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Abstract 

Transcriptome Sequencing of Peripheral Blood Reveals Distinct Expression Landscapes 

of COVID-19 and MIS-C Patients 

By Nanxi Guo 

 

Background: The pandemic spread of the coronavirus disease 2019 (COVID-19) has 

been proclaimed a severe public health emergency of international concern (PHEIC) by 

the WHO. Of note, children were reported symptoms similar to severe COVID-19, which 

has then been confirmed as a rare complication of COVID-19 in children, termed as 

multisystem inflammatory syndrome (MIS-C). However, little is known about its genetic 

mechanisms compared to COVID-19. 

 

Methods: RNA-sequencing of blood transcriptome were performed from COVID-19 and 

MIS-C patients in both mild and severe scenarios, as well as healthy control samples. 

Then bioinformatic approaches were performed to identify distinct expression landscapes 

of COVID-19 and MIS-C patients. 

 

Results: Peripheral blood transcriptomes of 8 COVID-19 patients, 15 MIS-C patients and 

8 healthy controls were depicted here. Immune response of COVID-19 patients compared 

to healthy controls were first detected. Neutrophil activation-associated terms, 

lymphocyte differentiation terms, and cardiomyopathy-associated terms were more 

enriched in comparison between COVID-19 and MIS-C, in severe illness levels. Further 

analyses on immune molecular signatures by peripheral blood mononuclear cells 

(PBMC) revealed increasing of T cells (CD8+ T memory cell markers), CD14 cells in 

COVID-19 vs MIS-C comparison. 

 

Conclusions: This study supported the clinical differentiation between MIS-C patients 

and COVID-19 patients in genetic way. Therefore, several evidence were provided for 

diagnostic biomarkers in COVID-19 and MIS-C patients, for better screening and 

diagnostics, and to treat patients with a personalized approach. 
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Background 

Pandemic spread of coronavirus, severe acute respiratory syndrome-coronavirus 2 

(SARS-CoV-2), has resulted in over 130 million confirmed cases and over 2 million 

deaths worldwide (WHO, covid19.who.int, as of April 11, 2021), called 2019-novel 

coronavirus diseases (COVID-19) [1]. Current clinical research efforts primarily focus on 

adult cohort studies for functional vaccine development and pharmacological 

interventions, with patients greater than or equal to 85 years old showing the highest 

hospitalization (70.3%) and case fatality (27.3%) rates [2]. However, there are 

documented rare cases where children can be severely affected without discernable 

underlying conditions [3-7]. In April of 2020, United Kingdom reported the first case of 

presentation in children similar to incomplete Kawasaki disease (KD) or toxic shock 

syndrome [8]. Then more and more cases have been reported worldwide. This condition 

has been termed as multisystem inflammatory syndrome (MIS-C) in children by the 

CDC, which has also been confirmed that MIS-C is associated with the virus that causes 

COVID-19. MIS-C appears to be a rare complication of COVID-19 in children, occurring 

in less than 1 percent of children with confirmed SARS-CoV02 infection [9]. The 

pathophysiology of MIS-C is not well understood. As for now, documents were limited 

in the epidemiology, pathophysiology, clinical presentation and diagnosis of MIS-C. 
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Hence, to investigate the mechanisms of the immune response and immune molecular 

signatures in COVID-19 patients and MIS-C patients is currently an active topic.  

In this work, bioinformatics approaches were conducted on a total of 31 whole blood 

transcriptomes in order to identify host genomic, transcriptomic and immune molecular 

signature associated with differentiation in severe COVID-19 and MIS-C. This study not 

only represent the genetic risk factors of these two scenarios, but also be urgently needed 

for identification of diagnostic biomarkers, therapeutic of disease and development of 

vaccines. 

