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Abstract 

Functional, genomic, and radiographic associations with outcomes in IDH-mutant glioma: 

experience from a high-volume tumor center 

By: David P. Bray, M.D. 

 

Introduction: 
Gliomas are tumors that arise from brain tissue. While the most common tumors are high-grade 
and diagnosis portends a poor prognosis, a recently-defined subset of glioma characterized by a 
mutation of isocitrate dehydrogenase gene (IDH-mutant) are low/intermediate grade. IDH-
mutant gliomas represent a heterogenous group of tumors with differing outcomes. We have one 
of the largest single-institution experiences with patients with IDH-mutant glioma. The goal of 
this project was describe frailty, tumor genetic, and radiographic parameters that relate to 
outcomes within IDH-mutant glioma. 
 
Methods: 
We had three aims in defining outcomes within our IDH-mutant glioma cohort. We first 
collected frailty-specific measures and calculated Charlson Comorbidity Index (CCI) and 5-
factor modified frailty index (mFI-5). We tested this as an exposure for outcomes of 30-day 
readmission and overall survival. For the second aim, we tested the exposure of copy number 
(CN) variation, a proxy for mutational burden within the tumor, for outcomes of overall survival 
and progression free survival. Finally, we created and compared deep-learning, neural-network 
algorithms with non-imaging and MR imaging-only parameters to predict the outcome for 
genetic lineage of IDH-mutant glioma (astrocytoma vs. oligodendroglioma). 
 
Results: 
Higher frailty was not associated with 30-day readmission, nor overall survival in our cohort of 
IDH-mutant glioma patients, except when their first operation was performed at our institution. 
Higher CN variation was associated with lower progression free survival. We were able to 
predict astrocytoma vs. oligodendroglioma lineage using our deep-learning, neural-network 
algorithm. The MR imaging-only parameters better predicted tumor type than non-imaging 
variables. 
 
Conclusion: 
We further described the roles of frailty, tumor genetics, and imaging-predicting exposures 
within our single-institution experience of IDH-mutant glioma. Most of our statistical analyses 
were underpowered to define meaningful associations, however, these findings may inform 
future, larger cohort analyses.  
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Introduction: 
 
Intracerebral gliomas represent one of the most common, yet feared entities within neuro-

oncology.1 Gliomas represent a large spectrum of clinical outcomes for patients depending on 

patient related factors (i.e. age/medical comorbidities), tumor location/size upon diagnosis, and 

pathological/genetic characteristics of the tumor. A major effort on the part of neuro-oncological 

researchers for the last 20 years has been to define the genetic underpinnings of specific gliomas 

within this diverse array of neuro-oncological disease.1–4 Certainly, akin to other efforts within 

the larger oncology research field to genetically-define tumors, researchers have discovered that 

genetic categorization of gliomas has yielded superior prognostication schema for survival and 

response to current therapies.5 Additionally, elucidating genetic signatures of glioma has allowed 

for a myriad trials of targeted therapeutics in an attempt improve the prognosis for this disease.6   

 

High grade gliomas (HGG) are World Health Organization (WHO) grade 3 and 4 gliomas that 

are characterized by aggressive growth, elevated recurrence rates, and poor prognosis.7,8 Within 

HGGs, researchers have identified mutations in isocitrate dehydrogenase (IDH) that divide 

HGGs into more aggressive and less aggressive entities.2,9 Patients with IDH-mutant glioma 

have a better prognosis than their IDH-wild-type counterparts in terms of time to recurrence and 

overall survival.10 However, there are multiple, unique sub-categorizations of patient populations 

within IDH-mutant gliomas that are yet to be well-defined. For example, sub-classification based 

on cyclin-dependent kinase inhibitor 2 (CDKN2A/B) may allow clinicians to better stratify 

patients within the IDH-mutant glioma cohort.11 Over the last 5-8 years, neuropathologists have 

switched from histopathological classification to genetically-based definitions of cohorts within 

the heterogenous group of patients within IDH-mutant glioma.11 However, there remains a 
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paucity of surgical, patient-level data to investigate how these molecularly-defined cohorts 

within IDH-mutant glioma relate to radiographic findings, pre-existing medical comorbidities, 

surgical outcomes, and response to targeted therapies.  

 

The CNS Tumor Outcomes Registry at Emory (CTORE) and CLInical Neurosurgery Outcomes 

Investigations Database (CLINOID) are two, multi-institutional and inter-disciplinary clinical 

databases that have been created to study outcomes of patients with neurosurgical oncological 

pathology. Our neuropathology team has completed advanced genetic analysis of all gliomas 

operated upon at our institution since 2007; well before WHO guidelines recommended defining 

glioma by genetic signatures in 2016. Therefore, our group has one of the largest, single 

institution experiences in the surgical management of IDH-mutant glioma. Our experience 

provides our research group a unique opportunity to further define patients within the IDH-

mutant glioma subgroup. 

 

We created three aims to best define groups within IDH-mutant glioma. First, we defined 

surgical outcomes with frailty indices as an exposure. Next, we investigated whether genetic 

microarray data could be correlated with patient overall survival and tumor recurrence. Last, 

employing a convolutional, adaptive neural network, we related specific magnetic resonance 

imaging (MRI) based parameters to predict IDH-mutant tumor type.  

 

Background: 

 

HGGs are a common CNS neoplasm and portend a poor prognosis: 
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Gliomas are some of the most common CNS neoplasms and they arise from the brain 

parenchyma. They are subdivided into four different grades by the WHO.7 Classically, gliomas 

were defined by histopathological parameters, but they are increasingly defined by their unique 

genetic code.12 HGGs are defined as WHO grade III and IV gliomas. They represent 

approximately 60-75% of all new diagnoses of glioma.7 Patients commonly present with new 

neurological deficits, confusion, or with seizure.  

 

The gold standard for treatment of HGG is maximal safe neurosurgical resection of the bulk of 

the tumor, followed by adjuvant concomitant temozolomide chemotherapy and radiotherapy.13,14 

Due to the infiltrating nature of gliomas, gross total resection of the entirety of tumor after 

presentation is impossible.15 Infiltrating tumor cells reach far outside the tumor bulk, are 

incompletely resected in surgery (even after “gross total resection” of identified tumor on 

preoperative imaging). Recurrences of tumor are thought to arise at the populations of infiltrating 

cells.16 HGGs are a “local” tumor and very rarely metastasize via the lymphatics or bloodstream.  

5 Despite aggressive treatment, the median survival of HGG is dismal with WHO grade IV 

glioma survival having a median 13 months, and WHO grade III survival at a median of 26 

months.6  

 

HGGs represent a diverse spectrum of genetic types that correspond to differing survival 

expectancies for patients. They are thought to be derived from de-differentiated neural stem cells 

that manifest a conglomerate of accumulated mutations that vary within and between tumors.5 

The diversity of tumor cell types within a single patient’s unique HGG likely contributes to the 
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ineffectiveness of their adjuvant treatment.7 There have been many attempts at treating HGGs 

with chemotherapies, immunotherapies, and different radiation schema. HGGs have 

demonstrated that they are able to evade treatments by utilization of alternative proliferative 

pathways and creating immunosuppressive microenvironments that allow for proliferation of 

tumor cells without the surveillance of the endogenous immune system.8,9 Researchers hope that 

with further sub-categorization of HGG types neuro-oncologists and neurosurgeons may be able 

to better determine patient prognosis, and develop novel treatments for different HGG types.3 

 

IDH-mutant gliomas represent a heterogenous entity within HGGs: 

 

The diversity of HGG type contributes to their resistance to therapies, their high recurrence rates, 

and reduced overall survival.4 As previously mentioned, recent efforts of neuropathologists 

working in HGG research has been dedicated to the subclassification of HGG type by their 

genetic signature.10 Researchers have identified IDH-mutation as one such subclassification that 

has major implications for prognostication and possibly for different potential avenues for 

treatment.11–13 HGGs with IDH-mutations more commonly occur in younger patients, as well as 

in HGG patients with “secondary glioblastoma;” a HGG that has developed from a previously 

present lower grade glioma.1 Secondary HGGs often harbor p53 mutations, while “primary” 

HGGs tend to present in older individuals and have more mutations in EGFR and PTEN.1 

 

The presence of an IDH-mutation in both WHO grade III and IV HGGs portends a better 

prognosis, and the use of IDH-typing has been a powerful tool for predicting outcomes for 

patients with HGGs. Gliomas that were histopathologically-defined as lower grade gliomas 
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without IDH-mutation (“IDH-wildtype”) have been shown to have similar recurrence rates and 

overall survival to WHO grade IV glioblastoma.14 It is now clear that there are subtypes of IDH-

mutant gliomas based on additional genetic abnormalities present across that tumor 

population.15–17 Reuss et al. investigated IDH-mutant gliomas at their institution and discovered 

two variants of IDH-mutant glioma: IDH-mutant glioma with 1p/19q chromosome co-deletion 

(termed “oligodendroglioma”) and IDH-mutant glioma with ATRX-loss (termed “diffuse 

astrocytoma”).15 Oligodendrogliomas arise from oligodendrocytes and diffuse astrocytomas are 

from astrocytic origin; these distinct genetic signatures correlate to their CNS cell of origin. 

