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Abstract

Compensating for selection bias when detecting altered functional connectivity in
autism

By Liangkang Wang

The exclusion of high-motion participants in functional Magnetic Resonance Imaging
(fMRI) studies is a common practice to reduce motion-related artifacts. However,
this exclusion can introduce biases by altering the distribution of clinically relevant
variables, leading to a non-representative study sample. This paper aims to intro-
duce a framework that employs the Average Inverse Probability Weighted Estima-
tor (AIPWE) method to address these biases by treating excluded scans as missing
data. Using simulated datasets, we tested the AIPWE method on single-region and
multi-region scenarios with varying block correlations to evaluate its effectiveness in
addressing selection bias. Our results demonstrate that the AIPWE method effec-
tively mitigates the impact of the selection bias in these simulations, providing more
accurate estimates of functional connectivity. We applied the AIPWE method to
real-world data from 396 children aged 8-13 (144 with autism spectrum disorder and
252 typically developing) from the Autism Brain Imaging Data Exchange (ABIDE)
datasets. Our findings reveal that autistic children are more likely to be excluded com-
pared to typically developing children, suggesting that the generalizability of previous
studies may be limited due to the selection of older children with less severe clinical
profiles. To address data loss and resulting biases, we adapted the AIPWE method
in conjunction with an ensemble of machine learning algorithms. The proposed ap-
proach identified more edges with differing functional connectivity between autistic
and typically developing children compared to the standard approach, highlighting
the potential of our framework to improve the study of heterogeneous populations
where motion is prevalent. Overall, this study underscores the importance of ad-
dressing selection bias in fMRI studies and demonstrates the utility of the AIPWE
method in enhancing the reliability and validity of functional connectivity analyses.
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1 Introduction

In brain research, resting-state functional magnetic resonance imaging (rs-fMRI) is commonly used

to investigate functional connectivity(Bednarz et al., 2017), which is characterized by spontaneous,

interregional correlations in blood-oxygen-level-dependent signal fluctuations(Biswal et al., 1995).

rs-fMRI research faces the major challenge of separating signals reflecting neural activity from

thermal noise and irrelevant structured signals. Participant head motion may result in spurious

pattern of functional connectivity (Power et al., 2012; Satterthwaite et al., 2012; Van Dijk et al.,

2012). Motion quality control (QC) consists of two steps: eliminating scans with major motion

and minimizing artifacts from tolerable motion. Both post-acquisition cleaning techniques and

guidelines for removing motion-affected rs-fMRI data have been developed (Power et al., 2014,

2017; Satterthwaite et al., 2013a; Parkes et al., 2018; Muschelli et al., 2014; Pruim et al., 2015;

Inoue et al., 1988). The conventional post-acquisition cleaning procedures ignore the impact of

scan exclusion on study samples and selection bias (Nebel et al., 2022).

Motion is frequent in pediatric and clinical populations (Fassbender et al., 2017; Greene et al.,

2018). The fear that motion artifacts may create erroneous functional connectivity differences

between groups of interest if they are not carefully removed from the data has led to the focus on

increasing rs-fMRI data quality. According to the “connectivity hypothesis” of autism, the brain’s

long-range connections suffer while short-range connections are strengthened. However, this pattern

is regularly observed in distortions caused by sub-millimeter motion. High-motion subjects still

show stronger connections between adjacent brain regions and worse correlations between distant

ones as compared to low-motion participants, even after motion has been modified through many

modeling steps (Power et al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 2012). According

to research on the functional connectivity of autism spectrum disorder (ASD), there are various

patterns of significant hypoconnectivity, hyperconnectivity, and mixtures of the two (Di Martino

et al., 2011a; Keown et al., 2013; Lombardo et al., 2019; Rudie and Dapretto, 2013; Supekar et al.,

2013; Dajani and Uddin, 2016). Studies applying stricter motion quality control have found typical

functional connectivity patterns (Dajani and Uddin, 2016), evidence that motion artifacts may

have contributed to discrepancies in the literature (Deen and Pelphrey, 2012).

Excluding people with high levels of movement may assist in reducing motion artifacts in es-

timates of functional connectivity, but doing so may create new issues by systematically changing

the research group. Implementing scan exclusion parameters may result in significant sample size

decreases. Bias may occur in the mean difference between two groups calculated from observed out-

comes in studies where some participants’ results are excluded non-randomly (Hernan and Robins,

2020). In the studies of ASD excluding high-motion participants, functional connectivity differ-

ences in autistic vs typical children and the severity of motor and social skill deficits are found

(D’Souza et al., 2021; Lake et al., 2019; Uddin et al., 2013; Wymbs et al., 2021). In Nebel et al.

(2022), we examined the impact of scan exclusion on the composition of the study sample with

usable data. To counterbalance the impact of scan exclusion, we employed a doubly robust targeted
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minimum loss-based estimation approach (Benkeser et al., 2017) combined with a collection of ma-

chine learning techniques (Polley et al., 2019). Inference was based on asymptotic normality, but

in practice, finite samples can lead to anti-conservative p-values. On the other hand, corrections

for multiplicity using Bonferroni, Holm’s, or False Discovery Rate (FDR) are overly conservative

because the edge-wise analysis does not incorporate dependencies between edge-locations. Using

the max statistic across edges from a permutation test can lead to more powerful corrections for

multiple comparisons (Nichols and Holmes, 2002). In this paper, we address both possible issues

with smaller sample sizes and propose more powerful tests for accounting for multiple comparisons.

Our research contributes to statistical analysis in several ways. Firstly, we introduce a more

effective approach for correcting multiple comparisons that accounts for correlations between edges,

which is especially relevant for analyzing complex networks where the edges are often interdepen-

dent. Secondly, we develop a finite sample inference method suitable for studies with moderate

sample sizes commonly found in neuroimaging research. This method can provide more precise and

accurate results than traditional methods of inference that may be unreliable with small sample

sizes.

Additionally, we evaluate the augmented inverse propensity weighted estimator (AIPWE) as

an alternative to the double robust targeted maximum likelihood estimator (DRTMLE) and find

that AIPWE exhibits better finite sample performance with lower Monte Carlo error. Moreover,

we propose a permutation test based on AIPWE that is computationally scalable, reduces type-1

errors, and enhances statistical power when p-values are highly correlated.

Finally, we apply our methodology to analyze connectivity with a seed in the default mode

network in a dataset of 400 children from ABIDE I/ABIDE II (Di Martino et al., 2014, 2017). This

analysis demonstrates the utility of our approach in identifying meaningful connectivity patterns

and highlights the potential of our method to advance our understanding of brain function in

various populations.

2 Statistical Methods

2.1 Parameter of Interest and Target Parameter

We aim to identify the differences in average functional connectivity between children with autism

without intellectual disabilities and typically developing children. To achieve this, we employ a

causally informed method to address any possible selection bias that may have occurred due to the

exclusion of observations in the motion quality control.

Assume that Y is a random variable representing the functional connectivity between two

locations defined in the brain. To indicate the presence or absence of autism spectrum disorder

(ASD) in a participant, we will use the variable A. Specifically, A takes on a value of one if the

participant has ASD and zero otherwise. We will use the variable W to represent the covariates,

which consist of measures that may be associated with both functional connectivity and the severity
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of autism spectrum disorder (ASD). It is worth noting thatW and A are not independent, given that

the distribution of certain behavioral variables varies by diagnosis group. Therefore, the values of

W are likely to differ between individuals with ASD and typically developing individuals. Children

may often move excessively during their rs-fMRI scan, resulting in unusable data. However, we

can still gather significant behavioral and sociodemographic covariates from these children. For the

purpose of our analysis, we consider data that fail motion quality control as ”missing data.” Let ∆

denote a binary random variable capturing the missing data mechanism that is equal to one if the

data are usable and zero otherwise. Then data are realizations of the random vector { Y , A, W ,

∆ }.

Let Y (1) represent the counterfactual outcome indicating that a participant’s scan is usable.

Define the counterfactual parameter ψ∗ = E∗[Y (1)|A = 1] − E[Y (1)|A = 0] as the difference

in expected counterfactual outcomes between two groups. Similarly, define the usable parameter

ψ = E[Y |∆ = 1, A = 1] − E[Y |∆ = 1, A = 0] as the difference in expected outcomes between the

two groups of usable scans. There exists selection bias ψ∗ = ψ when ∆ ↔ W , W ↔ Y due to the

lack of exchangeability between usable and unusable data (Hernan and Robins, 2020).

Identifying the parameter of interest ψ∗ from the target parameter ψ requires three assumptions:

(A1.1) Mean exchangeability : for a = 0, 1, E∗{Y (1)|A = a,W} = E∗{Y (1)|∆ = 1, A = a,W}.

(A1.2) Positivity : for a = 0, 1 and all possible w, P (∆ = 1|A = a,W = w) > 0.

(A1.3) Causal Consistency : for all i such that ∆i = 1, Yi(1) = Yi.

Then we proposed the target parameter in Nebel et al. (2022),

ψ∗ = ψ = E[Y |∆ = 1, A = 1]− E[Y |∆ = 1, A = 0]

= E{E(Y | ∆ = 1, A = 1,W ) | A = 1} − E{E(Y | ∆ = 1, A = 1,W ) | A = 0}.
(1)

Put simply, ψ represents the difference between the average functional connectivity of individ-

uals with autism spectrum disorder (ASD) and those without (TD) across the range of behavioral

phenotypes in each group. The inclusion of covariates W , which includes measures of autism

severity, is important to maintain the distribution of autism severity within each diagnosis group.

