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Abstract

Robust Uncertainty Quantification for Foundation Models: Bayesian and Frequentist
Approaches for High-Stakes Applications

By Shifan Zhao

Machine learning foundation models have demonstrated impressive predictive capabilities
across various domains, including healthcare and climate science. However, their determin-
istic nature limits their utility in high-stakes applications where understanding prediction
uncertainty is crucial for responsible decision-making. This thesis addresses this critical
gap by developing two complementary approaches to uncertainty quantification (UQ) for
foundation models.

First, we introduce a novel two-stage Gaussian Process methodology that effectively
handles mean and kernel misspecification—a common challenge in real-world applications.
This approach separates mean prediction from uncertainty quantification, leading to more
reliable uncertainty estimates even with limited data. We demonstrate its application to
healthcare foundation models for patient risk prediction, where accurate uncertainty bounds
can significantly impact clinical decision-making.

Second, we develop a Locally Debiased Adaptive Conformal Prediction (LC-ACP) frame-
work that provides distribution-free coverage guarantees without requiring exchangeability
assumptions, making it particularly valuable for non-stationary time series. We apply this
methodology to climate foundation models for hurricane track prediction, where reliable
uncertainty quantification directly impacts emergency management and resource allocation
during extreme weather events.

To address computational challenges, we introduce kernel preconditioning techniques and
unbiased estimators that significantly reduce the cubic complexity of Gaussian Processes while
maintaining accuracy. Through comprehensive experiments across healthcare and climate
domains, we demonstrate that our methods provide well-calibrated uncertainty estimates
across diverse applications and data characteristics. This thesis contributes both theoretical
advances and practical implementations that bridge the gap between powerful predictive
models and responsible deployment in high-stakes, real-world applications.
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Chapter 1

Background and Motivation

“Uncertainty must be taken in a sense radically distinct from the familiar notion of
Risk, from which it has never been properly separated... The essential fact is that ‘risk’
means in some cases a quantity susceptible of measurement, while at other times it
is something distinctly not of this character; and there are far-reaching and crucial
differences in the bearings of the phenomena depending on which of the two is really
present and operating... It will appear that a measurable uncertainty, or ‘risk’ proper,
as we shall use the term, is so far different from an unmeasurable one that it is not in
effect an uncertainty at all.”

— Frank H. Knight, Risk, Uncertainty, and Profit

1.1 Overview and Motivation

The ability to make reliable predictions under uncertainty is fundamental to scientific inquiry

and decision-making across domains. While machine learning, particularly through foundation

models, has revolutionized predictive capabilities, it often fails to quantify the uncertainty

in its predictions—a critical limitation in high-stakes applications. This thesis addresses

this gap by developing novel uncertainty quantification methods for foundation models,

combining Gaussian Process approaches with conformal prediction techniques. Our work

spans theoretical foundations, algorithmic innovations, and practical applications in healthcare

and climate science, domains where reliable uncertainty estimates can significantly impact

human well-being. In this chapter, we establish the background and motivation for our

research, examining the limitations of current approaches and highlighting the need for robust

1
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uncertainty quantification methods that can be deployed in real-world, high-impact settings.

1.2 Introduction to Deep Learning Modeling and Its Lim-

itations

Deep learning has revolutionized the field of artificial intelligence, enabling remarkable

advances in various domains including computer vision, natural language processing, and

healthcare. The ability of deep neural networks to automatically learn hierarchical represen-

tations from data has led to state-of-the-art performance in numerous prediction tasks. In

particular, pre-trained foundation models (PFMs) have emerged as powerful tools that can

be fine-tuned for specific downstream tasks with limited labeled data [17, 19, 97].

Despite their impressive predictive capabilities, deep learning models, including PFMs,

suffer from several critical limitations. One of the most significant limitations is their

inability to quantify uncertainty in their predictions. Traditional deep learning models

typically produce deterministic point estimates without providing any measure of confidence

or reliability [18]. This limitation becomes particularly problematic in high-stakes applications

such as healthcare, climate modeling, and autonomous systems, where incorrect predictions

can have severe and even fatal consequences.

Consider a patient risk prediction model that estimates the probability of a patient

developing a certain medical condition. The model might predict a 70% probability, but

without any indication of its confidence in this prediction. Is this 70% a highly certain

estimate based on abundant similar cases in the training data, or is it a highly uncertain

estimate due to the patient having unusual characteristics not well-represented in the training

data? Without proper uncertainty quantification, clinicians cannot make fully informed

decisions about patient care.

Similarly, in climate and weather prediction, deterministic forecasts fail to capture the

inherent uncertainty in chaotic weather systems. A weather model might predict a hurricane’s
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path, but without quantifying the uncertainty in this prediction, emergency management

officials cannot properly assess the risk and make appropriate evacuation decisions.

Figure 1.1: The problem with deterministic deep learning models. Traditional models provide
only point estimates without capturing the uncertainty in predictions. This is particularly
problematic for out-of-distribution inputs (red region) where the model might be confidently
wrong, leading to potentially catastrophic decisions in high-stakes applications.

The limitations of deterministic deep learning models can be summarized as follows:

1. Overconfidence in predictions: Deep learning models often produce overconfident

predictions, especially for out-of-distribution inputs [69].

2. Inability to distinguish between aleatoric and epistemic uncertainty: Models

cannot differentiate between uncertainty due to inherent randomness in the data

(aleatoric) and uncertainty due to model limitations (epistemic).

3. Lack of calibration: Predicted probabilities often do not correspond to the true

frequencies of events [33].

4. Difficulty in detecting out-of-distribution inputs: Models typically fail to rec-

ognize when they are making predictions on data that differs significantly from their
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training distribution [39].

These limitations highlight the need for uncertainty-aware models that can provide reliable

uncertainty estimates alongside their predictions. This thesis addresses these limitations by

developing and applying uncertainty quantification methods based on Gaussian processes and

conformal prediction to enhance the reliability and trustworthiness of deep learning models,

particularly in high stakes, safety-critical applications.

1.3 Uncertainty Quantification: Foundations and Impor-

tance

1.3.1 Formal Definition and Mathematical Framework

Uncertainty quantification (UQ) is the science of identifying, quantifying, and reducing

uncertainties in computational and real-world systems. In the context of machine learning,

UQ aims to provide a measure of confidence or reliability in model predictions. Formally,

instead of producing a point estimate ŷ = f(x) for an input x, an uncertainty-aware model

produces a predictive distribution p(y|x) that captures the uncertainty in the prediction.

For regression tasks, this predictive distribution is often characterized by its mean µ(x)

and variance σ2(x):

p(y|x) = N (µ(x), σ2(x)). (1.1)

For classification tasks, the predictive distribution is typically a categorical distribution

over the possible classes:

p(y = c|x) = exp(zc)∑
c′ exp(zc′)

, (1.2)

where zc represents the logit for class c. In uncertainty-aware classification, these logits

themselves are treated as random variables, leading to stochastic predictions that reflect the

model’s uncertainty.
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1.3.2 Types of Uncertainty

Uncertainty in machine learning predictions can be categorized into three main types:

1. Aleatoric Uncertainty: This type of uncertainty arises from inherent randomness

or noise in the data. It cannot be reduced by collecting more data or improving the

model. For example, in a medical diagnosis task, two patients with identical observable

characteristics might have different outcomes due to unobserved genetic factors or

random variations in disease progression.

2. Epistemic Uncertainty: This uncertainty stems from the model’s lack of knowledge or

limitations in capturing the true data-generating process. Unlike aleatoric uncertainty,

epistemic uncertainty can be reduced by collecting more data or improving the model.

It is particularly high in regions of the input space where training data is sparse.

3. Total Predictive Uncertainty: This is the combination of aleatoric and epistemic

uncertainty, representing the overall uncertainty in the model’s predictions.

To illustrate these concepts mathematically, consider a classification problem with three

classes. We have a dataset D = Dtrain ∪ Dtest, where Dtrain = {(xj, yj)}Nj=1 represents the

training set and Dtest = {(xj, yj)}N+M
j=N+1 represents the test set. We use a model Mθ with

parameters θ. Given a test data point xtest, the total uncertainty in the classification problem

can be quantified as follows:

p(ωi|xtest,Dtrain) =

∫
p(ωi|xtest, θ)p(θ|Dtrain)dθ, (1.3)

where ωi is any random variable. The components of this uncertainty can be decomposed

into:

• p(ωi|xtest,Dtrain): Total predictive uncertainty, which represents the overall uncertainty

in our prediction.
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Figure 1.2: Visual representation of aleatoric and epistemic uncertainty. Aleatoric uncertainty
(left) represents inherent randomness in data that cannot be reduced with more observations.
Epistemic uncertainty (right) represents model knowledge gaps that decrease as more data is
collected.

• p(ωi|xtest, θ): Data uncertainty (aleatoric uncertainty), which stems from inherent noise

in the data generation process.

• p(θ|Dtrain): Model uncertainty (epistemic uncertainty), which reflects our limited knowl-

edge of the true model parameters. As Knight’s distinction emphasizes, this type of

uncertainty can be viewed as "risk" since it can be reduced with additional data.

Once we train the model Mθ on the training data Dtrain, the model uncertainty p(θ|Dtrain)

induces uncertainty over p(ωi|xtest, θ). This highlights a fundamental aspect of UQ: epistemic

uncertainty can be reduced with better models or more data, while aleatoric uncertainty

remains irreducible as it arises from the inherent randomness in the data generation process.

1.3.3 Known-Unknowns vs. Unknown-Unknowns

Uncertainty can further be divided into known-unknowns and unknown-unknowns. Assume

the training data comes from a data space Xin, but the test data may also come from an

out-of-domain space Xout. For instance, we might train a language model on Shakespeare’s
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Figure 1.3: Complete visualization of uncertainty types. Aleatoric uncertainty (orange) is
irreducible randomness in data, epistemic uncertainty (blue) represents model knowledge
gaps that decrease with more data, and total uncertainty (purple) combines both types. The
formula σtotal =

√
σ2

aleatoric + σ2
epistemic shows how they relate mathematically.

sonnets, but a user might input a poem by another poet, which represents out-of-domain

data.

To express this more specifically, we can rewrite the total uncertainty as:

p(ωi|xtest,Dtrain) = p(ωi|xtest ∈ Xin,Dtrain)p(xtest ∈ Xin)

+ p(ωi|xtest ∈ Xout,Dtrain)p(xtest ∈ Xout)

The first term represents known-unknowns due to overlapping data or irreducible noise

such as measurement errors. The second term represents unknown-unknowns, which arise

due to distributional shifts between training and testing datasets.
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1.3.4 Calibration and Sharpness Metrics

Two key metrics for evaluating uncertainty quantification methods are calibration and

sharpness [90]:

1. Calibration: A model is well-calibrated if its predicted probabilities match the empirical

frequencies of events [33]. For example, if a model predicts a 70% probability of rain for

100 different days, it should rain on approximately 70 of those days. Calibration can

be measured using metrics such as Expected Calibration Error (ECE) and Maximum

Calibration Error (MCE).

2. Sharpness: A model is sharp if its predictive distributions have low entropy or variance

[13]. Sharpness measures how concentrated the predictive distributions are. A model

that always predicts a 50% probability for binary outcomes is perfectly calibrated but

not sharp. Ideally, a model should be both well-calibrated and sharp.

The trade-off between calibration and sharpness is a central challenge in uncertainty

quantification. A model that always predicts the marginal distribution of the target variable

will be perfectly calibrated but not sharp. Conversely, a model that makes very confident

predictions might be sharp but poorly calibrated if those predictions are often wrong.

1.3.5 Importance in High-Stakes Decision-Making

Reliable uncertainty quantification is crucial in high-stakes decision-making scenarios where

the cost of errors is significant. The growing adoption of foundation models in critical

applications has made this need even more pressing. Key application domains include:

1. Healthcare: In medical diagnosis and treatment planning [61], understanding the un-

certainty in predictions can help clinicians make more informed decisions and potentially

save lives. Recent applications include:
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• Risk Stratification: Models that predict patient deterioration must quantify

their uncertainty to help clinicians prioritize care and allocate resources effectively.

• Treatment Response Prediction: When predicting a patient’s response to

different treatment options, uncertainty estimates help clinicians weigh the risks

and benefits of each option.

• Medical Imaging: In radiology and pathology, models must indicate when

they are uncertain about their diagnoses, prompting additional review by human

experts.

• Drug Discovery: In pharmaceutical research, uncertainty quantification helps

prioritize which compounds to investigate further, potentially accelerating the

development of new treatments.

Figure 1.4: Application of uncertainty quantification in healthcare. Diagnostic and prognostic
models benefit from reliable uncertainty estimates to support clinical decision-making. The
confidence intervals help clinicians assess the reliability of predictions, potentially leading to
better treatment decisions and improved patient outcomes.

2. Climate Science: Climate models are inherently uncertain due to the chaotic nature
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of weather systems and the complexity of climate dynamics [36]. Applications include:

• Extreme Weather Prediction: Models must provide reliable uncertainty es-

timates for the timing, location, and intensity of extreme weather events [56] to

inform evacuation decisions.

• Long-term Climate Projections: When modeling climate change impacts [10],

uncertainty quantification helps policymakers understand the range of possible

outcomes and their likelihoods.

• Agricultural Planning: Farmers and agricultural businesses rely on weather

forecasts with uncertainty estimates to make planting and harvesting decisions.

• Resource Management: Water resource managers use uncertainty-aware pre-

dictions to optimize reservoir operations and flood control measures.

Figure 1.5: Application of uncertainty quantification in climate science. Weather forecasting
models benefit from uncertainty quantification, particularly for hurricane track prediction
where uncertainty cones help emergency managers make evacuation decisions. The confidence
intervals widen with forecast lead time, reflecting the chaotic nature of weather systems.
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3. Autonomous Systems: Self-driving vehicles and other autonomous systems must

make real-time decisions in uncertain environments. Critical applications include:

• Perception Systems: Object detection and tracking systems must quantify their

uncertainty about object locations and classifications to avoid collisions.

• Path Planning: Navigation algorithms need to account for uncertainty in their

environment models and predictions of other agents’ behavior.

• Control Systems: Actuator commands must be adjusted based on the uncertainty

in state estimates and predicted outcomes.

• Safety Systems: Emergency intervention systems must reliably detect when they

are operating outside their comfort zone.

4. Financial Risk Management: In financial markets [87], quantifying uncertainty is

essential for:

• Portfolio Optimization: Asset allocation decisions must account for uncertain-

ties in return predictions and risk estimates.

• Risk Assessment: Credit scoring and fraud detection systems must quantify

their uncertainty to set appropriate thresholds.

• Algorithmic Trading: Trading strategies must adjust their positions based on

the uncertainty in price predictions.

• Regulatory Compliance: Stress testing and risk reporting require reliable

uncertainty estimates.

5. Scientific Research: Modern scientific workflows increasingly rely on machine learning

models with uncertainty quantification [24] for:

• Experimental Design: Optimizing experimental parameters while accounting

for uncertainties in predictions.
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• Data Analysis: Identifying significant results while controlling for uncertainty in

measurements and model predictions.

• Hypothesis Generation: Using model uncertainty to guide the exploration of

scientific hypotheses.

• Reproducibility: Quantifying uncertainty helps assess the robustness and relia-

bility of scientific findings.

In all these applications, the goal extends beyond making accurate predictions to providing

decision-makers with a complete picture of the uncertainty associated with those predictions.

This enables:

• Risk-Aware Decision Making: Decision-makers can appropriately weight the conse-

quences of different actions against their uncertainties.

• Resource Allocation: Limited resources can be directed to cases where the model is

most uncertain and human expertise is most needed.

• Continuous Improvement: By tracking where models are most uncertain, organiza-

tions can prioritize relevant data collection and model improvements.

• Trust Building: Transparent communication of uncertainty helps build trust between

AI systems and their users.

The rise of foundation models has introduced new challenges in uncertainty quantifica-

tion, as these models are increasingly deployed in high-stakes applications despite potential

limitations in their reliability and robustness. This motivates our work on developing scalable

and reliable uncertainty quantification methods that can be applied to foundation models

while maintaining their computational efficiency.
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1.4 Uncertainty Quantification in Machine Learning

Various approaches have been developed to quantify uncertainty in machine learning models.

These approaches can be broadly categorized into traditional statistical methods, Bayesian

approaches, ensemble methods, and evidential deep learning.

1.4.1 Traditional Statistical Approaches

Traditional statistical approaches to uncertainty quantification include:

1. Confidence Intervals: In frequentist statistics, confidence intervals provide a range

of values that likely contains the true parameter with a specified probability [34]. For

example, a 95% confidence interval for a regression coefficient means that if we were to

repeat the experiment many times, about 95% of the intervals would contain the true

coefficient.

2. Prediction Intervals: While confidence intervals quantify uncertainty in parameter

estimates, prediction intervals quantify uncertainty in future observations [103]. They

account for both the uncertainty in the parameter estimates and the inherent randomness

in the data.

3. Delta Method: This method uses a Taylor series approximation to estimate the

variance of a function of random variables [9]. It can be used to derive confidence

intervals for complex functions of model parameters.

These traditional approaches often rely on strong assumptions about the data distribution

and model form, which often do not hold in complex deep learning models.

1.4.2 Bayesian Neural Networks

Bayesian Neural Networks (BNNs) [104] extend traditional neural networks by placing prior

distributions over the network weights and learning posterior distributions over these weights
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given the observed data. Instead of learning point estimates of the weights, BNNs learn

distributions over the weights, allowing them to capture epistemic uncertainty.

Computing the exact posterior distribution is generally intractable for deep neural networks,

so various approximation methods are used, including:

1. Markov Chain Monte Carlo (MCMC): Methods like Hamiltonian Monte Carlo

(HMC) [20] and No-U-Turn Sampler (NUTS) can be used to sample from the posterior

distribution, but they are computationally expensive for large networks.

2. Variational Inference: This approach [27] approximates the posterior distribution

with a simpler distribution (e.g., a Gaussian) and optimizes the parameters of this

approximation to minimize the Kullback-Leibler divergence from the true posterior.

3. Monte Carlo Dropout: This method [26] interprets dropout, a regularization tech-

nique in neural networks, as a Bayesian approximation. By keeping dropout active

during inference and performing multiple forward passes, it generates samples from an

approximate posterior distribution.

BNNs provide a principled approach to uncertainty quantification but can be computa-

tionally expensive and challenging to implement for large-scale models.

1.4.3 Ensemble Methods

Ensemble methods combine predictions from multiple models to improve accuracy and

quantify uncertainty [52]. The variance in predictions across ensemble members can be used

as a measure of epistemic uncertainty. Common ensemble methods include:

1. Deep Ensembles: This approach trains multiple neural networks with different

random initializations and combines their predictions [52]. Despite its simplicity, deep

ensembles have been shown to provide competitive uncertainty estimates compared to

more sophisticated Bayesian methods.
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2. Bootstrapped Ensembles: These methods train each ensemble member on a boot-

strapped sample of the training data [46], capturing the uncertainty due to sampling

variability.

3. Snapshot Ensembles: This approach saves model snapshots at different points during

training (e.g., at different local minima) [58] and uses them as ensemble members,

reducing the computational cost compared to training multiple models from scratch.

Ensemble methods are relatively easy to implement and can provide robust uncertainty

estimates, but they can be computationally expensive during both training and inference.

1.4.4 Evidential Deep Learning

Evidential Deep Learning (EDL) [84] is a recent approach that extends deep learning models to

output the parameters of a higher-order probability distribution (e.g., a Dirichlet distribution

for classification [65] or a Normal-Inverse-Gamma distribution for regression [2]) rather than

directly outputting the parameters of the predictive distribution.

For regression tasks, EDL models output the parameters of a Normal-Inverse-Gamma

distribution [2], which serves as a prior for the mean and variance of the predictive Normal

distribution. The predictive distribution is then a Student’s t-distribution, which has heavier

tails than a Normal distribution, reflecting the additional uncertainty.

For classification tasks, EDL models output the parameters of a Dirichlet distribution

[84], which serves as a prior for the categorical distribution over classes. The predictive

distribution is then a Dirichlet-Multinomial distribution, which can express uncertainty about

the class probabilities.

EDL provides a computationally efficient approach to uncertainty quantification that can

capture both aleatoric and epistemic uncertainty without requiring multiple forward passes

or ensemble members.
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1.5 Gaussian Processes for Uncertainty Quantification

1.5.1 Mathematical Foundations

Gaussian Processes (GPs) provide a principled Bayesian approach to uncertainty quantification

in regression and classification tasks [80]. A GP is a collection of random variables, any finite

number of which have a joint Gaussian distribution. It is fully specified by a mean function

m(x) and a covariance function (or kernel) k(x, x′) [103]:

f(x) ∼ GP(m(x), k(x, x′)). (1.4)

Figure 1.6: Gaussian Processes as a solution for uncertainty quantification. Unlike deter-
ministic models, GPs provide a full probability distribution over possible function values,
quantifying both aleatoric and epistemic uncertainty. The shaded region represents the
confidence interval (±2 standard deviations), which naturally widens in regions with sparse
data, reflecting increased epistemic uncertainty.

The mean function represents our prior belief about the expected value of the function at

any point, while the covariance function captures the correlation between function values at

different points.
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Given a dataset D = {(xi, yi)}ni=1 where yi = f(xi) + ϵi with ϵi ∼ N (0, σ2
n), the posterior

distribution over function values at a new point x∗ is also Gaussian:

p(f∗|D, x∗) = N (µ∗, σ
2
∗) (1.5)

µ∗ = m(x∗) + k(x∗, X)[k(X,X) + σ2
nI]

−1(y −m(X)) (1.6)

σ2
∗ = k(x∗, x∗)− k(x∗, X)[k(X,X) + σ2

nI]
−1k(X, x∗), (1.7)

where X = [x1, x2, . . . , xn]
T , y = [y1, y2, . . . , yn]

T , k(X,X) is the covariance matrix with

entries k(xi, xj), and k(x∗, X) is the vector of covariances between x∗ and each training point.

1.5.2 Mean Function and Kernel Description

The mean function m(x) represents our prior belief about the expected value of the function

[45]. Common choices include:

1. Zero Mean: m(x) = 0, which assumes no prior knowledge about the function values.

2. Constant Mean: m(x) = c, which assumes a constant prior mean across the input

space.

3. Linear Mean: m(x) = βTx, which assumes a linear trend in the function values.

The covariance function (or kernel) k(x, x′) captures the similarity between points in the

input space [48]. Common kernels include:

1. Radial Basis Function (RBF) Kernel: k(x, x′) = σ2
f exp

(
− ||x−x′||2

2l2

)
, which assumes

smooth functions with a characteristic length scale l and signal variance σ2
f .

2. Matérn Kernel: A family of kernels that can model functions with different degrees

of smoothness, controlled by a parameter ν.



18

3. Periodic Kernel: k(x, x′) = σ2
f exp

(
−2 sin2(π||x−x′||/p)

l2

)
, which models periodic func-

tions with period p.

4. Linear Kernel: k(x, x′) = σ2
fx

Tx′, which models linear functions.

The choice of kernel encodes our prior beliefs about the properties of the function, such

as smoothness, periodicity, and linearity [21].

1.5.3 Posterior Predictive Distribution

The posterior predictive distribution for a new observation y∗ at x∗ is given by [80]:

p(y∗|D, x∗) = N (µ∗, σ
2
∗ + σ2

n) (1.8)

This distribution captures both the epistemic uncertainty (through σ2
∗) and the aleatoric

uncertainty (through σ2
n) [49]. The epistemic uncertainty decreases as we observe more data,

especially near the observed points, while the aleatoric uncertainty remains constant.

1.5.4 Assumptions, Strengths, and Weaknesses

Gaussian Processes make several key assumptions [99]:

1. Gaussian Noise: The observation noise is assumed to be Gaussian, which may not

hold in all applications.

2. Stationarity: Many commonly used kernels assume that the covariance between points

depends only on their relative positions, not their absolute positions.

3. Smoothness: Most kernels assume some degree of smoothness in the underlying

function, which may not be appropriate for all applications.

The strengths of Gaussian Processes include [57]:
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1. Principled Uncertainty Quantification: GPs provide a principled Bayesian ap-

proach to uncertainty quantification, capturing both aleatoric and epistemic uncertainty.

2. Flexibility: By choosing appropriate kernels, GPs can model a wide range of functions

with different properties.

3. No Need for Large Datasets: GPs can provide reliable uncertainty estimates even

with small datasets, unlike deep learning models that typically require large amounts

of data.

The weaknesses of Gaussian Processes include [40]:

1. Computational Complexity: Standard GP inference has O(n3) time complexity and

O(n2) space complexity, making it challenging to scale to large datasets.

2. Sensitivity to Hyperparameters: The performance of GPs can be sensitive to the

choice of hyperparameters, which need to be carefully tuned.

3. Difficulty with High-Dimensional Inputs: GPs can struggle with high-dimensional

inputs due to the curse of dimensionality, although this can be mitigated with appropriate

kernel design.

1.5.5 Sparse Gaussian Processes

As highlighted in the previous section, standard Gaussian Processes suffer from cubic com-

putational complexity (O(n3)) with respect to the number of training points, making them

impractical for large datasets. Sparse Gaussian Process approximations have been developed

to address this computational challenge while preserving the desirable properties of GPs

[76, 94].

The key idea behind sparse GP approximations is to use a small set of m≪ n inducing

points (also called pseudo-inputs) to approximate the full GP. These inducing points serve
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Figure 1.7: Key challenges in scaling Gaussian Processes to real-world applications. The cubic
computational complexity limits their applicability to large datasets, while kernel selection
and hyperparameter tuning require expertise. High-dimensional data suffers from the curse of
dimensionality, and non-Gaussian likelihoods complicate inference. These challenges motivate
the methodological contributions in this thesis.

as a concise summary of the full dataset, enabling inference with reduced computational

complexity, typically O(nm2 +m3) [40, 11].

Inducing Point Methods

Let Z = {z1, z2, . . . , zm} be a set of inducing inputs and u = {f(z1), f(z2), . . . , f(zm)} be

the corresponding function values. The joint distribution of the latent function values f at

the training points X and the inducing points u is:

f

u

 ∼ N


m(X)

m(Z)

 ,
KXX KXZ

KZX KZZ


 (1.9)

Using the properties of conditional Gaussian distributions, we can express f conditioned

on u:
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p(f |u) = N (m(X) +KXZK
−1
ZZ(u−m(Z)),KXX −KXZK

−1
ZZKZX) (1.10)

Different sparse GP methods make different approximations based on this formulation:

1. Subset of Regressors (SoR): This method [88] makes the extreme approximation that

the training points are conditionally independent given the inducing points, effectively

replacing the full covariance matrix with a low-rank approximation:

KXX ≈ KXZK
−1
ZZKZX (1.11)

2. Deterministic Training Conditional (DTC): Similar to SoR but maintains exact

predictive means while approximating the predictive variance [83].

3. Fully Independent Training Conditional (FITC): This method [89] retains the

diagonal elements of the exact covariance matrix, addressing the tendency of SoR to

underestimate predictive variances:

KXX ≈ diag(KXX −QXX) +QXX where QXX = KXZK
−1
ZZKZX (1.12)

Variational Sparse Gaussian Processes

Variational Sparse GPs [94] take a principled Bayesian approach by formulating sparse GP

approximation as a variational inference problem. Instead of heuristically modifying the GP

prior, this approach minimizes the KL divergence between the approximate posterior and the

true posterior.

The key insight is to introduce the inducing variables u as variational parameters and

integrate them out to obtain a lower bound on the marginal likelihood:
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log p(y|X) ≥ LELBO = logN (y|KXZK
−1
ZZm(Z), σ2I)− 1

2σ2
Tr(KXX −QXX) (1.13)

The trace term acts as a regularizer that penalizes the approximation error in the covariance

matrix, leading to optimized inducing point locations that minimize this error [66].

Stochastic Variational Inference for Scalable GPs

Stochastic Variational Gaussian Processes (SVGPs) [40, 41] extend the variational approach

to enable minibatch training, making GPs applicable to massive datasets. The key innovation

is to introduce an explicit variational distribution over the inducing variables:

q(u) = N (u|m,S) (1.14)

where m and S are variational parameters. The evidence lower bound (ELBO) becomes:

LELBO =
n∑
i=1

Eq(fi)[log p(yi|fi)]− KL(q(u)||p(u)) (1.15)

where q(fi) =
∫
p(fi|u)q(u)du is the marginal distribution of fi under the variational

approximation. This objective can be optimized using stochastic gradient methods with

minibatches, achieving complexity of O(bm2 +m3) per iteration, where b is the minibatch

size [42].

Structured Sparse Approximations

Several approaches exploit structured data to further improve sparse GP scalability:

1. Kronecker and Toeplitz Methods: For data on regular grids, the kernel matrix

can have Kronecker or Toeplitz structure, enabling efficient exact or approximate

computations [105].
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2. Hierarchical Approximations: Methods like hierarchical off-diagonal low-rank

(HODLR) matrices [1] and H-matrices [35] provide systematic approximations with

controlled accuracy.

3. Random Fourier Features: This approach approximates the kernel function using

random Fourier features [77], converting the GP into an approximately equivalent linear

model with complexity O(nmr), where r is the number of random features.

Strengths and Limitations

Sparse GPs offer several advantages:

1. Reduced Computational Complexity: From O(n3) to O(nm2 + m3), enabling

application to larger datasets.

2. Preserved Uncertainty Quantification: Unlike simpler approximations, sparse GPs

maintain meaningful uncertainty estimates, critical for high-stakes applications.

3. Principled Approximation Framework: Particularly for variational methods,

approximations come with theoretical guarantees and interpretable objectives.

However, limitations remain:

1. Approximation Quality: The quality of the approximation depends critically on the

number and locations of inducing points, requiring careful selection or optimization.

2. Kernel Limitations: Sparse approximations do not address other GP limitations like

sensitivity to kernel choice and hyperparameters.

3. Complex Implementation: Implementing efficient sparse GP approximations, par-

ticularly with non-Gaussian likelihoods, can be technically challenging.

4. Memory Requirements: While computational complexity is reduced, memory re-

quirements for storing kernel matrices can still be substantial for very large datasets.
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In later chapters, we will build upon these sparse GP approximations to develop our

two-stage GP methodology, addressing both computational challenges and fundamental

limitations of standard GP approaches.

1.6 Brief Introduction to Conformal Prediction

Conformal Prediction (CP) [5] is a framework for constructing prediction intervals with

guaranteed coverage under minimal assumptions. Unlike Bayesian methods that require

specifying prior distributions, CP only assumes that the data is exchangeable (a weaker

assumption than independence and identical distribution).

The key idea of CP is to use a nonconformity measure to quantify how different a new

example is from the training examples [29]. By comparing the nonconformity score of a

potential label for a new example with the nonconformity scores of the training examples,

CP can determine whether to include that label in the prediction set.

For regression tasks, CP typically outputs prediction intervals [L(x), U(x)] such that [108]:

P (y ∈ [L(x), U(x)]) ≥ 1− α (1.16)

where 1− α is the desired coverage level (e.g., 95%).

For classification tasks, CP outputs a set of candidate labels Γα(x) such that:

P (y ∈ Γα(x)) ≥ 1− α (1.17)

CP has several advantages [92]:

1. Distribution-Free Guarantees: CP provides valid prediction intervals without

assuming a specific data distribution.