Subtyping by these genetic signatures offers superior prognosis grouping than previously-

employed histopathological definitions of HGGs.18 Oligodendrogliomas have the best overall 

outcome of all gliomas, and diffuse astrocytomas have a better prognosis compared to IDH-

wildtype HGGs. 

 

There may be additional subclassifications within IDH-mutant oligodendroglioma and 

astrocytoma that have implications for prognosis, treatment, and surgical decision making. For 

example, MGMT methylation predicts response to the alkylating-chemotherapeutic used to treat 

HGGs, temozolimide.19 Homozygous loss of CDKN2A/B identifies a more aggressive variant of 

IDH-mutant glioma.20–22 Quantifying the number of point mutations or CN variations within a 

glioma may be useful in estimating the overall genomic instability of a tumor.16,23–25 Recently, 

there has been evidence that these biomarkers will have specific implication for surgical 

decision-making. For example, Nakae et al. identified that IDH-mutant oligodendrogliomas 

tended to recur locally, near the original resected tumor location, while IDH-mutant gliomas with 

p53 mutations recurred in remote intracranial locations.26 These data are helpful for 
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neurosurgeons as they can assist identifying which patients may be candidates for additional 

cytoreductive surgery, and determine candidacy for additional therapies. This will address the 

paucity of patient-level surgery data for the IDH-mutant glioma population.27 

 

Aim 1: Frailty indices and IDH-mutant glioma  

 

By the year 2050, the United States (US) is projected to have 83.7 million individuals aged over 

65; almost double that which was projected for the year 2012.28 As the US and world population 

ages, neurosurgeons may encounter increasing numbers of gliomas. Additionally, due to aging 

population, there may be more glioma patients that need aggressive operations at older ages and 

with more medical comorbidities. IDH-mutant gliomas represent a diverse range of tumors that 

have median survivals that range from 18 months to greater than 10 years.2,3,14  

 

While the concept of “frailty” and its impact upon medical/surgical care has been present for 

over 30 years, it has only recently been applied to prognostication of outcome after neurosurgical 

treatment.29,30 “Frailty” has been defined as a patient’s ability to respond to a given stressor.31 In 

the neuro-oncological literature, frailty has been used to predict surgical decision-making in 

geriatric patients with WHO grade IV glioma,32 30-day readmission in patients undergoing 

cranial neuro-oncological procedures,33 and increases in hospital charges during neuro-

oncological hospitalizations.34 In sum, neurosurgical studies about frailty in neuro-oncology have 

focused on frailty as an exposure variable in glioblastoma and other more common cranial 

tumor-types, where it has been associated with worsened outcomes. However, there are no 

studies that have studied the impact of frailty in patients with IDH-mutant glioma. This is due to 
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the recent reclassification of WHO glioma grading, and lack of experience with this specific 

pathology. It is unclear whether increased frailty is associated with worsened outcomes in 

patients with IDH-mutant glioma (like in other intracranial tumor types), or if other tumor-

related factors, such as tumor genetics or size/location, matter more. 

 

Aim 2: Copy number (CN) variations and IDH-mutant gliomas 

 

There is increasing evidence that CN alteration burden within IDH-mutant gliomas may have 

implications for patient prognosis within this cohort. Richardson et al. described a population of 

IDH-mutant gliomas that had an unexpected poor prognosis, more akin to an IDH-wildtype 

glioma.24 These more aggressive IDH-mutant gliomas were found to harbor an increased CN 

alterations, though there was no group of shared epigenetic themes between the tumors. The 

authors concluded that increased CN mutations may be a proxy for genomic instability of the 

tumor. They continued this research in IDH-mutant astrocytomas and found a similar 

phenomenon.25 Shirahata et al. described a novel grading system for IDH-mutant gliomas that 

included CN variant mutational burden, and found CN alterations to relate to prognosis more 

than mitotic indices on histopathological analysis.35 Others have corroborated this data.36,37 

While these groups have related overall survival of patients to these pathological parameters, 

there is a lack of surgery and radiographic patient-level data and this is needed to contribute to 

the growing interest and literature on CN alterations to make this information more clinically 

relevant. 

 

Aim 3: Radiographic parameters  
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Gliomas are extensively quantified by their pathological genomic signature. The gold standard 

for imaging gliomas remains magnetic resonance imaging (MRI) of the brain. From diagnosis, to 

surgery, to radiation, and for monitoring for recurrence, gliomas are imaged with MRI. 

Therefore, for each patient with a glioma, there is a large amount of radiographic data as the 

glioma is treated and inevitably progresses to recurrence.  

 

“Radiomics” involves the quantification of MRI features such that they can be studied in 

conjunction with patient level data.38 “Radiogenomics” is a growing discipline within radiomics 

that links imaging data with genomic data.39 Radiogenomics has been applied to multiple 

oncological sub-disciplines, including cancers of the breast, prostate, and lung. There is a large 

effort to correlate clinical outcomes with radiological and genomic features in glioma as well.40 

Gutman et al. provided one of the first forays into radiogenomic analysis for glioma when they 

found that two variants of glioblastoma (mesenchymal and proneural) had distinct contrast 

enhancement patterns. Researchers have demonstrated in a xenograft mouse model that 

transformation and changes in the genetics of a glioma had a reproducible radiographic 

correlate.41 Castet et al. correlated contrast enhancement type to increased risk of progression of 

low grade gliomas to HGGs.42 There has been little research investigating radiogenomics of 

IDH-mutant gliomas. 

 

There are MR imaging findings that correlate with IDH-mutant glioma type (astrocytoma vs. 

oligodendroglioma).43 Oligodendroglioma have calcifications on computed tomography scans, 

hyperintensity upon T2-weighted (T2W) and fluid-attenuated inversion recovery (FLAIR), and 
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little to no enhancement upon administration of gadolinium contrast. Astrocytoma have 

T2W/FLAIR mismatch (more intensity upon T2W than FLAIR), no calcifications, and little to 

no contrast enhancement with gadolinium contrast. This allows for investigation in predicting 

tumor type by preoperative imaging. Identification of IDH-mutant tumor type in the preoperative 

setting could lead to differing treatment algorithms which could affect patient outcome.44 

 

 

Methods: 

 

Study Population 

 

This retrospective cohort study adheres to the Strengthening the Reporting of Observational 

Studies in Epidemiology (STROBE) reporting guidelines.  

 

We identified patients from the Central Nervous System (CNS) Tumor Outcome Registry at 

Emory (CTORE), a prospectively-maintained database of patient outcomes for CNS tumors 

treated Emory University Hospital and Emory University Hospital, Midtown. Both hospitals 

contributing patients to our database are large, tertiary/quaternary care, referral, academic 

institutions. In this study, we included patients 18 years or older with pathological diagnosis of 

IDH-mutant glioma who underwent a neurosurgical procedure at the above institutions between 

01 January 2007 to 01 January 2021. The diagnosis of IDH-mutant glioma was made using 

multimodal neuropathological technique according to latest available WHO guidelines at the 

time of diagnosis.3,14,37  
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Our patient flow diagram is available in Figure 1. Our study size was obtained by collecting all 

available patients for our retrospective analysis. 