Remark: The definition of W is an important scientific decision. In our application, we distin-

guish between covariates whose distribution we want to be balanced in the ASD and TD, which we

call to as diagnosis-independent covariates, and those that we consider to be part of ASD, which we

call diagnosis-dependent covariates or W . Diagnosis-independent covariates that are not balanced

between groups are a potential source of bias. These are generally variables that are conventionally

included as regressors in multiple regression, for example, age, sex, handedness, and gross motion

measures (Di Martino et al., 2013). Here, we account for these effects in an initial processing step,

see Section 4.4.3.
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2.2 AIPWE

The augmented inverse propensity weighted estimator (Glynn and Quinn, 2010) can be adapted to

the missing data problem with diagnosis-specific distributions. Let n1 be the number of children

with ASD, and let S1 denote the set of indices for ASD children. Similarly, define n0 and S0 for

the TD children.

First, we define the propensity model as gn(A,W ) = P (∆ = 1|A = a,W = w), which estimates

the probability of data inclusion in the motion control, derived by logistic regression in Section 4.6.

Moreover, we introduce the outcome model Q̄n(A,W ) = E(Y |∆ = 1, A = a,W = w), aiming to

predict Y (1)|A,W for ∆ = 0 or 1 (refer to Section 4.6). The subscript n highlights the use of all

observations within the study (encompassing both ASD and TD children) for fitting the propensity

and outcome regression models. In this context, let gn(Ai,Wi) represent the propensity, i.e., the

predicted probability of data inclusion in the motion control step, and let Q̄n(Ai,Wi) denote the

predicted functional connectivity from the outcome model.

Subsequently, we estimate the mean connectivity in the ASD group.

ψn,AIP,1 =
1

n1

∑
i∈S1

[
I(∆i = 1)

gn(Ai,Wi)

]
Yi +

1

n1

∑
i∈S1

[
1− I(∆i = 1)

gn(Ai,Wi)

]
Q̄n(Ai,Wi). (2)

The asymptotic variance when both the propensity and outcome model are correctly specified

is

V ar(ψn,AIP,1) =
1

n1(n1 − 1)

∑
i∈S1

Zi −
1

n1

∑
i∈S1

Zi

2

, (3)

where Zi =
I(∆i=1)
gn(Ai,Wi)

[
Yi ∗ Q̄n(Ai,Wi)

]
+ Q̄n(Ai,Wi)− ψn,AIP,1.

In a similar manner, we estimate the mean connectivity within the TD group, denoted as

ψn,AIP,0, and its corresponding variance. As a result, we obtain ψn,AIP = ψn,AIP,1 − ψn,AIP,0

and var(ψn,AIP ) =
√
var(ψn,AIP,1) + var(ψn,AIP,0), under the assumption that the autistic and

typically developing groups are independent.

2.3 Permutation Test

We propose a novel permutation test that is computationally scalable. Note that a classic permu-

tation test would involve refitting the propensity and outcome models thousands of times. In our

practical application, we examine 418 edges, which represent the functional connectivity between

the 14th parcel and the remaining parcels. We employ 20 random seeds for each location in the

outcome model during a 10-fold cross-validation process, as cross-validation predictions are notably

sensitive to the random seed. A naive permutation test with 1,000 permutations would require more

than 80,000,000 outcome regressions, as calculated by 1000× 418× 20× 10. The computationally

scalable permutation test treats the propensity-adjusted AIPWE terms as data points, as described

below.
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For each edge, denoted as j, we permute membership in S1 and S0, call these permuted mem-

berships S(k)
1 and S(k)

0 .

ψ̂
(k)
j,AIP =

1

n1

∑
i∈S(k)

1

([
I(∆i = 1)

gn(Ai,Wi)

]
Yij +

[
1− I(∆i = 1)

gn(Ai,Wi)

]
Q̄j(Ai,Wi)

)

− 1

n0

∑
i∈S(k)

0

([
I(∆i = 1)

gn(Ai,Wi)

]
Yij +

[
1− I(∆i = 1)

gn(Ai,Wi)

]
Q̄j(Ai,Wi)

)
.

(4)

Standardize by the asymptotic standard error(3) to generate the statistic of each edge within

every permutation:

z
(k)
j =

ψ̂
(k)
j,AIP√

V ar(ψ̂
(k)
j,AIP,1) + V ar(ψ̂

(k)
j,AIP,0)

(5)

Family-wise error rate control: Take max of absolute value across all edges and compare

to our original z statistic, K means the permutation times:

pj,fwer =
1

K

K∑
k=1

I

({
max

j
|z(k)j |

}
> |zj |

)
(6)

Note that under the null hypothesis:

E{E(Yj | ∆ = 1, A = 1,W ) | A = 1} − E{E(Yj | ∆ = 1, A = 0,W ) | A = 0} = 0.

This permutation test preserves the inner conditional expectation E(Yj |∆ = 1, A,W ) by using

the estimates
([

I(∆i=1)
gn(Ai,Wi)

]
Yij +

[
1− I(∆i=1)

gn(Ai,Wi)

]
Q̄n(Ai,Wi)

)
for i ∈ {1, . . . , n}. Each term of the

permutation test is an estimate of E{E(Yj | ∆ = 1, A = 1,W ) | A = 1} − E{E(Yj | ∆ = 1, A =

0,W )|A = 0}. We obtain a null distribution for our finite sample since E{ψ̂(k)
j,AIP } = E{E(Yj | ∆ =

1, A = 1,W )} − E{E(Yj | ∆ = 1, A = 0,W )}.

In practice, using predicted values in both the propensity and outcome models can lead to viola-

tions of the exchangeabililty assumption, which can lead to inflated type-1 errors. This will be inves-

tigated in simulations. We also evaluate a sandwich estimator treating
([

I(∆i=1)
gn(Ai,Wi)

]
Yi +

[
1− I(∆i=1)

gn(Ai,Wi)

]
Q̄n(Ai,Wi)

)
as data in an attempt to address possible issues with heteroscedasticity (Zeileis, 2006).

3 Simulations

In this section, we conducted a series of simulation studies to assess the performance of the Aug-

mented Inverse Probability Weighted (AIPW) estimator (Glynn and Quinn, 2010), and the permu-

tation test. Our real data analysis concentrated on the functional connectivity between the 14th

parcel and the other parcels within the brain (see in Section 4.3.2). The simulations were designed

to replicate the functional connectivity between a single region and the seed region, as presented in

Simulation 3.1, as well as the functional connectivity between multiple regions and the seed region,

as illustrated in Simulation 3.2. These simulations aimed to showcase the application of the AIPW
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estimator for both single-edge and multi-edge scenarios.

3.1 Single region

In this single-region simulation, we illustrate the efficacy of DRTMLE and AIPWE in mitigating

selection bias and demonstrate enhancements in Type I error and power as sample size increases.

We used the same severity of ASD and probability to pass the movement control, as in Nebel

et al. (2022), to simulate biased datasets and estimate the deconfounded group difference. The

simulated sample includes around 35% of individuals with ASD, which is similar to the proportion

observed in real data (around 36% ASD). Additionally, we generated a covariate, denoted as Wc,

to represent ASD severity, which is equal to zero for typically developing children and is generated

from a log-normal distribution in the ASD group with a log mean of 2 and a standard deviation of

0.4. In addition, we generated nine standard normal variables that have no relationship with the

diagnosis. The propensity model’s data usability was generated from a logistic regression model,

logit(E[∆ = 1|Wc = wc]) = 2− 0.2 ∗wc. The simulation setup led to roughly 88% and 60% usable

data in the typically developing and ASD groups, respectively, in contrast to 85% and 69% in the

real data when using Ciric criteria outlined as (∆ = 1 if relative RMS displacement < 0.2, and >

5 minutes of data remain after removing > 0.25 framewise relative RMS displacement(Ciric et al.,

2017)).

We used a linear model to specify the outcome model, with a slope of -0.2 for Wc, 0 for the

remaining nine covariates, and intercepts of 0 and 1.4 for typically developing individuals and

those with Autism Spectrum Disorder (ASD), respectively. Through the implementation of this

simulation design, we successfully attained a correlation of -0.58 between Wc and Y , in addition to

a ”true” functional connectivity, denoted by E[Y (1)|A = a], approximating -0.20 in the ASD group

and 0 in the typically developing group. Consequently, this produced a Cohen′sd value of 0.39

when comparing the two groups. We generated a random sample of 500 participants and employed

it to estimate the deconfounded group difference, as depicted in fig. 1.

We also designed a simulation setting with all covariates of linear regression set to 0. This new

setting is used to assess the type 1 error, as it conforms to the null hypothesis that there is no

difference in functional connectivity between autistic and typically developing children. We then

modified the sample size while maintaining the covariates of the two simulation settings to assess the

variation of type 1 error and power of various tests across different sample sizes. Table ?? shows that

the type 1 error for the permutation-based Augmented Inverse Probability Weighting Estimator

(AIPWE) approaches 0.05 when the sample size exceeds 500. Conversely, the Doubly Robust

Targeted Maximum Likelihood Estimator (drtmle) method exhibits a considerably higher type 1

error when the sample size is below 500. Regarding rejection capability, Table ?? demonstrates

that drtmle has higher power for smaller sample sizes, such as 100, and comparable power when

the sample size exceeds 500. Our simulations suggest that AIPWE is a superior technique for

controlling type 1 error, particularly in smaller sample sizes, as drtmle utilizes an increased type 1
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error rate to achieve enhanced power.