2. Model-Agnostic: CP can be applied to any predictive model, including deep neural

networks.
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3. Computational Efficiency: Inductive CP, a variant of CP, is computationally efficient

and can be applied to large datasets.

However, CP also has limitations [43]:

1. Marginal Coverage: CP guarantees marginal coverage across all examples but not

conditional coverage for specific examples.

2. Calibration Set Requirement: Inductive CP requires setting aside a portion of the

data for calibration, which can be a limitation with small datasets.

In this thesis, we will explore how CP can complement Gaussian Processes to provide robust

uncertainty quantification, particularly in non-stationary settings where GP assumptions

may not hold.

1.7 Recent Advances in Uncertainty Quantification for

Foundation Models

Recent years have seen significant advances in uncertainty quantification methods specifically

designed for foundation models [17, 19, 97] and large language models (LLMs). These

advances address unique challenges posed by the scale and complexity of these models.

1.7.1 Uncertainty in Foundation Models

Foundation models present unique challenges for uncertainty quantification due to their [109]:

1. Scale and Complexity: With billions of parameters, traditional Bayesian approaches

become computationally intractable.

2. Black-box Nature: Many foundation models are accessible only through APIs, limiting

the applicability of methods that require access to model internals.
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3. Transfer Learning Setting: The pre-train-then-fine-tune paradigm introduces addi-

tional sources of uncertainty.

1.7.2 Recent Methodological Advances

Several innovative approaches have emerged to address these challenges:

1. Bayesian Prompt Ensembles: Recent work by [95] introduces a novel approach for

black-box LLMs that uses weighted ensembles of semantically equivalent prompts to

estimate uncertainty.

2. Distributional Conformal Prediction: [29] developed probabilistically robust con-

formal prediction, which ensures robustness to most perturbations around clean input

examples.

3. Scalable Bayesian Deep Learning: [20] introduced a tempered framing of stochastic

gradient MCMC that transitions seamlessly into optimization.

4. Uncertainty-Aware Foundation Models: [61] demonstrated how Gaussian Process

layers can be integrated with pre-trained foundation models to enable instance-level

uncertainty quantification.

1.7.3 Applications in High-Stakes Domains

Recent applications have demonstrated the practical impact of uncertainty quantification in

foundation models:

1. Healthcare: [73] developed distributional Gaussian Process layers for medical imaging

that reliably separate in-distribution from out-of-distribution cases, crucial for safe

deployment in clinical settings.
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2. Climate Science: [10] systematically compared different uncertainty quantification

methods for data-driven weather models, showing how probabilistic forecasts can

improve upon deterministic predictions from state-of-the-art models.

3. Scientific Computing: [37] developed statistically optimal methods for uncertainty

quantification in expensive black-box models, particularly relevant for scientific simula-

tions and computational physics.

1.7.4 Emerging Trends and Open Challenges

Several key trends and challenges have emerged in recent research:

1. Efficiency-Accuracy Trade-off : Recent work by [59] on orthogonal bootstrap demon-

strates the ongoing effort to reduce computational costs while maintaining statistical

guarantees.

2. Distribution Shift: [92] highlighted the challenge of maintaining valid uncertainty

estimates under covariate shift, proposing conformal prediction as a potential solution.

3. Model Evaluation: [109] introduced uncertainty-aware benchmarking for LLMs,

showing that larger models may exhibit greater uncertainty despite higher accuracy.

4. Calibration Quality: [13] developed methods for sharp calibrated Gaussian processes,

addressing the challenge of obtaining tight predictive quantiles while maintaining

calibration.

These advances highlight both the progress made in uncertainty quantification for founda-

tion models and the remaining challenges that motivate this thesis. Our work builds upon

these developments while addressing key limitations in scalability and robustness.
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1.8 Thesis Structure and Contributions Overview

This thesis makes several contributions to the field of uncertainty quantification for machine

learning models, with a focus on enhancing pre-trained foundation models for high-stakes

applications in healthcare and climate science. The main contributions are:

1. Two-Stage Gaussian Process Methodology: We develop a novel two-stage GP

framework that addresses the challenges of mean and kernel misspecification, enabling

more accurate uncertainty quantification. This methodology includes an automatic

kernel search algorithm and a subsampling-based warm-start strategy for efficient

hyperparameter optimization.

2. Kernel Preconditioning for Computational Efficiency: We develop a kernel

preconditioning approach to address the computational challenges of standard GP

implementations, enabling the application of our methodology to larger datasets.

3. Conformal Prediction for Robust Uncertainty Quantification: We integrate

Conformal Prediction with our GP methodology to address the limitations of GPs in

non-stationary settings, providing distribution-free guarantees for prediction intervals.

4. Application to Health Foundation Models: We apply our two-stage GP framework

to enhance pre-trained foundation models for patient risk prediction, demonstrating

improved uncertainty quantification in healthcare applications.

5. Application to Climate and Weather Foundation Models: We extend our

methodology to time-dependent, non-stationary data in climate and weather prediction,

specifically developing a Locally Calibrated Adaptive Conformal Prediction (LC-ACP)

approach for hurricane track forecasting with reliable uncertainty estimates.

The remainder of this thesis is organized as follows:
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• Chapter 1 (this chapter) presents the background and motivation for uncertainty

quantification, including its importance in high-stakes applications, the foundations of

Gaussian Processes, sparse approximations, and conformal prediction.

• Chapter 2 introduces our two-stage Gaussian Process methodology, including theoret-

ical analysis, algorithm development, and empirical validation.

• Chapter 3 applies our methodology to healthcare foundation models, focusing on

patient risk prediction with reliable uncertainty estimates.

• Chapter 4 addresses the computational challenges of GPs through kernel precondi-

tioning and unbiased estimators, enabling scalable uncertainty quantification for large

datasets.

• Chapter 5 explores the limitations of Gaussian Processes and introduces Adaptive

Conformal Prediction as a complementary approach, with particular focus on the

development of Locally Calibrated Adaptive Conformal Prediction (LC-ACP) for non-

stationary data.

• Chapter 6 applies the LC-ACP methodology to climate and weather foundation

models, specifically addressing the challenges of hurricane track prediction with the

Tiny Time Mixer foundation model.

• Chapter 7 concludes the thesis with a summary of contributions, practical recommen-

dations, and directions for future research.

Through these contributions, this thesis aims to advance the state of the art in uncer-

tainty quantification for machine learning models, enabling more reliable and trustworthy

predictions in high-stakes applications. By exploring both Gaussian Process-based and Con-

formal Prediction-based approaches, we provide a comprehensive framework for uncertainty

quantification that can be tailored to different application domains and data characteristics.



Chapter 2

Two-Stage Gaussian Process Methodology

“The art of being wise is the art of knowing what to overlook.”

— William James

2.1 Introduction to Two-Stage Gaussian Processes

Gaussian Process Regression (GPR) offers a principled Bayesian approach to uncertainty

quantification in machine learning, as discussed in Chapter 1. However, its performance

critically depends on the appropriate specification of both the mean function and the kernel

function. Misspecification of either component can lead to poor predictions and unreliable

uncertainty estimates—a critical concern for high-stakes applications in, e.g., healthcare and

climate science where accurate uncertainty bounds are as important as accurate predictions.

This chapter introduces our novel two-stage Gaussian Process methodology, which ad-

dresses both mean and kernel misspecification to provide more reliable uncertainty estimates.

Building upon the theoretical foundations of Gaussian Processes presented in the previous

chapter, we develop a systematic approach to overcome the limitations of standard GP

implementations. The methodology developed here forms the foundation for applications

to healthcare foundation models in Chapter 3 and informs our computational efficiency

improvements in Chapter 4.

Consider a dataset Xn = {xi, yi}ni=1, generated by the relationship yi = f(xi) + ϵi,

30
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with ϵi drawn from N (0, σ2
ϵ ) and xi belonging to a subset Ω of Rd. Gaussian Process

Regression models this function f using a Gaussian Process with a prior GP(m(·), kθ(·, ·)).

Here, m(·) represents the mean function, and kθ(xi,xj) = σ2
fc(xi,xj) + σ2

ξδij defines the

covariance function where θ denotes all the hyperparameters in the covariance function. Upon

conditioning on the observed data, the posterior predictive distribution for a new input x∗ is

calculated as:

m̂(x∗) = m(x∗) +K∗X(θ)KXX(θ)
−1(yn −m(X)), (2.1)

k̂(x∗,x∗) = kθ(x∗,x∗)−K∗X(θ)KXX(θ)
−1KX∗(θ), (2.2)

where yn = [y1, y2, . . . , yn]
⊤, m(X) is a vector obtained via evaluating m(·) over Xn, K∗X(θ)

and KXX(θ) denote the kernel matrices obtained by evaluating the covariance function kθ

over (x∗, Xn) and (Xn, Xn), respectively. When the context is clear, we will also use mn and

Kn to denote m(X) and KXX(θ) for simplicity.

Specifying the appropriate mean function m(·) and covariance function kθ(·, ·), with θ

encompassing hyperparameters such as the lengthscale l, output scale σ2
f , and likelihood noise

σ2
ξ , is pivotal. Typically, the hyperparameters are optimized by minimizing the Negative

Log-Likelihood (NLL) through methods like cross-validation or gradient descent, given by:

L(θ;Xn) =
1

2n
((yn −m(X))⊤K−1

n (yn −m(X)) + log detKn + n log 2π). (2.3)

Notice in Equation (2.3), we scale the likelihood with 1
n
, a common practice when training

GP for stability. The Gaussian process model trained via the NLL utilizing the full training

dataset will be denoted as Exact-GP throughout this chapter.

Our key contribution is a systematic approach to overcome misspecifications called

Two-Stage GPR, as shown in Figure 2.1. We first detail the framework to mitigate mean

misspecification, then present an automated kernel search algorithm to address kernel mis-

specification, and finally introduce a subsampling warm start strategy for efficient training to



32

Figure 2.1: Two-stage Gaussian Process Regression (GPR) Framework. Stage 1:
Automatic Kernel Search selects the best kernel for the mean prediction, followed by mean
prediction using a Kernel Ridge Regression (KRR). Stage 2: After demeaning the training
data using the mean prediction from the first stage, automatic Kernel Search identifies the
best kernel for uncertainty quantification, and a zero-mean GPR with the corresponding
kernel is trained via subsampling warm start. The final predictive distribution combines
these mean and covariance predictions to enhance the model’s accuracy and robustness.

avoid hyperparameter misspecifications.

2.2 Mitigating Mean Misspecification via Two-stage GPR

In this section, we analyze the impact of mean misspecification on the performance of Gaussian

Process Regression and propose our two-stage approach to mitigate these issues.

2.2.1 Impact of Mean Misspecification

The standard GPR model assumes a prior distribution over functions f(x) ∼ GP(m(x), kθ(x, x
′)).

When the mean function is misspecified (e.g., assuming a zero mean when the true function

has a non-zero trend), the model must compensate through the kernel function. This leads

to several critical issues:
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1. Biased Predictions: The posterior mean predictions are systematically biased, par-

ticularly in regions with sparse data. This bias manifests as:

E[f̂(x∗)− f(x∗)] = (m(x∗)−mtrue(x∗)) +O(∥K∗XK
−1
XX∥) (2.4)

2. Overconfident Uncertainty Estimates: The model underestimates uncertainty by

attributing systematic deviations to the kernel rather than mean misspecification. The

posterior variance is affected as:

Var[f̂(x∗)] = k(x∗, x∗)−K∗XK
−1
XXKX∗ +O(∥m−mtrue∥2) (2.5)

3. Poor Extrapolation: The model reverts to the incorrect prior mean when extrapolat-

ing beyond the training data, leading to:

lim
x∗→∞

f̂(x∗) = m(x∗) ̸= mtrue(x∗) (2.6)

If the mean m(x) is incorrectly assumed to be zero, the hyperparameters are derived by

minimizing the misspecified expectation of NLL (MEL):

MEL =
1

2n

(
Tr(Kn(θ)

−1[Kn(θ∗)−m(X)m(X)⊤]) + log detKn(θ)
)

(2.7)

The MEL underestimates the data fitting loss due to the subtraction of a positive term

m(X)⊤Kn(θ)
−1m(X). This causes GPR trained via MEL to introduce bias, as it penalizes

less on the data fitting loss while penalizing more on the model complexity than it should,

often yielding an underfitted model.

We can prove through formal analysis that minimizing MEL will not recover the ground-

truth hyperparameters θ∗ if the mean function is non-zero:

Theorem 2.2.1 (Mean Misspecification Effect). If the mean function m(x) is not a zero
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function, minimizing the MEL will not recover the ground-truth hyperparameters θ∗ if θ∗ is

not a stationary point of m(X)⊤K−1
n

∂Kn

∂θ
K−1
n m(X).

This theorem indicates that not only is the mean prediction inaccurate, but the uncertainty

quantification is also compromised due to the misspecified kernel hyperparameters obtained

by minimizing MEL.

2.2.2 Proposed Two-Stage GPR Framework

To address these issues, we propose a two-stage GPR framework that separates the tasks of

mean prediction and uncertainty quantification:

1. Stage 1 - Mean Prediction: Use a flexible, data-driven method to estimate the mean

function m̂(x) without making strong assumptions about its form. We employ Kernel

Ridge Regression (KRR) for this purpose, which effectively captures complex trends in

the data.

2. Stage 2 - Uncertainty Quantification: With the estimated mean function from

Stage 1, train a zero-mean GP on the residuals ri = yi− m̂(xi) to model the uncertainty.

This allows the GP to focus solely on capturing the covariance structure of the data

without being biased by an incorrectly specified mean.

The final predictive distribution for a new input x∗ is then:

f̂(x∗) ∼ N (m̂(x∗) + µr(x∗), σ
2
r(x∗)) (2.8)

∼ N (m̂(x∗), σ
2
r(x∗)) (2.9)

where µr(x∗) and σ2
r(x∗) are the predictive mean and variance from the GP trained on

residuals. Since we use a zero-mean GP for the residuals, µr(x∗) is typically small, and the

predictive mean is dominated by m̂(x∗).

This approach offers several advantages:
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1. Flexibility: The mean function can be estimated using any regression method, not

just limited to parametric forms.

2. Robust Uncertainty Quantification: The GP trained on residuals provides more

reliable uncertainty estimates since it doesn’t need to compensate for mean misspecifi-

cation.

3. Improved Extrapolation: The explicit modeling of the mean trend allows for better

extrapolation beyond the training data.

4. Computational Efficiency: The KRR for mean prediction can be trained more

efficiently than a full GP, particularly for large datasets.

2.3 Addressing Kernel Misspecification

Kernel misspecification occurs when the chosen kernel function cannot adequately capture

the true covariance structure of the data. In this section, we analyze the impact of kernel

misspecification and propose an automatic kernel search algorithm to address this issue.

2.3.1 Impact of Kernel Misspecification

The choice of kernel function in a GP model determines the types of functions that can be

effectively modeled. Inappropriate kernel choices lead to several issues:

1. Incorrect Smoothness Assumptions: Using an RBF kernel for non-smooth functions

or a Matérn kernel with incorrect smoothness parameter.

2. Missing Periodic Components: Failing to capture periodic patterns in the data,

leading to systematic errors.

3. Inappropriate Length Scales: Using a single length scale when the function varies

at different rates in different regions.
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To quantify the impact of kernel misspecification, we analyze the reducible and irreducible

error components. For a new unobserved data point (x∗, y∗) with y∗ = f(x∗) + ϵ∗, the

prediction error can be decomposed as:

|m̂(x∗)− y∗| = |K∗X(KXX + σ2
ξI)

−1yn − y∗| (2.10)

= |K∗X(KXX + σ2
ξI)

−1fn − f(x∗)|︸ ︷︷ ︸
Reducible error

+ |K∗X(KXX + σ2
ξI)

−1ϵX − ϵ∗|︸ ︷︷ ︸
Irreducible error

(2.11)

When the kernel is misspecified, the reducible error component remains significant even

with optimal hyperparameters, indicating the model’s inability to capture the true function.

2.3.2 Automatic Kernel Search Algorithm

To address kernel misspecification, we propose an automatic kernel search algorithm that

systematically evaluates different kernel functions and selects the most appropriate one based

on predictive performance. This approach is guided by the following theoretical result:

Theorem 2.3.1 (Kernel Misspecification Bound). Under mild assumptions (C1-C4 in

Appendix), suppose f ∈ Hk. Then with probability 1− δ we have the following bound

|m̂n(x∗)− y∗|
|K∗X(KXX + σ2

ξI)
−1ϵX − ϵ∗|

≤ 1.1, ∀x ∈ Ω (2.12)

when n ≥ σ2
ξ(

0.1A(δ)
√

K∗XKX∗
(λ1+σ2

ξ
)C′∥f∥Hk

) 2m0
2m0−d

where A(δ) =
√
1− 2 log (1− δ) − 1, λ1 is the largest

eigenvalue of the kernel matrix KXX and C ′ is the universal constant in Lemma regarding

contraction rates, m̂n(x∗) is defined with a zero-mean prior.

This theorem indicates that when the kernel is appropriately specified (i.e., the true

function belongs to the RKHS of the chosen kernel), the prediction error is primarily

dominated by the irreducible noise error, with the ratio of prediction error to noise error

approaching 1.1 for a sufficiently large dataset.
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Based on this insight, we propose Algorithm 1 for automatic kernel selection:

Algorithm 1 Automatic Kernel Search
Require:: Training data {Xn, yn}, validation data {Xv, yv}, candidate kernels

{k1, k2, . . . , kK}
Ensure:: Selected kernel kbest
1: FOR i = 1 to K DO
2: Train GP model with kernel ki on {Xn, yn} to obtain hyperparameters θi
3: Compute prediction error Ei on validation data {Xv, yv}
4: END FOR

5: Select kbest = argminiEi RETURN kbest

This algorithm systematically evaluates each candidate kernel by training a GP model

on the training data and measuring its predictive performance on a separate validation set.

The kernel with the lowest validation error is selected as the most appropriate for the given

dataset.

In practice, we use a diverse set of candidate kernels, including:

• Radial Basis Function (RBF) kernel for smooth functions

• Matérn kernels with different degrees of smoothness

• Periodic kernels for functions with cyclical patterns

• Composite kernels (sum and product) for more complex functions

This approach allows for data-driven kernel selection without requiring strong prior

assumptions about the underlying function.

2.4 Efficient Training via Subsampling

Training a GP model on large datasets is computationally challenging due to the O(n3) time

complexity of exact inference. In this section, we propose a scalable variant of our Two-Stage

GP methodology using Gaussian Process Nearest Neighbor (GPNN). This approach combines
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the theoretical advantages of our Two-Stage framework with the computational efficiency of

nearest-neighbor-based approximations.

2.4.1 Gaussian Process Nearest Neighbor (GPNN)

GPNN is a scalable GP approximation that leverages the screening effect, which states that

predictions at a given point are primarily influenced by nearby observations. By focusing on

a subset of nearest neighbors for each prediction, GPNN achieves significant computational

savings while maintaining competitive accuracy.

Algorithm 2 Gaussian Process Nearest Neighbor (GPNN)
Require:: Training data {Xn, yn}, test point x∗, number of neighbors k, kernel function K
Ensure:: Predictive distribution p(f(x∗)|Xn, yn)

1: // Training Phase
2: Randomly sample a subset {Xs, ys} from {Xn, yn}
3: Optimize kernel hyperparameters θ on subset by minimizing NLL
4: Compute calibration factor c = 1

|Xcal|
∑

i∈Xcal

(yi−m̂(xi))
2

σ̂2
i

5: Adjust variance scaling: θscaled = {l, σf
√
c, σξ

√
c}

6: // Prediction Phase
7: Find k nearest neighbors {Xk, yk} of x∗ from training data
8: Compute kernel matrix Kkk among neighbors using K with θscaled

9: Compute cross-kernel vector K∗k between x∗ and neighbors
10: Compute predictive mean: µ(x∗) = K∗k(Kkk + σ2

ξI)
−1yk

11: Compute predictive variance: σ2(x∗) = K(x∗, x∗)−K∗k(Kkk + σ2
ξI)

−1Kk∗

12: RETURN N (µ(x∗), σ
2(x∗))

The GPNN algorithm significantly reduces computational complexity from O(n3) to O(k3)

for each prediction, where k ≪ n is the number of nearest neighbors. This allows for efficient

inference on datasets with millions of examples.

2.4.2 Two-Stage GPNN (2StGPNN)

Building on our Two-Stage GP framework, we integrate GPNN as the baseline algorithm to

create a scalable version suitable for large datasets:



39

Algorithm 3 Two-Stage Gaussian Process Nearest Neighbor (2StGPNN)
Require:: Training data {Xn, yn}, test point x∗, number of neighbors k, candidate kernels

{k1, k2, . . . , kK}
Ensure:: Predictive distribution p(f(x∗)|Xn, yn)

1: // Stage 1: Mean Prediction with KRR
2: Select best kernel km for mean prediction using Algorithm 1
3: Find k nearest neighbors {Xk, yk} of x∗ from training data
4: Compute kernel matrix Kkk among neighbors using km
5: Compute KRR prediction: m̂(x∗) = km(x∗, Xk)(Kkk + λI)−1yk
6: Compute residuals ri = yi − m̂(xi) for all training points

7: // Stage 2: Uncertainty Quantification with GPNN
8: Select best kernel kr for residuals using Algorithm 1
9: Find k nearest neighbors {Xk, rk} of x∗ from residual data

10: Optimize kernel hyperparameters θr on a random subset of residuals
11: Compute kernel matrix Kkk among neighbors using kr with θr
12: Compute cross-kernel vector K∗k between x∗ and neighbors
13: Compute residual predictive distribution: p(r(x∗)|Xk, rk) = N (µr(x∗), σ

2
r(x∗))

14: Return combined distribution: p(f(x∗)|Xn, yn) = N (m̂(x∗) + µr(x∗), σ
2
r(x∗))

15: RETURN N (m̂(x∗) + µr(x∗), σ
2
r(x∗))

The Two-Stage GPNN approach inherits the computational efficiency of GPNN while

addressing its limitations in uncertainty quantification through our two-stage methodology.

By separating mean prediction from uncertainty quantification, it achieves more reliable

uncertainty estimates without sacrificing computational efficiency.

Key advantages of Two-Stage GPNN include:

• Scalability: Maintains the O(k3) computational complexity of GPNN for datasets

with millions of examples

• Improved UQ: Addresses the limitations of GPNN in uncertainty quantification

through the two-stage approach

• Flexibility: Can be combined with other scalable GP approximations like SVGP or

Vecchia approximations
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2.5 Numerical Experiments

In this section, we present comprehensive experiments to validate our Two-Stage GP method-

ology. First, we assess the performance on various UCI regression datasets, comparing

Exact-GP and Two-Stage Exact-GP based on several popular metrics. Next, we introduce

a novel uncertainty-aware metric to measure the performance of uncertainty quantification

for regression tasks. Finally, we demonstrate the UQ capabilities of Two-Stage GP on

safety-critical applications in healthcare.

2.5.1 Performance Comparison on UCI Dataset

We first evaluate our Two-Stage GP approach on several standard UCI regression benchmark

datasets. For these datasets, we report three key metrics:

1. RMSE (Root Mean Square Error): Defined as RMSE :=
√

1
n

∑n
i=1(ŷi − yi)2, which

measures the accuracy of the mean predictions.

2. NLL (Negative Log-Likelihood): Defined in Equation (2.3), which evaluates the

probabilistic fit of the model incorporating both mean and variance.

3. QICE (Quantile Interval Coverage Error): Calculated as QICE := 1
M

∑M
m=1

∣∣rm − 1
M

∣∣,
where rm := 1

N

∑N
n=1 1yn≥ŷm−1

n
· 1yn≤ŷmn represents the proportion of true targets falling

between the m− 1-th and m-th quantiles of predicted targets. This metric evaluates

prediction calibration and serves as an important measure of the model’s UQ capability.

For all three metrics, a smaller value indicates better model performance. Table 2.1

reports the performance of standard Exact-GP with a default RBF kernel compared to our

Two-Stage Exact-GP.

The results clearly demonstrate that our Two-Stage GP approach outperforms standard

Exact-GP on most datasets. Most notably, for the Power and Naval datasets, standard

Exact-GP reports extremely large NLL values compared to Two-Stage Exact-GP, indicating
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Table 2.1: RMSE, NLL, and QICE metrics for various UCI datasets using Exact-GP with
RBF kernel and Two-Stage Exact-GP.

Dataset Exact-GP(RBF) Two-stage Exact-GP

RMSE NLL QICE RMSE NLL QICE

Yacht 1.29± 0.42 −1.15± 0.03 6.37± 1.47 0.41± 0.16−1.52± 0.04 5.03± 1.59
Boston 2.77± 0.68 −0.22± 0.05 3.78± 1.00 2.70± 0.67 1.11± 1.49 3.55± 0.93
Energy 0.89± 0.12 −0.93± 0.03 3.36± 0.94 0.37± 0.07−1.51± 0.03 2.24± 0.56
Concrete 5.35± 0.64 −0.39± 0.07 2.88± 0.67 3.78± 0.58 0.03± 0.50 2.23± 0.57
Wine 0.62± 0.04 0.95± 0.05 13.21± 0.310.60± 0.04 0.67± 0.78 13.2± 0.31
Kin8nm 0.07± 0.00−1.03± 0.21 0.95± 0.24 0.07± 0.00 −0.15± 0.03 0.94± 0.27
Power 3.75± 0.19 3111± 16814 1.05± 0.27 3.23± 0.20 0.06± 0.26 15.63± 0.09
Naval 0.00± 0.00 924.1± 3892 0.97± 0.43 0.00± 0.00−1.62± 0.00 0.69± 0.22

unreliable uncertainty quantification. This confirms that our Two-Stage approach provides

more reliable uncertainty estimates by addressing mean misspecification.

2.5.2 Uncertainty-Aware Evaluation Metrics

To further evaluate the quality of uncertainty quantification provided by our Two-Stage GP,

we introduce the Uncertainty-Aware RMSE (UA-RMSE) metric. In GP models, uncertainty

is typically represented as a standard error estimate for predictions. For each prediction

ŷi = m̂(xi), the associated standard error is ŝi =
√
k̂(xi,xi) from Equation (2.1).

We define two variations of UA-RMSE:

1. High Certainty RMSE (HC-RMSE): Calculated as the RMSE for predictions where

the standard error is lower than the 100q-th quantile of all standard error estimates on

test data, denoted as ŝq:

HC-RMSE :=

√√√√ 1

qn

qn∑
h=1

(ŷh − yh)2, where ŝh ≤ ŝq (2.13)

2. Low Certainty RMSE (LC-RMSE): Calculated for predictions where the standard
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error exceeds the (1− q)100-th quantile, denoted as ŝ1−q:

LC-RMSE :=

√√√√ 1

qn

qn∑
l=1

(ŷl − yl)2, where ŝl > ŝ1−q (2.14)

A model with high-quality uncertainty quantification is expected to exhibit a lower HC-

RMSE compared to LC-RMSE. This indicates that the model is more confident in its accurate

predictions and less confident in its inaccurate ones.

Po
let

ele Bike

Pr
ote

in

Ctsl
ice

Roa
d3

d
So

ng

Hou
seE

0
0.2
0.4
0.6
0.8
1

0.14

0.81

0.47

0.01
0.10

0.61

0.03

0.28

0.51

0.71

0.33 0.30

0.79

0.07
0.14

0.39

0.19

0.01
0.07

0.58

0.01

0.26

0.51

0.77

0.37

0.13

0.80

0.10

R
M

SE

GPNN-certain GPNN-uncertain 2StGPNN-certain 2StGPNN-uncertain

Figure 2.2: Uncertainty quantification results comparing HC-RMSE and LC-RMSE for both
standard GPNN and Two-Stage GPNN approaches on UCI datasets with q = 0.1. Lower
HC-RMSE compared to LC-RMSE indicates better uncertainty quantification.

Figure 2.2 shows the HC-RMSE and LC-RMSE for both standard GPNN and Two-Stage

GPNN on seven UCI datasets with q = 0.1. Two-Stage GPNN achieves lower RMSE for

high certainty instances across all datasets. For the discrepancy between HC-RMSE and

LC-RMSE, Two-Stage GPNN also outperforms standard GPNN on five datasets. This

confirms that our approach better differentiates between confident and uncertain predictions.

2.5.3 Synthetic Data Experiment: Mean Misspecification Effects

To illustrate the impact of mean misspecification and the effectiveness of our Two-Stage

approach in addressing it, we conducted controlled experiments with synthetic data.

Figure 2.3 shows an example with a synthetic function with a strong non-zero mean

trend. The standard GP with a zero-mean prior fails to capture this trend, resulting in
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(a) True Function (b) Standard GP (zero-mean) (c) Two-stage GP

Figure 2.3: Comparison of standard GP with misspecified mean and Two-Stage GP. The true
function (a) has a non-zero mean trend. The standard GP with zero-mean prior (b) fails to
capture this trend, leading to biased predictions and incorrect uncertainty estimates. The
Two-Stage GP (c) accurately captures the trend and provides well-calibrated uncertainty
estimates.

biased predictions and incorrect uncertainty estimates—note how the confidence intervals

don’t cover the true function in regions with sparse data. In contrast, our Two-Stage GP

accurately models the mean trend and provides well-calibrated uncertainty estimates, with

confidence intervals that properly encompass the true function.

We also conducted a supplementary experiment with a more complex function, shown in

Figure 2.4.

In this experiment, the true function is f(x) = 3|x| 32 +2 sin(2πx) with 30 data points. The

standard Exact-GP severely underfits the data, with its 95% confidence interval covering only

66.7% of the data points, indicating poor calibration. In contrast, our Two-Stage GP covers

96.67% of the data points, demonstrating much better calibration of uncertainty estimates.

2.5.4 Hyperparameter Landscape Analysis

To understand why our Two-Stage approach yields better hyperparameter estimates, we

analyzed the loss landscapes for different hyperparameter combinations.

Figure 2.5 shows the loss contours for different hyperparameter combinations, with color
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(a) True Function (b) Standard GP (zero-mean) (c) Two-stage GP

Figure 2.4: Comparison using a more complex function f(x) = 3|x| 32 + 2 sin(2πx) with 30
data points. The Exact-GP underfits the data, with its 95% confidence interval covering only
66.7% of the data, while the Two-Stage GP covers 96.67% of the data.

(a) Lengthscale vs Noise (b) Lengthscale vs Kernel Scale

Figure 2.5: Loss contours for different hyperparameter combinations. The color represents the
NLL value (lower is better). The standard GP optimizes for suboptimal hyperparameters due
to mean misspecification, while the Two-Stage GP finds better hyperparameter combinations
by separating mean prediction from uncertainty quantification.
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representing the NLL value (lower is better). When the mean function is misspecified,

the standard GP can get trapped in suboptimal regions of the hyperparameter space. By

separating mean prediction from uncertainty quantification, our Two-Stage approach is better

able to navigate this hyperparameter landscape and find more optimal configurations.

2.5.5 Application to Healthcare Risk Prediction

To demonstrate the practical relevance of our approach in high-stakes applications, we

applied our Two-Stage GP methodology to healthcare risk prediction tasks using foundation

models. The detailed results of this application are presented in Chapter 3, where we show

that our approach provides valuable uncertainty quantification for safety-critical healthcare

applications.

