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Abstract 

 

 

Sensitivity and Uncertainty Analysis for Two-Stream Capture-

Recapture in Epidemiological Surveillance 

 

By Jiandong Chen 

 

The capture-recapture approach is a well-studied paradigm for estimating wildlife 

population sizes, based on tag and release strategies. Statistical methods associated with 

this approach are also used in epidemiological studies to estimate total numbers (N) of 

cases or deaths from multiple registries. Using simulated data and DRS data on death 

obtained from a Population Change Survey conducted by the National Statistical Office 

in Malawi between 1970 to 1972 as examples, sensitivity and uncertainty analyses are 

proposed and incorporated to provide a more defensible picture of variability in estimates 

of homogeneous population size when the assumption of list independence fails in the 

two-capture scenario. In this report, maximum likelihood estimators (MLEs) for 

population size (N) and the variance of these MLEs are formulated upon fixing the values 

of key non-identifiable parameters. A discussion is made of the placement of the Lincoln-

Petersen (LP) estimate and the estimator of Chao (1987) on the proposed sensitivity 

analysis plots, and the proposed uncertainty analyses are demonstrated and evaluated 

through simulations based on two prior assumptions for a key parameter upon which 

estimation hinges. Some features of the proposed MLEs are also highlighted in this 

report. 
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1. Introduction 

Capture-recapture methods offer well known ways to estimate the size of populations. 

The classic capture-recapture paradigm is based on tag and release procedures to estimate 

the number of animals in a specific area [1-3]. In recent years, more and more researchers 

have begun to apply this idea in other areas such as social science or epidemiology for 

quantifying unique or vulnerable human population [4-6]. A Dual-Record System (DRS) 

is a special type of data-structure obtained by capture-recapture experiments to estimate a 

total number of cases in recent epidemiology studies [7-9]. Fundamentally, this is a 

missing data problem caused by the unobserved number of units that are not captured in 

all T surveillance efforts (where T=2 in the case of a DRS). The overall objective is to 

use the observed capture data, together with assumptions and sometimes augmented by 

covariate information, to make a defensible estimate of the total population size. 

Most common uses of capture-recapture methods based on DRS are typically 

thought to rely on certain attributes: (i) the population will not change (i.e., is closed) 

during the DRS process; (ii) all individuals have the same probability during the second 

of the two capture periods; (iii) capture (or not) in the second period is independent of 

capture in the first [8, 10]. However, such an independence assumption is often violated 

in the real world. In other words, an individual who is captured the first time might be 

less (or more) likely to be captured the second time. Therefore, consideration of a set of 

conceivable capture-recapture models labeled Mtbh [11, 12] has led to a vast literature. In 

this notation, the b subscript makes an attempt to account for behavioral characteristics of 

individual units that may affect their likelihood of recapture, the subscript t refers to the 

notion that the T different capture efforts may have varying overall success in identifying 
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population members, and the h subscript incorporates the opinion that individual units 

may have their own unique profile of capture probabilities. The well-known Lincoln-

Petersen (LP) estimator [1, 2, 13] is based on a special case of Mtbh when T=2 and one 

can ignore the b component and h component (we refer to this as the “LP condition”). It 

is the best known and most classic estimator in the two capture case, perhaps rivaled only 

by a bias-corrected alternative proposed by Chapman (1951) [14].  

Chao, Pan and Chiang (2008) shed light on further relaxation of the LP condition 

and extended the LP method to the case of two populations [15]. Chao et al. (2000, 2008) 

also published some inference procedures to address capture-recapture problems with 

unequal catchability and when time and behavioral response affect capture probabilities 

[16, 17]. Ayhan (2000) provided an estimator improving the underestimation by further 

dividing the cells of the table from DRS [18]. Along with the development of statistics, 

more new ideas were used in capture-recapture problems. One of the appealing ones is 

the Bayesian approach. It was pioneered by Castledine (1981), Smith (1991) and later, by 

George and Robert (1992) [19-21]. Wang et al. (2007) concluded that the Bayesian 

approach can provide more accurate estimates of population size than the maximum 

likelihood estimation (MLE) for small samples [22]. However, it is known that the 

estimators from Bayesian approaches are sensitive to the priors and the process is more 

complicated than deriving MLEs. Maximum likelihood estimation in the capture-

recapture scenario was developed by Zippin (1956) and Darroch (1958) [23, 24], among 

others. Two other common approaches are the estimation based on the Poisson model 

which was proposed by Fienberg (1972) and Cormack (1985, 1989) [25-27] and the 
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estimation inspired by stochastic processes developed by Godambe (1985) and Lloyd 

(1987) [28, 29].   

