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Abstract 

Exploring Methods of Extraction of Cluster Free Energy from Small-N Molecular Dynamics 

Simulations 

By Xiaokun Zhang 

 

Molecular dynamics simulations provide us a powerful tool to study the microscopic properties of 
reversible aggregates. However, the simulations often do not represent the behavior of a 
macroscopic system of aggregation due to the limit of system size.  This dissertation will show (1) 
the establishment of fast and reliable analysis tools to extract thermodynamic properties from 
canonical ensemble simulations of small systems undergoing reversible aggregation and (2) 
example applications of these tools for micellizations of amphiphilic surfactants, including size-
dependent cluster free energy, critical micelle concentration, micelle size, and predictions of X-
ray scattering profiles.  The tools are based on the "Partition-Enabled Analysis of Cluster 
Histograms" (PEACH) approach. A dramatic reduction in computational time for analysis is 
achieved through a strategy similar to the "selector variable method". With PEACH method and 
enthalpy change calculations, we explored the temperature-related cluster free energy and derived 
enthalpy change for micellization of sodium octanoate. The enthalpograms generated from 
simulation data were consistent with results from isothermal titration calorimetry experiments1. 
Molecular dynamics (MD) simulations of the zwitterionic surfactant octyl phosphocholine (OPC) 
in water have been performed with two force fields. Micelle size distributions from a number of 
trajectories were analyzed using the PEACH method to yield free energies of aggregation for 
premicelles and micelles over the full range from 2 to over 40 molecules.  The dependence of free 
energy on aggregation number was consistent with the functional form derived from the “quasi-
droplet” model of micellization. PEACH- BAR method was proposed to extract the free energy of 
aggregation vs. aggregate size systems with slow dissociation rate and low critical micelle 
concentration (CMC of approximately 1-2 mM) and applied to a united atom model of the 
surfactant dodecyl phosphocholine (DPC) in water. The new approach applies PEACH to a model 
with weakened attractions between aggregants, which allows sampling of a continuous range of 
cluster sizes, then recovers the free energy of aggregation under the original fully-attractive force 
field using the BAR free energy difference method.   
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Chapter 1 Introduction 

 

The reversible aggregation of amphiphilic surfactants is an important phenomenon with a wide 

spectrum of applications in studies of detergents, membrane proteins3 and nanomaterial synthesis4. 

Complete understanding of the thermodynamics of aggregation is difficult to achieve due in part 

to size polydispersity and sensitivity to conditions, and uncertainties in experimental techniques. 

Molecular dynamics simulations (MD) have long been a powerful tool to model the structures of 

disordered assemblies and extract thermodynamic properties for the dynamic equilibrium of 

aggregation. This work focuses on establishment of tools for extraction of the size-dependent free 

energy and related micelle statistics from molecular dynamics simulations. In particular, we are 

interested in the micelle formation process.  

 

One challenge of conventional MD simulations on amphiphile assemblies is that to obtain size-

dependent cluster free energy (CFE) through direct assessment of equilibrium association 

constants requires simulations with enough surfactants to allow several clusters to form and 

equilibrate with each other through exchange of monomers, enough solvent to provide a reservoir 

of free monomers (unimers), and a duration significantly greater than the time required for a 

monomer to dissociate from a micelle and diffuse to another one.5  Statistical thermodynamics 

shows that applying the law of mass action directly to simulations of small systems results in 

distortions to the size distribution and unimer concentration.6  Some advanced sampling methods7, 

8 were developed to obtain the cluster free energy, however, these methods involve the 

complications of applying a bias or sampling unphysical states. A method which provides free 
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energy with sampling of a small number of surfactants in unbiased canonical ensemble will 

facilitate the investigation of micelle properties and applications.  

 

We established “PEACH” method to address the problem with analysis of reversible aggregation 

simulations in canonical systems, and in particular, a core algorithm was brought up to handle the 

two-component system. In Chapter 2, we will show how the “PEACH” method was established 

and applied to the simulation of micelle formation of ionic surfactants with a coarse-grained model. 

The PEACH method makes rigorous estimations of bulk equilibrium association constants from 

unbiased, small-N simulations and eliminates the need for multiple clusters in the simulation, as it 

automatically corrects for the distortions in cluster size distribution that arise from a finite number 

of monomers. It is therefore effective so long as the need for a long enough trajectory and a large 

enough solvent reservoir to allow for significant fluctuations in cluster size to be observable. 

PEACH method facilitates the analysis of simulation results of reversible aggregates such as 

nucleation of salts, micelle formation and aggregation of amyloid peptides. In this work, PEACH 

method was applied to simulations of micellization of sodium octyl sulfate and has revealed 

consistent thermodynamic properties for large systems. This test case shows the efficiency and 

reliability of PEACH method. With PEACH method, we were able to explore the thermodynamics 

of micellization of various ionic surfactant with manageable computational cost. 

 

The simple, one-component system of octyl phosphocholine (OPC) micellization was studied with 

direct application of PEACH method. OPC is a zwitterionic surfactant widely used for membrane 

protein solubilization. Another reason for the interest in OPC is that they share their headgroup 

structures with the well-studied bilayer-forming phosphatidyl glycero-phospholipids. In this work 
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(Chapter 3), we parameterized the force field so that it can work with SPC water (which is used in 

simulations of peptides and lipids). The force fields used for surfactant tails are based on the 

TraPPE model,9 and so have been parameterized to fit alkane-alkane thermodynamic properties, 

but with modifications to interactions with water made to yield accurate free energies of hydration. 

 

PEACH-BAR method was developed to handle micellization systems with rare monomer 

exchange events. For surfactants with low critical micelle concentrations (CMC) i.e. less than 10 

mM, PEACH method is compromised as a result of the slow dissociation rate (relative to 100’s of 

ns) and rare occurrences of unimers and premicelles in a moderately sized solvent bath (with 

1000’s of waters). To obtain good sampling of clusters of varying size, simulations need to be 

performed at low concentrations around the CMC; however, the large amount of solvents 

consumes excessive computational costs. Higher concentration simulations with small box sizes 

produce trajectories in which a micelle grows to encompass all monomers and remains in that state 

throughout the trajectory. In Chapter 4, an adapted version of PEACH method called PEACH-

BAR method was developed to generate the cluster free energy and the micellization of dodecyl 

phosphocholine was analyzed with this method. The internal consistency of PEACH-BAR method 

was also examined by the umbrella sampling method. 

 

The heat effect of micellizations was studied thoroughly with our techniques of PEACH method 

and enthalpy change calculations. One system we explored is the long-chain carboxylates. We 

explored the temperature-related cluster free energy and derived enthalpy change for micellization 

of sodium octanoate. We are interested in how the microscopic properties affect the overall heat 
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effect. This study of enthalpogram of micellization based on molecular dynamics simulations is 

presented in Chapter 5. 

 

The systems investigated as we have developed these tools have been fairly conventional 

zwitterionic and anionic surfactants, where we do not expect to find very new phenomena.  This 

was intentional, as some qualitatively well-understood cases are useful tests when developing new 

methods.    With the tools we have now to study micellization properties in this dissertation, we 

are interested in two directions in the future.  The first is the aggregation of mixed peptide and 

surfactants can be studied with two-component PEACH method. Based on previous study, we 

hope to show how the micellization of OPC is influenced by adding peptides, and how the folding 

of the peptides is influenced by the presence of the surfactant. The second is the study of 

micellization of surfactants with wide applications and unconventional structure and properties. A 

bile salt, CHAPS, is a zwitterionic surfactant widely used to solubilize membrane proteins and 

revealed unique and controversial micellization properties of two CMC values. We attempted to 

study the micellization of this surfactant but observed quite slow dissociation in the simulations, 

which is the problem addressed by the PEACH-BAR method developed more recently.
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Chapter 2 Extracting aggregation free energies of mixed clusters from 

simulations of small systems: application to ionic surfactant micelles 

 

2.1 Introduction 

A variety of physical and biophysical phenomena involve the reversible association of particles 

into aggregates of varying size.  Under conditions where this association is effectively unbounded, 

these aggregates represent the pathway to a new phase, and information about their size-dependent 

free energy is essential to understanding the dynamics of nucleation of the new phase. 10-13 In other 

cases (as in micelle formation from some amphiphiles) the extent of cluster growth is limited by 

the structure of the aggregants.  In those cases, the free energy of aggregation of clusters as a 

function of size and (for mixtures of particles) of composition is useful information to determine 

the cluster distribution at equilibrium, which will be sensitive to composition.14, 15 Molecular 

simulations of micelles are commonly performed16-31 and yield useful insights into their structure 

and their interactions with the proteins and small molecules they can solubilize. These simulations 

often face the challenge either of making assumptions about the number of amphiphiles contained 

within the micelle or of including enough molecules to form multiple aggregates and simulating 

for long enough that their size distribution can be assumed to have reached equilibrium.  A recent 

overview5 suggests that enough surfactant to form least five micelles should be included in the 

simulation for reliable estimation of sizes.  Such large systems will be computationally expensive 

in atomistic simulations with explicit water. 

Recently32 we have reported a global fitting strategy that accounts for the breakdown of the law of 

mass action in determining cluster free energies from simulations of systems containing few 
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clusters. Results from several trajectories with limited numbers of particles were combined to give 

a globally consistent free energy surface describing the growth of methyl t-butyl ether (MTBE) 

clusters along the pathway to nucleation of a bulk liquid phase from either the vapor or aqueous 

solution.  The analysis of equilibrium cluster statistics in small-N systems relies on the 

consideration of all discrete ways in which the monomers of the system can be arranged into 

clusters,6 which can be mapped onto the integer partitions of N. The number of these partitions 

scales as '
3-√5

	𝑒678-/5 for simple integers33 and as :
-!!/#$

e;-%/#&#-&/# 	 (with a,b,c being explicit 

constants) for partitions of bipartite integers,34, 35 which represent the combinations of clusters that 

can be formed from a 2-component mixture of aggregants.  Explicit generation of these partitions, 

in the latter case in particular, becomes computationally impractical even for modest N.  A new 

approach, derived using techniques commonly used in number theory, enables the evaluation of 

the appropriate sums over sets of partitions without explicitly generating those partitions, resulting 

in a more efficient algorithm whose computational cost scales better than N3 for single component 

systems and better than N6 for bipartite mixtures.   

Here we will report on this updated "Partition-Enabled Analysis of Cluster Histograms" (PEACH) 

strategy, and demonstrate its application to finding the free energy surface for a coarse-grained 

model of the anionic surfactant sodium octyl sulfate (SOS).  The stability of micellar clusters 

formed by ionic surfactants depends strongly both on the hydrophobic interactions of the surfactant 

tails and on the effects of counterion binding in reducing headgroup repulsions.  The latter effect 

is influenced by the concentration of counterions, and to a lesser extent by the specific counterions 

used.  These factors complicate efforts to model ionic micelles through molecular simulation for 

the prediction of important characteristics like the critical micelle concentration, micelle size, and 

degree of counterion condensation.  Simulation studies36, 37 have shown that the onset 
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concentration for micellization (the critical micelle concentration, or CMC) can be estimated from 

an analysis of the free surfactant concentration, the average number of surfactants per micelle N, 

and the fractional neutralization α, which represents the ratio of the number of bound counterions 

to the number of surfactants in a micelle.  Earlier, analysis of experimental results by Quina et al.38 

was developed on the basis that the formation of an ionic micelle from N surfactants and  α × N 

counterions can be treated using an equilibrium expression using the law of mass action.  A similar 

assumption was made by Burov and Shchekin39 who analyzed micelle size and charge distributions 

in a coarse-grained model simulations to find a two-dimensional free energy surface in the Nsurfactant 

/ Ncounterion plane from simulations of ~500 coarse-grained ionic surfactants.  Here we show how a 

similar surface can be derived from simulations of small systems containing 1 or 2 micelles.  The 

solvent-free "Dry Martini" coarse-grained forcefield40 was used to allow efficient sampling of 

these systems at low computational cost, and also to allow long enough simulations for equilibrium 

distributions to converge in larger simulations.   This provides confirmation that statistics 

generated in small-N simulations can be used to make accurate predictions for a large-N system. 

The form of the free energy surface itself is compared with a simple phenomenological model and 

used to predict the concentration dependence of aggregate properties.  Finally, we explore the 

effects of varying the criteria for defining a cluster, both on the quality of the fit and on the 

predicted concentration-dependent micellization behavior.   

In contrast to studies of micellization free energy that use external biasing potentials41-44 or 

alchemical slow-growth schemes,45 the PEACH approach relies on the ability of unbiased 

simulations to produce equilibrated distributions over the course of a trajectory.  An advantage is 

that it does not require any special algorithms in the generation of the input data.  A downside is 

that the trajectories must produce an equilibrated distribution within an accessible amount of 
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simulation time, which will only be possible when the rate of monomer exchange is not too slow 

relative to the trajectory time.  We expect that this approach will be applicable to the analysis of a 

wide range of micelle systems represented by computationally cheap CG models.  Additionally, 

PEACH should be useful to analyze simulations performed using atomistic models of ionic 

surfactant solutions for systems with CMC in the 30 mM or higher range.  In these cases, the 

analysis will offer detailed predictions of not only the CMC but also the dependence of micelle 

size and charge distributions on surfactant and counterion concentrations.  

2.2 Theory and algorithm development 

2.2.1 Statement of the problem and statistical thermodynamic model 

The canonical partition function for a system containing a given number of chemical entities 

translating freely in a volume V, with interactions between the entities neglected, is given by: 

𝑄(𝑁: , 𝑁; , 𝑁# … , 𝑉, 𝑇) =
𝑞:(𝑉, 𝑇)-'

𝑁:!
×
𝑞;(𝑉, 𝑇)-(

𝑁;!
×
𝑞#(𝑉, 𝑇)-)

𝑁#!
…						

                      (1) 

with qa the single-molecule partition function, which can be related to some standard state partition 

function 𝑞:
⊝(𝑇) by: 

𝑞:(𝑉, 𝑇) = 𝑉𝑐⊝𝑞:
⊝(𝑇)			                                                           (2) 

with 𝑐⊝ the standard-state concentration.  When the entities a,b,c… can interchange chemically, 

the probability of finding a chemical compositions Na, Nb, Nc … is proportional to the 

corresponding value of Q.  The maximization of Q with respect to the amounts of these 

components (subject to conservation of matter, which introduces constraints derived from 
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stoichiometric coefficients) allows determination of the most probable chemical composition.  In 

the limit of large Na, Nb… this constrained maximization produces the Law of Mass Action as 

taught in elementary chemistry, which relates an equilibrium quotient of product concentrations 

over reactant concentrations to a constant related to the standard partition functions	𝑞⊖.   

Here we are concerned with the case where these entities are clusters formed by combining integer 

numbers of one or more components.  Conservation of mass then dictates that, for a single 

component system containing N identical monomers, the possible chemical compositions of the 

system are given by sets  {Ni} of numbers of clusters containing i monomers such that 

?𝑖𝑁%

-

%.'

= 𝑁				

                                                                    (3) 

In number theory, such a set of integers is called an integer partition, and is commonly represented 

as  

	𝜆 = (1>&2>%3># …𝑘>*)		                                                         (4) 

with mk taking the place of Ni, representing the multiplicity of the integer k. The number being 

partitioned is represented as |λ| and termed the size of λ.   

|𝜆| = ?𝑘𝑚,
,.'

			

                                                               (5) 

If the values of partition functions qk are known, then for a given total number of monomers |λ| = 

N the probability that these monomers will assemble into a set of clusters λ' that satisfies eq. 3, (a 
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condition that is denoted 𝜆? ⊢ 𝑁 ) will then be given by: 

𝑃(𝜆?) = HI
𝑞,
>*
+

𝑚,
? !

-

,.'

J ?KI
𝑞,
>*

𝑚,!

-

,.'

L
@⊢-

M 																		

                              (6) 

where the denominator is the overall partition function Q = Q(N,V,T) obtained by summing the 

weights of all possible chemical compositions.  The equilibrium ensemble average number <mj> 

of clusters of size j is then obtained by the sum over chemical compositions, each weighted by mj 

and its probability: 

〈𝑚*〉 = 𝑄B' ?K𝑚*I
𝑞,
>*

𝑚,!

-

,.'

L
@⊢-

	.						

                                          (7) 

If all partitions of N can be generated, then it is straightforward to calculate this average for each 

cluster size k and obtain an equilibrium cluster size distribution.   For small enough N this will 

deviate considerably from the predictions of the Law of Mass Action.   

For a system that forms clusters from two distinguishable components A and B, we can identify 

the number of clusters formed from j monomers of type A and k monomers of type B as mj,k.  The 

possible values of mj,k such that  

??𝑗 ×𝑚*,,

-,

,./

--

*.'

= 𝑁C	and	??𝑘 ×𝑚*,,

-,

,.'

--

*./

= 𝑁D 															

           (8) 
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correspond to the set of partitions of the bipartite number (NA,NB).  The number of bipartite 

partitions as a function of NA and NB has been studied34, 35 and found to be significantly larger than 

the number of regular integer partitions of NA+NB.  While algorithms to generate integer partitions 

have been described,46 to our knowledge no such algorithm for bipartite partitions has been 

published; an algorithm that we have developed for this purpose is presented in the Supporting 

Information.  After using this algorithm for preliminary calculations employing explicit 

enumeration of bipartite partitions to solve eq. 7 to obtain <mj,k> from qj,k for a two-component 

system containing more than 40 total monomers, we found it necessary to seek a more efficient 

strategy than "brute-force" generation of all partitions.   

2.2.2  Application of Faà di Bruno's formula to canonical ensemble averages 

An alternative route to evaluating <mj> in eq. 7 that does not rely on enumeration of partitions can 

be obtained via a useful formula attributed to the mid-nineteenth century Italian priest and 

mathematician, Francesco Faà di Bruno,47 which arises as a generalization of the chain rule in 

calculus.48  A slightly simplified version of Faà di Bruno's identity as a sum over all partitions 𝜆 is 

achieved for some set of cluster partition functions 𝑞', 𝑞8, 𝑞5… as 

exp V? 𝑞E𝑧E
F

E.'
	X = ? 𝑧|@|

𝑞'>&𝑞8>%𝑞5># …	𝑞,>*

𝑚'!𝑚8!𝑚5! …𝑚,!@∈𝒫

,																															

        (9) 

assuming the series inside the exponential function converges (in this case, the right-hand side 

converges too).  If we take z to represent the monomer activity eβµ then the right-hand side of eq. 