 

Ethical Considerations: 

 

Our Institutional Review Board reviewed this study (IRB00117860 and STUDY00000332). Our 

review board approved the waiver of informed patient consent for this study. 

 

Typical glioma patient care flow diagram 

 

The initial diagnosis and care of patients with glioma is stereotyped. We pictographically 

demonstrate the usual clinical flow of this process in Figure 2.  

 

Patients with a brain mass are discovered after they develop clinical symptoms, such as a new 

neurological deficit or seizure. With the ubiquity of advanced imaging systems, they can also be 

found incidentally during workup for another clinical complaint. After a new brain mass is found 

on MRI, in almost every case, a neurosurgeon is consulted for tissue biopsy obtained through 

attempted resection or stereotactic needle biopsy. After recovery from surgery, neuropathologists 

complete genomic analysis of the glioma and neurooncologists/radiation oncologists initiate 

adjuvant therapies (watchful waiting, chemotherapy, and/or radiotherapy). The patient undergoes 

a regimented MRI follow-up protocol.  
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Aim 1 Methods: Frailty indices and IDH-mutant glioma 

 

Variables: 

 

Main exposure: 

 

Frailty was defined using the 5-factor modified frailty index (mFI-5)45, and the Charlson 

Comorbidity Index (CCI).46 Both of these metrics have been validated in multiple settings in the 

surgical and neurosurgical literature, and across surgical disciplines. Specifically, a mFI-5 ≥ 1 or 

a CCI ≥ 3 have been associated with poorer outcomes.45,47–50 These scores were calculated using 

the preoperative comorbidity list noted in preoperative history and physical or clinic note. If the 

preoperative history documentation denoted any comorbidities present in the CCI or mFI-5, it 

was recorded in our database as a binary (i.e. yes/no) or leveled (high, medium, low) categorical 

variable specific to the CCI/mFI-5 metric. The mFI-5 is scored 0-5. If the patient has the 

comorbidity included in the index, they receive a “1” for the condition, and receive a “0” 

otherwise. Factors included in the mFI-5 include: functional status (1= requiring assistance with 

activities of daily living, 0= not requiring assistance) and history of: diabetes, chronic obstructive 

pulmonary disease, heart failure, or hypertension. The CCI is calculated from a sum score of 19-

possible weighted conditions and is age-adjusted.46,51 Categories include: history of HIV/AIDS, 

metastatic solid tumor, liver disease, lymphoma, leukemia, any tumor, diabetes with end organ 

damage, renal disease, hemiplegia, diabetes, ulcer disease, connective tissue disease, chronic 

pulmonary disease, dementia, cerebrovascular disease, peripheral vascular disease, heart failure, 

myocardial infarction, and age (increasing for each decade ≥50 years). We categorized the 
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patients into “higher” vs “lower” risk by the respective frailty indices, which correlates to mFI-5 

≥ 1 or a CCI ≥ 3. 

 

Outcomes: 

 

Our primary outcome was 30-day rehospitalization at Emory University Hospital or Emory 

University Hospital, Midtown. Our secondary outcome was defined as mortality date after 

surgery, or overall survival. The time to survival was calculated as time interval from date of 

surgery to outcome or censoring. Patients were censored if they were lost to follow-up. Their 

survival time was calculated as the interval between date of surgery and last communication. The 

last possible follow-up date was 9/1/2021. The data for outcome variables were obtained through 

chart review and confirming with patient/patient family phone calls. Each patient/patient family 

was attempted to be contacted 3 times if they did not initially answer.  

 

Follow-up was obtained through the electronic medical record, or, in cases of > 6 months of 

missing follow-up data, phone calls to patients and/or patients’ designated healthcare advocates. 

 

Other covariates of interest: 

 

Patient charts were reviewed for patient demographics, including age at surgery (difference 

between initial surgery date and date of birth), biological sex, race (white, African American, 

Latinx, Asian, or other), body mass index (BMI, kg/m2), Karnofsky Performance Status (KPS)52, 

and preoperative comorbidities (see above). Preoperative neurological status was assessed by 
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report of seizures, presence of neurological deficit. Postoperative neurological status was 

assessed by presence of a neurological deficit, seizures after surgery (during hospitalization), 

KPS at discharge, and Modified Rankin Scale (mRS) at discharge.53 Postoperative complications 

included presence of hemorrhage, surgical site infection, length of stay, or other medical 

complication (including non-surgical site infection, deep vein thrombosis, or cardiopulmonary 

event). Data about surgical procedures included if the lesion was recurrent, i.e. operated upon at 

another institution prior to our care. In these cases, the date of the initial surgery was recorded. 

Other surgical data included whether the patient received a stereotactic needle biopsy, or 

craniotomy for resection, and date of surgery (as well as subsequent surgeries at one of our 

institutions). Post-hospitalization covariates included whether the patient received adjuvant 

chemotherapy or chemotherapy, discharge disposition (home, rehabilitation center, long-term 

acute care center). 

 

All patients included in the study had genetic analysis completed to confirm histopathological 

diagnosis. Glioma tissue obtained through surgery is examined with immunohistochemistry, 

cytogenomic DNA copy number microarray (OncoScan® -Thermo Fisher Scientific), multiplex 

PCR (SNaPshot™ - Thermo Fisher Scientific) with MetaCore™ (Clarivate Analytics) enrichment 

for identification of associated molecular pathways. 

 

Statistical analysis: 

 

Statistical analyses were performed using R Statistical Software (version 4.1.1, R Foundation for 

Statistical Computing, Vienna, Austria) and SAS version 9.4 (SAS Institute, Cary, NC). We 
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described the cohort characteristics by frailty status (i.e., high or low) dichotomized all variables 

were assessed for normality; means were reported when variables were distributed normally and 

medians/interquartile ranges were reported when otherwise. To assess the association between 

frailty and 30-day readmission, we conducted an unadjusted logistic regression. A directed 

acyclic graph (DAG—see Figure 3) was used to our multivariable-adjsuted model. We assessed 

the association between frailty and 30-day readmission both for frailty and CCI indices. For the 

logistic regression models, we reported odds ratios (OR) and adjusted ORs (aOR) with 95% 

confidence intervals (CI). 

 

Overall survival was assessed with cumulative Kaplan-Meier survival curves and cox- 

proportional hazard models to evaluate whether the mFI-5 or CCI frailty exposure was 

associated with the rate of overall survival. We dichotomized survival curves by surgery type 

(biopsy vs. resection surgery), tumor genetic lineage (astrocytoma vs. oligodendroglioma), and 

primary tumor location (cortically-based/lobar vs. deep brain structure). Censorship was defined 

as above (Outcomes). Proportional hazard assumptions for covariates were assessed graphically, 

with goodness-of-fit tests, and time-dependent models. Similar to the process completed for 

assessment of variables to include in our logistic models, we used bivariate associations between 

frailty exposure and OS outcome as well as a DAG to inform our Cox-proportional hazards 

model (Figure 3). For the Cox-proportional hazards model, we reported hazard ratios (HR), 

adjusted HRs (aHR), and 95% CIs. Missing data for each covariate of interest can be found in 

Table 1.   

 

Aim 1 and hypotheses: 
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The primary aim of this study was to examine the association between frailty (measured by two 

frailty metric scores) and 30-day readmission in patients undergoing biopsy or surgical resection 

of IDH-mutant glioma. Our secondary aim was to study the effect of frailty on overall survival in 

the same surgical population of patients with IDH-mutant glioma. We hypothesize that (1) higher 

level of frailty would be associated with an increased risk for 30-day readmission, and (2) that 

higher level of frailty would be associated with shorter overall survival.  

 

Aim 2 Methods: Copy number (CN) variations and IDH-mutant gliomas 

 

Variables: 

Main exposure: 

 

CN variation quantifies the number of point mutations in a tumor sample. It provides an 

estimation of the mutational burden within a tumor and has been related to overall survival (OS) 

and progression free survival (PFS) in different glioma types. Total CN variation was collected 

using glioma tissue that underwent cytogenomic DNA copy number microarray (OncoScan® -

Thermo Fisher Scientific), multiplex PCR (SNaPshot™ - Thermo Fisher Scientific) with 

MetaCore™ (Clarivate Analytics) enrichment. Total CN variation was completed with adding the 

total number of gains of nucleotides, deletions, and losses of heterozygosity. 