2.6 Conclusion and Connections to Subsequent Chapters

In this chapter, we introduced a novel Two-Stage Gaussian Process methodology that addresses

the critical issues of mean and kernel misspecification in GP regression. By separating the

tasks of mean prediction and uncertainty quantification, our approach achieves more accurate

predictions and more reliable uncertainty estimates compared to standard GP implementations.

Additionally, our subsampling-based warm start strategy provides computational efficiency

for large datasets without sacrificing predictive performance.

The methodology presented in this chapter forms the foundation for our subsequent work

on uncertainty quantification for foundation models in high-stakes applications. In Chapter 3,

we apply this methodology to healthcare foundation models for reliable patient risk prediction.

The computational challenges associated with large-scale implementation of GP methods are

addressed through kernel preconditioning techniques in Chapter 4. Finally, the limitations

of the Gaussian Process approach in non-stationary settings motivate our exploration of

Conformal Prediction in Chapter 5.
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While our Two-Stage GP methodology offers significant advantages over standard GP

implementations, it still faces challenges in scenarios with non-stationary data or distributional

shift. These challenges will be addressed in subsequent chapters through complementary

approaches like Locally Calibrated Adaptive Conformal Prediction (LC-ACP), which provides

distribution-free guarantees for prediction intervals.



Chapter 3

Application to Health Foundation Models

“The good physician treats the disease; the great physician treats the patient who has
the disease.”

— William Osler

3.1 Introduction

Building upon the two-stage Gaussian Process methodology developed in Chapter 2, we

now explore its application to health foundation models. Healthcare decisions often involve

high stakes with significant consequences for patient outcomes. The ability to accurately

predict patient risks for various conditions is a critical component of modern healthcare

systems, enabling preventive interventions and optimized resource allocation. However,

health data presents unique challenges for predictive modeling, including high dimensionality,

heterogeneity, temporal dynamics, missing values, and imbalanced distributions [14, 78].

Additionally, the sensitive nature of healthcare decisions necessitates models that not only

provide accurate predictions but also quantify uncertainty reliably [7, 50].

Pre-trained foundation models have emerged as powerful tools for analyzing complex

medical data, including electronic health records (EHRs), medical imaging, and clinical

notes [63, 100, 19]. These models leverage transfer learning to extract meaningful repre-

sentations from vast amounts of data, and have demonstrated impressive performance on

47
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various healthcare tasks. However, a significant limitation of standard foundation models is

their deterministic nature, producing point predictions without quantifying the associated

uncertainty [62].

In safety-critical healthcare applications, understanding prediction uncertainty is crucial

for several reasons:

1. Patient Safety: When a model expresses high uncertainty, healthcare providers can

exercise additional caution and potentially seek further diagnostic information.

2. Resource Allocation: Cases with high-confidence predictions can be prioritized

differently from those with uncertain predictions, optimizing the allocation of limited

healthcare resources.

3. Clinical Decision Support: Uncertainty measures provide valuable context for

clinicians, helping them balance model suggestions with their clinical expertise.

4. Patient Diversity: Medical data often contains underrepresented populations for

whom predictions may be less reliable; uncertainty quantification helps identify these

cases.

This chapter demonstrates how our two-stage GP approach enables accurate patient risk

prediction while providing robust uncertainty quantification, addressing a critical need in

healthcare analytics. The computational challenges encountered in applying GPs to large-

scale health datasets will motivate our development of efficient preconditioning techniques

in Chapter 4, while the limitations in handling non-stationary health data will lead to our

exploration of conformal prediction in Chapter 5. The methodology developed here provides

a foundation for our subsequent applications to climate foundation models in Chapter 6.
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3.2 Challenges in Health Data Prediction

3.2.1 Data Characteristics and Challenges

Health data prediction presents several unique challenges compared to other domains:

• Data Heterogeneity: Medical data is inherently heterogeneous, comprising structured

data (lab values, vital signs), unstructured text (clinical notes, discharge summaries),

images (X-rays, MRIs), and time series (ECG, EEG). This multimodal nature creates

challenges for developing unified predictive models [79].

• Temporality and Irregularity: Patient data is collected at irregular intervals and

varies in frequency based on acuity and healthcare setting. Models must account for

these irregular sampling patterns and the temporal dependencies between observations

[15].

• Class Imbalance: Many health conditions have low prevalence, resulting in severely

imbalanced datasets where negative instances far outnumber positive ones. This

imbalance can bias models toward majority classes, potentially overlooking critical

minority cases [47].

• Missing Data: Clinical datasets frequently contain missing values due to various

factors including practical constraints in data collection, patient dropout, and variable

recording practices across healthcare systems [101].

• Limited Labeled Data: While healthcare systems generate vast amounts of data,

labeled data for specific conditions is often limited, particularly for rare diseases or

novel clinical scenarios [53].

• High-Stakes Decisions: Perhaps most importantly, health predictions directly impact

patient care decisions. Incorrect predictions can lead to missed treatment opportunities

or unnecessary interventions, both with potentially serious consequences [14].
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These challenges underscore the need for predictive models that not only provide accurate

point predictions but also quantify uncertainty reliably. The Gaussian Process framework

presented in this thesis is particularly well-suited for this context due to its inherent uncertainty

quantification capabilities and adaptability to various data types.

3.2.2 Existing Foundation Models in Healthcare

Several foundation models have been developed specifically for healthcare applications, each

with their own strengths and limitations:

• Text-based Models: Models such as ClinicalBERT [100] and BioGPT [63] are pre-

trained on extensive medical literature and clinical notes, allowing them to understand

complex medical terminology and relationships.

• Vision Models: Vision Transformers (ViT) [19] and similar architectures have been

adapted for medical imaging tasks, including radiology, pathology, and dermatology.

• Multimodal Models: Emerging models that integrate data across modalities (text,

imaging, structured data) show promise for comprehensive patient assessment.

These models are typically pre-trained on large datasets in a self-supervised manner and

then fine-tuned for specific downstream tasks. The standard approach for adapting these

models involves freezing most of the pre-trained parameters while training a task-specific

final layer—typically a fully connected layer that produces deterministic outputs.

3.2.3 The Critical Role of Uncertainty Quantification

Uncertainty quantification (UQ) in healthcare applications is not merely a statistical nicety

but a critical component that can significantly impact patient outcomes and clinical decision-

making. Traditional deterministic models may provide predictions that appear confidently
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precise, but without an understanding of the associated uncertainty, clinicians cannot properly

evaluate the reliability of these predictions.

In healthcare prediction tasks, we encounter multiple forms of uncertainty:

• Aleatoric Uncertainty: This represents inherent stochasticity in the data generation

process, such as natural variations in patient responses to treatments or measurement

noise in clinical instruments. This type of uncertainty cannot be reduced with additional

data.

• Epistemic Uncertainty: This reflects model uncertainty due to limited training

data or model misspecification. Unlike aleatoric uncertainty, epistemic uncertainty can

potentially be reduced with additional data or improved model design.

• Distributional Uncertainty: This arises when new patients differ significantly from

the training population, particularly relevant in healthcare where model generalization

across diverse patient demographics is crucial.

The value of UQ in healthcare extends beyond academic interest:

• Triaging and Intervention Planning: Uncertainty measures can help prioritize cases,

directing immediate attention to high-risk patients with low uncertainty predictions

while flagging uncertain cases for additional review.

• Communicating with Patients: Sharing uncertainty information can support shared

decision-making, helping patients understand the confidence level associated with

different prognostic or diagnostic assessments.

• Model Monitoring and Improvement: Systematic patterns in prediction uncertainty

can highlight areas where models may be underperforming for specific patient subgroups,

guiding targeted data collection or model refinement.
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3.3 Mathematical Formulation of GP-Enhanced Founda-

tion Models

In this section, we present the mathematical formulation of our approach for enhancing

foundation models with uncertainty quantification capabilities through Gaussian Processes.

This builds directly on the two-stage GP methodology developed in Chapter 2, adapting it

to the specific challenges of foundation models.

3.3.1 Feature Extraction from Foundation Models

Let M be a pre-trained foundation model (e.g., ClinicalBERT, BioGPT, or ViT). For an

input x (which could be text, images, or other modalities), we denote the output of the

penultimate layer of M as ϕ(x) ∈ Rd, where d is the dimensionality of the feature space.

This feature extraction can be expressed as:

ϕ(x) = Mϕ(x) (3.1)

where Mϕ represents the feature extraction component of the model M (i.e., all layers

except the final prediction layer).

For a dataset D = {(xi, yi)}Ni=1 consisting of N input-output pairs, we can compute the

feature representations as Φ = {ϕ(xi)}Ni=1. These feature representations capture the semantic

information extracted by the foundation model from the raw inputs.

3.3.2 Two-Stage GP for Classification Tasks

While the formulation in Chapter 2 focused primarily on regression tasks, many healthcare

applications involve classification. Extending our approach to classification requires several

adaptations.

In a classification setting with C classes, we need to model the probabilities p(y = c|x) for
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each class c ∈ {1, 2, . . . , C}. Following our framework in Chapter 2, we employ a two-stage

approach to handle classification tasks effectively.

For classification, we use C independent GPs to transform the instance embedding into

class logits. Specifically, for multi-class classification with C classes, we utilize a Dirichlet

distribution as the likelihood model:

p(y|π) = Cat(π), π ∼ Dir(α) (3.2)

where Dir(α) is a Dirichlet distribution with α = (α1, . . . , αC). This approach allows us

to transform the classification problem into a regression task that fits within our two-stage

GP framework.

Dirichlet Distribution as a Likelihood Model for GP Classification

The key innovation in our approach is the use of the Dirichlet distribution as a likelihood model

for classification tasks. This transforms discrete classification into a continuous regression

problem appropriate for our two-stage GP methodology.

The transformation works as follows: it is well known that a random variable x ∼

Dir(α) can be generated using C independent Gamma distributions Γ(αi, 1). These Gamma

distributions can be approximated by LogNormal distributions:

x̃i ∼ LogNormal(ỹi, σ̃2
i ) (3.3)

where ỹi = logαi − σ̃2
i

2
and σ̃i = log

(
1
αi

+ 1
)
.

This approximation allows us to use a Gaussian likelihood in the log-space:

p(ỹi|f) = N (fi, σ̃
2
i ) (3.4)

where f = [f1, . . . , fC ] are C latent Gaussian processes. By using this lognormal approx-

imation of the Gamma distribution, we replace the intractable Dirichlet likelihood with a
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tractable Gaussian likelihood, making the problem amenable to our two-stage GP framework.

For classification labels, we create transformed targets using the concentration parameters

of a Dirichlet distribution. Specifically, for a data point belonging to class c, we set αc = α0

(e.g., α0 = 2) and αj ̸=c = 1, then compute the transformed targets ỹi using the formula above.

These transformed continuous targets now serve as the regression targets for our two-stage

GP approach.

Theoretical Foundations of GP Classification with Dirichlet Likelihood

The core theoretical insight of our approach is translating a discrete classification problem

into a continuous regression problem that can leverage our two-stage GP methodology. This

translation is mathematically justified through several key observations:

1. Relationship between Dirichlet and Gamma Distributions: The Dirichlet

distribution is intrinsically connected to the Gamma distribution. If Xi ∼ Γ(αi, 1) are

independent Gamma random variables for i = 1, . . . , C, then the vector ( X1∑C
j=1Xj

, . . . , XC∑C
j=1Xj

)

follows a Dir(α1, . . . , αC) distribution. This connection allows us to model the Dirichlet

parameters instead of directly modeling class probabilities.

2. LogNormal Approximation to Gamma: The Gamma distribution can be ap-

proximated by a LogNormal distribution with carefully chosen parameters. This approxi-

mation is key to making the problem tractable in a GP framework, as it allows us to work

with Gaussian likelihoods. Specifically, if X ∼ Γ(α, 1), then X can be approximated by

Y ∼ LogNormal(m, s2) where:

m = log(α)− 1

2
log

(
1 +

1

α

)
(3.5)

s2 = log

(
1 +

1

α

)
(3.6)

3. Working in Log-Space: By working in the log-space of the Gamma parameters, we

transform the problem into one with Gaussian likelihoods, which is directly amenable to our
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GP approach. The transformation maintains the probabilistic interpretation while enabling

efficient computation.

4. Label Encoding Scheme: For an input x belonging to class c, we use a specific

encoding scheme where we set αc = α0 > 1 (typically α0 = 2) and αj ̸=c = 1 for all other

classes. This creates a soft one-hot encoding in the Dirichlet parameter space, which retains

the classification structure while enabling continuous regression.

This theoretical foundation allows us to leverage the well-established properties of Gaussian

Processes for regression while addressing classification tasks. The transformation preserves

the probabilistic nature of the problem and enables principled uncertainty quantification,

which is crucial for healthcare applications.

Benefits of Two-Stage GP for Classification

The two-stage approach provides specific benefits for classification tasks beyond what standard

GP classification offers. In standard GP classification, a single GP is typically used with

non-Gaussian likelihoods (such as logistic or probit), requiring approximation methods like

Laplace approximation or expectation propagation that can lead to inaccurate uncertainty

estimates. Our two-stage approach addresses several key limitations:

1. Mean-Variance Decoupling: By separating mean prediction (Stage 1) from uncer-

tainty modeling (Stage 2), we achieve more accurate modeling of the decision boundaries

(through KRR) while maintaining proper uncertainty quantification (through the residual GP).

This is particularly valuable in classification where decision boundaries are often complex.

2. Calibration Improvement: Two-stage GP classification demonstrates better cali-

bration properties compared to standard GP classification. The mean function estimated

in Stage 1 captures the central tendency of the class distributions, while the residual GP in

Stage 2 models the uncertainty around this mean more accurately, leading to better-calibrated

probability estimates.

3. Handling Class Imbalance: In healthcare datasets with significant class imbalance,
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the two-stage approach is more robust because the first stage can use techniques like class

weighting or oversampling to establish a balanced mean function, while the second stage

properly models the uncertainty conditional on this balanced mean, rather than being

dominated by majority classes.

4. Computational Tractability: By working with Gaussian likelihoods throughout (via

the LogNormal approximation), our approach avoids the need for more complex approximate

inference methods typically required in GP classification, leading to more reliable uncertainty

estimates with fewer approximation artifacts.

These theoretical advantages translate to practical improvements in healthcare classifica-

tion tasks, where accurate uncertainty quantification is essential for clinical decision support

and patient risk stratification.

The two-stage process for classification works as follows:

Stage 1: Mean Function Estimation

For each class c, we train a KRR model on the feature representations to predict the

transformed labels. This gives us a robust mean prediction for each class:

m̂c(ϕ(x)) = k(ϕ(x),Φ)⊤(K+ λI)−1zc (3.7)

where:

• k(ϕ(x),Φ) is the vector of kernel evaluations between the feature representation of x

and all training feature representations

• K is the kernel matrix computed on the training feature representations

• λ is the regularization parameter

• zc is the vector of transformed labels for class c

Stage 2: Uncertainty Modeling

For each class c, we model the residuals using a zero-mean GP:
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rc(ϕ(x)) = zc(x)− m̂c(ϕ(x)) (3.8)

The posterior distribution of the GP provides us with a mean and variance for each class:

p(fc|ϕ(x),D) = N (µc(ϕ(x)), σ
2
c (ϕ(x))) (3.9)

where:

µc(ϕ(x)) = m̂c(ϕ(x)) + k(ϕ(x),Φ)⊤(K+ σ2
nI)

−1rc (3.10)

σ2
c (ϕ(x)) = k(ϕ(x), ϕ(x))− k(ϕ(x),Φ)⊤(K+ σ2

nI)
−1k(ϕ(x),Φ) (3.11)

From GP Outputs to Class Probabilities

For classification prediction, we need to transform the continuous GP outputs back into class

probabilities. This involves several steps:

1. We sample from the posterior distribution of each latent GP fc for a new input ϕ(x∗).

2. These samples are in the log-space of the Gamma parameters, so we exponentiate them to

obtain samples from the approximate Gamma distributions. 3. We normalize these values to

construct samples from the Dirichlet distribution, which represent class probability vectors.

4. Finally, we average over multiple samples to approximate the marginal class probabilities.

Mathematically, the probability for class j is computed by marginalizing over the latent

processes:

p[j|D,x∗] =

∫
ef

∗
j∑C

i=1 e
f∗i
p(f |D,x∗)df (3.12)

where p(f |D,x∗) is the posterior distribution of the latent GPs. This integral is intractable,

but can be approximated through Monte Carlo integration by drawing N samples from the

posterior:
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p[j|D,x∗] ≈
1

N

N∑
l=1

ef
∗,l
j∑C

i=1 e
f∗,li

(3.13)

where f ∗,l
j is the l-th sample from the posterior GP for class j.

Advantages and Limitations of the GP Classification Approach

This Dirichlet-based GP classification approach offers several important advantages. First, it

preserves the probabilistic nature of GPs, allowing us to quantify predictive uncertainty in a

principled way. Second, it enables the use of our two-stage GP methodology for classification

tasks without major modifications to the underlying framework. Third, it provides naturally

calibrated probabilities due to the Bayesian treatment of the problem.

However, there are also limitations to consider. The approximation of Gamma distributions

with LogNormal distributions introduces additional approximation error. The computational

cost scales linearly with the number of classes, which can be problematic for tasks with many

classes. Additionally, the accuracy of the uncertainty estimates depends on the quality of the

GP approximation and the number of samples drawn during inference. In practice, we find

that using N = 100 samples provides a good balance between computational efficiency and

accurate uncertainty estimation for most healthcare classification tasks.

Despite these limitations, this approach has proven highly effective for medical classification

tasks where uncertainty quantification is critical, enabling reliable identification of cases

where the model is uncertain in its predictions. This is crucial for healthcare applications

where incorrect predictions could have serious consequences.

3.3.3 Kernel Selection and Hyperparameter Optimization

Following the automatic kernel selection approach described in Algorithm 1 from Chapter 2,

we select the optimal kernel for both Stage 1 and Stage 2 of our GP framework.

For Stage 1, we select the kernel that minimizes the cross-validation error on the training
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set:

k∗1 = argmin
k

CV-Error(k,Φ, z) (3.14)

For Stage 2, we select the kernel that best models the residuals:

k∗2 = argmin
k

NLL(k,Φ, r) (3.15)

where NLL is the negative log-likelihood as defined in Equation (2.3) in Chapter 2.

The hyperparameters for each kernel are optimized using the subsampling warm start

strategy described in Section 2.4. Specifically, we:

1. Sample a subset of the training data Dsub ⊂ D 2. Optimize the hyperparameters on

Dsub to obtain θ∗sub 3. Use θ∗sub as the initial values for optimization on the full dataset D

This approach significantly reduces the computational cost of hyperparameter optimization

while still achieving high-quality uncertainty estimates.

3.4 Implementation and Architecture

Our approach enhances pre-trained foundation models with uncertainty quantification capa-

bilities by replacing the final layer with our two-stage GP framework. The implementation

follows these steps:

1. The foundation model is used as a feature extractor, with its parameters frozen after

pre-training.

2. The penultimate layer outputs serve as input features for the two-stage GP.

3. In the first stage, a Kernel Ridge Regression (KRR) model with automatic kernel

selection is trained to capture the mean prediction function, using Algorithm 1 from

Chapter 2.
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4. In the second stage, a zero-mean GP is trained on the residuals to model the uncertainty.

5. For classification tasks, we employ the Dirichlet classification approach described in

Section 3.3.

6. The subsampling warm start strategy (Section 2.4) is used to efficiently optimize the

GP hyperparameters when dealing with large datasets.

Figure 3.1 illustrates this integration. The foundation model processes the raw input data

through its specialized architecture (transformer blocks for text, convolutional or attention

layers for images), generating high-dimensional feature representations. These representations

then serve as inputs to our two-stage GP, which produces both predictions and associated

uncertainty estimates.

3.5 Experimental Methodology

3.5.1 Datasets and Tasks

For our experiments, we focused on two primary healthcare datasets:

1. MedNLI Dataset [81]: This dataset focuses on natural language inference in the

clinical domain, requiring models to identify potential clinical outcomes based on past

medical history documented in clinical notes. This task simulates the real-world scenario

of extracting clinically relevant information from unstructured text.

2. BreakHis Dataset [91]: This dataset contains microscopic images of breast tis-

sue, with the task of distinguishing between benign and malignant tumors based on

histopathological images. This represents a safety-critical visual diagnostic task.

Both datasets underwent preprocessing specific to their modality. For MedNLI, we applied

standard NLP preprocessing techniques including tokenization, sentence segmentation, and
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Figure 3.1: Integration of Two-Stage GP with Pre-trained Foundation Models. The foundation
model serves as a feature extractor, with its output features fed into the two-stage GP. The
first stage uses Kernel Ridge Regression for mean prediction, while the second stage employs
a zero-mean GP to model uncertainty.

entity recognition. For BreakHis, we applied image preprocessing including normalization,

augmentation, and patch extraction for the Vision Transformer inputs.

3.5.2 Foundation Models

For our experiments, we used the following foundation models:

1. ClinicalBERT [100]: A BERT-based model pre-trained on clinical notes, adapted for

the MedNLI task.

2. BioGPT [63]: A GPT-based model pre-trained on biomedical literature, also adapted

for the MedNLI task.
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3. Vision Transformer (ViT) [19]: A transformer-based image recognition model

adapted for the BreakHis dataset.

In line with standard practice, we kept most of the parameters in these foundation models

frozen and focused on training the final classification layer. This approach leverages the

rich representations learned during pre-training while adapting the models to our specific

healthcare tasks.

3.5.3 Baselines and Evaluation Metrics

For each foundation model, we compared three approaches for uncertainty quantification:

1. Monte Carlo Dropout [27]: A commonly used baseline for uncertainty quantification

in deep learning models.

2. Exact-GP: A standard GP model applied to the foundation model features.

3. Two-stage Exact-GP: Our proposed approach, incorporating the two-stage method-

ology described in Chapter 2.

3.6 Results and Analysis

3.6.1 Uncertainty Quantification Performance

The experimental results, depicted in Figure 3.2, demonstrate the effectiveness of our two-stage

GP approach in providing meaningful uncertainty quantification across different foundation

models and tasks.

Key observations from the results include:

1. Accuracy Differential: For all methods, the accuracy of "certain" predictions is higher

than that of "uncertain" predictions, validating the basic concept of uncertainty-aware

prediction. However, the magnitude of this difference varies across methods.
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Figure 3.2: Uncertainty quantification results in accuracy (%). "Certain" predictions consis-
tently show higher accuracy than "uncertain" predictions across all methods, with Two-stage
Exact-GP achieving the best separation.

2. Superior Separation in Two-stage GP: Our proposed two-stage Exact-GP consis-

tently demonstrates the largest separation between "certain" and "uncertain" prediction

accuracy across all foundation models. This indicates that our approach provides more

meaningful uncertainty estimates that correlate strongly with predictive performance.

3. Foundation Model Differences: The magnitude of improvement varies across

foundation models, with the text-based models (ClinicalBERT and BioGPT) showing

particularly strong benefits from our two-stage approach. This suggests that the

effectiveness of uncertainty quantification may depend on the nature of the data and

the specific architecture of the foundation model.

4. Overall Accuracy Maintenance: Importantly, our uncertainty-aware approach

maintains competitive overall accuracy compared to deterministic baselines, indicating

that the addition of uncertainty quantification does not come at the cost of predictive

performance.

3.6.2 Clinical Insights from Uncertainty Patterns

Further analysis of the uncertainty estimates revealed several interesting patterns:

1. Uncertainty vs. Difficulty: Cases with higher model uncertainty tended to cor-

respond to clinically complex or ambiguous cases, suggesting that the uncertainty
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estimates captured meaningful characteristics of the data.

2. Dataset Coverage: The distribution of uncertainty varied across different patient

subgroups, potentially highlighting areas where the models might have less reliable

performance due to limited training data.

3. Decision Boundaries: Uncertainty was typically highest near decision boundaries, con-

sistent with theoretical expectations and providing valuable information for borderline

cases where clinical judgment is most critical.

These findings demonstrate that our two-stage GP approach not only provides numerical

uncertainty estimates but generates estimates that align with intuitive notions of predictive

confidence and data complexity.

3.7 Limitations and Future Directions

3.7.1 Current Limitations

While our two-stage GP approach demonstrates promising results for uncertainty-aware

health foundation models, several limitations remain:

1. Computational Scalability: Although more efficient than alternatives like Deep

Ensembles, our approach still faces computational challenges with very large datasets.

The exact GP component scales cubically with the number of training examples,

potentially limiting applicability to massive clinical datasets without approximation

methods.

2. Foundation Model Dependence: The quality of uncertainty estimates depends in

part on the quality of the feature representations learned by the foundation model. If

these representations fail to capture relevant aspects of the data, the GP’s uncertainty

estimates may be compromised.
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3. No Theoretical Guarantees: Our approach does not provide any theoretical guar-

antees on the coverage of the uncertainty estimates. GP only works well with strong

assumptions on the data distribution.

4. Coupled Prediction and Uncertainty Estimation: Our approach is a coupled

prediction and uncertainty estimation framework. This means that the prediction and

uncertainty estimation are not independent and the uncertainty estimation is influenced

by the prediction.

5. Classification Approximation: As noted in Section 3.3, our application to classifi-

cation tasks relies on an approximation via Dirichlet distributions. While effective in

practice, this approach introduces additional hyperparameters that need to be carefully

tuned.

From a theoretical perspective, this approximation introduces two sources of error:

(1) the approximation of the Gamma distribution with a LogNormal distribution and

(2) the Monte Carlo approximation of the predictive integral. For the first source,

the quality of the LogNormal approximation to Gamma depends on the value of the

concentration parameters αi. The approximation is more accurate for larger values of

αi and deteriorates as αi approaches zero, potentially leading to inaccurate uncertainty

estimates for classes with very low probabilities. For the second source, the Monte

Carlo approximation error decreases at a rate of O(1/
√
N) where N is the number of

samples, which can be computationally expensive to reduce to negligible levels.

6. Temporal Dynamics: Current implementation does not explicitly model temporal

dependencies in longitudinal patient data, which are common in healthcare settings.

3.7.2 Future Research Directions

Several promising directions for future research emerge from this work:
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1. Scalable Approximations: Investigating sparse GP approximations, inducing points

methods, or neural network approximations could improve computational scalability

while maintaining uncertainty quality.

2. End-to-End Training: Developing methods for jointly training the foundation model

and GP components could potentially yield better aligned feature representations and

uncertainty estimates.

3. Multi-task Learning: Extending the framework to support multiple related health-

care prediction tasks simultaneously could improve sample efficiency and uncertainty

estimation across tasks.

4. Temporal Uncertainty: Incorporating explicit temporal modeling within the GP

framework to better capture uncertainty evolution in longitudinal patient trajectories.

In the next chapter, we will explore how our two-stage GP approach can be adapted

to another important domain: climate and weather foundation models, where uncertainty

quantification plays an equally critical role in supporting informed decision-making in the

face of complex, chaotic systems.

3.8 Summary

This chapter has demonstrated the application of the two-stage Gaussian Process methodology

to health foundation models, addressing the critical need for uncertainty quantification in

healthcare AI. Our approach enhances pre-trained foundation models by replacing their

deterministic final layers with a principled two-stage GP framework that provides robust and

efficient uncertainty estimates while maintaining predictive performance.

We provided a detailed mathematical formulation of how to extend our two-stage GP

framework to classification tasks using Dirichlet distributions based on [67], enabling its

application to a wide range of healthcare prediction problems. Experimental results across
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multiple healthcare prediction tasks show that our approach outperforms baseline uncertainty

quantification methods in terms of calibration quality, selective prediction performance, and

the meaningful separation between high-confidence and low-confidence predictions.

The challenges of health data prediction—including data heterogeneity, limited labeled

data, and high-stakes decisions—make uncertainty quantification especially important in

this domain. Our two-stage GP approach offers a principled solution to this need, providing

healthcare AI systems with the capacity to express doubt about their predictions in cases

where such doubt is warranted.

In the next chapter, we will explore how to make GP more efficient and resolve the biases

introduced by iterative methods when computing GP.



Chapter 4

Kernel Preconditioning and Unbiased

Gaussian Processes for Computational

Efficiency

4.1 Introduction

Large-scale Gaussian Processes (GPs) represent a critical tool for uncertainty quantification

across various domains. However, despite their mathematical elegance and principled uncer-

tainty estimates, they face significant computational challenges that limit their application in

modern machine learning contexts. This chapter addresses a fundamental bottleneck in GP

regression: the computational complexity associated with kernel matrix operations, which

becomes prohibitively expensive as datasets grow in size.

When applying GPs to real-world problems, practitioners must frequently estimate the

log marginal likelihood (LML) and its gradient to optimize hyperparameters. The standard

approach requires solving linear systems involving the kernel matrix and computing log

determinants, both of which scale cubically with the number of data points. As datasets grow

beyond a few thousand points, these operations become intractable on standard computing

68
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hardware, creating a barrier to GP application in many modern machine learning scenarios

where uncertainty quantification is most needed.

The previous chapters have demonstrated the effectiveness of GPs for uncertainty quantifi-

cation in various domains, particularly in health foundation models as discussed in Chapter

3. This chapter extends that work by addressing the practical computational challenges that

arise when scaling these methods to larger datasets. By developing more efficient computa-

tional techniques, we enable the broader application of GPs in contexts where uncertainty

quantification is critical but computational resources are limited.

This chapter makes two key contributions to address these challenges:

1. We introduce the Adaptive Factorized Nyström (AFN) preconditioner, a novel approach

that significantly accelerates iterative solvers for GP inference. By combining the

strengths of the Nyström approximation with a sparse correction term, AFN provides

more robust and efficient preconditioning than existing methods.

2. We develop an unbiased stochastic estimation technique for the LML and its gradient

based on the Single-Sample Conjugate Gradient (SS-CG) method. This approach

maintains statistical unbiasedness while reducing variance, making it practical for

scaling GP inference to large datasets.

Together, these innovations enable efficient and accurate GP inference on datasets that were

previously intractable, expanding the practical utility of GPs for uncertainty quantification in

complex real-world applications. Through comprehensive theoretical analysis and extensive

experiments, we demonstrate that our approach outperforms existing methods across a wide

range of problems, particularly for the challenging case of middle-range length scales where

alternative methods often fail.

The remainder of this chapter is organized as follows: Section 4.2 provides the mathematical

background necessary to understand GP inference and the computational challenges it faces.

Section 4.3 surveys existing approaches to address these challenges, highlighting their strengths
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and limitations. Sections 4.4 and 4.5 detail our novel contributions: the AFN preconditioner

and unbiased estimation techniques. Section 4.6 presents rigorous theoretical analysis of

our methods, while Section 4.7 discusses practical implementation considerations. Section

4.8 reports comprehensive experimental results on both synthetic and real-world datasets.

Finally, Section 4.9 summarizes our findings and discusses their implications for uncertainty

quantification in machine learning.

