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Abstract

Analysis of the Effect of C3 Transferase
on Behavioral Outcomes with Informative Right-Censoring

By Katherine Catevenis

This study aimed to slow the degradation rates of the motor functions of mice with Amy-
otrophic Lateral Sclerosis (ALS). Two treatment groups, high titer AAV2 C3 and low titer
AAV2 C3, were investigated to determine their effect on the degradation of the SOD1 mice,
measured through the Basso-Beattie-Bresnahan (BBB) locomotor rating. In this experiment
each mouse served as its own control through one side being treated and the other side used
as a control. An analysis that adjusted for the correlation between the sides of each animal
and the presence of informative right censoring was used. This method used an Empirical
Bayes approach and was an extension of the method used by Pak [1999]. Twenty SOD1
gene mice were injected with their treatment on one side. Eight mice received the high titer
treatment, eight mice received the low titer treatment, and four mice received a control GFP
treatment. The BBB score was measured once before the injection and then on specific days
after the injection. A test of informative right censoring was performed for each side of the
mice for each treatment group. None of the treatment groups were found to have informa-
tive right censoring. Three types of slope estimates were compared for each animal, ordinary
least squares, Empirical Bayes assuming no informative right censoring, and Empirical Bayes
adjusted for informative right censoring. None of the treatment groups showed a significant
difference between the decline of function in the treated versus the untreated side (p > 0.70).
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1 Introduction

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder that affects both

the upper and lower motor neurons. The disease is extremely progressive with the mean

survival time from diagnosis being only three to five years [Rowland and Shneider, 2001].

It is estimated that 20,000 - 30,000 people are living with ALS in the United States and

approximately 5,000 are diagnosed each year. There are two types of ALS, sporadic and

familial. Sporadic ALS (SALS) accounts for approximately 90% of ALS cases. These cases

have no family history and no clear risk factors for the disease [ALS, 2010]. The remaining

10% of ALS cases are categorized as familial ALS (FALS). These cases are genetic and several

genes and loci have been identified to cause the clinical phenotype [Kiernan et al., 2011].

One gene that has been identified to cause the clinical phenotype is the SOD1 gene. The

SOD1 gene normally encodes for copper-zinc ion-binding superoxide dismutase. However,

mutations in this gene cause FALS and accounts for approximately 20-25% of FALS cases.

More than 100 mutations have been identified thus far [Matsumoto et al., 2006].

In ALS there is an abnormal activation of a cellular pathway, the Rho kinase (ROCK)

pathway. This pathway inhibits regeneration of the motor neuron axons. It has been proven

that C3 transferase inhibits the Rho kinase pathway. This inhibition suggests that inhibition

of the Rho kinase pathway may be a way to promote axonal regeneration [Gopalakrishnan

et al., 2008].

The primary purpose of this study was to determine if direct spinal chord injection of C3

transferase using a viral vector would promote regeneration or delay degeneration of motor

neuron axons, therefore slowing the disease progress. The secondary purposes of the study

were:

1. To estimate the rate of degradation for both the treated side and the untreated side of

the mice;

2. To take into account the informative dropout in order to reduce the bias of the esti-
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mated rate of degradation; and

3. To estimate the correlation in the degradation rate between the treated and untreated

sides of the mice.

In a study performed by Hoberman et al. [2011] twenty mice with SOD1 G93A, a mutation

of the SOD1 gene, were separated into three treatment groups. Each mouse received a 2

micro-liter unilateral spinal chord injection at the level of lumbar enlargement of one of the

three treatments. A viral vector, AAV2, was used to deliver the C3 transferase directly

into the spinal chord. The first treatment group, High, was given high titer AAV2 C3 (1.0

x 1012 PFU/mL AAV2-C3-GFP). The second group, Low, was given low titer AAV2 C3

(1:10 dilution of AAV2-C3-GFP). The third group, GFP, was given control AAV2-GFP.

GFP, green fluorescent protein, is used as a marker for expression. The mice were given the

injection on only one side of their spinal chord, so each mouse served as its own control. There

were several forms of behavioral testing used in the study. The first was the Basso-Beattie-

Bresnahan (BBB) locomotor rating. The BBB rating can range from 0, which stands for

complete paralysis, to 21, which stands for normal locomotion. The second form of behavioral

testing used was called the ALS motor score, developed by Matsumoto et al. [2006]. This

scoring system is used after disease onset and ranges from 0,extreme motor dysfunction,

to 5, normal motor function. The third form of behavioral testing is hindgrip strength

measurement. Also measured are the mice’s weight and survival time. At disease endpoint,

the mice were perfused with 4% paraformaldehyde. Their spinal chord, L4 ventral roots,

sciatic nerves and gastrocnemius muscle were harvested and analyzed for counts of motor

neurons and axons. The researchers conducting this study were blinded to the behavioral

testing and the tissue analysis.

In order to analyze the data from this study a new method needs to be introduced. This

method must take into account different aspects of the data.

The first aspect is that the data are longitudinal. Longitudinal data are one type of cor-

related data, where the response variable is measured repeatedly over time. These repeated
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observations introduce the complicating feature: their correlation. In other words the data

are no longer independent, so standard methods of analysis cannot be used. In order to

obtain a precise estimate of the C3 transferase effect and a valid estimate of its standard

error, taking into account their correlation is extremely important. A näive analysis, or one

that does not take into account their correlation, may lead to incorrect inferences.

The second aspect is that one side of the animal’s brain is treated while the other side

is left untreated. In this study, the behavioral testing data on each side of the mouse will

generally be correlated due to the shared environment. Ignoring this correlation could result

in inefficient estimators of the degradation rate and a biased standard error. Hence, this

additional correlation needs to be taken into account in the statistical model.

Informative right censoring is the third aspect of the data that needs to be taken into

account. In many longitudinal studies, some subjects may not be followed for the entire

study time frame due to death or withdrawal. When this occurs, the outcome variable is

right censored. Many of the statistical methods that exist assume that the right censoring

is uninformative. In other words, that the right censoring is independent of the outcome

variable. For this study, it would mean that the death of a mouse is not associated with its

rate of degradation. However, the rate of degradation may be associated with the reason

for the mouse’s death or withdrawal. Due to the right censoring, the missing data cannot

be ignored. Furthermore, since informative right censoring is present, standard likelihood

based analyses and general multivariate repeated measures analyses are not appropriate.

These analyses could result in biased and misleading estimations since they would place

more weight on animals that completed the study rather than those who died early.

In the analysis, the data should be tested for whether the right censoring is informative

or not. If right censoring and the rate of degradation are not independent then the analysis

should adjust appropriately.
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In order to account for the aspects of the data discussed, the statistical methodology

of Pak [1999] is extended in order to allow different degradation rates for each side of the

animal.
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2 Methods

2.1 Basic Model and Assumptions

Measurements of the BBB locomotor rating were recorded at a baseline time, considered

time 0, and also on separate days after the injection,

t = (0, 4, 7, 11, 14, 18, 21, 26, 28, 32, 35, 39, 42, 46, 49, 53, 56, 60, 63, 67, 70, 74).

Each animal had a different follow up time depending on when they were censored. There

was one mouse, mouse 4, whose follow up was started on day 3 after the injection. In

order to examine the relationship between the two doses of C3 transferase and the rate of

degradation, an Empirical Bayes approach was selected. The basic model starts with the

response variable, BBB locomotor rating, and the explanatory variable, number of days post

injection. The BBB locomotor ratings observed in a specific treatment group are denoted by

Yijk, i = 1, . . . , n; j = 1, . . . , Ji; k = 1, . . . ,mij where subscript i refers to the given animal, j

refers to the side of the animal, and k refers to the longitudinal measurement. Therefore, a

specific treatment group has n animals, Ji sides to the animal, and mij measurements per

side. In all cases, the animal will have 2 sides (Ji = 2), a treated side (Ji = 1) and an

untreated side (Ji = 2). Three distributional assumptions were made regarding the response

variable, the BBB locomotor scale, as follows:

1. The expectation of the response variable is linear in time.

2. Each side of the animal has its own true degradation rate, {βij}; and

3. The response variables, conditional on {βij}, are observed with errors that are mutually

independent identically distributed normal random variables.