Figure 1: An illustration of the improvement in functional connectivity from DRTMLE
and AIPWE compared to the naive approach from a single simulated dataset. The
authentic mean difference in functional connectivity between Autism Spectrum Disorder (ASD) and
typically developing (TD) groups is negative (illustrated by the green bar), with the true mean in
the ASD group exhibiting a negative value and the true mean in the TD group presenting a slightly
positive value. The estimate of the mean ASD-TD difference derived from the näıve approach
(depicted by the red bar) is also negative, albeit closer to zero. Furthermore, the 95% confidence
interval encompasses zero. By employing Doubly Robust Targeted Maximum Likelihood Estimator
(DRTMLE) and Augmented Inverse Probability Weighting Estimator (AIPWE), the deconfounded
group differences (represented by the purple and yellow bars) are more proximate to the true values,
and the 95% confidence intervals do not include zero.

3.2 Multiple regions

In this section, our objective is to utilize the Monte Carlo method to simulate and compare the

performance of various tests on multiple tests. Specifically, we concentrate on the tests’ capacity to

control the family-wise error rate and their power in effectively distinguishing regions of interest.

Our aim is to identify the most appropriate approach for our real data analysis.

In this section, we retain the same settings for the variablesWc, A, and usability ∆ as outlined in

section 3.1. This approach ensures that the proportion of usable and unusable data conforms to our

actual data. Furthermore, we incorporate a block structure across multiple subjects to simulate the

interdependencies among various time series, mirroring the characteristics of functional magnetic

resonance imaging (fMRI) data. As a result, this simulation provides a trustworthy representation

of the properties observed in fMRI data. We specified the outcome model using a linear model,

setting the slope for Wc at 0.05, and 0 for the remaining nine covariates. The intercepts for

typically developing individuals and those with Autism Spectrum Disorder (ASD) were 0 and

0.15, respectively. This linear model was simulated based on real data, specifically the correlation

between the 14th and 273rd region (17networks RH ContC IPL 1) (Schaefer et al., 2018), which

was identified as an effective area exhibiting significantly altered functional connectivity to our seed

region.
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(a) Type 1 Error for single region tests

(b) Power for single region tests

Figure 2: Performance of tests in simulation setting 1 (single region). a) Type 1 Error for
single region tests. b) Power for single region tests.

It is crucial to note that the correlation between the 14th and 273rd region represents the most

effective functional connectivity in our real data analysis, with the smallest p-value in multiple tests.

The signal of the difference between ASD and typically developing (TD) groups is considerably

stronger than in Simulation 3.1. We employed Y = 0.15 ∗ I(ASD) + 0.05 ∗Wc, resulting in a mean

Y value of 0.55 in the ASD group and 0 in the TD group. In Simulation 3.1, the mean Y value is

-0.2 in the ASD group and 0 in the TD group.

3.2.1 Strong block-wise correlation

In this section, we generate stochastic data that includes three pronounced block structures, con-

sisting of one effective edge and 80 non-effective edges. Each block comprises 27 edges, and the

within-block correlation is set to 0.9. The correlation matrix displayed in fig.3(a) exhibits the

distinct block structure. Our aim is to evaluate and compare the family-wise error rate (FWER),
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false discovery rate (FDR), and power of Bonferroni-adjusted AIPWE, Benjamini-Hochberg (BH)-

adjusted AIPWE, permutation-based AIPWE, and permutation-based sandwich estimator (refer

to Section 2.3) under multiple edges with a strong block structure.

As illustrated in fig.4(b), the maximum statistic permutation-based Augmented Inverse Prob-

ability Weighting Estimator (max perm AIPWE) reveals significantly higher power with a sample

size of 200 compared to the näıve and AIPWE tests employing Bonferroni or Benjamini-Hochberg

(BH) adjustment. Moreover, in fig.4(a), the max perm AIPWE showcases a relatively acceptable

FWER when the sample size reaches 500, similar to most real data analyses. In fact, AIPWE with

BH adjustment effectively controls the FWER when the sample size is 500. If the primary goal is

not to achieve the most powerful test under a small sample size and stringent block-wise correlation

conditions, we recommend using AIPWE with BH adjustment.

3.2.2 Correlation from a seed-based analysis

We employ the same parameters for the propensity and outcome models as in section 3.2.1 but

reduce the block structure to a more realistic level. We generate simulation data with multivariate

normal errors utilizing a subset of the correlation matrix between 81 edges from the data analysis

discussed in section 4. The weak block structure is represented by the correlation matrix in fig.3(b).

To assess the performance of AIPWE, we examine the false discovery rate (FDR) and power using

three methods: AIPWE with Bonferroni correction, AIPWE with permutation test, and AIPWE

with max statistics.

In the setting with a weaker correlation, which more accurately reflects real data analysis, we

draw a similar conclusion regarding power as in Simulation 3.2.1. The maximum permutation-based

Augmented Inverse Probability Weighting Estimator (max perm AIPWE) exhibits superior perfor-

mance in small sample sizes, as shown in fig.5(b). It is crucial to note that in the weaker correlation

setting, the Family-Wise Error Rate (FWER) of AIPWE with Bonferroni and Benjamini-Hochberg

(BH) adjustment increases and exceeds that of max perm AIPWE, as depicted in fig.5(a). This

result emphasized the effectiveness of max perm AIPWE in controlling FWER in datasets with

weak inter-correlations, ultimately reducing the false discovery rate and the number of incorrectly

identified significant areas in real data analysis.
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(a) Strong block-wise correlation (b) Correlation from a seed-based
analysis

Figure 3: Block structure used in simulation.
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(a) Family-wise error rate for multiple regions tests

(b) Power for multiple regions tests

(c) False discovery rate for multiple regions tests

Figure 4: Performance of tests simulation setting 2 (strong block-wise correlation be-
tween 81 regions). a)Family-wise error rate for multiple regions tests. b)Power for multiple
regions tests. c) False discovery rate for multiple regions tests.
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(a) Family-wise error rate for multiple regions tests

(b) Power for multiple regions tests

(c) False discovery rate for multiple regions tests

Figure 5: Performance of tests for simulation setting 3 (correlations between regions
based on real data analysis, weaker correlation). a) Family-wise error rate for multiple
regions tests. b) Power for multiple regions tests. c) False discovery rate for multiple regions tests.
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4 Data and Methods

4.1 Dataset

4.1.1 Study population

Our cohort comprised 396 children aged 8-13 years old, 144 autistic children without intellec-

tual disabilities (119 boys), and 252 typically developing children (174 boys). We used rs-fMRI

scans and phenotypic data for these children from the Autism Brain Imaging Data Exchange

(ABIDE)(Di Martino et al., 2014, 2017). Table 1 summarizes the socio-demographic traits for

all predictor cases. The demographic traits related to passing movement control are presented in

separate summaries for both autistic individuals (see Table 2) and typically developing individuals

(see Table 3). Section 4.3.1 will describe how to calculate patients’ movements and how to decide

to pass quality control.

4.1.2 Phenotypic Assessment

To evaluate the severity of the primary symptoms of Autism Spectrum Disorder (ASD) in the

ASD group, we employed scores from either the Autism Diagnostic Observation Schedule (ADOS)

(Lord et al., 2000) or the Autism Diagnostic Observation Schedule, Second Edition (ADOS-2)

(Lord and Jones, 2012). These scores were calibrated to ensure comparability across different

versions of the instrument (Hus et al., 2014). We focused on the ADOS/ADOS-2 Comparable

Total Score, hereinafter referred to as ADOS. Higher ADOS scores indicate more severe symptoms

for individuals with autism spectrum disorder (ASD), and this score measures the severity of

those symptoms. These semi-structured ASD observation schedules are not commonly used with

participants in control groups. Scores for typically developing children are often zero or very close to

zero because they were not designed to capture significant variance in individuals who do not have

ASD. However, ASD-like traits in non-clinical individuals can vary, and those who meet the criteria

for an ASD diagnosis are at one end of a continuum that also includes the general population.

Intellectual ability was assessed using the Full-Scale Intelligence Quotient (FIQ). It is a measure

of general intelligence obtained from a standardized IQ test that evaluates various cognitive abili-

ties, such as verbal comprehension, perceptual reasoning, working memory, and processing speed.

The Full-Scale IQ score is derived by combining scores from these individual subtests, and it is

used to provide an overall measure of cognitive ability and intellectual functioning. The Wechsler

Intelligence Scale for Children (WISC) is the most commonly used IQ test that generates an FIQ

score (Wechsler, 2003).