4.2 Background on Gaussian Process Inference

Given the training dataset X = {(xi,yi)}Ni=1 = (X,y), Gaussian process regression (GPR)

models the nonlinear relationship between xi and yi by a latent function f(·) ∼ GP(µ, k)

with mean function µ(·) and covariance function k(·, ·). And the latent function is usually

contaminated by some noise ϵ ∼ N(0, σ2I) such that yi = f(xi) + ϵi. Given a testing dataset

X∗ = {xj∗}M1 , according to the Gaussian process assumption, the following holds:

(f(x1), · · · f(xN)︸ ︷︷ ︸
f⊤X

, f(x1
∗), ·, f(xM∗ )︸ ︷︷ ︸

f⊤∗

)⊤ ∼ GP(µ,K)

where µ = (µ(x1), · · ·µ(xN)︸ ︷︷ ︸
µ⊤X

, µ(x1
∗), ·, µ(xM∗ )︸ ︷︷ ︸

µ⊤∗

)⊤ and K =

KXX + σ2I KX∗

K∗X K∗∗

 . Here KXX,

K∗∗ and KX∗ are defined by evaluating the kernel function over the training set, testing set

and their cross-interaction, respectively. Given this, the prediction and covariance for the

target of testing data can be derived as follows

E[f∗] = µ(X∗)−K∗X(KXX + σ2I)−1(y − µ(X)), (4.1)

Cov(f∗) = K∗∗ −K∗X(KXX + σ2I)−1KX∗. (4.2)
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4.2.1 Kernel Functions in Gaussian Process Regression

The kernel function in Gaussian Process Regression (GPR) is typically predefined with some

unknown parameters. Some widely used kernels in various applications will be considered in

this chapter:

• Gaussian kernel: k(x,x′
) = e−

∥x−x′∥22
2l2 ,

• exponential kernel: k(x,x′
) = e−

∥x−x′∥2
l ,

• Matérn-3/2 kernel: k(x,x′
) = (1 +

√
3||x−x′||2

l
)e−

√
3||x−x′||2

l ,

• Matérn-5/2 kernel: k(x,x′
) = (1 +

√
5||x−x′||2

l
+

5||x−x′||22
3l2

)e−
√
5||x−x′||2

l ,

all of which have a hyperparameter, the length-scale l. When modeling noisy observations,

another hyperparameter σ2 is introduced. Finding the optimal hyperparameters for the

prediction in the GPR model is a crucial task, as different sets of hyperparameters lead to

different models. This can be done by maximizing the LML of the GPR,

θ̂ = argmax
θ

L(θ) = log p(y|X, θ) = −(
1

2
y⊤K̂−1y + log |K̂|+ n log(2π)) (4.3)

where θ = (l, σ)⊤ and K̂ = KXX + σ2I. The gradient of LML can be derived as follows:

∂L

∂θ
=

1

2
y⊤K̂−1∂K̂

∂θ
K̂−1y − tr(K̂−1∂K̂

∂θ
), (4.4)

where ∂K̂
∂θ

is the derivative of the kernel matrix with respect to the hyperparameters. Since

the kernel matrix is dense, exact evaluation of LML and its gradient is prohibitively expensive.

Therefore, iterative methods are usually used to derive an estimation of LML and its gradient.
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4.3 Related Works

4.3.1 Trace Estimation

The assessment of both Log Marginal Likelihood (LML) and its gradient heavily relies on

accurate trace estimation. One commonly used method for approximating the trace of a

matrix A is Hutchinson’s trace estimator [44]:

Tr(A) = Eu∼N(0,I)[u
⊤Au] ≈ 1

k

k∑
i=1

u⊤
i Aui (4.5)

Here, the expectation is taken over u drawn from a standard normal distribution N(0, I).

Alternatives like Rademacher random vectors, whose entries are either 1 or −1 with equal

probability, can also be employed. For estimating the trace of a matrix function f(A) where

A is a positive definite matrix, the stochastic Lanczos trace estimator is frequently utilized

[96]:

Tr(f(A)) = Eu∼N(0,I)[u
⊤f(A)u] ≈ 1

k

k∑
i=1

u⊤
i Vmf(T

m)V⊤
mui (4.6)

In this formula, A ≈ VmT
mV⊤

m is approximate factorization of A derived by running the m

steps Lanczos algorithm. It should be noted that if m < N , this estimation is biased [32].

This bias is introduced by Gaussian quadrature.

4.3.2 Iterative GP

In summary, evaluating the loss and its gradient requires:

• Solving a linear system: K̂u = y

• Estimate the log determinant log |K̂| =
∑N

i=1 log λi(K̂)

• Estimate the trace tr(K̂−1 ∂K̂
∂θ

)
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• Matrix-vector product (MVP) for ∂K̂
∂θ

Computing the log determinant and solving a linear system directly can be computationally

expensive, often requiring cubic time complexity. To mitigate this, the Conjugate Gradient

(CG) method is commonly employed. This approach falls under the category of Iterative

Gaussian Processes (Iter-GP). Iter-GP approximates solutions to linear systems K̂y and

K̂zi using m-step CG. Concurrently, it stores a partial Lanczos factorization T ∈ Rm×m

associated with random initial probe vectors zi for estimating the log determinant through

stochastic Lanczos trace estimation (SLT) [28]. However, it’s important to note that this

approach introduces a systematic bias, stemming from the inherent bias in the CG method

[74].

4.3.3 Preconditioning

When dealing with Gaussian Processes (GPs), the matrix K̂ is often ill-conditioned, making

it challenging to efficiently estimate the Log Marginal Likelihood (LML) and its gradient.

The application of the Conjugate Gradient (CG) method in such cases can be particularly

slow to converge and tends to produce high-variance estimates for the log determinant. As a

result, the Preconditioned Conjugate Gradient (PCG) method is commonly used to expedite

convergence. Furthermore, Wenger et al. [102] shows that preconditioner can also reduce the

variance of the log determinant estimation for the LML and trace estimation for its gradient.

Their method is based on the following observations:

log |K̂| = log |PP−1K̂| = log |P|+ log |P−1/2K̂P−1/2| (4.7)

∂ log |K̂|
∂θ

= tr(P−1∂P

∂θ
) + tr(K̂−1∂K̂

∂θ
−P−1∂P

∂θ
). (4.8)

where P is a preconditioner matrix. If the preconditioner exhibits a favorable structure,

enabling easy computation of log |P| and tr(P−1 ∂P
∂θ
) and significantly reduces the condition

number of P−1K̂, then both the LML and its gradient will converge more rapidly and exhibit
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lower variance.

4.3.4 Unbiased Estimation

Even though the preconditioner can both reduce variance and speed up convergence, the

estimation remains inherently biased. Research by Golub and Meurant [32] and Potapczynski

et al. [74] shows that using CG for LML estimation yields a biased outcome. Specifically, the

first term of the LML tends to be underestimated, while the second term is often overestimated.

This imbalance skews the model towards under-fitting the training data, as the first term

gauges model fit and the second assesses model complexity. To counteract this bias, two

unbiased estimators studied in [6] could be used. These two estimators leverage randomized

truncation techniques. Given a series Φ̄ =
∑H

i=1 ∆i, and a probability distribution P(J ) over

{1, . . . , H} there are two methods leading to an unbiased estimator of Φ:

• Method 1: Russian-Roulette estimator

Φ̂ =
J∑
i=1

∆i

P(J ≥ i)
, where J ∼ P(J ), (4.9)

• Method 2: Single-Sample estimator

Φ =
H∑
i=1

∆i

P(J = i)
I(J = i), where J ∼ P(J )., (4.10)

The authors in [74] then proposed two unbiased estimators for y⊤K̂−1y and log |K̂| based on

Russian-Roulette CG (RR-CG) and Single-Sample Random Fourier Features (SS-RFF). The

key to apply these two estimators to GP is to note the fact that both exact linear solve and

logdet can be written as a summation:

K̂−1y =
N∑
i=1

γidi (4.11)
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Although log |K̂| = Ez[∥z∥2e⊤(logTN
z )e] itself is not a series form which can be directly

applied to the these two unbiased estimator, it can be written as a telescopic sum. For a

fixed probe vector zi,

z⊤i (log K̂)zi = ∥zi∥2e⊤(logTJmin
zi

)e+
N−1∑
j=Jmin

∥zi∥2e⊤(logTj+1
zi

− logTi
zi
)e. (4.12)

The size of T i+1
zi

and T izi are i+ 1 and i respectively, but for notational simplicity, we write

their difference directly. There should be no ambiguity from the context. Here Jmin is usually

taken to be a constant larger than 1, which is the minimum number of steps to run CG.

However, these two estimators are not effective due to the high cost. Our method based on

SS will be more practical.

4.3.5 Stochastic Gradient Descent for Gaussian Process

An alternative strategy to tackle bias in Gaussian Process modeling involves the integration

of Stochastic Gradient Descent (SGD). Chen et al. [16] established that mini-batch gradient

descent assures hyperparameter convergence towards optimal values, even when faced with

biased gradient estimates due to sample correlation. In contrast, our approach employs what

can be termed as ’exact stochastic gradient descent’, wherein we compute the unbiased exact

gradient at each iteration. This feature allows us to directly apply all existing theoretical

guarantees related to SGD. Importantly, when the gradient is explicitly calculable as in

Equation (4.4), the need for loss function evaluation at each step is eliminated, yielding

substantial computational savings compared to Iter-GP. Yet, for cases where the likelihood is

not Gaussian or the preconditioner’s gradient is not explicitly computable, as in Equation

4.7, we utilize automatic differentiation for gradient computation [28, 102], ensuring that our

gradient estimates remain unbiased.
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Figure 4.1: Surface plot of the log LML for optimization path of LBFGS with strong Wolfe.
We use GP to learn the function f(x) = sin (2πx)ex + x2 + ϵ where ϵ ∼ N(0, 1).

4.3.6 Barely Biased GP

In the paper by Burt et al. [12], the authors use a simple inequality to guide the performance

of the Conjugate Gradient (CG) method, terminating it when a set accuracy threshold is met.

This bears a superficial resemblance to our small-bias PredSS-CG. However, a key distinction

exists: our PredSS-CG is designed to be inherently unbiased. Moreover, when aiming for a

specific accuracy level ϵ, Burt et al.’s method must execute enough steps to deterministically

meet this error tolerance. In contrast, our approach only requires the bias to fall below ϵ,

which, on average, necessitates fewer iterations.

4.4 Adaptive Factorized Nyström Preconditioner

The Adaptive Factorized Nyström (AFN) preconditioner is a key component of our approach

to efficient unbiased Gaussian Processes. In this section, we describe the construction and

properties of the AFN preconditioner.
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Figure 4.2: Surface plot of the log LML for optimization path of GD with backtracking. We
use GP to learn the function f(x) = sin (2πx)ex + x2 + ϵ where ϵ ∼ N(0, 1).

4.4.1 Background: Nyström Approximation

The Nyström method is a well-established technique for approximating kernel matrices,

originally derived from quadrature rules for integral equations. Given a kernel matrix

K ∈ Rn×n, the Nyström approximation constructs a low-rank approximation by selecting a

subset of m landmark points (where m≪ n).

Let Xk ⊂ X be a set of k landmark points selected from the full dataset X. The Nyström

approximation of the kernel matrix K can be expressed as:

KNys = KX,Xk
K−1
Xk,Xk

KXk,X (4.13)

where KX,Xk
represents the kernel matrix between all points in X and the landmark points

in Xk, and KXk,Xk
is the kernel matrix among the landmark points.

The quality of the Nyström approximation heavily depends on the selection of landmark

points. The approximation error is theoretically bounded by the fill distance of the landmark
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points, which measures how well the landmark points cover the input space. Specifically,

for Gaussian kernels, the approximation error decreases exponentially with decreasing fill

distance.

When using the Nyström approximation as a preconditioner for the system (K+ µI), the

standard approach applies the Sherman-Morrison-Woodbury (SMW) formula, which requires

solving systems involving matrices of size k × k. This approach works well when k is small,

but becomes computationally challenging and potentially numerically unstable when k is

large.

4.4.2 Factorized Sparse Approximate Inverse (FSAI)

The Factorized Sparse Approximate Inverse (FSAI) method, developed by Kolotilina and

Yeremin, is a technique for computing a sparse approximate inverse of a symmetric positive

definite matrix. Given a matrix A and a sparsity pattern S, FSAI computes a lower triangular

matrix G such that G⊤G ≈ A−1.

A key advantage of FSAI is that it only requires the entries of A corresponding to the

sparsity pattern of G and G⊤. This property is particularly valuable when dealing with

dense matrices where computing and storing the full matrix would be prohibitively expensive.

Additionally, the computation of each row of G is independent of other rows, making the

algorithm highly parallelizable.

In the context of kernel matrices, the sparsity pattern for FSAI is typically based on the

geometric proximity of data points. For each point, we consider its nearest neighbors to

determine the non-zero entries in the corresponding row of G.

4.4.3 Construction of the AFN Preconditioner

The AFN preconditioner is designed to efficiently approximate the inverse of the kernel matrix

K. It combines the strengths of the Nyström approximation with a sparse correction term

computed using FSAI to improve accuracy. By avoiding the use of the SMW formula, AFN
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remains effective even when a large number of landmark points is needed for accuracy. The

construction process is outlined in Algorithm 4.

Algorithm 4 Construction of the AFN Preconditioner
1: Input: Kernel matrix K ∈ Rn×n, number of landmark points m, sparsity pattern S
2: Output: AFN preconditioner M
3: Select m landmark points using Farthest Point Sampling (FPS) or k-means clustering

4: Partition the kernel matrix as: K =

[
K11 K12

K⊤
12 K22

]
where K11 ∈ Rm×m is the kernel matrix

for landmark points
5: Compute the Cholesky factorization of K11 + µI = LL⊤

6: Compute the Schur complement KSchur = K22 −K⊤
12(K11 + µI)−1K12

7: Apply Factorized Sparse Approximate Inverse (FSAI) to KSchur using the sparsity pattern
S to obtain G

8: Set M11 = K11 + µI
9: Set M12 = K12

10: Set M21 = K⊤
12

11: Set M22 = (G⊤G)−1 +K⊤
12(K11 + µI)−1K12

12: Construct M in factorized form: M =

[
L 0

K⊤
12L

−⊤ G−1

] [
L⊤ L−1K12

0 G−⊤

]

4.4.4 Factorized Form of the AFN Preconditioner

The AFN preconditioner has the following factorized form:

M =

 L 0

K⊤
12L

−⊤ G−1


︸ ︷︷ ︸

U⊤

L⊤ L−1K12

0 G−⊤

 . (4.14)

It is similar to the Nyström preconditioner. However, it adds a sparse correction to the

residual matrix to make it more accurate. Since AFN is more accurate than Randomized

Nyström preconditioner (RAN) [25], under the same conditions as RAN, the preconditioned

matrix is guaranteed to have a condition number smaller than 28.



80

Multiplying the factors gives M another form:

M =

K11 + µI K12

K⊤
12 (G⊤G)−1 +K⊤

12(K11 + µI)−1K12

 (4.15)

= Knys + µI+

0 0

0 (G⊤G)−1 +K⊤
12 ((K11 + µI)−1 − (K11)

−1)K12 − µ I


︸ ︷︷ ︸

Correction term

, (4.16)

where Knys is the Nyström approximation of the kernel matrix.

4.5 Unbiased Log Marginal Likelihood Estimation and its

Gradient

Although RR estimator in Equation 4.9 and SS estimator in Equation 4.10 are both unbiased,

SS estimator has a lower cost but a higher variance than RR estimator. Therefore, in order

to take advantage of the low cost but reduce the variance, we propose the Preconditioned

Single-Sample CG (PredSS-CG ).

4.5.1 SS-CG

After we write the exact solve as summation as in Equation (4.11), we can apply SS estimator

to CG to derive the SS-CG. It only samples one term from the series.

ûi0 =
n∑
j=1

γij
P(J = j)

dijI{j = Ji} =
γiJi

P(J = Ji)
diJi . (4.17)
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In order to further reduce variance, we make a slight modification to it and denote the

following scheme as SS-CG. We rewrite the solution from N-step CG as

K̂−1y = SJmin
+

N−1∑
i=Jmin

(Si+1 − Si) (4.18)

where Sp =
∑p

i=1 γidi. Then we define the solution from SS-CG as

ûi0 = SJmin
+

γiJi
P(J = Ji)

diJi := ϕJi . (4.19)

Similar to the log-determinant estimation, we also use Jmin for CG so that the solution at

least is not extremely far away from the true solution. Then the inverse quadratic form can

be estimated as

y⊤K̂−1y ≈ 1

l

l∑
i=1

y⊤ϕJi := L1. (4.20)

Here we just need to run l times unbiased estimator and take average to get the unbiased

estimate of K̂−1y. Recall for a fixed z, z⊤ log (K̂)z can be written as a series expansion in

Equation 4.12. Then SS estimator only samples one term from the summation while keeping

the first term.

z⊤i (log K̂)zi ≈ ∥zi∥2e(log T Jmin
zi

)e+
∥zi∥2e⊤(logTJ+1

zi
− logTJ

zi
)e

P(J = J)︸ ︷︷ ︸
ψzi,J

, J ∼ P(J ). (4.21)

Finally, the log-determinant can be estimated as

log |K̂| ≈ 1

l

l∑
j=1

1

k

k∑
i=1

ψzi,Jj := L2. (4.22)

For the gradient of LML in Equation. 4.4, note we can reuse the unbiased estimation for

estimating LML. We have obtained an estimate for K̂−1y ≈ ϕJi . In order to get the partial
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Lanczos factorization for estimating the log-determinant, the linear system K̂−1x = zk is also

solved using SS-CG. Denote the estimation by ϕJi,k. Then for the trace term in gradient, we

can estimate as

tr(K̂−1∂K̂

∂θ
) ≈ 1

l

l∑
i=1

1

k

k∑
i=1

ϕ⊤
Ji,k

∂K̂

∂θ
zi := DL1 (4.23)

1

2
y⊤K̂−1∂K̂

∂θ
K̂−1y =

1

2l

l∑
i=1

ϕ⊤
Ji,1

∂K̂

∂θ
ϕJi,2 := DL2 (4.24)

Note ϕJi,1 and ϕJi,2 mean two independent run of unbiased estimation. Otherwise, we can

not guarantee the estimation is unbiased.

4.5.2 Theoretical Analysis of SS Estimator

Firstly, we prove the unbiasedness of a general SS estimator and compute its variance. This

estimator has been studied in [64], [6] and [74]. For self-completeness, we provide proof here.

Theorem 4.5.1. Denote the SS estimator defined in Equation 4.10 by Φ. It is an unbiased

estimator and has a variance

Var(Φ) =
H∑
i=1

∆2
i (1− P(J = i))

P(J = i)
. (4.25)

Proof.

EJ [Φ] =
H∑
i=1

∆i

P(J = i)
E(I(J = i)) =

H∑
i=1

∆i

P(J = i)
P(J = i) =

H∑
i=1

∆i = Φ. (4.26)
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The variance can be computed as

Var(Φ) =
H∑
i=1

∆2
i

P(J = i)2
Var(I(J = i)) (4.27)

=
H∑
i=1

∆2
i

P(J = i)2
P(J = i)(1− P(J = i)) (4.28)

=
H∑
i=1

∆2
i (1− P(J = i))

P(J = i)
(4.29)

=
H∑
i=1

∆2
i

P(J = i)
−

H∑
i=1

∆2
i . (4.30)

Remark 1. In [74], the authors show that P(J = i) = ∆i∑H
i ∆i

minimizes the variance of SS

estimator. In practice, we cannot compute this distribution, so we just try some different

distributions in our experiments. However, the authors in [74] suggested to use ∆i ∼ e−λi as

an approximation to ∆i ∼ C−i where C is a number depending on the conditioning of the

kernel matrix.

Then we can bound the variance of SS estimator for inverse quadratic term and log-

determinant.

Theorem 4.5.2. LML estimated by SS-CG is unbiased. The variance of LML estimated by

SS estimator is bounded by

Var(L) ≤ (
2Cρ
lk

+ C1)
N∑

i=Jmin

1− P(J = i)

P(J = i)

(√κ− 1√
κ+ 1

)4i

(4.31)

Proof. Firstly, according to the Equation 4.25, the variance of SS estimator for the inverse
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quadratic term is

Var(y⊤ϕJi) =
N∑

i=Jmin

γ2i (y
⊤di)

2

P(J = i)
−

N∑
i=Jmin

γ2i (y
⊤di)

2 (4.32)

(4.33)

Then according to the convergence rate of CG, we have

√
µ∥γpdp∥ ≤ ∥γpdp∥K̂ = ∥Sp − Sp−1∥K̂ (4.34)

≤ ∥Sp − K̂−1y∥K̂ + ∥K̂−1y − Sp−1∥K̂ (4.35)

≤ 2
(√κ− 1√

κ+ 1

)p
∥y∥K̂ + 2

(√κ− 1√
κ+ 1

)p+1

∥y∥K̂ (4.36)

≤ 4
(√κ− 1√

κ+ 1

)p
∥y∥K̂ (4.37)

The first equality comes from the fact that K̂ ⪰ µI. Then we have

∥γpdp∥2 ≤
16

µ

(√κ− 1√
κ+ 1

)2p

∥y∥2
K̂

(4.38)

By Cauchy-Schwarz inequality, we have

|γpy⊤dp|2 ≤ ∥y∥2∥γpdp∥2 (4.39)

≤ 16

µ

(√κ− 1√
κ+ 1

)2p

∥y∥2
K̂
∥y∥2 (4.40)

≤ C1

(√κ− 1√
κ+ 1

)2p

(4.41)

where C1 =
16
µ
∥y∥2

K̂
∥y∥2. Then we have

Var(y⊤ϕJi) ≤ C1

N∑
i=Jmin

1− P(J = i)

P(J = i)

(√κ− 1√
κ+ 1

)4i

(4.42)
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Var(L1) =
1

l2

l∑
i=1

Var(y⊤ϕJi) ≤
C1

l

N∑
i=Jmin

1− P(J = i)

P(J = i)

(√κ− 1√
κ+ 1

)4i

(4.43)

For log-determinant, we need to compute the bound of ∥zi∥2e⊤(log T J+1
zi

− log T Jzi)e. Authors

in [96] proved that

|∥zi∥2e(log T Jzi)e− z⊤i (log K̂)zi| ≤ Cρ

(√κ− 1√
κ+ 1

)2J

(4.44)

where ρ =
√
κ−1√
κ+1

and the constant Cρ depends on ρ. Then by telescoping the sum, we have

|∥zi∥2e⊤(log T J+1
zi

− log T Jzi)e|

≤ |∥zi∥2e(log T Jzi)e− z⊤i (log K̂)zi|+ |∥zi∥2e(log T J+1
zi

)e− z⊤i (log K̂)zi|

≤ Cρ

(√κ− 1√
κ+ 1

)2J

+
(√κ− 1√

κ+ 1

)2(J+1)

≤ 2Cρ

(√κ− 1√
κ+ 1

)2J

Therefore,

Var(ψzi,J) =
N∑

i=Jmin

∆2
i (1− P(J = i))

P(J = i)
≤ 2Cρ

N∑
i=Jmin

1− P(J = i)

P(J = i)

(√κ− 1√
κ+ 1

)4i

(4.45)

Since z′is and J ′
js are all independent, we have

Var(L2) ≤
kl

l2k2
Var(ψzi,Jj) ≤

2Cρ
lk

N∑
i=Jmin

1− P(J = i)

P(J = i)

(√κ− 1√
κ+ 1

)4i

(4.46)

Finally, the variance of LML estimated by SS-CG can be bounded by

Var(L) = Var(L1) + Var(L2) ≤ (
2Cρ
lk

+
C1

l
)

N∑
i=Jmin

1− P(J = i)

P(J = i)

(√κ− 1√
κ+ 1

)4i

(4.47)
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Similarly, for the gradient estimation, we can prove.

Theorem 4.5.3. The estimation of the gradient of LML derived by SS-CG is unbiased. The

variance has the following bound.

4.5.3 Preconditioned SS-CG

SS-CG presents a cost-effective alternative that comes with the side effect of increased variance

compared RR-CG proposed [74]. In the following subsection, we will show how to reduce the

variance of SS-CG by using preconditioner to make it practical.

The variance of the SS-CG estimation for both inverse quadratic term and log determinant

term can be reduced by using a preconditioner as the bound indicates. If the variance is

small enough, we can omit the loop for J and use only one sample for estimation. Then the

cost for PredSS-CGwill be same as the CG. In this work, we will use the Adaptive Factorized

Nyström Preconditioner (AFN) from [111] since it’s adaptive to kernels’ spectrum and its

gradient can be computed efficiently by hand thus avoiding automatic differentiation. AFN

has the following form factorized form

M =

 L 0

K⊤
12L

−⊤ G−1


︸ ︷︷ ︸

U⊤

L⊤ L−1K12

0 G−⊤

 . (4.48)

It is similar to the Nyström preconditioner. However, it adds a sparse correction to the

residual matrix to make it more accurate. Since AFN is more accurate than Randmoized

Nystróm preconditioner [25], under the same conditions as RAN, the preconitioned matrix is

guaranteed to have a condition number smaller than 28. Then the variance is bounded by

Var(L) ≤ (
2Cρ
lk

+ C1)
N∑

i=Jmin

1− P(J = i)

P(J = i)

(√28− 1√
28 + 1

)4i

(4.49)

With a good preconidtioner, this variance can be controlled in a reasonable range. In the paper
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Figure 4.3: Lanczos logdet, AFN Preconditioned SS logdet, SS logdet and true logdet for a
Gaussian kernel matrix of size 3000. X-axis is the CG iteration counts for SLT. The average
(P)CG iteration counts for SS-(P)CG are denoted by Javg

by Wenger et al. [102], a novel tail bound is established, revealing that the number of random

vectors required for stochastic Lanczos quadrature to attain a specific accuracy is influenced

by the condition number of the preconditioned matrix and the F-norm approximation error.

Our work diverges from theirs in two key aspects. Firstly, the bias for both loss and gradient

estimations is eliminated, thanks to our estimator design. Secondly, the variance of the

sample distribution P can be explicitly calculated in our model. These differences allow for a

clearer understanding of how the number of random vectors, the condition number, and the

number of unbiased estimation runs impact variance, as detailed in inequality (4.49).

4.5.4 Small-Bias SS-CG

In practice, we can only run CG for a limited number of iterations due to the computational

cost. Furthermore, with the aid of preconditioner, the number of iterations needed to achieve

a high accuracy is usually reasonablely small. Suppose after k setps of CG, the accuracy is

already satisfying and can be regarded as unbiased. However, for SS-CG, we need to consider

a rare not impossible in SS-CG that J = N since the probability distribution is supported on

while range from Jmin to N . In this case, the SS-CG will be equivalent to solve the equation

exactly. This is of courese unacceptable. In order to avoid this suitation, we propose a

small-bias CG (SB-CG). Instead of supporting on the whole range, we only support on a

truncated range [Jmin, Jmax]. The Jmax will be the maximum number of iterations. Then the
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Algorithm 5 Preconditioned SS-CG for GP Inference and Hyperparameter Optimization
1: Input: Training data (X,y), kernel function k(·, ·,θ) with hyperparameters θ, regular-

ization parameter µ, convergence tolerance ϵ, maximum iterations T
2: Output: Optimized hyperparameters θ∗, log marginal likelihood log p(y|X,θ∗), and

posterior predictive distribution parameters
3: Hyperparameter Optimization:
4: Initialize hyperparameters θ(0)

5: FOR t = 0 to T − 1 DO
6: Construct kernel matrix K(t) using k(·, ·,θ(t))
7: Construct AFN preconditioner M(t) using Algorithm 4
8: Sample J (t) ∼ PJ where PJ is the probability distribution over iteration counts
9: Compute α(t) = (K(t) + µI)−1y using preconditioned CG with M(t) as preconditioner,

running for J (t) iterations
10: Estimate log determinant log |K(t) + µI| using preconditioned SS-CG with M(t) as

preconditioner
11: Compute log marginal likelihood: log p(y|X,θ(t)) = −1

2
y⊤α(t) − 1

2
log |K(t) + µI| −

n
2
log(2π)

12: Estimate gradients of log marginal likelihood w.r.t. θ using preconditioned SS-CG:
∂ log p(y|X,θ(t))

∂θi
= 1

2
α(t)⊤ ∂K(t)

∂θi
α(t) − 1

2
tr
(
(K(t) + µI)−1 ∂K(t)

∂θi

)
13: Update hyperparameters: θ(t+1) = θ(t) + η(t)∇θ log p(y|X,θ(t))
14: IF ∥θ(t+1) − θ(t)∥ < ϵ THEN
15: break
16: END IF
17: END FOR
18: Set θ∗ = θ(T )

19: GP Inference with Optimized Hyperparameters:
20: Construct final kernel matrix K∗ using k(·, ·,θ∗)
21: Construct final AFN preconditioner M∗ using Algorithm 4
22: Compute α∗ = (K∗ + µI)−1y using preconditioned CG with M∗ as preconditioner
23: For Prediction: Given test points X∗, compute:
24: K∗ = k(X,X∗,θ

∗) (cross-covariances)
25: K∗∗ = k(X∗,X∗,θ

∗) (test covariances)
26: Mean predictions: E[f∗] = K⊤

∗ α
∗

27: Variance predictions: Var[f∗] = K∗∗ −K⊤
∗ (K

∗ + µI)−1K∗
28: return θ∗, log p(y|X,θ∗), E[f∗], Var[f∗]
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SB-CG estimator can be written as

Φ̃ =
Jmax∑
i=1

∆i

P(J = i)
I(J = i) (4.50)

will be no longer unbiased. However, we can still prove that it’s bias is small.

Theorem 4.5.4. Denote the Small-Biased SS estimator defined in Equation 4.50 by Φ̃ and

the true value by Φ̄ =
∑H

i−1 ∆i. If
∑H

i=Jmax
∆i ≤ ϵ, then the bias of the estimator is bounded

by ϵ

|E(Φ̃)− Φ̄| ≤ ϵ. (4.51)

Var(Φ̃) =
Jmax∑
i=Jmin

∆2
i (1− P(J = i))

P(J = i)
. (4.52)

Proof. Now the J is supported on [Jmin, Jmax]. Then we have

EJ [Φ̃] =
Jmax∑
i=1

∆i

P(J = i)
E(I(J = i)) =

Jmax∑
i=1

∆i

P(J = i)
P(J = i) =

Jmax∑
i=1

∆i = Φ̄−
N∑
Jmax

∆i.

(4.53)

Since
∑N

i=Jmax
∆i < ϵ, we have

|E(Φ̃)− Φ̄| ≤ ϵ. (4.54)

The variance can be computed similar to the original SS estimator.

Theorem 4.5.5. When the following probability distribution P (J = i) = e−λi∑Jmax
i=Jmin

e−λi
is used,

the expected number of iterations of the SB-CG estimator has the following upper bound.

E[J ] ≤
1
λ
(Jmin − Jmaxe

−λ(Jmax−Jmin)) + 1
λ2
(1− e−λ(Jmax−Jmin))

(1− e−λ(Jmax−Jmin−1))
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Proof.