These assumptions imply that:

Yijk |βij = αij + βijtijk + εijk, εijk ∼ N(0, σ2
ε ) (1)
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In addition to equation 1, we model the animal’s true, but unknown, degradation rates,

{βij}, as normal random variables. The degradation rates have marginal variances, A1 and

A2, for the treated and untreated sides respectively and within a given animal, a common

pairwise correlation, ρ
√
A1A2. The similarity between the degradation rates on each side

of the animal is measured by the parameter ρ. It is not uncommon for some animals to die

before the end of the study due to reasons related to their degradation rate. For example,

animals with fast degradation rates may tend to die or be sacrificed for ethical reasons

before the end of the study. The time of last observation, or dropout time, is denoted by

t∗ij = tijkmij
. Following Pak [1999], the assumption that an animal’s degradation rate, βij,

is linearly related to its dropout time, t∗ij, was applied. Therefore the probability model for

the animal’s degradation rates is:

 βi1

βi2

 ∼ N2

µi =

 γ0 + γ1t
∗
i1

γ2 + γ3t
∗
i2

 ,W =

 A1 ρ
√
A1A2

ρ
√
A1A2 A2


 (2)

Note that if γ1 and γ3 are not equal to 0 then dropout is informative and biased results

may be obtained if näive methods are used to estimate the animal’s degradation rate. One

example is an experiment where animals with fast degradation rates tend to die earlier than

animals with slow degradation rates, in which case γ1 and γ3 are less than 0. By contrast, a

standard random-effects analysis that adapts equations 1 and 2 but näively assumes that γ1

and γ3 are equal to 0 would lead to the underestimation of the true average degradation rates

in the population. The goal of this analysis is to conduct inference on the true, individual

animal slopes, {βij}, and the average slopes

β̄ =

 1
n

∑n
i=1 βi1

1
n

∑n
i=1 βi2

 (3)

based on the model specified by equations 1 and 2. Prior to estimating the true degradation

rates, the previous model assumptions will be assessed using several plots. In order to
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validate the linear relationship between the response variable, BBB locomotor scale, and the

time variable several scatter plots will be examined. A crude assessment of informative right

censoring can also be obtained from these plots. However, formal t-tests will be used to test

for informative right censoring later in the analysis. To comply with model assumptions,

the variance of the slope estimates needs to be constant over time. If animal specific slopes

were not allowed in this model, then the variances would fan out because of the longitudinal

aspect of the data. In other words, there would not be constant variance over time. Residuals

take into account the individual slopes and therefore, should have constant variance if there

is no dropout. A boxplot of the residuals grouped into 4 timepoints will be used to validate

this assumption.

2.2 Implications of the Model

When informative right censoring is present, to obtain estimates of the true degradation

rate using standard software such as PROC MIXED, PROC GLM, PROC GLIMMIXED,

or PROC GENMOD in SAS is inappropriate. Informative right censoring needs to be taken

into account in the analysis as well as the multiple sides per animal, ie each animal serving

as its own control. Here, the R programming environment was used.

2.2.1 Distribution of OLS Estimates of Slope

The ordinary least-squares estimates of an animal’s degradation rate is given by

bij,OLS =

∑mij

k=1(tijk − t̄ij)(yijk − ¯yij•)∑mij

k=1(tijk − ¯tij•)
, i = 1, . . . , n; j = 1, 2 (4)

Following equation 1, the ordinary least-squares estimates, {bij,OLS}, given the true

slopes, {βij}, are conditionally independent normally distributed random variables. In math-

ematical notation:



8

bij,OLS|βij
iid∼ N(βi, Vij) where Vij =

σ2∑
(tijk − ¯tij•)2

(5)

As implied by equations 2 and 5, the marginal distribution of the ordinary least-squares

estimates is

β̂i ∼ N2(µi, Vi +W ) (6)

where µi =

 γ0 + γ1t
∗
i1

γ2 + γ3t
∗
i2



W =

 A1 ρ
√
A1A2

ρ
√
A1A2 A2



Vi =

 Vi1 0

0 Vi2



2.2.2 Posterior Distribution of the True Slopes

Also continuing from equations 2 and 5, the posterior distribution of the true slopes,

{βij}, given the ordinary least squares estimates, {bij,OLS}, can be derived [Gelman et al.,

1995].

βi|β̂i ∼ N2(µ
∗
i ,W

∗
i ) (7)

where µ∗i = (W−1 + V −1i )−1(W−1µi + V −1i β̂i)

W ∗
i = (W−1 + V −1i )−1

The posterior distribution takes into account the ordinary least squares estimates of the

slopes as well as the dropout times for each animal.
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2.3 Inference

By using the methods of Pak [1999], inference can be conducted on the model parameters

θ = (A1, A2, ρ, γ) where γ = (γ0, γ1, γ2, γ3)
T . First, we estimate σ2

ε using the standard

ordinary least squares method based on the residual sum of squares.

σ2
ε =

∑n
i=1

∑2
j=1

∑mij

k=1(yijk − α̂ij − tijkbij,OLS)2∑n
i=1

∑2
j=1(mij − 2)

(8)

Next, the marginal variance (F ), A1, A2, and ρ are initialized assuming that γ1 and γ3

are equal to 0. The F matrix is calculated as follows:

F =

 F11 F12

F21 F22

 =
1

n− 1

n∑
i=1

 Vi1 0

0 Vi2

 (β̂i − ¯̂
β)(β̂i − ¯̂

β)T where
¯̂
β =

 1
n

∑n
i=1 β̂i,1

1
n

∑n
i=1 β̂i,2


(9)

By using a method of momements approach that equates the observed F matrix with its

expected value, initial estimates of A1, A2, and ρ can be calculated.

Â1 =
F11 − 1

1
n

∑n
i=1

1
Vi1

Â2 =
F22 − 1

1
n

∑n
i=1

1
Vi2

ρ̂ =
F12 + F21√

A1A2

n
(
∑n
i=1

1
Vi1

+ 1
Vi2

)

Once the initial estimates of A1, A2, and ρ are obtained, the informative dropout needs

to be taken into account since previously it was assumed that there was no informative right

censoring (ie {γ1, γ3 = 0}). To do this, the gamma vector needs to be updated. Weighted

least squares is used to update γ using our estimates of A1, A2, and ρ.



10

γ̂ = (ZTD−1Z)−1ZTD−1β̂ (10)

where β̂ =


β̂1

...

β̂n

 ,

Ẑ =


Ẑ1

...

Ẑn

 , where Zi =

 1 t∗i1 0 0

0 0 1 t∗i2

 ,

and D =


D1 0 0

0
. . . 0

0 0 Dn

 where Di = var(β̂i) = Vi +W

Subsequently, the initial estimates of A1, A2, and ρ need to be updated using the new

gamma vector.

µ̂i =

 γ̂0 + γ̂1t
∗
i1

γ̂2 + γ̂3t
∗
i2

 (11)

G =

 G11 G12

G21 G22

 =
1

n− 1

n∑
i=1

 Vi1 0

0 Vi2

 (β̂i − µ̂i)(β̂i − µ̂i)T (12)

By using a method of moments that equates the observed G matrix with its expected

value, we are able to update A1, A2, and ρ denoting these A1,new A2,new and ρnew.

ˆA1,new =
G11 − 1

1
n

∑n
i=1

1
Vi1
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ˆA2,new =
G22 − 1

1
n

∑n
i=1

1
Vi2

ˆρnew =
G12 +G21√

A1A2

n
(
∑n
i=1

1
Vi1

+ 1
Vi2

)

The alternation of updating A1, A2, and ρ, and γ are continued until the estimates of

A1, A2, ρ, and γ have converged.