4.2 rs-fMRI acquisition and preprocessing

KKI acquisitions included 2 dummy scans, and visual assessment of the global signal indicated it

was stable. NYU data use 82 or 90 degree flip angles, and discarding two TRs suffices for achieving

steady-state. Results included in this section come from preprocessing performed using fMRIPrep
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Table 1: Socio-demographic characteristics Mean and standard deviation (SD) are presented
for continuous variables, and Kruskal-Wallis rank-sum tests were used to compare diagnosis groups.
Frequencies and percentages summarize binary and categorical variables, and differences between
diagnosis groups were analyzed using either the Chi-square test or Fisher’s exact test. Although
data were pooled from multiple studies, age, and handedness were balanced across diagnosis groups,
while gender and FIQ were not. ASD = autism spectrum disorder. TD = typically developing. SD
= standard deviation.

21.0.2 (Esteban et al., 2019) which is based on Nipype 1.6.1 (Gorgolewski et al., 2011)

4.2.1 Anatomical Data Preprocessing

The input BIDS dataset contained a single T1-weighted (T1w) image. This image underwent in-

tensity non-uniformity (INU) correction using N4BiasFieldCorrection (Tustison et al., 2010), which

is included in ANTs 2.3.3 (Avants et al., 2009). The corrected T1w image served as the T1w-

reference throughout the workflow. Subsequently, the T1w-reference was skull-stripped using a

Nipype implementation of the antsBrainExtraction.sh workflow from ANTs, with OASIS 30ANTs

as the target template. fast (Woolrich et al., 2009; Abramian et al., 2022) was employed to perform

brain tissue segmentation of cerebrospinal fluid (CSF), white matter (WM), and gray matter (GM)

on the brain-extracted T1w. Brain surfaces were reconstructed using recon-all (Dale et al., 1999a;

Fischl, 2012). A custom adaptation of the Mindboggle method (Klein et al., 2017) was utilized to

reconcile ANTs-derived and FreeSurfer-derived segmentations of cortical gray matter, which refined
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Table 2: Demographic for autistic group Unusable = the patient was excluded in Ciric criteria.
Usable = the patient passed the Ciric criteria.

the previously estimated brain mask. The T1w reference and T1w template (both brain-extracted)

were used for volume-based spatial normalization to two standard spaces, MNI152NLin2009cAsym

and MNI152NLin6Asym, through nonlinear registration with antsRegistration (ANTs 2.3.3). The

chosen templates for spatial normalization included the ICBM 152 Nonlinear Asymmetrical tem-

plate version 2009c (Fonov et al., 2009) and FSL’s MNI ICBM 152 non-linear 6th Generation

Asymmetric Average Brain Stereotaxic Registration Model (Jenkinson et al., 2012).

4.2.2 Functional and Anatomical Data Preprocessing

The preprocessing steps for each subject’s single BOLD run, encompassing all tasks and sessions,

consisted of the following procedures. Initially, fMRIPrep’s custom methodology was utilized to

generate a reference volume and its skull-stripped counterpart. Subsequently, head-motion param-

eters were estimated with respect to the BOLD reference using transformation matrices and six

corresponding rotation and translation parameters before performing any spatiotemporal filtering,

which was accomplished through the use of mcflirt (Jenkinson et al., 2002). After applying head-

motion correction transforms, the BOLD time-series (with slice-timing correction if applicable) were

resampled to their original, native space. These resampled BOLD time series are referred to as pre-

processed BOLD in original space or simply preprocessed BOLD. To align the functional data with

anatomical data, the BOLD reference was registered to the T1w reference using a boundary-based

registration tool called bbregister from FreeSurfer (Dale et al., 1999b), as described in (Tobyne
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Table 3: Demographic for typically developing group Unusable = the patient was excluded
in Ciric criteria. Usable = the patient passed the Ciric criteria.

et al., 2016).

The co-registration was configured with six degrees of freedom. After preprocessing the BOLD

data, several confounding time-series were calculated, including framewise displacement (FD),

DVARS, and three region-wise global signals. Two formulations were used to compute FD: the ab-

solute sum of relative motions as described by Power et al. (2013), and the relative root mean square

displacement between affines using Jenkinson et al. (2002). These computations were conducted

using the power fd dvars and mcflirt functions, respectively. For each functional run, framewise

displacement (FD) and DVARS were computed using their respective implementations in Nipype

[following the definitions by Power et al. (2013)]. Three global signals were extracted from the

cerebrospinal fluid (CSF), white matter (WM), and whole-brain masks. Additionally, a set of

physiological regressors was extracted to enable component-based noise correction using CompCor

[as described in Behzadi et al. (2007)]. To estimate principal components, the preprocessed BOLD

time series were high-pass filtered using a discrete cosine filter with a 128-second cut-off for the

two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). The top 2% of vari-

able voxels within the brain mask were used to calculate tCompCor components. For aCompCor,

three probabilistic masks were generated in anatomical space: CSF, WM, and a combination of

CSF+WM. However, the implementation differs from that of Behzadi et al. (2007) because instead

of eroding the masks by 2 pixels in BOLD space, the aCompCor masks are subtracted from a mask

of pixels that likely contain a volume fraction of gray matter (GM).
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To ensure that components are not extracted from voxels containing a minimal fraction of gray

matter (GM), a GM mask extracted from FreeSurfer’s aseg segmentation is dilated and subtracted

from the aCompCor masks. These masks are then resampled into BOLD space and binarized by

thresholding at 0.99, as in the original implementation. Components are calculated separately

within the WM and CSF masks. For each CompCor decomposition, the k components with the

largest singular values are retained, such that the retained components’ time series are sufficient

to explain 50% of variance across the nuisance mask (CSF, WM, combined, or temporal). The

remaining components are dropped from consideration. The head-motion estimates calculated

in the correction step are also included in the corresponding confounds file. The confound time

series derived from head motion estimates and global signals are expanded by including temporal

derivatives and quadratic terms for each, following Satterthwaite et al. (2013b).

Frames with motion exceeding a threshold of 0.5 mm FD or 1.5 standardized DVARS were iden-

tified as motion outliers. Subsequently, the BOLD time series were resampled to standard space to

generate a preprocessed BOLD run in MNI152NLin2009cAsym space. The custom methodology

of fMRIPrep was employed to generate a reference volume and its skull-stripped version. Resam-

pling of the BOLD time series onto surfaces was carried out using the FreeSurfer reconstruction

nomenclature. Additionally, Grayordinates files (Glasser et al., 2013) containing 91k samples were

generated using the highest-resolution fsaverage as an intermediate standardized surface space.

The resampling process was optimized by utilizing a single interpolation step that combines

all relevant transformations, including head-motion correction transform matrices, susceptibility

distortion correction (if applied), and co-registrations to anatomical and output spaces. Grid-

ded (volumetric) resamplings were performed using antsApplyTransforms from ANTs software,

which was configured to use Lanczos interpolation to minimize the smoothing effects of other ker-

nels (Lanczos, 1956). Non-gridded (surface) resamplings were performed using mri vol2surf from

FreeSurfer.

Many internal operations of fMRIPrep rely on Nilearn 0.8.1 (), primarily within the functional

processing workflow. For more information on the pipeline, refer to the workflows section in the

fMRIPrep documentation (https://fmriprep.readthedocs.io/en/latest/workflows.html ”fMRIPrep

documentation”).

4.3 Seed correlations

4.3.1 Motion quality control

We employed two criteria for the exclusion of gross motion:

Ciric Criteria: Scans were deemed unusable and excluded if the mean RMSD exceeded 0.2

mm or if they contained less than five minutes of data without frames where RMSD exceeded 0.25

mm (Ciric et al., 2017).

Powerpt2 Criteria: Scans were excluded if the participant had less than 5 minutes of data

remaining after the removal of frames in which the FD exceeded 0.2 mm (Power et al., 2014).
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The outcome of the two criteria are summarized in table 1. Table 2 and 3 display the demo-

graphic statistics for children who either passed or did not pass the motion control based on Ciric

criteria.

4.3.2 Parcel correlation

We utilized Schaefer400 to divide the cortex into 400 regions and chose 17networks LH DefaultA pCun 1

as our target parcel (Schaefer et al., 2018), located between the precuneus and posterior cingulate

cortex. This specific parcel was used as the seed region for the default mode network in previous

studies and corresponds to region 14 in the R package ciftiTools (Pham et al., 2022). After Fisher z

transforming the parcel correlation matrices, we extracted the lower triangle for statistical analysis.

4.4 Data normalization

4.4.1 Covariates description

In this study, ten covariates related to motion parameters, sociodemographic factors, and disease-

specific elements were employed, as detailed in table 4. These covariates were divided into four

categories for the purpose of site harmonization and covariate balancing. The first category, repre-

sented byM , includes PropRMSD025 and Mean RMSD, which pertain to subject movement in the

context of the Ciric criteria. In contrast, for the Powerpt2 criteria, PropFD02 and Mean FD serve

as alternative motion covariates. The second category, denoted as W1, encompasses AGE, SEX,

and HANDEDNESS ; these demographic variables differ between autistic and typically developing

children but are not directly associated with the diagnosis. The third category, represented by

W2, consists of Stimulant, NonStimulant, ADOS, and FIQ, which are covariates directly linked to

autism diagnosis. Lastly, the fourth category, denoted as A, solely includes the covariate ASD.

PropRMSD025 denotes the frequency of occurrences where the relative root mean square dis-

placement is less than 0.25 mm during fMRI testing. Mean RMSD signifies the average value of

the root mean square displacement throughout the fMRI testing. PropFD02 denotes the frequency

of occurrences where the framewise displacement is less than 0.2 mm during fMRI testing. Mean

FD signifies the average value of the framewise displacement throughout the fMRI testing. AGE

indicates the age of the child at the time of fMRI testing. SEX indicates the gender of the child.