E[J ] =
Jmax∑
i=Jmin

iP (J = i) =
Jmax∑
i=Jmin

i
e−λi∑Jmax

i=Jmin
e−λi

Firstly, we have

Jmax∑
i=Jmin

e−λi =
e−λJmin(1− eλ(Jmin−Jmax−1))

1− 1
eλ

≥ e−λJmin(1− eλ(Jmin−Jmax−1))

Then we have

Jmax∑
i=Jmin

e−λii ≤
∫ Jmax

Jmin

e−λxxdx =
1

λ
Jmine

−λJmin − 1

λ
Jmaxe

−λJmax +
1

λ2
(e−λJmin − e−λJmax)

Combining the above two inequalities, we obtain

E[J ] ≤
1
λ
(Jmin − Jmaxe

−λ(Jmax−Jmin)) + 1
λ2
(1− e−λ(Jmax−Jmin))

(1− e−λ(Jmax−Jmin−1))

Corollary 1. If we set Jmin = 5, Jmax = 5000 and λ = 0.1 as suggested [74]. The bounds on

E[J ] can be simplified to

E[J ] ≤ 151

Proof. Since eλ(Jmin−Jmax) ∼ 0, we have E[J ] ≤ Jmin

λ
+ 1

λ2
+ 1 = 151.

4.6 Theoretical Analysis of Kernel Preconditioning

The effectiveness of our AFN preconditioner and unbiased estimation techniques is supported

by rigorous theoretical analysis. In this section, we present key theoretical results that provide

guarantees on the performance of our methods. These results not only justify our algorithmic
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choices but also offer insights into the fundamental properties of kernel matrices and their

approximations.

We begin by analyzing the geometric properties of landmark point selection, which is

crucial for the construction of effective preconditioners. We then establish bounds on the

approximation error of the Nyström method, which forms the basis of our AFN preconditioner.

4.6.1 Interplay between Fill and Separation Distance

In this section, we study the relationship between the fill distance hXk
and separation distance

qXk
for landmark point selection. These metrics are crucial for understanding the quality of

preconditioners based on landmark points.

Theorem 4.6.1 (Fill-Separation Bounds). Suppose all the data points are inside a unit ball

Ω in Rd. Then for an arbitrary subset Xk = {xi1 , . . . ,xik} of X, the following bounds hold

for hXk
and qXk

:

hXk
≥ CΩk

−1/d and qXk
≤ C ′

Ωk
−1/d, (4.55)

where CΩ and C ′
Ω are two constants only depending on Ω.

The bounds in Theorem 4.6.1 indicate that the minimal fill distance hXk
cannot be smaller

than CΩk
−1/d while the maximal separation distance qXk

cannot be greater than C
′
Ωk

−1/d.

This establishes a fundamental relationship: CΩ

C
′
Ω

qXk
≤ hXk

.

Theorem 4.6.2 (Farthest Point Sampling Optimality). Assume the data points are on a

bounded domain Ω that satisfies the interior cone condition. If hXk
≤ CqXk

for a constant C,

then:

CΩk
−1/d ≤ hXk

≤ C × C ′
Ωk

−1/d,
CΩ

C
k−1/d ≤ qXk

≤ C ′
Ωk

−1/d. (4.56)

Theorem 4.6.2 shows that if a sampling scheme can select a subset Xk with hXk
≤ CqXk

,
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then qXk
has the same order as the maximal separation distance achievable by any subset

with k points.

Theorem 4.6.3 (FPS Optimality Guarantees). Suppose the minimal fill distance of a subset

with k points is achieved with X∗
k and the maximal separation distance of a subset with k

points is achieved with Xk∗. Then the set Xk sampled by Farthest Point Sampling (FPS)

satisfies:

hXk
≤ qXk

and qXk
≥ 1

2
qXk∗ and hXk

≤ 2hX∗
k
. (4.57)

Theorem 4.6.3 establishes that FPS generates landmark points with near-optimal proper-

ties, making it an excellent choice for selecting landmark points in preconditioner construction.

4.6.2 Nyström Approximation Error Analysis

The quality of Nyström-based preconditioners depends on the approximation error of the

Nyström method. We can establish bounds on this error in terms of the fill distance.

Theorem 4.6.4 (Nyström Error Bound). The Nyström approximation Knys = KX,Xk
K−1
Xk,Xk

KXk,X

to K using the landmark points Xk = {xki}ki=1 has the following error estimate:

∥K−Knys∥ <
√
n∥K∥C ′ exp(−C ′′/hXk

), (4.58)

where C ′ and C ′′ are constants independent of Xk.

Theorem 4.6.4 implies that landmark points Xk with a smaller fill distance yield a more

accurate Nyström approximation. This theoretical result supports the use of FPS for landmark

point selection, as it minimizes the fill distance.
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4.7 Implementation Details

The theoretical guarantees established in the previous section inform our implementation

choices. While the theory provides valuable insights into the expected performance and

properties of our methods, translating these insights into an efficient implementation requires

careful consideration of practical computing constraints. In this section, we detail the key

implementation aspects of our approach, focusing on the computation of derivatives for

various components, which is essential for gradient-based hyperparameter optimization in

Gaussian Process models.

4.7.1 Derivative of Gaussian Kernel matrix

∂K(x, y)

∂l
= 2

∥x− y∥e−
∥x−y∥

l2

l3

∂K(x, y)

∂µ
= I

4.7.2 Derivative of Inverse

For a matrix K, the gradient of its inverse matrix

∂K−1

∂θ
= −K−1∂K

∂θ
K−1.

4.7.3 Derivative of Cholesky Factorization

For a Cholesky factorization of a PSD matrix K = LL⊤, the gradient of Cholesky factor can

be computed as

∂L

∂θ
= LΦ(L−1∂K

∂θ
L−⊤) (4.59)
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where Φ is defined as

Φ(K) =


Kij, i > j

1
2
Kij, i = j

0, i < j

4.7.4 Derivative of Nyström

Given K, the classical Nyström approximation is Knys = K·1K
−1
11 K1· given all indices

corresponding to landmark points are rearranged to the (1, 1) block of the matrix. Then the

gradient of Knys can be computed

∂Knys

∂θ
=
∂K·1

∂θ
K−1

11 K1· +K·1
∂K−1

11

∂θ
K1· +K·1K

−1
11

∂K1·

∂θ
(4.60)

4.7.5 Derivative of FSAI

Given sparsity pattern P, the FSAI GGT ≈ K−1 is computed as

G(:, i) =
K(P(:, i),P(:, i))−1e√
eTK(P(:, i),P(:, i))−1e

, (4.61)

where G is an upper triangular matrix. If K is a matrix function K(x), by using matrix

calculus, we can compute the derivative of G with respect to value x as

∂G(:, i)

∂x
=

1√
eTK(P(:, i),P(:, i))−1e

∂K(P(:, i),P(:, i))−1

∂x
(4.62)

+K(P(:, i),P(:, i))−1e
∂(eTK(P(:, i),P(:, i))−1e)−1/2

∂x
(4.63)

=
1√

eTK(P(:, i),P(:, i))−1e

∂K(P(:, i),P(:, i))−1

∂x
e (4.64)

− K(P(:, i),P(:, i))−1e

2[eTK(P(:, i),P(:, i))−1e]3/2
eT
∂K(P(:, i),P(:, i))−1

∂x
e, (4.65)
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where

∂K(P(:, i),P(:, i))−1

∂x
= −K(P(:, i),P(:, i))−1∂K(P(:, i),P(:, i))

∂x
K(P(:, i),P(:, i))−1. (4.66)

However, in backward propagation, we are using a reverse mode autodiff so we need to

compute the derivative of G w.r.t. the whole kernel matrix K. According to the matrix

calculus, we know twidehat if g(Y ) = g(f(K)), then ∂g
∂Kij

= Tr((∂g(Y )
∂Y

)⊤ f(K)
Kij

). Suppose f is

the function computing FSAI and g is a function mapping result of FSAI G to a scalar such

log determinant or norm. Then in reverse mode autodiff, we have ∂g(Y )
∂Y

coming from the

previous step and is denoted by gradoutput in backward propagation. Therefore, we only

need to compute G
Kij

which can be computed using the above formula:

∂G(:, i)

∂Kij

=
1√

eTK(P(:, i),P(:, i))−1e

∂K(P(:, i),P(:, i))−1

∂Kij

e (4.67)

− K(P(:, i),P(:, i))−1e

2[eTK(P(:, i),P(:, i))−1e]3/2
eT
∂K(P(:, i),P(:, i))−1

∂Kij

e, (4.68)

where

∂K(P(:, i),P(:, i))−1

∂Kij

= −K(P(:, i),P(:, i))−1∂K(P(:, i),P(:, i))

∂Kij

K(P(:, i),P(:, i))−1 (4.69)

= K(P(:, i),P(:, i))−1Eindex(i)index(j)K(P(:, i),P(:, i))−1 (4.70)

4.7.6 Derivative of Schur Complement

In the construction of AFN preconditioner, we apply FSAI to K̂Schur = K22 −K⊤
12K

−1
11 K12,

so we also need the derivative of K̂Schur which can be computed as follows

∂K̂Schur

∂θ
=
∂K22

∂θ
− ∂K⊤

12

∂θ
K−1

11 K12 +K⊤
12K

−1
11

∂K11

∂θ
K−1

11 K12 −K⊤
12K

−1
11

∂K12

∂θ



96

4.7.7 Derivative of AFN

Now the preconditioner has the following factorized form

M =

 L 0

K⊤
12L

−⊤ G−1


︸ ︷︷ ︸

U⊤

L⊤ L−1K12

0 G−⊤

 . (4.71)

We can compute the derivative directly as follows

∂M

∂θ
=
∂U⊤

∂θ
U+U⊤∂U

∂θ
(4.72)

Then

tr(M−1∂M

∂θ
) = tr(U−1U−⊤∂M

∂θ
) = tr(U−⊤∂M

∂θ
U−1)

= tr(U−⊤∂U
⊤

∂θ
+
∂U

∂θ
U−1)

Notice

U−⊤ =

 L−1 0

−GK⊤
12L

−⊤L−1 G



U−1 =

L−⊤ −L−⊤L−1K12G
⊤

0 G⊤



U−⊤K̂U−1 =

I 0

0 G(K̂22 −K⊤
12(K̂11 + µI)−1K12)G

⊤
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∂U⊤

∂θ
=

 ∂L
∂θ

0

∂K⊤
12

∂θ
L−⊤ −K⊤

12L
−⊤ ∂L⊤

∂θ
L−⊤ −G−1 ∂G

∂θ
G−1



∂U

∂θ
=

∂L⊤

∂θ
L−1 ∂K12

∂θ
− L−1 ∂L

∂θ
L−1K12

0 −G−⊤ ∂G⊤

∂θ
G−⊤


Then we can compute tr(M−1 ∂M

∂θ
) using the fact that the diagonals of the inverse of a lower

(upper) triangular matrix are just the inverse of its diagonals. Therefore

tr(
∂U

∂θ
U−1) =

n∑
i=1

(
∂U

∂θ
)ii

1

Uii

Besides this term, we also need to evaluate M−1 ∂M
∂θ

over the probe vectors z, which can be

done by invoking (sparse) triangular solves. Note that for any probe vectors z,

z⊤U−⊤∂U
⊤

∂θ
z = z⊤

∂U

∂θ
U−1z,

so we only need to evaluate one of them. We first solve for

L⊤ L−1K12

0 G−⊤


x1

x2

 =

z1
z2


We can easily get the solution

x2 = G⊤z2

x1 = L−⊤(z1 − L−1K12G
⊤z2)

But for Stochastic Lanczos Estimation (SLE) we need to apply the preconditioner in the
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factorized form to have a symmetric matrix, thus we also need to solve

 L 0

K⊤
12L

−⊤ G−1


x1

x2

 =

z1
z2


We can easily get the solution

x1 = L−1z1

x2 = G(z2 −K⊤
12L

−⊤L−1z1)

Then we just need to multiply x by ∂U
∂θ

∂U

∂θ

x1

x2

 =

∂L⊤

∂θ
x1 + (L−1 ∂K12

∂θ
− L−1 ∂L

∂θ
L−1K12)x2

−G−⊤ ∂G⊤

∂θ
G−⊤x2


Multiplying the factors gives M another form

M =

K11 + µI K12

K⊤
12 (G⊤G)−1 +K⊤

12(K11 + µI)−1K12

 (4.73)

= Knys + µI+

0 0

0 (G⊤G)−1 +K⊤
12 ((K11 + µI)−1 − (K11)

−1)K12 − µ I


︸ ︷︷ ︸

Correction term

, (4.74)

The gradient of M can be computed as follows

∂M

∂θ
=

∂K11+µI
∂θ

∂K12

∂θ

∂K⊤
12

∂θ
−(G⊤G)−1 ∂G⊤G

∂θ
(G⊤G)−1 +

∂K⊤
12((K11+µI)−1−K−1

11 )K12

∂θ

 (4.75)

Here we just need to replace the K in the computation of the gradient of FSAI with K̂Schur.
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4.8 Numerical Experiments

To validate our theoretical results and assess the practical performance of our proposed

methods, we conducted a comprehensive suite of experiments. These experiments were

designed with three primary goals: (1) to evaluate the computational efficiency of the AFN

preconditioner compared to existing approaches, (2) to verify the unbiasedness and variance

properties of our PredSS-CG estimator, and (3) to demonstrate the practical utility of our

methods for hyperparameter optimization in realistic Gaussian Process regression scenarios.

Our experimental evaluation covers both synthetic datasets, where we can systematically

control the difficulty of the problem, and real-world datasets that present the complex

challenges encountered in practical applications. We begin by describing our experimental

setup, followed by detailed results for different kernel functions and analysis of key factors

affecting performance.

4.8.1 Experimental Setup

To evaluate the effectiveness of our proposed methods, we conducted extensive experiments

on both synthetic and real-world datasets. All experiments were run on an Ubuntu 20.04.4

LTS machine equipped with 755 GB of system memory and a 24-core 3.0 GHz Intel Xeon

Gold 6248R CPU. We implemented our methods in C with OpenMP for shared memory

parallelism and used the OpenBLAS library for basic matrix operations. For large-scale 3D

datasets, we utilized H2Pack to provide linear complexity matrix-vector multiplications with

a relative error threshold of 10−8.

For all experiments, we set the stopping tolerance for the relative residual norm to 10−4

and randomly generated right-hand side vectors with entries from the uniform distribution

[−0.5, 0.5]. Each experiment was repeated three times, and we report the average results.
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4.8.2 Synthetic 3D Dataset Experiments

Our synthetic dataset consists of n = 1.6× 105 random points sampled uniformly from inside

a 3D cube with edge length 3
√
n. We solved regularized linear systems associated with both

Gaussian and Matérn-3/2 kernels, with a regularization parameter µ = 0.0001.

We compared our AFN preconditioner against several baselines:

• Unpreconditioned Conjugate Gradient (CG)

• Factorized Sparse Approximate Inverse (FSAI) preconditioner

• Randomized Nyström (RAN) preconditioner with 3000 randomly selected landmark

points

For the FSAI preconditioner, we used 400 nearest neighbors as the sparsity pattern. For

the AFN preconditioner, we used 100 nearest neighbors as the sparsity pattern for the FSAI

component.

4.8.3 Results on Gaussian Kernel

For the Gaussian kernel, we observed that the performance of different methods varies

significantly with the length-scale parameter. Table 4.1 shows the iteration counts, setup

times, and solve times for different methods across a range of length-scales.

For large length-scales (e.g., l2 = 1000), all preconditioners perform well, with AFN and

RAN requiring only 3 iterations to converge. However, as the length-scale decreases to the

middle range (l2 = 65 to l2 = 25), unpreconditioned CG and RAN struggle to converge

within 500 iterations, while AFN maintains reasonable iteration counts (35-62). For very

small length-scales (l2 = 0.1), the problem becomes easier, and all methods converge quickly.

The setup time for AFN remains consistent across all length-scales, while the setup time

for RAN increases as the length-scale decreases. In terms of solve time, AFN outperforms

RAN across all middle length-scales, often by a factor of 2-3x.
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Figure 4.4: Logdet estimation for a full rank matrix over kin40k datasets.

4.8.4 Results on Matérn-3/2 Kernel

For the Matérn-3/2 kernel, we observed similar trends but with some notable differences.

Table 4.2 shows the results for this kernel.

AFN demonstrates remarkable robustness across all length-scales, requiring only 3-9

iterations to converge, regardless of the length-scale. In contrast, unpreconditioned CG

requires hundreds of iterations for large and small length-scales and fails to converge for

middle length-scales. RAN performs well for very large and very small length-scales but

struggles with middle length-scales.

The setup time for AFN is higher than for RAN for large length-scales but becomes

comparable for middle and small length-scales. In terms of solve time, AFN significantly

outperforms RAN for all middle length-scales, often by an order of magnitude.
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Table 4.1: Results for Gaussian kernel with µ = 0.0001 on synthetic 3D dataset with
n = 1.6× 105 points. “-” indicates failure to converge within 500 iterations.

Length-scale (l2) 1000 65 50 40 30 25 0.1
Iteration Counts

CG 44.00 - - - - - 1.00
AFN 3.00 35.00 40.00 46.00 57.00 62.00 1.00
RAN 3.00 72.67 199.33 409.33 - - -
FSAI - - - - - - 1.00

Setup Time (s)
AFN 3.19 38.97 39.73 40.76 40.12 40.59 40.37
RAN 27.28 27.59 29.05 31.18 33.64 33.97 35.07
FSAI 10.00 9.91 9.72 10.14 10.01 9.84 13.22

Solve Time (s)
CG 9.72 - - - - - 1.75
AFN 0.43 12.49 15.82 20.15 27.26 29.10 1.91
RAN 0.81 23.29 72.20 138.88 - - -
FSAI - - - - - - 1.27

4.8.5 Analysis of Landmark Point Selection

The effectiveness of the AFN preconditioner depends critically on the selection of landmark

points. We compared Farthest Point Sampling (FPS) against random sampling for selecting

landmark points and found that FPS consistently produces better results.

FPS generates landmark points with smaller fill distances and larger separation distances

compared to random sampling. This leads to better conditioning of the K11 block and more

effective preconditioning. The standard deviation of these geometric measures is also smaller

with FPS, indicating more robust preconditioner performance.

4.8.6 Unbiased Estimation Results

We also evaluated our unbiased stochastic estimation technique for the LML and its gradient.

Figure 4.3 shows the comparison between Lanczos logdet, AFN Preconditioned SS logdet, SS

logdet, and the true logdet for a Gaussian kernel matrix of size 3000.

The results demonstrate that our preconditioned SS-CG method achieves accurate estima-

tion with significantly fewer CG iterations compared to standard Lanczos quadrature. The
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Table 4.2: Results for Matérn-3/2 kernel with µ = 0.0001 on synthetic 3D dataset with
n = 1.6× 105 points. “-” indicates failure to converge within 500 iterations.

Inverse Length (1/l) 1.0 0.065 0.050 0.040 0.030 0.025 0.001
Iteration Counts

CG 293.67 - - - - - 292.67
AFN 3.00 6.00 7.00 7.00 7.00 6.00 9.00
RAN - 454.00 308.33 220.67 142.00 108.33 4.00
FSAI 5.00 - - - - - -

Setup Time (s)
AFN 47.32 45.24 43.41 44.34 43.29 42.74 3.07
RAN 63.69 39.78 40.16 40.08 40.18 39.77 55.41
FSAI 13.98 10.31 10.29 10.30 10.02 9.84 13.80

Solve Time (s)
CG 22.41 - - - - - 22.40
AFN 2.43 2.52 3.32 3.02 2.74 2.30 0.86
RAN - 116.37 74.04 53.58 32.19 25.93 1.36
FSAI 3.71 - - - - - -

average number of CG iterations required for SS-CG is denoted by Javg in the figure.

4.8.7 Optimization Paths

To demonstrate the practical impact of our methods on hyperparameter optimization, we

visualized the optimization paths for both LBFGS and Gradient Descent (GD) methods.

Figures 4.1 and 4.2 show the surface plots of the log LML for these optimization paths.

The results show that our unbiased estimation technique enables reliable optimization of

hyperparameters, avoiding the suboptimal solutions that can arise from biased estimators.

The LBFGS method, in particular, benefits from accurate gradient information provided by

our unbiased estimator.

4.8.8 Real-World Dataset Results

In addition to synthetic datasets, we evaluated our methods on several real-world datasets,

including the kin40k dataset (40,000 samples) and the SUSY dataset (5 million samples).

The results consistently demonstrate the superiority of our approach in terms of both
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Figure 4.5: Histogram of relative error of log likelihood derivative estimation.

computational efficiency and estimation accuracy.

For the kin40k dataset, our AFN preconditioner reduced the number of CG iterations by a

factor of 10-20x compared to unpreconditioned CG, while our unbiased estimation technique

achieved relative errors below 1% for both the LML and its gradient.

For the SUSY dataset, direct computation of the LML and its gradient would be infeasible

due to the O(n3) complexity. Our methods enabled accurate estimation with a computational

cost scaling as O(n2) or better, making GP inference practical for this large-scale dataset.

4.8.9 Performance on Real-World Datasets

To evaluate the practical efficacy of the AFN preconditioner in real-world scenarios, we

conducted experiments on two high-dimensional datasets: IJCNN1 and Elevators. These

datasets represent challenging machine learning tasks with different characteristics:

• IJCNN1: A dataset from the IJCNN 2001 Challenge with 49,990 samples and 22
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Figure 4.6: Histogram of relative error of log |K+ µI| with and without preconditioner with
different length-scales. The dataset consists of 3000 random points within a unit cube. We
use SLQ with m = 10.
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features, used with a Gaussian kernel.

• Elevators: A dataset with 16,599 samples and 18 features, used with a Matérn kernel.

Table 4.3 presents comparative results between unpreconditioned CG (standard conjugate

gradient), AFN-preconditioned CG, and RAN-preconditioned CG (using random landmark

selection with Nyström) across various kernel length-scales. For each method, we report

iteration counts, setup time, and solve time.

Table 4.3: Performance comparison on real-world datasets with varying length-scales. “-"
indicates failure to converge within 500 iterations. All experiments are averaged over three
runs. µ = n× 10−6 in all tests.

l2 10.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.01
k 1278 8798 10397 11197 13197 14996 17396 20395 24394 29394 37192 48190

Iteration Counts
CG 218.00 - - - - - - - - 481.00 418.00 239.00
AFN 3.00 44.00 43.33 42.00 41.00 39.00 36.67 33.00 29.33 25.33 19.67 9.00
RAN 2.00 12.67 13.67 15.67 18.67 21.67 26.00 32.00 40.00 51.00 66.67 73.33

Setup Time (s)
AFN 4.18 15.69 15.66 15.30 15.53 15.29 15.30 15.68 16.34 15.51 15.19 15.15
RAN 52.44 40.81 41.68 41.20 41.73 41.40 41.09 41.59 41.08 40.90 43.58 48.16

Solve Time (s)
CG 30.63 - - - - - - - - 55.23 46.73 34.73
AFN 0.97 8.07 8.99 8.24 7.47 7.55 6.88 6.50 5.94 5.05 5.01 2.44
RAN 0.70 2.93 3.04 3.01 4.03 4.90 4.87 6.13 8.11 9.40 11.89 12.83

(a) IJCNN1 with Gaussian kernel.

1/l 1.0 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.0005
k 16599 12083 11685 11419 11087 10822 10224 9427 8166 6838 5576 983

Iteration Counts
CG 29.00 324.00 325.00 331.00 339.00 347.00 355.00 358.00 349.00 331.00 303.00 124.00
AFN 3.00 9.33 9.67 9.67 10.00 10.00 10.00 10.00 10.00 49.00 60.00 5.00
RAN 20.67 71.67 71.00 69.33 67.00 65.00 61.00 57.33 59.67 69.67 75.33 7.33

Setup Time (s)
AFN 9.58 5.34 5.45 5.79 5.60 5.48 5.42 5.47 5.36 5.76 6.06 1.94
RAN 38.78 28.64 44.28 42.45 30.86 32.53 44.61 36.91 39.38 38.32 35.72 34.90

Solve Time (s)
CG 0.54 3.65 3.73 3.71 3.79 3.92 4.01 4.06 3.93 3.75 3.48 1.39
AFN 0.21 0.38 0.40 0.43 0.40 0.40 0.49 0.39 0.38 1.83 2.22 0.11
RAN 0.68 2.04 1.84 2.08 1.82 1.76 1.67 1.49 1.76 1.88 2.00 0.28

(b) Elevators with Matérn kernel.

Several key observations can be made from these results:
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1. Superior Convergence: AFN significantly reduces iteration counts compared to

unpreconditioned CG across all tested length-scales. For the IJCNN1 dataset, unpre-

conditioned CG fails to converge within 500 iterations for most length-scales, while

AFN-preconditioned CG converges in fewer than 45 iterations.

2. Iteration Count Patterns: For both AFN and RAN preconditioners, the behavior of

iteration counts with respect to length-scale is notable. As the length-scale decreases

(moving from left to right in the table), the iteration count of RAN increases, while the

iteration count of AFN decreases. This demonstrates that AFN is particularly effective

for smaller length-scales, which are often more challenging cases.

3. Setup Time Efficiency: The setup time for AFN is significantly lower than for RAN

across all tests. For IJCNN1, AFN setup time is approximately 3 times faster, and for

Elevators, it’s about 6-8 times faster. This demonstrates the computational efficiency

of the AFN construction process.

4. Solve Time Performance: For most length-scales, AFN achieves faster solve times

compared to RAN, particularly at smaller length-scales where the problem becomes

more challenging. This advantage is more pronounced on the Elevators dataset.

5. Rank Adaptation: The value k represents the estimated numerical rank used by

the preconditioners. Note how this value varies with length-scale, demonstrating the

adaptive nature of the approach. For IJCNN1, k increases as length-scale decreases,

while for Elevators, k decreases as 1/l decreases.

These results demonstrate that the AFN preconditioner is highly effective for real-world,

high-dimensional datasets. Its advantages become particularly evident when dealing with

challenging kernel parameters (smaller length-scales for Gaussian kernels) where standard

preconditioners struggle. The adaptive nature of AFN allows it to maintain consistent

performance across a wide range of kernel parameters, making it a robust choice for practical

applications in Gaussian Process modeling.
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4.9 Conclusion

In this chapter, we presented the PredSS-CG algorithm, designed to remove bias in evaluating

both the Log Marginal Likelihood (LML) and its gradient for Gaussian Process regression.

This feature aids in bypassing sub-optimal solutions. Additionally, we furnished a variance

bound for this novel approach and introduced a small-bias variant of PredSS-CG to further

minimize computational overhead.

We calculated the gradient of the AFN preconditioner. This exact gradient calculation

enables us to sidestep the need for automatic differentiation, resulting in significant com-

putational efficiency gains. We also provided an optimized PredSS-CG implementation

in C/C++, paired with an intuitive Python interface. This makes the algorithm highly

adaptable for large-scale data sets, thereby increasing its utility for both researchers and

industry professionals.

Through extensive experiments, we demonstrated the superior performance of PredSS-CG

compared to existing methods. The algorithm achieves accurate estimation of Log Marginal

Likelihood (LML) and its gradient, enabling reliable hyperparameter selection. Our method

offers scalability, efficiency, and advances in GP modeling for real-world applications.

The computational advances presented in this chapter have significant implications for the

broader themes of this thesis. In Chapter 2, we discussed the Two-Stage Gaussian Process

methodology to address mean and kernel misspecification, and in Chapter 3, we applied these

methods to health foundation models. The computational techniques developed here make

those approaches practical for larger, more complex datasets by dramatically reducing the

computational cost of GP inference.

Moreover, these advances help to position Gaussian Processes as a viable approach

for uncertainty quantification in foundation models. While Chapter 5 will highlight some

limitations of GPs and motivate the use of conformal prediction for certain applications, the

work presented in this chapter substantially expands the range of problems where GPs can

be effectively applied. For stationary, small to medium-scale applications—such as many
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of the health data scenarios discussed in Chapter 3—the combination of our computational

techniques with the Two-Stage GP methodology provides a powerful approach to uncertainty

quantification.

In future work, we plan to extend our approach to handle non-Gaussian likelihoods

and to develop distributed implementations for even larger datasets. We also see potential

for applying our methods to multi-output GPs and deep GPs, which present additional

computational challenges.

4.10 Kernel Implementation

The implementation of the kernel preconditioning techniques involves several key steps. These

steps are outlined in the following subsections:

4.10.1 Kernel Matrix Construction

The first step is to construct the kernel matrix K from the training data. This matrix is used

in the preconditioning process and in the computation of the log marginal likelihood (LML)

and its gradient.

4.10.2 Preconditioner Construction

The preconditioner M is constructed using the AFN preconditioner or the preconditioned

conjugate gradient (PCG) method. The preconditioner is used to accelerate the convergence

of the conjugate gradient method and to reduce the condition number of the kernel matrix.

4.10.3 Log Marginal Likelihood (LML) Calculation

The LML is calculated using the preconditioned conjugate gradient method. The gradient of

the LML is computed using automatic differentiation, and the Hessian matrix is approximated

using finite differences.
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4.10.4 Gradient Calculation

The gradient of the LML is calculated using automatic differentiation. The gradient is used

to update the hyperparameters during the optimization process.

4.10.5 Variance Estimation

The variance of the stochastic estimation technique is estimated using the preconditioned

conjugate gradient method. The variance is used to compute the confidence intervals for the

estimated parameters.

4.10.6 Optimization Path Visualization

The optimization paths for both LBFGS and gradient descent methods are visualized to show

the convergence behavior of the algorithm.

4.10.7 Real-World Dataset Evaluation

The methods are evaluated on several real-world datasets to demonstrate their practical

utility. The results are compared with the unpreconditioned conjugate gradient method and

the randomized Nyström preconditioner.

4.10.8 Performance Analysis

The performance of the methods is analyzed in terms of iteration counts, setup time, and

solve time. The results are presented in tables and figures to show the advantages of the

proposed methods over the existing approaches.

4.10.9 Comparison with Existing Approaches

The proposed methods are compared with the existing approaches to show their superiority

in terms of computational efficiency and estimation accuracy.
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4.10.10 Code Availability

The code for the proposed methods is made available to the public to facilitate reproducibility

and further research.



Chapter 5

Locally Debiased Adaptive Conformal

Prediction

“The only true wisdom is in knowing you know nothing.”

— Socrates

5.1 Introduction

While we have demonstrated the effectiveness of our two-stage Gaussian Process methodology

for uncertainty quantification in previous chapters, in this chapter we explore Conformal

Prediction (CP) as a complementary approach that addresses certain limitations of Gaussian

Processes. CP offers distribution-free coverage guarantees that remain valid regardless of the

underlying data distribution, making it particularly valuable for applications where model

assumptions of Gaussian Processes may be violated or where formal coverage guarantees are

paramount [98, 85, 3].

Despite these advantages, standard conformal methods can yield unnecessarily wide or

misaligned intervals when the underlying predictive model exhibits systematic local biases.

Additionally, CP does not apply when the data distribution is not exchangeable. In this

chapter, we introduce Locally Debiased Adaptive Conformal Prediction (LC-ACP), a novel

framework that addresses this challenge by combining two key elements: (1) a learned local

112
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bias-correction function that adjusts predictions based on recent errors, and (2) an adaptive

mechanism that dynamically tunes the miscoverage rate to maintain target coverage under

distribution shifts.

Our theoretical analysis proves that LC-ACP maintains valid coverage guarantees while

producing narrower intervals when the bias correction successfully captures local patterns.

Through extensive experiments on financial volatility prediction—a domain where models

often exhibit regime-dependent biases—we demonstrate that LC-ACP produces intervals

that are 13-18% narrower than standard conformal methods while maintaining the target

coverage level. The approach is particularly effective during regime transitions, where local

bias correction significantly improves the calibration of prediction intervals.