            In the current article, our focus is on the “two catch” (or two surveillance stream) 

setting, which is common in epidemiologic and demographic settings. We begin with a 

section to derive formulae for maximum likelihood estimators (MLEs) for population 

size (N) and the variance of MLEs based on observed counts and specified values of key 

parameters under a natural multinomial model for cell counts. This involves a focus on 

formulating sensitivity analysis plots by using the data of the three observed counts  

(𝑛11, 𝑛10, 𝑛01) from real data, providing insight relevant to the LP estimator, an estimator 

due to Chao (1987) [16, 17] applied to the two-catch case, and our MLEs by charting 

their locations on the plot. In addition, inspired by Bayesian analytic approaches used in 

the capture-recapture problem by Chatterjee and Mukherjee (2016) [8], we propose an 

accessible approach to uncertainty analyses for unknown parameters to provide 

epidemiologists and demographers with a more realistic and robust assessment of 

variability in the estimate of N. 

2. Methods  

2.1 Preliminaries  

This thesis will focus on the T=2 case, where the population-level capture recapture 

experience is drawn from a multinomal distribution. That is, (N11, N10, N01, N00) ~ 

Multinomial(N, p11, p10, p01, p00) where the (0=no, 1=yes) supscripts i and j in pij denote 

the first and second surveillance streams separately. The problem is that the cell count of 

N00 is unobserved and cannot be estimated unless an assumption is applied. Therefore, a 
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new multinomial model based on observed cell counts is introduced, 

(𝑁11, 𝑁10, 𝑁01|𝑁𝑐 = 𝑛𝑐)~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑐, 𝑝11
∗ , 𝑝10

∗ , 𝑝01
∗ ), where 𝑁𝑐 = 𝑁10 + 𝑁01 +

𝑁11, 𝑛𝑐 = 𝑛10 + 𝑛01 + 𝑛11, 𝑝𝑐 = 𝑝10 + 𝑝01 + 𝑝11 𝑎𝑛𝑑 𝑝𝑖𝑗
∗ =

𝑝𝑖𝑗

𝑝𝑐
.  In addition, we define 

p1 = p11+p10, p2 = p11+p01, 𝑝2|1 =
𝑝11

𝑝1
 and  𝑝2|1̅ =

𝑝01

1−𝑝1
. Here, p1 and p2 represent the 

marginal probabilities that identification happens in the first and second surveillance 

streams. Also, 𝑝2|1 is the conditional probability that identification happens in the second 

surveillance stream given that identification happens in the first surveillance stream. 

Similarily, 𝑝2|1̅ is the conditional probabiltity that the second surveillance stream 

identifies given that the first does not.  

            Suppose epidemiologists have prior guesses of the parameter ψ = p2|1̅ or 𝜙 =

p2|1

p2|1̅
 , Maximum likelihood estimators can be derived based on treating either of these 

parameters as known. Here, the parameter 𝜙 is clearly a measure of the population-level 

dependeucy between the first and second surveillance streams. To be more detailed, 𝜙 

can be regarded as the capture relative risk. Note that 𝜙 > 1 represents a “trap happy” 

case (identification in the first surveillance stream will be prone to the identification in 

the second stream overall), 𝜙 < 1 represents a “trap averse” case (identification in the 

first surveillance stream will reduce the identification in the second stream overall), and 

𝜙 = 1 yields the LP condition. Under the LP conditions, it is well known (e.g. Seber 

1982  [10]) that one derives the same MLE for N under a hypergeometric or a 

multinomial model for the population-level data; this simple closed form estimator is the 

Lincoln-Petersen estimator: 
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�̂�𝐿𝑃 =
𝑛1∙𝑛∙1

𝑛11
                                                                           (1) 

Where 𝑛1∙ = 𝑛11 + 𝑛10 and 𝑛∙1 = 𝑛11 + 𝑛01. The same corresponding multivariate delta-

method variance also applies under either model (e.g. Seber 1982  [10]): 

�̂�𝐿𝑃 =
𝑛1∙𝑛∙1𝑛10𝑛01

𝑛11
3

                                                              (2) 

In this regard, one of the most prominent alternative estimators is the Chao estimator. It is 

an estimator for the T-catch case that exists a lower bound for N under certain 

mathematical conditions, and these conditions indicate that the estimator is prepared for 

the case of “large” T and “small” capture probabilities (pi). In addition, the Chao 

estimator also assumes that capture probabilities are the same for a given unit at every 

capture event but vary arbitrarily across units. The Chao estimator is given by 

�̂�𝐶ℎ𝑎𝑜 = 𝑛𝑐 +
(𝑁10 + 𝑁01)2

2𝑁11
                                                    (3) 

Where 𝑛𝑐 is the total number of units captured at least once; Chao (1987) also gave an 

approximate variance for the Chao estimator [17]. 