HANDEDNESS indicates the dominant hand of the child. Stimulant indicates whether the child

is taking stimulant medication during fMRI testing. NonStimulant indicates whether the child is

taking non-stimulant medication during fMRI testing. ADOS, FIQ, ASD were defined in section

4.1.2.

4.4.2 Site harmonization

We utilized ABIDE data from four different sites collected by the Kennedy Krieger Institute

(Di Martino et al., 2014) and New York University (Di Martino et al., 2011b). To minimize

the potential impact of data acquisition and processing differences between different imaging sites
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Group Covariates

M(Criteria) PropRMSD025, Mean RMSD
M(Powerpt2) PropFD02, Mean FD

W1 AGE, SEX, HANDEDNESS
W2 Stimulant, NonStimulant, ADOS, FIQ
A ASD

Table 4: Covariates Groups M denotes the covariates related to motion control in different
criteria, W1 denotes the covariates not related to disease diagnosis, W2 denotes the covariates
related to disease diagnosis, and A denotes the disease diagnosis. In Powerpt2 criteria, we need to
change M to PropRMSD02 and Mean FD.

or scanners on our study results, we utilized all the covariates described in Section 4.4.1 to fit a

mixed-effects model employed for site harmonization using NeuroCombat (Fortin et al., 2017).

4.4.3 Balancing diagnosis-independent variables

Diagnosis-independent covariates, denoted as W1 ↮ A, that are not balanced between groups, can

potentially introduce confounding bias. We know W1 → Y , and its imbalance across the two ASD

and TD groups causes the difference in Y between the groups to be confounded. Our aim is to make

W1 ↛ Y , allowing us to obtain a more effective outcome model focusing on diagnosis-dependent

covariates W2.

To address potential confounding effects and minimize the impact of motion on functional

connectivity, we adjusted the correlations using the following approach. We fit a linear model

for each edge that incorporated predictors M , W1, and A. The model included age, sex, and

handedness, as these factors differed between autistic and typically developing children (refer to

Section 4.1.1). After fitting the model, we extracted the residuals and added the estimated intercept

and effect of primary diagnosis. This method assisted in controlling for mean effects that may vary

between the two groups (ASD versus typically developing).

4.5 Impact of motion QC on the sample size and composition

4.5.1 Impact of motion QC on group sample size

Pearson’s chi-squared tests were employed to evaluate whether the ASD and typically developing

groups differed in the proportion of excluded children when considering the motion exclusion based

on RMSD.

4.5.2 rs-fMRI exclusion probability as a function of phenotypes

We employed univariate generalized additive models (GAMs) to examine the association between

the log odds of exclusion and phenotype covariates, including ADOS (for the ASD group), FIQ,

and age. To ensure adherence to the Ciric motion exclusion criteria, our analysis focused on

the children within the final study sample (see Table 1, containing 312 usable and 74 unusable

participants). Automatic smoothing through random effects with restricted maximum likelihood

estimation (REML) was used to determine the smoothing parameters (Wood, 2017). We opted
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for univariate models instead of considering all covariates simultaneously, as some variables were

correlated, making it difficult to estimate the impact of each variable on rs-fMRI usability. These

models are related to the propensity models used to estimate deconfounded group differences (see

Section 4.6). Controlling for these variables yielded highly similar results (not shown). Our focus

for this analysis was on interpretable models, although the propensity models would employ an

ensemble of machine learning models to predict usability from multiple predictors. We controlled

for multiple comparisons using the false discovery rate (FDR) for the three univariate models (Ben-

jamini and Hochberg, 1995). Although FDR correction is typically employed in high-throughput

studies in computational biology, Benjamini and Hochberg (1995) originally demonstrated its util-

ity for controlling the expected number of falsely rejected null hypotheses in a study involving a

moderate number of tests (15), which is similar to our analysis.

We also conducted univariate analyses using generalized additive models (GAMs) with Gaussian

errors to investigate the association between phenotypes and mean RMSD. Separate analyses were

performed for the complete study sample (including both usable and unusable cases) and for the

subgroups of children (ASD or TD) who passed the Ciric exclusion criteria, respectively. We used

the false discovery rate (FDR) correction for the three comparisons within each sample to control

for multiple comparisons. Potential sex differences in mean RMSD were also examined using Mann-

Whitney U-tests for the three samples.

4.5.3 Impact of motion QC on distributions of phenotypes among children with us-

able data

We examined potential differences in the distribution of various covariates, such as ADOS, age,

and FIQ, between participants included and excluded in the study. To gain further insights into

the impact of scan exclusion on autistic versus typically developing children, we stratified the

analysis by diagnosis. Kernel density estimation with default bandwidths in ggplot2 was used to

visualize the distribution of factors (Wickham, 2016). To test for differences between included and

excluded participants, we conducted two-sided Mann-Whitney U tests for each measure, stratified

by diagnosis. Additionally, we calculated effect sizes as Z/
√
N . To control for multiple comparisons,

we separately applied the false discovery rate to the thirteen tests (3 for the ASD group and 2 for

the typically developing group).

4.5.4 Functional connectivity as a function of phenotypes

We explored the association between phenotypes and functional connectivity using univariate gen-

eralized additive models (GAMs). For each edge of signal-to-signal components in the partial cor-

relation matrix, we examined the relationship between each phenotypic measure and the adjusted

residuals. These residuals were calculated from a linear model that included sex, socioeconomic

status, and diagnosis as covariates, with the effect of diagnosis added back in, as explained in Sec-

tion 4.4.3. To determine smoothing, we used the random effects formulation of spline coefficients
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with restricted maximum likelihood estimation (REML) (Wood, 2017).

By examining these associations, we aimed to better understand the potential influence of

phenotypic factors on functional connectivity. This approach allows us to identify patterns and

relationships between phenotypic measures and connectivity while accounting for confounding vari-

ables. The results from these analyses provide valuable insights into the complex interplay between

autism, typically developing children, and brain connectivity, ultimately contributing to a more

comprehensive understanding of the factors that influence rs-fMRI measurements in these popula-

tions.

4.6 Application of AIPWE in abide data

4.6.1 Procedure flow

Our approach for estimating our target involves three steps.

In step 1, we fit a propensity model, denoted as P (∆|A,W1,W2), to estimate the probability

that the rs-fMRI data meet the motion quality control criteria, training the model on all available

data.

In step 2, we fit an outcome model, denoted as E(Y |∆ = 1, A,W1,W2), to estimate functional

connectivity for participants with usable rs-fMRI data based on their covariates, allowing us to

predict and identify functional connectivity for both usable and unusable participants.

In step 3, We utilize the augmented inverse propensity weighted estimator (AIPWE) with the

Benjamin-Hochberg correction Glynn and Quinn (2010)).

The super learner technique used in steps 1 and 2 combines multiple regression models and

selects weights for each model by minimizing cross-validated risk (Polley et al., 2019). In step

3, We used AIPWE to integrate functional connectivity data from usable subjects weighted by

the inverse probability of usability with functional connectivity predictions for all subjects (both

usable and unusable), separately for each diagnosis group. The mean functional connectivity is then

calculated by integrating across the diagnosis-specific distribution of covariates for both usable and

non-usable participants. AIPWE is advantageous as it provides statistically consistent estimates

of the deconfounded group difference and its variance, even if the propensity or outcome model is

inconsistently estimated (Bang and Robins, 2005).

4.6.2 Procedure details

For step 1 and 2 of our analysis, we employed several learners and R packages with the super learner

technique, an ensemble machine learning method. The learners and packages included multivariate

adaptive regression splines from the R package earth (Milborrow. Derived from mda:mars by T.

Hastie and R. Tibshirani., 2011), lasso from glmnet (Friedman et al., 2008), generalized additive

models from gam (Hastie and Tibshirani, 2010), generalized linear models from glm, random forests

with ranger (Wright and Ziegler, 2017), step-wise regression from step, stepwise regression with

interactions, xgboost from (Chen and Guestrin, 2016), and the intercept only (mean) model. For
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the outcome model with continuous response, we additionally used ridge from MASS (Venables

and Ripley, 2002). The parameters were set to their defaults, except for the family set to binomial

(logistic link) in the propensity model, and the method set to minimize the negative log-likelihood.

The method was set to minimize the squared error loss in the outcome models. Note that the

outcome model is fitted separately for each of the 418 edges, while the same propensities are used

for all edges. The propensity model is fit using the complete predictor cases, and the outcome

model is fit using the complete usable cases.

The same predictors are used in both the propensity and outcome models, including age at scan,

sex, handedness, primary diagnosis, indicator variables for a current prescription for stimulants

and non-stimulants, FIQ, and ADOS (only for children in the ASD group). FIQ is missing in one

observation, and we use the average of FIQ in the specific subgroup to implement. To balance

confounding variables W1 depicted in section 4.4.3, we fit a linear model including M , W1, and A,

and extracted the residuals and added the estimated intercept and effect of the primary diagnosis.

