transfer Summary, Consults, Interval HP Note, Aflac Oncall Note, HP, Brief Op

Note, OR PreOp, OR Op Note, Transplant Evaluation, Pre-Sedation HP, OR Anes-

thesia, OR PostOp, OR Surgeon, Rehab IP Progress/Treatment Notes, Code Docu-

mentation, ED Provider Notes, ED Supplemental Provider Note

C.2 Data Preprocessing

C.2.1 Structured Data

At the time of the study, the data from 2013 to 2018 was provided by the institution,

so we could not acquire 2019 and 2020 data.

After gathering all the 48 hour time windows from the patients’ hospitalization,

the data was preprocessed and ready for model training. Initially, there were 252

features in the structured EHR data. No information from discharge was passed to

the input of the predictive model. The following preprocessing steps were done:
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• Data capping: to reduce the effect of the outliers, 0.5 and 99.5 percentiles of

each feature were calculated and set as the upper and lower bounds for the

values. Any value above the upper bound was replace with the upper bound

and any value below the lower bound was replaced with the lower bound.

• Transformation: the numerical variables were log or square root transformed to

push their distribution more towards the normal distribution.

• Imputation: the missing values were imputed with the median value of the

corresponding feature.

• Standardization: each feature was scaled by subtracting the corresponding fea-

ture’s mean value and dividing by the associated standard deviation.

We applied one-hot-encoding to the binary and categorical variables, to measure

distinct aspects of these variables and to ensure that these categorical variables are

appropriately distinguished from continuous measures. Missing laboratory tests could

not be at random, so they may convey information (1). To capture that information,

we added a binary flag for each laboratory value. The flag is one when the value is

missing and zero otherwise.

To remove collinearity, we set a threshold of 0.8 for pair-wise correlation among

features. If the pairwise correlation between two features exceeded the threshold, we

removed one of them and kept the other one in the input. After removing collinearity

with the threshold of 0.8, the feature space reduced to 129 dimensions. The selected

features are listed in the following. Laboratory Results: O2 Saturation Capil-

lary, O2 Saturation Venous, Albumin, Alkaline Phosphatase, ALT SGPT, Ammonia,

Antithrombin Assay, Arterial Base Excess, Arterial POC PCO2, Arterial POC PH,

Arterial POC PO2, AST SGOT, Atypical Reactive Lymphocyte, Automated Ab-

solute Neutrophil, BAND, Bilirubin Total, BNP, Blood Urea Nitrogen, C-Reactive

Protein, Calcium, CAP Base Deficit, CAP Base Excess, Capillary POC PCO2, Cap-

illary POC PH, Capillary POC PO2, Chloride, Cortisol, Creatine Phosphokinase,
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Creatinine, D-dimer Units, Eosinophils, Erythrocyte Sedimentation Rate, Fibrino-

gen, Gamma GGT, Glucose, HCO3, Hemoglobin, International Normalized Ratio,

Magnesium, MCH, MCHC, Mean Platelet Volume, Metamyelocyte, Monocyte, Mye-

locyte, Phosphorus, Platelet Count, POC Calcium Ionized, POC Glucose, POC Lac-

tic Acid, POC Potassium, POC Sodium, Potassium, PTT, Red Cell Distribution

Width, SEG, Sodium, Total Protein, Troponin, Venous POC PCO2, Venous POC

PH, White Blood Cells, Missing Saturation Capillary, Missing O2 Saturation Ve-

nous, Missing Albumin, Missing Ammonia, Missing Arterial Base Excess, Missing

Atypical Reactive Lymphocyte, Missing Automated Absolute Neutrophil, Missing

BAND, Missing BNP, Missing C-Reactive Protein, Missing D-dimer Units, Miss-

ing Eosinophils, Missing Fibrinogen, Missing HCO3, Missing Magnesium, Missing

Metamyelocyte, Missing Myelocyte, Missing Phosphorus, Missing POC Lactic Acid.

Vital Signs: Core Temperature, Temperature, Heart Rate, Respiratory rate, Arte-

rial line BP, SpO2, ET CO2, CVP, Systolic BP, Diastolic BP, Capillary Refill, GCS,

PaO2/FiO2. Mechanical Ventilation: Was the patient on mechanical ventilation?.