9 represents the grand canonical partition function, Ξ(µ,V,T),  
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Ξ(𝜇, 𝑉, 𝑇) =?𝑧-𝑄(𝑁, 𝑉, 𝑇)
-

,																		

                               (10) 

through substitution of the expression for Q that appears in eq. 6.  For a simple ideal gas, (i.e. when 

q is nonzero only for k=1) eq. 9 reduces to a known49 relationship from statistical thermodynamics:  

Ξ = ezq.  The proof of eq. 9 follows from the well-known multinomial theorem, re-written as a sum 

over partitions 𝜆 in the set 𝒫[,] of partitions whose parts are all ≤ 𝑘, having length ℓ(𝜆) = 𝑛: 

(𝑞' + 𝑞8 + 𝑞5 +⋯+ 𝑞,)E = 𝑛! ?
𝑞'>&𝑞8>%𝑞5># …	𝑞,>*

𝑚'!𝑚8!𝑚5! …𝑚,!@∈𝒫[*]
ℓ(@).E

									

        (11) 

If we let 𝑘 tend to infinity, assuming the infinite sum 𝑞' + 𝑞8 + 𝑞5 +⋯  converges, the series on 

the right becomes a sum over all partitions of length 𝑛. Then dividing both sides of eq. 11 by 𝑛! 

and summing over 𝑛 ≠ 0, the left-hand side yields the Maclaurin series expansion for  exp(𝑥), 

and the right side can be rewritten as a sum over all partitions: 

exp(𝑞' + 𝑞8 + 𝑞5…+ 𝑞,) = ?
𝑞'>&𝑞8>%𝑞5># …	𝑞,>|1|

𝑚'!𝑚8!𝑚5! …𝑚|@|!@∈𝒫

											

          (12) 

Now, the formula in eq. 9 follows from substituting 𝑞,𝑧,  for 𝑞, in eq.11.  So we can view Faà di 

Bruno's formula as a generating function for coefficients of certain partition-theoretic sums 

involving 𝑞'>&𝑞8>%𝑞5># …	𝑞,>|1| 	/	𝑚'!𝑚8!𝑚5! …𝑚|@|! . Choosing special substitutions for 𝑧 

and 𝑞E, one obtains surprising partition-theoretic formulas involving functions arising in number 
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theory, such as the Riemann zeta function.50  

 A concise expression for the expected number of 𝑗-mers follows from eq. 9; combining the 

observation  

?𝑚*I
𝑞,
>*

𝑚,!

-

,.'@⊢-

= 𝑞* ?
𝑞'>&𝑞8>%𝑞5># …	𝑞*>2B'…	𝑞,>*

𝑚'!𝑚8!𝑚5! … d𝑚* − 1f!… 	𝑚,!@⊢-

= 𝑞*𝑄(𝑁 − 𝑗)			

          (13) 

with eq.7, we find 

〈𝑚*〉- =
𝑞*𝑄(𝑁 − 𝑗)
𝑄(𝑁) .																			

                                      (14) 

Note that the canonical partition functions Q in the numerator and denominator of eq.14 

correspond to the same volume V. 

To find the cluster size distribution by evaluating eq.14, the canonical partition function values Q 

for various N need to be extracted from eq. 9, which provides a sum over all N.  Examining the 

representation of the grand partition function as a power series in z, we see that the coefficient of 

the ith term is Q(i): 

expK?𝑞,𝑧,
F

,.'

L =?𝑧%𝑄(𝑖)
F

%./

																					

                         (15) 

The desired coefficient, Q(N), can be isolated by taking the Nth derivative with respect to z of both 
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sides, dividing by N!, and setting z=0: 

𝑄(𝑁) =
1
𝑁! K

𝜕-

𝜕𝑧- exp K?𝑞,𝑧,
-

,.'

LL
M./

			

                                  (16) 

Note that the summation on the right-hand side has been truncated at N, which is permissible since 

any contributions from k > N in the exponential cannot contribute to the Nth term in the power 

series.  The overall strategy of the algorithm is similar to that of the Darwin-Fowler "selector 

variable" method51 for determination of the mean occupation of particular quantized states in the 

canonical ensemble.  The selector variable used here is the activity z, which allows us to pick out 

the contribution of terms arising from exactly N particles to the expression in eq. 15. 

 Evaluation of the derivative in eq. 16 is straightforward.  Defining 

expK?𝑞,𝑧,
-

,.'

L = 𝑓/(𝑧) exp[𝑓/?(𝑧)]														

                         (17) 

with f0(z) = 1, the nth derivative of 𝑓/(𝑧) exp[𝑓/?(𝑧)] can be expressed recursively as a function 

𝑓E(𝑧) exp[𝑓/?(𝑧)]  (where fn and f0' are polynomials) such that  

𝑓E(𝑧) = k
𝜕𝑓EB'(𝑧)

𝜕𝑧 + 𝑓EB'(𝑧)
𝜕𝑓/?(𝑧)
𝜕𝑧 l.				

                                  (18) 

Repeated application of eq. 18 allows the evaluation of fN, providing Q(N) as fN(0)/N! by eq. 16. 
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Because the functions 𝑓%(𝑧) are polynomials, the computational expense for each step will scale 

with the (at most) N2 products of coefficients of fn-1 with coefficients of the derivative of f0'.  

(Coefficients for terms zN-n of order greater than N-n need not be calculated as they will not 

influence the final answer.)  The computational cost for the full calculation, starting with n=1 and 

proceeding to n=N-1 derivatives to obtain Q(N) will be of order N3 (or, lower by the proportion of 

qi that are zero-valued).  The values of Q(N-s,V,T) for s from 1 to N can be saved and stored for 

the final calculation of <mj> using eq. 14 at negligible additional computational cost.   

Using a multivariable generalization of Faà di Bruno’s formula52 and extending the derivations 

shown above to a two-component system containing NA particles of type A and NB particles of type 

B, we obtain: 

〈𝑚*,,〉--,-, =
𝑞*,,𝑄(𝑁C − 𝑗, 𝑁D − 𝑘)

𝑄(𝑁C, 𝑁D)
																						

                           (19) 

𝑄(𝑁C, 𝑁D) =
1

𝑁C! 𝑁D!
H
𝜕--
𝜕𝑧C

𝜕-,
𝜕𝑧D

expH??𝑞*,,𝑧C*𝑧D,
-,

,.'

--

*.'

JJ

M-,	M,./

															

 (20) 

The approach to evaluating the right-hand side of eq. 20 is similar to the 1-dimensional case.  

Defining,  

expH??𝑞*,,𝑧C*𝑧D,
-,

,.'

--

*.'

J = 𝑓/,/(𝑧C, 𝑧D) exp[𝑓/?(𝑧C, 𝑧D)]										

             (21) 
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we see that taking partial derivatives of the right-hand side with respect to zA involves combining 

derivatives of the polynomials of zA and zB:  

𝑓*,,(𝑧C, 𝑧D) =
𝜕𝑓*B',,(𝑧C, 𝑧D)

𝜕𝑧C
+ 𝑓*B',,(𝑧C, 𝑧D)

𝜕𝑓/?(𝑧C, 𝑧D)
𝜕𝑧C

																	

    (22) 

As there will be at most (NA+1) × (NB+1) coefficients to calculate in one of these polynomial 

expressions, the computational cost of each partial derivative step will be of order ~(NA×NB)2.  To 

reach each combination of partial derivatives (and find all mj,k cluster sizes will then require 

computational cost of order ~(NA × NB)3 or less.   The computational savings relative to the explicit 

enumeration method are very significant.  A calculation of a single set of <mj,k> for a system with 

NA = NB = 20 required over 2 hours by explicit enumeration, using the algorithm described in 

Supporting Information; calculation of <mj,k> over all 12 sets ranging up to NA = NB = 60 required 

less than one minute.   

2.3 Simulation and analysis details   

2.3.1 Simulation parameters.   

Constant-NVT molecular dynamics simulations of sodium octyl sulfate (SOS) were performed 

with version 4.6.5 of the Gromacs package53 using the solvent-free coarse-grained "Dry Martini" 

model.40   The parameters and settings used by Wang and Larson54 to model sodium dodecyl 

sulfate aggregation were adapted by removing one coarse-grained bead from the tail, leaving a 

three-site octyl sulfate chain (OS) consisting of an anionic sulfate bead and two neutral 

hydrophobic alkyl tail beads, C1 and C2.    Forces of van der Waals were smoothly shifted to zero 

between 0.9 and 1.2 nm.  Following Wang and Larson,54  long-range electrostatics were treated by 
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the Particle-Mesh Ewald (PME)55 approach using a dielectric constant of 150 instead of the 

experimental value near 80.  The integration of the equations of motion were performed with a 

time step of 40 fs and using the velocity rescaling algorithm56 to maintain a temperature of 310 K 

with a time constant of 4 ps.  Two series of simulations, one at a concentration of 67.8 mM and 

the other at 114.9 mM, were performed using increasing numbers of SOS from 10 to 60.  A single 

large simulation containing 560 SOS was also performed to test the ability of the free energies 

extracted from the smaller simulations to predict behavior in a large system.  Table I shows 

compositions and durations for all simulations performed.    

Table 2.1 SOS cluster aggregation simulation parameters 

Trial 	N!"! Box Size/ nm3 [SOS]/mM Duration/ns 

 1 10 254.9 67.8 500 

 2 20 509.9 67.8 500 

3 30 764.8 67.8 500 

4 40 1019.8 67.8 500 

5 50 1274.7 67.8 500 

6 60 1529.7 67.8 500 

7 10 159.3 114.9 500 

8 20 318.7 114.9 500 

9 30 478.0 114.9 500 

10 40 637.4 114.9 500 
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11 50 796.7 114.9 500 

12 60 956.0 114.9 500 

13 560 8923.1 104.3 2000 

 

2.3.2  Cluster definition. The “dressed” ionic aggregate model39 is used in analyzing the 

trajectories to determine the distribution of clusters.  The model considers a micelle containing a 

specific number of surfactants and a specific number of associated counterions to be a distinct 

chemical species, e.g. OSjNak.  Two OS chains are considered to be neighbors if the distances 

between either of their tail beads are lower than a cut-off (0.65 nm if not otherwise specified).  All 

OS chains that can be related by a series of neighbor interactions are considered to be part of the 

same micelle.  Association of sodium counterions to the micelles is treated somewhat differently.  

Na+ beads that are within a cut-off distance (1.5 nm if not otherwise specified) from a sulfate site 

on an OS chain are considered to be associated with that OS chain's micelle.  In cases where a 

counterion bridges two distinct micelles (i.e., micelles that have no OS chains in common), that 

counterion is treated as dividing its time evenly among all the OS.  For instance, if at a certain time 

point a single Na+ is within binding range of three sulfate sites, two of which are associated with 

one micelle and the third sulfate associated with a second micelle, it will be treated as though it 

spends 2/3 of its time associated with the first micelle and 1/3 of its time with the second for 

purposes of calculating the distribution of micelle sizes.  Thus, by construction, a set of micelles 

that are connected only by counterion bridges will be treated as independent micelles that 

dynamically exchange their shared counterions.   

2.3.3  Global fitting of cluster histograms using PEACH  
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As in previous work32 an iterative global fitting procedure was used to find a set of equilibrium 

cluster association constants that best reproduces the distribution of micelle sizes and counterion 

compositions observed in the several simulations.  The procedure requires both the cluster size 

frequencies and their standard deviations.  The SOS simulations with the numbers of monomers 

ranging from 10 to 60 took less than 2 ns to reach equilibrium, thus the cluster size distributions 

were calculated after excluding the first 5 ns period. Each trajectory was split into segments of 30 

ns and the standard deviation for the frequency of the each cluster size among those blocks was 

calculated.  To account approximately for the effect of free volume on cluster statistics,57 and 

following procedure previously used in MTBE cluster simulations,32 an effective free volume 

obtained by deducting the volume of the estimated SOS volume (Ntot*Vmonomer) from the total 

volume of the simulation box, was used in eq. 2 to relate 𝑞*,,
⊖  to qj,k.  Accordingly, concentrations 

reported in moles/L should be considered as moles per liter of solvent volume (i.e. , corresponding 

more closely to molality than molarity).  For this purpose, the volume of one SOS monomer used 

was 0.474 nm3, estimated from the sum of volumes calculated for the LJ parameters of its four 

sites; changing this volume by a factor of 2 yielded only slight quantitative changes to the results 

given below. 

 Starting with an initial guess for the standard cluster partition functions 𝑞*,,
⊖  derived from the law 

of mass action, the algorithm based on Faà di Bruno's formula described in section IIB was used 

to generate the average number of micelles of each type in each simulation, then iteratively 

adjusted to improve the fit to the simulation data.  Equilibrium association constants, which should 

be applicable in the limit of large N, can then be related to the optimized standard cluster partition 

functions 𝑞*,,
⊖  : 
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𝐾*,, =
𝑞*,,
⊖

n𝑞',/
⊖ *

𝑞/,'
⊖ ,

o
	

                                                         (23) 

We adopt the acronym PEACH, for "Partition-Enabled Analysis of Cluster Histograms" for this 

approach to obtaining cluster formation equilibrium constants from a set of cluster distribution 

histograms obtained at finite N, using Faà di Bruno's formula to generate histograms at each step 

of the fitting process.   

2.3.4 Use of free energies to predict cluster distributions in large-N limit.  

To obtain the bulk equilibrium distribution of cluster concentrations for all j and k given the free 

OS- and free Na+ concentrations requires a straightforward application of the law of mass action: 

                                            𝑐*,, = 𝐾*,,𝑐',/*𝑐/,',                                                               (24)                                         

Finding pairs of free OS- and Na+ concentrations c1,0 and c0,1 that correspond to a charge-neutral 

system at a given total concentration is less straightforward.  The overall composition (for a charge-

neutral system without added salt) is not a single-valued function of the concentration of free OS, 

but it is a single-valued function of the concentration of free Na+.  At a given free Na+ concentration, 

the total OS and Na+ concentrations are monotonically increasing functions of free OS, so the 

concentration of free OS that produces a charge-neutral solution can be obtained iteratively to any 

desired precision using a bisection algorithm.   

2.4 Results and discussion  

2.4.1 Qualitative observations of simulations 
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Visualizations of simulation trajectories using VMD58 confirmed that the surfactant molecules 

form clusters rapidly and appear to equilibrate over the initial 5 ns after starting from an evenly-

spaced array of molecule. In some cases, the aggregation state of the system fluctuated between a 

single large micelle and two smaller micelles, as shown in Figure 2.1  Counterions could be 

observed both in close contact with the aggregate surfaces and freely moving in the simulation 

box, and varying numbers of free OS were also present.  

                                  

Figure 2.1  Snapshots (a) and (b) are taken from the same trajectory for the equilibrium state of 60 SOS 

molecules in a simulation box with a concentration of 67.8 mM at times (a) 166.4 ns (b) 167.2 ns.   Navy 

blue beads represent Na+, yellow beads represent the sulfate groups, and light blue beads represent C1 and 

C2 tail beads.   

 

2.4.2 Fitting free energy surface from cluster histograms  

The PEACH global fitting procedure produces a set of cluster association constants Kj,k for 639 

combinations of number of surfactants j and number of associated counterions k.  The fit is quite 

successful in reproducing the distribution of surfactant and counterion contents of micelles across 

simulation sizes at two concentrations, as evident from colored contour maps of the fitted and the 

simulated distributions for several trajectories shown in Figure 2.2 (with the remainder provided 

(a) (b) 
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in Appendix II, Figures S1 and S2).  Distributions of micelle size irrespective of counterion content 

(obtained by summing <mj,k> over all k) for all trajectories 1-12 and their fits are shown in Figure 

2.3.  Poorest agreement is found between the fit and the simulation data in the range of 5-15 OS, 

where the fewest micelles are found. 

 

Figure 2.2 Contour plots for the equilibrium micelle size distribution with respect to surfactant number and 

sodium ion number for the concentration c= 67.8 mM. The four plots are for different numbers of SOS 

molecules in the simulation box, with (a) SOS =20, (b) SOS =30, (c) SOS=40, (d) SOS=50. The upper 

panel of each graph is for the fitted distribution while the lower panel is for the simulated distribution. 
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Figure 2.3 Cluster size distributions showing the average number <mj> of micelles containing a given 

number j of octyl sulfate chains with any number of associated counterions (∑ < 𝑚#,% >&
%'( ).  Left panel:  

67.8 mM; right panel: 114.9 mM.  Symbols show simulation data and curves show the results of the global 

fit. Different colors represent different system sizes N as shown in the legend. 

The trends in cluster size distribution with increasing N at fixed concentration can be interpreted 

by considering the discrete number of clusters that can be formed in a small-N system, and are in 

qualitative agreement with a simple model prediction.6 Focusing on the higher concentration, we 

see that increasing the number of surfactants up to N=40 produces first a shift towards larger 

micelles (where the distribution is peaked above j=30).  Above this number we see a bifurcation 

(as at N=50) where the system fluctuations between states with two small (j ~ 20) micelles and 

states with one large (j~40) micelle, followed by a reversion to smaller micelles at N=60 as the 

two-micelle state predominates. 

2.4.3 Validation of PEACH-derived equilibrium constants: prediction of cluster 

distributions at large N 

The primary value of evaluating equilibrium association constants Kj,k is to enable predictions at 

large N where the law of mass action will apply.   To show that the global fit to small-N simulation 
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data gives accurate predictions at large N, we present a comparison of predictions made by 

applying PEACH-derived Kj,k values, using the law of mass action, against actual simulation data 

for a system of 560 SOS.  The large system, which contains an average of approximately 10 

micelles and 80 free OS monomers, is not very computationally demanding to equilibrate using 

the present solvent-free model.  With an atomistic, explicit-solvent model, however, such a 

simulation would be rather costly, as it would require approximately 300,000 waters.  Figure 2.4 

shows the predicted and observed 2-d distribution of clusters according to number of OS and 

counterions, while Figure 5 shows the distributions only in terms of number of surfactants.  The 

predictions made using the best-fit surface derived from small-system simulations are generally 

excellent, with some deviations between the predicted and observed values in regions of poor 

sampling (evident in Figure 2.5 for j between 5-15 and j > 40), and confirm that the PEACH 

method provides a valid path to extrapolate from small-N system distributions to large-N systems.  

Whether it is more efficient to perform several small-N simulations or a single large-N simulation 

to obtain equilibrium distributions will depend on system details and has not yet been rigorously 

explored.  However, if computational cost per unit of simulation time or the simulation time needed 

to equilibrate and sample cluster size distributions scale worse than linearly with system size, 

small-N simulations will tend to be more efficient. 
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Figure 2.4  Contour plots for the equilibrium micelle size distribution with respect to surfactant number j 

and sodium ion number k for the concentration c= 104.25 mM with 560 molecules in the simulation box. 

(a) Mean <mj,k> obtained from simulation, Trial 13 from Table 2.1.  (b) Mean <mj,k> predicted from 

association constants obtained from PEACH global fit to distributions observed in Trials 1-12. 