2.2 Maximum likelihood estimators (MLEs) and variance based on known 𝛙 = 𝐩𝟐|�̅�  

Based on the multinomial model proposed above, the likelihood for the observed data can 

be expressed by:  

𝐿 = 𝑝11
∗ 𝑛11𝑝10

∗ 𝑛10𝑝01
∗ 𝑛01   

 

It follows that 

ln(𝐿) = 𝑛11 ln (
𝑝2|1𝑝1

𝑝1 + ψ(1 − 𝑝1)
) + 𝑛10 ln (

(1 − 𝑝2|1)𝑝1

𝑝1 + ψ(1 − 𝑝1)
) + 𝑛01 ln (

ψ(1 − 𝑝1)

𝑝1 + ψ(1 − 𝑝1)
) 

 



 6 

If we take the derivatives with respect to 𝑝1 𝑎𝑛𝑑 𝑝2|1, MLEs for 𝑝2|1 and 𝑝1 can be 

expressed as 
𝑛11

𝑛11+𝑛10
 𝑎𝑛𝑑 

ψ(𝑛11+𝑛10)

ψ(𝑛11+𝑛10)+𝑛01
 respectively. Furthermore, the MLE for the 

population size (N) can be calculated as: 

 

�̂� =
𝑛𝑐

�̂�𝑐
=

𝑛11+𝑛10+𝑛01

�̂�11+�̂�10+�̂�01
=

𝑛11+𝑛10+𝑛01

�̂�2|1�̂�1+(1−�̂�2|1)�̂�1+ψ(1−�̂�1)
= 𝑛11 + 𝑛10 +

𝑛01

ψ
                  (4) 

 

In order to calculate the variance of the MLE, we apply the multivariate delta method: 

𝑉𝑎𝑟(�̂�) = �̂�′𝑽𝒂𝒓 (

𝒏𝟏𝟏

𝒏𝟏𝟎

𝒏𝟎𝟏

) �̂�  , 𝒘𝒉𝒆𝒓𝒆     �̂�′ = (
∂N̂

∂n11

∂N̂

∂n10

∂N̂

∂n01

) = (1 1
1

ψ
) 

𝐚𝐧𝐝 𝑽𝒂𝒓 (

𝒏𝟏𝟏

𝒏𝟏𝟎

𝒏𝟎𝟏

) = (

�̂��̂�11(1 − �̂�11) −�̂��̂�11�̂�10 −�̂��̂�11�̂�01

−�̂��̂�11�̂�10 �̂��̂�10(1 − �̂�10) −�̂��̂�10�̂�01

−�̂��̂�11�̂�01 −�̂��̂�01�̂�10 �̂��̂�01(1 − �̂�01)

) 

 

and the variance-covariance matrix takes the usual multinomial form. After algebraic 

simplification, the final result shows that the variance of MLE has a closed form:  

𝑉𝑎𝑟(�̂�) =
(1 − ψ)𝑛01

ψ2
                                                                    (5) 

2.3 Maximum likelihood estimators (MLEs) and variance based on known 𝝓 =
𝐩𝟐|𝟏

𝐩𝟐|�̅�
  

The same idea is applied for constructing the likelihood in this case, with the only 

difference being that ψ is replaced by 
p2|1

 ϕ
 here. The MLEs for 𝑝2|1 and 𝑝1 can be 

expressed as 
𝑛11

𝑛11+𝑛10
 𝑎𝑛𝑑 

𝑛11

𝑛11+ϕ𝑛01
 respectively. The final result shows that the MLE for 

N is equal to 

 �̂� =
(𝑛11+ϕ𝑛01)(𝑛11+𝑛10)

𝑛11
                                                                       (6)  
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The process of calculating the variance of the MLE is more tedious this time. In this case,  

�̂�′ can be written as follows: 

�̂�′ = (1 −
ϕn01n10

𝑛11
2 1 +

ϕn01

𝑛11
ϕ +

ϕn10

𝑛11
) 

Further, based on the properties of matrix operations, �̂�′ can be re-written as 

�̂�′ = 𝑨′ + 𝑩′ , 𝒘𝒉𝒆𝒓𝒆     𝑨′ = (𝟏 𝟏 ϕ)  𝒂𝒏𝒅    𝑩′ = (
−ϕn01n10

𝑛11
2

ϕn01

𝑛11

ϕn10

𝑛11
) 