Building on the Gaussian Process foundations established in Chapters 2-4, here we present

a complementary approach to uncertainty quantification that is particularly well-suited for

non-stationary data and scenarios where typical model assumptions may be violated. While

GPs provide a principled Bayesian framework for uncertainty estimation, conformal prediction

offers distribution-free guarantees that hold regardless of the underlying data distribution or

model correctness. By combining these approaches, we can leverage the strengths of both

methodologies to provide robust uncertainty estimates across a wide range of applications.

The LC-ACP methodology developed in this chapter provides a foundation for our work

in Chapter 6, where we apply this approach to climate foundation models for hurricane

track prediction. The non-stationary nature of climate data, with its complex spatio-

temporal dynamics and regime-dependent behaviors, makes it an ideal domain for showcasing

the advantages of LC-ACP over traditional uncertainty quantification methods. By first

establishing the theoretical foundations and demonstrating the effectiveness of LC-ACP on

financial time series in this chapter, we lay the groundwork for its application to the even

more challenging domain of extreme events and climate science.
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5.2 Limitations of Gaussian Processes and Motivation for

Conformal Prediction

5.2.1 Coverage Guarantees Under Model Misspecification

Gaussian Processes provide well-calibrated uncertainty estimates when model assumptions

are met, but their performance can degrade under model misspecification. In particular, GPs

face several challenges that limit their effectiveness in certain scenarios:

• Stationarity assumption: Standard GP kernels assume that the relationship between

inputs and outputs remains constant across the input space [80]. This assumption is

often violated in real-world data, particularly in time series with regime changes. As

demonstrated in Chapter 2, addressing non-stationarity requires specialized techniques

such as our two-stage GP approach, which can be complex to implement and may still

struggle with abrupt regime shifts.

• Gaussian noise assumption: GPs typically assume that observation noise follows a

Gaussian distribution [103]. When this assumption is violated, the resulting prediction

intervals may not achieve the desired accuracy, i.e. coverage. Real-world data often

exhibits heteroscedasticity, heavy tails, or multimodality that violates this assumption.

• Mean function specification: The choice of mean function significantly impacts GP

performance, and misspecification can lead to systematic biases in predictions [86]. Our

two-stage GP approach in Chapter 2 addresses this issue by learning a flexible mean

function, but it still requires careful design and may not capture all forms of bias.

• Hyperparameter sensitivity: GP performance depends heavily on kernel hyperpa-

rameters, which can be difficult to optimize reliably, especially with limited data [21].

As shown in Chapter 4, computational approximations can introduce additional biases.
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• Gaussian approximation: GPs assume that the predictive distribution follows a

Gaussian distribution. In real-world applications, the true error distribution may be

non-Gaussian, exhibit skewness, or contain multiple modes [51]. Our two-stage GP

approach in Chapter 2 addresses this issue by learning a flexible mean function, but it

still requires careful design and may not capture all forms of bias.

• Computational complexity: Exact GP inference scales cubically with the dataset

size, making it computationally prohibitive for large datasets common in modern

applications [80]. As shown in Chapter 4, computational approximations can introduce

additional biases.

Conformal prediction addresses these limitations by providing distribution-free coverage

guarantees that hold regardless of the underlying data distribution or model correctness

[98, 85]. This makes CP particularly valuable for applications where model assumptions may

be violated or where formal coverage guarantees are paramount.

5.2.2 The Challenge of Non-Stationarity

Non-stationary data presents particular challenges for uncertainty quantification. In financial

time series, for example, volatility regimes can shift dramatically during market transitions,

economic crises, or sector-specific events [30]. Similarly, in climate data, the relationship

between predictors and outcomes can vary across different climate regimes or geographic

regions [10].

Standard GPs struggle with such non-stationarity unless explicitly modeled with special-

ized kernels [70, 38], which often require significant domain expertise to design and can be

computationally expensive. In contrast, adaptive conformal methods can automatically adjust

to distribution shifts without requiring explicit modeling of the non-stationarity [30, 110].

Figure 5.1 illustrates the challenge of non-stationarity for GPs and how conformal predic-

tion can adapt more effectively to regime changes. While GPs maintain the same uncertainty



116

structure across different regimes, conformal prediction can adjust its coverage to account for

changing data distributions.

5.2.3 Computational Efficiency

The cubic computational complexity of exact GP inference presents challenges for large-scale

applications. For datasets with n observations, exact GP inference requires O(n3) operations,

making it impractical for many real-world applications with large datasets [80].

As discussed in Chapter 4, various approximation techniques have been developed to

address this limitation, including sparse GPs [40], random Fourier features [77], and structured

kernel approximations [105]. However, these approximations often introduce additional biases

and may compromise the quality of uncertainty estimates [11].

Conformal prediction, particularly in its inductive variant, scales much more favorably.

After an initial model training phase (which can use any predictive model, including ap-

proximated GPs), the conformal calibration step requires only O(ncal) operations, where ncal

is the size of the calibration set, which can be much smaller than the full dataset [71, 55].

This makes conformal prediction particularly attractive for large-scale applications where

computational efficiency is a concern.

5.3 Theoretical Foundations of Conformal Prediction

5.3.1 Basic Principles and Guarantees

Conformal prediction provides a framework for constructing prediction intervals with guar-

anteed coverage under minimal distributional assumptions [98, 85]. The key insight is that,

under the assumption of exchangeability, the rank of a new observation’s nonconformity score

among previously observed scores follows a uniform distribution.

Definition 1 (Exchangeability). Random variables Z1, Z2, . . . , Zn are exchangeable if their
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joint distribution is invariant to permutation, i.e., for any permutation π of {1, 2, . . . , n}:

(Z1, Z2, . . . , Zn)
d
= (Zπ(1), Zπ(2), . . . , Zπ(n))

where d
= denotes equality in distribution.

Formally, given a dataset {(Xi, Yi)}ni=1 of feature-response pairs and a nonconformity

measure A that quantifies how "unusual" an observation is, the conformal prediction interval

for a new feature vector Xn+1 is:

C(Xn+1) = {y : A((Xn+1, y)) ≤ Q1−α} (5.1)

where Q1−α is the (1 − α)-quantile of the empirical distribution of nonconformity scores.

Under the exchangeability assumption, this interval guarantees:

P (Yn+1 ∈ C(Xn+1)) ≥ 1− α (5.2)

This coverage guarantee holds regardless of the underlying data distribution or the

choice of nonconformity measure, making conformal prediction extremely robust to model

misspecification [98].

Theorem 5.3.1 (Conformal Prediction Coverage Guarantee). Let (X1, Y1), . . . , (Xn, Yn),

(Xn+1, Yn+1) be exchangeable random variables. The conformal prediction interval C(Xn+1)

for Yn+1 given Xn+1 satisfies:

P (Yn+1 ∈ C(Xn+1)) ≥ 1− α− 1

n+ 1

Moreover, if the nonconformity scores are almost surely distinct, then:

P (Yn+1 ∈ C(Xn+1)) = 1− α.
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Proof. The proof relies on the fact that under exchangeability, the rank of the nonconformity

score for (Xn+1, Yn+1) among all nonconformity scores follows a discrete uniform distribution

on {1, 2, . . . , n+ 1}. The detailed proof can be found in Vovk et al. [98] and Shafer and Vovk

[85].

This theorem establishes the fundamental property of conformal prediction: it provides

valid coverage guarantees without making any assumptions about the underlying data

distribution beyond exchangeability. This is in stark contrast to parametric methods like

Gaussian Processes, which rely on specific distributional assumptions.

5.3.2 Split Conformal Prediction

In practice, the inductive or split conformal prediction approach is often used for computational

efficiency [71, 55] and is the default choice for most applications. This approach divides the

available data into a training set and a calibration set:

1. The training set is used to fit a predictive model f̂ .

2. The calibration set is used to compute nonconformity scores Ri = |Yi − f̂(Xi)| for each

calibration point.

3. The prediction interval for a new point Xn+1 is constructed as:

C(Xn+1) = [f̂(Xn+1)− q̂, f̂(Xn+1) + q̂] (5.3)

where q̂ is the (1−α)-quantile of the empirical distribution of {Ri} from the calibration

set.

Importantly, split conformal prediction maintains the same coverage guarantee as full

conformal prediction (Theorem 5.3.1). When conditioning on the training data, the ex-

changeability of the calibration and test points ensures that the coverage guarantee still

holds:
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P (Yn+1 ∈ C(Xn+1)) ≥ 1− α− 1

n+ 1

The proof follows a similar argument to Theorem 5.3.1, with the key insight that condi-

tioning on the training data does not affect the exchangeability of the calibration and test

points. The detailed proof can be found in Papadopoulos et al. [71] and Lei et al. [55].

This approach offers significant computational advantages over full conformal prediction,

as the model needs to be trained only once. It also allows for the use of any black-box

prediction model, making it highly flexible and applicable to a wide range of problems. Due to

these practical benefits, split conformal prediction is the default choice for most applications,

including all methods developed in this chapter.

5.3.3 Adaptive Conformal Prediction

Standard conformal prediction assumes that the data are exchangeable, which is often violated

in time series and other sequential data. Adaptive Conformal Prediction (ACP) addresses this

limitation by dynamically adjusting the miscoverage rate αt to maintain the target coverage

level under distribution shifts [30, 110].

The key idea is to update αt based on recent prediction outcomes:

αt+1 = αt + γ(α− errt) (5.4)

where errt = 1{Yt /∈ Ĉt(αt)} is the indicator of miscoverage at time t, α is the target

miscoverage rate, and γ ∈ (0, 1) is a step size parameter that controls the adaptation rate.

Theorem 5.3.2 (Adaptive Conformal Prediction Coverage Guarantee). Let {αt}Tt=1 be the

sequence of miscoverage rates produced by the ACP algorithm with step size γ ∈ (0, 1). Under

mild conditions on the data-generating process, the long-term average coverage converges to
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the target level: ∣∣∣∣∣ 1T
T∑
t=1

1{Yt ∈ Ĉt(αt)} − (1− α)

∣∣∣∣∣ = O

(
1

T

)
with high probability.

Proof. The proof relies on analyzing the dynamics of the update rule. The detailed proof can

be found in Gibbs and Candès [30].

This adaptive approach ensures that the long-term average coverage converges to the

target level, even without the exchangeability assumption. This makes ACP particularly

valuable for time series and other sequential data where the distribution may change over

time.

5.4 Locally Debiased Adaptive Conformal Prediction

5.4.1 Motivation and Key Insights

While Adaptive Conformal Prediction effectively addresses distribution shifts, it does not

specifically target local model biases. When the base model has systematic errors in specific

regions of the feature space, ACP alone still produces prediction intervals that are unnecessarily

wide or misaligned with the true data distribution [30, 107].

The key insight behind LC-ACP is that by explicitly modeling and correcting for these

local biases, we can produce narrower, better-centered prediction intervals while maintaining

the same coverage guarantees. This is achieved through a two-pronged approach:

1. Local bias correction: We learn a function-valued bias correction term δ(x) that

captures and adjusts for systematic local biases in the base model.

2. Adaptive calibration: We dynamically update the miscoverage rate αt online to

maintain target coverage in the presence of distribution shifts.



121

This approach is inspired by recent work in prediction-powered inference [4], which

leverages machine learning predictions’ bias to improve statistical inference, and locally

adaptive conformal methods [54, 55], which construct prediction intervals whose width varies

with the input features. However, our approach differs in its explicit modeling of local bias

corrections and its integration with adaptive calibration for online settings.

Figure 5.2 illustrates how LC-ACP compares to other conformal prediction approaches.

5.4.2 Mathematical Formulation

Let us formalize the LC-ACP framework. Consider a regression problem where we observe

feature-response pairs (Xi, Yi) ∈ X × Y , with X ⊆ Rd and Y ⊆ R. We have a base predictor

f̂ : X → Y that provides point predictions, but may exhibit systematic biases in certain

regions of the feature space.

Local Bias Correction

The first component of LC-ACP is a bias correction function δ : X → Y that aims to

capture and correct for these systematic biases. Specifically, for a feature vector x ∈ X , the

bias-corrected prediction is:

Ŷ (x) = f̂(x) + δ(x) (5.5)

The bias correction function δ(x) is learned from an anchor dataset A = {(Xi, Yi)}nA
i=1 by

modeling the residuals of the base predictor:

δ(x) ≈ E[Y − f̂(X)|X = x] (5.6)

This can be implemented using various regression techniques, such as:

• Locally weighted regression: For a new point x, we compute a weighted average of

the residuals in the anchor set, with weights determined by the similarity between x
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and each anchor point.

• Kernel regression: We use a kernel function K(x, x′) to measure the similarity

between points and compute:

δ(x) =

∑nA
i=1K(x,Xi) · (Yi − f̂(Xi))∑nA

i=1K(x,Xi)
(5.7)

• k-nearest neighbors: We find the k nearest neighbors of x in the anchor set and

compute the average of their residuals:

δ(x) =
1

k

∑
i∈Nk(x)

(Yi − f̂(Xi)) (5.8)

where Nk(x) denotes the indices of the k nearest neighbors of x in the anchor set.

In our implementation, we use a k-nearest neighbors approach with k = 5, which provides

a good balance between flexibility and stability. The choice of k can be tuned based on the

specific application and the size of the anchor set.

Conformal Calibration

The second component of LC-ACP is the conformal calibration step, which uses a calibration

dataset C = {(Xi, Yi)}nC
i=1 to compute nonconformity scores and determine the quantile

threshold for prediction intervals.

For each calibration point (Xi, Yi) ∈ C, we compute the bias-corrected prediction Ŷi =

f̂(Xi) + δ(Xi) and the nonconformity score:

Si = |Yi − Ŷi| (5.9)

The initial quantile threshold is then computed as:
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q̂1−α = Quantile({Si}nC
i=1, 1− α) (5.10)

where Quantile(S, 1− α) denotes the (1− α)-quantile of the set S.

Adaptive Updates

The third component of LC-ACP is the adaptive update mechanism, which dynamically

adjusts the miscoverage rate αt to maintain the target coverage level under distribution shifts.

Starting with α1 = α, for each time step t = 1, 2, . . ., we:

1. Observe a new feature vector Xt.

2. Compute the bias-corrected prediction Ŷt = f̂(Xt) + δ(Xt).

3. Construct the prediction interval:

Ĉt(αt) = [Ŷt − q̂1−αt , Ŷt + q̂1−αt ] (5.11)

4. Observe the true value Yt.

5. Compute the miscoverage indicator errt = 1{Yt /∈ Ĉt(αt)}.

6. Update the miscoverage rate:

αt+1 = αt + γ(α− errt) (5.12)

7. Project onto a valid range to ensure stability:

αt+1 = min(max(αt+1, αmin), αmax) (5.13)

where γ ∈ (0, 1) is a step size parameter that controls the adaptation rate, and αmin and

αmax are lower and upper bounds on the miscoverage rate to ensure stability.
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Algorithm 6 Locally Debiased Adaptive Conformal Prediction (LC-ACP)

Require:: Base predictor f̂ , anchor set A, calibration set C, target coverage 1− α, step size
γ

1: Phase 1: Learn Local Bias Correction
2: Learn bias correction function δ(x) using anchor set A
3: Phase 2: Compute Initial Conformal Scores
4: FOR each (Xi, Yi) ∈ C DO
5: Compute bias-corrected prediction: Ŷi = f̂(Xi) + δ(Xi)
6: Compute nonconformity score: Si = |Yi − Ŷi|
7: END FOR
8: Compute initial quantile threshold: q̂1−α = Quantile({Si}|C|i=1, 1− α)
9: Initialize α1 = α

10: Phase 3: Online Prediction with Adaptive Updates
11: FOR t = 1, 2, . . . DO
12: Observe new feature vector Xt

13: Compute bias-corrected prediction: Ŷt = f̂(Xt) + δ(Xt)
14: Construct prediction interval: Ĉt(αt) = [Ŷt − q̂1−αt , Ŷt + q̂1−αt ]
15: Observe true value Yt
16: Compute miscoverage indicator: errt = 1{Yt /∈ Ĉt(αt)}
17: Update miscoverage rate: αt+1 = αt + γ(α− errt)
18: Project onto valid range: αt+1 = min(max(αt+1, αmin), αmax)
19: END FOR

5.4.3 Algorithm Overview

The complete LC-ACP algorithm is presented in Algorithm 6, which summarizes the three

main phases: (1) learning a local bias correction function, (2) calculating initial nonconformity

scores using bias-corrected predictions, and (3) adaptive online prediction with dynamic

updates to the quantile threshold.

5.4.4 Connections to Gaussian Processes

It is worth noting the connections between LC-ACP and the Gaussian Process methodology

presented in previous chapters. Both approaches aim to provide well-calibrated uncertainty

estimates, but they do so in fundamentally different ways:

• Gaussian Processes provide a principled Bayesian framework for uncertainty esti-
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mation, with the posterior variance naturally adapting to the local density of training

data. As shown in Chapter 2, our two-stage GP approach addresses mean function

misspecification by learning a flexible mean function, but it still relies on specific

distributional assumptions and can be computationally expensive.

• LC-ACP takes a frequentist approach, providing distribution-free coverage guarantees

without making specific assumptions about the underlying data distribution. It explicitly

models local biases through the bias correction function δ(x) and adapts to distribution

shifts through the dynamic update of the miscoverage rate αt.

In some sense, LC-ACP can be seen as a complementary approach to our two-stage GP

methodology. While the two-stage GP addresses mean function misspecification by learning a

flexible mean function from data, LC-ACP addresses local biases by explicitly modeling and

correcting for them. Both approaches aim to improve the quality of uncertainty estimates,

but they do so from different perspectives and with different strengths and limitations.

One could even envision a hybrid approach that combines the strengths of both method-

ologies, using a GP as the base predictor f̂ and applying LC-ACP to correct for any remaining

biases and ensure valid coverage guarantees. This would leverage the structured uncertainty

modeling of GPs while benefiting from the distribution-free guarantees of conformal prediction.

Since LC-ACP is designed to be agnostic to the choice of base predictor, it can be applied

to any GP-based prediction model, including our two-stage GP approach. However, for

large-scale applications, the computational cost of GP predictions may be prohibitive compred

to other base predictors.

5.5 Theoretical Analysis

In this section, we provide a comprehensive theoretical analysis of LC-ACP, establishing its

coverage guarantees, interval width reduction properties, and optimality conditions. Our

analysis builds on the theoretical foundations of conformal prediction [98, 85] and adaptive
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conformal inference [30], while extending them to account for the local bias correction

component.

5.5.1 Coverage Guarantee Without Exchangeability

The standard conformal prediction framework relies on the exchangeability assumption, which

is typically violated in time series data. Following the approach in Adaptive Conformal

Prediction [30], LC-ACP addresses this limitation by dynamically adjusting the miscoverage

rate to maintain the target coverage level.

LC-ACP inherits the theoretical guarantees of Adaptive Conformal Prediction established

by Gibbs and Candès [30]. Specifically, when αt is updated according to the LC-ACP

algorithm with step size γ ∈ (0, 1), the long-term average coverage converges to the target

level 1− α at a rate of O(1/T ):

∣∣∣∣∣ 1T
T∑
t=1

1{Yt ∈ Ĉt(αt)} − (1− α)

∣∣∣∣∣ = O

(
1

T

)
(5.14)

with high probability. This holds for any data generating process, even under distribution

shift and without the exchangeability assumption, providing valid coverage guarantees even

when the conformal score distributions change arbitrarily over time.

The key insight is that the local bias correction component of LC-ACP does not affect

the validity of the adaptive update mechanism. Since the bias correction function δ(x) only

shifts the prediction, but does not alter the fundamental coverage properties of the conformal

prediction framework, the theoretical guarantees from Gibbs and Candès [30] apply directly

to LC-ACP as well.

This result demonstrates that LC-ACP provides valid coverage guarantees even without

the exchangeability assumption, making it particularly well-suited for time series applications

where temporal dependencies and distribution shifts are common.
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5.5.2 Interval Width Reduction

The second key advantage of LC-ACP is the reduction in interval width achieved through

local bias correction. We can quantify this benefit theoretically.

Theorem 5.5.1 (Interval Width Reduction). Let ĈLC
n+1(α) and Ĉunc

n+1(α) be the prediction

intervals obtained using LC-ACP and standard CP, respectively, for the same miscoverage

rate α. If the bias correction function δ(x) reduces the variance of the residuals such that

Var(rLC) = (1− η)Var(runc) for some η ∈ (0, 1), then:

E[Width(ĈLC
n+1(α))] ≈ (1− η)1/2 · E[Width(Ĉunc

n+1(α))] (5.15)

where Width(C) = supC − inf C denotes the interval width.

Proof. For both standard CP and LC-ACP, the prediction intervals take the form:

Ĉunc
n+1(α) = [M(Xn+1)− q̂unc1−α,M(Xn+1) + q̂unc1−α] (5.16)

ĈLC
n+1(α) = [M(Xn+1) + δ(Xn+1)− q̂LC1−α,M(Xn+1) + δ(Xn+1) + q̂LC1−α] (5.17)

where q̂unc1−α and q̂LC1−α are the (1− α) quantiles of the uncorrected and locally corrected

nonconformity scores, respectively.

The widths of these intervals are:

Width(Ĉunc
n+1(α)) = 2q̂unc1−α (5.18)

Width(ĈLC
n+1(α)) = 2q̂LC1−α (5.19)

Under the assumption that the residuals follow approximately a normal distribution

N(0, σ2), the (1− α) quantile of the absolute residuals is proportional to σ. Specifically, the

quantile q̂1−α ≈ Φ−1(1− α/2) · σ, where Φ−1 is the inverse of the standard normal CDF.

Given our assumption that Var(rLC) = (1 − η)Var(runc), the standard deviations are
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related by σLC =
√
1− η · σunc. Therefore:

q̂LC1−α ≈ Φ−1(1− α/2) · σLC (5.20)

= Φ−1(1− α/2) ·
√

1− η · σunc (5.21)

=
√

1− η · q̂unc1−α (5.22)

Thus, the expected ratio of interval widths is:

E[Width(ĈLC
n+1(α))]

E[Width(Ĉunc
n+1(α))]

=
E[2q̂LC1−α]
E[2q̂unc1−α]

(5.23)

=
E[q̂LC1−α]
E[q̂unc1−α]

(5.24)

≈
√

1− η (5.25)

Therefore, if the local bias correction reduces the variance of the residuals by a factor of

(1− η), the expected width of the prediction intervals is reduced by a factor of approximately
√
1− η.

For example, if η = 0.25 (i.e., a 25% reduction in variance), then the interval width is

reduced by approximately
√
0.75 ≈ 0.866, or about 13.4%.

This theorem quantifies the efficiency gain from local bias correction, showing that the

width reduction is proportional to the square root of the variance reduction. The result aligns

with our empirical findings, where LC-ACP achieves interval width reductions of 13-18%

compared to standard CP.

5.5.3 Optimality Discussion

An important question is whether the width reduction achieved by LC-ACP is optimal. When

the bias correction function δ(x) perfectly captures the conditional mean of the residuals, i.e.,

δ(x) = E[Y −M(X)|X = x], then the variance of the corrected residuals achieves the lower
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bound given by the conditional variance:

Var(Y −M(X)− δ(X)|X) = Var(Y |X) (5.26)

This represents the irreducible uncertainty in predicting Y given X. In other words,

no conformal method can produce valid intervals with expected width smaller than what

corresponds to this conditional variance, without sacrificing coverage guarantees.

Proposition 1 (Optimality of LC-ACP). If the bias correction function δ(x) perfectly captures

the conditional mean of the residuals, i.e., δ(x) = E[Y −M(X)|X = x], then LC-ACP achieves

the minimum possible interval width among all conformal methods that maintain the target

coverage level.

Proof. Let δ∗(x) = E[Y − M(X)|X = x] be the optimal bias correction function. The

residuals after applying this correction are:

r∗(x) = Y −M(X)− δ∗(X) (5.27)

= Y −M(X)− E[Y −M(X)|X] (5.28)

= Y − E[Y |X] (5.29)

These residuals have mean zero conditional on X, i.e., E[r∗(X)|X] = 0, and their variance

is the conditional variance of Y given X:

Var(r∗(X)|X) = Var(Y − E[Y |X]|X) = Var(Y |X) (5.30)

This is the minimum possible variance for any unbiased predictor of Y given X, as

established by the Cramér-Rao lower bound. Since the width of conformal prediction intervals

is proportional to the quantile of the nonconformity scores, which in turn is proportional to
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the standard deviation of the residuals, the minimum variance residuals lead to the minimum

width intervals among all methods that maintain the target coverage level.

Thus, the width reduction achieved by LC-ACP approaches optimality as the bias

correction function approaches the true conditional mean of the residuals. The factor
√
1− η

quantifies how close we are to this optimality.

Corollary 2 (Efficiency Bound). The efficiency of LC-ACP, measured as the ratio of its

interval width to the optimal interval width, is bounded by:

E[Width(ĈLC
n+1(α))]

E[Width(Ĉopt
n+1(α))]

≤ 1√
1− η

(5.31)

where Ĉopt
n+1(α) is the prediction interval obtained using the optimal bias correction function

δ∗(x).

This corollary provides a bound on how close LC-ACP is to the optimal conformal method,

in terms of interval width. As η approaches 1 (i.e., as the bias correction becomes more

effective), the efficiency ratio approaches 1, indicating that LC-ACP approaches optimality.

Figure 5.3 visually illustrates these theoretical benefits, showing how the local bias

correction in LC-ACP leads to narrower prediction intervals while maintaining the required

coverage guarantees.

5.6 Experimental Results on Financial Volatility Predic-

tion

To evaluate the effectiveness of our LC-ACP method, we conducted extensive experiments on

real-world financial time series data. We selected four representative stocks from different

sectors of the market: AAPL (Apple Inc.), NVDA (NVIDIA Corporation), TSLA (Tesla,

Inc.), and BABA (Alibaba Group). This dataset encompasses diverse market conditions,
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including the post-pandemic recovery period, the high inflation environment of 2022, the tech

sector correction, and the AI-driven tech rally of 2023.

5.6.1 Experimental Setup

Data Description

We collected daily closing prices for each stock over a comprehensive period from January

2021 to January 2025. This dataset encompasses diverse market conditions, including:

• The post-pandemic market recovery period (2021)

• The high inflation environment and monetary tightening (2022)

• The tech sector correction of late 2021 and 2022

• The AI-driven tech rally of 2023

• Multiple interest rate cycles by the Federal Reserve

For each stock, we computed the log returns rt = log(Pt/Pt−1) and used these returns

directly for volatility modeling with GARCH(1,1).

The GARCH(1,1) model has the form:

σ2
t = ω + αr2t−1 + βσ2

t−1 (5.32)

where σ2
t is the conditional variance at time t, ω is a constant, α captures the impact of

recent return shocks, and β represents the persistence of volatility.

We estimated the GARCH parameters using maximum likelihood estimation based on

the assumption of normally distributed standardized returns. For the implementation of

LC-ACP, we augmented this basic model with additional market context to improve the local

bias correction. Specifically, for the bias correction function δ(x), we incorporated:
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• Recent GARCH prediction errors

• VIX index levels (for US stocks) or VHSI (for Alibaba) as market volatility indicators

• Day-of-week effects to capture weekly seasonality

This approach allows the LC-ACP method to leverage market regime information for

more accurate bias correction while still using the GARCH(1,1) model as the base predictor.

Baseline Methods

We implemented the following prediction methods for comparison:

• GARCH: A GARCH(1,1) model [8] fitted to daily returns, representing a common

benchmark for volatility forecasting.

• CP: Standard conformal prediction [98] with a fixed calibration set of 126 days applied

to the GARCH predictions.

• ACP: Adaptive conformal prediction [30] that updates the miscoverage rate αt online

using the multiplicative weights update algorithm.

• LC-ACP: Our proposed locally debiased adaptive conformal prediction method.

Training Protocol

For each stock, we followed a time series cross-validation protocol:

1. Initial model training: We used the first 252 trading days (approximately one year)

as the initial training data for all models.

2. Calibration period: The subsequent 126 days were used as the initial calibration set

for all conformal methods.
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3. Testing period: The remaining data was used for sequential testing, with a rolling

window approach.

4. Online updates: For adaptive methods, we updated the models and calibration sets

sequentially:

• Every 5 trading days, we refitted the base forecasting models (GARCH) using the

most recent 252 days.

• Every day, we updated the calibration set by adding the most recent observation

and removing the oldest one (maintaining a window size of 126 days).

• For LC-ACP, we recomputed the local bias correction term δ(x) weekly using the

most recent 21 days of prediction errors.

Hyperparameter Tuning

We conducted a thorough grid search to find optimal hyperparameters for each method:

• For Standard ACP, we explored step sizes γ ∈ {0.01, 0.05, 0.1, 0.2} and selected γ = 0.1

based on validation performance.

• For LC-ACP, we tested different combinations of:

– Local window sizes: {10, 21, 42} days for computing the bias correction

– Number of nearest neighbors: k ∈ {3, 5, 10} for locally weighted averaging

– Step sizes: γ ∈ {0.05, 0.1, 0.15, 0.2} for the adaptive update

The best performance was achieved with a 21-day window, k = 5 neighbors, and

γ = 0.15.

All hyperparameters were selected using only the initial training and calibration periods

to prevent look-ahead bias.
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Evaluation Metrics

We evaluated the performance of each method using the following metrics:

• Empirical coverage rate: Percentage of test points where the true value falls within

the prediction interval

• Average interval width: Mean width of the prediction intervals

• Interval score [31]: A proper scoring rule that combines coverage and width, defined

as:

ISα(L,U, y) = (U − L) +
2

α
(L− y)⊮{y < L}+ 2

α
(y − U)⊮{y > U} (5.33)

where L and U are the lower and upper bounds of the prediction interval, and y is the

observed value

• Winkler score [106]: Another proper scoring rule that penalizes intervals that miss

the true value:

WSα(L,U, y) =


U − L, if L ≤ y ≤ U

U − L+ 2
α
(L− y), if y < L

U − L+ 2
α
(y − U), if y > U

(5.34)

• Mean absolute calibration error (MACE): Average absolute deviation of the

empirical coverage rate from the target coverage rate in a rolling window

5.6.2 Coverage Analysis

We evaluate the empirical coverage rates of prediction intervals generated by each method.

The target coverage rate was set to 1− α = 0.9 (90%) for all experiments.
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Table 5.1: Average empirical coverage rates (%) for different methods across the four stocks.
Target coverage rate is 90%. Best results (closest to 90%) for each stock are highlighted in
bold.

Method AAPL NVDA TSLA BABA Average

GARCH 85.7 84.2 82.1 83.8 83.9
CP 91.7 92.3 93.1 92.8 92.5
ACP 89.4 87.9 86.5 88.7 88.1
LC-ACP 90.3 89.5 89.8 90.1 89.9

Table 5.1 shows the average empirical coverage rates across the testing period for each

stock and method. The LC-ACP method consistently achieves coverage rates closest to the

target of 90%, demonstrating its ability to maintain the desired coverage even in the presence

of local biases and distribution shifts.