∣∣∣Â1 − ˆA1,new

∣∣∣ < 0.0001∣∣∣Â2 − ˆA2,new

∣∣∣ < 0.0001

|ρ̂− ˆρnew| < 0.0001 (13)

Once the final estimates of A1, A2, and ρ, and γ have been obtained, the variance of γ

can be calculated and used to perform a Wald test for informative dropout (ie {γ1, γ3 = 0}).

var(γ̂) = (ZTD−1Z)−1 (14)

Finally, the Empirical Bayes estimates of the true individual slopes can be calculated

[Gelman et al., 1995].

β̂eb = (W−1 + V −1)−1(W−1µ̂+ V −1β̂) (15)

= (W−1 + V −1)−1(W−1
[
Z(ZTD−1Z)−1ZTD−1 + V −1

]
β̂

= Hβ̂
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where µ̂ =


µ̂1

...

µ̂n

 (16)

and H = (W−1 + V −1)−1(W−1
[
Z(ZTD−1Z)−1ZTD−1 + V −1

]

The variance-covariance matrix of the Empirical Bayes estimates can be calculated using

the H matrix also.

var(β̂eb) = HV ar(β̂)HT

= HDHT (17)

The Empirical Bayes estimates of the average true slopes of the treated and untreated

populations is given by

¯̂
βeb =

1

n
QT β̂eb (18)

where Q =



1 0

0 1

1 0

0 1

...



Its variance is given by

V ar(
¯̂
βeb) =

1

n2
QTDQ (19)

The point estimates and standard errors which were obtained through Empirical Bayes
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can be compared using Wald tests. For different contrasts the Q matrix will change however

equations 18 and 19 are used. Contrasts between the treated and untreated sides for each

treatment group were assessed to determine the treatment effect. Also, contrasts testing the

treated slope equal to 0 and the untreated slope equal to 0 were performed.

Z =
T√

V ar(T )
∼ N(0, 1) (20)

where T =
1

n
Q∗T β̂eb (21)

and V ar(T ) =
1

n2
Q∗TDQ∗, (22)

where Q∗ =



1

−1

1

−1

...


(23)



14

3 Results

3.1 Checking Assumptions

To begin the analysis, the assumptions were checked for the model. The first assumption

was that the response variable, BBB Score, is linear in time. This was checked using a

scatter-plot of the BBB Score by Time for each animal where each side was shown separately

(Figure 1). This plot indicates that BBB Score is linear in time, satisfying the assumption.

Another plot was used to assess this assumption (Figure 2). This plot shows the average

BBB score pooled by day. Each combination of side of the mouse and treatment group was

allotted its own line, indicated in the legend. The satisfaction of the linearity assumption

is better shown through this figure (Figure 2). Figure 1 can also be used to assess whether

the right censoring was informative. It seems,although not clear, as though the animals who

had a faster decline in their BBB score also died faster, which would indicate informative

right censoring. In the plot it is clear that after day 42, which every mouse survived to,

the BBB scores are more scattered and rapidly decline. The second assumption that needed

to be checked was that the variances of the slope estimates were constant over time. This

was examined through a boxplot of the residuals for the treated and untreated sides of each

treatment group split up into four equal time periods (Figure 5). This plot suggest that

there is relatively constant variance over time for each combination of side and treatment

group.

3.2 Model Based Results

After checking the assumptions of the model, the slope estimates for each of the animals

were calculated. First, they were calculated with ordinary least squares. Then they were

calculated using an empirical bayes approach assuming no informative right censoring and

finally using an empirical bayes approach adjusting for informative right censoring. The

estimates for each treatment group (High, Low, and GFP) can be seen in Tables 1, 2, and 3
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respectively.

Table 1: High Treatment Group Slope Estimates
Mouse Side OLS

Slope
Std.
Error

Empirical
Bayes

Estimate
without
IRC

Std.
Error

Empirical
Bayes

Estimate
with IRC

Std.
Error

1
Treated -0.1255 0.0441 -0.2078 0.1639 -0.1303 0.1608

Untreated -0.1827 0.0371 -0.2339 0.1440 -0.1837 0.1381

3
Treated 0.0276 0.0718 -0.2584 0.1734 -0.0121 0.1603

Untreated -0.0945 0.0605 -0.2680 0.1517 -0.1046 0.1376

5
Treated -0.3747 0.0580 -0.2388 0.1682 -0.3719 0.1586

Untreated -0.4412 0.0489 -0.2547 0.1474 -0.4224 0.1362

6
Treated -0.1835 0.0407 -0.1994 0.1630 -0.1851 0.1618

Untreated -0.2326 0.0343 -0.2282 0.1433 -0.2316 0.1389

12
Treated -0.2639 0.0441 -0.2078 0.1639 -0.2628 0.1608

Untreated -0.3012 0.0371 -0.2339 0.1440 -0.2973 0.1381

14
Treated -0.4729 0.0642 -0.2472 0.1704 -0.4444 0.1587

Untreated -0.3750 0.0541 -0.2604 0.1492 -0.3729 0.1363

16
Treated -0.2577 0.0718 -0.2584 0.1734 -0.2471 0.1603

Untreated -0.1863 0.0605 -0.2680 0.1517 -0.2036 0.1376

18
Treated -0.1446 0.0350 -0.1797 0.1617 -0.1436 0.1641

Untreated -0.1424 0.0295 -0.2149 0.1422 -0.1459 0.1408

In all three treatment groups the slope estimates and their standard errors have the

same relationship. The OLS standard errors are the smallest when compared to their slope

estimates. Next, the Empirical Bayes with informative right censoring’s standard errors are

larger than the OLS standard errors when compared with their slope estimates but smaller

than the Empirical Bayes without informative right censoring’s standard errors.

Next, the variance components of each treatment group and side of the animal were calcu-

lated (Table 4). The variance components for the high treatment group and low treatment

groups were very similar, σ2
ε,1 = 11.5479σ2

ε,2 = 8.1949 versus σ2
ε,1 = 11.1712σ2

ε,2 = 8.2969.

The variance components for the GFP treatment group were reversed from the high and low

treatment groups, σ2
ε,1 = 8.7158σ2

ε,2 = 11.8807.
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Table 2: Low Treatment Group Slope Estimates
Mouse Side OLS

Slope
Std.
Error

Empirical
Bayes

Estimate
without
IRC

Std.
Error

Empirical
Bayes

Estimate
with IRC

Std.
Error

2
Treated -0.2306 0.0370 -0.1477 0.1403 -0.2236 0.1075

Untreated -0.2260 0.0338 -0.1517 0.1337 -0.2211 0.1072

4
Treated -0.1442 0.0410 -0.2014 0.1414 -0.1478 0.1033

Untreated -0.1055 0.0374 -0.2129 0.1347 -0.1163 0.1034

7
Treated -0.3633 0.0631 -0.3088 0.1493 -0.3495 0.1028

Untreated -0.3548 0.0576 -0.3354 0.1416 -0.3532 0.1030

8
Treated -0.3693 0.0631 -0.3088 0.1493 -0.3618 0.1028

Untreated -0.4667 0.0576 -0.3354 0.1416 -0.4387 0.1030

9
Treated -0.1832 0.0434 -0.2014 0.1421 -0.1840 0.1029

Untreated -0.1690 0.0396 -0.2129 0.1353 -0.1741 0.1033

10
Treated -0.1681 0.0436 -0.2014 0.1421 -0.1762 0.1029

Untreated -0.2796 0.0396 -0.2129 0.1353 -0.2696 0.1033

13
Treated -0.3105 0.0570 -0.2857 0.1469 -0.3068 0.1009

Untreated -0.3448 0.0520 -0.3191 0.1395 -0.3387 0.1015

19
Treated -0.1742 0.0570 -0.2857 0.1469 -0.1895 0.1009

Untreated -0.1369 0.0520 -0.3091 0.1395 -0.1663 0.1015

The initial variances of the treated and untreated sides were denoted under the without

informative right censoring column as Â1 and Â2 respectively. Both the Low and GFP treat-

ment groups marginal variances decreased when informative right censoring was adjusted

for. However, in the High treatment group the variances increased when informative right

censoring was adjusted for. All of the variance estimates were of approximately the same

magnitude.