 

Subsequently, 𝑉𝑎𝑟(�̂�) can be simplified as 

𝑉𝑎𝑟(�̂�) = �̂�′𝑽𝒂𝒓 (

𝒏𝟏𝟏

𝒏𝟏𝟎

𝒏𝟎𝟏

) �̂� = (𝑨′ + 𝑩′)𝑽𝒂𝒓 (

𝒏𝟏𝟏

𝒏𝟏𝟎

𝒏𝟎𝟏

) (𝑨 + 𝑩) 

= 𝑨′𝑽𝒂𝒓 (

𝒏𝟏𝟏

𝒏𝟏𝟎

𝒏𝟎𝟏

) 𝑨 + 𝑨′𝑽𝒂𝒓 (

𝒏𝟏𝟏

𝒏𝟏𝟎

𝒏𝟎𝟏

) 𝑩 + 𝑩′𝑽𝒂𝒓 (

𝒏𝟏𝟏

𝒏𝟏𝟎

𝒏𝟎𝟏

) 𝑨 + 𝑩′𝑽𝒂𝒓 (

𝒏𝟏𝟏

𝒏𝟏𝟎

𝒏𝟎𝟏

) 𝑩 

= 𝑨′𝑽𝒂𝒓 (

𝒏𝟏𝟏

𝒏𝟏𝟎

𝒏𝟎𝟏

) 𝑨 + 𝟐𝑨′𝑽𝒂𝒓 (

𝒏𝟏𝟏

𝒏𝟏𝟎

𝒏𝟎𝟏

) 𝑩 + 𝑩′𝑽𝒂𝒓 (

𝒏𝟏𝟏

𝒏𝟏𝟎

𝒏𝟎𝟏

) 𝑩 

After some considerable algebra and efforts to simplify, we arrive at the following 

variance for the MLE in the case of  known: 

𝑉𝑎𝑟(�̂�) =
�̂��̂�10�̂�01ϕ2

�̂�11
2 (

�̂�11
2

ϕ
(1 −

1

�̂�10
+

ϕ

�̂�10
) + �̂�11 (

�̂�10

ϕ
+ �̂�01 + 2 (1 −

1

ϕ
)) +

�̂�10�̂�01 (1 +
1

�̂�11
) + �̂�10 + �̂�01)                                                                         (7) 

2.4 Clarification for the formulas of MLEs based on 𝝍 and 𝝓 

We note that the value of the maximized log-likelihood is identical regardless of 

the value of ψ or ϕ assumed in sections 2.2 and 2.3. That is, there is no 
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information in the observed data alone to identify these parameters, and any value 

of N greater than or equal to nc is in fact equally consistent with the observed data. 

Also note, for example, that the famous Lincoln-Petersen (LP) estimator is exactly 

equal to eqn. (6) upon taking 𝜙 = 1. Similarly, the delta method variance that we 

derived in eqn. (7) is equivalent to the well-known variance of the LP estimator 

when 𝜙 = 1.  

2.5 Sensitivity Analysis 

A publicly available set of DRS data on migration, death and birth obtained from a 

Population Change Survey conducted by the National Statistical Office in Malawi 

between 1970 to 1972 is reported by Greenfield [30]. Papers by Nour (1982) and 

Chatterjee and Mukherjee (2016) also used this data for illustration [8, 31].  Table 1 

shows data on death records from Lilongwe and other urban areas chosen to plot the 

MLEs for N with the corresponding error bars (± 1.96 standard errors)  against the 

parameters ψ and ϕ (see eqns. (4-7)). The plots represent a sensitivity analysis to reflect 

how the estimates of total population and their variability change with ψ and ϕ. In 

addition, the LP and Chao (1987) estimates are also located on the plots for reference. 

However, as noted previously, the specific value of ϕ cannot be inferred from the data 

alone. In this regard, only the LP estimate might be specifically justified, since only ϕ =

1 could be accurately targeted by design in practice (for example, if one surveillance 

stream could be implemented as a simple random sample of the population that is 

collected without reference to the other, potentially non-random, surveillance effort).  
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2.6 Uncertainty Analysis 

In this section, distributions are assumed for ψ and ϕ, then simulations are used to 

evaluate the corresponding realistic and robust assessment of variability in the estimate of 

N. Note that these are akin to Bayesian prior distributions, except that there is no 

information in the observed data to update them unless assumptions are made. As an 

initial proof of concept, suppose 𝑝2|1 follows a Jeffreys Beta(0.5, 0.5) prior distribution, 

and assume the LP conditions so that ψ = 𝑝2|1. It is then easily shown that the conjugate 

beta posterior distribution for ψ is as follows: 

ψ ~ 𝑩𝒆𝒕𝒂(𝑛11 + 0.5, 𝑛10 + 0.5) . 