Demographics: Age < 28 days, 29 days < Age < 1 year, 1 year < Age < 4 year, 5

year < Age < 11 year, Age > 12 years, Gestational Age, Birth Weight, Gender, Race

(Asian), Race (White), Race (Black or African American), Race (American Indian

or Alaska Native), Race (Native Hawaiian or Other Pacific Islander), Ethnicity (His-

panic or Latino), Ethnicity (Non-Hispanic or Latino), Admission Weight, Insurance

Status (CMO Medicaid), Insurance Status (Commercial), Insurance Status (Managed

Care), Insurance Status (Medicaid), Insurance Status (Medicare), Insurance Status

(Out of State Medicaid), Insurance Status (Self-pay), Insurance Status (Shared Ser-

vice), Insurance Status (Tricare), Caregiver Cognitive Factors Flag. Medications:

Chemotherapy, TPN, Sedation Drip Bolus, Systemic Steroid Grouper, Opioid pain

medication, Diuretic. Line Properties and Line Insertion Information: Gauge,

Line Type (Apheresis Port Dual).
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C.2.2 Unstructured Data

Common text preprocessing steps (e.g., removing stop words, punctuations, extra

white space, and numbers and transforming to lowercase) were done on the recorded

clinical notes. To acquire the contextualized word embeddings from the recorded

notes, we used Clinical BERT which is a transformer-based model. The Clinical

BERT model accepts text with the maximum length of 128 words. To account for

this limitation, we extracted the specific parts of the clinical notes that could be

more informative in training the predictive models; therefore, we limited the number

of input words for the Clinical BERT model while keeping the most discriminative

parts of the notes in the modeling process. Based on the recommendation from a

pediatrician, the following sections were extracted from the clinical notes:

impression and plan, impression plan, assessment plan, interval history, iterim

history, history of present illness, brief hpi, hpi, subjective, patient active problem

list, active hospital problems diagnosis, diagnosis code, impression/problems, medical

decision making, mdm, review of systems, ros

After selecting the aforementioned sections in the clinical notes, the number of

words in each clinical note had a distribution with median of 57 and mean of 127.

The final word embedding dimension was 768.

C.3 Training/Validation/Testing Subsets of Data

All the models and analysis were performed in Python 3.6. To avoid data leakage, we

split the data to train and test sets based on patient encounters; therefore, if a patient

encounter was selected to be in the training set cohort, there were no information

leakage to the testing set.

The SBI prevalence across all 48-hour time windows was 0.35% which implied an

extreme class-imbalanced classification problem. To preserve the same prevalence in
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training and testing sets, we used stratified sampling method to split data to training

set (80%) and testing set (20%). There were multiple hyperparameters in our model

which required to be optimized. So, we split the training patient encounters to 90%

and 10% subsets using stratified sampling and incorporated the smaller subset as the

validation cohort in the hyperparameter optimization process.

C.4 The Input Structure

We employed a Bidirectional Long Short-term Memory (BiLSTM) model to predict

if there would be a SBI event during the next 48 hours of hospitalization. We aimed

to use the model every 24 hours to be confident that the clinical notes were updated;

therefore, we need the inputs to be sequences of feature values which was gathered

every 24 hours during a patient’s hospitalization time.

The BiLSTM model takes a 3-dimensional input in this format: (number of patient

encounters, number of timesteps, number of features)

Each patient had a specific number of windows for prediction as this number

increased with higher length-of-stay. By default, the number of features is fixed but

the number of timesteps can vary. But the model needs a fixed value for the second

dimension. To set the number of timesteps, we considered the maximum number of

timesteps that a patient had in our training cohort which was 56. To have the same

sequence length, we zero padded the information of the patients who had less that

56 timesteps in their hospital stay. LSTM-based models are designed in a way that

they can skip these padded timesteps so that it will not hurt the model’s outcome.

The number of features was 897 (129 features from the structured EHR and 768

contextualized word embedding features from the clinical notes).
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Figure C.1: The proposed model structure. “CC BY 4.0”

C.5 Model Specifications

The following figure presents the proposed model structure. We trained a bidirec-

tional LSTM model with Focal loss and attention mechanism which used a batch size

of 128. The hyperparameters of the model were optimized by employing Bayesian

optimization method with 100 epochs and an early stopping criterion if there was no

improve in the model’s performance after 5 iterations. A list of the hyperparameters

along with their optimized value are listed in the following. We did not change the

default parameters of Focal loss (alpha=0.25, gamma=2).