 

Figure 2.5 Cluster size distributions showing the average number <mj> of micelles containing a given 

number j of octyl sulfate chains with any number of associated counterions 〈𝑚#〉 = ∑ 〈𝑚#,%〉&
%'( ) from 

simulation of 560 SOS system, Trial 13 (symbols) and predicted from association constants fit using 

PEACH algorithm to Trials 1-12 (curve). 
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2.4.4 Modeling and applying the PEACH-derived free energy surface 

As discussed in section C above, the PEACH-derived equilibrium constants can be used to make 

predictions of cluster size distributions as a function of total system concentration.  To better 

understand the factors that determine these equilibrium constants, it is convenient to convert them 

to cluster free energies (CFE, ∆G) for ease of visualization and to make connections with simple 

models.  CFE for clusters of all sizes at a given set of free monomer concentrations (c1,0 for OS 

and c0,1 for counterions) are readily obtained from the fitted equilibrium association constants Kj,k:  

∆𝐺OPQRS(𝑗, 𝑘)
𝑘D𝑇

= − ln𝐾*,, − (𝑗 − 1) lnd𝑐',//𝑐°f − 𝑘ln	d𝑐/,'/𝑐°f	

                          (25) 

Figure 2.6(a) shows a representation of the surface obtained under conditions that correspond to 

total SOS concentration of 97 mM.  It is interesting from a fundamental perspective to compare 

the free energy surface with a simple phenomenological model free energy to test whether simple 

principles can rationalize the form of the surface. To construct a model free energy to fit and 

compare with we start with the suggestion by Maibaum et al.59 that the free energy profile for 

micelle-forming systems can be described by the following dependence on number of surfactants: 

∆𝐺TUVWXXW(𝑗) = −𝑗∆µ + 𝑔𝑗8/5 + ℎ𝑗Y/5                                      (26) 

where the terms containing linear and 2/3 powers of j correspond to bulk and surface tension 

contributions (analogous to those used in classical nucleation theory). The j5/3 term arises from the 

limitations of packing amphiphiles.  Comparison with the free energies obtained using the PEACH 

analysis suggested that substitution of j2 for j5/3 gives a more successful fit to the free energy in the 

current system; whether this is true in other systems may be an interesting topic for future study.  
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Although various models have been applied to the electrostatic energy of micelle-counterion 

interactions,15, 37 the simplest model to incorporate the number of bound counterions is to assume 

binding of counterions to headgroups with binding energy ε, independent of the degree of 

association of the micelle or the presence of other counterions.  Including the appropriate 

combinatorial factor for the number of ways to distribute k counterions among j surfactant 

headgroups, and following Girshick and Chiu60 in constructing the free energy as a difference 

between the cluster and the free monomer, this gives 

∆𝐺TZ[WX(𝑗, 𝑘) = −(𝑗 − 1)∆µ + 𝑔 n𝑗
%
# − 1o + ℎ(𝑗8 − 1) − 𝜀𝑘 − 𝑘D𝑇 ln n

*!
(*B,)!,!

o       (27) 

We found approximate values for parameters g,h, ε, and ∆µ by first performing a 1-dimensional 

fit along the cut k=j/2 (where sampling is relatively good) to estimate g = 10.9 kBT and h = 0.028 

kBT.  Subtracting out the non-linear terms from the best-fit surface yielded an approximate plane:  

∆𝐺XU]W^_(𝑗, 𝑘) = ∆𝐺OPQRS(𝑗, 𝑘) − 𝑔 n𝑗
%
# − 1o − ℎ(𝑗8 − 1) + 𝑘D𝑇 ln n

*!
(*B,)!,!

o            (28) 

which was then subject to a linear regression fit to find ∆µ=7.92 kBT and ε=3.58 kBT. The resulting 

surface, which is depicted alongside the surface ∆GPEACH obtained directly from simulation data 

in Figure 2.6(b), does a good job of reproducing the dependence of cluster free energy on number 

of surfactant and counterions, except for the premicellar range (j<10) and the poorly sampled large 

cluster region (j>50). 
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Figure 2.6  Cluster free energy (CFE) surfaces for free surfactant concentration c1,0 =6.85 mM and free 

sodium ion concentration c0,1 =51.8 mM. (a) ∆GPEACH, values obtained from fit to trajectories 1-12 and (b) 

∆Gmodel. 

Having an approximate functional form for ∆G(j,k) that is grounded in physical principles is also 

helpful for evaluating predictions obtained from the PEACH fit.  Concentrations of clusters with 

compositions that were not well-sampled (or not sampled at all) may be inaccurately represented 

(or inaccurately excluded) when this free energy function is used to make predictions.   Since the 

model agrees with the PEACH-derived values where they are most reliable and moves smoothly 

and in a physically reasonable form to cover cluster compositions that are sampled poorly (or not 

at all) in the simulations, it will be useful in checking for the influence of sampling-related artifacts 

on predictions obtained with the PEACH-derived ∆G. 

In the following, predictions of concentration-dependent equilibrium properties of the system will 

be made using three free energy functions:  the original ∆GPEACH shown in Figure 2.6(a), obtained 

directly from simulation data; ∆Gmodel from eq. 27 using parameters g, h, ∆µ, and ε obtained by 

fitting to ∆Gsim, and an "extended" version ∆Gext,  of the PEACH model, which uses values from 

∆GPEACH where available but fills in values from ∆Gmodel for any cluster not represented in ∆GPEACH.  
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(Both ∆Gmodel and ∆Gext were truncated above j=k=75.)  The form of ∆Gmodel does not allow 

overcharged clusters, those with k>j, which were unexpectedly observed at low j; whether these 

clusters are in fact stable is not clear, but an examination of their impact on the overall cluster size 

distributions (not shown) suggests that they are of negligible importance except at very high SOS 

concentrations (>2 mol/L, beyond the concentration range shown here). 

 

 

Figure 2.7  Average quantities obtained from cluster size distributions using free energy derived from 

PEACH analysis (∆GPEACH), from a fit to ∆GPEACH using eq. 27 (∆Gmodel), and a combination of the two 

(∆Gext).  a) Percentage of OS associated with micelles with 10 or more OS molecules (j>9).  b) Free OS 

concentration (only counting free monomers not associated with counterions).  c) Mean micelle size, 

defined as average number of OS monomers that belong to clusters of size j>9 divided by the average 

number of those clusters.  d) Mean percentage neutralization of micelles, defined as the percent ratio of the 
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number of counterions associated with clusters of size j>9 to the number of OS associated with clusters in 

that size range.   

Measures of the onset of micellization (the fraction of surfactants contained in micelles shown in 

Figure 7(a) and the peak in free monomer concentration shown in Figure 7(b)) are approximately 

consistent among the different models.  Using one definition for the CMC, the total concentration 

at which 50% of surfactants will be found in micelles, the concentration prediction using ∆Gmodel 

exceeds the prediction obtained from ∆GPEACH by about 12%.  The apparent CMC for the 

simulation model, near 40 mM, is well below the value of 110-130 mM at 298K reported from 

experiments.61, 62 A significant increase in the micelle fraction neutralized (mean number of 

counterions bound per OS in micelles) was predicted with increasing system concentration within 

all models, from about 50% near the CMC to over 70% at 200 mM.   

It is probably not a coincidence that the models agree best for total SOS concentrations near 100 

mM, where the small-N simulations were conducted. The greatest qualitative discrepancy among 

the models is seen in the variation of mean micelle size with concentration, where a peak is 

predicted when the PEACH-derived ∆GPEACH values are used alone in contrast to a steady climb 

in average micelle size when the model free energy is used.   For neutral or zwitterionic surfactant 

micelles (or any other single-component system) the law of mass action would always yield an 

increase in average micelle size with increasing concentration.  The present non-monotonic 

behavior is related to the two-component nature of the self-assembly.  As total SOS concentration 

increases, so does total free Na+ concentration, because micelles are not fully neutralized; the 

average charge state of the micelles shifts to favor clusters with more counterions.  If the binding 

of counterions to small micelles (on a per-molecule basis) is more favorable than to large ones, 

then this shift can produce a shift towards smaller average micelle size.  Whether such an effect is 
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real (that is, reflective of the physical behavior of the simulation model), or is an artifact of the 

sampling and/or the PEACH free energy fitting procedure is difficult to tell.  There are no 

significant differences between ∆GPEACH and ∆Gext, which may indicate that the domain of clusters 

sampled in the small-N simulations is sufficient to describe the clusters that are populated in the 

concentration range of the predictions.  All we can conclude at this point is that care is needed in 

interpreting subtle trends inferred from PEACH-derived free energies, especially for predictions 

about concentration conditions that are very different from the small-N simulations.  

2.4.5 Sensitivity to cluster definition 

A further reason for caution in applying PEACH-derived free energies at concentration conditions 

far from the fitted systems is that the model does not use a sophisticated treatment of non-ideal 

effects, only accounting roughly for excluded volume.   In previous work,32 we have shown that 

an optimal choice of the distance cutoff used in cluster definitions can minimize the influence of 

non-ideality on predicted cluster size distributions.  Here again we have investigated the 

dependence of the quality of the global fit to evaluate the quality of distance cutoffs used in cluster 

definitions, but do not arrive at such a clear-cut result.  The fit quality is defined using a 

convergence criterion Ctot, which is a sum over all cluster of the average (taken over the individual 

trajectories, weighted by the estimated statistical certainty) of the mean-squared deviation between 

fitted and simulated cluster levels:.  

𝐶!"! = 𝑁VX`abW_	bcdWaB' ∗? expH?𝑤%,*,,

e3

%.'

log k
〈𝑚*,,〉fUb,% − 〈𝑚*,,〉sim,i

〈𝑚*,,〉sim,i
l
2

J
*,,

																					

(29) 

Table 2.2 The convergence criterion 𝐶)*) (over a range of inter-atomic cutoff distances 𝑟+ used to define 
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member of a cluster) for different cutoffs from the global fitting procedure.  

Trial  Cutoff 1: the distance 

between tail beads 

(nm) 

Cutoff 2: the distance 

between headgroup 

and counterion (nm) 

Convergence Criterion 

Ctot 

1 0.85 1.5 0.1719 

2 0.45 1.5 0.1166 

3 0.65 1.7 1.3695 

4 0.65 1.3 0.1480 

5 0.65 1.5 0.1647 

 

Table 2.2 shows the convergence criteria for the fits when we apply different cutoff distances in 

the post-analysis for the simulations.  The “optimal” cluster definition should yield the lowest 

convergence criterion in the global fitting procedure. In contrast to the sensitive dependence of fit 

quality on cutoff distances demonstrated for MTBE clusters forming from the vapor phase,32 fairly 

large variations in cluster definition here do little to change the weighted mean-square error away 

from the value obtained at the original cutoff combination of 0.65 nm and 1.5 nm.  In part this is 

reflective of the increased amount of noise in the statistics in the present case; increased statistical 

noise will mask effects of fundamental thermodynamic relevance in the cluster definitions.  The 

greater statistical noise can be attributed in turn to the two-dimensional array of cluster 

compositions, for which there are more individual cluster identities to sample, with a greater 

proportion on the edges of the two-dimensional distribution in any given simulation.  Whatever 

the cause, it makes it difficult to address or estimate non-ideal effects in the present case.   

Looking at the actual distributions (some of which are shown in the Appendix II, Figure S3), we 
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can also see that some changes to cutoffs have nearly no effect on the actual cluster size distribution: 

for instance, extending the OS-OS contact cutoff from 0.65 nm to 0.85 nm makes almost no 

difference to the fits.  This is probably because only tail-tail contacts are used to define OS-OS 

neighbors in the cluster definition, and in the typical micelle structure the tail beads are separated 

from other monomers or micelles by a layer of headgroups and counterions.  Expanding the range 

of possible neighbors is not likely to include additional surfactant tailgroups.  By contrast, reducing 

the cutoff distance from 0.65 nm to 0.45 nm restricts the OS-OS contact definition to an unphysical 

extent, so that no large clusters are counted in the cluster size distributions (see Figure S3(b)), 

without significantly changing the convergence criterion.  This example is a reason to use caution 

in looking at the fit quality alone in assigning cluster definitions.  Changing the cutoff for 

headgroup-counterion interactions has qualitatively predictable effects, in that increasing the 

cutoff will shift the cluster distribution towards greater numbers of counterions per cluster.   

We have applied sets of cluster free energies ∆GPEACH obtained from fitting distributions obtained 

from trajectories 1-12 using different cutoffs (omitting the case that did not recognize large 

micelles) to evaluate average system properties versus total SOS concentration, with results shown 

in Figure 2.8.  We find that changing the OS-OS cutoff makes very little difference to the system 

properties, as expected given its small effect on the cluster size distributions.  Changing the OS-

Na cutoff yields quantitative changes to the CMC, mean micelle size, and micelle charge.  The 

prominence of the peak in the concentration dependence of average micelle size is influenced by 

the cutoff, which gives more reason to suspect that it is artifactual.  Variations in cutoff do not 

alter the predicted trend that the mean micelle size will increase from ~25 to ~30 as the total 

concentration is increased over an order of magnitude above the CMC. Although the specific value 

of the degree of charge neutralization is sensitive to the cutoff, the trend of a significant increase 
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in degree of neutralization with increasing total SOS concentration is also consistent across the 

different cutoffs; the change in degree of neutralization with concentration appears to be greater 

than its sensitivity to cutoff definition.   

 

Figure 2.8  Average quantities obtained from cluster size distributions using free energies derived from 

PEACH analysis at different cutoffs.  Legend for all panels is given in Panel (a); first value given is the 

cutoff for OS tail groups, second is the headgroup-sodium cutoff.  Quantities plotted are as defined in Figure 

2.7.    

2.5 Conclusions 

A very efficient approach to calculating canonical averages of cluster size distributions at finite N 

has been derived from the Faà di Bruno's formula, and has been implemented within a global fitting 

process to obtain cluster free energies from cluster distributions obtained in several simulations.  

The PEACH (Partition-Enabled Analysis of Cluster Histograms) approach has been applied to 
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finding cluster free energies for a solvent-free coarse-grained model of sodium octyl sulfate (SOS), 

within the "dressed micelle" framework that treats counterions as part of a micelle's chemical 

identity.  A single set of cluster free energies, optimized to reproduce results from twelve 

simulations with N up to 60 SOS that featured an average of one or two micelles, was able to 

predict micelle size and charge distributions for a system of 560 SOS.  The free energy function 

(consisting of discrete values for 639 clusters containing different numbers of OS and counterions), 

and a 4-parameter model fit were used to make predictions for average properties of SOS solutions 

over a range of concentrations, showing modest growth in average cluster size and significant 

increase in the ratio of bound counterions to surfactants in micelles as concentration increases.  

The sensitivities of the fitting procedure and predicted concentration-dependent system behavior 

to the cutoff distances used in cluster definition were explored.  The methods described should be 

applicable to the detailed analysis of the thermodynamics of self-assembly of both neutral and 

charged surfactants using atomistic models, so long as converged cluster size distributions can be 

obtained from simulations of one or two micelles, and to the statistics of reversible aggregation 

observed in small-N simulations of other self-assembled systems. 
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Chapter 3. Derivation of micelle size-dependent free energies of aggregation for 

octyl phosphocholine from molecular dynamics simulation 

 

3.1 Introduction  

Surfactant micelles, disordered aggregates of amphiphiles in aqueous solution, are typically 

formed above a critical micelle concentration (cmc) as the hydrophobic attraction of the surfactant 

tails overcomes the entropy of mixing individual surfactant monomers (unimers) and small clusters 

(premicelles) throughout the solution.  The structural disorder, polydispersity, and responsiveness 

to conditions present challenges to the unambiguous determination of the degree of aggregation 

and structure of surfactant micelles through experiment alone.  Molecular simulation has long been 

a source of insight into these features.63-65 Alkyl phosphocholines have been a focus of particular 

attention66-68 in part because they are zwitterionic (and so bypass complications associated with 

counterions) and in part because they share their headgroup structures with the well-studied 

bilayer-forming phosphatidylcholine glycero-phospholipids.    

A number of ingredients are required to achieve a level of confidence in the structural and 

thermodynamic properties displayed through simulation models, which by necessity rely on 

certain approximations.  The use of a sufficiently realistic force field (or at least one whose 

limitations are well understood and characterized) is one such ingredient.  The ability to extrapolate 

from simulation data obtained on a finite size system to the limit of a macroscopic number of 

molecules and clusters is another, and the ability to make connections between simulated structures 

and experimental observables is a third. This report will describe a simulation study on 

micellization of a simple surfactant, octyl phosphocholine  (OPC), in which steps are taken to 
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address all three ingredients.  The force fields used for surfactant tails are based on the TraPPE-

UA model,69 and so have been parameterized to fit alkane-alkane thermodynamic properties, but 

with modifications to interactions with water made to yield accurate free energies of hydration.70   

The PEACH statistical analysis method32, 71 allows the size-dependent cluster free energy to be 

determined over a range of micelle sizes from a series of simulations with relatively few surfactants; 

the resulting free energy function allows the cmc to be calculated in a way that facilitates 

comparison with experiment. Finally, the effect of incorporating polydispersity into predictions of 

the x-ray scattering of OPC (where polydispersity is relatively high) will be investigated. 

3.2 Methods 

3.2.1 General elements of force fields.     

Two united-atom (UA) force fields, in which similar models for octyl phosphocholine were 

matched with different water potentials, were used and compared.  In both, bonded interactions of 

the alkyl tails, as well as all pairwise interactions of CHx  groups with other CHx groups (including 

headgroup methyl and methylenes) used parameters from the TraPPE-UA force field.72   

Parameters for the OPC  headgroup (bond lengths, bending and torsional potentials, partial charges, 

and Lennard-Jones parameters) were taken from the Gromos lipid forcefield of Poger et al., 73 

derived from the Gromos G53A6 force field74 but including an adjustment to the interaction 

between the choline methyl group with non-ester phosphate oxygens that was made to bring lipid 

bilayer properties in line with experiment.  

For simulations using TIP4P-2005 water, Lennard-Jones parameters for interactions between 

water oxygen and all CHx groups were taken from the HHAlkane model;70 this force field will be 
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referred to as “HHA”.   For simulations using SPC water (denoted “Alk-SPC”) these parameters  

were calculated as described below.  

3.2.2 Alkane-SPC water interactions 

The TraPPE-UA model was reparameterized to reproduce experimental hydration free energies 

for n-alkanes in SPC water, by adjusting the nonbonded alkane site-water interactions (CHx-OW) 

following the concept of Ashbaugh et al.70 The excess hydration free energy is defined as the free 

energy to transfer the solute molecule from an ideal gas to an ideal-dilute aqueous solution at the 

same concentration. This quantity was calculated from the g_bar utility in Gromacs 5.075 which is 

based on the BAR (Bennett Acceptance Ratio) method76. In the implementation of BAR method, 

the system of alkane with water was sampled for multiple coupling states with a parameter λ to 

adjust the strength of the Van der Waals interactions between the alkane and the solvent. For our 

calculations, 20 points of λ were chosen from 0 to 1 with an increment of 0.05. Free energy 

differences for each two adjacent points i and i+1 are calculated based on  <Ui+1-Ui>i and <Ui-

Ui+1>i+1.  