Figure 5.4 shows how coverage rates evolve over time for each of the four stocks across the

full period from January 2021 through January 2025. We observe that LC-ACP maintains

more stable coverage rates that are consistently closer to the target compared to both CP

and ACP. This is particularly evident during periods of market volatility, where the other

methods tend to exhibit significant deviations from the target coverage.

Regime-Specific Analysis

To further analyze the performance across different market regimes, we classified each trading

day into one of three regimes based on the VIX index:

• Low Volatility: VIX < 15

• Normal Volatility: 15 ≤ VIX < 25

• High Volatility: VIX ≥ 25

Table 5.2 shows the average coverage rates for each method across these volatility regimes.

This analysis reveals that LC-ACP performs consistently well across all volatility regimes,

while other methods exhibit more significant deviations from the target coverage:
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Table 5.2: Coverage rates (%) across different market volatility regimes. Target coverage is
90%. Best results for each regime are highlighted in bold.

Method Low Vol. Normal Vol. High Vol.

GARCH 87.1 84.5 80.2
CP 89.5 91.7 95.8
ACP 89.8 89.1 85.6
LC-ACP 90.1 90.3 89.2

• GARCH models severely undercover during high volatility periods, with coverage

dropping to 80.2% compared to the target of 90%. This is expected, as GARCH models

struggle to capture the fat tails of return distributions during market stress.

• CP overcovers significantly during high volatility (95.8%), producing unnecessarily wide

intervals. This is because it uses a fixed calibration set that may not reflect the current

market conditions.

• ACP improves on CP but still undercovers during high volatility (85.6%), as it may

not adapt quickly enough to rapid regime changes.

• LC-ACP maintains close to 90% coverage in all regimes, with the smallest deviation

during high volatility (89.2%). This demonstrates the effectiveness of combining local

bias correction with adaptive calibration.

The robust performance of LC-ACP across different market conditions highlights its

effectiveness in handling the non-exchangeability of financial time series data, which is

characterized by regime-dependent behaviors. This aligns with the theoretical guarantees

established by Gibbs and Candès [30], which ensure convergence to the target coverage level

even under distribution shifts.

5.6.3 Prediction Interval Width Analysis

A key measure of efficiency for prediction intervals is their width - narrower intervals provide

more precise uncertainty estimates. Figure 5.5 shows a boxplot comparison of the prediction
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Table 5.3: Average prediction interval widths and percentage reduction achieved by LC-ACP.
The width values are scaled by 10−2 for readability.

Method AAPL NVDA TSLA BABA Average

CP 3.42 4.17 5.86 3.95 4.35
ACP 3.18 3.84 5.42 3.73 4.04
LC-ACP 2.89 3.41 4.82 3.32 3.61

% Reduction vs. CP 15.5% 18.2% 17.7% 15.9% 17.0%
% Reduction vs. ACP 9.1% 11.2% 11.1% 11.0% 10.6%

interval widths produced by each method across the four stocks.

Table 5.3 provides a detailed quantitative comparison of the average interval widths and

the percentage reduction achieved by LC-ACP compared to the other methods.

The results show that LC-ACP consistently produces narrower intervals than both CP

and ACP. Specifically, LC-ACP achieves interval width reductions of 13-18% compared to CP

and 10.6% narrower than ACP on average, with even greater reductions during high-volatility

regimes. This efficiency gain is particularly notable for stocks with higher volatility (TSLA

and NVDA), where the local bias correction component effectively captures regime-dependent

patterns that global methods miss.

These empirical results align remarkably well with our theoretical analysis in Theorem

5.5.1, which predicted that if the bias correction reduces the variance of the residuals by

a factor of (1 − η), the expected width of the prediction intervals would be reduced by a

factor of approximately
√
1− η. The observed width reduction of 17.0% compared to CP

corresponds to η ≈ 0.31, indicating that the local bias correction reduces the variance of the

residuals by approximately 31%.

Width Reduction Analysis by Market Regime

To better understand how LC-ACP achieves width reduction across different market conditions,

we analyzed the average interval widths for each volatility regime.

This analysis reveals several important insights:
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Table 5.4: Average interval widths (scaled by 10−2) across different market regimes. The
percentage in parentheses shows the reduction achieved by LC-ACP compared to ACP.

Method Low Vol. Normal Vol. High Vol.

CP 2.87 4.21 6.41
ACP 2.75 3.92 5.84
LC-ACP 2.53 (8.0%) 3.51 (10.5%) 5.02 (14.0%)

• LC-ACP achieves greater width reduction during high volatility periods (14.0%) com-

pared to low volatility periods (8.0%). This is because high volatility periods often

exhibit more pronounced local biases that can be effectively captured and corrected by

the local bias correction component.

• The width reduction is proportional to the magnitude of local biases, which tend to be

more significant during volatile markets. This aligns with our theoretical analysis, which

showed that the width reduction is proportional to the variance reduction achieved by

the bias correction.

• The efficiency gain of LC-ACP is most valuable precisely when it is most needed -

during periods of high uncertainty. This makes LC-ACP particularly useful for risk

management applications, where accurate uncertainty quantification during market

stress is crucial.

5.6.4 Coverage vs. Width Trade-off

An important aspect of any conformal prediction method is the trade-off between coverage

and interval width. Figure 5.6 illustrates this relationship for each method-ticker combination.

Figure 5.6 demonstrates that:

• LC-ACP consistently achieves better performance across all tickers, with points closer

to the upper-left region (higher coverage with narrower intervals).
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Table 5.5: Average interval scores (IS) and Winkler scores (WS) for each method (multiplied
by 102 for readability). Lower values indicate better performance.

Method IS WS MACE IS × MACE

CP 4.87 4.62 0.053 0.258
ACP 4.55 4.39 0.031 0.141
LC-ACP 3.98 3.87 0.017 0.068

• Different tickers respond differently to each method, but LC-ACP provides the most

consistent performance across all sectors.

• The ACP method shows improved performance over CP but does not match the

efficiency of LC-ACP.

To quantify this trade-off, we computed the interval score (IS) and Winkler score (WS)

for each method. These proper scoring rules simultaneously reward accurate coverage and

narrow intervals.

The results in Table 5.5 show that LC-ACP achieves the best scores across all metrics,

indicating that it optimizes the coverage-width trade-off more effectively than the other

methods. The product of the interval score and mean absolute calibration error (IS × MACE)

serves as a comprehensive measure of performance, combining both efficiency and calibration

quality. LC-ACP improves this combined metric by 52% compared to ACP and 74% compared

to CP.

5.6.5 Effect of Local Bias Correction

To illustrate the mechanism behind LC-ACP’s improved performance, Figure 5.7 visualizes

the effect of local bias correction during a period of rapid volatility increase for TSLA stock.

This visualization reveals:

• Without bias correction (top panel), ACP consistently underestimates the true volatility

during the rapid increase phase, resulting in intervals that fail to contain the true values.
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Table 5.6: Decomposition of prediction errors (MSE) into bias and variance components
(values multiplied by 104 for readability).

Method Bias2 Variance Total MSE

GARCH 2.53 3.86 6.39
LC-ACP 0.68 3.79 4.47

% Reduction 73.1% 1.8% 30.0%

This is a classic example of local bias, where the model systematically underestimates

volatility during regime transitions.

• With local bias correction (bottom panel), LC-ACP quickly identifies and corrects for

the systematic bias, resulting in intervals that properly contain the true volatility values

even during rapid shifts. The bias correction term δ(x) effectively captures the local

pattern of underestimation and adjusts the predictions accordingly.

• The adaptation happens more quickly with LC-ACP, demonstrating its ability to

respond to localized patterns without requiring a complete recalibration of the model.

This is particularly valuable during regime transitions, where traditional methods may

take time to adapt.

Decomposition of Prediction Errors

To better understand the sources of prediction errors and the impact of local bias correction,

we decomposed the total error into bias and variance components for each method.

This analysis shows that local bias correction primarily reduces the systematic bias

component of the error (73.1% reduction) while having a minimal impact on the variance

component. This is consistent with our theoretical analysis, which showed that LC-ACP

achieves efficiency gains by reducing local biases while maintaining the same level of coverage.

The substantial reduction in the squared bias component (73.1%) translates to a more

modest reduction in interval width (17.0%) because the interval width is proportional to the

square root of the total variance, which includes both the bias and variance components.
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This relationship is precisely what our theoretical analysis in Theorem 5.5.1 predicted.

5.6.6 Sensitivity Analysis

To assess the robustness of LC-ACP to hyperparameter choices, we conducted a comprehensive

sensitivity analysis by varying the key parameters and measuring their impact on performance.

Figure 5.8 reveals several important insights:

• Window size effects:

– Small windows (7-14 days) react quickly to market changes but exhibit higher

coverage error variance and wider intervals due to estimation noise.

– Medium windows (21-28 days) provide optimal balance between reactivity and

stability, showing minimum coverage error.

– Large windows (42-63 days) reduce error variance but respond too slowly to regime

changes, especially during the rapid transitions observed in late 2022 and mid-2023.

• Step size (γ) effects:

– Small step sizes (0.01-0.05) result in slow adaptation that fails to keep pace with

rapid market transitions, particularly during the volatile periods in 2022.

– Medium step sizes (0.1-0.15) provide optimal balance, allowing the model to adapt

quickly enough while maintaining stability.

– Large step sizes (0.2-0.3) cause excessive oscillation in coverage rates, particularly

evident during the relatively stable market periods in mid-2022.

These findings align with our theoretical analysis, which showed that the step size γ

controls the trade-off between adaptation speed and stability. The optimal step size depends

on the magnitude of distribution shifts and the desired balance between short-term adaptation

and long-term stability.
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Table 5.7: Average computation time per prediction (in milliseconds).

Method Training Prediction

GARCH 187.3 2.4
CP 187.3 7.2
ACP 187.3 8.5
LC-ACP 213.6 14.3

5.6.7 Computational Efficiency

We also evaluated the computational efficiency of each method, which is important for

practical deployment in real-time financial applications.

While LC-ACP requires additional computation for the local bias correction, the overhead

is modest and well within the requirements for practical financial applications, where predic-

tions are typically needed at daily or longer intervals. The additional computational cost is

justified by the significant improvements in prediction interval quality, as demonstrated by

the coverage and width analyses.

5.6.8 Summary of Experimental Findings

Our comprehensive experimental evaluation across four diverse stocks and a four-year period

spanning multiple market cycles yields the following key findings:

1. Superior coverage accuracy: LC-ACP achieves average coverage of 89.9%, closest

to the target of 90% among all methods tested, with the smallest deviation from the

target during high-volatility periods.

2. Significant interval width reduction: LC-ACP produces intervals that are 17.0%

narrower than CP and 10.6% narrower than ACP on average, with even greater

reductions during high-volatility regimes.

3. Optimal coverage-width trade-off : LC-ACP achieves the best interval and Winkler

scores across all market conditions, indicating that it balances coverage accuracy and
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interval width more effectively than other methods.

4. Robust performance across regimes: LC-ACP maintains consistent performance

across low, normal, and high volatility regimes, with particularly notable improvements

during high-volatility periods when accurate uncertainty quantification is most valuable.

5. Rapid adaptation to shifts: LC-ACP adapts quickly to volatility regime transitions,

demonstrating superior effectiveness during the post-pandemic recovery period, high

inflation environment, and tech sector correction.

6. Error reduction: Local bias correction reduces the squared bias component of

prediction errors by 73.1%, confirming the theoretical mechanism by which LC-ACP

improves upon standard methods.

These experimental results provide strong empirical validation of our theoretical analysis,

demonstrating that LC-ACP effectively addresses the limitations of standard conformal

methods by combining local bias correction with adaptive calibration. The method’s ability

to maintain target coverage while producing efficient intervals across diverse market regimes

suggests that its theoretical advantages translate directly into practical benefits for uncertainty

quantification in non-stationary environments.

5.7 Conclusion

In this chapter, we introduced Locally Debiased Adaptive Conformal Prediction (LC-ACP),

a novel approach that combines local bias correction with adaptive conformal prediction

to address the challenges of uncertainty quantification in non-stationary time series. Our

method bridges theory and practice by maintaining distribution-free coverage guarantees

while significantly improving interval efficiency through explicit local bias correction.

Our theoretical analysis established that LC-ACP provides valid coverage guarantees

even without the exchangeability assumption, making it particularly well-suited for time



144

series applications where temporal dependencies and distribution shifts are common. We also

quantified the efficiency gain from local bias correction, showing that the width reduction is

proportional to the square root of the variance reduction achieved by the bias correction.

Our comprehensive empirical evaluation demonstrated that LC-ACP consistently outper-

forms existing conformal prediction methods in both coverage accuracy and interval width.

The method shows particular strength during volatile periods and regime transitions, precisely

when accurate uncertainty quantification is most valuable. By achieving average coverage of

89.9% (closest to the target 90%) while producing intervals that are 17.0% narrower than CP

and 10.6% narrower than ACP, LC-ACP demonstrates that significant practical improvements

are possible without sacrificing theoretical guarantees.

LC-ACP opens up new possibilities for more efficient, accurate, and reliable uncertainty

quantification in machine learning applications. By explicitly addressing local biases while

maintaining distribution-free coverage guarantees, it bridges an important gap in the conformal

prediction literature and provides a practical tool for real-world applications across multiple

domains. As we continue to deploy machine learning models in critical applications, methods

like LC-ACP that enhance the trustworthiness of predictions through reliable uncertainty

estimates will become increasingly important for responsible AI deployment.

In the next chapter, we will build upon the theoretical foundation established here by

applying LC-ACP to the challenging domain of climate and weather prediction, with a specific

focus on hurricane forecasting. This application domain presents unique challenges including

non-stationarity, extreme events, and high-dimensional spatial-temporal data—making it an

ideal test case for demonstrating the real-world utility of our LC-ACP methodology. We will

show how LC-ACP can help address the critical need for reliable uncertainty quantification

in climate foundation models, ultimately contributing to more robust decision-making tools

for disaster preparedness and response.
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Target Coverage: 90%
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 GP: 39.5%
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LC-ACP adapts to non-stationarity
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Comparing GP vs. LC-ACP for Non-Stationary Time Series

PhD Thesis - Uncertainty Quantification

Figure 5.1: Comparison of Gaussian Process regression and Locally Debiased Adaptive
Conformal Prediction (LC-ACP) on synthetic stock price data with three distinct volatility
regimes. The figure demonstrates how GPs maintain consistent uncertainty patterns across
all regimes, leading to poor coverage (39.5% overall) compared to the target 90%, with
particularly low coverage in the medium volatility regime (14.5%). In contrast, LC-ACP
adapts its prediction intervals to account for regime-specific characteristics, achieving more
reliable and consistent coverage (99.5% overall) across all regimes at the cost of slightly wider
prediction intervals.



146

Comparison of Conformal Prediction Methods
Standard Conformal Prediction (CP)

Provides valid prediction intervals
with coverage guarantee of 1− α

Fixed miscoverage rate for all data
points

Does not account for local data
characteristics

Can produce unnecessarily wide
intervals

x

y

• Data points
Predicted function
Prediction interval

Adaptive Conformal Prediction (ACP)

Provides valid prediction intervals
with coverage guarantee of 1− α

Adaptive miscoverage rate based on
recent errors

Does not account for local data
characteristics

Interval width adapts over time

x

y

• Data points
Predicted function
Prediction interval

Locally Debiased ACP (LC-ACP)

Provides valid prediction intervals
with coverage guarantee of 1− α

Adaptive miscoverage rate based on
recent errors

Accounts for local data characteris-
tics with bias correction
Variable interval width based on
local uncertainty

x

y

• Data points
Locally debiased function
Adaptive prediction interval

+ Adaptivity + Local Debiasing

Key Benefits of LC-ACP: Combines adaptivity from ACP with local bias cor-
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Figure 5.2: Comparison of conformal prediction methods. LC-ACP combines local bias
correction with adaptive conformal prediction, providing narrower, better-centered prediction
intervals in regions where the base model exhibits systematic errors. The left panel shows
standard CP with fixed-width intervals, the middle panel shows ACP with globally adaptive
intervals, and the right panel shows LC-ACP with locally adapted intervals that follow the
true function more closely.
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Figure 5.3: Illustration of LC-ACP’s theoretical benefits. The base model f̂(x) (blue) fails to
capture local patterns in the true function f(x) (dashed black). Standard CP uses fixed-width
intervals, while LC-ACP leverages the bias correction term δ(x) to produce narrower intervals
(green) that still maintain coverage guarantees. The width reduction is proportional to√
1− η where η is the variance reduction factor.
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Figure 5.4: Coverage rates over time for four stocks: Apple Inc. (AAPL), NVIDIA Corporation
(NVDA), Tesla, Inc. (TSLA), and Alibaba Group (BABA) from January 2021 to January
2025. LC-ACP maintains more stable coverage closer to the target of 90% compared to CP
and ACP, especially during periods of market volatility. The rolling coverage is calculated
using a 253-day window.
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Figure 5.5: Boxplot of prediction interval widths by method across all four stocks. LC-ACP
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ACP’s efficiency in uncertainty quantification, achieving narrower intervals while maintaining
coverage closer to the target 90%.
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a period of rapid volatility increase. Note how LC-ACP’s intervals better track the true
volatility (black line) by adjusting for local biases.
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Figure 5.8: Sensitivity analysis of LC-ACP hyperparameters. (a) Shows how the local window
size affects the trade-off between coverage error and interval width. The U-shaped pattern
indicates an optimal window size of approximately 21-28 days. (b) Shows how the adaptation
step size γ impacts the convergence rate and stability of coverage, with optimal values between
0.1-0.15.



Chapter 6

Application of LC-ACP to Climate and

Weather Foundation Models

“In a chaotic world, the relationship between model predictions and reality demands not
just accuracy, but well-calibrated uncertainty.”

6.1 Introduction

Weather and climate phenomena represent some of the most challenging prediction problems

in modern science, characterized by chaotic dynamics, complex non-stationarity, and high-

dimensional spatiotemporal structures. This is particularly true of extreme events, including

tropical cyclones (hurricanes or typhoons), which rank among the most destructive natural

disasters worldwide with devastating socioeconomic impacts. According to the National

Oceanic and Atmospheric Administration (NOAA), between 1980 and 2023, tropical cyclones

accounted for over $1.3 trillion in damages in the United States alone, with an average cost

per event exceeding $22 billion [68].

The advancement of deep learning models, and foundation models in particular, has

introduced powerful new tools for many applications, including weather and climate pre-

diction. Foundation models pre-trained on large-scale reanalysis or climate simulation data

have set new benchmarks in predictive accuracy [72, 82]. Simultaneously, lightweight archi-

151
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tectures such as Tiny Time Mixers (TTMs) [22] offer parameter-efficient alternatives that

maintain competitive performance while reducing computational costs—a critical advantage

for operational deployment.

Despite these advances in deterministic prediction, reliable uncertainty quantification

(UQ) remains a significant challenge. The necessity for robust UQ is particularly acute

in hurricane forecasting, where risk communication directly impacts evacuation decisions,

resource allocation, and ultimately, human lives [75].

In Chapter 2, we introduced Gaussian Processes as a principled Bayesian framework

for uncertainty quantification. While GPs provide excellent uncertainty quantification for

small-to-medium scale stationary data, they face significant limitations when applied to

large-scale, non-stationary time series data like hurricane movement, i.e. tracks. Specifically,

they

1. scale poorly with dataset size (cubic complexity), making them impractical for large

climate datasets;

2. struggle with non-stationary time series data, requiring complex kernel engineering;

3. typically assume Gaussian noise, which may not capture the complex error distributions

in hurricane predictions.

To address these limitations, in Chapter 5, we developed Locally Debiased Adaptive

Conformal Prediction (LC-ACP), which combines local bias correction with adaptive conformal

prediction to provide distribution-free coverage guarantees while significantly improving

prediction interval efficiency. The method showed particular strengths in financial forecasting

applications with volatile periods and regime transitions—characteristics that are similarly

present in problems around weather and climate prediction.

This chapter builds upon that methodological foundation by applying LC-ACP to climate

foundation models, specifically for hurricane track prediction. We demonstrate how LC-

ACP addresses the limitations of Gaussian Processes while providing rigorous uncertainty
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quantification for operational hurricane forecasting. Our approach combines the computational

efficiency of lightweight foundation models (TTMs) with the statistical rigor of LC-ACP

to deliver well-calibrated uncertainty estimates that adapt to both local model biases and

distribution shifts over time—a critical capability for weather and climate applications where

non-stationarity is the norm rather than the exception.

6.2 Challenges in Hurricane Track Prediction and Uncer-

tainty Quantification

6.2.1 The Hurricane Prediction Problem

Hurricane forecasting represents a quintessential example of the challenges in high-dimensional,

non-stationary time series prediction. Let Xt ∈ Rd denote the state vector of a hurricane

at time t, where d includes variables such as latitude, longitude, wind speed, pressure, and

other atmospheric covariates. Given a historical context window of C consecutive timesteps,

our goal is to forecast the hurricane’s future states over a prediction horizon of H timesteps:

X̂t+1:t+H = fθ
(
Xt−C+1:t

)
(6.1)

where fθ represents our forecasting model with parameters θ. For notational simplicity, we

focus on a specific variable of interest (e.g., storm track coordinates) and denote:

• yt ∈ Rm as the ground truth value (location) at time t

• ŷt ∈ Rm as the corresponding model-predicted value

• rt = yt − ŷt as the prediction residual error

Several factors make hurricane track prediction particularly challenging:

1. Chaotic Dynamics: Small perturbations in initial conditions can lead to dramatically

different forecast outcomes, a classic example of the "butterfly effect" [60].
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2. Complex Physics: Hurricane evolution involves multi-scale interactions between at-

mospheric and oceanic processes, including thermodynamic energy exchanges, boundary

layer dynamics, and environmental steering flows.

3. Non-Stationarity: Hurricane characteristics evolve over time due to interactions with

changing environmental conditions, seasonal effects, and climate change, violating the

stationarity assumptions of many statistical models.

4. High-Dimensional State Space: The complete state description of a hurricane and

its environment involves hundreds to thousands of variables across multiple spatial

locations and vertical levels.

5. Limited Observational Data: While climate models generate abundant synthetic

data, real-world hurricane observations remain relatively sparse, especially for extreme

events, creating challenges for model validation and uncertainty quantification.

6.2.2 Traditional Approaches to Hurricane Track Uncertainty

Traditional approaches to representing uncertainty in hurricane forecasts include:

1. Ensemble Forecasting: Running multiple deterministic forecasts with perturbed

initial conditions or model physics to generate a distribution of possible outcomes. The

European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble and the

NOAA Global Ensemble Forecast System (GEFS) exemplify this approach.

2. Statistical Post-Processing: Applying statistical corrections to deterministic fore-

casts based on historical error patterns. The National Hurricane Center’s (NHC) "cone

of uncertainty" represents a widely-used example, constructed from historical forecast

errors over the previous five years.

3. Bayesian Methods: Incorporating prior knowledge and observation uncertainties into

a Bayesian framework to generate posterior predictive distributions. The computational
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complexity of these methods often makes them impractical for operational forecasting.

Each of these approaches has significant limitations:

• Ensemble forecasting is computationally expensive and may not capture all sources of

uncertainty, particularly those related to model structural errors.

• Statistical post-processing based on historical errors does not adapt well to changing

conditions or storm-specific characteristics, potentially leading to miscalibration.

• Bayesian methods face computational challenges and often require simplifying assump-

tions about error distributions that may not hold in practice.

6.2.3 The Need for Adaptive, Distribution-Free Uncertainty Quan-

tification

The limitations of traditional approaches highlight the need for uncertainty quantification

methods that are:

1. Computationally Efficient: Capable of generating uncertainty estimates quickly

enough for operational use, even with limited computational resources.

2. Distribution-Free: Not reliant on strong assumptions about error distributions, which

may be complex and non-stationary in hurricane forecasting.

3. Locally Adaptive: Able to adjust uncertainty estimates based on local characteristics

of each forecast point, recognizing that prediction difficulty varies across different storm

types and geographical regions.

4. Temporally Adaptive: Capable of maintaining calibration as the underlying data

distribution shifts over time, without requiring frequent recalibration.

5. Theoretically Grounded: Providing rigorous coverage guarantees under minimal as-

sumptions, ensuring reliable uncertainty quantification for high-stakes decision-making.
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Locally Debiased Adaptive Conformal Prediction (LC-ACP), introduced in Chapter 5,

satisfies these requirements by combining local bias correction with adaptive conformal

calibration. The remainder of this chapter demonstrates the application of LC-ACP to

hurricane track prediction using foundation models, specifically lightweight Tiny Time Mixers

(TTMs).

6.3 Methodology: Integrating TTMs with LC-ACP for

Hurricane Uncertainty Quantification

6.3.1 Overview of the Integrated Approach

Our approach integrates lightweight foundation models with statistical uncertainty quan-

tification to deliver accurate and computationally efficient hurricane forecasts with reliable

uncertainty estimates. The pipeline consists of two core components:

1. Deterministic Forecasting via TTMs: A parameter-efficient Tiny Time Mixer

model generates initial baseline forecasts.

2. Uncertainty Quantification with LC-ACP: Locally Debiased Adaptive Confor-

mal Prediction provides well-calibrated uncertainty estimates by combining local bias

correction with adaptive conformal prediction.

This modular design leverages the complementary strengths of each component: TTMs

provide fast approximate predictions, while LC-ACP adds a principled uncertainty quantifi-

cation layer that addresses local biases in the model and adapts to distribution shifts over

time.

Figure 6.1 illustrates the LC-ACP methodology for hurricane track forecasting. The

pipeline takes the current hurricane state as input, generates a TTM-based prediction, applies

local bias correction to address systematic errors, and finally performs adaptive conformal

calibration to ensure valid coverage guarantees under distribution shifts.
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Figure 6.1: Illustration of the Locally Debiased Adaptive Conformal Prediction (LC-ACP)
methodology. The pipeline consists of three main components: (1) TTM prediction, which
generates the initial forecast; (2) Local bias correction, which adjusts for systematic errors
in specific regions; and (3) Adaptive conformal calibration, which ensures valid coverage
guarantees. The resulting prediction intervals adapt to both the local characteristics of each
forecast point and the evolving distribution of hurricane tracks.

6.3.2 Tiny Time Mixer (TTM) Architecture for Hurricane Forecast-

ing

Tiny Time Mixers represent a parameter-efficient architecture for time-series modeling,

combining the strengths of convolutional networks for local pattern detection with attention

mechanisms for global dependencies [22]. Unlike popular time-series foundation models that

focus on reconstructing masked data, TTMs employ a prediction approach through efficient

channel-mixing layers.
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The core TTM block consists of alternating time-mixing and feature-mixing operations:

Time-mixing: Z(l) = Mixtime
(
X(l−1)

)
(6.2)

Feature-mixing: X(l) = Mixfeature
(
Z(l)

)
(6.3)

For hurricane forecasting, we leverage a TTM variant with the following key features:

• Multi-Resolution Processing: Captures both short-term dynamics (rapid intensity

changes) and long-term trends (overall track trajectory) through multi-scale patching.

• Parameter Efficiency: Achieves competitive performance with as little as 1M param-

eters, compared to hundreds of millions in larger foundation models, making it suitable

for operational deployment.

• Transfer Learning Capability: Pre-trained on large climate simulation datasets and

fine-tuned on empirical or representative historical hurricane data, allowing effective

generalization from synthetic to real-world storms.

• Latent Space Representation: Provides meaningful intermediate representations

that capture complex spatio-temporal patterns in hurricane dynamics, forming the

basis for local bias correction.

The TTM is trained using multiple loss functions targeting different aspects of hurricane

forecasting:

LTTM(θ) = λtrackLtrack(θ) + λintensityLintensity(θ) + λregLreg(θ) (6.4)

where λtrack, λintensity, and λreg are hyperparameters balancing different loss terms.
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6.3.3 Locally Debiased Adaptive Conformal Prediction (LC-ACP)

for Hurricane Tracks

LC-ACP Algorithm

Algorithm 7 and 8 collectively provide the complete implementation of LC-ACP for hurricane

track forecasting. The algorithm consists of three main phases: (1) learning a local bias

correction function using an anchor dataset, (2) calculating initial nonconformity scores and

determining quantile thresholds on a calibration set, and (3) adaptive online prediction with

dynamic updates to maintain the target coverage level under distribution shifts.

Local Bias Correction in Latent Space

Rather than operating in the raw input space, we apply LC-ACP in a lower-dimensional latent

space derived from the TTM. Let ht = ϕθ(Xt−C+1:t) be a latent representation extracted

from an intermediate layer of the TTM. This approach offers several advantages:

• Dimensionality reduction for computational efficiency

• Feature learning that captures complex spatio-temporal patterns

• Smoother behavior for better generalization of uncertainty estimates

For each new prediction point h∗, we identify similar historical examples and use their

errors to construct a local error distribution:

E(h∗) = {ri | hi ∈ Nk(h∗)} (6.5)

where Nk(h∗) represents the k nearest neighbors of h∗ in the latent space.

The local bias correction function δ(h) estimates the systematic error at a given point:

δ(h∗) =

∑k
i=1wi · ri∑k
i=1wi

, (6.6)
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where wi = exp(−∥h∗ − hi∥2/h2) is a kernel weight that gives higher importance to closer

points, and h is a bandwidth parameter controlling the locality of the correction.

Local Uncertainty Estimation

The local uncertainty estimate σ(h∗) is computed as the weighted standard deviation of the

residuals:

σ(h∗) =

√∑k
i=1wi · (ri − δ(h∗))2∑k

i=1wi
(6.7)

This uncertainty estimate captures the local variability in prediction errors, providing a basis

for constructing prediction intervals that adapt to the specific characteristics of each forecast

point.

The locally debiased forecast is then given by:

ỹ∗ = ŷ∗ + δ(h∗), (6.8)

with associated uncertainty σ(h∗).

Adaptive Conformal Calibration

For each calibration example, we define a nonconformity score that measures how "unusual"

the observed residual is compared to the locally debiased prediction:

St =

∣∣yt − (ŷt + δ(ht))
∣∣

σ(ht)
. (6.9)

Using a held-out calibration set, we compute nonconformity scores and determine the

empirical (1− α)-quantile:

Q1−α = Quantile
(
{St}t∈Dcal , 1− α

)
(6.10)
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For a new test point, we construct the prediction interval by:

PI(t∗) =
[
ỹ∗ −Q1−α σ(h∗), ỹ∗ +Q1−α σ(h∗)

]
(6.11)

A key innovation in ACP is dynamic updating of the quantile threshold:

Q1−α,t+1 = Q1−α,t + γ(α− I{yt /∈ PI(t)}), (6.12)

where I{yt /∈ PI(t)} is the miscoverage indicator and γ is a learning rate parameter. This adap-

tive mechanism allows LC-ACP to maintain target coverage even as hurricane characteristics

evolve.

Figure 6.2 illustrates the integrated TTM+LC-ACP pipeline. The TTM takes the

historical hurricane track as input and generates a deterministic forecast. LC-ACP then

processes this forecast through local bias correction and adaptive conformal calibration to

produce well-calibrated prediction intervals.

6.4 Experimental Setup and Data Sources

6.4.1 Climate Model Synthetic Hurricane Tracks

To evaluate our approach, we used tropical cyclones extracted from high-resolution climate

model simulations [23]. Specifically, we used the CanESM5 model (Canadian Earth System

Model) from the CMIP6 (Coupled Model Intercomparison Project Phase 6) [93]. From these

simulations, we identified tropical cyclones using a standard tracking algorithm based on

vorticity maxima, warm core structure, and minimum duration criteria.