• Adam optimizer with learning rate = 0.001

• Dropout regularization = 0.1

• Number of hidden units in the bidirectional LSTM model = 512

• Number of hidden units in the unidirectional LSTM model = 8

• Hidden units of the dense layer prior to the classification layer = 32

A Sigmoid layer was added for the final classification task. Figure C.1 presents

the model structure.
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C.6 Confidence Interval of Performance Metrics

Bootstrap method with 1000 repetition was used to calculate an estimation of the

95% confidence interval for the performance metrics.

C.7 PELOD-2 Score

Table C.1: This table presents the mean and standard deviation of PELOD-2 score compo-
nents. The comparisons were done across the time windows. T-test and chi-square test were
applied to test if there was a statistically significant difference between the feature values
in SBI time windows and non-SBI time windows during patients’ hospitalization time.

SBI Time Windows Non-SBI Time Windows p-value

Glasgow coma score (mean [std]) 11.8 [3.8] 12.3 [3.6] 0.003

Lactatemia (mmol/L) (mean [std]) 4 [7] 2.2 [4.5] < 0.001

Mean arterial pressure (mmHg)

Age in month <1 (mean [std]) 70.8 [11] 68.9 [15.1] 0.4

1 < Age in month < 11 (mean [std]) 75.5 [19.7] 68.4 [18] < 0.001

12 < Age in month < 23 (mean [std]) 72.3 [32.4] 66.4 [20.9] 0.4

24 < Age in month < 59 (mean [std]) 72.4 [27.6] 74.8 [20.5] 0.5

60 < Age in month < 143 (mean [std]) 87.7 [19.7] 87 [19.8] 0.8

Age in month >= 144 (mean [std]) 110.6 [22.1] 107.9 [23.8] 0.2

Creatinine (mol/L)

Age in month <1 (mean [std]) 0.33 [0.19] 0.39 [0.36] 0.2

1 < Age in month < 11 (mean [std]) 0.48 [0.38] 0.49 [0.65] 0.9

12 < Age in month < 23 (mean [std]) 0.31 [0.11] 0.37 [0.31] 0.5

24 < Age in month < 59 (mean [std]) 0.37 [0.43] 0.31 [0.26] 0.04

60 < Age in month < 143 (mean [std]) 0.24 [0.09] 0.27 [0.14] 0.1

Age in month >= 144 (mean [std]) 0.56 [0.87] 0.58 [0.98] 0.5

PaO2/FiO2 (mmHg) (mean [std]) 24.8 [55.3] 33.5 [106.7] 0.08

PaCO2 (mmHg) (mean [std]) 48 [10.7] 45 [9.6] < 0.001

Invasive ventilation (% Yes) 25.8% 33.5% 0.9

WBC (109/L) (mean [std]) 8.6 [9.9] 10.5 [8.6] < 0.001

Platelet (109/L) (mean [std]) 173.9 [156.3] 297.8 [182.4] < 0.001
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C.8 PRISM-III Score

Table C.2: This table presents the mean and standard deviation of PRISM-III score com-
ponents. The comparisons were done across the time windows. T-test was applied to test if
there is a statistically significant difference between the mean of these features in SBI time
windows and non-SBI time windows during patients’ hospitalization time.

SBI Time Windows Non-SBI Time Windows p-value

Systolic Blood Pressure (mm Hg)

Infants (mean [std]) 93.3 [16.6] 93.3 [15.9] 0.9

Children (mean [std]) 105.7 [13.3] 106.6 [13.8] 0.3

Diastolic Blood Pressure (mm Hg) (mean [std]) 57.8 [14.7] 58.1 [15.3] 0.6

Heart Rate (beats per minute)

Infants (mean [std]) 144.3 [23.6] 136.9 [21.9] < 0.001

Children (mean [std]) 118.9 [22.3] 107.8 [22.2] < 0.001

Respiratory Rate (breaths per minute)

Infants (mean [std]) 39.8 [15.2] 37.5 [13.7] < 0.001

Children (mean [std]) 24.3 [7.6] 23 [6.5] < 0.001

PaO2/FiO2 (mean [std]) 24.8 [55.3] 33.5 [1.6.7] 0.08

PaCO2 in torr (mm Hg) (mean [std]) 48 [10.7] 45 [9.6] < 0.001

Glasgow Coma Score (mean [std]) 11.8 [3.8] 12.3 [3.6] 0.003

PT/PTT (mean [std]) 0.43 [0.11] 0.44 [0.11] 0.57

Total bilirubin (mg/dL) (mean [std]) 2.1 [4.1] 1.6 [3] < 0.001

Potassium (mEq/L) (mean [std]) 4 [0.7] 4.1 [0.7] < 0.001

Calcium (mg/dL) (mean [std]) 8.8 [0.8] 8.9 [0.8] < 0.001

Glucose (mg/dL) (mean [std]) 105.2 [38.3] 102.9 [37.5] 0.07

Bicarbonate in (mEq/L) (mean [std]) 27.9 [5.9] 27.1 [5.4] < 0.001
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Appendix D