The correlation between the treated and untreated sides of the mice was given by ρ̂.

Under the without IRC column in Table 4 the initial correlation can be found. This was

calculated before adjusting for informative right censoring. After adjusting for informative

right censoring, the correlations for each treatment group decrease. This was due to adjusting

for informative right censoring. The GFP treatment group’s correlation decreased the most
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Table 3: GFP Treatment Group Slope Estimates
Mouse Side OLS

Slope
Std.
Error

Empirical
Bayes

Estimate
without
IRC

Std.
Error

Empirical
Bayes

Estimate
with IRC

Std.
Error

11
Treated -0.1993 0.0283 -0.1519 0.1467 -0.1954 0.0952

Untreated -0.1882 0.0331 -0.1694 0.1521 -0.1875 0.0984

15
Treated -0.1784 0.0354 -0.2468 0.1482 -0.1867 0.0908

Untreated -0.2116 0.0413 -0.2422 0.1541 -0.2144 0.0926

17
Treated -0.2852 0.0504 -0.3676 0.1525 -0.3053 0.0925

Untreated -0.3560 0.0584 -0.3348 0.1597 -0.3450 0.0952

20
Treated -0.5016 0.0557 -0.3934 0.1544 -0.4716 0.0956

Untreated -0.3411 0.0651 -0.3547 0.1621 -0.3504 0.0992

going from 0.8060 to 0.2258. The High treatment group had the highest final correlation,

0.6120.

Table 4: Variance Component Estimates

Treatment Group
OLS Estimates Without IRC With IRC

σ̂2
ε,1 σ̂2

ε,2 Â1 Â2 ρ̂ Â1 Â2 ρ̂
High 11.5479 8.1949 0.0249 0.0193 0.6244 0.0270 0.0199 0.6120
Low 11.1712 9.2969 0.0183 0.0167 0.3749 0.0115 0.0115 0.3308
GFP 8.7158 11.8807 0.0207 0.0220 0.8060 0.0086 0.0091 0.2258

After the variance components were estimated, the slopes for each treatment group and

side of the animal combination were tested for informative right censoring (Table 5). The

test of informative right censoring for the treated side of the High treatment group was not

statistically significant (p = 0.6503). The test for the untreated side of the High treatment

group was also not statistically significant (p = 0.7206). Both sides of the Low treatment

group were not statistically significant either (p = 0.1740, p = 0.1135). Similarly, both sides

of the GFP treatment group were not statistically significant (p = 0.0576, p = 0.1779). In

order to further assess the informative right censoring, plots of the estimated slopes (OLS

and Empirical Bayes) versus each animal’s dropout time were examined (Figures 3 and 4,
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respectively). These plots indicated that the animal’s slopes increased with an increase

in their dropout time, indicating that there was informative right censoring. There was a

discrepancy between the test results and the plots, which suggested a lack of power.

Table 5: Testing Informative Right Censoring

Treatment Group Side
Slope Estimates Test of Informative Dropout

γ SE(γ) Test Statistic P-value

High
Treated(γ1) 0.0028 0.0062 0.4533 0.6503

Untreated(γ3) 0.0019 0.0053 0.3577 0.7206

Low
Treated(γ1) 0.0076 0.0056 1.3593 0.1740

Untreated(γ3) 0.0087 0.0055 1.5825 0.1135

GFP
Treated(γ1) 0.0086 0.0045 1.8985 0.0576

Untreated(γ3) 0.0064 0.0047 1.3473 0.1779

The average slope estimates, both OLS and Emprirical Bayes, were compared using Table

6. All of the slopes estimates using the OLS method were larger than those obtained through

the Empirical Bayes method. The highest degradation rate was found in the treated side of

the GFP treatment group using the OLS estimates. This was followed by the untreated side

of the GFP treatment group. Subsequently, the untreated side of the Low treatment group

had the next fastest degradation rate and then the untreated side of the High treatment

group followed by the treated side of the low treatment group and finally the treated side of

the high treatment group. This pattern was not the same for the average Empirical Bayes

estimates. Of the slopes obtained through the Empirical Bayes method, the treated side of

the High treatment group had the fastest decaying population. This was then followed by

the untreated side of the GFP treatment group and the treated side of the Low treatment

group. Next was the untreated side of the Low treatment group, the untreated side of the

High treatment group, and finally was the treated side of the GFP treatment group.

Using the Empirical Bayes estimates of the slopes, the equality of the treated and un-

treated sides was tested for each treatment group (Table 7). The treated side of the High

and Low treatment groups had a slower degradation rate on average than the untreated side

on average in the same treatment group. Whereas, the treated side of the GFP treatment
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Table 6: Comparison of Average Un-weighted Estimate and Average Empirical Bayes Esti-
mate

Slope Estimates and Standard Errors
Treatment

Group Total Mice Side

Average
Unweighted

Estimate
Std. Error

Average
Empirical

Bayes
Estimate

Std. Error

High 8
Treated -0.2244 0.1551 -0.2247 0.0038

Untreated -0.2445 0.1190 -0.2453 0.0028

Low 8
Treated -0.2429 0.0917 -0.2424 0.0018

Untreated -0.2604 0.1241 -0.2598 0.0017

GFP 4
Treated -0.2911 0.1477 -0.2898 0.0026

Untreated -0.2742 0.0866 -0.2743 0.0029

group had a faster degradation rate than the untreated side on average. However when

tested, none of the treatment groups treated and untreated sides were significantly different

(pj > 0.70).

Table 7: Testing Difference in Average Treated vs. Average Untreated Sides of the Mice in
Each Treatment Group
Treatment Group Difference of the Means Std. Error Test Statistic P-Value

High 0.0206 0.0030 0.3778 0.7056
Low 0.0174 0.0025 0.3451 0.7300
GFP -0.0154 0.0046 -0.2286 0.8192
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4 Discussion

4.1 Discussion of Results

This study aimed to detect a difference between the treated and untreated sides of mice

in three different treatment groups. A new methodology had to be created due to the

potential for informative right censoring. In this study, there were no statistically significant

results. No differences between the Empirical Bayes estimates for the treated and untreated

sides of each treatment group were found, even though the methodology took into account

the correlation between the two sides and the possibility of informative right censoring.

However, the slopes estimates became much more precise when using the Empirical Bayes

approach rather than the OLS approach, which was expected. Informative right censoring

was not found to be present in this study. One treatment group, GFP, was close to finding

informative dropout. Figures 3 and 4 indicate that there is informative dropout since the

dropout time is linearly related to the slope estimates. When informative right censoring

was not taken into account, the slope estimates were misleadingly high because the animals

with faster degradation rates dropped out. Even though the test of informative dropout was

not significant, it is still important to use the new method of analysis. Using a näive analysis

would ignore the fact that the γ estimates for each side (γ̂1 and γ̂3) were positive, indicating

that the slope estimates increase with an increase in the dropout time. It is believed that

with more power the informative dropout could be detected. The sample size was very small

for the three treatment groups. Perhaps if more animals could be tested, the ability to detect

informative right censoring would increase.