 

Other covariates of interest: 
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Output of the genetic microarray analysis provides which specific chromosomes feature gains, 

deletions, or losses of heterozygosity. For each patient, these were collected for the secondary 

analysis. Please see above section for other covariates collected in the IDH-mutant database. 

 

Statistical analysis: 

 

Descriptive statistics were reported using median with range for numeric variables and frequency 

and percentage for categorical covariates. The total CNV variable was dichotomized using 

different approaches: Median, quartiles and optimal cut point 

(https://molpathoheidelberg.shinyapps.io/CutoffFinder_v1/). PFS was defined from diagnosis to 

death or progression whichever came earlier or last follow up for those censored. PFS was 

estimated using the Kaplan-Meier method and compared using log-rank tests. OS was defined 

from diagnosis to death for those with event or last follow up for those censored. % Total CNV 

was calculated by dividing each samples value by the total and multiplying by 100.  Correlation 

between % Total CNV and overall survival time was estimated using Pearson correlation 

coefficient and the correlation test p-value was reported. Similarly, correlation between % Total 

CNV and progression free survival time was also reported.  

 

Copy segment values were converted into binary matrix based on whether a patient has an 

amplification or deletion (1) vs not (0). Data was scaled using a modified z-score for columns 

(samples). Heatmap were created using Manhattan distance and ward.D agglomerative clustering 

using NOJAH tool. OS and PFS based on column clusters were reported with a log rank test to 

evaluate if the samples differ based on clustering. Alternately, copy segment values were 
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converted into a matrix based on whether a patient has an amplification (1) or deletion or loss of 

heterozygosity (-1) vs not (0). Heatmap was created using manhattan distance and ward.D 

agglomerative clustering and OS and PFS between clusters were compared similar to above. 

 

Statistical analysis was performed using SAS 9.4 (SAS Institute Inc., Cary, NC) macros, and 

heatmaps were generated using NOJAH and statistical significance was assessed at the 0.05 

level.54,55 

 

Aim 2 and hypotheses: 

 

The primary aim of this study was to examine the association between CNV and PFS and OS. 

Our secondary aim was to run a heat map analysis to find if specific chromosomal mutations 

related to OS or PFS. Our hypothesis was that CNV would relate to OS and PFS and that higher 

CNV total would portend a lower OS and PFS. 

 

Aim 3 Methods: Radiographic parameters  

Data collection and preprocessing:  

 

Images from the IDH-mutant database were ascertained by downloading pre-operative and post-

operative images from the picture archiving and communication system (PACS) by patient 

accession number. A patient had complete imaging if they had stereotactic-quality, T1-weighted 

(T1W) post-gadolinium contrast MRI pre- and post-operative images (1.5 Tesla MRI with at 

least <1.25 mm slice thickness) Images were reviewed and confirmed to be pre-surgical and 
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found to be high quality with appropriate resolution. Any images with artifact or substantial 

noise were excluded from analyses. The dataset was preprocessed to ensure uniformity and 

quality, which included conversion to .nifti imaging format. Bias field correction was performed. 

Skull stripping utilizing HD-BET.56 Further preprocessing included cropping, resizing images 

(128xc128x128), normalizing intensity values, and correcting for artifacts or noise using 

TorchIO.57 

 

Data augmentation: 

 

To improve the performance and generalizability of the model, data standard augmentation 

techniques were employed to increase the size and diversity of the dataset. This included random 

application of affine transformations, flips, and rotations of the images, as well as adding small 

elastic deformations or other distortions.  This was perfomed using the TorchIO. 

 

Model Selection:  

 

Choosing the appropriate deep learning model architecture is crucial for achieving accurate 

predictions. Several models have been shown to be effective for binary classification, including 

Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs). This study 

employed a 3D residual neural network (ResNet18) model given the desire to use MRI imaging 

to train to identify pathological subtype. The decided outcome of the model was the tumor 

lineage, oligodendroglioma or astrocytoma (Figure 1).  
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We also planned to create a dense-neural network using binary, categorical, and continuous 

variables for the same outcome, to compare the efficacy of the MR imaging-only model. 

Variables that we included were: presence of preoperative seizure (yes/no), presence of 

preoperative neurological deficit (yes/no), whether the tumor was identified incidentally 

(yes/no), whether the tumor was in eloquent brain matter [speech, motor, visual center, 

brainstem] (yes/no), sex (male/female), race (white, black, Asian, latinx, other), KPS, tumor 

location (frontal, temporal, parietal, occipital, insula, cerebellum), contrast type (full 

enhancement, heterogenous, none). We planned for a local Bayesian search to design the 

network and optimize hyperparameters. We planned to standardize the data, perform Tanh 

activation function, and form a dense neural network. 

 

Training the Models:  

 

The deep-learning imaging-only model was trained on the preprocessed dataset and 

augmentation was performed using a data loader in real time. This involves dividing the dataset 

into training (85%), and validation (15%) sets using binary focal cross entropy loss function to 

optimize the model's weights and biases. 150 epochs were performed to complete the training 

process with an Adam optimization with decaying learning rate. 

 

The deep-learning, non-imaging model was trained on 150 epochs. 

 

Hyperparameter Tuning:  
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The performance of the model can be further improved by tuning its hyperparameters, such as 

learning rate, batch size, and regularization strength. This was performed using random search, 

to find the optimal set of hyperparameters that maximize the model's accuracy and minimize 

loss.  

 

Evaluation:  

 

Once the model was trained and tuned, metrics such as accuracy, precision, recall, and F1 score 

can be used to evaluate the model's performance on each class. All models were generated 

Keras/Tensorflow within the Python language with standard libraries. 

 

 

Results: 

 

Query of our database included 136 patients with IDH-mutant glioma (Table 1). Forty-nine (49, 

36%) patients had oligodendroglioma, while 87 (64%) had astrocytoma. Overall, 87 (64%) 

patients underwent attempted surgical resection, while 49 (36%) had an open or stereotactic 

needle biopsy.  

 

Aim 1 Results: 

 

Eighteen (18, 13%) of patients had a CCI greater than or equal to 3 (“high CCI”), while 34 

(25%) of patients had a mFI-5 greater than or equal to 1 (“high mFI-5”) (Table 1). Patients with 
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high frailty scores had high body mass index (BMI) (CCI: 30.2 kg/m2 [Interquartile Range/IQR: 

24.4 - 37.0 kg/m2]; mFI-5: 30.1 kg/m2 [IQR: 23.4 – 34.4]), more preoperative neurological 

deficit (CCI: 11/18, 61%; mFI-5: 19/34, 56%), and older age at surgery (CCI: 63 years [IQR: 56 

– 73 years]; mFI-5: 48 years [IQR: 39 – 62 years]). The total mutational burden of the tumor, 

measured by CN variation, was relatively equal among those with high and low frailty 

 

Eight (8, 5.9%) of patients experienced the primary outcome of hospital readmission within 30 

days of surgery. The OS for the entire cohort is displayed in Figure 4. The median survival 

length was 54 months. When divided into groups with high and low frailty, patients with higher 

frailty seemed to have lower OS probability, though the curves did cross (Figure 5).  

 

In our logistic regression for the outcome of odds of 30-day readmission, the crude odds of 30 

day readmission in patients with high CCI was 0.93 (0.04 – 5.72) times that of those that had a 

low CCI. In the adjusted logistic regression, the odds of 30 day readmission in patients with high 

CCI was 0.22 (0.01 – 3.24), adjusting for tumor location, BMI, type of surgery, and age (Table 

2). The crude odds of 30 day readmission in patients with high mFI-5 was 1.88 (0.37 – 8.10) 

times that of those that had a low mFI-5. In the adjusted logistic regression, the odds of 30 day 

readmission in patients with high mFI-5 was 1.56 (0.24 – 8.96), adjusting for tumor location, 

BMI, type of surgery, and age (Table 2). 

 

The median survival time of patients with high CCI (11.1 months [IQR: 1.1 – 58.0 months]) 

were lower than those with low CCI (55.3 months [IQR: 22.0 – 99.1 months]), however, the 

IQRs overlapped. The median survival time of patients with high mFI-5 (26.3 months [IQR: 2.5 
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– 55.3 months]) were lower than those with low mFI-5 (63.1 months [IQR: 31.6 – 99.8 months]), 

again, the IQRs overlapped (Table 3).  