D.1 List of Abbreviations

ABS NEUT Absolute Neutrophil

ALT Alanine Aminotransferase

APRV Airway Pressure Release Ventilation

AST Aspartate Aminotransferase

AT3 Antithrombin

AUPRC Area Under Precision-Recall Curve

AUROC Area Under Receiver Operating Characteristics

BiLSTM Bidirectional Long Short-Term Memory

BMT Bone Marrow Transplant

BP Blood Pressure

BUN Blood Urea Nitrogen

CAPD Cornell Assessment of Pediatric Delirium

CHG Chlorhexidine Gluconate

CHOA Children’s Healthcare of Atlanta

CI Confidence Interval

CLABSI Central Line-Associated Bloodstream Infection
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CPK Creatine Phosphokinase

CPAP Continuous Positive Airway Pressure

CRP C-reactive Protein

CSN Contact Serial Number

CVL Central Venous Line

CVP Central Venous Pressure

CVVH Continuous Veno-Venous Hemofiltration

DOB Date of Birth

ECMO Extracorporeal Membrane Oxygenation

ED Emergency Department

EHR Electronic Health Record

EMR Electronic Medical

ESR Erythrocyte Sedimentation Rate

FFP Fresh Frozen Plasma

FN False Negative

FP False Positive

GCS Glasgow Coma Scale

GGT Gamma-Glutamyl Transferase

GVHD Graft-Versus-Host Disease

HCT Hematocrit

HFOV High Frequency Oscillatory Ventilation

HGB Hemoglobin

HP History and Physical

ICD-9 International Classification of Diseases, Ninth Revision

ICD-10 International Classification of Diseases, Tenth Revision
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INR International Normalised Ratio

IPV Intimate Partner Violence

IQR Interquartile Range

IVIG Intravenous Immune Globulin

LOS Length of Stay

LSTM Long Short-Term Memory

MCH Mean Corpuscular Hemoglobin

MCHC Mean Corpuscular Hemoglobin Concentration

MCV Mean Corpuscular Volume

MRN Medical Record Number

NEC Necrotizing Enterocolitis

NICU Newborn Intensive Care Unit

NIRS Near Infrared Spectroscopy

NLP Natural Language Processing

NPV Negative Predictive Value

OR Operating Room

PCR Polymerase Chain Reaction

PELOD PEdiatric Logistic Organ Dysfunction

PHOS Phosphatase

PICU Pediatric Intensive Care Unit

PLT Platelet

PPV Positive Predictive Value

PRBC Packed Red Blood Cell

PRC Precision-Recall Curve

PRSIM Pediatric Risk of Mortality
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PSI Presumed Serious Infection

PT Prothrombin time

PTT Partial Thromboplastin Time

RDW Red cell Distribution Width

ROC Receiver Operating Characteristics

SBI Serious Bloodstream Infection

SCID Severe Combined Immunodeficiency

SEG Segmented Neutrophils

SHAP SHapley Additive exPlanations

TN True Negative

TF-IDF Term Frequency-Inverse Document Frequency

TP True Positive

TPA Tissue Plasminogen Activator

TPN Total Parenteral Nutrition

WAT Withdrawal Assessment Tool

WBC White Blood Cell

XGBoost Extreme Gradient Boosting



115

Bibliography

[1] E. Alsentzer, J. R. Murphy, W. Boag, W.-H. Weng, D. Jin, T. Naumann, and

M. McDermott. Publicly available clinical bert embeddings. arXiv preprint

arXiv:1904.03323, 2019.

[2] J. A. Alten, A. F. Rahman, H. J. Zaccagni, A. Shin, D. S. Cooper, J. J. Blinder,

L. Retzloff, I. B. Aban, E. M. Graham, J. Zampi, et al. The epidemiology of

health-care associated infections in pediatric cardiac intensive care units. The

Pediatric infectious disease journal, 37(8):768, 2018.