The primary dataset for our experiments consisted of 1,399 simulated hurricane tracks from

the CanESM5 model that passed through the Galveston county region. These tracks represent

diverse hurricane scenarios under current and near-future climate conditions, providing a

robust basis for training and evaluating our models.
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Figure 6.3 illustrates the comprehensive dataset of simulated hurricane tracks used in our

experiments. The tracks exhibit diverse patterns, including direct approaches to Galveston,

recurving tracks that parallel the coast, and tracks that cross the Galveston area from

various directions. This diversity enables the evaluation of our method across a wide range of

hurricane scenarios.

6.4.2 Experimental Protocol

We employed a leave-three-out cross-validation strategy to evaluate our methodology:

1. The TTM model was trained on 1,396 simulated tracks, with 3 tracks held out for

testing.

2. This process was repeated multiple times with different held-out sets to ensure robust

evaluation.

3. For LC-ACP, we used a portion of the training set as a calibration set to determine the

initial conformal quantiles.

This protocol ensures a realistic evaluation setting while maximizing the use of available data.

The held-out tracks were selected to represent different storm characteristics, allowing us to

evaluate the method’s performance across diverse hurricane scenarios.

6.4.3 Evaluation Metrics

We evaluated our approach using complementary metrics that assess both track accuracy

and uncertainty calibration:

• Track Accuracy Metrics:

– Track Root Mean Square Error (RMSE): the Haversine distance between predicted

and actual storm centers
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– Direct Position Error (DPE): the distance error at specific forecast lead times

(24h, 48h, 72h, 96h, 120h)

• Uncertainty Quantification Metrics:

– Empirical Coverage: the percentage of test cases where the true position fell within

the predicted uncertainty region

– Mean Interval Width: the average radius (in kilometers) of the prediction intervals

– Calibration Error: the absolute difference between the nominal coverage (90%)

and the empirical coverage

These metrics collectively evaluate both the accuracy of the deterministic predictions and

the quality of the uncertainty estimates.

6.5 Experimental Results

6.5.1 Experimental Setup

We evaluated our TTM+LC-ACP pipeline on the 1,399 simulated hurricane tracks from

the CanESM5 model. The experimental setup followed a leave-three-out cross-validation

approach, where we trained the TTM model on 1,396 tracks and tested on 3 held-out

tracks. This process was repeated multiple times with different held-out sets to ensure robust

evaluation.

6.5.2 CanESM Galveston Tracks Experiment

For the Galveston region evaluation, we conducted a focused experiment using the extracted

tracks from the CanESM5 climate model:

• Training Dataset: We used 1,396 of the 1,399 simulated tropical cyclone tracks from

the CanESM5 model that passed through the Galveston county region (shown in Figure
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6.3). These tracks represent diverse potential hurricane scenarios under current and

near-future climate conditions.

• Evaluation Approach: Our leave-three-out cross-validation strategy ensured realistic

evaluation while maximizing the use of available data. The held-out tracks were selected

to represent different storm characteristics.

• LC-ACP Application: For each test track, we applied the LC-ACP methodology

following Algorithms 7 and 8 to quantify uncertainty in the TTM predictions. The local

bias correction component was particularly valuable in capturing systematic biases in

the model’s predictions for the specific Galveston region.

Figure 6.4 illustrates the application of LC-ACP to three held-out test tracks. The

uncertainty cones adapt to the specific characteristics of each track while maintaining the

target coverage rate. This visualization demonstrates how our method provides dynamic,

track-specific uncertainty quantification that adapts to the evolving characteristics of each

hurricane.

6.5.3 Quantitative Results and Method Comparison

Our experimental evaluation demonstrated several key findings:

• Predictive Accuracy: The TTM model achieved strong predictive performance across

different forecast lead times, with track error increasing naturally at longer horizons

(from approximately 32km at 24-hour lead time to 177km at 120-hour lead time).

• Coverage Reliability: The LC-ACP framework maintained consistent empirical cov-

erage rates around the target 90% across all lead times, demonstrating the effectiveness

of the adaptive calibration component despite increasing prediction difficulty.

• Interval Efficiency: The local bias correction component of LC-ACP produced
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prediction intervals that were 15-25% narrower than those from standard conformal

prediction methods while maintaining the same coverage rate.

• Storm Category Performance: LC-ACP maintained consistent performance across

different hurricane intensity categories (tropical storms, Category 1-2, and major

hurricanes), while alternative methods showed more significant variations in either

coverage or interval width.

When compared to alternative approaches (standard conformal prediction and adaptive

conformal prediction without local bias correction), LC-ACP consistently produced better-

centered prediction intervals with lower calibration error. This improvement was particularly

pronounced for major hurricanes (Categories 3-5), where LC-ACP maintained target coverage

while reducing interval width by approximately 24.6% compared to standard methods.

6.6 Operational Considerations and Limitations

While our LC-ACP approach demonstrates significant advantages for hurricane uncertainty

quantification, several operational considerations and limitations should be acknowledged:

6.6.1 Computational Efficiency

The computational requirements of our approach are modest compared to traditional ensemble

methods:

• The TTM model requires approximately 1GB of memory and can generate forecasts in

under 2 seconds on standard CPU hardware.

• The LC-ACP computation adds only 0.3-0.5 seconds per forecast, with most of the

time spent on nearest neighbor search.

• The complete pipeline is at least 50x faster than running a traditional ensemble of

NWP models.
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This efficiency makes our approach suitable for operational deployment in resource-

constrained environments, such as regional emergency management agencies or developing

countries with limited computational resources.

6.6.2 Data Requirements

Our approach requires:

• a sufficient number of historical or simulated hurricane tracks for training the TTM

model (typically >1,000 tracks)

• a calibration dataset for initializing the conformal prediction component (typically

100-200 tracks)

• an anchor dataset for local bias correction (typically the most recent 20-50 tracks)

The use of synthetic tracks from climate models helps address the limitation of sparse

historical data, especially for regions with fewer observed hurricanes.

6.6.3 Limitations and Future Work

Several limitations of our current approach suggest directions for future research:

• Counterfactual Analysis: Our method does not explicitly account for counterfactual

scenarios that are physically plausible but not represented in the training datan

• Multi-Model Integration: Future work could explore integrating predictions from

multiple foundation models, potentially using a weighted ensemble approach based on

local performance.

• Beyond Track Prediction: Extending the approach to joint uncertainty quantification

of track, intensity, size, and rainfall would provide a more comprehensive risk assessment

framework.



167

• Human-AI Collaboration: Developing interfaces that effectively communicate the

uncertainty information to forecasters and decision-makers remains an important area

for future work.

6.7 Conclusion

In this chapter, we presented a novel framework for hurricane track uncertainty quantification

that combines lightweight foundation models (TTMs) with Locally Debiased Adaptive

Conformal Prediction (LC-ACP). Our approach addresses the key limitations of traditional

uncertainty quantification methods in hurricane forecasting:

1. It provides computationally efficient forecasts with well-calibrated uncertainty estimates,

making it suitable for operational deployment.

2. It maintains valid coverage guarantees across different forecast lead times and storm

intensities without making strong distributional assumptions.

3. It adaptively corrects for local biases in the model predictions, producing narrower,

better-centered prediction intervals.

4. It adjusts to distribution shifts over time, maintaining calibration even as hurricane

characteristics evolve.

The comprehensive evaluation on simulated hurricane tracks demonstrated the effectiveness

of our approach, with LC-ACP consistently outperforming alternative methods in terms of

both coverage accuracy and interval width. The detailed case studies further illustrated the

practical utility of our framework for high-stakes decision-making scenarios like hurricane

landfall prediction.

This work bridges the gap between advanced AI foundation models and rigorous uncer-

tainty quantification, providing a pathway for deploying these models in critical applications
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where reliable uncertainty estimates are essential. By combining the computational efficiency

of TTMs with the statistical rigor of LC-ACP, we enable more effective risk communication

and decision support for hurricane emergency management.

The methodology presented in this chapter extends beyond hurricane forecasting to other

weather and climate applications where foundation models are increasingly being deployed.

As these models continue to advance in predictive accuracy, complementary advances in

uncertainty quantification like LC-ACP will be crucial for their responsible deployment in

high-stakes domains where decisions have significant societal impacts.
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Algorithm 7 Locally Debiased Adaptive Conformal Prediction (LC-ACP) for Hurricane
Tracks: Part 1

Require::
1: Training data Dtrain = {(Xt−C+1:t, yt+1:t+H)i}Ntrain

i=1

2: Calibration data Dcal = {(Xt−C+1:t, yt+1:t+H)i}Ncal
i=1

3: Anchor data Danchor = {(Xt−C+1:t, yt+1:t+H , ŷt+1:t+H)i}Nanchor
i=1

4: Target coverage level 1− αtarget (e.g., 0.9)
5: Number of nearest neighbors k for local bias estimation
6: Kernel bandwidth parameter h
7: Learning rates γ, η for quantile and α adaptation
8: Bounds [αmin, αmax] for miscoverage rate

Ensure:: Well-calibrated prediction intervals with target coverage 1− αtarget

9: Phase 1: Learning Local Bias Correction Function
10: Train TTM model fθ on Dtrain

11: FOR each (Xt−C+1:t, yt+1:t+H)i ∈ Danchor DO
12: Generate prediction ŷt+1:t+H,i = fθ(Xt−C+1:t,i)
13: Extract latent representation hi = ϕθ(Xt−C+1:t,i)
14: Compute residual ri = yt+1:t+H,i − ŷt+1:t+H,i

15: Store tuple (hi, ri) in anchor dataset
16: END FOR

17: Phase 2: Calculating Initial Nonconformity Scores
18: FOR each (Xt−C+1:t, yt+1:t+H)j ∈ Dcal DO
19: Generate prediction ŷt+1:t+H,j = fθ(Xt−C+1:t,j)
20: Extract latent representation hj = ϕθ(Xt−C+1:t,j)
21: Find k nearest neighbors Nk(hj) in anchor dataset
22: Compute weights wi = exp(−∥hj − hi∥2/h2) for hi ∈ Nk(hj)

23: Compute local bias correction δ(hj) =
∑k

i=1 wi·ri∑k
i=1 wi

24: Compute local uncertainty σ(hj) =
√∑k

i=1 wi·(ri−δ(hj))2∑k
i=1 wi

25: Calculate locally debiased prediction ỹj = ŷj + δ(hj)

26: Compute nonconformity score Sj =
|yj−ỹj |
σ(hj)

27: END FOR
28: Compute initial quantile Q1−αtarget = Quantile({Sj}Ncal

j=1 , 1− αtarget)
29: Initialize α1 = αtarget

30: Initialize coverage window W = {} (empty set)
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Algorithm 8 Locally Debiased Adaptive Conformal Prediction (LC-ACP) for Hurricane
Tracks: Part 2

32: Phase 3: Online Prediction with Adaptive Updates
33: FOR each new test point Xt−C+1:t,∗ at time t DO
34: Generate prediction ŷt+1:t+H,∗ = fθ(Xt−C+1:t,∗)
35: Extract latent representation h∗ = ϕθ(Xt−C+1:t,∗)
36: Find k nearest neighbors Nk(h∗) in anchor dataset
37: Compute weights wi = exp(−∥h∗ − hi∥2/h2) for hi ∈ Nk(h∗)

38: Compute local bias correction δ(h∗) =
∑k

i=1 wi·ri∑k
i=1 wi

39: Compute local uncertainty σ(h∗) =

√∑k
i=1 wi·(ri−δ(h∗))2∑k

i=1 wi

40: Calculate locally debiased prediction ỹ∗ = ŷ∗ + δ(h∗)
41: Construct prediction interval PI(t∗) = [ỹ∗ −Q1−αtσ(h∗), ỹ∗ +Q1−αtσ(h∗)]
42: Return PI(t∗) as the prediction interval
43: IF ground truth y∗ becomes available THEN
44: Update anchor dataset with (h∗, y∗ − ŷ∗)
45: Compute miscoverage indicator It = I{y∗ /∈ PI(t∗)}
46: Add It to coverage window W
47: IF |W| > window_size THEN
48: Remove oldest element from W
49: END IF
50: Compute empirical coverage Ĉt = 1− 1

|W|
∑

I∈W I

51: Update quantile threshold: Q1−αt,t+1 = Q1−αt,t + γ(αt − It)

52: Update miscoverage rate: αt+1 = αt + η · (Ĉt − (1− αtarget))
53: Constrain αt+1 ∈ [αmin, αmax]
54: END IF
55: END FOR
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LC-ACP Framework

Hurricane Track
Input Data

TinyTimeMixer
(TTM)

Raw Forecast
ŷt

Latent Space
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Local Bias
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Local Un-
certainty

Estimation

Debiased Forecast
ỹt
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with Uncertainty

Deterministic model

bϕ(zt) σψ(zt)

ỹt = ŷt − bϕ(zt)Q1−αt

[ỹt ±Q1−αt · σψ(zt)]

Figure 6.2: Integrated pipeline combining Tiny Time Mixers (TTMs) with Locally Debiased
Adaptive Conformal Prediction (LC-ACP) for hurricane track forecasting with uncertainty
quantification. The TTM generates deterministic forecasts which are then processed by
LC-ACP to produce well-calibrated prediction intervals. The local bias correction component
adjusts for systematic errors in different regions of the feature space, while the adaptive
conformal calibration component ensures valid coverage guarantees under distribution shifts.
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Figure 6.3: Overview of the 1,399 simulated hurricane tracks from the CanESM5 climate
model passing through the Galveston county region. This dataset provides a comprehensive
representation of potential hurricane scenarios under current and near-future climate condi-
tions, with diverse track patterns, intensities, and landfall characteristics.
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Figure 6.4: Application of LC-ACP to three held-out CanESM5 hurricane tracks passing
through the Galveston region. The figure shows the true tracks (solid lines) and the prediction
intervals generated by LC-ACP (shaded regions). Note how the uncertainty cones adapt to
the specific characteristics of each track while maintaining the target coverage rate.



Chapter 7

Conclusions and Future Work

“The important thing is not to stop questioning. Curiosity has its own reason for
existing.”

— Albert Einstein

7.1 Summary of Contributions

This thesis has addressed the critical challenge of uncertainty quantification in modern

machine learning models, with a particular focus on foundation models and their applications

in high-stakes domains. Through systematic development from theoretical foundations to

practical implementations, we have introduced novel methodologies that enhance the reliability

and utility of uncertainty estimates for critical decision-making scenarios.

Our contributions span multiple approaches to uncertainty quantification, progressing from

Gaussian Process-based methods to Conformal Prediction frameworks, and culminating in

our novel Locally Debiased Adaptive Conformal Prediction (LC-ACP) methodology. Through

applications in both healthcare prediction and weather and climate forecasting, we have

demonstrated the practical impact of these contributions in domains where reliable uncertainty

quantification can significantly improve decision-making and risk assessment.
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7.1.1 Methodological Innovations

This thesis has presented several methodological innovations that advance the state of

uncertainty quantification in machine learning:

• Two-Stage Gaussian Process Methodology: In Chapter 2, we introduced a

novel approach that addresses the joint misspecification of mean and kernel functions

in Gaussian Processes. By separating the modeling of the mean function from the

covariance structure, this method provides more accurate and reliable uncertainty

estimates, particularly for data with complex trends and heterogeneous noise patterns.

• Kernel Preconditioning Techniques: Chapter 4 presented advanced preconditioning

methods that significantly improve the computational efficiency of GP inference without

sacrificing predictive performance or uncertainty quality. These techniques extend the

practical applicability of GPs to larger datasets and more complex modeling scenarios.

• Unbiased GP Prediction: Chapter 4 presented a novel approach to unbiased GP

prediction via randomization, which allows for the unbiased estimation of LML.

• Locally Debiased Adaptive Conformal Prediction (LC-ACP): The principal

methodological contribution of this thesis, presented in Chapter 5, is the LC-ACP

framework. This approach combines local bias correction with adaptive calibration to

deliver well-calibrated uncertainty estimates that are robust to distribution shifts and

model misspecification.

7.1.2 Applications to Healthcare Foundation Models

Chapter 3 demonstrated the application of our uncertainty quantification methods to health-

care foundation models, showing how they enhance:

• Risk Stratification: Our two-stage GP methodology provides reliable uncertainty

estimates that improve clinical decision-making by identifying patients at high risk
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while quantifying the confidence in these predictions.

• Treatment Response Prediction: The heterogeneous uncertainty quantification

capabilities of our methods account for patient-specific variability in treatment outcomes,

supporting more personalized treatment decisions.

• Clinical Workflow Integration: By providing interpretable uncertainty visualizations,

our methods make ML predictions more actionable for healthcare providers, facilitating

the integration of predictive models into clinical practice.

7.1.3 Applications to Financial Time Series Forecasting

In Chapter 5, we applied the LC-ACP methodology to financial time series forecasting,

demonstrating:

• Robust Performance Under Volatility: LC-ACP maintains valid coverage guar-

antees even during periods of high market volatility, providing reliable uncertainty

estimates when they are most critical.

• Adaptation to Market Regimes: The adaptive component of LC-ACP enables it to

adjust to changing market conditions without requiring model retraining, maintaining

calibration across bull, bear, and transitional markets.

• Local Bias Correction: By addressing systematic biases in specific market conditions,

LC-ACP produces narrower, more efficient prediction intervals compared to standard

conformal methods.

7.1.4 Applications to Climate and Hurricane Forecasting

Chapter 6 presented the application of LC-ACP to climate foundation models for hurricane

track prediction, showing:
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• Enhanced Hurricane Track Forecasting: By integrating LC-ACP with lightweight

foundation models (Tiny Time Mixers), we developed a system that provides accurate

hurricane track predictions with well-calibrated uncertainty estimates.

• Adaptation to Non-Stationary Climate Patterns: LC-ACP successfully adapts

to the non-stationary nature of hurricane data, maintaining calibration across different

storm intensities, geographical regions, and forecast lead times.

• Computational Efficiency: Our integrated approach achieves robust uncertainty

quantification with minimal computational overhead, making it suitable for operational

deployment in resource-constrained environments.

• Practical Utility for Decision-Making: Through case studies on landfall uncer-

tainty, we demonstrated how our method provides valuable information for emergency

management and evacuation planning.

7.2 Synthesis of Findings

7.2.1 From GPs to LC-ACP: A Progression in Uncertainty Quan-

tification

This thesis presents a natural progression in uncertainty quantification approaches, moving

from parametric Bayesian methods (Gaussian Processes) to distribution-free frequentist

frameworks (Conformal Prediction), and ultimately to our hybrid LC-ACP methodology.

This evolution reflects a deeper understanding of the strengths and limitations of different

uncertainty quantification paradigms:

• Gaussian Processes offer structured uncertainty modeling with rich theoretical founda-

tions, but face challenges with large-scale data, non-stationarity, model misspecification

and unguaranteed coverage.
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• Two-Stage GP Prediction addresses the misspecification of the mean function and

covariance structure in GPs, providing more accurate and reliable uncertainty estimates.

• Unbiased GP Prediction allows for the unbiased estimation of LML, which is crucial

for get a reliable UQ.

• Kernel Preconditioning improves the computational efficiency of GP inference

without sacrificing predictive performance or uncertainty quality.

• Standard Conformal Prediction provides coverage guarantees for exchangeable

data but may produce inefficient prediction intervals that do not adapt to local data

characteristics.

• Adaptive Conformal Prediction removes the exchangeability assumption and ad-

dresses temporal adaptation but still lacks mechanisms for local bias correction.

• LC-ACP synthesizes the strengths of these approaches, combining the distribution-free

guarantees of conformal prediction with local adaptation mechanisms that enhance

efficiency and robustness.

This progression demonstrates how methodological innovations can systematically ad-

dress limitations in existing approaches, leading to more powerful and practical uncertainty

quantification techniques.

7.2.2 Application-Driven Methodology Development

A consistent theme throughout this thesis is the interplay between methodology development

and practical applications. Our methodological innovations were directly motivated by

challenges encountered in real-world domains:

• The two-stage GP approach addressed the complex mean function modeling needed for

healthcare applications with heterogeneous patient populations.
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• Kernel preconditioning techniques were developed to handle the computational chal-

lenges of large-scale health datasets.

• LC-ACP emerged from the need to handle distribution shifts in financial time series

and the non-stationarity of climate data.

This application-driven approach has ensured that our methodological contributions

address genuine needs in high-stakes domains, enhancing their practical impact and relevance.

7.2.3 Importance of Adaptive and Local Approaches

Our research has highlighted the critical importance of adaptive and localized approaches for

effective uncertainty quantification in complex, non-stationary domains:

• Temporal Adaptation: The adaptive component of LC-ACP enables continuous

adjustment to changing data distributions, maintaining calibration even as underlying

patterns evolve.

• Spatial/Feature Localization: Local bias correction addresses systematic errors that

vary across the feature space, enhancing the efficiency and reliability of uncertainty

estimates.

• Combined Approach: The integration of temporal adaptation with local bias correc-

tion provides a comprehensive solution to the challenges of uncertainty quantification

in dynamic, heterogeneous environments.

These findings suggest that future advances in uncertainty quantification should continue

to emphasize adaptive and local approaches, particularly for applications with complex

spatiotemporal dynamics.
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7.3 Future Research Directions

7.3.1 Theoretical Extensions

Several promising directions for theoretical extensions emerge from our work:

• Conditional Coverage Guarantees: Developing stronger theoretical guarantees for

conditional coverage in conformal prediction would enhance the reliability of uncertainty

estimates for specific subgroups or regions of the feature space.

• Multidimensional Conformal Prediction: Extending LC-ACP to handle multi-

variate outputs with complex dependencies, such as joint prediction of hurricane track,

intensity, and size.

• Theoretical Analysis of Local Bias Correction: Establishing theoretical bounds

on the improvement in interval width achieved through local bias correction under

different assumptions about model misspecification.

• Unified Framework for Adaptive Methods: Developing a comprehensive theoretical

framework that unifies various adaptive conformal methods, providing clearer guidance

on their relative advantages and limitations.

7.3.2 Methodological Advancements

Building on the foundations established in this thesis, several methodological advancements

warrant further investigation:

• Deep Learning Integration: More sophisticated integration of deep learning with

LC-ACP, potentially through end-to-end trainable architectures that jointly optimize

prediction accuracy and uncertainty calibration.
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• Multi-Resolution Uncertainty: Approaches that capture uncertainty at multiple

resolutions, from global trends to local fluctuations, providing a more comprehensive

characterization of predictive uncertainty.

• Causal Uncertainty Quantification: Extending our methods to quantify uncertainty

in causal effects and interventions, a critical capability for decision-making in healthcare

and policy domains.

• Online Learning for Local Bias Correction: Developing more efficient online

learning algorithms for local bias models, reducing memory requirements and enhancing

adaptivity to new data.

7.3.3 Application Expansion

The LC-ACP methodology and its variations could be extended to numerous additional

domains:

• Healthcare Applications: Beyond the applications explored in this thesis, LC-ACP

could be applied to medical imaging, genomics, and personalized medicine, where

reliable uncertainty estimates could guide diagnostic and treatment decisions.

• Climate and Environmental Applications: Expanding beyond hurricane tracking

to other climate phenomena, including drought prediction, flood forecasting, and

long-term climate projections.

• Autonomous Systems: Applying LC-ACP to robotics, autonomous vehicles, and

other systems where reliable uncertainty estimates are essential for safe operation.

• Economic and Social Science Applications: Extending our methods to economic

forecasting, policy impact assessment, and other social science domains where distribu-

tion shifts and local heterogeneity are common challenges.
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7.3.4 Implementation and Deployment

Advancing the practical implementation and deployment of LC-ACP presents important

challenges:

• Open Source Libraries: Developing open source libraries and tools that make

two-stage GP prediction and LC-ACP accessible to practitioners across domains.

• Uncertainty Visualization: Creating interpretable visualizations that effectively

communicate uncertainty to non-technical users, enhancing the utility of uncertainty

estimates for decision-making.

• Integration with Decision Support Systems: Developing frameworks that translate

uncertainty estimates into actionable recommendations for decision-makers, bridging

the gap between prediction and decision and enable uncertainty-aware decision-making.

7.4 Concluding Remarks

As foundation models and other advanced ML approaches continue to transform critical

domains like healthcare and climate science, the need for reliable uncertainty quantification

becomes increasingly apparent. The deterministic predictions provided by standard ML

models are insufficient for high-stakes decisions where the consequences of errors can be

severe and where understanding prediction confidence is essential for appropriate action.

This thesis has advanced the field of uncertainty quantification through a progression of

methodological innovations, from two-stage Gaussian Processes to Locally Debiased Adaptive

Conformal Prediction. These methods collectively provide a comprehensive toolkit for

reliable uncertainty estimation across diverse applications, addressing the challenges of model

misspecification, distribution shifts, and computational efficiency.

The LC-ACP methodology, in particular, represents a significant step forward in uncer-

tainty quantification for dynamic, non-stationary environments. By combining local bias
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correction with adaptive calibration, LC-ACP delivers well-calibrated uncertainty estimates

that adapt to both spatial heterogeneity and temporal evolution, making it particularly

valuable for high-stakes applications in finance, climate science, and healthcare.

As we look toward the future, the continued advancement of uncertainty quantification

methods will play a crucial role in ensuring that the remarkable capabilities of modern ML

translate into responsible and beneficial real-world impact. By providing reliable uncertainty

estimates, we enable more informed risk assessment, more prudent resource allocation, and

ultimately, better decisions in domains where the stakes could not be higher.

Through the methodologies and applications presented in this thesis, we have contributed

to this important goal, laying foundations for more trustworthy and transparent machine

learning in critical domains. The journey from theoretical foundations to practical implemen-

tations has underscored the value of principled uncertainty quantification and the potential

for these methods to enhance decision-making across a wide range of high-stakes applications.
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Appendix

Here are several kernels we used in this paper.

• RBF Kernel: k(xi,xj) = σ2
f exp

(
−∥xi−xj∥2

l2

)
• Matérn-3/2 Kernel: k(xi,xj) = σ2

f

(
1 +

√
3∥xi−xj∥

l

)
exp

(
−

√
3∥xi−xj∥

l

)
• Matérn-1/2 Kernel: k(xi,xj) = σ2

f exp
(
−∥xi−xj∥

l

)

A.1 Proofs for Two-Stage Gaussian Process Theorems

This section provides detailed proofs for the theorems and propositions presented in Chapter

2.
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A.1.1 Proof of Theorem 2.2.1

Proof. The gradient of the Misspecified Expectation of Likelihood (MEL) can be computed

as follows:

E
[
∂L(θ;Xn)

∂θ

]
=

1

2n
E
[
Tr

(
K−1
n (In − (yn −m(X))(yn −m(X))⊤K−1

n )
∂Kn

∂θ

)]
(A.1)

=
1

2n
Tr

(
K−1
n (In −Kn(θ

∗)K−1
n )

∂Kn

∂θ

)
+

1

2n
Tr

(
K−1
n m(X)m(X)⊤K−1

n

∂Kn

∂θ

)
=

1

2n
Tr

(
K−1
n (In −Kn(θ

∗)K−1
n )

∂Kn

∂θ

)
+

1

2n
m(X)⊤K−1

n

∂Kn

∂θ
K−1
n m(X)

If θ∗ is the ground-truth hyperparameter, then the first term in the gradient vanishes at

θ = θ∗ because Kn(θ
∗) = Kn(θ

∗), giving In −Kn(θ
∗)K−1

n (θ∗) = 0.

However, the second term m(X)⊤K−1
n

∂Kn

∂θ
K−1
n m(X) does not vanish in general when the

mean function m(X) is non-zero. This means that θ∗ is not a stationary point of the MEL

unless m(X)⊤K−1
n

∂Kn

∂θ
K−1
n m(X) = 0 at θ = θ∗, which is not generally the case.

Thus, minimizing MEL will lead to different hyperparameters than the ground-truth θ∗,

resulting in suboptimal kernel hyperparameters that must compensate for the incorrectly

specified mean function.

A.1.2 Proof of Theorem 2.3.1

Proof. We decompose the prediction error into reducible and irreducible components:

|m̂n(x∗)− (f(x∗) + ϵ∗)| = |K∗X(KXX + σ2
ξI)

−1(fX + ϵX)− (f(x∗) + ϵ∗)|

≤ |K∗X(KXX + σ2
ξI)

−1fX − f(x∗)|+ |K∗X(KXX + σ2
ξI)

−1ϵX − ϵ∗|

For the first term (reducible error), assuming f ∈ Hk and using Lemmas A.1.1 and A.1.2,
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we have:

|K∗X(KXX + σ2
ξI)

−1fX − f(x∗)| ≤ ∥f∥Hk
C ′(σ2

ξ/n)
1− d

2m0

For the second term (irreducible error), using Lemmas A.1.3 and A.1.4, with probability

at least 1− δ:

|K∗X(KXX + σ2
ξI)

−1ϵX − ϵ∗| ≥ A(δ)σ∗ ≥ A(δ)

√
K∗XKX∗

λ1 + σ2
ξ

where A(δ) =
√

1− 2 log (1− δ)− 1.

Dividing the total error by the irreducible error, with probability at least 1− δ:

|m̂n(x∗)− (f(x∗) + ϵ∗)|
|K∗X(KXX + σ2

ξI)
−1ϵX − ϵ∗|

≤ 1 +
∥f∥Hk

C ′(σ2
ξ/n)

1− d
2m0

|K∗X(KXX + σ2
ξI)

−1ϵX − ϵ∗|

≤ 1 +
∥f∥Hk

C ′(σ2
ξ/n)

1− d
2m0

A(δ)
√
K∗XKX∗
λ1+σ2

ξ

As n increases, the second term approaches zero if f ∈ Hk. Specifically, when

n ≥
σ2
ξ(

0.01·A(δ)·
√
K∗XKX∗

(λ1+σ2
ξ )C

′∥f∥Hk

) 2m0
2m0−d

the ratio becomes bounded by 1.01, indicating that the total error is dominated by the

irreducible error.

Conversely, if f /∈ Hk, the reducible error does not vanish as n increases, making the ratio

consistently larger than 1.01 even with large sample sizes. This provides a practical test for

kernel misspecification.

Lemma A.1.1 (Contraction Rates). Let f ∈ Hk be the true function and f̂n be the GP
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posterior mean. Then with probability at least 1− δ:

∥f̂n − f∥Hk
≤ C

√
log(1/δ)

n

where C is a universal constant.

Lemma A.1.2 (Worst Case Error Bound). For any f ∈ Hk and δ ∈ (0, 1), with probability

at least 1− δ:

∥f̂n − f∥∞ ≤ ∥k∥∞

√
2 log(2/δ)

n

Lemma A.1.3 (Tail Lower Bound for Gaussian). Let X ∼ N (0, σ2). Then for any ϵ > 0:

P (|X| ≥ ϵ) ≥ 2√
2π

σϵ

1 + ϵ2
e−ϵ

2/(2σ2)

Lemma A.1.4 (Lower Bound for Transformed Gaussian). Let Y = g(X) where X ∼ N (0, σ2)

and g is a continuous function. Then:

P (|Y | ≥ ϵ) ≥ P (|X| ≥ g−1(ϵ))

where g−1 is the inverse function of g.
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