The simulation for each λ point was set up with one alkane in a box of ~420 SPC water using 

Gromacs 5.075. The pressure is maintained at 1 bar and a compressibility of 4.5 × 10BY  by 

Parrinello-Rahman barostat77 with 𝜏g = 2	𝑝𝑠. The stochastic dynamics integrator with a 2 fs time 

step and coupling time 𝜏h = 2	𝑝𝑠 was used for integration of equations of motion and to maintain 

a constant temperature of 300 K. The Verlet78 cutoff-scheme was applied for short-range non-

bonded interactions with a cutoff of 9 Å.  The long-range dispersion correction was applied for 

energy and pressure. Particle mesh Ewald summation55 was used to account for long-range 

electrostatics with a real space cutoff of 9 Å. After a 100 ps pre-equilibration, a 1 ns simulation 

was used for each λ-point in the hydration free energy calculation. 
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To optimize the nonbonded CHx-OW interactions for accurate interaction free energies of alkyl 

tail in SPC water, the LJ well depth εCHx-OW and LJ diameter σ CHx-OW are adjusted to fit the 

hydration free energies of n-alkanes. The initial cross interactions were determined by Lorentz-

Berthelot combining rules 

𝜎%* =
'
8
d𝜎% + 𝜎*f ,	𝜖%* = �𝜖%𝜖* 	                                                (1) 

The strength of the alkane-water attraction was varied by scaling εCHx-OW while adjusting σ CHx-OW 

to maintain constant thermal radius79 riwtherm. Given as below, riwtherm is fixed during the fitting to 

maintain the solute excluded volume.  

𝑟%i!jkl> =	𝜎%i �
8

'&(,h/m34)&/%
�
'/n

                                                (2) 

3.2.3 Simulations of OPC and PEACH analysis 

Simulations of OPC in SPC and TIP4P-2005 water were performed with the Gromacs 5.075 

software package. For PEACH calculations, we set up a series of simulations of different 

concentrations (20-55 OPCs with an increment of 5 OPC’s, each paired with two sizes of solvent 

box). This set is chosen to obtain sufficient samplings across the full range of cluster sizes and 

allowing Ki to be obtained for cluster sizes 2 <i< 40-50. The choices of N and V used in PEACH 

analysis are given in Table 1.  

The temperature was maintained at 300K by velocity rescaling thermostat56 with 𝜏h = 2	𝑝𝑠.  The 

pressure is maintained at 1 bar and a compressibility of 4.5 × 10BY bar-1 by Berendsen barostat80 

with 𝜏g = 2	𝑝𝑠. The Gromacs default (leap-frog) integrator with a 2 fs time step was used for 

integration of equations of motion. The Verlet78 cutoff-scheme was applied for short-range non-

bonded interactions with a cutoff of 1.4 nm. The long-range dispersion correction was applied for 
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energy and pressure. Particle-mesh Ewald summation55  was used to account for Coulomb 

interactions with a real space cutoff of 1.4 nm. 

Microsecond simulations (1.0 µs for HHA, 1.2 µs for Alk-SPC) with a 20 ns pre-equilibration 

were performed for each trial and used for PEACH analysis.  (An additional large system 

simulation was performed with 250 OPC solvated by  30330 SPC waters and run for 200 ns.) The 

trajectory was analyzed by a modified version of Gromacs utility g_clustsize to determine the 

distribution of cluster sizes. Two OPC molecules are considered to be neighbors if the distance 

between any of their alkyl tail sites is lower than a cut-off distance rcut.  Values of rcut at intervals 

of 0.05 nm between 0.45 and 0.65 nm were used, and results derived from these are compared as 

described below.  The chains related by neighboring interactions are considered to be of the same 

cluster.  Histograms of <ni>, representing the mean numbers of clusters of aggregation number i 

averaged over each trajectory, were used as input for PEACH (Partition-Enabled Analysis of 

Cluster Histograms) to find a globally optimized set {Ki} of equilibrium association constants for 

each cluster size observed.  As described in previous publications,32, 71 the method involves 

assigning an association constant to each possible cluster size i, generating a model cluster size 

distribution for each simulation based on its total N and V, and adjusting it iteratively to find the 

best set  Ki to reproduce the cluster size distributions from simulations. The core algorithm uses 

the following equation for calculation of cluster size distribution from the current model {Ki}:6  

< 𝑛% >= 𝑄(𝑁, 𝑉)B'∑ 𝑛%*𝑄({𝑛%}* , 𝑉)
o(-)
*.' = 𝑄(𝑁, 𝑉)B' ∑ V𝑛%*∏

(p3q#5)
632

E32!
-
%.' Xo(-)

*.'              (3) 

in which < 𝑛% > is the ensemble average number of i-mer clusters present, p(N) represents the 

number of possible compositions of clusters that add up to N (called “partitions of N” in number 

theory), Q({ni}j, V) is the canonical partition function for a possible composition {ni}j, and Q(N,V) 
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is the sum of these partition functions over all compositions.  This calculation can be simplified71,  

avoiding the need to generate all partitions of N, using a generating function approach.  Briefly, at 

fixed V, Q(N) is obtained as the coefficient of 𝜆- calculated from the polynomial expansion of the 

grand partition function Ξ(𝜆) (where λ is now the thermodynamic activity, unlike in section 2.1):  

Ξ(𝜆) = expd∑ 𝑞%𝜆%F
%.' f 	= ∑ 𝜆-𝑄(𝑁)F

-./                               (4) 

Evaluation of Q(N) can be achieved by differentiation of Ξ(𝜆): 
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                                             (5) 

The single-cluster partition function qi is related to the association constant Ki, the system volume 

V, the standard-state concentration c°, and the standard unimer partition function q°1 as: 

𝑞% = 𝐾%𝑐°𝑉(𝑞°')%                                                           (6) 

The mean number of clusters of a given size can then be calculated as71: 

〈𝑛%〉 =
v3x(-B%)
x(-)

                                                             (7) 

The Gibbs free energy of formation of an i-mer cluster from i unimers, under conditions where 

both unimer and i-mer concentrations are given by c, can be expressed as: 

yz3
,h
= −𝑙𝑛𝐾% − (𝑖 − 1) ∗ 𝑙𝑛

#
#:

                                               (8) 
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Table 3.1 Details of simulations used in PEACH fitting 

Simulation details for OPC cluster aggregation in SPC water (Alk-SPC) 

 Set One Set Two Set Three 

NOPC 

Nwater Box 

Size/nm3 

ctot/mM Nwater Box 

Size/nm3 

ctot/mM Nwater Box 

Size/n

m3 

ctot/m

M 

20 3812 123.6 282 5623 179.1 191 7000 221 153 

25 125.4 352 180.9 238 223 191 

30 127.7 422 182.6 286 225 230 

35 129.4 493 184.5 334 227 268 

40 131.4 563 186.7 381 229 306 

45 133.3 633 188.6 429 231 345 

50 135.1 704 190.4 477 233 383 

55 136.9 774 192.3 524 234 421 

Simulation details for OPC cluster aggregation in TIP4P/2005 water (HHA) 

 Set One Set Two 

NOPC Nwater Box Size/nm3 ctot/mM Nwater Box Size/nm3 ctot/mM 

15 3812 120.3 220 5025 156.8 165 
20 122.2 293 5053 159.5 219 
25 124.1 366 5035 160.8 275 
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30 126.3 439 5030 162.6 330 
35 128.2 512 5047 165.3 384 
40 130.4 585 6021 196.5 367 
45 4549 154.4 547 6017 198.3 414 
50 - - - 6024 200.6 459 
55 - - - 6768 234.7 450 

 

3.2.4 WAXSiS analysis for polydisperse micelles 

To model the small-angle X-ray scattering (SAXS) profile for micelles of a specific aggregation 

number, structures of single OPC micelles were submitted to the WAXSiS server.2  The server re-

solvates the structure and calculates averages over a short MD trajectory to average over small 

fluctuations of lipid and solvent configurations. Larger shape fluctuations were observed over the 

trajectory, thus scattering profiles are averaged across 5~10 configurations of a single micelle 

observed throughout a trajectory to represent the profile for that size.   

PEACH-derived association constants or free energies can be used to calculate the full distribution 

of concentrations for micelles of each possible aggregation number.  Neglecting inter-micelle 

interactions, the expected form factor of the mixture should mirror the number-weighted average 

of the individual form factors.  To avoid having to generate scattering profiles for 40 distinct 

micelle sizes, we instead chose representative sizes at intervals of 5.  The rcut =0.45 nm cluster 

criterion was used, based on the reasoning that more compact clusters would contribute more 

strongly to scattering.  Because the scattering intensity of a spherical object scales approximately 

with the square of its volume81, clusters of size similar to these representative clusters are assumed 

to scatter as the nearest representative size micelle, scaled by the square of the ratio of their 

aggregation numbers;  
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3.3 Results and Discussion 

3.3.1 Force field parameter selection 

A key element of a force field for accurate simulations of micelle formation is to reproduce the 

interaction free energies of alkyl surfactant tails with each other and with water. As shown in 

previous simulation studies of micellization36, a number of force fields yield cmc estimates below 

experiment by a factor of 2 or worse.  One of these, the TraPPE-UA model69 was designed to 

provide an accurate description of alkane-alkane interactions, reproducing the thermodynamics of 

alkane liquid-vapor equilibria.  The likely weakness therefore lies in hydration free energies that 

are consistently too high – presumably  due to unaccounted polarization effects between water and 

alkanes.  To address this, Ashbaugh et al.70 used TraPPE as a basis for their HH-Alkane model, 

where the CHx-OW Lennard-Jones interactions were adjusted slightly to improve agreement of 

alkane hydration free energies upon solvation with TIP4P/2005 water.82   Here we use the HH-

Alkane parameters with TIP4P/2005 in one of our two force fields for OPC.  For future use in 

studies of the important area of micelle-protein interactions,17 we sought to develop a similar set 

of CHx-OW parameters for alkane interactions with the SPC water model to aid in compatibility 

with the Gromos G54a7 UA protein force field,83 which was designed for use with SPC.  To do 

so, we again started with the TraPPE parameters and followed an abbreviated version of the steps 

taken for the HH-Alkane force field to optimize hydration free energies of small alkanes.   
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The initial parameters for the fitting were determined using Lorentz-Berthelot combining rules 

based on the LJ parameters for TraPPE alkane sites and SPC water.  It is shown in Table 2 that the 

initial set of parameters used in ethane predicts higher hydration free energies than experiments 

i.e. stronger repulsions between SPC water and alkanes; thus we increase the LJ well depth εCHx-

OW iteratively in seek of a best set of parameters to fit the hydration free energies. The LJ diameter 

σCHx-OW was adjusted at the same time to keep the thermal radius fixed. CH3 group parameters 

were first adjusted to fit to the experimental hydration free energy of ethane at 300 K.  Keeping 

those parameters fixed, CH2 parameters were adjusted to give agreement with the experimental 

hydration free energy of n-propane at 300 K.  To check the transferability of the parameters, the 

free enegy of hydration of n-butane was then evaluated using the CH2 and CH3 parameters. CH-

OW parameters were also adjusted according to experimental hydration free energy of isobutane, 

while the neopentane hydration free energy (which presumably is most sensitive to the CH3-OW 

parameters as the quaternary carbon is shielded from contact with water) was close to experiment 

without further adjustment of the C-OW parameters. The results are given in Table 2.  As for the 

HH-Alkane force field, small adjustments in attractive strength (by 1.6% for CH3, 3.5% for CH2) 

were sufficient to bring simulated hydration free energies in line with experiment.    

 

Table 3.2  LJ Parameters and test on hydration free energy of alkanes 

Cross LJ parameters before and after optimization 

 Initial parameters New (Alk-SPC) parameters  

 σij /nm εij /K σij /nm εij /K 𝑟,-)./01 /nm 
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CH3-OW 0.3458 87.5451 0.3455 88.9805 0.32596 

CH2-OW 0.3558 59.9790 0.3551 
62.0652 

 
0.32837 

CH-OW 0.38985 30.8780 0.38981 30.9283 0.34565 

C-OW 0.46175 10.2410 - - 0.38026 

Test on hydration free energy for new parameters 

 

Hydration free energy (kJ/mol) 

Initial Parameter 
New (Alk-SPC) 

Parameter 
Experiment 

Ethane 8.30(0.12) 7.75(0.17) 7.82 

Propane 8.61(0.26) 8.43(0.26) 8.37 

n-Butane 8.80(0.19) 8.91 

Isobutane 9.24(0.09) 9.47(0.24) 9.58 

Neopentane 10.69(0.33) - 10.71 
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Figure 3.1 Structure of OPC and snapshot of 35 OPC in 3812 SPC 

water, including a 28-mer micelle. Bead colors represent 

corresponding elements; Cyan-carbon, red-oxygen, blue-

nitrogen, yellow-phosphorus.  

3.3.2. Simulation and PEACH analysis of OPC 

Simulations over a range of system sizes from 20 to 55 OPC (the structure shown in Fig.3.1) were 

performed at two concentrations for both force fields.  A snapshot of a typical system is shown in 

Fig.1. For systems with at least 30 OPC,  one large micelle is present in the simulation box for 

most of the trajectory in equilibrium with several monomers or small clusters. The rare event of 

one large micelle splitting into two occurs a few times in the simulation timescale.  Micelle size 

distributions evaluated with a cluster cut-off criterion rcut = 0.45 nm are shown in Fig. 3.2.  For 

each force field, free energies of aggregation for all cluster sizes j were determined iteratively to 

optimize the global fit to the full set of size distributions using the PEACH algorithm. Agreement 

between the model fits (curves, Fig. 3.2) and simulation data (symbols, Fig. 3.2) is reasonably 

good. The fitting is poorer in the range from cluster size 10 to 20 due to less sampling.  

Distributions and fits derived using other cut-offs are given in Appendix III Fig. S1.  

The HHA data sets appear noisier than the ALK-SPC data primarily because of poorer statistical 

sampling associated with markedly slower fluctuations in micelle size, as shown in Appendix III 

Fig. S2.  Although a quantitative consideration of the OPC exchange kinetics is outside of the 
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scope of this paper, slower size fluctuations under the same conditions reflect a slower rate of 

monomer exchange between the micelle and the solvent. One possible contribution is that the 

viscosity of SPC water is known to be lower than that of TIP4P-2005;84 this is consistent with our 

observation that the diffusion constant of dilute OPC using Alk-SPC interactions in SPC water is 

about 60% higher than using HHA in TIP4P-2005 water at 300 K (results not shown).  This 

difference in diffusion rate is not, however, sufficient to account for the large apparent difference 

in monomer exchange rates.  Given the fairly slight difference in aggregation free energies, it 

appears that the two solvent models produce significant differences in the activation barrier for 

OPC exchange.   

Several 3-parameter models of the form: 

∆𝐺(𝑖)
𝑘𝑇 = 𝐴𝑖: − 𝐵𝑖; + 𝐶𝑖# 																																																										(10) 

 have been proposed to describe the dependence of micelle free energy on aggregation number. 59, 

85, 86 In the droplet model of Shchekin and co-workers85 and the model of Maibaum and Chandler59, 

both derived from classical nucleation theory, the first term arises from the surface free energy and 

so scales as the surface area of a compact object with a=2/3. The second term is related to the free 

energy of transfer of the surfactant from solvent to a bulk-like hydrophobic environment and is 

therefore linear, b=1 and B=∆µ/kT.  For the the last term, which accounts for the structural 

limitations to the size of the micelle, considerations of dipole-dipole interactions85 or entropic costs 

associated with arranging headgroups at the micelle surface59 have motivated choices of c = 4/3 

and c = 5/3 respectively.   A third “quasi-droplet” model also proposed by Shchekin et al.86 is 

derived from a model for the micelle that includes partially hydrated segments of chains protruding 

from a compact hydrophobic core; the evolving balance between core and hydrated segments leads 
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to combinations of terms with a=1, b=3/2, and c=2.  In testing these models for their ability to fit 

the PEACH-derived free energies from simulation, we modify them slightly to ensure that 

∆G(1)=0 as follows: 

                                    

Figure 3.2 Cluster size distribution for simulations (symbols) and the PEACH fit (curves) for sets of MD 

simulations of OPC, with force fields and sets as labelled (set corresponding to Table 1) and number N of 

OPC given according to the color legend. 

∆𝐺(𝑖)
𝑘𝑇 = 𝐴(𝑖: − 1) − 𝐵 × (𝑖; − 1) + 𝐶 × (𝑖# − 1)																									(11) 

Rationalizations for this modification, in the context of nucleation free energies, have been offered 

in the literature.32, 60 Attempts to fit the free energy curves using eq. 11 with both the 

Maibaum/Chandler model and the quasi-droplet model are shown for Alk-SPC and HHA free 

energies (derived using a rcut = 0.45 nm) in Fig. 3.3.  (Agreement with the droplet model, fit not 

shown, was worse than with the Maibaum/Chandler model.)  The quasi-droplet model fit the free 

energies of association derived from Alk-SPC simulations better than the Maibaum/Chandler 
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model; as shown in Appendix III Fig. S3, this held true for all tested values of rcut.  Both models 

performed equally well for the less complete and noisier sets of HHA-derived data.  We note that 

a similarly good fit could also be obtained using the combination a=2/3, b=1, c=4, but we do not 

know of any physical justification for the choice of c=4.  It will be of interest to compare results 

from future simulations of other micelle-forming systems to tell whether the quasi-droplet model 

is generally the best descriptor for free energy of aggregation of globular micelles.  

 

Figure 3.3 PEACH-derived cluster free energy curves (symbols) for OPC, simulated using (a)Alk-SPC and 

(b) HHA force fields, calculated for a total OPC concentration of 116 mM respectively.  Free energy curves 

correspond to rcut = 0.45 nm. Curves correspond to best fits by eq. 11 using quasi-droplet model (blue) and 

Maibaum-Chandler model (red).  

 

Table 3.3 Best-fit parameters for the quasi-droplet model for rcut=0.45 

nm.  (Parameters for other cutoffs given in Supplemental Information 

Table S1.) 

 Alk-SPC HHA 

A  3.864 3.821 

B  1.122   1.133 

(a) (b) 
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C  0.08781 0.09102 

 

Using the free energies of aggregation {∆Gi} (or the equilibrium constants {Ki} to which they are 

related by eqn. 8), the distribution of cluster sizes can be easily determined for any bulk 

concentration, which can then be used to derive information about cmc and average micelle size.  

The onset of micellization can be qualitatively gauged by considering the fraction of monomers 

that belong to clusters greater than a given size.   Here we choose i=11, near the maximum in the 

cluster free energy curves, as the minimum cluster size to be defined as a micelle.  Figure 3.4 

shows this micellar fraction calculated from equilibrium constants derived using different cluster 

neighbor site distance cut-offs rcut.  Predictions are almost identical over the range of rcut from 0.45 

to 0.55 nm.  Since only contacts between the alkyl tail sites are counted towards neighbour 

definitions, the insensitivity of the predictions to rcut over this range suggests that the clusters that 

are captured by this definition have a well-defined micellar organization with with each 

surfactant’s tail and forming redundant site-site contacts with other tails, so that distance 

fluctuations affecting one pair of sites does not affect its membership in the cluster.   For Alk-SPC, 

the onset of micellization shifts slightly between rcut = 0.55 nm and 0.60 nm and then strongly 

between  rcut = 0.60 nm and rcut = 0.65 nm.  Observation of the structures of clusters defined using 

this largest cut-off shows that under this criterion, two OPC molecules may be counted as 

neighbors even when their tails are separated by solvent (see Fig. S4 in Appendix III), which 

suggested to us that this cut-off length is too permissive for description of micelles as they are 

conventionally understood.  
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Figure 3.4 Fraction of OPC in clusters of size > 10 vs. total OPC millimolal concentration, as calculated 

from free energies derived from MD simulations performed with a) Alk-SPC force field and b) HHA force 

field.  Different curves represent predictions based on free energies derived using different tail site cut-off 

distances rcut in the neighbor criterion for defining clusters. 