For each edge, AIPWE is utilized first for the ASD group, then for the TD group, employing

both propensities and predicted outcomes to determine the deconfounded mean for each group as

well as their respective variances. A z− statistic is computed based on their difference, assuming

independent groups, and utilized to test the null hypothesis that there is no difference in functional

connectivity between autistic and typically developing children.

As the super learner employs cross-validation, its outcomes may vary due to the random seeds.

To address this, we computed the average value of propensity model prediction gn = P (∆ = 1|A,W )

across two hundred different random seeds. Additionally, we computed the average value of the

outcome models prediction Q̄n across twenty random seeds for all the 418 edges. Then we calculated

the AIPWE-based z-statistic for the difference in functional connectivity for each edge from our

average prediction of gn and Q̄n.

4.7 Data and code availability

All the data used in this research can be obtained through ABIDE datasets (Autism Brain Imaging

Data Exchange) (Di Martino et al., 2014, 2017). g The code for recreating this study’s analyses,

tables, and figures is available at https://github.com/thebrisklab/LiangkangThesis.

5 Results

5.1 Impact of motion QC on the study sample and sample bias

5.1.1 The impact of motion QC on sample size can be dramatic and differs by diag-

nosis group

Figure 6 presents the criteria employed for the inclusion of participants in our analyses and enu-

merates the participants excluded at each stage. Out of the total scanned participants, 4.8% (19

participants) were excluded due to preprocessing failures during structural acquisition. The Ciric
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criteria resulted in the exclusion of 17.2% of the preprocessed cases, while the Powerpt2 criteria

excluded 57.6% of the preprocessed cases. Moreover, upon examining the proportion of excluded

participants by diagnosis group using both levels of motion quality control (QC) as depicted in

fig.6(b), we discovered that 13.1% of typically developing children were excluded, whereas 25% of

children in the autism spectrum disorder (ASD) group were excluded within Ciric criteria (χ2 =

12.7, df = 1, p = 0.00036). Utilizing Powerpt2 criteria, 48.6% of children in the ASD group were

excluded, in contrast to 74.2% of children in the ASD group who were excluded (p=4.6e-07). These

findings indicate that the commonly employed Ciric and Powerpt2 motion QC procedures resulted

in substantial data loss, particularly for the ASD group.

(a)

(b)

Figure 6: Motion quality control significantly reduces sample size. a) Flow chart of inclu-
sion criteria for this study, illustrating the number of participants remaining after each exclusion
step. In total, 19 participants (4.8% of the overall number of scanned participants) were excluded
due to preprocessing failures during structural acquisition. The Ciric criteria resulted in the ex-
clusion of 17.2% of the preprocessed cases, whereas the Powerpt2 criteria excluded 57.6% of the
preprocessed cases. b) The proportion of children in each diagnosis group with scans that were
included (green) and excluded (slate blue) across different diagnostic groups. A higher proportion
of children in the autism spectrum disorder (ASD) group were excluded compared to typically
developing (TD) children when using Ciric criteria (χ2 = 12.715, df = 1, p < 0.001) and Powerpt2
criteria (p < 4.6e-07).
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5.1.2 The relationship between rs-fMRI exclusion probability and phenotype and age

In fig. 7, the top panel displays the outcomes of our univariate analyses concerning the relationship

between exclusion probability and phenotypes. Utilizing the Benjamini-Hochberg (BH) adjustment

for each criterion, no significant association is observed between the rs-fMRI exclusion probability

and the three phenotypes (FDR-adjusted p-values > 0.2), which contrasts with the findings of

Nebel et al. (2022).

The lower panel of fig. 7 presents the distribution of covariates for each diagnostic group, en-

compassing both included and excluded participants. Children with autism exhibit a concentrated

range of 10-15 for ADOS scores, whereas the age distribution is similar for both groups of chil-

dren. In comparison to children with autism, typically developing children display a more evenly

distributed density curve for FIQ values.

Figure 7: The univariate analysis of rs-fMRI exclusion probability in relation to participant char-
acteristics investigates three variables from left to right: Autism Diagnostic Observation Schedule
(ADOS) total scores, age, and full-scale IQ (FIQ). The bottom panel illustrates the variable dis-
tributions for each diagnostic group, encompassing participants with both included and excluded
scans (TD = typically developing, blue; ASD = autism spectrum disorder, red).

5.1.3 Phenotype representations do not differ between included and excluded chil-

dren

Figure 8 depicts the covariate distributions for included and excluded participants, stratified by

diagnostic group and motion QC level. For both Ciric and Powerpt2 motion QC, median values,

effect sizes, and FDR-adjusted p-values for each measure and diagnostic group are provided in

the Web Supplement Tables S1 and S2. With the Ciric criteria, no differences were observed in

ADOS, age, and FIQ between included and excluded participants. Consequently, we conclude that

selection bias in our datasets of phenotypes is negligible.
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Figure 8: Comparison of participants with usable and unusable rs-fMRI data. This figure
compares Autism Diagnostic Observation Schedule (ADOS) scores, age, and Full-Scale Intelligence
Quotient (FIQ) for included (yellow) and excluded (slate blue) participants, stratified by diagnostic
group and motion exclusion level. TD is at the top, and ASD is at the bottom. The deconfounded
mean integrates across the diagnosis-specific distribution of usable and unusable covariates for
the variables described in Section 4.6, which is labeled as ”None” in this figure. Mean values are
indicated by a black dot. The R code to produce these split violin plots was adapted from DeBruine
(2018).

5.1.4 Phenotypes are also related to functional connectivity

The relationships identified between rs-fMRI data usability and the covariates explored in the earlier

analyses might impact our parameter of interest if those variables are also connected to functional

connectivity. Fig. 9 displays histograms of p-values for GAMs investigating the association between

edgewise functional connectivity (adjusted for sex, age, and motion, as described in Section 4.4.3)

and ADOS, along with FIQ, for participants with usable rs-fMRI data using Powerpt2 motion QC

(slate blue bins) and Ciric motion QC (red bins). This examination is pertinent to the outcome

model applied in the deconfounded group difference, as it provides an understanding of whether

the sampling bias would influence the average difference in functional connectivity between the

groups. Since we focus on a single phenotype in each GAM for the sake of interpretability, we have

not included the analysis of stimulant and nonstimulant drug usage during the fMRI test, as they

represent categorical variables in our dataset. In the context of a particular phenotype, cluster-

ing of p-values close to zero suggests that a covariate has a stronger association with functional

connectivity for a greater number of edges. If no such relationship exists between the covariate

and functional connectivity, we would anticipate a more uniform distribution of p-values. For total

ADOS, we notice considerable clustering of p-values close to zero among participants with usable

rs-fMRI data under both Ciric and Powerpt2 motion QC.

5.2 Application: Deconfounded Group Differences in the KKI and NYUDataset

We assessed the average propensity scores’ consistency. Propensities near zero can elevate both the

bias and variance of causal effects (Petersen et al., 2010) and may suggest a potential breach of the
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Figure 9: Some covariates related to rs-fMRI exclusion probability are also related to
functional connectivity. Histograms of p values for generalized additive models of the relation-
ship between edgewise functional connectivity in participants with usable rs-fMRI data and (from
left to right) he total scores of the Autism Diagnostic Observation Schedule (ADOS), and full-scale
IQ (FIQ). For a given covariate, a clustering of p values near zero suggests that covariate is as-
sociated with functional connectivity for a greater number of edges. ADOS appear to be related
to functional connectivity using both the Powerpt2 motion quality control (lavender bins) and the
Ciric motion quality control (red bins).

positivity assumption (A1.2). The propensity spanned 0.23-0.60 (Powerpt2 criteria) and 0.61-0.88

(Ciric criteria), indicating a reasonable likelihood of data inclusion across the range of A, W and

suggesting that Assumption (A1.2) is likely sufficiently met.

Using the framework (see in Section 4.6) to analyze group differences in the KKI and NYU

dataset, we set significance levels at α = 0.05 and α = 0.2 and employed the naive test (participant

exclusion with Welch t-tests and BH adjustment for FWER control), max statistic permutation-

based AIPWE (detailed in section 2.3), and AIPWE with BH adjustment. These methods were

also simulated and discussed in section 4.3.2. The effectiveness of these tests when applied to real

data is evident in the analysis of the ABIDE I/ABIDE II datasets (Di Martino et al., 2014, 2017).

Figures 10, 11, and 12 present the differential functional connectivity linked to our seed region

between autistic children and typically developing children. The left column plots display all z-

statistics in the brain maps, while the right two columns show the significant regions identified by

different tests.

Figure 10 indicates that, without participant removal, the naive test identifies the most sig-

nificant regions. Nonetheless, this test includes false significant regions due to insufficient motion

control during analysis, increasing its false discovery rate. When applying the Ciric criteria, the

naive test exhibits moderate power at both α levels. Conversely, the naive test using Powerpt2

criteria detects only one significant region at both α = 0.05 and α = 0.2. As a stringent criterion,

Powerpt2 excludes 57.6% of preprocessed cases (refer to Section 5.1.1), resulting in fewer significant

regions.