Methods 

Human cohorts 

A total of 8 children confirmed with SARS-CoV-2 infection by RT-PCR, serology, or 

antigen test, with mild or severe symptoms but no underlying conditions, were recruited 

in this study. Another 15 children meeting MIS-C criteria, with positive for current or 

recent SARS-CoV-2 infection, with mild or severe symptoms were enrolled in this study 

as well. MIS-C was diagnosed by the criteria provided by the CDC. Another 8 healthy 

children (<15 yrs) were recruited as non-disease controls. They were subjected to testing 

the nasopharyngeal secretion for SARS-CoV-2 and were all confirmed to be 

asymptomatic and seronegative. All the whole blood samples were collected within 72h 

of hospital admission.  
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RNA-sequencing 

RNA-sequencing was conducted on a total of 31 subjects, on a high-throughout next-

generation sequencing (NGS) Illumina NovaSeq platform using 2X150bp reads 

with >98% coverage of the 22,000 genes in the genome at ≥ 30X. Then the 31 whole 

blood samples were ready for RNA-sequencing analysis.  

RNA-sequencing analysis 

Fastq sequencing files was aligned to the hg38 human reference genome using the STAR 

aligner (v2.7.7a). Counts matrix were imported using DESeqDataSetFromMatrix 

function from DESeq2 (v1.28.1). DESeq2 was used for counts normalization for each 

transcript using default parameters, resulting in 28,277 normalized transcripts. 

Differential expression analysis was conducted for the scenario status (COVID-19 vs 

controls, COVID-19 vs MIS-C), mild/severe (severe COVID-19 vs severe MIS-C, mild 

COVID-19 vs mild MIS-C). Then principal component analysis was conducted using all 

transcripts as input. Differentially expressed genes (DEGs) were selected with the fold 

change of log2-transformed expression level > 1 and p < 0.05. DEGs were used as input 

for volcano plots and visualized as bar plots. Gene Ontology enrichment analysis 

(GOEA) was then be performed using R package ClusterProfiler (v3.16.1) to determine 

significant enrichment of biological processes related to each comparison group (p value 

< 0.05; q value < 0.05). Gene Set Enrichment Analysis (GSEA) was conducted to further 

investigate the gene sets with concordant differences from the whole expression matrix. 
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GSEA was applied to KEGG and Reactome gene sets. Differential cell type change 

analysis using Logistic/linear regression (LRcell) was performed to identify cell type of 

human body immunity that drives the changes observed in the differential gene 

expression experiment [24]. Peripheral blood mononuclear cells (PBMC) were chosen as 

marker genes when applying Logistic Regression on the top DEGs with p-values. Then 

the cell types for which were responsible in DEGs were identified. 

Results 

Immune Response of COVID-19 Patients Compared to Healthy Controls 

To investigate the monogenic causes, immune response and immune molecular signature 

of COVID-19 patients and MIS-C patients, blood samples were analyzed from 8 healthy 

controls, 8 COVID-19 patients, including 3 severe cases and 5 mild cases, and 15 MIS-C 

patients, including 10 severe cases and 5 mild cases, by RNA sequencing (Table 1). 

Uniquely mapped reads of 31 samples were obtained after aligning to the hg38 human 

reference genome (Table 2), with 65% to 73% percent uniquely mapped reads. Principal 

component analysis (PCA) was performed to represent two-dimensional data, showing 

separation of healthy samples and COVID-19, MIS-C samples (Figure 1A). Based on 

PCA, the two PCs account for 47% and 13%, respectively, of the total variation. 

Distribution of the COVID-19, MIS-C, and healthy control samples in the PCA revealed 

heterogeneity in the transcriptomic profiles (Figure 1A). In order to further investigate it, 
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differentially expressed genes (DEGs) were then compared between COVID-19 patients 

and healthy controls, and 1639 upregulated and 920 downregulated genes were identified 

(FC > |2|, pajd < 0.05; Figure 1B). Significantly, ID1 was the most prominently 

upregulated genes [10], with the lowest p value (Figure 1C). Heightened expression was 

found for several pro-inflammatory genes and anti-inflammatory markers, such as Early 

Growth Response 1(EGR1), transcobalamin 2 (TCN2), Tumor Necrosis Factor Alpha-

Induced Protein 2 (TNFAIP3), Complement C1q Subcomponent Subunit C (C1QC), and 

Myeloperoxidase (MPO) [11,12], in the macrophages (Figure 1C). Downregulated genes 

included several T lymphocyte-related and antibody factors, such as C-X-C Motif 

Chemokine Receptor 3 (CSCR3), Charged Multivesicular Body Protein 7 (CHMP7). 