As has been noted5, in comparing with experimental data for the cmc, it is important to consider 

what experiment was performed to determine cmc.   A cmc value of 114 mM is reported by 

Anatrace, which markets OPC under the name FOS-choline-8.  The experimental technique used 

in that determination was to measure the degree of capillary rise vs. surfactant concentration and 

find the intersection of straight lines fit to the low-concentration (below cmc) and high-

concentration (above cmc) regimes.87 Although we do not obtain interfacial tensions directly from 

simulations, we may presume from thermodynamic principles that surface tension is related 

linearly to surfactant activity, which in turn is approximately given by the concentration of unimers.  

The predicted dependences of unimer concentration on total OPC concentration, calculated from 

PEACH-derived {Ki} using a cluster cut-off definition of rcut=0.45 nm, are shown in Fig. 3.5a-b; 

data generated from {Ki} derived using other cut-off values are presented in Appendix III Fig. S5.  

Bilinear fits give cmc estimates of 159 mM (Alk-SPC) and 143 mM (HHA), 40% and 25% higher 

than experiment.  (The point of intersection depends on the concentration ranges used in the fits.  
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Here we used the concentration ranges from 0.5 to 0.75 times the cmc and from 1.5 to 2.0 times 

the cmc, iterating as needed to reach a self-consistent intersection point.)  The dependence of 

apparent cmc on rcut is shown in Table 3.2.    

The crossover concentrations correspond rather well to the onset of formation of micelles shown 

in Fig. 3.4.  Average micelle size from the predicted cluster size distribution increases rapidly with 

total concentration just above the cmc but slowly after about 200 mM, as shown in Fig. 6.   

Increasing rcut yields modest increases in average micelle size.  The Alk-SPC model, in spite of 

having weaker attractions as reflected by the higher cmc, favors somewhat greater average micelle 

sizes than the HHA model.  Concentration-dependent size distributions for the Alk-SPC model 

will be considered in more detail in section 3.3.4. 

The concentration of unimers at equilibrium with micelles, or total concentration of unimers and 

small “premicelle” clusters, is often used to estimate the cmc.  Pitfalls associated with this 

definition have been identified in the literature: the unimer concentration tends to drop off with 

increasing concentration above the cmc for ionic surfactants,36 and excluded volume 57 influences 

the effective concentration.  In simulations, finite-number effects also play an important role;6 it is 

therefore interesting to compare estimates results obtained from simulations of small systems to 

the cmc extracted from the global PEACH fits to cluster statistics.  In Fig. 3.6, the mean 

concentration of OPC present as unimers and small clusters can be seen to oscillate as the total 

number of OPC is varied, increasing at low N until the first micelle is formed and then dropping 

sharply.  In the regime after this drop, where the unimers and small clusters are at equilibrium with 

a micelle,  their concentration ranges from 150 mM to 225 mM in the Alk-SPC system and from 

125 mM to 180 mM in the HHA system.  In such a small system, the unimer concentration is 
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strongly influenced by the number of monomers left over after a micelle of optimal size is formed, 

and so indeed can only be used for a very rough measure of cmc.   

 

Figure 3.5 Free monomer vs. total OPC concentration calculated from PEACH-derived cluster free energy 

profile (a) with Alk-SPC (predicted cmc is 160 mM) (b) with HHA (predicted CMC is 145 mM)   

 

Table 3.4: cmc values in mM predicted from PEACH free 

energies by force field and rcut 

Cutoff/nm Alk-SPC HHA  

0.45 160 145 

0.50 158 145 

0.55 156 144 

0.60 152 143 

0.65 141 140 

(a) (b) 
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Figure 3.6 Mean micelle size vs. concentration, as calculated from free energies derived from MD 

simulations performed with a) Alk-SPC force field and b) HHA force field.  Different curves represent 

predictions based on free energies derived using different tail site cut-off distances rcut in the neighbor 

criterion for defining clusters. 

Keeping the roughness of this measure in mind, we will use it now to make a rough comparison 

of the ability of the HHA model and the original TraPPE force field to reproduce the experimental 

cmc.  (Having only performed two simulations using the original TraPPE  CHX/OW Lennard-

Jones parameters, we do not have sufficient cluster statistics for a full PEACH analysis.)  Two 200 

ns trajectories of OPC using the original TraPPE parameters (with 40 and 30 OPC + 312 solvent) 

yielded concentrations of monomers in unimers and small clusters of 64 mM and 39 mM 

respectively.  These values fall below the corresponding levels from HHA simulations (Fig. 7) by 

factors of 3.2 and 2.3 respectively.  This suggests that full PEACH analysis of the TraPPE model 

would give a cmc roughtly 3.2-2.3 times lower than the HHA model, i.e. in the range 44-62 mM.  

Such a range, about a factor of two lower than the experimentally reported cmc value of 114 mM, 

would be consistent with a previous report that surfactants modeled with TraPPE tails showed cmc 

values a factor of two lower than experiment.36 We can conclude that tuning the force field to 
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match hydration free energy, as was the goal in the HH-Alkane force field development70, 

improves agreement with the experimental onset of micelle formation. 

 

Figure 3.7. Concentrations of monomers in premicelles (i<=10) averaged over MD trajectories with varying 

total number of OPC using (a) Alk-SPC and (b) HHA force fields. (red dots for Set One, blue dots for Set 

Two as tabulated in Table 3.1.)  

3.3.3 Effects of limited system size and results of large system simulation 

The up-turn in cluster formation free energies evident at large cluster size i evident in Fig. 3.3 

suggests that, if the phenomenological models for spherical micelle formation (like the quasi-

droplet model) are applicable in this system, micelles much larger than ~50 monomers should be 

uncommon in solution.  A large system (250 OPC, 30330 SPC; 0.46 molal) was simulated for 200 

ns to test whether this is the case.  Figure 8 indicates that the answer is not a simple yes or no.  The 

cluster size histogram (Fig. 3.8a) does show a drop-off above i = 50, qualitatively consistent with 

the increase in free energy derived from small-N simulations; however, a long tail in the 

distribution extends to significantly higher cluster sizes.  The nature of these larger clusters is 

suggested by a snapshot (Fig.3.8b) of the last frame of the trajectory, showing modest sized clusters 

that appear to be sticking together.  The time dependence of the maximum cluster size (Fig. 3.8c) 

(a) (b) 
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shows that the lifetimes of the large clusters are very short, consistent with their formation by 

transient bridges between more persistent smaller structures. The strong sensitivity to rcut of the 

levels of large clusters is also consistent with an agglomeration of distinct hydrophobic cores 

whose alkyl tails only occasionally approach each other, rather than a continuous hydrophobic 

core connected through many pathways whose redundancy lowers sensitivity to fluctuations.  The 

structures formed are not simple aggregates of the micelles present in the starting configuration of 

the simulation, but are thoroughly mixed as shown in an animation with the initial micellar 

components shown in different colors.   We conclude that the large clusters formed are in fact 

aggregates of small clusters, connected by a partially solvated double layer of headgroups and 

transiently bridged by tail sites.  Such a hierarchical structure has been invoked to explain the high 

flexibility of certain large micelles88 or as a transient intermediate in the “sticky-collision” 

mechanism of dye exchange between micelles89 The free energies of association of these higher-

order clusters cannot be extrapolated from either the single-micelle simulations or the single-

micelle theoretical models.  Even considering the individual micelles that make up these higher-

order clusters, their size-dependent free energies are likely to be perturbed away from what 

predictions based on free, fully-solvated micelles would give.  Unfortunately, the computational 

expense required for long simulations at the large system sizes required prohibit a full quantitative 

investigation of these effects.  Given that inter-micellar interactions should be weaker than intra-

micellar interactions, it is likely that clustering would not become important until micelles start to 

become crowded together.  Predictions related to the onset of micellization should therefore not 

be influenced by this phenomenon. 
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Figure 3.8  Results from 200 ns simulation of 250 OPC / 30330 SPC water. a) Cluster histograms generated 

from 20-200 ns using rcut = 0.45 nm (red dashed curve) and rcut = 0.60 nm (heavy black curve).  b) Snapshot 

of last frame showing tail sites in yellow, headgroup sites in transparent colors, and “neighbor ties” 

connecting tail sites nearer than 0.60 nm in black.  Red arrows point to neighbor connections bridging 

micelle clusters.  c) Detail from 180-200 ns of the time dependence of the largest cluster size as evaluated 

using rcut = 0.60 nm. 

 

Whether inter-micelle effects of this nature are important experimentally for OPC or are an artifact 

of the headgroup force field parameters is not clear.  On the one hand, this could explain neutron 

scattering results90 that suggest dehydration and increased core-shell mixing in dodecyl 

phosphocholine (DPC) micelles (sharing the same headgroup as OPC but with 12-carbon tails) 

upon increasing concentration from 10 mM to 100 mM.  On the other hand, formation of persistent 

supermicellar clusters would not be indicated by the reduction in apparent hydrodynamic radius 

obtained through dynamic light scattering in the same report.   

3.3.4 Modeling SAXS data 

Small and wide angle X-ray scattering (SAXS/WAXS) is a common technique to characterize the 

size and shape of micelles91, 92. The contribution of individual micelle structure to the overall 
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scattering profiles, the “form factor,” can be related to Fourier transforms of the electron density 

distributions, averaged over configurations and orientations of micelles.  Information about cluster 

size and general shape can be inferred from fitting experimental scattering profiles to a simple 

model, for instance a two-shelled ellipsoid with the interior representing the hydrophobic interior 

and the outer shell representing the headgroups (which, due to the presence here of phosphorus, 

have significant contrast in electron density against the interior or the solvent).  Known 

complications in interpreting the scattering profile include correlations between cluster positions 

(which grow in importance with concentration, as discussed in the previous section), 

polydispersity, and variations in mean micelle size with concentration91. Efforts have been made 

to generate scattering data from molecular simulation based on both implicit solvent93 and explicit 

solvent94 models.  

Faramarzi and coworkers have used the WAXSiS server2, 95 to generate scattering profiles 

generated from simulation coordinates can be used to select a micelle size that is most consistent 

with experiment.94  In their report, they have suggested that imperfect agreement between the 

profile generated from simulation data (using the WAXSiS server) for dodecyl phosphocholine 

could be the result of polydispersity. We were unable to find SAXS data for OPC in the literature 

for direct comparison with the simulation results, but instead here we aim to address the more 

general question: can the combined scattering from a polydisperse equilibrium mixture of micelles 

be adequately represented by the scattering profile of a single typical micelle size?   
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Fig. 3.9(a) shows the model which the WAXSiS server used to calculate the scattering profile. The 

hydration layer and excluded solvent were constructed from a short trajectory of simulation with 

position-restraining potentials to keep the structures close to initial structures.2 As is shown in Fig. 

3.9(b), variations were observed for SAXS curves of the same micelle size.  This variation is due 

to the slightly different configuration of a micelle, thus an average of multiple curves for each 

micelle size was calculated. In these averaged SAXS profiles (Fig. 3.9(c)), a shift to lower q was 

observed with the increase of micelle size. The peaks  are in the range of 2.3-2.7 nm-1. Table 3.5 

gives the radius of gyration calculated on the WAXSiS server based by Guinier analysis, which 

shows the radius is about 1.97 nm for a cluster size of 45. These features of OPC are consistent 

with previous experimental and simulation results on dodecyl phosphocholine.92, 94  

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 
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Figure 3.9 (a) The model of OPC micelle generated by WAXSiS server (b) Comparison of SAXS scattering 

profiles for different configurations of micelles with micelle size N=20,30,40 (c) Averaged SAXS scattering 

profiles for each cluster size from 20 to 50 at intervals of 5.  

 

Based on the cluster free energy profile obtained from PEACH method, we can calculate the cluster 

size distribution for polydisperse systems for chosen concentrations.  Fig. 3.10(a)  shows the 

cluster size distribution at total OPC concentrations 198 and 787 mM.  Composite SAXS curves 

were calculated using Eqn 9.   Concentrations for each aggregation number i (curves in Fig. 3.10) 

are combined into weighting coefficients (bars in Fig. 10) for i = 20, 25, 30, etc. according to Eqn. 

9.   These coefficients are used in calculating a weighted sum of scattering profiles (Fig. 3.9c) to 

yield an approximate composite representation of the scattering from the size distribution. 

Premicelles for cluster sizes below 13 were not counted as they do not have SAXS features in the 

spectral range of interest. To compare this polydisperse scattering curve with ones for 

monodisperse micelle, the curves of N=30,35,40 were normalized based on I(q=0) to compensate 

the concentration variation.  As seen in Fig. 3.11(a), the scattering profile of the mixture is quite 

similar to the profile of monodisperse 35-mers, with no obvious signature of the polydispersity 

presenting itself as a feature.  From this we conclude that the deviation observed between 

experiment and the WAXSiS-derived results by Faramarzi et al., where is unlikely to have its 

origin in polydispersity.   

The specific deviation that was observed was overprediction by the model of the intensity of low-

q scattering relative to a peak at q~1.7 nm-1.   We note that the ratio of intensities of the peak at 

q=0 to the peak at 1.7 nm-1 for our OPC structures is quite sensitive to even small changes in the 

choice of background solvent electron density used in the WAXSiS calculation.  The default 
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selection for this parameter is 334 nm-3 95 whereas for the buffer used in the experiments is 

reported91 to have slightly higher density at 3.4 ´ 102 nm-3.  Increasing the background solvent 

electron density from 334 to 340 nm-3 lowers the zero-q peak by 17% without affecting the height 

of the q=1.7 nm-1 peak. (not shown) This is not to say that the difference in density between solvent 

and buffer accounts for the discrepancy between simulated and experimental scattering profiles, 

rather that this element of the scattering profile is highly sensitive to details of contrast in electron 

density. 

 

Table 3.5 Average radius of gyration for each cluster size 

Micelle Size Average radius of gyration(Å) 

20 15.8443 

25 17.4305 

30 18.7757 

35 19.1788 

40 19.7028 

45 20.2235 

50 20.8528 
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Figure 3.10  Micelle size distribution for ctot= 198 mM. [cmonomer= 127 mM] and ctot= 787 mM [cmonomer= 

141 mM]. The bars represent the weighting coefficients for each group of cluster sizes for ctot= 198 mM. 

  

 

 

 

 

Figure 3.11 (a) Predicted SAXS scattering profile for polydisperse mixture at 198 mM, compared with 

contributions from individual size components; residual error is shown in inset.  (b) Predicted SAXS 

scattering profile based on composite weightings at 198 mM and 787 mM.   All profiles are scaled to have 

equal I(q=0). 

 

Even if the scattering profile at a single composition is not very sensitive to the breadth of the 

micelle size distribution, this underlying ∆Gi is reflected in how concentration affects the average 

micelle size.  As we consider how concentration affects the scattering profile, we first note that the 

(a) (b) 
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contribution from the structure factor (not considered here) will be strongly affected by 

concentration.  Considering the form-factor alone, increasing concentration drives a small shift in 

distribution of aggregation numbers as shown in Fig. 3.10(a),  with the peak size increasing from 

33 to 35.   The result is a slight shift in the small peak towards lower q in the calculated form factor 

(Fig. 3.11b). 

3.4 Conclusions 

In this work we used molecular simulation to study the micellization equilibria of octyl 

phosphocholine using the HH-Alkane force field and the newly developed Alk-SPC parameters to 

represent tail-tail and tail-water interactions.  PEACH analysis was used to obtain the free energy 

of association over a broad range of cluster sizes, which followed a dependence on aggregation 

number that was well-fitted by the quasi-droplet model for micelle assembly.  The free energy of 

association was used to predict the concentration-dependent onset of micellization and cluster size 

distributions.  The critical micelle concentration was in fair agreement with experiment; the HH-

Alkane force field showed distinct improvement relative to TraPPE parameters on which it was 

based, reflecting an improved representation of the hydration free energy of the alkyl tails.  

Although the optimal cut-off distance to be used in defining a cluster is not clear, a range from 4.5 

nm-6.0 nm produced only modest changes in predicted micellization properties.  Use of the small-

N approach offers simplicity but introduces the risk of neglecting features that emerge from larger-

scale simulations, such as the significant tendency for micelles to cluster into higher-order 

aggregates seen here in a simulation of 250 OPC. 

Scattering profiles generated via the WAXSiS server from individual micelle structures were 

combined, using weights derived from the PEACH analysis, to represent a composite form factor 

at different OPC concentrations; it was found that only minor differences separated the composite 
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scattering profile from the profile generated using a single typical micelle size. Further study of 

the dynamics of monomer exchange may be useful combined with these equilibrium calculations 

to provide details for general kinetic models of micellization.96 
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Chapter 4 Free Energy of Micellization of Dodecyl Phosphocholine (DPC) from 

Molecular Simulation: Hybrid PEACH-BAR Method  

 

4.1 Introduction 

For surfactants with low critical micelle concentrations (CMC) i.e. less than 10 mM, this procedure 

is compromised as a result of the slow dissociation rate (relative to 100’s of ns) and rare 

occurrences of unimers and premicelles in a moderately sized solvent bath (with 1000’s of waters). 

To obtain good sampling of clusters of varying size, simulations need to be performed at low 

concentrations around the CMC; however, the large amount of solvents consumes excessive 

computational costs. Higher concentration simulations with small box sizes produce trajectories 

in which a micelle grows to encompass all monomers and remains in that state throughout the 

trajectory.  

To allow the PEACH method to analyze simulations of a wide range of aggregation tendencies, 

here we combine it with the Bennet Acceptance Ratio (BAR) method for calculating free energy 

differences between systems under different potential energy functions.  We performed MD 

simulations of the surfactant systems using reduced Lennard-Jones attractions between alkyl tail 

groups to promote dissociations of monomers from micelles. The cluster free energy for this 

reference system of weakened interaction strength can be calculated using the PEACH method, 

since the kinetics of dissociation are faster and since fluctuations in cluster size can be observed at 

equilibrium in a system with less solvent.  Using BAR calculations, the free energy differences 

between the full strength (FS) and interaction-weakened systems (WS) can then be determined, to 

recover cluster free energies at full strength of interactions.  Here we have applied this PEACH-

BAR method to obtain the cluster free energy curve for dodecyl phosphocholine (DPC), for which 
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a CMC of about 1 mM has been reported in experiment.10, 11 In this report, we introduce the 

concepts and implementation of the PEACH-multistate-BAR method. Then we apply the new 

method to simulations of DPC, checking the internal consistency of the method using two different 

WS systems.  Comparison of results against an independent free energy calculation obtained 

through umbrella sampling led us to alter the cluster definition criterion to include headgroup-

headgroup interactions.  The resulting PEACH-BAR free energy curve is in fair agreement with 

experiment with respect to the predictions it yields for CMC and cluster size. 