4.2 Further Work

Following from the suggestion of a lack of power in this study many opportunities for

further work arise. The first is to develop a study design for researchers which would have

adequate power to detect differences between the sides of the animals as well as to detect
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informative right censoring. This would need to account for the number of treatment groups

as well as the cost per animal. It would not be feasible to suggest a large sample size when

the SOD1 gene mice are expensive. This could be done through simulation studies both

creating new data as well as sampling from this data. Another opportunity for further work

is to develop diagnostics for this methodology to test the assumptions. The diagnostics done

here could be further developed into actual tests.
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5 Appendices

A Figures

Figure 1: BBB Score by Day After Injection
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Figure 2: Average BBB Score by Day By Side of Animal for All Treatment Groups
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Figure 3: OLS Slope By Dropout Time By Side of the Animal for All Treatment Groups
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Figure 4: Empirical Bayes Slope Estimate By Dropout Time By Side of the Animal for All
Treatment Groups
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Figure 5: Boxplots of Residuals by Timeperiod by Side of the Animal for All Treatment
Groups
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B R Code

Copyrighted by Katherine Catevenis, 2012

behdata=read.csv(file = ”E : \ \Data \ \BehavioralDataReorganizedCSV.csv”)

siden=ifelse(behdata$Side==behdata$Treatment Side,”treated”,”untreated”)

behdata=data.frame(behdata,siden)

nanimal=20

nobstwo=matrix(0,nanimal,1)

for(i in 1:nanimal) {nobstwo[[i]] < −sum(behdata$Animal == i)}

nobs=nobstwo/2

maxobs=max(nobs)

# creating two matrices with all BBB data one for each side of the animals ie Y

bigytx=matrix(NA,nanimal,maxobs)

bigyuntx=matrix(NA,nanimal,maxobs)

for (i in 1:nanimal) {

bigytx[i,1:nobs[i,1]]=behdata$BBB[behdata$Animal==i & behdata$siden==”treated”]

bigyuntx[i,1:nobs[i,1]]=behdata$BBB[behdata$Animal==i & behdata$siden==”untreated”]

}

# creating a matrix with all day data, ie t

bigt=matrix(NA,nanimal,maxobs)

for (i in 1:nanimal) {

bigt[i,1:nobs[i,1]]¡-behdata$Day[behdata$Animal==i & behdata$siden==”treated”]

}

bigytxhigh=rbind(bigytx[1,],bigytx[3,], bigytx[5,], bigytx[6,], bigytx[12,], bigytx[14,], bigytx[16,],

bigytx[18,])

bigytxlow=rbind(bigytx[2,],bigytx[4,], bigytx[7,], bigytx[8,], bigytx[9,], bigytx[10,], bigytx[13,],

bigytx[19,])

bigytxgfp=rbind(bigytx[11,],bigytx[15,],bigytx[17,],bigytx[20,])
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bigyuntxhigh=rbind(bigyuntx[1,],bigyuntx[3,],bigyuntx[5,],bigyuntx[6,], bigyuntx[12,], bigyuntx[14,],

bigyuntx[16,], bigyuntx[18,])

bigyuntxlow=rbind(bigyuntx[2,],bigyuntx[4,],bigyuntx[7,],bigyuntx[8,], bigyuntx[9,], bigyuntx[10,],

bigyuntx[13,], bigyuntx[19,])

bigyuntxgfp=rbind(bigyuntx[11,],bigyuntx[15,],bigyuntx[17,],bigyuntx[20,])

bigthigh=rbind(bigt[1,],bigt[3,],bigt[5,],bigt[6,], bigt[12,], bigt[14,], bigt[16,], bigt[18,])

bigtlow=rbind(bigt[2,],bigt[4,],bigt[7,],bigt[8,], bigt[9,], bigt[10,], bigt[13,], bigt[19,])

bigtgfp=rbind(bigt[11,],bigt[15,],bigt[17,],bigt[20,])

nobshigh=rbind(nobs[1,1],nobs[3,1],nobs[5,1],nobs[6,1],nobs[12,1], nobs[14,1], nobs[16,1], nobs[18,1])

nobslow=rbind(nobs[2,1],nobs[4,1],nobs[7,1],nobs[8,1],nobs[9,1], nobs[10,1], nobs[13,1], nobs[19,1])

nobsgfp=rbind(nobs[11,1],nobs[15,1],nobs[17,1],nobs[20,1])

iest=function(bigytx,bigyuntx,bigt,nobs,nanimal) {

maxobs=max(nobs)

print(maxobs)

# creating a matrix with all model beta estimates for each side along with a matrix of

residuals to plot

# for diagnostics

slopes.individualtx=matrix(0,nanimal,2)

slopes.individualuntx=matrix(0,nanimal,2)

residualstx=matrix(0,nanimal,maxobs)

residualsuntx=matrix(0,nanimal,maxobs)

for ( i in 1:nanimal) {

mtx=lm(bigytx[i,]∼bigt[i,])

muntx=lm(bigyuntx[i,]∼bigt[i,])

slopes.individualtx[i,1]=mtx$coefficients[1]

slopes.individualtx[i,2]=mtx$coefficients[2]

slopes.individualuntx[i,1]=muntx$coefficients[1]
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slopes.individualuntx[i,2]=muntx$coefficients[2]

residualstx[i,1:length(mtx$residuals)]=mtx$residuals

residualsuntx[i,1:length(muntx$residuals)]=muntx$residuals

}

# creating a matrix of dropout times for each animal

dropout=matrix(NA,nanimal,1)

for (i in 1:nanimal) {

dropout[i,1]=bigt[i,nobs[i,1]]

}

# plot slopes by dropout time

#plot(slopes.individualtx[,2]∼dropout,xlab=”Dropout Time”,ylab=”Treated Side Slope Es-

timate” )

#plot(slopes.individualuntx[,2]∼dropout,xlab=”Dropout Time”,ylab=”Untreated Side Slope

Estimate” )

# sse

ssetx=diag(residualstx%*%t(residualstx))

sseuntx¡=diag(residualsuntx%*%t(residualsuntx))

# sst

t4=matrix(0,nanimal,maxobs)

for (i in 1:nanimal) {

t4[i,1:nobs[i,1]]=bigt[i,1:nobs[i,1]]-mean(bigt[i,1:nobs[i,1]])

}

sst=diag(t4%*%t(t4))

# sigma

sigmatx=sum(ssetx)/(sum(nobs)-2*nanimal)

sigmauntx=sum(sseuntx)/(sum(nobs)-2*nanimal)

print (sigmatx)
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print (sigmauntx)

# variance of ols estimate of slope given animals true slope

v1tx=sigmatx/sst

v1untx=sigmauntx/sst

meanslopetx=mean(slopes.individualtx[,2])

meanslopeuntx=mean(slopes.individualuntx[,2])

seslopetx=sqrt(var(slopes.individualtx[,2]))

seslopeuntx=sqrt(var(slopes.individualuntx[,2]))

print (seslopetx)

print (seslopeuntx)

meanslope=matrix(rbind(meanslopetx,meanslopeuntx),nanimal*2,1,byrow=TRUE)

print(meanslope)

# slopes tx untx

slopes=matrix(NA,nanimal*2,1)

k=1

for (i in 1:nanimal) {

slopes[k,1]=slopes.individualtx[i,2]

k=k+1

slopes[k,1]=slopes.individualuntx[i,2]

k=k+1

}

bmm=slopes-meanslope

diagmat=function(v1mat) {

iseq=seq(1,((2*nanimal)-1),2)

jseq=seq(2,(2*nanimal),2)

diagv1=matrix(0,2*nanimal,2*nanimal)

for (i in iseq){
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diagv1[i,(i:(i+1))]=v1mat[i,1:2]

}

for (j in jseq) {

diagv1[j,((j-1):j)]=v1mat[j,1:2]

}

return (diagv1)

}

v1=matrix(0,nanimal*2,2)

k=1

for (i in 1:nanimal) {

v1[k,1]=v1tx[i]

v1[k+1,2]=v1untx[i]

k=k+2

}

diagv1=diagmat(v1)

# calculate f

# v1 inv * bmm * t(bmm)

# 40 x 40 * 40 x 1 * 1 x 40

v1invdiag=1/diagv1

v1invdiag[v1invdiag==”Inf”]=0

bigf=v1invdiag%*%bmm%*%t(bmm)

sumdiag=function(mat)

{ sum22=matrix(0,2,2)

for (i in 1:(nrow(mat)-1))

{ mat22=matrix(c(mat[i,i],mat[i,i+1],mat[i+1,i],mat[i+1,i+1]), 2, 2, byrow=TRUE)

sum22=sum22+mat22

i=i+2
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}

return(sum22)