Figure 11 demonstrates that max perm AIPWE uncovers two more significant regions than the

naive tests at α = 0.2. Considering the simulation findings with weak block correlation in section

3.2, AIPWE max perm outperforms the naive tests for sample sizes between 200-500, aligning

with our empirical data analysis. BH-adjusted AIPWE reveals more significant regions than max
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Figure 10: Naive test with different motion control The black area in the left hemisphere
serves as our seed region, described in Section 3.2. Naive tests with no motion control has more
false significant areas than the naive tests with Ciric and Powerpt2 criteria.

perm AIPWE due to its higher family-wise error rate, as depicted in fig. 5(a). We can infer that

BH-adjusted AIPWE is a more powerful method, although it has a higher family-wise error rate.

If better FWER control is desired, max perm AIPWE can be used instead.

Figure 12 yields similar conclusions to those found in the analysis with Powerpt2 motion QC.

However, the naive test uncovers more significant regions than max perm AIPWE. The Ciric criteria

is a lenient motion QC that only reduces 17.2% of preprocessed cases, retaining a larger sample size

in the naive tests. Consequently, the utility of AIPWE is diminished, leading to fewer significant

regions at α = 0.2. When α = 0.05, BH-adjusted AIPWE is a considerably more powerful test

than max perm and naive tests. Furthermore, given the outcomes in Section 5.1.2, no significant

selection bias is present in our datasets, which explains the superior performance of naive tests in

real data compared to our simulations.

When selecting a method for an unfamiliar dataset with unknown selection bias, we recommend

using BH-adjusted AIPWE because it offers greater power and a comparatively smaller FWER

based on our real data analysis. This approach can provide more reliable results and minimize

the impact of selection bias. However, it is essential to consider the specific context of the dataset

and research question when deciding which method to employ, as the optimal choice may vary

depending on the dataset characteristics and objectives of the study. By evaluating the methods

presented in this paper, researchers can make informed decisions and achieve more accurate and

reliable outcomes in their analyses of group differences in functional connectivity.
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Figure 11: Different tests with powerpt2 criteria The black area in the left hemisphere serves
as our seed region, described in Section 3.2. BH-adjusted AIPWE is more powerful when more
than 60% of observations were excluded by motion control.

Figure 12: Different tests with ciric criteria The black area in the left hemisphere serves
as our seed region, described in Section 3.2. Max statistic permutation-based AIPWE is more
conservative.
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6 Discussion

6.1 Differences between simulation setting 1 and real data

We aimed to use simulations to replicate real data, focusing on the impact of the diagnostic variable

A and the ADOS covariate. We employed a linear model to specify the outcome model, as described

in Section 3.1. By implementing this simulation design, we successfully achieved a correlation of

-0.58 between Wc and Y , along with a ”true” functional connectivity, denoted by E[Y (1)|A = a],

approximating -0.20 in the ASD group and 0 in the typically developing group. As a result, this

yielded a Cohen′sd value of 0.39 when comparing the two groups.

However, our analysis revealed a weak correlation between Autism Diagnostic Observation

Schedule (ADOS) scores and partial correlations within our dataset, exhibiting minimum and

maximum values of -0.01 and 0.06, respectively, across 418 edges for children with usable data

under our motion quality control (QC) measures. Furthermore, we discovered that the largest näıve

Cohen′sd equated to 0.51. In a study examining sleeping autistic toddlers, correlations between

functional connectivity and ADOS reached as high as -0.78 in specific subgroups, and certain effect

sizes were substantial (exceeding 0.8) (Lombardo et al., 2019). This comparison highlights the

differences between our simulation setting and real-world observations.

It is important to emphasize that the näıve difference and deconfounded group difference in

the actual data analysis exhibit greater similarity than illustrated in this simplified example 2(b).

Nonetheless, this example serves to highlight the potential influence of selection bias within a

realistic experimental context.

6.2 Motion quality control bias

In our investigation, the influence of motion quality control (QC) on sample size was substantial

and varied across diagnostic groups. Although comprehensive reporting of participant exclusion

due to excessive head movement is not standard practice, we observed that motion QC led to a

higher proportion of autistic children being removed compared to typically developing children.

This observation aligns with the findings reported in Redcay et al. (2013), and Jones et al. (2010).

Contrasting with the results from Nebel et al. (2022), our dataset revealed no selection bias, as

diagnosis-dependent covariates (ADOS, FIQ), and age did not significantly impact the likelihood

of a child being excluded during motion control. The distribution of these three covariates was

consistent across excluded and included groups (see Section 5.1.2).

The average functional connectivity estimation should represent all children participating in the

study, assuming that the participants accurately reflect the target population. Given the varying

definitions of usability across resting-state fMRI (rs-fMRI) studies, our findings imply that the

differing representation of symptom severity among children with usable data post-motion QC may

have contributed to inconsistencies in ASD-related functional connectivity findings in the literature.

To enhance comparability across studies, it is essential for rs-fMRI researchers to transparently
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evaluate the information loss after motion QC (fig.6), and examine if participant characteristics

associated with usability are also related to the effect of interest, and address the potential bias

and power loss, if applicable.

We have addressed this issue by employing techniques from missing data and causal inference

literature, combined with a collection of machine learning algorithms. Our framework treats miss-

ingness due to motion QC as a source of bias, and we define a target parameter known as the

deconfounded group difference. This parameter uses the distribution of diagnosis-specific behav-

ioral variables across usable and unusable scans. The framework’s general concept is to acknowledge

that children with usable data may not accurately represent all enrolled children within each di-

agnostic group. AIPWE combines the results of inverse propensity weighting and G-computation,

enhancing robustness compared to either approach individually. Inverse propensity weighting as-

signs more weight to children more likely to be missing, as functional connectivity is related to

symptom severity. Consequently, we need these children to represent all those with more severe

symptoms who were excluded due to data quality issues. The outcome model estimates functional

connectivity for all children, including those with greater symptom severity, thus accounting for

children with unusable data. We employ a set of machine learning methods to model potential

non-linear relationships between phenotypic traits and data usability (the propensity model) and

between phenotypic traits and functional connectivity (the outcome model) flexibly. We include a

comprehensive set of variables in both the propensity and outcome models that may be associated

with rs-fMRI usability, functional connectivity, or both. Incorporating variables that contribute

to both rs-fMRI usability and functional connectivity provides an opportunity to reduce bias. In-

cluding variables that contribute to functional connectivity but not necessarily to rs-fMRI usability

offers a chance to decrease the variance of our estimate without increasing bias. AIPWE is then

used to combine the propensity and outcome models, resulting in statistically consistent estimation

of the deconfounded group difference and its variances under the assumptions in Section 2.1 and

as discussed in Section 6.3.

6.3 Assumptions and Potential Violations

To estimate the difference in functional connectivity between autistic and typically developing

children in a counterfactual scenario where all data is usable, we rely on three assumptions: mean

exchangeability, positivity, and consistency between the counterfactual and observed outcomes

(causal consistency) (Section 2.1).

Regarding mean exchangeability, or the assumption of no unmeasured confounders, we presume

that functional connectivity is independent of the missingness mechanism, given our variablesW,A.

As stated earlier, the missingness mechanism is deterministic based on head motion; however, we

substitute it with a stochastic model that estimates missingness from W,A. In our study, it is

crucial that we do not include summary measures of head motion in the propensity and outcome

models. This is because children who nearly fail motion QC may still have motion impacts on
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their functional connectivity signal. The deconfounded group difference assumes that Y represents

the signal of interest, i.e., neural sources of variation that are not influenced by motion. We took

several measures to account for potential motion impacts on functional connectivity in children who

almost fail; we used the residuals from a linear model including motion, as described in Sections

4.4.2, resulting in a Y that more accurately reflects neural sources of variation. However, if we then

incorporated summary motion measures into our propensity and outcome models, the propensity

model would up-weight these children who almost failed, and the outcome model, integrating over

the full range of head motion, would potentially reintroduce the motion impacts we aimed to remove.

Moreover, our statistical estimator possesses the double robustness property: if at least one of the

propensity or outcome models is correctly specified, we obtain a statistically consistent estimator

of the deconfounded group difference (Glynn and Quinn, 2010). We include a comprehensive set

of predictors and a collection of machine learning algorithms to help address the assumption of no

unmeasured confounding.

Positivity assumes that no values of W,A will always render the data unusable. Violations of

positivity assumptions result in out-of-sample prediction of functional connectivity in the outcome

model and instabilities in the propensity model, potentially leading to increased variance and bias

(Petersen et al., 2010). In fig. 8, we observe that for the Ciric criteria, the range of behavioral traits

generally overlap between included and excluded participants, although the most severe ADOS score

is not present among the excluded children.

The maximum value of ADOS in excluded data (Ciric criteria) is 28, while the maximum value

of ADOS in included data (Ciric criteria) is 35. The positivity assumption ( see in Section 2.1) is

confirmed. As reported in Section 5.2, the lowest average propensity score is 0.23. The absence of

propensities close to zero for children with usable or unusable data suggests that the assumption

of positivity is reasonable in our study. Concerning the final assumption, causal consistency is a

technical assumption that presumes that Y (1) is the same as Y when a child has usable data, which

generally cannot be tested but appears reasonable.

In the permutation test (Section 2.3), our objective is to maintain all connections between

(A,W ) → ∆, while disrupting the direct and indirect paths of A: (A↔W ) ↛ Y in the permutation

test. However, by permuting the A label and using the original Q̂n(Ai,Wi) and gn(Ai,Wi) to

calculate the z
(k)
j as the outcome of the k-th permutation, we violate the exchangeability of the

permutation test. Consequently, we observe inflated type 1 error and family-wise error rate for the

permutation-based AIPWE in the simulation for single region (section 3.1) and multiple regions

(section 3.2).