A new method to extract the free energy of aggregation vs. aggregate size has been proposed and 

applied to results generated from molecular dynamics simulations of dodecyl phosphocholine in 

SPC water. Due to the relatively low dissociation rate and critical micelle concentration, extraction 

of cluster free energies directly from simulation results using the “partition-enabled analysis of 

cluster histogram” (PEACH) method is not feasible for these types of surfactants. The new 

approach applies PEACH to a model with weakened attractions between aggregants, for which the 

dissociation rate is fast enough to obtain sampling of all cluster sizes, and then recovers the free 

energy for the fully-attractive force field using the BAR free energy difference method.  Results 

from the PEACH-BAR method were compared with free energy calculations employing umbrella 

sampling to find the free energy associated with removing a single surfactant from a micelle.  The 

critical micelle concentrations and average cluster sizes are in general agreement with the 

experimental results. The theoretical predictions of SAXS profile were compared to experimental 

SAXS results and good agreement confirmed accuracy of the structures generated from 

simulations. 
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4.2 Method 

4.2.1 Forcefield choices 

United-atom (UA) force fields were used for this simulation. Lennard Jones (LJ) parameters for 

pairwise interactions between CHx groups with other CHx groups were taken from TraPPE-UA 

model72. For LJ interactions between CHx groups and water oxygen, we used parameters from the 

Alk-SPC model97, which was parameterized from the TraPPE-UA model72 to allow us simulate 

interactions between alkyl tails and SPC water following the development of the HH-Alkane force 

field70. Parameters from the Gromos G54A7 force field73 83, 98 were used for other nonbonded 

interactions and all bonded interactions (bond stretching, bending and torsional potentials).   

4.2.2 Simulations of DPC 

Simulations are performed with GROMACS 5.075 software package. A series of simulations of 

different concentrations (containing 15-80 DPC with varying numbers of SPC water) were set up 

to obtain sufficient sampling across the full range of cluster sizes 2 <i< 65, where i is the number 

of DPC in the cluster. The total numbers of DPC and solvent for all trajectories are tabulated in SI 

Table 1.  Two WS versions of the force field with weakened attractions between CHx sites were 

used to accelerate the monomer exchange process. Specifically, for all CHx-CHx interactions, the 

C6 coefficient of the r-6 Lennard Jones was decreased to 85% or 90% of its full-strength value and 

the C12 parameter was adjusted to maintain the thermal radius according to equation (1)79 . 

𝑟%i!jkl> = 𝜎%i[
2

1 + (3𝑘𝑇/𝜀)'/8]
'/n = [

2 ∗ 𝐶'8

𝐶n + (𝐶n8 + 4 ∗ 𝐶'8 ∗ 3𝑘𝑇)
'
8
]'/n 

(1) 

 The aim in adjusting these parameters was to non-specifically lower the mean attraction between 

sites while minimizing perturbation to the equilibrium distribution of distances, with an eye toward 
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achieving good probability overlap between the weakened and full strength structures.  To achieve 

this, we defined the thermal radius as the distance where the potential reaches 3kT instead of 1kT, 

to avoid large differences in force over frequently accessed ranges of the potential.  We use 

“WS=0.85” and “WS=0.9” to denote the interaction-weakened systems and “FS” to denote the 

full-strength system. Fig. 1 shows a comparison between the three Lennard-Jones functions (panel 

A) and their corresponding Boltzmann factors (panel B). With these two decreased strengths, we 

are able to sample the full cluster size range for reduced strengths and recover the full-strength 

cluster free energy profile based on BAR method mentioned in the following section. For 

interaction strength larger than 90%, the attractions between alkyl tails hold the micelles together 

and monomer exchange events are too rare for us to obtain PEACH statistics. And for interaction 

strength smaller than 85%, the micelles were held loosely and the overlap of configurational space 

was not enough for reliable BAR analysis.  It is crucial to note that the interactions of all DPC sites 

with solvent were kept identical in all three systems. 

The pressure is maintained at 1 bar and a compressibility of 4.5 × 10BY by Berendsen barostat80 

with 𝜏g = 2	𝑝𝑠. The temperature was maintained at 300K by velocity rescaling thermostat56 with 

𝜏h = 2	𝑝𝑠.  The md integrator with a 2 fs time step was used for integration of equations of motion. 

The Verlet78 cutoff-scheme was applied for short-range non-bonded interactions with a cutoff of 

1.2 nm. With the exception of the alterations described above, the Lennard-Jones potential was 

used to calculate non-bonded interactions  with the Lorentz-Berthelot combination rules 

accounting for different UA groups as shown in equation (2).  Coulomb interactions were 

accounted for by Particle mesh Ewald summation55 with a real space cutoff of 1.2 nm. 

𝜎%* = 0.5d𝜎%% + 𝜎%*f 

𝜀%* = (𝜀%%𝜀**)'/8 
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(2) 

            

Figure 4.1 (a) LJ potential energy and (b) Boltzmann factors for CW2-CW2 interaction for WS = 0.85 and 

WS = 0.9, and full-strength system FS.  

 

4.2.3 PEACH-BAR analysis 

An 800 ns simulation with a 20 ns pre-equilibration was performed for each trial and used for 

PEACH analysis. For some trials, the trajectory length and pre-equilibration time were adjusted 

based on how fast the system reached equilibration and how well the system generate sampling 

statistics for all cluster sizes observed. For the initial cluster definition, two DPC chains are 

considered to be of the same micelle if the distance between any of their alkyl tail beads is lower 

than 0.50 nm. (This cutoff is determined based on results in the previous work for octyl 

phosphocholine97) In a revised cluster definition, the same distance cutoff criterion is used but 

applied to the distance between any pair of sites on the molecule.   The average frequency of 

occurrence for clusters containing i surfactants, denotated as <ni>, was calculated over all frames 

in the trajectory.  

The PEACH method allows extraction of a set of equilibrium constants Ki that optimally 

reproduces the cluster size distributions {<ni>} observed in one or more simulation trajectories, 

using a algorithm and an iterative fitting process that we have described previously.  The Gibbs 
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free energy of clustering for standard state i-mer can be calculated from {Ki} with equation (3)32. 

To represent the output from PEACH in a convenient way, we calculated the Gibbs free energy 

for a known concentration of i-mer based on equation (4)32, under the assumption that we have an 

equal concentration c of i-mer and free DPC monomer.   

yz3°

,,h	
= −𝑙𝑛	𝐾kv,%                                                       (3) 

yz3
,,h	

= −	𝑙𝑛	𝐾kv,% − (𝑖 − 1)	ln	(
#
#°
)                                          (4) 

With good PEACH fit for interaction-weakened systems “WS = 0.85” and “WS = 0.9”, we can 

obtain ∆𝐺%,01./.|Y	"l	/.~ .  To find the free energy of clustering in the FS system, we then use the 

BAR approach shown schematically in Fig 2 and equation (5).   ∆𝐺%,01./.~ is the Gibbs free energy 

of forming a same-size micelle in an interaction-weakened system, calculated from PEACH 

method.  ∆𝐺%,/.~→21	is the Gibbs free energy difference for a micelle of size i under the interaction-

weakened potential versus a full-strength potential, which can be calculated by the BAR (Bennett’s 

Acceptance Ratio) method76 or multistate BAR (MBAR) method.99  

 

∆𝐺%,21 = ∆𝐺%,01./.~ + ∆𝐺%,/.~→21 − 𝑖 ∗ ∆𝐺'	,/.~→21                                  (5) 

 

Figure 4.2 Scheme for PEACH-BAR method.  
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The general idea of free energy methods is to calculate the free energy difference between states 

of which configuration spaces do not fully overlap, sometimes with intermediate states 

incorporated to avoid the error from unaccounted sampling.  Bennett’s Acceptance Ratio method76 

was brought up to calculate free energy difference,	∆𝐴%*, based on configurations of two states i 

and j. From the derived equations,  ∆𝐴%* is calculated by finding solutions for equation (6).100 

 

∑ '

'&Wsd�X]�
63
62
�&�∆�32B�∆C�

E3
%.' − ∑ '

'&Wsd�X]�
62
63
�&�∆�23B�∆C�

E2
*.' = 0                  (6) 

𝑛% and 𝑛* are the numbers of samples at each state.	∆𝑈%* is the potential energy difference between 

sampled state i and weakened state j when the simulations are performed on the configuration 

space with a distribution proportional to 𝑒B��3, with ∆𝑈%* vice versa.  

For our purpose, a few micelle sizes (including 1, 3, 8, 9, 14, 15, 19, 20, 24, 25, 29, 30, 34, 35, 39, 

40, 44, 45, 49, 50, 54, 55, 59, 60, 64, 65, 69, 70, 74, 75, 79, 80) were chosen to perform BAR 

analysis. From the simulation trajectory for FS, WS =0.85 and WS=0.9, the frames containing 

these sizes of micelles was taken out to generate configurations for these cluster sizes. Then for 

each pair of states (FS and WS=0.85, FS and WS=0.9, WS=0.9 and WS=0.85), we used the rerun 

option in Gromacs mdrun utility to calculate the potential energy for the configurations of one 

state under the interaction strength of the other state in the pair and vice versa. Once ∆𝑈%* and ∆𝑈*% 

were calculated, ∆𝐴%* was obtained by using a bisection method to find solutions for equation (6). 

To calculate free energy difference using configurations from multiple states, Shirts and Chodera99 

developed codes to implement  the multistate BAR method. We also implemented MBAR method 

with the calculated ∆𝑈%* and ∆𝑈*% to calculate ∆𝐴%* and compare with BAR results. 
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4.2.4 Umbrella Sampling Analysis 

With Gromacs 5.0 package75, the “pull code” was used to generate configurations for umbrella 

sampling. One DPC was pulled out from a micelle of (N-1) DPC. The distance between the two 

groups was determined by their center of mass. From the simulation trajectory of pulling, 25 

configurations were selected as the initial configurations for the following umbrella sampling 

simulations, and later a few windows were added to fill in poorly sampled regions. The 

configurations were selected to have an increment of ~ 0.1 nm in distance between the pulled DPC 

and the DPC micelle. Each umbrella sampling takes 100 ns. The simulation setup for pressure, 

temperature and cutoff schemes are the same as PEACH-BAR simulations. The parameters for 

setting up potential of mean force (PMF) analysis via umbrella sampling are shown in Table 4.1.    

 

Table 4.1 Setup parameters for umbrella sampling analysis 

Tria

l 

Number 

of DPC 

(N) 

Number 

of SPC 

Water 

Box size 

(nm3) 

Pull rate 

(nm/ps) 

Pull Force 

Constant 

(kJ×mol-1×nm-2) 

Pull 

Time(ns) 

Umbrella 

sampling 

windows 

Umbrella 

sampling 

time (ns) 

1 30 10145 335.56 0.0015 1000 2 26 100 

2 40 10322 341.41 0.0002 1000 15 33 100 

 

 

Based on the Weighted Histogram Analysis Method (WHAM)101, the potential of mean force is 

calculated from the pull force of each umbrella sampling windows, and the PMF of the fully 

dissociated monomer is set to zero. The equilibrium constant for the association of the monomer 

to the remainder of the micelle can be calculated by integrating the PMF over a spherical volume 

as in equation (7): 
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𝐾EB'→E = 𝑛B' ∫ 𝑒𝑥𝑝l)<=5>>
/ (− g�2

,,h
)(4𝜋𝑟8)𝑑𝑟                                   (7) 

The factor of n-1 is needed to correct for the fact that the umbrella sampling approach treats one 

monomer as distinguishable from the others.  The addition reaction for indistinguishable 

monomers and for a reaction with one “tagged” monomer are represented as follows respectively: 

𝐴+𝐴EB' ⇌ 𝐴E 

𝐴∗+𝐴EB' ⇌ 𝐴∗𝐴EB'                                                        (8) 

Whereas the forward rate constants of both reactions must be identical, the rate constants for the 

reverse process of the first reaction will be n times greater than that of the second, simply because 

there are n identical monomers available to dissociate instead of a single tagged monomer. Thus, 

for an addition reaction in a micelle, the equilibrium constant calculated using potential of mean 

force with a tagged molecule is n times greater than the true equilibrium constant, and thus the free 

energy of the reaction is lower by kT ln n.  (A different route to the same result is to recognize that 

the partition function of the cluster A*An-1 is n times greater than partition function of the cluster 

An.)  The same correction should be applied for alchemical routes to calculating the same free 

energy, but has at times been neglected.45 

 

4.2.5 SAXS data prediction 

The small angle X-ray scattering (SAXS) profiles for micelles of size N= 30, 40, 50, 60 were 

predicted by the WAXSiS server2 based on short MD simulations on each micelle. The 

configurations from previous simulations of FS interactions were used as initial configurations for 

WAXSiS analysis. The pair distance distribution function (PDDF) was calculated by the GNOM 

utility in ATSAS software. 102 
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4.3 Results and Discussions 

4.2.1 Observations of simulations 

The simulations were visualized using VMD58 and we observed increasing aggregation as the 

tailgroup interaction strength is increased. As evident in snapshots (Fig. 4.3), the shape of a 

globular micelle was maintained in all the simulations; however, we observed more frequent 

monomer exchange events and a higher mean concentration of free monomers in “WS = 0.85” and 

“WS =0.9” than in FS.  

 

Figure 4.3 VMD view of the simulation box. N=30  (a) WS=0.85 (b) WS= 0.9 (c) FS. For representation 

purpose, the size ratio of the atoms of DPC and water was set to 6:1.  

 

4.3.2 Cluster Size distribution 

Micelle size distributions for the full-strength system and two weakened systems, WS=0.85 and 

WS=0.9, were calculated from a series of simulation trajectories generated with different total 

surfactant numbers. The aim of setting up multiple simulations for the same weakened strength 

was to obtain good sampling statistics for every micelle size across the range of distribution to 

ease PEACH analysis for cluster free energies. The total surfactant number in each simulation box 

was chosen to make the cluster size histograms (Fig.4.4) overlap across the trajectories. As the 

strength of alkane tailgroup interaction increases from 85% to 90% of the full strength, the larger 
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micelles were kept in the solution for a longer time. This trend is consistent with narrower observed 

cluster size distributions (Fig 4.4) and larger cluster sizes (Appendix V. Fig.1) for simulations of 

the same total surfactant numbers with increasing tailgroup interaction strengths.  

 

Figure 4.4 Micelle size distribution of simulations (symbols) and the PEACH fit (curves) of DPC with force 

fields labelled on the figure and number N of DPC indicated by color legend.  

 

4.3.3 Results of PEACH analysis on systems with weakened attractions 

With PEACH method, a global iterative fitting procedure was used to determine the set of 

equilibrium association constants {Ki} to optimally fit the observed cluster size distributions.  

Fittings are shown in Figure 4.4 (a) and (b) for the WS=0.85 and 0.9 series; PEACH analysis of 

the FS trajectories was not attempted because overlap between histograms from different 

trajectories was not obtained. It is interesting to consider how the choice of weak reference 

potential affects the efficiency and reliability of the PEACH results.  Our prediction was that the 

system with weaker interactions (WS=0.85) would prove more useful because the rate of monomer 

exchange and the overlap between histograms is greater, giving better statistical sampling.  In fact, 

choosing a weak interaction strength has the drawback that some less-stable aggregation numbers 

are difficult or impossible to observe because they simply fall apart; as a result, the i=15-20 range 

is less-well sampled at WS=0.85 and the i>70 range is missing.  The PEACH fits for WS=0.9 are 
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generally closer in agreement with the raw data than for WS=0.85.  This may reflect better 

accuracy or may simply be because they are less tightly constrained; each micelle size is 

represented in more trajectories, on average, at WS=0.85 because the distributions are broader.   

 

Fig.4.5 shows the size-dependent cluster free energy profiles {∆𝐺%} for WS=0.85 and WS=0.9, 

which were derived from the best-fit set of {Ki}.  These show the expected qualitative trend 

predicted by simple models59, 86 and seen for octyl phosphocholine97. 

 

Figure 4.5 Free energy of cluster association ∆Gi versus aggregation number i obtained from PEACH 

analysis for WS=0.85 and WS=0.9, both were calculated for the condition of monomer concentration c = 

33.1 mM 

 

Although the range and efficiency of the PEACH-BAR method may depend on the choice of WS 

parameters, the final results should not; the differences in PEACH cluster free energy for the two 

WR systems should be counterbalanced by the differences in BAR free energies to yield the same 

FS system free energy.   

 

4.3.4 Results of BAR calculations of free energy differences 
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The BAR and MBAR methods were applied to calculate free energy differences between WR and 

FS potentials for the initial (free monomer) and final (micelle) states of the system.  The accuracy 

of BAR calculations depends on the overlap of configurational distributions sampled by the two 

systems, which can be illustrated by overlapping histograms of ∆Uij sampled.  Overlap was good 

among all three systems except between WS=0.85 and FS at larger cluster sizes. (Appendix V, 

Fig.4.2)  As a test of self-consistency, we compared the simple BAR difference in free energy 

between WS=0.85 and FS systems with the sum of BAR differences of WS=0.85 with WS=0.9 

and of WS=0.9 with FS, and found them to be essentially identical up to a cluster size of i=60.  

Similarly, application of the MBAR algorithm to all three systems gave similar results to the 

application of the simple BAR algorithm and combination of 0.85à0.9 and 0.9àFS steps, within 

a difference within 1kT. (Fig. 4.6)   

 

 

Figure 4.6 The difference of ∆∆𝐺,,23→53 between FS, WS=0.9 and 0.85, calculated from BAR method and 

MBAR method (with i denoting the micelle aggregation number). 
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Figure 4.7 Cluster free energy ∆𝐺,,53 obtained from PEACH-BAR method. All the cluster free energy were 

calculated for the condition of monomer concentration c=3.3 mM. The arrows showed how the full strength 

CFE is recovered from CFE of systems with weakened interactions based on the scheme shown in Fig.2.  

 

As shown in Fig.4.7, cluster free energy ∆𝐺%,21  for cluster size i was therefore calculated by 

combining ∆𝐺%,01  for the WS systems from PEACH analysis with the free energy differences 

across FS and WS force fields from BAR, following the PEACH-BAR scheme shown in Fig.2. 