Gene ontology enrichment analysis (GOEA) on the differentially expressed genes 

(DEGs) revealed neutrophil activation-associated terms, lymphocyte differentiation, 

inflammatory response, and T cell differentiation terms (Figure 1D). GSEA showed that 

15 and 107 pathways were significantly enriched in KEGG and Reactome, respectively, 

when the adjusted p value < 0.05 (Table 3). Specifically, leukocyte transendothelial 

migration, extracellular matrix organization, cytokine signaling in immune system, 

neutrophil degranulation, and infection disease pathways were upregulated and shared in 

both GOEA and GSEA, which were the gene sets that need to be studied. 

 



 

 

6 

 

Table 1. Clinical Parameters of COVID-19 Patients and MIS-C Patients 

 Total COVID-

19 patients 

N=8 

COVID 

Severe 

N=3 

COVID 

Mild 

N=5 

Total MIS-C 

patients 

N=15 

MIS-C 

Severe 

N=10 

MIS-C 

Mild 

N=5 

Sex (n, m/f) 3/5 1/2 2/3 6/9 4/6 2/3 

Age (years, mean 

± SD) 
12.9 (2.8) 12 (4.4) 13.4 (1.8) 7.6 (4.4) 8.4 (4.7) 6.0 (3.4) 

Laboratory values (mean ± SD) 

Total blood 

neutrophil count 

(103 cells/μL) 

5.7 (2.7) 6.8 (4.3) 4.8 (0.7) 8.1 (6.2) 8.2 (7.1) 7.9 (4.4) 

Total blood 

lymphocyte count 

(103 cells/μL) 

1.5 (1.3) 2.0 (1.7) 1.1(0.9) 0.8 (0.3) 0.6 (0.2) 1.1 (0.3) 

 

Table 2. Uniquely mapped reads of 31 samples generated by STAR aligner 

Sample Name 
Uniquely mapped reads 

(millions, %) 
Sample Name 

Uniquely mapped 

reads (millions, %) 

Healthy controls Mild MIS-C patients 

PHC4 28.6 (67.4) 

33.9 (66.7) 

56.4 (69.8) 

39.2 (67.7) 

46.9 (68.2) 

54.4 (69.0) 

36.3 (69.3) 

34.8 (64.9) 

PTCOV20 31.9 (70.7) 

81.5 (72.8) 

29.1 (72.2) 

43.4 (69.7) 

41.4 (67.7) 

PHC5 PTCOV22 

PHC6 PTCOV34 

PHC7 PTCOV42 

PHC8 PTCOV60 

PHC9 Severe MIS-C patients 

PHC10 PTCOV28 36.7 (70.2) 

49.0 (72.8) 

56.2 (71.5) 

43.4 (70.6) 

55.0 (69.8) 

40.8 (66.3) 

40.2 (72.6) 

40.1 (67.0) 

36.9 (69.0) 

24.4 (66.0) 

PHC12 PTCOV32 

Mild COVID-19 patients PTCOV33 

PTCOV18 25.9 (67.2) 

49.7 (67.7) 

36.1 (66.8) 

42.1 (67.6) 

29.3 (67.8) 

PTCOV45 

PTCOV24 PTCOV48 

PTCOV25 PTCOV51 

PTCOV27 PTCOV54 

PTCOV44 PTCOV59 

Severe COVID-19 patients PTCOV68 

PTCOV19 65.6 (73.0) 

47.6 (68.4) 

32.4 (66.7) 

PTCOV72 

PTCOV29    

PTCOV31    
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A                                B 

  

C                                     D 

  

Fig 1. Immune response of COVID-19 patients compared to healthy controls. a PCA plot depicting 

relationship of all samples included mild and severe COVID-19 and MIS-C samples as well as 

healthy control samples. b Bar plot of significantly upregulated and downregulated genes (FC > 

|2|, adj.p value < 0.05) comparing COVID-19 and healthy control samples. c Volcano plot 

depicting log2 fold change (FC) and adjusted p values comparing COVID-19 and healthy control 

samples. Differentially expressed genes were shown and selected genes are labeled via gene 

names. d Dot plot of the top 27 most enrichment GO terms for differentially expressed genes 

comparing COVID-19 and healthy control samples. 
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Differences in Gene Expression in COVID-19 Patients and MIS-C Patients 