100,000 ψs were randomly generated from this distribution, where the 100,000 results of 

�̂� and its 𝑉𝑎𝑟(�̂�) can be acquired by eqn. (4) and eqn. (5) according to the two Table 1 

datasets. We use the mean of the estimated 𝑉𝑎𝑟(�̂�) to represent the within variance, and 

the sample variance of the �̂� to represent the between variance. Then, we calculate a total 

variance (B+W) based on Rubin’s approach [32] in the context of multiple imputation, 

which is the sum of the within (W) variance and between (B) variance. The simulation is 

designed to assess the validity of this approach to estimating the actual variance of 𝑁 

under the LP conditions.  The mean of the �̂� values is also reported, and compared with 

the LP estimator and its typical delta method-based variance (e.g., Seber [10]).  

In a second set of simulation studies, we temporarily set true population size (N) 

to 500， 1,000, 5,000 and 10,000, the probability of being found in the first capture (𝑝1) 

to 0.1 and the probability of being found in the second capture (𝑝2) to 0.25. Based on the 

information above and assuming the LP conditions, initial values of 𝑝11, 𝑝10, 𝑝01 and  
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𝑝00 can be calculated. Subsequently, 500 multinomial datasets are generated with cell 

probabilities (𝑝11, 𝑝10, 𝑝01 and  𝑝00). Subsequently, only the three observable cell counts 

𝑛11, 𝑛10 and 𝑛01 are used. We then randomly generate a “true” value for ϕ from a 

uniform “prior” distribution, as follows:  

ϕ ~ 𝐔(0.75, 1.25) 

Note that this ϕ is centered at 1 under this uniform distribution, which is the case of the 

LP conditions. After drawing the “true” value of ϕ from the uniform distribution, a 

corresponding new value of 𝑝𝑐 (the probability of being caught) is calculated by 

𝑝𝑐
∗ =

𝑃11

𝑃11
2 + 𝑃11𝑃10 + ϕ𝑃01(𝑃11 + 𝑃10)

 

The “new” corresponding true N becomes the original 𝑛𝑐 divided by the 𝑝𝑐
∗. The purpose 

here is to mimic reality, where the epidemiologist does not know ϕ but is willing to 

specify a distribution in order to acknowledge uncertainty in ϕ. Then, 100,000 random ϕ 

values were drawn from the same uniform distribution and utilized with the original 3 

cell counts (𝑛11, 𝑛10, 𝑛01) to calculate the MLE for N assuming ϕ equals to the value 

drawn. The variance estimate is again B+W, and we assess coverage of a 95% CI for N 

as: 

�̂̅� ± 1.96 ∗ 𝑠𝑞𝑟𝑡(B + W)  

3. Results 

As Figure 1 shows, �̂� and the variance of �̂� are monotonically increasing as ϕ becomes 

larger but decreasing as ψ becomes larger. It makes sense because 

ϕ is equal to
𝑝2|1

ψ
. When ϕ becomes larger, ψ will be smaller. The LP estimate is always 
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located where ϕ = 1. One explanation based on probability is that when 𝑝2|1 = 𝑝2|1̅ at 

the population level, it is a sufficient LP condition. In addition, the plot also shows that 

the Chao estimate projects a value of ϕ > 1, which in the case of this example is 

approximately 1.1 times the LP estimate. The Chao (1987) estimator as applied to the 

two-catch case always estimates a larger population size (sometimes dramatically so) 

compared with the LP estimator.  

Table 2 summarizes some key output of the uncertainly analysis with a beta 

posterior distribution for ϕ. Not only is the mean of the MLEs very close to the LP 

estimator, but also the variance based on Rubin’s approach matches the variance of the 

LP estimator based on eqn. (2). This conclusion can be seen as a validation that applying 

Rubin’s approach to get the total variance in this scenario is reasonable. 