}

v1txinv=1/v1tx

v1untxinv=1/v1untx

f=(1/(nanimal-1))*sumdiag(bigf)

a1i=(f[1,1]-1)/((1/nanimal)*sum(v1txinv))

a2i=(f[2,2]-1)/((1/nanimal)*sum(v1untxinv))

pi=(f[1,2]+f[2,1])/((sqrt(a1i*a2i)/nanimal)* ( sum(v1txinv) + sum(v1untxinv)))

z=matrix(0,nanimal*2,4)

j=1

for (i in 1:nanimal) {

z[j,1]=1

z[j,2]=dropout[i,1]

z[j,3]=0

z[j,4]=0

z[j+1,1]=0

z[j+1,2]=0 z[j+1,3]=1

z[j+1,4]=dropout[i,1]

j=j+2

} iestout=matrix(NA,(nanimal*2),(13+(2*maxobs)))

iestout[1,1]=a1i

iestout[1,2]=a2i

iestout[1,3]=pi

iestout[1:(nanimal*2),4:5]=v1

iestout[1:(nanimal*2),6]=slopes

iestout[1:(nanimal*2),7:10]=z
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iestout[1:nanimal,11]=dropout

iestout[1:nanimal,12]=slopes.individualtx[,2]

iestout[1:nanimal,13]=slopes.individualuntx[,2]

iestout[1:nanimal,14:(13+maxobs)]=residualstx

iestout[1:nanimal,(14+maxobs):(13+(2*maxobs))]=residualsuntx

return (iestout)

}

#residualstx[i,1:length(mtx$residuals)]=mtx$residuals

#residualsuntx[i,1:length(muntx$residuals)]=muntx$residuals

#using for each treatment group

estihigh=iest(bigytxhigh,bigyuntxhigh,bigthigh,nobshigh,8)

estilow=iest(bigytxlow,bigyuntxlow,bigtlow,nobslow,8)

estigfp=iest(bigytxgfp,bigyuntxgfp,bigtgfp,nobsgfp,4)

# function for updating estimates

update=function(a1i,a2i,pi,v1,b,z)

{ cycle=1

a1dif=1

a2dif=1

pdif=1

flag=0

while (flag==0 & cycle ¡ 100 )

{

n=nrow(v1)/2

w=matrix(c(a1i,(pi*sqrt(a1i*a2i)),(pi*sqrt(a1i*a2i)),a2i), 2*n, 2 , byrow=TRUE)

varb=v1+w

print(varb)

diagmat=function(v1mat) {
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iseq=seq(1,((2*n)-1),2)

jseq=seq(2,(2*n),2)

diagv1=matrix(0,2*n,2*n)

for (i in iseq){

diagv1[i,(i:(i+1))]=v1mat[i,1:2]

}

for (j in jseq) {

diagv1[j,((j-1):j)]=v1mat[j,1:2]

}

return (diagv1)

}

d=diagmat(varb)

vdiag=diagmat(v1)

gammah=((solve((t(z))%*%(solve(d))%*%z)) %* % (t(z)) % * %( solve(d)) %*% b)

muh=z%*%gammah

print(muh)

v1inv=1/v1

v1inv[v1inv==”Inf”]=0

v1invdiag=diagmat(v1inv)

gpart=v1invdiag%*%(b-muh)%*%(t(b-muh))

sumdiag=function(mat)

{ sum22=matrix(0,2,2)

for (i in 1:(nrow(mat)-1))

{ mat22=matrix(c(mat[i,i],mat[i,i+1],mat[i+1,i],mat[i+1,i+1]), 2, 2, byrow=TRUE)

sum22=sum22+mat22

i=i+2

}
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return(sum22)

}

sumg=sumdiag(gpart)

g=(1/(n-2))*sumg

#make sure this is 2 x 2

# update a1 a2 and p

a1new=(g[1,1]-1)/((1/n)*sum(v1inv[,1]))

a2new=(g[2,2]-1)/((1/n)*sum(v1inv[,2]))

pnew=(g[1,2]+g[2,1])/((sqrt(a1new*a2new)/n)* ( sum(v1inv[,1])+ sum(v1inv[,2])))

wnew=matrix(c(a1new,(pnew*sqrt(a1new*a2new)),(pnew*sqrt(a1new*a2new)),a2new), 2*n,

2, byrow=TRUE)

wnewdiag=diagmat(wnew)

varbnew=v1+wnew

dnew=diagmat(varbnew)

gammahnew=((solve((t(z))%*%(solve(dnew))%*%z)) %* % (t(z)) %* %(solve(dnew)) %*%b)

row.names(gammahnew)=c(”gamma 0”,”gamma 1”,”gamma 2”,”gamma 3”)

colnames(gammahnew)=c(”Estimates”)

vargammanew=solve((t(z))%*%(solve(dnew))%*%z)

a1dif=abs(a1new-a1i)

a2dif=abs(a2new-a2i)

pdif=abs(pnew-pi)

flag = ifelse(max(c(a2dif,a1dif,pdif))¡0.0001, 1, 0)

cycle=cycle+1

if (cycle==100) { print(”Did not Converge”)}

a1i=a1new

a2i=a2new

pi=pnew
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}

# bayes estimates

h=solve(solve(wnewdiag)+solve(vdiag))%*%((solve(wnewdiag)%*% z %* % solve(t(z) % *

% solve(dnew) % * % z) % * % t(z)% * % solve(dnew))+ solve(vdiag))

mustar=h%*%b

varmustar=h%*%dnew%*%t(h)

tmustar=t(mustar)

# bayes estimates using only gamma 0 and gamma 2 as estimates for mu

gam02=matrix(rbind(gammahnew[1],gammahnew[3]),2*n,1)

mustargam02=solve((solve(wnewdiag)+solve(vdiag))) %*% (( solve(wnewdiag)%*%gam02)+

(solve(vdiag)%*%b))

varmustargam02=solve(solve(wnewdiag)+solve(vdiag))

tmustargam02=t(mustargam02)

# testing bayes estimates

testbe=function(q,mu,n,d) {

t=(1/n)*(t(q)%*%mu)

vart¡-(1/(n*n))*(t(q)%*%d%*%q)

z=t/sqrt(vart)

p=2*(1-pnorm(abs(z)))

testing=cbind(t,vart,z,p)

return(testing)

}

qtxuntx=matrix(rbind(1,-1),2*n,1)

qtx0=matrix(rbind(1,0),2*n,1)

quntx=matrix(rbind(0,1),2*n,1)

# testing treated vs untreated sides

txuntx=testbe(qtxuntx,mustar,n,dnew)



38

tx0=testbe(qtx0,mustar,n,dnew)

untx0=testbe(quntx,mustar,n,dnew)

# outputting estimates for everything

estimates=matrix(NA,((4*n)+13),2*n)

estimates[1,1]=a1new

estimates[2,1]=a2new

estimates[3,1]=pnew

estimates[4,1:4]=gammahnew

estimates[5:8,1:4]=vargammanew

estimates[9,1:(2*n)]=tmustar

estimates[10:((2*n)+9),1:(2*n)]=varmustar

estimates[((2*n)+10),1:(2*n)]=tmustargam02

estimates[((2*n)+11):((4*n)+10),1:(2*n)]=varmustargam02

estimates[((4*n)+11),1:4]=txuntx

estimates[((4*n)+12),1:4]=tx0

estimates[((4*n)+13),1:4]=untx0

return (estimates)

}

esthigh=update(estihigh[1,1],estihigh[1,2],estihigh[1,3],estihigh[1:16,4:5], estihigh[1:16,6], es-

tihigh[1:16,7:10])

estlow=update(estilow[1,1],estilow[1,2],estilow[1,3],estilow[1:16,4:5], estilow[1:16,6], estilow[1:16,7:10])

estgfp=update(estigfp[1,1],estigfp[1,2],estigfp[1,3],estigfp[1:8,4:5], estigfp[1:8,6], estigfp[1:8,7:10])

# testing for informative right censoring (ie gamma 1 and gamma 3 = 0)

testirc=function(gamma,vargamma) {

segamma=sqrt(vargamma)

tgamma=gamma/segamma

pgamma=2*(1-pnorm(abs(tgamma)))
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test=rbind(tgamma,pgamma)

return (test)