Given the heterogeneous clinical presentation of COVID-19 and MIS-C, samples were 

classified as “mild” or “severe” by disease severity based on WHO ordinal scale. Overall, 

there was a smaller number of DEGs in blood samples from COVID-19 patients than in 

MIS-C patients when compared to healthy controls. Upregulated genes showed greater 

fold changes than the downregulated genes. Several DEGs were found in the COVID-19 

vs MIS-C comparison (Figure 2A), which were different from that in the COVID-19 vs 

healthy control comparison, including homeostasis, lung cancer-associated genes, and 

anti-inflammation genes, such as energy homeostasis associated gene (ENHO), SEZ6L, 

and AXL [13]. Mild COVID-19 versus mild MIS-C shared lymphohematopoietic-

associated gene with all the COVID-19 versus MIS-C, such as CLEC10A expression, 

representing a candidate to better define CD1c+ DCs as well as a candidate receptor for 

future antigen-targeting approaches [14], among the upregulated DEGs (Figure 2B). 

Comparison between COVID-19 and MIS-C patients in severity condition has the 

smallest number of DEGs, and 5 upregulated genes and 8 downregulated genes were 

identified (|FC| >2; padj < 0.05). A candidate cardiomyopathy gene, SORBS2, was one of 

the most significant upregulated gene with the largest fold change (Figure 2C). DEGs 

were also found for dystonia-associated gene, SPR, with the lowest p value (Figure 2C). 

GOEA reflected these findings as well. GOEA in the mild COVID-19 vs mild MIS-C 

sample comparison (Figure 2E) included negative regulation of locomotion, muscle 
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organ development, down regulation of viral life process, and inflammatory response 

terms, which shared the similar terms in COVID-19 vs MIS-C comparison (Figure 2D). 

Whereas these terms were not differentially regulated in severe COVID-19 vs severe 

MIS-C samples, regulation of vasculature and heart contraction terms were more 

pronounced here (Figure 2F). GSEA identified similar findings with that in GOEA. 

GSEA of COVID-19 versus MIS-C samples identified that 31 gene sets were 

significantly enriched in the Reactome signature database (Table 4), including cell cycle, 

neutrophil degranulation pathway. Moreover, pathways included cell cycle, infectious 

disease, influenza infection, and extracellular matrix organization were significantly 

enriched in the Reactome signature database comparing mild COVID-19 and mild MIS-C 

patients (Table 5). Although all samples from COVID-19 versus MIS-C patients showed 

functional enrichment for inflammatory response, infectious disease, neutrophil 

degranulation and influenza infection associated terms in general, direct comparison of 

severe COVID-19 and MIS-C patients revealed additional cardiomyopathy-associated 

characteristic (hypertrophic cardiomyopathy hcm and dilated cardiomyopathy) of the 

pathways in severe COVID-19 and MIS-C (Table 6). Overall, differences in gene 

expression were not merely restricted to neutrophil and T lymphocyte factors, but 

included cardiomyopathy- and olfactory -associated pathways, indicating complicated 

transcriptionally altered in COVID-19 and MIS-C patients [15]. 
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E 

 
F 

 

Fig 2. Differences in gene expression in COVID-19 patients and MIS-C patient. a-c 

Volcano plot depicting log2 fold change (FC) and adjusted p values comparing COVID-

19 and MIS-C samples, mild COVID-19 and mild MIS-C samples, severe COVID-19 

and severe MIS-C samples, respectively. Differentially expressed genes were shown and 

selected genes are labeled via gene names. d-f Dot plot of the top 25 most enrichment 

GO terms for differentially expressed genes comparing COVID-19 and MIS-C samples, 

mild COVID-19 and mild MIS-C samples, severe COVID-19 and severe MIS-C samples, 

respectively. 
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Immune Molecular Signatures of COVID-19 Patients Compared to MIS-C Patients 

Differential cell type change analysis using Logistic/linear regression (LRcell) was used 

to further identify immune molecular that drives the top differential gene expression in 

RNA-seq analysis. Several T cells were identified in COVID-19 verses MIS-C sample 

comparison when PBMC was used as marker genes (Figure 3A), such as CD8+ T 

memory cell markers (CD8 TEM_2, CD8 TEm_4, CD8 TEM_5), which were antigen 

specific and provided an enhanced protective response when the same antigen is 

encountered again [16], and Natural killer T cells (NK_1), which shared properties of T 

cells, but their T-cell receptors were far more limited in diversity [17]. For example, the 

SARS-CoV2-reactive memory CD8+ T cells were more pronounced in patients with mild 

COVID-19 illness compared to those with MIS-C mild illness [18]. These differences 

were more significant in severe COVID-19 patients versus severe MIS-C patients. 