The CFE for full strength was calculated from three thermodynamic cycles: (a) “WS=0.9” -> FS 

(b) “WS=0.85” -> FS (c) “WS=0.85” -> “WS=0.9” -> FS.  Agreement among all three curves is 

good, showing reasonable internal consistency for the PEACH-BAR approach as a whole.  In other 

words, differences in PEACH cluster free energies between the two WS systems are consistent 

with their differences relative to the FS system calculated using BAR.   Cycles (b) and (c) give 

nearly identical results, reflecting the internal consistency (discussed above) of the BAR 

calculations across the three force fields.  The largest discrepancy among the three sets of results 

at cluster sizes below 65 is 6 kT, which on a per-monomer basis is well below 1 kT per monomer.   
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As mentioned above, free energies ∆Gi,FS  generated from pathway (b) and (c) are almost identical. 

Both of them are calculated with the PEACH-generated  ∆Gi,WS=0.85  , plus the BAR-generated free 

energy difference between states. Because the BAR analysis gives consistent results among the 

three states, the main source of error causing the difference of the CFE curves generated from the 

WS=0.85 and WS=0.9 systems is most likely associated with the PEACH-derived CFE of the WS 

systems. This error might come from sampling issues or from effects of non-ideality; interactions 

and excluded volume effects involving the free monomers will be more pronounced in the 

WS=0.85 system because the unimer concentrations are much higher.   The error for large cluster 

sizes (above 60) can be attributed also to poor overlap between BAR energy histograms (see 

Appendix V Fig. 4.2).  

 

We chose to do further analysis based on the full strength CFE recovered from WS=0.9, as the 

PEACH analysis gave a better fit and resulted in a smoother free energy curve extending to higher 

cluster sizes, because BAR energy histogram overlaps were improved, and also because errors due 

to non-ideality will be lower in the system with lower free monomer concentrations. 

 

 

4.3.5 Comparison with Umbrella Sampling Calculations 

To further validate the PEACH-BAR free energies, we made a comparison with free energy 

differences calculated using a potential of mean force (PMF) calculation via umbrella sampling 

(US).  The addition or removal of a single monomer to or from a micelle can in principle give 

information on the difference between ∆Gi and ∆Gi+1, or equivalently the equilibrium constant 

association or dissociation of a single monomer.  A few reports have been made of the PMF 
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associated with removing a monomer from a micelle,41, 43, 44, 103 with the potential defined as a 

function of the distance between the centers of mass (COM) of the monomer and the remaining 

components of the micelle.  As discussed in the Methods section, to convert this into an equilibrium 

association constant with units of inverse concentration or volume requires integration of the 

Boltzmann weight over the volume of the (spherically averaged) micelle, treating the PMF for the 

surfactant in solution as zero.  An additional factor of 1/(i+1) needs to be included to account for 

the indistinguishability of the surfactants.  The initial equilibration time of 30 ns allotted to each 

window was not adequate, so was extended to 100 ns over the windows where the slope of the 

PMF was steepest.   

 

 

Table 4.2 Comparison of ∆ΔG(,78)→, calculated from umbrella sampling and PEACH-

BAR method (based on path “WS=0.9” to FS) 

Number of DPC ∆ΔG:;<=>?@<A	(kT)  

(tail-only) 

 

∆ΔG:;<=>
?@<A

	(kT)  

(new cluster def) 

∆ΔGB!(kT) 

 

30->29 6.16 6.78 6.57 

40->39 6.72 7.50 7.98 

 

 

Comparison in Table 4.2 shows fair agreement between PEACH-BAR and US values calculated 

for the smaller clusters (i=29, i+1=30) but significant error (1.26 kT) for the larger clusters (i=39, 

i+1=40).  Very roughly speaking, a discrepancy of this magnitude will lead to an difference in 

predicted CMC by a factor of  e1.26 = 3.5, which is unacceptably large.  In seeking explanations for 
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this discrepancy, we noticed that the PMF curve does not reach a stable value until the DPC 

molecule is separated by a distance over 2.7 nm from the micelle center of mass (Figure 4.8(b)), 

and that its value increases by about 3 kT in the range between 2 and 2.5 nm. Observing the 

structure of the cluster formed when the tagged molecule was constrained in this range of distances, 

we saw that it clearly did not exhibit tail-tail interactions, but rather was oriented with its 

headgroup towards the micelle surface.  (Strong headgroup-headgroup attractions, which we noted 

in our previous work on OPC,97  may be an artifact of the force field.)  According to our original 

cluster definition based on tail sites alone, the tagged molecule would not be classified as belonging 

to the cluster in calculating histograms for the PEACH-BAR calculations performed above.  The 

contribution from headgroup-headgroup attractions to the affinity of a monomer to a cluster is, 

however, being counted in the US estimate for that quantity entered in Table 4.2.  The original 

PEACH-BAR calculations therefore were missing a factor that contributes to the stability of 

aggregates formed. 

 

To test whether excluding headgroup-headgroup attractions accounts for the discrepancy between 

PEACH-BAR and US results, we re-analyzed the same set of MD trajectories (for WS 0.85, WS 

0.95, and FS force fields) to generate new cluster histograms using an all-site cluster criterion with 

the same 0.5 nm cutoff.  The PEACH-BAR analysis was applied to the new histograms to generate 

new free energy curves.  As expected, accounting for headgroup-headgroup contacts resulted in a 

lowering of the cluster free energies.  PEACH fits to the histograms are shown in Fig. 4.9, and are 

as good or better than for the previous sets.  Once again, a high level of consistency between 

PEACH-BAR free energy curves was obtained from WS 0.85 and WS 0.90 trajectories (Figure 

4.10). Under the new cluster definition, PEACH-BAR and US results agree to within 0.5 kT for 
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both cluster sizes (Table 4.2), which given the noise and uncertainties in both methods is 

reasonable. For the following sections, we will carry out analysis based on this more inclusive 

cluster definition, which is justified based on thermodynamics instead of on an assumption of what 

the important interactions should be. 

 

  

Figure 4.8 Umbrella sampling results. Potential of mean force (PMF) for pulling one DPC out of a micelle 

of (a) 30 DPC or (b) 40 DPC. Integral of PMF over micelle volume (c) for 30 DPC and (d) for 40 DPC 
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Figure 4.9 Micelle size distribution of simulations (symbols) and the PEACH fit (curves) of DPC for the 

new cluster definition, with force fields labelled on the figure and number N of DPC indicated by color 

legend.  

 

Figure 4.10 Cluster free energy ∆𝐺,,53 obtained from PEACH-BAR method. All the cluster free energy 

profiles were calculated for the condition of monomer concentration c=1.1 mM. The arrows showed how 

the full strength CFE is recovered from CFE of systems with weakened interactions based on the scheme 

shown in Fig.4.2.  

 

We have not attempted to optimize either PEACH-BAR and US approaches for efficiency, but for 

a very rough comparison we note that the single point US calculation (yielding the slope of the 

free energy curve for a cluster at one specific size) required about 1.5 µs of simulation time; to 

cover the full range of cluster sizes would take roughly ten points.  The full set of WS=0.9 àFS 

PEACH-BAR calculations required about 12 µs total trajectory time, suggesting that the overall 

computational costs of the two approaches are comparable.  The US calculations have the 

advantage of being able to take advantage of trivial parallelization across umbrella sampling 

windows.   
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4.3.6 Phenomenological Modeling of the PEACH-BAR-derived Free Energy Profile 

The free energy curves for DPC derived from PEACH-BAR method were fit to phenomenological 

models, developed to describe the dependence of aggregation free energy on aggregation number. 

Based on previous literature, the Maibaum/Chandler model59 and the “quasi-droplet” model86 were 

used to fit the CFE curves generated by PEACH-BAR method. Equation (9)97 shows the general 

form of the two models. 

∆z3
,h
= 𝐴(𝑖: − 1) − 𝐵(𝑖; − 1) + 𝐶(𝑖# − 1)                                       (9) 

In the Maibaum/Chandler model59, each term in the model corresponds to a different component 

of free energy. The first term	𝐴𝑖: represents the surface free energy, as constant surface tension 

times surface area scaling with number of particles to the a = 2/3 power. The second term  𝐵𝑖; 

represents the bulk free energy to transfer one surfactant from the solvent into the micelle, scaling 

linearly with number of surfactants  (b=1 and B=∆𝜇, the difference in chemical potential between 

solvated and micellar surfactant). The third term 𝐶𝑖#  represents the geometrical limitations of 

packing into a sphere while maintaining headgroups on the surface. The exponent for the third 

term is still undefined and in original Maibaum/Chandler model, this coefficient was proposed to 

be 5/3. However, we obtained better fit with c=2 for sodium octyl sulfate71 and c=4 for octyl 

phophocholine97 in previous publications.  For the “quasi-droplet” model86, the parameters were 

defined as a=1, b=3/2, c=2 were derived from a more complicated calculation that incorporates 

effects of protrusions of headgroups away from an interior hydrophobic core. 

 

The cluster free energy generated from PEACH-BAR method (using the new cluster definition) 

was fitted to these two phenomenological models and shown in Fig.11 and Table 3.  In contrast to 

our results on OPC,97  where the quasi-droplet model gave a better fit, Fig.11 shows no clear 
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advantage for either free energy model.  This may reflect the more compact nature of the longer-

tail surfactants’ micelles, with headgroup protrusions playing less of a role. As shown in Table 3, 

fit to CFE generated from “WS= 0.9” gives a smaller root mean squared error (RMSE) than the 

ones from “WS= 0.9”. This is consistent with our previous observation that CFE from “WS=0.9” 

is more reliable due to more overlap of configurations between full strength and “WS=0.9” systems. 

 

Figure 4.11 The fit of CFE to phenomenological models, with dots indicating the CFE calculated from 

PEACH-BAR method and lines indicating fitted models. CFE were generated from pathway (a) “WS=0.85” 

-> FS (b) “WS=0.9” -> FS. The CFE profiles were calculated for the condition of monomer concentration 

c=1.1 mM. 

 

Table 4.3 Parameters for Maibaum/Chandler model and “quasi-droplet” model (for cluster free energy 

profile with monomer concentration c = 1.1 mM) 

 “WS=0.85” à FS “WS=0.9” à FS 

 Maibaum/Chandler 

c= 5/3 

Quasi-droplet Maibaum/Chandler 

c= 5/3 

Quasi-droplet 

A 22.2445 7.2496 19.3919 6.0879 

B 6.4459 1.5614 5.3540 1.2216 

(a) (b) 
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C 0.1163 0.0947 0.0893 0.0695 

RMSE 2.2850 1.7644 0.7433 1.0714 

 

Using the fits from “WS=0.9”, we could predict the cluster size distributions for all concentrations. 

The results are qualitatively independent of the fitting function used.  To calculate average micelle 

size, we defined clusters with size larger than 7 to be a micelle. The following equations are used 

to calculate the average quantities, with cU_TW_ indicating the concentration for cluster of size i. 

%𝐷𝑃𝐶	𝑖𝑛	𝑚𝑖𝑐𝑒𝑙𝑙𝑒 =
∑ 𝑐%_>kl ∗ 𝑖%�{

∑ 𝑐%_>kl%�' ∗ 𝑖 

(10) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑀𝑖𝑐𝑒𝑙𝑙𝑒	𝑆𝑖𝑧𝑒 =
∑ 𝑐%_>kl ∗ 𝑖%�{

∑ 𝑐%_>kl%�{
 

(11) 

 

The aggregation number of DPC has been estimated through a number of experimental approaches.  

It was reported to be 51-62 from NMR diffusivity measurements104, 60-80 using two different 

analyses of SAXS data91, 92 and between 58 and 70, with a strong concentration dependence, by 

SANS data.90  We found an average aggregation number near 75. Fig. 4.12 shows the PEACH-

derived micelle statistics predicted for concentrations near experimental CMC and 100 times larger 

than CMC. No obvious difference was observed for the statistics of these two concentration ranges. 

The average micelle size is 72 or 75 for 10 mM and 73 or 76 for 100 mM. 
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Figure 4.12 Micelle statistics (monomer concentration, DPC% in micelles and average size w.r.t total DPC 

concentrations) obtained from cluster size distributions predicted by equilibrium constants fit by 

phenomenological models for concentration range of 5 mM (upper panels) and 100 mM (lower panels) 

 

Based on predictions of quasi-droplet model, CMC was found to be 2.1 mM. (As reported in 

previous paper97, the cmc was defined based on the intersection between two lines fitted to a the 

trace of unimer concentration vs. total concentration, as shown in Fig. 4.13. ) A few experimental 

results reported CMC and aggregation number based on different approaches. CMC was reported 

to be 1.5 mM by Anatrace, Inc. and other sources reported slightly different numbers. It was 

reported to be around 0.91 mM by tensiometry data105 and 0.95 mM by  fluorimetry106  and  1.36 

mM by calorimetry107.   The over-prediction of the CMC relative to experiment is consistent with 

our results using the same force field for OPC97, which was in excess by 40% of the value reported 

by Anatrace, Inc.    
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Figure 4.13 Monomer concentrations predicted by equilibrium constants (generated by quasi-droplet 

model). CMC was determined by finding the intersection points of the two lines on the graph. 

 

4.3.7 Modeling SAXS data 

Derivations of micelle aggregation numbers from experiment are based on various types of models, 

so it is desirable where possible to make direct comparisons between structures generated in 

simulation with experimental data.  Therefore,  we predicted the SAXS profile from simulation 

snapshots using the WAXSiS server2 and compared to experimental SAXS data.91, 108 The 

scattering intensity I(q) is defined as 𝐼(𝑞) = 𝑛𝑃(𝑞)𝑆(𝑞). P(q) is the averaged form factor of the 

globular particle and S(q) is the static structure factor describing the spatial distribution of the 

particles.   P(q) is the Fourier transform of the pair distance distribution function (PDDF) p(r). Fig 

4.14 shows the intensity and PDDF profiles for micelle sizes N=30,40,50,60. The peaks shifted to 

lower q (greater correlation distance r) for larger micelles.  Lipfert et al. report scattering intensities 

for various concentrations of DPC (denoted FC-12); the experimental profile is qualitatively 

similar to ours except for the relative magnitudes of the main peaks at 0 and at 0.2 Å-1; (more 

explanation about feature at q=0, origins of relative magnitude; or just refer to OPC paper)  they 

observe a peak at 0.18 Å-1 and a minimum at 0.09 Å-1 slightly lower than in the predictions for 

N=60, suggesting a somewhat higher micelle size than 60.  (As we concluded in a previous paper97, 
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the scattering profile for polydisperse mixtures of micelles in equilibrium is determined by the 

dominated species.)  Göbl et at.108 reported similar PDDF profiles for DPC measured by SAXS. 

In Göbl’s paper, the peaks of p(r) shifted to higher distance r for longer alkyl chain. They find 

positive peaks at 1.0 1.1 and 4.0 4.1 nm, slightly greater than the predicted PDDF profile for 

micelle size N=60, again suggesting an aggregation number somewhat greater than 60.  

 

Figure 4.14 (a)SAXS profiles generated by WAXSiS server2 for cluster size 30,40,50,60 (b) PDDF profiles 

calculated from the SAXS profile 

 

4.4 Conclusions 

In this work, we have presented a new method to calculate cluster free energy for amorphous 

aggregation with relatively low critical micelle concentration and rare dissociation events. The 

molecular dynamics simulations were performed for dodecyl phosphocholine with the strength of 

tailgroup interactions reduced, followed by PEACH analysis to obtain cluster free energy for the 

interaction weakened systems. The BAR method was used to calculate the difference between the 

full strength systems and interaction weakened systems.  Comparison between results obtained 

using different degrees of interaction weakening showed internal consistency, and comparison 

with independent umbrella-sampling free energy calculations also showed reasonable agreement 

once an appropriate cluster definition was applied.  The onset of micellization was predicted at 2 

(a) (b) 
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mM, somewhat higher than experimentally determined values as expected given previous results 

on octyl phosphocholine with the same force field.  Average micelle aggregation number was 

predicted to be about 75, with weak dependence on concentration.  Modeled SAXS profiles 

showed agreement with experiment in the positions of peaks but not in the relative intensities.   
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Chapter 5. Study of Enthalpy Change for Micellization of Sodium Octanoate  

 

5.1 Introduction 

The reversible assembly of surfactants into micelles is a widely observed phenomenon driven by 

the hydrophobic effects of non-polar tails and hydrophilic effects of polar heads. The competing 

enthalpic and entropic effects define the process of micellization. However, microscopic insight 

into the details of what assemblies are present in an equilibrium solution of micelles is not 

generally available from experiment or simulation. These concentration-dependent distributions, 

along with insight into enthalpies of formation, are required to predict and interpret the heat of 

dilution of ionic surfactant solutions as measured using isothermal titration calorimetry (ITC).  

This chapter presents an application of the PEACH method to model the ITC enthalpograms of 

long-chain carboxylates (commonly known as soaps) sodium octanoate, based on simulations with 

atomistic detail.  We are interested in how the microscopic properties affect the overall heat effect 

measured in careful experiments by Medos et al,1 and testing the simplifying assumptions that the 

experimentalists used to analyze their data.  

 

5.2 Methods 

The simulations were performed with Gromacs 5.0 software package.75 Throughout the 

simulations, the pressure was maintained at 1 bar with the compressibility of 4.5×10-5 by 

Berendsen barostat with τ_P=5 ps.77 The temperature was maintained by velocity rescaling 

thermostat with  τ_T=1 ps. We applied md integrator with 2 fs time step. Non-bonded interactions 

were truncated with Verlet scheme78 using a cutoff of 1.2 nm.  Coulomb interactions were 

accounted for by particle mesh Ewald summations with a real space cutoff of 1.4 nm.55 The alkane-
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alkane interactions and alkane-water interactions are accounted for by HH-Alkane model70 

(adapted from TrAPPE alkane forcefield69) working with TIP4P-2005 water. Parameters from 

OPLS force field were used to account for LJ parameters and partial charges of ions and 

carboxylate headgroup following Hess and van der Vegt.53 

We performed two-component PEACH analysis on each set of simulations, which gives the set of 

equilibrium constants {𝐾*,,} corresponding to each one of the cluster sizes {(j,k)} showing up in 

simulations at several temperatures. The implementation of two-component PEACH analysis was 

introduced in a previous publication.71  Here for the first time we introduce a method to use 

PEACH to calculate enthalpies of formation in addition to free energies of formation.  The {𝐾*,,,h} 

obtained from PEACH analysis on each temperature were used to calculate {∆𝐺*,,,h}. We apply 

Gibbs-Helmholtz equation to equation (1) to obtain equation (2).  

∆𝐺*,, 	(𝑇8)
𝑇8

−
∆𝐺*,,(𝑇')

𝑇'
= ∆𝐻*,,(

1
𝑇8
−
1
𝑇'
) 

∆𝐺*,, = 	 − 𝑅𝑇 ln𝐾*,,                                                          (1) 

−ln𝐾*,,,h% 	 + ln𝐾*,,,h& =
∆�2,*
�
( '
h%
− '

h&
)                                           (2) 

Thus, with the PEACH-derived equilibrium association constants at several temperatures, we 

performed linear regression for − ln𝐾*,,  with respect to '
h

 for each cluster size (j,k) and the 

intercept obtained is ∆�2,*
�

, where ∆Hj,k is the enthalpy of association for that cluster to form from j 

surfactants and k counterions.  