 

In our Cox-proportional hazards analysis, the crude hazard rate of death in patients with high 

CCI was 3.33 (1.12 – 9.97) times the hazard rate of death in patients with low CCI (Table 3). In 

the adjusted analysis, the adjusted hazard rate of death in patients with high CCI was 0.59 (0.05 – 

6.37) times the hazard rate of death in patients with low CCI, adjusting for age, tumor location, 

BMI, history of prior surgery, and type of surgery. Using our other frailty metric, the crude 

hazard rate of death in patients with high mFI-5 was 2.14 (0.83 – 5.47) times the hazard rate of 

death in patients with low mFI-5 (Table 3). In the adjusted analysis, the adjusted hazard rate of 

death in patients with high mFI-5 was 1.15 (0.29 – 4.52) times the hazard rate of death in 

patients with low mFI-5, adjusting for age, tumor location, BMI, history of prior surgery, and 

type of surgery.  

 

When we subdivided the cohort into patients that had biopsy vs. craniotomy for resection and 

into astrocytoma vs. oligodendroglioma lineage, we found that there was no significant 

separation of survival curves (Figure 6). 

 

When we subdivided the cohort by patients who had new tumor diagnoses and first operated 

upon at our institution (i.e. excluding recurrent tumors), we found that the adjusted hazard ratio 

of death in patients with high mFI-5 was 6.79 (1.00 – 45.9) times that of the adjusted hazard ratio 

of death in patients with low mFI-5, when adjusting for age, tumor location, BMI, and surgery 

type (Table 4). 
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Aim 2 Results: 

 

A total of 88 patients had complete pathology data for the CN variation and heatmap analysis 

(Table 5). The mean number of CN variations was 12.8 (standard deviation, SD: 11.36), and the 

median was 8.5 (IQR: 5 – 17.5). The ideal cutpoint calculator 

(https://molpathoheidelberg.shinyapps.io/CutoffFinder_v1/), defined a CN variation of 10.5 for 

OS analysis and 7.5 for PFS analysis. 

 

In our Kaplan-Meier survival analysis for PFS, when dividing the cohort by CN variation 

median, we found that median survival for patients with total CN variation <= 8.5 was 10.5 years 

(95% confidence interval, CI: 4.2 – 16 yrs), while the median survival for patients with total CN 

variation > 8.5 was 6.6 years (95% CI: 2.4 – 8.3 yrs), [logrank p-value: 0.085] (Figure 7A). 

Figure 7B displays the results of performing the analysis after subdividing the cohort into 

quartiles (logrank p-value: 0.16). In the optimal cutpoint analysis, patients that had a total CN 

variation <= 7.5 had a median survival of 10.3 years (95% CI: 4.2 – 29.8 yrs), while patients that 

featured a total CN variation >7.5 had a median survival of 4.6 years (95% CI: 2.4 – 8.3 yrs). 

The separation of the survival curves using optimal cutpoint for total CN variation was 

statistically significant, as logrank p-value = 0.042. 

 

Next, we applied our Kaplan-Meier survival analysis for OS. When halving our cohort by the 

CN variation median, we found that the median survival with CN variation <= 8.5 was 29.8 

years (95% CI: infinite – infinite), and incalculable for the CN variation >8.5. The logrank p-
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value was 0.20 (Figure 8A). We split the cohort by CN variation quartile and found logrank p-

vaule to be 0.042 (Figure 8B). When repeating the Kaplan-Meier survival analysis by optimal 

cutpoint, we found that CN variation <= 10.5 had median survival of 29.8 yrs (95% CI: infinite – 

infinite) and CN variation > 10.5 was incalculable; logrank p-value = 0.067 (Figure 8C). 

 

In Figure 9A and 9B, we attempted to recapitulate a correlation analysis completed in Mirchia et 

al. 2019, wherein the authors were able to describe an inverse correlation of total CN variation 

and OS. We found the Spearman-rho correlation to be close to 0; 0.011 for OS (p-value= 0.92) 

and 0.005 for PFS (p-value= 0.97). 

 

We performed two heatmap analyses to find clusters of patients with different OS and PFS 

within this cohort. In the first heatmap analysis, events were coded “1” for chromosomal 

amplification or deletion, and “0” for no change from normal (Figure 10A). We performed 

Kaplan-Meier survival analysis for the outcomes of OS and PFS comparing the hierarchical 

clusters formed by this analysis. In Figure 10B, cluster 1 had a median OS of 6 years (95% CI: 

3.6 – 9.5 years), while cluster 2 had median OS of 8.3 years (95% CI: 0.3 – infinite years) 

(logrank p-value= 0.38). In Figure 10C, we compared these clusters in PFS. Cluster 1 had 

median survival of 29.8 years (95% CI: 10 – 29.8 years), while cluster 2 had an incalculable 

median survival (logrank p-value= 0.50). 

 

In the second heatmap analysis, we coded “1” as a chromosomal gain, “0” as no change, and “-

1” as chromosomal deletion or loss of heterozygosity. Figure 11A displays the heatmap analysis 

output. In PFS survival analysis (Figure 11B), cluster 1 had a median PFS of 7.3 years (95% CI: 



 25 
 

4.2 – 9.5 years), while cluster 2 had a median PFS of 8.3 years (0.4 – infinite years) (logrank p-

value= 0.56). In OS survival analysis (Figure 11C), the median OS for cluster 1 was 29.8 years 

(95% CI: 10 -  29.8 years), while median OS for cluster 2 was incalculable (logrank p-value= 

0.90).  

 

Aim 3 Results 

 

Non-imaging-based deep-learning model: 

 

First, we created a simple deep learning model to predict pathological subtype during the 

preoperative evaluation which would be imaging naive. Using 135 patients, 126 of who had 

complete preoperative information, we trained a fully connected neural network with TanH 

activation function and tuned hyperparameters using local Bayesian search. The data was split 

into 85% training cohort and 15 % validation cohort. We then evaluated the cohorts using 

various metrics. The model parameters included demographic information: gender, race, and age, 

and clinical data: KPS at presentation, tumor location, tumor side, contrast enhancement type, 

history of seizure, presence of preoperative neurological deficit, whether the tumor was an 

incidental discovery, and eloquent location.  

 

Evaluation of or model resulted in a validation set performance of 77.8% accuracy with AUC of 

0.8667.  Our training set performance was 75.93% accurate with AUC of 0.8169.  

 

MR imaging-based deep-learning model: 
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We then trained an imaging-only model to identify predict oligodendroglioma subtype vs 

astrocytoma subtype of IDH-mutant gliomas. Using methods described above we trained a 3D 

ResNet18 on preoperative T1W post-contrast MR images. Images were manually reviewed and 

preoprocessed as detailed in methods.  The dataset was divided into a training and validation 

cohort (85%/15% (n= 87/16)).  The 3D ResNet18 was trained for 150 epochs (Figure . 

 

Overall, the training accuracy of our model was 93.75%, AUC 0.9788, [TP28, FP2, TN47, FN3] 

F1-Score 0.9180 (Table 6). The validation accuracy for our model was 81.25%, AUC 0.9091, 

[TP4, FP2, TN9, FN1], F1-Score 0.7273 (Table 7). 
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Discussion: 

 

Aim 1: 

 

In this aim, we described the relation of the exposure of frailty (measured by two metrics) upon 

two outcomes; 30-day readmission and OS. We found that CCI and mFI-5 were not associated 

with 30-day readmission. We also found that CCI and mFI-5 were not associated with OS. 

However, in patients that had their first surgery at our institution (not recurrent tumors), there 

was an association of one frailty measure (mFI-5) with OS. 

 

While we hypothesized that frailty would be associated with 30-day readmission and OS in our 

cohort, there are multiple reasons why we may have not discovered such associations. While our 

single-institution experience of IDH-mutant glioma is relatively large, the overall small sample 

size (n = 136) and resulting under-powered statistical analyses did not allow for effective testing 

of true associations. In short, our study is marred by type II error.  