Moreover, a cell surface receptor and differentiation marker [19], CD14, was involved 

that caused the difference of gene enrichment in mild COVID-19 vs mild MIS-C sample 

comparison (Figure 3B). 
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C 

 

 

Fig 3. Immune molecular signatures of COVID-19 patients compared to MIS-C patients. 

a-c Plot of cell types that drives the top differential gene expression when using PBMC 

as marker genes in LRCell analysis comparing COVID-19 and MIS-C patients, mild 

COVID-19 and mild MIS-C patients, and severe COVID-19 and severe MIS-C patients. 

Discussion 

The emerging of new SARS-CoV-2 virus has led to severe pulmonary disease and 

complications such as MIS-C, with significant morbidities and mortalities [20]. The 

pathophysiology of MIS-C is not well understood. It has been confirmed that the clinical 

features of MIS-C and severe COVID-19 overlap [9]. However, by applying 

bioinformatics approaches on blood transcriptomes of samples, strong evidence was 

provided for the existence of genetic risk factors behind the current clinical and 
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immunological performance of COVID-19 and MIS-C, which potentially helping 

differentiate MIS-C from severe COVID-19. Notedly, a number of myocarditis cases 

associated with severe SARS-CoV2 illness have been reported in children worldwide, 

which were recently detected as a typical clinical finding of MIS-C complication. Several 

results from GSEA and GOEA showed cardiomyopathy-associated characteristic in 

patients with severe COVID-19 and MIS-C, providing evidence of the association 

between MIS-C and SARS-CoV2 among children [21], supporting the clinical findings of 

more severe myocarditis in MIS-C patients [22], and revealing important biological basis 

for patient stratification and better selection of individual treatment. In addition, dramatic 

transcriptional changes were detected in neutrophils, inflammatory response, T cell 

differentiation, and platelet function, when comparing COVID-19 samples with healthy 

controls. Furthermore, a relevant target in SARS-CoV2, CD14, which was enhanced in 

COVID-19 versus MIS-C, was identified as an important initial point in host recognition 

of viral and host-derived products in the lungs [18], and has also been treated as a rational 

and feasible therapeutic approach to therapy for patients who are seriously ill with SARS-

CoV2 infection. It was interested to know that an inhibitory monoclonal antibody against  

CD14 has been used in more than 165 human subjects without increasing secondary 

bacterial infections [18]. Moreover, differential activation of anti-viral CD8+ T cells 

response, which has been detected among COVID-19 and MIS-C patients, was thought to 

be critical for control of viral infections, but currently our knowledge of CD8+ T cell 
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response against SARS-CoV2 was limited [19]. A long-term follow up studies will be 

required to capture the activation of CD8+ T cells response during the SARS-CoV2 

infections, and to clarify if it was contributed to the differences in clinical features among 

COVID-19 patients and MIS-C patients. Collectively, this study provided evidence of 

distinct expression landscapes of COVID-19 and MIS-C patients using transcriptome 

sequencing of peripheral blood, for depicting the immune response and identifying 

diagnostic biomarkers, therapeutic of disease and development of vaccines. 

 

There were several factors that limited the interpretation of this study. First, not adequate 

numbers of samples were recruited in this study, especially for severe COVID-19 (three 

patients). Certainty of findings, which were detected between COVID-19 and MIS-C, is 

limited, need to be further validity by adequate number of samples. Furthermore, this 

study only focused on cell marker genes of PBMC which was acquired from sing-cell 

RNA-sequencing. The interpretation and conclusion of the analysis will be more 

systematic if other sets of tissues such as heart and lung can be involved into the analysis. 