[3] F. Amrollahi, S. P. Shashikumar, F. Razmi, and S. Nemati. Contextual em-

beddings from clinical notes improves prediction of sepsis. In AMIA Annual

Symposium Proceedings, volume 2020, page 197. American Medical Informatics

Association, 2020.

[4] L. B. Amusa, A. V. Bengesai, and H. T. Khan. Predicting the vulnerability

of women to intimate partner violence in south africa: evidence from tree-

based machine learning techniques. Journal of interpersonal violence, page

0886260520960110, 2020.

[5] S. Bagchi, J. Watkins, D. A. Pollock, J. R. Edwards, and K. Allen-Bridson.

State health department validations of central line–associated bloodstream in-

fection events reported via the national healthcare safety network. American

journal of infection control, 46(11):1290–1295, 2018.



116

[6] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[7] C. Beeler, L. Dbeibo, K. Kelley, L. Thatcher, D. Webb, A. Bah, P. Monahan,

N. R. Fowler, S. Nicol, A. Judy-Malcolm, et al. Assessing patient risk of central

line-associated bacteremia via machine learning. American journal of infection

control, 46(9):986–991, 2018.

[8] R. A. Berk and S. B. Sorenson. Algorithmic approach to forecasting rare vi-

olent events: An illustration based in intimate partner violence perpetration.

Criminology & Public Policy, 19(1):213–233, 2020.

[9] R. Biassoni, E. Di Marco, M. Squillario, A. Barla, G. Piccolo, E. Ugolotti,

C. Gatti, N. Minuto, G. Patti, M. Maghnie, et al. Gut microbiota in t1dm-

onset pediatric patients: machine-learning algorithms to classify microorgan-

isms as disease linked. The Journal of Clinical Endocrinology & Metabolism,

105(9):e3114–e3126, 2020.

[10] J. R. Blosnich, J. Cashy, A. J. Gordon, J. C. Shipherd, M. R. Kauth, G. R.

Brown, and M. J. Fine. Using clinician text notes in electronic medical record

data to validate transgender-related diagnosis codes. Journal of the American

Medical Informatics Association, 25(7):905–908, 2018.

[11] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[12] J. C. Campbell. Health consequences of intimate partner violence. The lancet,

359(9314):1331–1336, 2002.

[13] J. C. Campbell. Danger Assessment. https://www.dangerassessment.org/

uploads/DA_NewScoring_2019.pdf, 2003. [Online; accessed 8-October-2021].

https://www.dangerassessment.org/uploads/DA_NewScoring_2019.pdf
https://www.dangerassessment.org/uploads/DA_NewScoring_2019.pdf


117

[14] J. C. Campbell, D. W. Webster, and N. Glass. The danger assessment: Vali-

dation of a lethality risk assessment instrument for intimate partner femicide.

Journal of interpersonal violence, 24(4):653–674, 2009.

[15] A. Carreño, I. Inza, and J. A. Lozano. Analyzing rare event, anomaly, nov-

elty and outlier detection terms under the supervised classification framework.

Artificial Intelligence Review, 53(5):3575–3594, 2020.

[16] CDC. Intimate Partner Violence. https://www.cdc.gov/

violenceprevention/intimatepartnerviolence/index.html, 2020. [On-

line; accessed 29-September-2021].

[17] CDC. Intimate Partner Violence, Sexual Violence, and Stalking Among Men.

https://www.cdc.gov/violenceprevention/intimatepartnerviolence/

men-ipvsvandstalking.html, 2020. [Online; accessed 29-September-2021].

[18] W. W. Chapman, W. Bridewell, P. Hanbury, G. F. Cooper, and B. G. Buchanan.

A simple algorithm for identifying negated findings and diseases in discharge

summaries. Journal of biomedical informatics, 34(5):301–310, 2001.

[19] N. S. Chaudhary, J. P. Donnelly, and H. E. Wang. Racial differences in sepsis

mortality at united states academic medical center-affiliated hospitals. Critical

care medicine, 46(6):878, 2018.

[20] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote:

synthetic minority over-sampling technique. Journal of artificial intelligence

research, 16:321–357, 2002.