To generate the ITC curve, we reproduced the experimental procedure of adding stock solution 

stepwise. For each state of system after one injection of stock solution, the enthalpy (relative to a 

fully dissociated solution) is calculated with equation (3)  

𝐻 = 	∑ ∆𝐻*,,*,, ∗ 𝑐𝑜𝑛𝑐*,,                                                        (3) 
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Given a certain total concentration of surfactants, we used a bisectional method to find the optimal 

set of concentrations for both surfactant and counterion unimers. And the {𝑐𝑜𝑛𝑐*,,} in above 

equation (3) was calculated based on equation (4) 

   𝐾 = #"E#2,*
#"E#29&

2 ∗#"E#*9&
*                                                               (4) 

For the ITC curves compared to experiments, ∆𝐻 is calculated from equation (5).  𝐻/ and 𝐻 are 

the enthalpy for the system before and after one injection of stock solution, 𝑛�!"#,  is the total 

amount of surfactant in one injection of stock solution. 

∆𝐻 = v
E	A=5)*

 = �B�:B�A=5)*
EA=5)*

                                                       (5) 

 

Table 5.1 Simulation setup parameters 

Temperature (K) Number of NaOA Number of Water 

295 40 3200/3812/4500 

300 40 3200/3812/4500 

305 40 3200/3812/4500 

 

5.3 Results 

5.3.1 Simulation and PEACH analysis results 

The simulations of NaOA micellization were performed at three temperatures 295K, 300K and 

305K (tabulated in Table 5.1). Fig 5.1 shows a snapshot taken from the trajectory of one simulation 

setup. The cluster size distributions of each simulation conditions were fit with PEACH method to 

obtain cluster free energy. A comparison of the best PEACH-fit prediction of cluster size 

distributions with the observed simulation distributions is shown in Fig.5.2. Agreement is worst at 

the lowest concentration, where the model predicts a higher concentration of larger micelles than 
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observed.  This could indicate some non-ideal interaction effects among the clusters, or could be 

from incomplete equilibration in the most dilute system. 

 To compare the raw simulation data at different temperatures in a simpler format, the cluster size 

distribution of micelles in Fig.5.3 shows the total average numbers of micelles <nj> of the same 

number of surfactants j by adding up <nj,k>  corresponding to all different number of counterions 

k. We observed a consistent tendency to form micelles of larger sizes as the temperature increases. 

Cluster free energy generated based on PEACH analysis is shown in Fig.5.4. As is consistent with 

the cluster size distributions, lower free energy surface was observed for higher temperature at the 

same concentration, indicating that micelles are easier to form.  

 

Fig 5.1 Simulation snapshot of 40 sodium octanoate (NaOA)  in 3200 SPC water at 300K. Bead colors 

representations: Cyan-carbon, red-oxygen, blue-sodium ion.  
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Fig 5.2 Cluster size distributions of 40 NaOA under simulation conditions (a) Number of Water = 3200 (b) 

Number of Water = 3812 (c) Number of Water = 4500 at 300 K. The left panel shows the simulation 

distributions, and the right panel shows the PEACH fit distributions.  
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Fig 3. PEACH fit of 40 NaOA under simulation conditions (1) Number of Water = 3200 (2) Number of 

Water = 3812 (3) Number of Water = 4500.  

 

 

Fig 5.4. Cluster free energy from PEACH fit for 295 K (left), 300K (center), and 305 K (right) for a 

concentration of 𝑐8,( = 0.1, 𝑐(,8 = 0.155.   

 

5.3.2 Micelle Statistics 

Based on the cluster free energy, we can calculate the micelle statistics such as monomer 

concentrations, average micelle size, neutralization percentage and other properties corresponding 

to the range of concentrations in experiments. These are shown in Fig. 5.5.  The critical micelle 

concentration predicted is in the range of 0.30 to 0.37 mol/L.  The cmc derived from the parameters 

of the two-step model1, is in the range of 0.33 ~ 0.42 mol/L for a temperature from 328K to 288K, 

however, the definition of the cmc is slightly different from the conventional definition we use in 

PEACH analysis. In the two-step model, cmc is defined as the flex point of the plot ∆𝑛�,8/∆𝑛, 
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whereas in PEACH analysis, cmc is defined by the maximu of the plot of number of free 

monomers. From the cmc to or the concentration range we predicted (up to 0.4 mol/L), the average 

micelle size is in the range of 23~25, significantly greater than the 11±3 derived from the two-step 

model fit to ITC data; the percentage of neutralization is ~0.7, compared with 0.8±0.1 from the 

two-step model.1  

 

5.3.3 Discussions 

 As indicated by the temperature trend we discussed before, we observed a lower cmc and higher 

fraction of micelles for a higher temperature while the percentage of neutralization is mostly not 

influenced by temperature. In experiments, a negative heat capacity was observed, and therefore, 

as temperature increases, the onset micellization decreases but the decrease slows down. This is 

contrary to what we predicted for the onset of fraction of surfactant in micelles based on PEACH-

predicted cluster free energy. Our observations, together with the predictions on monomer 

concentrations, indicated a positive heat capacity.  

This discrepancy led us to reconsider the setup of simulations and we assume two major reasons 

could cause inaccuracies. One possible reason is the imbalanced sampling in trajectory and 

between several trajectories for one temperature. We obtained 1.2 microseconds of simulations for 

most trajectories; and based on previous studies, we assume that this trajectory length is enough 

for us to obtain reliable cluster free energy profiles. We obtained comparable Gibbs free energy to 

two-step model and this ascertained our assumption about the trajectory length. However, 

obtaining the correct heat capacity requires a higher accuracy on Gibbs free energy in order to 

obtain the accurate second derivative of Gibbs free energy. The obstacle to this is that the ratio of 

number of the associated and dissociated micelles is affected by ratio of the time spent on each 
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configuration and the trajectory we obtained might not represent the most accurate ratio due to the 

limitation of slow dissociation and association. We discussed about applying Bayesian 

optimization method to solve the problem of imbalanced sampling between trajectories, however, 

the sampling in trajectory cannot be optimized. The second possible reason is that the force field 

does not represent the interactions accurately. Force fields are usually optimized near 300K and 

less optimized for other temperatures. In our case, we observed that the force field we applied was 

capable to follow the temperature trend of cluster free energy and approximate the values; but it 

did not reproduce the heat capacity.  
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Fig 5.5 Micelle statistics predicted from PEACH analysis. 

 

5.4 Predictions on Enthalpy changes 

To obtain the enthalpy change during micellization process, we tried several different strategies. 

One big obstacle is that in this process, all cluster sizes with certain number of OA- and Na+ were 
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taken into considerations and an accurate prediction of equilibrium constant is required for each 

one of the possible cluster sizes. The subtle change of prediction of equilibrium constants could 

lead to inaccurate prediction of enthalpy changes. However, using the united atom simulations 

requires long simulation trajectory to reach a relatively reliable cluster size distributions, even if 

our PEACH method allows for a much smaller sample size than conventional canonical 

simulations.  

As the change of ∆𝐻*,, from each temperature is subtle, we first assume no temperature change on 

∆𝐻*,, .  Applying the Van ’t Hoff equations, we obtained ∆�2,*
�

  based on equation (2) and calculate 

enthalpogram from there. Fig.5.6 (a) shows the R2 of linear regression fitting of three temperatures. 

As we can see, the fitting is better for large cluster sizes indicating a more linear relation for large 

cluster sizes. This could mean a lower heat capacity or a reduction in the relative amount of noise 

affecting the linearity of the plot. 

 

Fig 5.6 (a) R2 of linear regression fitting of three temperatures (b) The enthalpy change per monomer for 

each micelle size 

 

The enthalpy changes increases follow the increase of cluster size. And as we look at the enthalpy 

change per surfactant, we found that for cluster size above 5, the average enthalpy change per 



 

 

102 

monomer upon association is between +15 kJ/mol and +20 kJ/mol.  There is a relatively small 

scatter depending on the number of counterions, suggesting that the transfer of an ion from solution 

to the micelle surface is not strongly exo- or endo-thermic. 

5.4 Predictions on enthalpogram  

Based on the enthalpy change for each micelle size we obtained from linear regression fitting, we 

can mimic the experimental setup to generate the ITC curves. This allows for more direct 

comparison between the simulation model and experiment than comparing to quantities inferred 

from the two-stage model fit.  We assume the system to be pure water at the beginning and then 

we treat the system as a new state every time we add the stock solution. For each new state, we 

calculate the micelle size distributions and the total enthalpy change as shown in Fig. 7(a). To 

obtain the curve which can be compared with experimental ITC curve, we use eqn. (5) to know 

the difference for adding stock solution. Fig 7 (c) shows the enthalpogram for three temperatures 

295K, 300K, 305K. Similar to experimental enthalpograms, we predicted the same shape and 

inflection point at 0.3 mol/L for 300K. We also observed the same range of enthalpy change from 

-12 kJ/mol to 1 kJ/mol under the same concentration. One limit of this prediction is that, contrary 

to experiments, we observed that the heat capacity is close to zero for large micelle sizes and a 

relatively large heat capacity for small micelle sizes. This leads to a different shape for 

enthalpograms of 295K and 395K; in experiment, there is a noticeable and consistent decrease in 

the step feature at the cmc as temperature increases.  
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Fig 5.7 (a) Total enthalpy change corresponding to each concentration after adding stock solution (b) ITC 

curve before deduction of stock solution enthalpy (c) ITC curve after deduction of stock solution enthalpy 

 

5.4 Conclusions 

In this chapter, we developed a method to calculate enthalpy change of cluster formation for all 

cluster sizes shown in simulations based on the cluster free energy for micelles of ionic surfactants. 

Enthalpograms was generated to compare with experimental ITC curves. Due to the limit of 

sampling and force field, we did not obtain a good prediction on heat capacity – the change in ∆H 

with different temperatures. However, the predictions on Gibbs free energy and enthalpy change 

at 300 K are quite consistent with experiment and the two-step model.  This marks the first attempt 

to model ITC curves for micelle simulation directly from simulation, and points to the strengths 

and weaknesses of the force field in dealing with the subtle thermodynamics of the hydrophobic 

effect.  
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Appendix I. Bayesian optimization method 

This section introduces an optimization method which searches for the optimal set of equilibrium 

constants by finding the set with maximal probability of observing the simulation-generated size 

distribution. This is a high dimensional optimization, which involves ~2000 dimensions for two-

component micelles.  

For one temperature, we obtained one trajectory for each simulation box. (a histogram of all cluster 

sizes shown up in the simulation) The probability of observing one set {ni} of cluster compositions 

for a system of total number of N in a single, independent observation is shown below. 

𝑃({𝑛%}) = (
1

𝑄(𝑁)In
𝑞%
𝑛!o

�E3�A3B
)

%

1

 

S indicates the number of independent sampling, which is unknown and not included in 

optimization for now. For now, we treat S as 1.  

The probabilities that a system with cluster partition functions qi would yield a given sequence of 

𝜆 independently sampled compositions is therefore 

𝑃({𝑛%}', {𝑛%}8, … {𝑛%}@) =I K
1

𝑄(𝑁)In
𝑞%
𝑛!o

�E3�A3B,=C'2_B

%

L
!l:*_�

!l:*_>
 

To avoid overflow of K of large numbers, we take the logarithm for the probability 

ln 𝑃 =?K− ln𝑄(𝑁) +?𝑛%,>dln	𝑞% − ln 𝑛%,>!f
%

L
>

 

This can be simplified as 

ln 𝑃 = 𝑀K−ln𝑄(𝑁) +?〈𝑛%〉ln	𝑞%
%

L −??𝑛%,> ln 𝑛%,>!
%>

 

where we note that the last term does not depend on the qi that are being sought. 
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argmax{v3}	(ln 𝑃) = argmax{v3} ? K−ln𝑄(𝑁) +?𝑛%,>dln	𝑞% − ln 𝑛%,>!f
%

L
!l:*_>

 

 

argmax{v3}	(ln 𝑃) = argmax{v3} 	�𝑀 K− ln𝑄(𝑁) +?〈𝑛%〉ln	𝑞%
%

L −??𝑛%,> ln 𝑛%,>!
%>

� 

Next, we took partial derivatives for 𝑙𝑛𝑃  with respect to each partition function 𝑞% : with the 

following relation in mind:  

𝜕𝑙𝑛𝑃
𝜕𝑙𝑛𝑞%

= −𝑀V
𝜕 ln𝑄
𝜕 ln 𝑞%

−< 𝑛% >X 

 

Then, applying the relationship 

𝜕𝑙𝑛𝑄
𝜕 ln 𝑞%

=< 𝑛% >>"�k� 

where <ni>model is the ensemble average prediction of numbers of i-mers for the set of qi.  For 

clarity, we now will use <ni>sim to refer to the observed mean number of i-mers over the simulation 

trajectory.  
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Appendix II.  Supporting Information for Chapter 2 

 

Figure S1.  Contour plots for the equilibrium micelle size distribution with respect to surfactant number 

and sodium ion number for the concentration c= 67.8 mM. (trajectories 1-6 from Table I). Plots are for 

different numbers of SOS molecules in the simulation box, with (a) SOS=10, (b) SOS =20, (c) SOS =30, 

(d) SOS=40, (e) SOS=50, (f) SOS=60. The upper panel of each graph is for the fitted distribution while the 

lower panel is for the simulated distribution.  Legend scale represents contours of constant <mj,k>. 
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Figure S2.  Contour plots for the equilibrium micelle size distribution with respect to surfactant number 

and sodium ion number for the concentration c= 114.9 mM (trajectories 7-12 from Table I). Plots are for 

different numbers of SOS molecules in the simulation box, with (a) SOS=10, (b) SOS =20, (c) SOS =30, 

(d) SOS=40, (e) SOS=50, (f) SOS=60. The upper panel of each graph is for the fitted distribution while the 

lower panel is for the simulated distribution.  See Figure S1 for legend scale. 
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Cluster size distributions calculated using different cutoff distances 
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Figure S3. Cluster size distribution for N=60 with the concentration c=67.8 mM. The four panels are for 

different cutoffs. (a)0.85/1.5 nm (b)0.45/1.5 nm (c) 0.65/1.7 nm (d)0.65/1.3 nm, with the first distance the 

cutoff used in defining tail-tail association and the second for defining headgroup-counterion association. 

See Figure S1 for legend scale. 
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Appendix III. Supporting Information for Chapter 3 

Fig S1. Cluster size distribution for simulations (symbols) and the PEACH fit (curves) for cutoffs 0.50, 

0.55, 0.60, 0.65 nm; set number refers to compositions in Table I. 
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Figure S2:  Comparison of dynamics of fluctuation of largest micelle over first 200 ns of simulation for 

Alk-SPC force field (red) and HHA force field (black).  For both force fields, system is composed of 40 

OPC and 3812 waters, and cluster sizes are plotted at 10 ps intervals. 

 

Figure S3. Fit cluster free energy curve (symbols) to two models (a) OPC simulated with Alk-SPC 

(cmonomer=116 mM)(b) OPC simulated with HHA (cmonomer=116 mM), with red curve for Maibaum-Chandler 

model and blue curve for “quasi-droplet” model. 
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∆𝐺(𝑖)
𝑘𝑇

= 𝐴(𝑖C − 1) − 𝐵 × H𝑖D − 1I + 𝐶 × (𝑖+ − 1)				 

a=1, b=3/2, and c=2 

Table S1: Best-fit parameters for quasi-droplet model as applied to PEACH-derived cluster free energies 

with different force fields and cutoffs rcut. 

Cutoff/nm Force 

Field 

Parameters 

A B C RMS 

0.50 Alk-

SPC 

3.7197 1.07384 0.0837218 0.236877 

HHA 4.33884 1.36368   0.115297 0.603107 

0.55 Alk-

SPC 

3.51592 1.01825 0.0785707 0.290286 

HHA 4.26495 1.34579 0.11373 0.615484 
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0.60 Alk-

SPC 

3.09374 0.892887 0.0668185 0.249387 

HHA 4.68232 1.53398 0.133444         0.993096 

 

0.65 Alk-

SPC 

2.42344 0.71269 0.0502369 0.260727 

HHA 4.37147 1.42875 0.122445    0.738317 

 

Figure S4:  Snapshot of 35 OPC/3812 SPC system showing tails sites in yellow, headgroup sites in 

elemental colors (cyan=CHx, red=O, brown=P, blue=N), and “neighbor bonds” connecting pairs of tail sites 

closer less than rcut=0.65 nm in black.   Purple sites mark the tail of an OPC that is exterior to a large cluster 

but connected via a “neighbor bond”.  Solvents near the two neighboring sites are shown as thin sticks. 
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Figure S5. Free monomer concentration vs. total OPC concentration predicted from cluster free energy 

profile for different force fields, labelled with cluster criteria rcut values in nm.  Lines are fits whose 

intersections are used to estimate cmc. 
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Appendix IV. Supporting Information for Chapter 4 

 

SI Table 1. Simulation setup for DPC micellization 

N_DPC N_SPC water Effective 

Volume (nm3) 

Trajectory (ns) 

WS = 0.85 

1 6109 187.11867 50 

20 6109 187.11867 800 
 

25 6109 187.11867 800 

30 6109 187.11867 800 

35 6109 187.11867 800 

40 6109 187.11867 800 

45 6109 187.11867 800 

50 6109 187.11867 800 

55 6109 187.11867 800 

60 6109 187.11867 800 

65 6922 212.02086 800 

70 11235  344.12805 800 

75 11235 344.12805 800 

80 11245 344.43435 800 

WS = 0.9 

1 6109 187.11867 50 

17 6109 187.11867 400 

25 6109 187.11867 800 

30 6109 187.11867 800 
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35 6109 187.11867 800 

40 6109 187.11867 800 

45 6109 187.11867 800 

50 6109 187.11867 400 

55 6109 187.11867 800 

60 6109 187.11867 800 

65 6922 212.02086 400 

70 7000 214.41 400 

75 7000 214.41 400 

80 7000 214.41 400 

FS 

1 6109 187.11867 50 

15 6109 187.11867 400 

20 6109 187.11867 200 

25 6109 187.11867 400 

30 6109 187.11867 300 

35 6109 187.11867 400 

40 6109 187.11867 300 

45 6109 187.11867 400 

50 6109 187.11867 450 

55 6109 187.11867 100 

60 6109 187.11867 100 

65 6922 212.02086 140 

70 11639 356.50257 100 

75 11235 344.12805 150 
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80 11430 350.1009 90 

 

 

SI Figure 1. Maximum cluster size distributions for systems of N_DPC =20, 40, 60, 80 

WS=0.85 

 

WS=0.9 

 

FS 

 

 

SI Figure 2. Distribution of the potential energy difference ∆𝑈,#and ∆𝑈#, between paired states for (a)N=20 

(b)N=40 (c)N=60 (d) N=64. For the notations, ∆𝑈,# = 𝑈## − 𝑈,# , which denotes the potential energy 

difference between a configuration generated and sampled in j state and a configuration in i state and 

resampled in j state  
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