Collectively, this study provided and visualized evidence for potentially immune 

response revealed in COVID-19 patients from that in MIS-C patients, which can be 

utilized in large cohorts for disease risk or outcome prediction in differentiation of severe 

MIS-C from COVID-19. These results included the immune molecular characters may 
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contribute to diagnostic biomarkers, for better informed the therapies and vaccines, better 

screening and diagnostics, and to treat patients with a personalized approach. 

 

Table 3. Gene sets enriched in KEGG comparing COVID-19 and Healthy control 

Pathway padj Enrichment Score Size 

KEGG_LYSOSOME 0.00835 0.53914 116 

KEGG_COMPLEMENT_AND_COAG

ULATION_CASCADES 
0.00835 0.58880 56 

KEGG_SYSTEMIC_LUPUS_ERYTH

EMATOSUS 
0.00835 0.61650 116 

KEGG_TOLL_LIKE_RECEPTOR_SI

GNALING_PATHWAY 
0.00943 0.47452 86 

KEGG_FC_GAMMA_R_MEDIATED

_PHAGOCYTOSIS 
0.00943 0.48192 91 

KEGG_PARKINSONS_DISEASE 0.01157 0.46417 104 

KEGG_RIBOSOME 0.01253 -0.42121 86 

KEGG_OXIDATIVE_PHOSPHORYL

ATION 
0.01384 0.43773 105 

KEGG_REGULATION_OF_ACTIN_C

YTOSKELETON 
0.01384 0.39522 191 

KEGG_LEISHMANIA_INFECTION 0.01384 0.48232 71 

KEGG_ALZHEIMERS_DISEASE 0.03005 0.40237 147 

KEGG_FOCAL_ADHESION 0.03452 0.37830 183 

KEGG_NOD_LIKE_RECEPTOR_SIG

NALING_PATHWAY 
0.03452 0.48111 59 

KEGG_BASAL_CELL_CARCINOMA 0.04262 -0.44344 48 

KEGG_LEUKOCYTE_TRANSENDO

THELIAL_MIGRATION 
0.04474 0.422095 104 

Positive and negative value of enrichment score indicates the genes in the signature 

database (KEGG) will be mostly at the top and bottom of our gene list, respectively. 

Size represents the total number of genes in the signature database (KEGG).   
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Table 4. Selected gene sets enriched in Reactome comparing COVID-19 and MIS-C 

Pathway padj Enrichment Score Size 

REACTOME_CELL_CYCLE_CHECK

POINTS 
0.00045 -0.44741 284 

REACTOME_NEUTROPHIL_DEGRA

NULATION 
0.00060 -0.40626 461 

REACTOME_CELL_CYCLE_MITOTI

C 
0.00068 -0.40390 542 

REACTOME_CELL_CYCLE 0.00079 -0.38915 650 

Positive and negative value of enrichment score indicates the genes in the signature 

database (Reactome) will be mostly at the top and bottom of our gene list, respectively. 

Size represents the total number of genes in the signature database (Reactome). 

 

 

Table 5. Selected gene sets enriched in Reactome comparing mild COVID-19 and mild 

MIS-C 

Pathway padj Enrichment Score Size 

REACTOME_CELL_CYCLE 0.00024 -0.40440 645 

REACTOME_EXTRACELLULAR_M

ATRIX_ORGANIZATION 
0.00045 -0.38749 252 

REACTOME_INFLUENZA_INFECTI

ON 
0.00044 -0.42724 154 

REACTOME_INFECTIOUS_DISEAS

E 
0.00098 -0.29680 671 

Positive and negative value of enrichment score indicates the genes in the signature 

database (Reactome) will be mostly at the top and bottom of our gene list, respectively. 

Size represents the total number of genes in the signature database (Reactome). 
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Table 6. Selected gene sets enriched in KEGG comparing severe COVID-19 and severe 

MIS-C 

Pathway padj Enrichment Score Size 

KEGG_HYPERTROPHIC_CARDIOMY

OPATHY_HCM 
0.00035 0.51186 72 

KEGG_DILATED_CARDIOMYOPATH

Y 
0.00036 0.50957 76 

Positive and negative value of enrichment score indicates the genes in the signature 

database (KEGG) will be mostly at the top and bottom of our gene list, respectively. 

Size represents the total number of genes in the signature database (KEGG). 
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