Table 3 shows the uncertainty analysis simulation results based on a uniform 

distribution. The true N used to generated two-capture datasets is 500 in Table 3A, 1000 

in Table 3B, 5,000 in Table 3C and 10,000 in Table 3D. All tables arise from 500 two-

capture dataets with 100,000 random ϕ values. Originally it seemed reasonable to expect 

the 𝑆𝐸𝑅𝑢𝑏𝑖𝑛(�̂�𝑀𝐿𝐸) should be close to the 𝑆𝐷(𝑁). However, it is not the case. Instead, the 

square root of 𝑉𝑎𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛(�̂�𝑀𝐿𝐸) (equivalently, the square root of B) is close to the 

𝑆𝐷(𝑁). From my perspective it is sensible, because the between variance contributes the 

most of variability of true N during the simulation process. In addition, the difference 

between 𝑆𝐷(�̂�𝑀𝐿𝐸
̅̅ ̅̅ ̅̅ ̅) and 𝑆𝐷(�̂�𝐿𝑃) is small. The reason is likely that the uniform 

distribution that was assumed here is centered at 1, which is the case of the LP condition, 

leading to a very close result. In a addition, convergence of the proposed CIs centered 

around �̂�𝑀𝐿𝐸
̅̅ ̅̅ ̅̅ ̅ is 93.60% in Table 3A, 95.60% in Table 3B, 97.20% in Table 3C and 
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96.60% in Table 3D, which corresponds to near-nominal (95%) coverage in each case. 

All convergences look reasonable, which again serves as a proof of concept for the 

application of the Rubin-type approach to variance estimation in this context.  

4. Discussion 

In this article focused on the standard closed population single-recapture scenario, we 

first express our idea that the capture-recapture problem can be solved through the 

maximum likelihood estimators (MLEs) based on assumed values of the key parameters 

ψ and ϕ. One advantage of this method is that it illustrates the fact that the maximized 

log-likelihood value is identical for any admissible value of  ψ and ϕ that one chooses to 

specify. Therefore, as long as N  is greater or equal to the number of distinct units 

observed by the two streams, it can be seen to be as consistent with the observed data as 

any other. We note that the parameters ψ and ϕ are measures of the population-level 

dependency between capture events. As a result, this method can be applied in the 

scenario where the LP estimator is not suitable, although we are generally limited to 

sensitivity and uncertainty analyses because the true value of ϕ is not identifiable based 

on the observed data. In this sense, we still argue that the LP estimator remain central, 

because only the population-level state of nature ϕ = 1 can specifically be targeted by 

design or defended epidemiologically. No statistical information to identify ϕ in fact 

exists without assumptions best judged by those with a true understanding of the 

operating characteristics of the two streams, and we suggest that any reported estimate for 

N should be accompanied by a clear discussion of its implications about ψ and ϕ. From 

our perspective, a reliable point estimate for N in the two capture surveillance setting is 

produced only when the epidemiologist can project a reasonable guess for ψ or ϕ. It 
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might be difficult to get the best one in real life, but it is relatively reasonable for 

epidemiologists to be able to give a range for our parameters, which leads to our 

sensitivity and uncertainty analysis. If a range for our parameter ϕ is given, it becomes 

easy to insert the minimum and maximum values of ϕ into eqn. (6) to get the estimate 

range for N. 

While we emphasize the need for caution in using it in practice with only two 

surveillance streams, we recognize the historical significance of the Chao (1987) 

estimator. It is important to note that this estimator was derived under mathematical 

conditions quite different from the likely reality in two-stream surveillance. 

Unfortunately and as a result, the notion that �̂�𝐶ℎ𝑎𝑜 can be defended as a general lower 

bound for N in the capture-recapture case can cause misguidance. If investigators are 

quite sure ϕ is greater than one at the population level, it is actually �̂�𝐿𝑃 that serves as a 

lower bound instead of �̂�𝐶ℎ𝑎𝑜. Similarly, if the LP condition is defensible at the 

population level, it follows that �̂�𝐶ℎ𝑎𝑜 is always biased upward because it necessarily 

projects a value of ϕ > 1. The problem will be more pronounced when ϕ < 1, as in that 

case the Chao estimator is not only an upper (rather than lower) bound, but also is 

severely biased upward. 

With regard to the uncertainty analysis, the approach we have proposed is 

somewhat similar in spirit to the Bayesian method presented by Chatterjee and 

Mukherjee [8]. The advantage of our approach, we believe, is its relative clarity and ease 

of implementation by the practicing epidemiologist. While we suspect that our approach 

may more accurately reflect the true uncertainty in the estimate of N over a specified 
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“prior” distribution for ϕ, we leave a more thorough investigation of this question for 

future research.  