 

Additionally, the proportion of patients with high frailty in our cohort is small, with only 13.2% 

(n = 18) of patients having high CCI and 25% (n=34) of patients having high mFI-5. Overall, 

patients with IDH-mutant glioma tend to be younger, and thus more healthy/less frail than other 

brain tumor cohorts (Table 1).43 Patients with metastatic tumors tend to be older and have more 

systemic disease than patients with IDH-mutant glioma we studied in our cohort and others.58,59 

The event rate of 30-day readmission in the cohort was low as well (5.9%, n = 8). These 

limitations reduce the ability to detect associations between frailty and our primary outcome.  
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There are other factors that may explain the lack of association of frailty with outcome in 

patients with glioma. The type of surgery that patients receive has significant association with 

readmission, PFS, and OS. While still somewhat controversial, it is generally accepted that 

patients with glioma that obtain a maximal safe surgical resection have increased time to 

recurrence and mortality.44,60–62 However, the association of extent of resection and outcome is 

plagued by numerous confounders. For example, there is significant bias in the administration of 

attempted gross total resection; neurosurgeons will not attempt aggressive resection in tumors 

located in eloquent areas of the brain or in older patients or patients that have significant medical 

comorbidities.32,62 Additionally, tumor genetics play a larger role in outcome in patients with 

glioma compared to other lesions of the brain. Patients with HGG have shorter OS and PFS than 

patients with LGG.2,4,12,14,43 Surgery type, extent of resection, and genetic factors are examples of 

parameters that play a role in outcome of patients with glioma and may disrupt associations of 

frailty and outcome in glioma cohorts.  

 

Other groups have described the association of frailty with OS in patients with brain tumors. 

Youngerman et al. found that the modified frailty index was associated with 30-day readmission, 

mortality, medical complications, neurological complications, prolonged length of stay, and 

discharge to rehabilitation facility rather than home.33 There are major differences in the IDH-

mutant glioma cohort and the cohort used for the Youngerman et al. study. First, the data to form 

the cohort in the Youngerman et al. study were from the American College of Surgeons NSQIP 

database, and had a much larger sample size (n=9149 patients). This cohort was more adequately 

powered to discover the associations delineated above. Second, fewer than one-half of patients in 
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the NSQIP database had glioma. Third, the cohort had a greater percentage of patients with 

frailty, with 48.5% having at least low frailty.  

 

Cloney et al. and Khalafallah et al. also related frailty measures to outcome in patients with brain 

tumors.32,63 Cloney et al. studied the exposure of frailty within a cohort of 319 geriatric patients 

with HGG. They found that patients with more frailty were less likely to undergo surgical 

resection (vs. biopsy), had longer stay in hospital, and increased overall risk of complications. 

Differences in this cohort compared to our IDH-mutant cohort is the older age of patients, higher 

rates of frailty, and more homogenous tumor type (HGG). Khalafallah et al. described the 

relationship of frailty and outcome in 1692 patients with brain tumors. They found that increased 

frailty related to 90-day mortality, in a dose-adjusted pattern. Key differences in this cohort to 

ours include increased sample size, low rate of glioma diagnosis (<30%), and very low rate of 

outcome of mortality (3%).  

 

In future studies with this cohort, we could strengthen our ability to test associations between 

frailty and outcome in IDH-mutant glioma by increasing sample size, testing different levels of 

the exposure (different cut off points for “high” vs. “low” frailty), and including sensitivity 

analyses. Additionally, we could implement Bayesian analytic strategies to analyze this low 

sample size database.64 

 

Aim 2: 
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Using next-generation molecular/genetic sequencing of IDH-mutant glioma tissue, we attempted 

to discover associations between CN variation and outcomes of OS and PFS within our cohort. 

We also performed a heat-map analysis to find clusters of genotypes that relate to the outcomes 

of OS and PFS. 

 

Overall, our results suggest that there may be an association with increased CN variation and 

PFS. Using an optimized cut-point, there was a significant negative difference in survival in 

patients with higher CN variation than those with lower CN variation in our cohort (Figure 7). 

The Kaplan-Meier curves (Figures 7 and 8) show separation when comparing high CN variation 

vs. low CN variation median as cut-point for PFS and OS. While the logrank p-values were only 

significant for the Kaplan-Meier curves when we employed optimized cut-point, the separation 

in the curves suggest that with larger sample size, the ability to detect an association may be 

greater. Our heat-map analysis did not discover a clusters with differing PFS nor OS. 

 

There are multiple issues with our database that reduce the likelihood of finding meaningful 

associations between genetic factors and outcomes in IDH-mutant glioma. Again, while we have 

a relatively expansive single-institution experience in IDH-mutant glioma, our overall sample 

size is likely too small to detect differences between patients, especially when performing high-

dimensional data analysis (heat-map). Our results of the overall survival analysis are marred by 

high rate of censorship and low event rate of observed death. The observed rate of death amongst 

patients with complete next-generation sequencing analysis was 11.4% (Figures 7 and 8). While 

we attempted to contact patient families for updated survival data, we suffered from a significant 

number of patients being lost to follow-up. 
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Mirchia et al. studied the prognostic capability of CN variations within IDH-mutant and IDH-

wildtype gliomas.23 They further subdivided IDH-mutant tumors as those with CDKN2A/B 

deletion or CDK4 amplification, those without, and IDH-mutant HGG. Their data suggested that 

increased CN variation number was predictive of prognosis in patients with IDH-mutant tumors, 

but not in patients with IDH-wildtype tumors. The analytic approach of the Mirchia et al. paper 

was different than ours. They subdivided the IDH-mutant heterogenous groups into more 

homogenous patient cohorts by previously-described biomarkers (CDKN2A/B and CDK4). This 

allowed for cleaner statistical output, however, potentially lowers the generalizability of their 

findings. While the main findings of the article report that CN variation is a prognostic parameter 

in patients with IDH-mutant glioma, the reality is that the associations are restricted to specific 

IDH-mutant groups, and less generalizable.  

 

Buchwald et al. studied the association of CN variations in 56 patients with HGG (WHO grade 

IV glioblastoma), and externally-validated their findings using the Cancer Genome Atlas 

(TCGA).65 Contradictory to ours and Mirchia et al. reports, Buchwald et al. found that increased 

CN variation was associated with increased PFS and OS. The findings in this study run in 

conflict to other cancer types and IDH-mutant glioma, where increased CN variation seems to 

correlate with decreased PFS and OS.23,66–68 

 

In future analyses with this dataset, we would like to increase our sample size by adding patients 

with complete genetic data. We could also improve our follow-up to receive more event data for 

PFS and OS analyses. Another future study could include subdividing our cohort by known 
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prognostic mutations (such as CDKN2A/B and CDK4), to recapitulate the analysis completed by 

Mirchia et al. Last, we could externally validate our analysis on shared databases such as the 

TCGA. 

 

Aim 3: 

 

In this aim of the project, we developed two algorithms using machine-learning/deep-learning 

adaptive neural networks to predict the outcome of tumor lineage: astrocytoma or 

oligodendroglioma. The non-imaging-based predictive model had a training performance 

accuracy of 75.9% and AUC of 0.82, while the validation performance accuracy was 77.8% and 

the AUC was 0.87. The imaging-based predictive model had a training performance accuracy of 

93.8% and AUC of 0.98, while the validation performance accuracy was 81.3% with AUC 0.91 

(Table 6 and 7).  

 

Others have used MRI parameters to help predict tumor type and outcomes in the glioma patient 

population. Bumes et al. employed PET-guided MR spectroscopy images and machine-learning 

analysis to predict whether or not a glioma patient harbored an IDH-mutation.69 Others have 

attempted to predict IDH mutation status amongst patients with gliomas.70,71 To our knowledge, 

our analysis is the first attempt to discover IDH-mutant glioma genomic lineage with an 

imaging-based, machine-learning algorithm.  