6.4 Overview and outlook

In this paper, we have presented an approach to account for selection bias and improve statistical

power in fMRI studies. By employing DRTMLE and AIPWE, we demonstrated the potential to

reduce sample bias and enhance power in functional connectivity analysis. In the context of smaller

31



sample sizes simulation, we compared the performance of AIPWE to DRTMLE to determine the

relative efficacy of each method.

Our simulations revealed that AIPWE exhibited better type-1 error control than DRTMLE in

most settings, though some inflation was observed. To address this issue, we proposed a compu-

tationally scalable permutation test, which demonstrated mixed results in controlling type-1 error

while maintaining power.

We applied our methods to real data from school-age children in the Autism Brain Imaging

Data Exchange. With 34 usable scans from autistic children, we identified significant differences

between ASD and typically developing (TD) children using AIPWE. However, further research is

necessary to disentangle false positives from true positives in these findings.

Our preliminary results using bootstraps show promise, and we are currently working on en-

hancing computational scalability to facilitate broader application of these methods. In future

work, we plan to examine other applications where selection bias is expected, such as ABCD de-

velopmental differences between boys and girls, cortical thickness studies in Alzheimer’s disease,

ADHD, and a prospective autism study in the brisklab with richer phenotyping.

These additional analyses will provide further insights into the effectiveness of our proposed

methods in different contexts and contribute to the development of more accurate and reliable ap-

proaches for addressing selection bias and improving statistical power in fMRI studies. By refining

these techniques and extending their applications, we aim to advance the field of neuroimaging

research and facilitate a better understanding of the brain’s functional connectivity and its impli-

cations in various disorders and conditions.

7 Acknowledgement

This research was supported by the National Institute of Mental Health of the National Institutes

of Health under award number R01 MH129855. The content is solely the responsibility of the

authors and does not necessarily represent the official views of the National Institutes of Health.

32



References

Abraham, A. et al. Nilearn: Machine learning for neuro-imaging in Python.

Abramian, D., Blystad, I., and Eklund, A. (2022). Evaluation of inverse treatment planning for

gamma knife radiosurgery using fmri brain activation maps as organs at risk. medRxiv.

Avants, B. B., Tustison, N., Song, G., et al. (2009). Advanced normalization tools (ants). Insight

j, 2(365):1–35.

Bang, H. and Robins, J. M. (2005). Doubly Robust Estimation in Missing Data and Causal

Inference Models. Biometrics, 61(4):962–973.

Bednarz, H. M., Maximo, J. O., Murdaugh, D. L., O’Kelley, S., and Kana, R. K. (2017). “decod-

ing versus comprehension”: Brain responses underlying reading comprehension in children with

autism. Brain and language, 169:39–47.

Behzadi, Y., Restom, K., Liau, J., and Liu, T. T. (2007). A component based noise correction

method (CompCor) for BOLD and perfusion based fMRI. Neuroimage, 37(1):90–101.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-

erful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Method-

ological), pages 289–300.

Benkeser, D., Carone, M., Laan, M. J. V. D., and Gilbert, P. B. (2017). Doubly robust nonpara-

metric inference on the average treatment effect. Biometrika, 104(4):863–880.

Biswal, B., Yetkin, F. Z., Haughton, V. M., and Hyde, J. S. (1995). Functional connectivity in the

motor cortex of resting human brain using echo-planar mri. Magn Reson Med, 34(4):537–41.

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’16, pages 785–794, New York, NY, USA. ACM.

Ciric, R., Wolf, D. H., Power, J. D., Roalf, D. R., Baum, G. L., Ruparel, K., Shinohara, R. T.,

Elliott, M. A., Eickhoff, S. B., Davatzikos, C., Gur, R. C., Gur, R. E., Bassett, D. S., and

Satterthwaite, T. D. (2017). Benchmarking of participant-level confound regression strategies for

the control of motion artifact in studies of functional connectivity. NeuroImage, 154:174–187.

Dajani, D. R. and Uddin, L. Q. (2016). Local brain connectivity across development in autism

spectrum disorder: A cross-sectional investigation. Autism Res, 9(1):43–54.

Dale, A. M., Fischl, B., and Sereno, M. I. (1999a). Cortical surface-based analysis. I. Segmentation

and surface reconstruction. Neuroimage, 9(2):179–194.

Dale, A. M., Fischl, B., and Sereno, M. I. (1999b). Cortical surface-based analysis. i. segmentation

and surface reconstruction. Neuroimage, 9(2):179–194.

33



DeBruine, L. (2018). Plot comparison. https://www.debruine.github.io/post/

plot-comparison. [blog post].

Deen, B. and Pelphrey, K. (2012). Perspective: Brain scans need a rethink.

Di Martino, A., Kelly, C., Grzadzinski, R., Zuo, X. N., Mennes, M., Mairena, M. A., Lord, C.,

Castellanos, F. X., and Milham, M. P. (2011a). Aberrant striatal functional connectivity in

children with autism. Biological Psychiatry, 69(9):847–856.

Di Martino, A., Kelly, C., Grzadzinski, R., Zuo, X.-N., Mennes, M., Mairena, M. A., Lord, C.,

Castellanos, F. X., and Milham, M. P. (2011b). Aberrant striatal functional connectivity in

children with autism. Biol. Psychiatry, 69(9):847–856.

Di Martino, A., O’Connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., Balsters, J. H.,

Baxter, L., Beggiato, A., Bernaerts, S., Blanken, L. M. E., Bookheimer, S. Y., Braden, B. B.,

Byrge, L., Castellanos, F. X., Dapretto, M., Delorme, R., Fair, D. A., Fishman, I., Fitzgerald,

J., Gallagher, L., Keehn, R. J. J., Kennedy, D. P., Lainhart, J. E., Luna, B., Mostofsky, S. H.,

Müller, R.-A., Nebel, M. B., Nigg, J. T., O’Hearn, K., Solomon, M., Toro, R., Vaidya, C. J.,

Wenderoth, N., White, T., Craddock, R. C., Lord, C., Leventhal, B., and Milham, M. P. (2017).

Enhancing studies of the connectome in autism using the autism brain imaging data exchange

II. Sci. Data, 4:170010.

Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S.,

Assaf, M., Bookheimer, S. Y., Dapretto, M., Deen, B., Delmonte, S., Dinstein, I., Ertl-Wagner,

B., Fair, D. A., Gallagher, L., Kennedy, D. P., Keown, C. L., Keysers, C., Lainhart, J. E., Lord,

C., Luna, B., Menon, V., Minshew, N. J., Monk, C. S., Mueller, S., Müller, R.-A., Nebel, M. B.,

Nigg, J. T., O’Hearn, K., Pelphrey, K. A., Peltier, S. J., Rudie, J. D., Sunaert, S., Thioux, M.,

Tyszka, J. M., Uddin, L. Q., Verhoeven, J. S., Wenderoth, N., Wiggins, J. L., Mostofsky, S. H.,

and Milham, M. P. (2014). The autism brain imaging data exchange: towards a large-scale

evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry, 19(6):659–667.

Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S.,

Assaf, M., Bookheimer, S. Y., Dapretto, M., Deen, B., Delmonte, S., Dinstein, I., Ertl-Wagner,

B., Fair, D. A., Gallagher, L., Kennedy, D. P., Keown, C. L., Keysers, C., Lainhart, J. E., Lord,

C., Luna, B., Menon, V., Minshew, N. J., Monk, C. S., Mueller, S., Müller, R. A., Nebel, M. B.,

Nigg, J. T., O’Hearn, K., Pelphrey, K. A., Peltier, S. J., Rudie, J. D., Sunaert, S., Thioux,

M., Tyszka, J. M., Uddin, L. Q., Verhoeven, J. S., Wenderoth, N., Wiggins, J. L., Mostofsky,

S. H., and Milham, M. P. (2013). The autism brain imaging data exchange: towards a large-

scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry 2014 19:6,

19(6):659–667.

D’Souza, N. S., Nebel, M. B., Crocetti, D., Robinson, J., Wymbs, N., Mostofsky, S. H., and

Venkataraman, A. (2021). Deep sr-DDL: Deep structurally regularized dynamic dictionary learn-

34

https://www.debruine.github.io/post/plot-comparison
https://www.debruine.github.io/post/plot-comparison


ing to integrate multimodal and dynamic functional connectomics data for multidimensional

clinical characterizations. Neuroimage, 241:118388.

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D.,

Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., Poldrack,

R. A., and Gorgolewski, K. J. (2019). fMRIPrep: a robust preprocessing pipeline for functional

MRI. Nat. Methods, 16(1):111–116.

Fassbender, C., Mukherjee, P., and Schweitzer, J. B. (2017). Reprint of: Minimizing noise in

pediatric task-based functional MRI; Adolescents with developmental disabilities and typical

development. NeuroImage, 154:230–239.

Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2):774–781.

Fonov, V., Evans, A., McKinstry, R., Almli, C., and Collins, D. (2009). Unbiased nonlinear average

age-appropriate brain templates from birth to adulthood. NeuroImage, 47:S102. Organization

for Human Brain Mapping 2009 Annual Meeting.
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