[21] I. Y. Chen, E. Alsentzer, H. Park, R. Thomas, B. Gosangi, R. Gujrathi, and

B. Khurana. Intimate partner violence and injury prediction from radiology

reports. In BIOCOMPUTING 2021: Proceedings of the Pacific Symposium,

pages 55–66. World Scientific, 2020.

https://www.cdc.gov/violenceprevention/intimatepartnerviolence/index.html
https://www.cdc.gov/violenceprevention/intimatepartnerviolence/index.html
https://www.cdc.gov/violenceprevention/intimatepartnerviolence/men-ipvsvandstalking.html
https://www.cdc.gov/violenceprevention/intimatepartnerviolence/men-ipvsvandstalking.html


118

[22] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Pro-

ceedings of the 22nd acm sigkdd international conference on knowledge discovery

and data mining, pages 785–794, 2016.

[23] T. Chen and T. He. Higgs boson discovery with boosted trees. In NIPS 2014

workshop on high-energy physics and machine learning, pages 69–80. PMLR,

2015.

[24] E. Choi, M. T. Bahadori, J. A. Kulas, A. Schuetz, W. F. Stewart, and J. Sun.

Retain: An interpretable predictive model for healthcare using reverse time

attention mechanism. arXiv preprint arXiv:1608.05745, 2016.

[25] A. L. Coker, K. E. Davis, I. Arias, S. Desai, M. Sanderson, H. M. Brandt, and

P. H. Smith. Physical and mental health effects of intimate partner violence

for men and women. American journal of preventive medicine, 23(4):260–268,

2002.

[26] T. Desautels, J. Calvert, J. Hoffman, M. Jay, Y. Kerem, L. Shieh,

D. Shimabukuro, U. Chettipally, M. D. Feldman, C. Barton, et al. Prediction

of sepsis in the intensive care unit with minimal electronic health record data:

a machine learning approach. JMIR medical informatics, 4(3):e5909, 2016.

[27] T. Desautels, J. Hoffman, C. Barton, Q. Mao, M. Jay, J. Calvert, and R. Das.

Pediatric severe sepsis prediction using machine learning. bioRxiv, page 223289,

2017.

[28] M. Dewan, N. Muthu, E. Shelov, C. P. Bonafide, P. Brady, D. Davis, E. S.

Kirkendall, D. Niles, R. M. Sutton, D. Traynor, et al. Performance of a clinical

decision support tool to identify picu patients at high-risk for clinical deteriora-

tion. Pediatric critical care medicine: a journal of the Society of Critical Care



119

Medicine and the World Federation of Pediatric Intensive and Critical Care

Societies, 21(2):129, 2020.

[29] M. Ellsberg, H. A. Jansen, L. Heise, C. H. Watts, C. Garcia-Moreno, et al.

Intimate partner violence and women’s physical and mental health in the who

multi-country study on women’s health and domestic violence: an observational

study. The lancet, 371(9619):1165–1172, 2008.

[30] D. P. Evans, D. Z. Shojaie, K. M. Sahay, N. W. DeSousa, C. D. Hall, and M. A.

Vertamatti. Intimate partner violence: barriers to action and opportunities

for intervention among health care providers in são paulo, brazil. Journal of

interpersonal violence, page 0886260519881004, 2019.

[31] L. M. Figueroa-Phillips, C. P. Bonafide, S. E. Coffin, M. E. Ross, and J. P.

Guevara. Development of a clinical prediction model for central line-associated

bloodstream infection in children presenting to the emergency department. Pe-

diatric emergency care, 36(11):e600, 2020.

[32] C. for Disease Control, Prevention, et al. Vital signs: central line–associated

blood stream infections—united states, 2001, 2008, and 2009. Annals of emer-

gency medicine, 58(5):447–450, 2011.

[33] M. Ford-Gilboe, C. N. Wathen, C. Varcoe, H. L. MacMillan, K. Scott-Storey,

T. Mantler, K. Hegarty, and N. Perrin. Development of a brief measure of inti-

mate partner violence experiences: the composite abuse scale (revised)—short

form (casr-sf). BMJ open, 6(12):e012824, 2016.

[34] S. Fotouhi, S. Asadi, and M. W. Kattan. A comprehensive data level analysis

for cancer diagnosis on imbalanced data. Journal of biomedical informatics,

90:103089, 2019.



120

[35] J. H. Friedman. Greedy function approximation: a gradient boosting machine.

Annals of statistics, pages 1189–1232, 2001.

[36] K. H. Goh, L. Wang, A. Y. K. Yeow, H. Poh, K. Li, J. J. L. Yeow, and G. Y. H.