5. Tables and Figures 

Tables 

Table 1. Motivating data on death records in Greenfield’s paper [30] 

A. Lilongwe’s death record 

 

B. Other urban areas’ death record 

 
Found in 1st 

capture 
  

Found in 1st 

capture 
 

Found in 

2nd 

capture 

Yes No Total 

Found 

in 2nd 

capture 

Yes No Total 

Yes 
𝑛11

= 192 

n01

= 24 

n.1

= 216 
Yes 

𝑛11

= 1645 

n01

= 805 

n.1

= 1861 

No 
𝑛10

= 132 
n00 =? ? No 

𝑛10

= 315 
n00 =? ? 

Total 
𝑛1.

= 324 
? N = ?  Total 

𝑛1.

= 1960 
? N = ? 

 

Table 2. Uncertainty analysis results with beta posterior distribution for ψ by using the 

motivating data on death records in Greenfield’s paper 

A.  Lilongwe’s death record  B.  Other urban areas’ death record 

𝑉𝑎𝑟𝑤𝑖𝑡ℎ𝑖𝑛(�̂�𝑀𝐿𝐸) 28.234 𝑉𝑎𝑟𝑤𝑖𝑡ℎ𝑖𝑛(𝑁𝑀𝐿𝐸) 184.167 

𝑉𝑎𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑁𝑀𝐿𝐸) 3.524 𝑉𝑎𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑁𝑀𝐿𝐸) 89.794 

𝑉𝑎𝑟𝑅𝑢𝑏𝑖𝑛(𝑁𝑀𝐿𝐸) 31.758 𝑉𝑎𝑟𝑅𝑢𝑏𝑖𝑛(𝑁𝑀𝐿𝐸) 273.961 

𝑆𝐸𝑅𝑢𝑏𝑖𝑛(𝑁𝑀𝐿𝐸) 5.635 𝑆𝐸𝑅𝑢𝑏𝑖𝑛(𝑁𝑀𝐿𝐸) 16.552 

𝑁𝐿𝑃 364.500 𝑁𝐿𝑃 2919.150 

𝑆𝐸(𝑁𝐿𝑃) 5.597 𝑆𝐸(𝑁𝐿𝑃) 16.539 

𝑁𝑀𝐿𝐸
̅̅ ̅̅ ̅̅ ̅ 364.602 𝑁𝑀𝐿𝐸

̅̅ ̅̅ ̅̅ ̅ 2919.430 
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Table 3. Uncertainty analysis results with uniform posterior distribution for ϕ 

A.  Original true N=500  B.  Original true N=1000 

𝑉𝑎𝑟𝑤𝑖𝑡ℎ𝑖𝑛(𝑁𝑀𝐿𝐸) 26967.95 𝑉𝑎𝑟𝑤𝑖𝑡ℎ𝑖𝑛(𝑁𝑀𝐿𝐸) 35724.91 

𝑆𝐸𝑤𝑖𝑡ℎ𝑖𝑛(𝑁𝑀𝐿𝐸) 164.22 𝑆𝐸𝑤𝑖𝑡ℎ𝑖𝑛(𝑁𝑀𝐿𝐸) 189.01 

𝑉𝑎𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑁𝑀𝐿𝐸) 5260.64 𝑉𝑎𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑁𝑀𝐿𝐸) 18922.17 

𝑆𝐸𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑁𝑀𝐿𝐸) 72.53 𝑆𝐸𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑁𝑀𝐿𝐸) 137.56 

𝑉𝑎𝑟𝑅𝑢𝑏𝑖𝑛(𝑁𝑀𝐿𝐸) 32228.60 𝑉𝑎𝑟𝑅𝑢𝑏𝑖𝑛(𝑁𝑀𝐿𝐸) 54647.08 

𝑆𝐸𝑅𝑢𝑏𝑖𝑛(𝑁𝑀𝐿𝐸) 151.60 𝑆𝐸𝑅𝑢𝑏𝑖𝑛(𝑁𝑀𝐿𝐸) 225.17 

𝑁 500.63 𝑁 1006.77 

𝑆𝐷(𝑁) 63.80 𝑆𝐷(𝑁) 132.00 

𝑁𝐿𝑃 526.72 𝑁𝐿𝑃 1034.96 

𝑆𝐷(𝑁𝐿𝑃) 160.18 𝑆𝐷(𝑁𝐿𝑃) 184.42 

𝑆𝐸(𝑁𝐿𝑃) 133.11 𝑆𝐸(𝑁𝐿𝑃) 177.88 

𝑁𝑀𝐿𝐸
̅̅ ̅̅ ̅̅ ̅ 526.71 𝑁𝑀𝐿𝐸

̅̅ ̅̅ ̅̅ ̅ 1034.97 

𝑆𝐷(𝑁𝑀𝐿𝐸
̅̅ ̅̅ ̅̅ ̅) 160.18 𝑆𝐷(𝑁𝑀𝐿𝐸

̅̅ ̅̅ ̅̅ ̅) 184.41 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑜𝑓 𝑁𝑀𝐿𝐸  93.60% 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑜𝑓 𝑁𝑀𝐿𝐸  95.60% 