}

# high treatment group

vcgammahigh=esthigh[5:8,1:4]

gammahigh=esthigh[4,1:4]

gamma1high=gammahigh[2]

gamma3high=gammahigh[4]

vargamma1high=vcgammahigh[2,2]

vargamma3high=vcgammahigh[4,4]

pgam1high=testirc(gamma1high,vargamma1high)

pgam3high=testirc(gamma3high,vargamma3high)

pgam1high

pgam3high

#low treatment group

vcgammalow=estlow[5:8,1:4]

gammalow=estlow[4,1:4]

gamma1low=gammalow[2]

gamma3low=gammalow[4]

vargamma1low=vcgammalow[2,2]

vargamma3low=vcgammalow[4,4]

pgam1low=testirc(gamma1low,vargamma1low)

pgam3low=testirc(gamma3low,vargamma3low)

pgam1low

pgam3low

# gfp treatment group

vcgammagfp=estgfp[5:8,1:4]
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gammagfp=estgfp[4,1:4]

gamma1gfp=gammagfp[2]

gamma3gfp=gammagfp[4]

vargamma1gfp=vcgammagfp[2,2]

vargamma3gfp=vcgammagfp[4,4]

pgam1gfp=testirc(gamma1gfp,vargamma1gfp)

pgam3gfp=testirc(gamma3gfp,vargamma3gfp)

pgam1gfp

pgam3gfp

#iestout[1:nanimal,11]=dropout

#iestout[1:nanimal,12]=slopes.individualtx[,2]

#iestout[1:nanimal,13]=slopes.individualuntx[,2]

# creating some plots

par(mfrow=c(3,2))

# treated OLS by dropout time for high tx

plot(estihigh[1:8,12]∼estihigh[1:8,11], main=”OLS Slope Estimates for Treated Side of High

Treatment Group”, xlab=”Dropout Time (Day)”, ylab=”OLS Slope Estimate”)

# untreated OLS by dropout time for high tx

plot(estihigh[1:8,13]∼estihigh[1:8,11], main=”OLS Slope Estimates for Untreated Side of

High Treatment Group”, xlab=”Dropout Time (Day)”, ylab=”OLS Slope Estimate”)

# treated OLS by dropout time for low tx

plot(estilow[1:8,12]∼estilow[1:8,11], main=”OLS Slope Estimates for Treated Side of Low

Treatment Group”, xlab=”Dropout Time (Day)”, ylab=”OLS Slope Estimate”)

# untreated OLS by dropout time for low tx

plot(estilow[1:8,13]∼estilow[1:8,11], main=”OLS Slope Estimates for Untreated Side of Low

Treatment Group”, xlab=”Dropout Time (Day)”, ylab=”OLS Slope Estimate”)

# treated OLS by dropout time for gfp tx plot(estigfp[1:4,12]∼estigfp[1:4,11], main=”OLS



41

Slope Estimates for Treated Side of GFP Treatment Group”, xlab=”Dropout Time (Day)”,

ylab=”OLS Slope Estimate”)

# untreated OLS by dropout time for gfp tx

plot(estigfp[1:4,13]∼estigfp[1:4,11], main=”OLS Slope Estimates for Untreated Side of GFP

Treatment Group”, xlab=”Dropout Time (Day)”, ylab=”OLS Slope Estimate”)

# plots for final bayes slope estimates

# estimates[9,1:(2*n)]=tmustar

#need to manipulate the slopes

bshightx=esthigh[9,c(1,3,5,7,9,11,13,15)]

bshighuntx=esthigh[9,c(2,4,6,8,10,12,14,16)]

bslowtx=estlow[9,c(1,3,5,7,9,11,13,15)]

bslowuntx=estlow[9,c(2,4,6,8,10,12,14,16)]

bsgfptx=estgfp[9,c(1,3,5,7)]

bsgfpuntx=estgfp[9,c(2,4,6,8)]

par(mfrow=c(3,2))

# treated Bayes by dropout time for high tx

plot(bshightx∼estihigh[1:8,11],main=”Empirical Bayes Slope Estimates for Treated Side of

High Treatment Group”, xlab=”Dropout Time (Day)”, ylab=”Empirical Bayes Slope Esti-

mate”)

# untreated Bayes by dropout time for high tx

plot(bshighuntx∼estihigh[1:8,11],main=”Empirical Bayes Slope Estimates for Untreated Side

of High Treatment Group”, xlab=”Dropout Time (Day)”, ylab=”Empirical Bayes Slope Es-

timate”)

# treated Bayes by dropout time for low tx

plot(bslowtx∼estilow[1:8,11],main=”Empirical Bayes Slope Estimates for Treated Side of

Low Treatment Group”, xlab=”Dropout Time (Day)”, ylab=”Empirical Bayes Slope Esti-

mate”)
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# untreated Bayes by dropout time for low tx

plot(bslowuntx∼estilow[1:8,11],main=”Empirical Bayes Slope Estimates for Untreated Side

of Low Treatment Group”, xlab=”Dropout Time (Day)”, ylab=”Empirical Bayes Slope Es-

timate”)

# treated Bayes by dropout time for gfp tx

plot(bsgfptx∼estigfp[1:4,11],main=”Empirical Bayes Slope Estimates for Treated Side of

GFP Treatment Group”, xlab=”Dropout Time (Day)”, ylab=”Empirical Bayes Slope Esti-

mate”)

# untreated Bayes by dropout time for gfp tx

plot(bsgfpuntx∼estigfp[1:4,11],main=”Empirical Bayes Slope Estimates for Untreated Side

of GFP Treatment Group”, xlab=”Dropout Time (Day)”, ylab=”Empirical Bayes Slope Es-

timate”)

# boxplots of residuals

#iestout[1:nanimal,14:(13+maxobs)]=residualstx

#iestout[1:nanimal,(14+maxobs):(13+(2*maxobs))]=residualsuntx

grp21=matrix(c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4),8,21)

grp20=matrix(c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4),8,20)

grp22=matrix(c(1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4),4,22)

hrt=estihigh[1:8,14:34]

hru=estihigh[1:8,35:55]

lrt=estilow[1:8,14:33]

lru=estilow[1:8,34:53]

grt=estigfp[1:4,14:35]

gru=estigfp[1:4,36:57]

par(mfrow=c(3,2))

boxplot(hrt∼grp21,main=”Boxplot of Residuals for Treated Side of High Treatment Group”,

xlab=”Time Period”, ylab=”Residuals”)
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boxplot(hru∼grp21,main=”Boxplot of Residuals for Unreated Side of High Treatment Group”,

xlab=”Time Period”, ylab=”Residuals”)

boxplot(lrt∼grp20,main=”Boxplot of Residuals for Treated Side of Low Treatment Group”,

xlab=”Time Period”, ylab=”Residuals”)

boxplot(lru∼grp20,main=”Boxplot of Residuals for Untreated Side of Low Treatment Group”,

xlab=”Time Period”, ylab=”Residuals”)

boxplot(grt∼grp22,main=”Boxplot of Residuals for Treated Side of GFP Treatment Group”,

xlab=”Time Period”, ylab=”Residuals”)

boxplot(gru∼grp22,main=”Boxplot of Residuals for Untreated Side of GFP Treatment Group”,

xlab=”Time Period”, ylab=”Residuals”)

# line graph with average BBB by timepoint for each tx group

#bigytxhigh=rbind(bigytx[1,],bigytx[3,],bigytx[5,],bigytx[6,], bigytx[12,], bigytx[14,], bigytx[16,],

bigytx[18,])

#bigytxlow=rbind(bigytx[2,],bigytx[4,],bigytx[7,],bigytx[8,], bigytx[9,], bigytx[10,], bigytx[13,],

bigytx[19,])

#bigytxgfp=rbind(bigytx[11,],bigytx[15,],bigytx[17,],bigytx[20,])

#bigyuntxhigh=rbind(bigyuntx[1,],bigyuntx[3,],bigyuntx[5,],bigyuntx[6,],bigyuntx[12,], bigyuntx[14,],

bigyuntx[16,], bigyuntx[18,])