Tan. Artificial intelligence in sepsis early prediction and diagnosis using un-

structured data in healthcare. Nature communications, 12(1):1–10, 2021.

[37] H. Han, W.-Y. Wang, and B.-H. Mao. Borderline-smote: a new over-sampling

method in imbalanced data sets learning. In International conference on intel-

ligent computing, pages 878–887. Springer, 2005.

[38] A. K. I. Hassan and A. Abraham. Modeling insurance fraud detection using

imbalanced data classification. In Advances in nature and biologically inspired

computing, pages 117–127. Springer, 2016.

[39] H. He and Y. Ma. Imbalanced learning: foundations, algorithms, and applica-

tions. Wiley-IEEE Press, 2013.

[40] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-

tion, 9(8):1735–1780, 1997.

[41] S. Horng, D. A. Sontag, Y. Halpern, Y. Jernite, N. I. Shapiro, and L. A.

Nathanson. Creating an automated trigger for sepsis clinical decision support at

emergency department triage using machine learning. PloS one, 12(4):e0174708,

2017.

[42] H. E. Hsu, F. Abanyie, M. S. Agus, F. Balamuth, P. W. Brady, R. J. Brilli,

J. A. Carcillo, R. Dantes, L. Epstein, A. E. Fiore, et al. A national approach

to pediatric sepsis surveillance. Pediatrics, 144(6), 2019.

[43] K. Huang, J. Altosaar, and R. Ranganath. Clinicalbert: Modeling clinical notes

and predicting hospital readmission. arXiv preprint arXiv:1904.05342, 2019.



121

[44] K. Iwasawa, W. Suda, T. Tsunoda, M. Oikawa-Kawamoto, S. Umetsu,

L. Takayasu, A. Inui, T. Fujisawa, H. Morita, T. Sogo, et al. Dysbiosis of

the salivary microbiota in pediatric-onset primary sclerosing cholangitis and its

potential as a biomarker. Scientific reports, 8(1):1–10, 2018.

[45] N. Japkowicz. The class imbalance problem: Significance and strategies. In

Proc. of the Int’l Conf. on Artificial Intelligence, volume 56. Citeseer, 2000.

[46] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-Wei, M. Feng, M. Ghassemi,

B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark. Mimic-iii, a freely accessible

critical care database. Scientific data, 3(1):1–9, 2016.

[47] R. Kamaleswaran, O. Akbilgic, M. A. Hallman, A. N. West, R. L. Davis, and

S. H. Shah. Applying artificial intelligence to identify physiomarkers predicting

severe sepsis in the picu. Pediatric Critical Care Medicine, 19(10):e495–e503,

2018.

[48] A. Khojandi, V. Tansakul, X. Li, R. S. Koszalinski, and W. Paiva. Prediction

of sepsis and in-hospital mortality using electronic health records. Methods of

information in medicine, 57(04):185–193, 2018.

[49] B. Khurana, S. E. Seltzer, I. S. Kohane, and G. W. Boland. Making the ‘in-

visible’visible: transforming the detection of intimate partner violence. BMJ

quality & safety, 29(3):241–244, 2020.

[50] M. Kubat, S. Matwin, et al. Addressing the curse of imbalanced training sets:

one-sided selection. In Icml, volume 97, pages 179–186. Citeseer, 1997.

[51] E. N. Larsen, N. Gavin, N. Marsh, C. M. Rickard, N. Runnegar, and J. Webster.

A systematic review of central-line–associated bloodstream infection (clabsi)

diagnostic reliability and error. Infection Control & Hospital Epidemiology,

40(10):1100–1106, 2019.



122

[52] S. Le, J. Hoffman, C. Barton, J. C. Fitzgerald, A. Allen, E. Pellegrini, J. Calvert,

and R. Das. Pediatric severe sepsis prediction using machine learning. Frontiers

in pediatrics, 7:413, 2019.

[53] D. E. Leisman, M. O. Harhay, D. J. Lederer, M. Abramson, A. A. Adjei,

J. Bakker, Z. K. Ballas, E. Barreiro, S. C. Bell, R. Bellomo, et al. Devel-

opment and reporting of prediction models: guidance for authors from editors

of respiratory, sleep, and critical care journals. Critical care medicine, 48(5):623,

2020.

[54] S. Leteurtre, A. Duhamel, J. Salleron, B. Grandbastien, J. Lacroix, F. Leclerc,
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