A.  Original true N=5000  B.  Original true N=10000 

𝑉𝑎𝑟𝑤𝑖𝑡ℎ𝑖𝑛(𝑁𝑀𝐿𝐸) 145624.74 𝑉𝑎𝑟𝑤𝑖𝑡ℎ𝑖𝑛(𝑁𝑀𝐿𝐸) 277519.28 

𝑆𝐸𝑤𝑖𝑡ℎ𝑖𝑛(𝑁𝑀𝐿𝐸) 381,61 𝑆𝐸𝑤𝑖𝑡ℎ𝑖𝑛(𝑁𝑀𝐿𝐸) 526.80 

𝑉𝑎𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑁𝑀𝐿𝐸) 432449.48 𝑉𝑎𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑁𝑀𝐿𝐸) 1687734.71 

𝑆𝐸𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑁𝑀𝐿𝐸) 657.61 𝑆𝐸𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑁𝑀𝐿𝐸) 1299.13 

𝑉𝑎𝑟𝑅𝑢𝑏𝑖𝑛(𝑁𝑀𝐿𝐸) 578074.22 𝑉𝑎𝑟𝑅𝑢𝑏𝑖𝑛(𝑁𝑀𝐿𝐸) 1965254.00 

𝑆𝐸𝑅𝑢𝑏𝑖𝑛(𝑁𝑀𝐿𝐸) 756.78 𝑆𝐸𝑅𝑢𝑏𝑖𝑛(𝑁𝑀𝐿𝐸) 1399.04 

𝑁 5018.80 𝑁 10028.82 

𝑆𝐷(𝑁) 659.40 𝑆𝐷(𝑁) 1322.99 
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𝑁𝐿𝑃 5038.26 𝑁𝐿𝑃 9986.90 

𝑆𝐷(𝑁𝐿𝑃) 382.47 𝑆𝐷(𝑁𝐿𝑃) 531.98 

𝑆𝐸(𝑁𝐿𝑃) 374.19 𝑆𝐸(𝑁𝐿𝑃) 518.98 

𝑁𝑀𝐿𝐸
̅̅ ̅̅ ̅̅ ̅ 5038.31 𝑁𝑀𝐿𝐸

̅̅ ̅̅ ̅̅ ̅ 9986.98 

𝑆𝐷(𝑁𝑀𝐿𝐸
̅̅ ̅̅ ̅̅ ̅) 382.53 𝑆𝐷(𝑁𝑀𝐿𝐸

̅̅ ̅̅ ̅̅ ̅) 531.71 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑜𝑓 𝑁𝑀𝐿𝐸  97.2% 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑜𝑓 𝑁𝑀𝐿𝐸  96.6% 
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(a) (b) 

(c) (d) 

Figure 

Figure 1. a) The MLE for N in eqn. (1) as a function of the assumed value ψ = 𝑝2|1̅, 

based on observed data in Table 1A. b) The MLE for N in eqn. (3) as a function of the 

assumed value ϕ = 𝑝2|1 𝑝2|1̅⁄ , based on observed data in Table 1A. c) The MLE for N in 

eqn. (1) as a function of the assumed value ψ = 𝑝2|1̅, based on observed data in Table 

1B. d) The MLE for N in eqn. (3) as a function of the assumed value ϕ = 𝑝2|1 𝑝2|1̅⁄ , 

based on observed data in Table 1B. 

 

 

 

 

 

 

 

 

 

 

 

*  Error bars indicate ±1.96 times estimated standard errors  

**  Dashed lines drawn to indicate estimates of N (365 and 411) and ψ (0.593 and 

0.275) for (a), estimates of N (365 and 411) and ϕ (1 and 2.157) for (b), estimates 

of N (2919 and 3146) and ψ (0.839 and 0.679) for (c), and estimates of N (2919 
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and 3146) and ϕ (1 and 1.237) for (d), corresponding to the LP and Chao (1987) 

estimators, 
(𝑛11+𝑛10)(𝑛11+𝑛01)

𝑛11+0.5
 and 𝑛11 + 𝑛10 + 𝑛01 +

(𝑛10+𝑛01)2

2𝑛11
 respectively. 
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