 

Having a tool to predict tumor lineage could assist neurosurgeons in the care of patients with 

suspected IDH-mutant glioma. Recent analyses suggest that attempted gross total resection may 
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confer an OS and PFS benefit to IDH-mutant astrocytoma, but not for oligodendroglioma.72 

While the conclusions from such studies should be accepted with caution owing to their class 

III/IV evidence standing, preoperative identification of tumor lineage could prove to be helpful 

to neurosurgeons and oncologists. Surgery has the potential for more risk than most 

neurosurgeons care to admit. For example, the late term neurocognitive side effects of attempted 

aggressive resection could be underappreciated.73,74 

 

Our model for predicting tumor lineage is nascent. Moving forward, we aim to improve the 

predictive capacity of this algorithm by combining non-imaging based and MRI-based 

parameters together. We want to use more imaging modalities, such as T2W MRI sequences, 

diffusion-tensor, and diffusion weighted imaging to strengthen our algorithm. Additionally, we 

could increase sample size by adding patients to our database and using externally-maintained 

data repositories such as the TCGA. We would also like to apply the techniques in this study to 

predict different outcomes, such as PFS and OS. 
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Tables: 
 
Table 1: Cohort characteristics, dichotomized by CCI ≥ 3 and mFI-5 ≥1. 

  Charlson Comorbidity 
Index 

5-Factor Modified 
Frailty Index 

Variables, 
n(%) Total Cohort CCI = 0 - 2,  

N = 1181 
CCI ≥ 3 ,  
N = 181 

mFI = 0,  
N = 1021 

mFI-5 ≥ 1,  
N = 341 

Age at 
Surgery, 
Years 

38 (31, 47) 37 (30, 43) 63 (56, 73) 36 (30, 43) 48 (39, 62) 

Male Sex 84 (62%) 74 (63%) 10 (56%) 62 (61%) 22 (65%) 
Race      
White 111 (82%) 97 (82%) 14 (78%) 83 (81%) 28 (82%) 
African-
American 14 (10%) 14 (12%) 0 (0%) 10 (9.8%) 4 (12%) 
Latino 5 (3.7%) 4 (3.4%) 1 (5.6%) 5 (4.9%) 0 (0%) 
Asian 1 (0.7%) 1 (0.8%) 0 (0%) 1 (1.0%) 0 (0%) 
Other 3 (2.2%) 2 (1.7%) 1 (5.6%) 3 (2.9%) 0 (0%) 
Not Reported 2 (1.5%) 0 (0%) 2 (11%) 0 (0%) 2 (5.9%) 
Body Mass 
Index (kg/m2) 

26.7 (23.7, 
31.7) 

26.3 (23.6, 
30.3) 

30.2 (24.4, 
37.0) 

26.3 (23.8, 
29.8) 

30.1 (23.4, 
34.4) 

    Missing 10 (7%) 7 (6%) 3 (17%) 6 (6%) 4 (12%) 
Preop 
Karnofsky 
Performance 
Status ≥ 70 

124 (91%) 113 (96%) 11 (61%) 100 (98%) 24 (71%) 

Preop 
Seizures 85 (62%) 73 (62%) 12 (67%) 63 (62%) 22 (65%) 
Preop 
Neurological 
Deficit 

45 (33%) 34 (29%) 11 (61%) 26 (25%) 19 (56%) 

Tumor 
Location      
Frontal 85 (62%) 74 (63%) 11 (61%) 65 (64%) 20 (59%) 
Parietal 13 (9.6%) 11 (9.3%) 2 (11%) 8 (7.8%) 5 (15%) 
Temporal 29 (21%) 26 (22%) 3 (17%) 24 (24%) 5 (15%) 
Occipital 6 (4.4%) 5 (4.2%) 1 (5.6%) 4 (3.9%) 2 (5.9%) 
Insula 2 (1.5%) 1 (0.8%) 1 (5.6%) 1 (1.0%) 1 (2.9%) 
Cerebellum 1 (0.7%) 1 (0.8%) 0 (0%) 0 (0%) 1 (2.9%) 
Left-Sided 
Tumor 75 (55%) 66 (56%) 9 (50%) 57 (56%) 18 (53%) 
Tumor 
Primarily 
Centered 
Outside Deep 
Structures 

99 (73%) 88 (75%) 11 (65%) 75 (74%) 24 (73%) 

Missing 1 0 1 0 1 
Tumor 
Centered in 
Eloquent 
Location 

61 (46%) 52 (44%) 9 (53%) 44 (43%) 17 (53%) 

Missing 2 1 1 0 2 
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Type of 
Surgery      
Stereotactic 
Biopsy 47 (35%) 37 (31%) 10 (56%) 36 (35%) 11 (32%) 
Open Biopsy 2 (1.5%) 1 (0.8%) 1 (5.6%) 1 (1.0%) 1 (2.9%) 
Craniotomy for 
Resection 87 (64%) 80 (68%) 7 (39%) 65 (64%) 22 (65%) 
Astrocytic 
Lineage (vs. 
Oligodendrog
lioma) 

87 (64%) 80 (68%) 7 (39%) 68 (67%) 19 (56%) 

Total # Copy 
Number 
Variations 

9 (5, 18) 10 (5, 17) 8 (5, 31) 10 (5, 17) 8 (5, 26) 

Missing 43 38 5 31 12 
Immediate 
Postoperative 
Neurological 
Deficit 

     

None 112 (82%) 100 (85%) 12 (67%) 86 (84%) 26 (76%) 
Motor 12 (8.8%) 6 (5.1%) 6 (33%) 5 (4.9%) 7 (21%) 
Sensory 2 (1.5%) 2 (1.7%) 0 (0%) 2 (2.0%) 0 (0%) 
Language  6 (4.4%) 6 (5.1%) 0 (0%) 6 (5.9%) 0 (0%) 
Visual 2 (1.5%) 2 (1.7%) 0 (0%) 2 (2.0%) 0 (0%) 
Other 2 (1.5%) 2 (1.7%) 0 (0%) 1 (1.0%) 1 (2.9%) 
Postop 
Karnofsky 
Performance 
Status ≥ 70 

124 (91%) 114 (97%) 10 (56%) 100 (98%) 24 (71%) 

Adjuvant 
Temozolomid
e Use 

106 (84%) 96 (85%) 10 (77%) 82 (84%) 24 (86%) 

Missing 10 5 5 4 6 
Adjuvant 
Radiation 
Use 

100 (74%) 90 (76%) 10 (56%) 78 (76%) 22 (65%) 

Median Time 
to Death 36 (18, 77) 55 (25, 94) 13 (6, 24) 55 (25, 90) 14 (6, 32) 
Missing 113 99 14 85 28 
30-Day 
Readmission 8 (5.9%) 7 (5.9%) 1 (5.6%) 5 (4.9%) 3 (8.8%) 
1Median (IQR); n (%)  
Abbreviations: CCI: Charlson Comorbidity Index, mFI-5: 5-factor modified frailty index, #: 
number 
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Table 2. Results from multivariable adjusted models for effect of frailty upon 30-day 
readmission. 
 

  Odds of 30-day readmission, n=136 

Frailty Metric N (%) Crude OR (95%CI) aOR (95% CI) P-value 

CCI 0 – 2 118 (87) REF REF  

CCI ≥ 3 18 (13) 0.93 (0.04 – 5.72) 0.22 (0.01 – 3.24)a 0.30 

mFI-5 = 0 102 (75) REF REF  

mFI-5 ≥ 1 34 (25) 1.88 (0.37 – 8.10) 1.56 (0.24 – 8.96)b 0.62 

Abbreviations: OR: odds ratio;  aOR: adjusted odds ratio; 95% CI: 95% confidence interval; REF: reference. 
aModel adjusted for tumor location, BMI, type of surgery, and age, model n=125 
bModel adjusted for tumor location, BMI, type of surgery, and age, model n=125 
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Table 3.  Results from adjusted models for effect of frailty upon overall survival. 
 

   Hazard ratio for rate of overall survival, n=136 
Frailty 
Metric 

Death 
N (%) 

Median months to 
death (IQR) 

Crude HR (95%CI) aHR (95% CI) P-value 

CCI 0 - 2 19 (83) 55.3 (22.0, 99.1) REF REF  

CCI ≥ 3 4 (17) 11.1 (1.1, 58.0) 3.33 (1.12 – 9.97) 0.59 (0.05 – 6.37)a 0.7 
mFI-5 = 
0 17 (74) 63.1 (31.6, 99.8) REF REF  

mFI-5 ≥ 
1 6 (16) 26.3 (2.5, 55.3) 2.14 (0.83 – 5.47) 1.15 (0.29 – 4.52)b 0.8 

Abbreviations: HR: hazard ratio; aHR: adjusted hazard ratio; 95% CI: 95% confidence interval; REF: reference. 
aModel adjusted for age, tumor location, BMI, and type of surgery, history of prior surgery; model n=125 
bModel adjusted for age, tumor location, BMI, and type of surgery, history of prior surgery; model n=125 
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Table 4: Adjusted hazard ratio of death in patients with de novo tumors/new diagnosis 
(n = 99). 
 