#bigyuntxlow=rbind(bigyuntx[2,],bigyuntx[4,],bigyuntx[7,],bigyuntx[8,],bigyuntx[9,], bigyuntx[10,],

bigyuntx[13,], bigyuntx[19,])

#bigyuntxgfp=rbind(bigyuntx[11,],bigyuntx[15,],bigyuntx[17,],bigyuntx[20,])

#bigthigh=rbind(bigt[1,],bigt[3,],bigt[5,],bigt[6,],bigt[12,], bigt[14,], bigt[16,], bigt[18,])

#bigtlow=rbind(bigt[2,],bigt[4,],bigt[7,],bigt[8,],bigt[9,], bigt[10,], bigt[13,], bigt[19,])

#bigtgfp=rbind(bigt[11,],bigt[15,],bigt[17,],bigt[20,])

avgyht=matrix(NA,1,maxobs)

avgyhu=matrix(NA,1,maxobs)

avgylt=matrix(NA,1,maxobs)
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avgylu=matrix(NA,1,maxobs)

avgygt=matrix(NA,1,maxobs)

avgygu=matrix(NA,1,maxobs)

for (i in 1:maxobs) {

avgyht[1,i]=mean(bigytxhigh[,i],na.rm=TRUE)

avgyhu[1,i]=mean(bigyuntxhigh[,i],na.rm=TRUE)

avgylt[1,i]=mean(bigytxlow[,i],na.rm=TRUE)

avgylu[1,i]=mean(bigyuntxlow[,i],na.rm=TRUE)

avgygt[1,i]=mean(bigytxgfp[,i],na.rm=TRUE)

avgygu[1,i]=mean(bigyuntxgfp[,i],na.rm=TRUE)

}

t=c(0, 4, 7, 11, 14, 18, 21, 26, 28, 32, 35, 39, 42, 46, 49, 53, 56, 60, 63, 67, 70, 74)

par(mfrow=c(1,1))

plot(c(0,74), c(0,21), type=”n”, xlab=”Days”, ylab=”Average BBB Score” )

lines(t,avgyht,type=”b”,lwd=1.5,lty=1,col=”red”,pch=1)

lines(t,avgyhu,type=”b”,lwd=1.5,lty=2,col=”blue”,pch=2)

lines(t,avgylt,type=”b”,lwd=1.5,lty=3,col=”forestgreen”,pch=3)

lines(t,avgylu,type=”b”,lwd=1.5,lty=4,col=”darkorange3”,pch=4)

lines(t,avgygt,type=”b”,lwd=1.5,lty=5,col=”magenta”,pch=5)

lines(t,avgygu,type=”b”,lwd=1.5,lty=6,col=”purple”,pch=6)

title(”Mean BBB Score by Day”)

legend(57,21, c(”High,Treated”,”High,Untreated”,”Low,Treated”,”Low, Untreated”, ”GFP,Treated”,

”GFP,Untreated”), cex=0.8, col=c(”red”,”blue”,”forestgreen”,”darkorange3”,”magenta”,”purple”),

pch=1:6, lty=1:6, title=”Legend”)

sebshigh=sqrt(diag(esthigh[10:25,1:16]))

sebslow=sqrt(diag(estlow[10:25,1:16]))

sebsgfp=sqrt(diag(estgfp[10:17,1:8]))
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## Histogram for ALS Score

histogram(data1$ALS,main=”Histogram of ALS Score”)

## Histogram for BBB Score

histogram(data1$BBB,main=”Histogram of BBB Score”)

## Histogram for BMS Score

histogram(data1$BMS,main=”Histogram of BMS Score”)

##Histogram for Rotarod

histogram(data1$Rotarod 1,main=”Histogram of Rotarod 1 Score”)

histogram(data1$Rotarod 2,main=”Histogram of Rotarod 2 Score”)

histogram(data1$Rotarod 3,main=”Histogram of Rotarod 3 Score”)

## Histogram for Gripstrength

histogram(data1$Gripstrength 1,main=”Histogram of Gripstrength 1 Score”)

histogram(data1$Gripstrength 2,main=”Histogram of Gripstrength 2 Score”)

histogram(data1$Gripstrength 3,main=”Histogram of Gripstrength 3 Score”)

## plotting ALS Score by Day for each Mouse

par(mfrow=c(4,5))

plot(data1$Day[Animal==1],data1$ALS[Animal==1], main=”Scatterplot of ALS Score by

Day for Mouse 1”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==2],data1$ALS[Animal==2], main=”Scatterplot of ALS Score by

Day for Mouse 2”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==3],data1$ALS[Animal==3], main=”Scatterplot of ALS Score by

Day for Mouse 3”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==4],data1$ALS[Animal==4], main=”Scatterplot of ALS Score by

Day for Mouse 4”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==5],data1$ALS[Animal==5], main=”Scatterplot of ALS Score by

Day for Mouse 5”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==6],data1$ALS[Animal==6], main=”Scatterplot of ALS Score by
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Day for Mouse 6”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==7],data1$ALS[Animal==7], main=”Scatterplot of ALS Score by

Day for Mouse 7”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==8],data1$ALS[Animal==8], main=”Scatterplot of ALS Score by

Day for Mouse 8”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==9],data1$ALS[Animal==9], main=”Scatterplot of ALS Score by

Day for Mouse 9”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==10],data1$ALS[Animal==10], main=”Scatterplot of ALS Score

by Day for Mouse 10”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==11],data1$ALS[Animal==11], main=”Scatterplot of ALS Score

by Day for Mouse 11”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==12],data1$ALS[Animal==12], main=”Scatterplot of ALS Score

by Day for Mouse 12”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==13],data1$ALS[Animal==13], main=”Scatterplot of ALS Score

by Day for Mouse 13”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==14],data1$ALS[Animal==14], main=”Scatterplot of ALS Score

by Day for Mouse 14”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==15],data1$ALS[Animal==15], main=”Scatterplot of ALS Score

by Day for Mouse 15”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==16],data1$ALS[Animal==16], main=”Scatterplot of ALS Score

by Day for Mouse 16”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==17],data1$ALS[Animal==17], main=”Scatterplot of ALS Score

by Day for Mouse 17”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==18],data1$ALS[Animal==18], main=”Scatterplot of ALS Score

by Day for Mouse 18”, xlab=”Day”, ylab=”ALS Score”)

plot(data1$Day[Animal==19],data1$ALS[Animal==19], main=”Scatterplot of ALS Score

by Day for Mouse 19”, xlab=”Day”, ylab=”ALS Score”)
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plot(data1$Day[Animal==20],data1$ALS[Animal==20], main=”Scatterplot of ALS Score

by Day for Mouse 20”, xlab=”Day”, ylab=”ALS Score”)

##OR another way....

xyplot(data1$ALS∼ data1$Day — Animal, data=data1, groups=Side, xlab=”Day”, ylab=”ALS

Score”, type=c(”p”,”l”))

## plotting BBB Score by Day by Side and Animal with both Sides in One panel colored

differently

xyplot(data1$BBB ∼ data1$Day — Animal, data=data1, groups=Side)

## adding lines to connect the dots

xyplot(data1$BBB∼ data1$Day — Animal, data=data1, groups=Side, xlab=”Day”, ylab=”BBB

Score”, type=c(”p”,”l”))

## plotting BMS score by day by side and animal with both sides in one panel

xyplot(data1$BMS∼ data1$Day — Animal, data=data1, groups=Side, xlab=”Day”, ylab=”BMS

Score”, type=c(”p”,”l”))

## plotting Rotarod score same way (only using the 1st rotarod, maybe should use aver-

age?)

xyplot(data1$Rotarod 1 ∼ data1$Day — Animal, data=data1, groups=Side, xlab=”Day”,

ylab=”Rotarod Score”, type=c(”p”,”l”))

## same for gripstrength

xyplot(data1$Gripstrength 1∼ data1$Day — Animal, data=data1, groups=Side, xlab=”Day”,

ylab=”Gripstrength Score”, type=c(”p”,”l”))