 
 
 
  

Variable HR1 95% CI1 p-value

mFI = 0 REF REF REF

mFI >=1 6.79 1.00, 45.9 0.049

Age at Surgery 1.01 0.96, 1.07 0.6

Convexity Location 0.50 0.13, 1.99 0.3

BMI 0.81 0.69, 0.94 0.006

Open craniotomy for resection 3.22 0.84, 12.4 0.088

1HR = Hazard Ratio, CI = Confidence Interval
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Table 5: Descriptive statistics of copy number variation [CNV] (mutational burden of tumor) per 
glioma, and distribution of CNV for overall survival (OS) and progression free survival (PFS). 
 

Variable Level N (%) = 93 

CNV total (categorical) <= 8.5 (median) 44 (50.0) 

> 8.5 (median) 44 (50.0) 

Missing 5 

 

CNV Cutpoint for OS <= 10.5 (Optimal 
cutoff) 

50 (56.8) 

> 10.5 (Optimal cutoff) 38 (43.2) 

Missing 5 

 

CNV Cutpoint for PFS <= 7.5 (Optimal cutoff) 40 (45.5) 

> 7.5 (Optimal cutoff) 48 (54.5) 

Missing 5 

 

CNV Mean 12.80 

Median 8.50 

Minimum 1.00 

Maximum 58.00 

Std Dev 11.36 

Missing 5.00 
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Table 6: Training imaging-only model evaluation (n = 87). 
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Table 7: Validation imaging-only model evaluation (n = 16) 
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Figures 
 
Figure 1: Cohort flow diagram 

 
 
 
  



 50 
 

Figure 2: Glioma patient care flow diagram 
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Figure 3: Directed acyclic graphs for exposure, outcome relationships. A. Frailty and 30 day hospital 
readmission, B. Frailty and overall survival. 
A. 

 
 
B. 
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Figure 4: Kaplan-Meier survival curves for overall cohort, CCI ≥ 3 vs. CCI 0 – 2, and mFI-5 ≥ 1 vs. 
mFI-5 = 0. 
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Figure 5: Kaplan-Meier survival curves for  CCI ≥ 3 vs. CCI 0 – 2, and mFI-5 ≥ 1 vs. mFI-5 = 0. 

 
 
 
 
  



 54 
 

Figure 6: Kaplan-Meier survival curves for surgery vs. biopsy, and astrocytoma vs. oligodendroglioma. 
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Genetic Analysis Figures: 
Figure 7A Progression Free Survival (PFS) Kaplan Meier (KM) Curves – Copy Number Variation (CNV) 
median 

 

CNV Total 
(categorical) 

No. of 
Subject Event Censored 

Median 
Survival 
(95% CI) 1 Yr Survival 3 Yr Survival 5 Yr Survival 10 Yr Survival 

<= 8.5 
(median) 

44 15 
(34%) 

29 (66%) 10.3 (4.2, 
16) 

92.4% (78.1%, 
97.5%) 

78.2% (59.2%, 
89.1%) 

69.4% (48.3%, 
83.2%) 

56.5% (32.8%, 
74.7%) 

> 8.5 
(median) 

44 25 
(57%) 

19 (43%) 6.6 (2.4, 
8.3) 

76.3% (60.5%, 
86.5%) 
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Figure 1B PFS KM Curves - CNV quartile  

 

CNV Total 
(quartile) 

No. of 
Subject Event Censored 

Median 
Survival 
(95% CI) 1 Yr Survival 3 Yr Survival 5 Yr Survival 

10 Yr 
Survival 

>17.5, <=58 22 11 
(50%) 

11 (50%) 8.3 (1.7, 
NA) 

75.4% (50.6%, 
89.0%) 

64.6% (39.6%, 
81.4%) 

58.8% (33.9%, 
77.0%) 

36.7% (14.5%, 
59.4%) 

>5, <=8.5 17 7 
(41%) 
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92.8%) 
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>8.5, <=17.5 22 14 
(64%) 
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Figure 1C PFS KM Curves - CNV Optimal cut point 
 

 

CNV Total 
No. of 
Subject Event Censored 

Median 
Survival 
(95% CI) 1 Yr Survival 3 Yr Survival 5 Yr Survival 10 Yr Survival 

<= 7.5 
(Optimal 
cutoff) 

40 13 
(33%) 

27 (68%) 10.3 (4.2, 
29.8) 

94.3% (79.0%, 
98.5%) 

82.4% (62.4%, 
92.4%) 

72.5% (49.8%, 
86.3%) 

59.1% (33.8%, 
77.5%) 

> 7.5 (Optimal 
cutoff) 

48 27 
(56%) 

21 (44%) 4.6 (2.4, 
8.3) 

76.2% (61.1%, 
86.1%) 

61.7% (45.7%, 
74.3%) 

49.3% (32.8%, 
63.8%) 

21.3% (7.7%, 
39.3%) 

 
  

With Number of Subjects at Risk
Product-Limit Survival Estimates

40 12 5 2 1 1 0
48 12 4 1 0

1
2

0 5 10 15 20 25 30

Progression free survival time (years)

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

2: > 7.5 (Optimal cutoff)1: <= 7.5 (Optimal cutoff)cnv total

0 5 10 15 20 25 30

Progression free survival time (years)

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

2: > 7.5 (Optimal cutoff)1: <= 7.5 (Optimal cutoff)cnv total

Logrank p=0.0420
+ Censored



 58 
 

Figure 8A Overall Survival (OS) KM Curves - CNV median 
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Figure 8B OS KM Curves - CNV quartile 
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Figure 8C OS KM Curves - CNV Optimal cut point 
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Figure 9A Spearman correlation plot CNV Total percentage with OS 

 
 
Figure 9B Spearman correlation plot CNV Total percentage with PFS 
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Figure 10A: Heatmap analysis; chromosome/gene amplification or deletion vs. none. 
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Figure 10B PFS KM Curves – Heat Map clusters – Gene Amplification or Deletion vs None 
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Figure 10C OS KM Curves – Heat Map clusters – Gene Amplification or Deletion vs None 
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Figure 11A: Heatmap analysis; chromosome/gene amplification vs deletion or loss of 
heterozygosity vs none. 
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Figure 11B PFS KM Curves – Heat Map clusters – Gene Amplification vs Deletion or Loss of 
Heterozygosity vs None 

 

Cluster 
No. of 

Subject Event Censored 

Median 
Survival 
(95% CI) 1 Yr Survival 3 Yr Survival 5 Yr Survival 10 Yr Survival 

1 70 32 
(46%) 

38 (54%) 7.3 (4.2, 
9.5) 

86.3% (75.4%, 
92.6%) 

70.9% (57.1%, 
81.0%) 

57.4% (41.8%, 
70.2%) 

29.0% (12.6%, 
47.7%) 

2 18 8 
(44%) 

10 (56%) 8.3 (0.4, 
NA) 

75.6% (47.3%, 
90.1%) 

68.8% (40.2%, 
85.7%) 

61.9% (33.8%, 
80.9%) 

44.2% (17.8%, 
67.9%) 

 
  

With Number of Subjects at Risk
Product-Limit Survival Estimates

70 17 5 2 1 1 0
18 7 4 1 0

1
2

0 5 10 15 20 25 30

Progression free survival time (years)

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

21Cluster

0 5 10 15 20 25 30

Progression free survival time (years)

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

21Cluster

Logrank p=0.5585
+ Censored



 67 
 

Figure 11C OS KM Curves – Heat Map clusters - Amp vs deletion or LOH vs none 
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Figure 12: Two example subjects demonstrating the results of preprocessing steps including denoising, 
biasfield correction, brain masking and intensity normalization. 
 
 

 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


