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Abstract 

Leveraging Distributed Tracing for Root Cause Localization in 
Microservice-Architectured Distributed Systems 

By Nikhil Bapat  

Developers and administrators of distributed systems lack a tracing and diagnostic framework 
to quickly identify and address causes of performance regression. When attempting to diagnose 
an issue in a distributed system, developers and administrators can observe some poorly 
performing requests and collect distributed trace data from the services in the system, but they 
still struggle to parse the traces and localize the source of the problem. In this paper, we 
present a methodology that, given a set of traces, identifies and ranks system components that 
are most likely to be the cause of performance regression. This approach saves system 
administrators and developers time identifying root causes of poor performance and can more 
precisely pinpoint issues that may otherwise fail to be adequately diagnosed.
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Chapter 1

Introduction

Large distributed services are essential to the modern economy, servicing billions of

users and generating massive amounts of revenue for the companies that operate

them. These systems are implemented as intricate webs consisting of a number of

different microservices, and single end-user request may traverse through thousands

of different services before it is complete. One such complex microservice system is

Uber, whose backend consists of roughly 4,000 microservices and a total of about

40,000 unique APIs that can be called as part of servicing a user’s request. [28]

Given the massive economic reliance on these systems, they are also subject to

stringent requirements, as they are expected to deliver quick, reliable service with

minimal to no errors or timeouts. Maintaining high availability and low latency are

essential, as any downtime or delay leads to measurable business impact. An internal

report by CDN services company Akamai found that even a mere 100 ms delay in

load time decreases conversion rates by 7%, and 53% of mobile website users will

leave a page if the load time exceeds three seconds [3]. Meanwhile, a 100ms delay

at Amazon leads to a 1% drop in sales [11]. With such a large amount of money

at stake, even small percentage dropoffs translate to a massive loss of revenue, so

companies must take every possible measure to keep latency issues to a minimum.
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When latency issues do arise in a service, operators must react as quickly as possible

and mitigate the problem so the duration of the problem and the number of users

affected is minimized. However, within a tangled web of services, it can be very

difficult to identify which component of the system is causing the issue, particularly

when under a time crunch. One strategy for accelerating the root causing process,

and the focus of the thesis, is to localize the performance problem: identify which

components (e.g. specific hardware, services, recent code changes) should be looked

at first to identify and fix the true root causes of the problem. This localization can

save operators time, as they are given a prioritization of where the issue is more likely

to reside and where they should devote their attention and resources.

Distributed tracing systems are widely used to record traces of end-to-end requests

in distributed systems. [27] A single end-to-end trace, corresponding to a specific

request, contains comprehensive information about all the machines visited by the

request. Having end-to-end information is useful, as it connects the work done for a

single request across different machines and services, providing a more complete view

of a request compared to individual machine logs. Traditionally, distributed tracing

is used to provide singular traces for analysis, or to provide averages for common-case

behavior. In this case, we leverage the information collected in distributed traces to

find commonalities between traces that exhibit similar performance issues.

Given the lack of tools to localize faults and diagnose root causes, engineers are

often unable to quickly identify and remediate the root issues. Instead, the current

strategies used often lead to some failures not being properly root-caused, so the

engineer is not able to get insights from the bug or target that issue more precisely.

An internal study at Microsoft [10] analyzed the response to production incidents at

Microsoft teams, and found that the root cause diagnosis process was responsible for

the largest average delays in issue response and mitigation time. These performance

issues have tangible economic impact, and thus companies look for ways to reduce
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their response time and get services performing properly as quickly as possible. In

order to expedite the process of root cause identification and debugging, we propose a

fault localization methodology that ranks various possible services or code chunks as

being most likely to contain the root issue, giving engineers a prioritized list of where

to look first while debugging. In order to get the necessary information to create this

ranking, we leverage distributed tracing.

We approach the fault localization problem using a method called Trace-Based

Root Cause Localization, which identifies parts of the system most likely to be caus-

ing performance issues. To do so, we define variables that correspond one-to-one to

the instrumented components of the distributed system. When the symptoms of a

performance problem are detected, the model identifies variables that are most likely

to be involved in symptomatic traces relative to healthy ones. Once the model has

evaluated these variables and ranked them as highly associated with poorly perform-

ing traces, the system operator is given an indicator of which components of the

system are likely associated with the issue, helping to localize the root cause of the

issue.

To demonstrate this methodology, we design and create Heimdall, a system that

implements Trace-Based Root Cause Localization. Heimdall ingests distributed traces

and outputs a ranking metric indicating which components of the system are likely

root causes. We subjected Heimdall to controlled experimental evaluation using the

DeathStar Microservices Benchmark framework [9]. In our experiments, we induced

delay into specific microservices within DeathStarBench to simulate performance

problems that occur in microservice systems, and observed whether Heimdall could

accurately identify the true causes as problematic and rank them highly. We also

test Heimdall with a tracing framework that uses retroactive sampling [27], so that

Heimdall is able to collect more problematic traces that exhibit poor performance,

and thus is able to more clearly identify issues and improve its ranking of potential
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problem areas.

In summary, my thesis makes the following contributions:

• We present the mathematical foundations of the Trace-Based Root Cause Lo-

calization methodology for fault localization in distributed systems.

• We discuss the use case and impact of using Trace-Based Root Cause Localiza-

tion in practice and the possible use cases and benefits to systems operators.

• We design and implement Heimdall, a system that applies Trace-Based Root

Cause Localization. Heimdall ingests distributed traces, and outputs a ranking

metric indicating which components of the system are likely root causes.

• We test Heimdall using real trace data collected from known distributed systems

benchmarks, and demonstrate that Trace-Based Root Cause Localization is

practical to use and efficient.

• We design and run controlled experiments to evaluate the accuracy of the fault

localization predictions generated by our Trace-Based Root Cause Localization

approach under various sampling methodologies.

• We run Heimdall under various both head-based sampling and retroactive sam-

pling, demonstrating the feasibility of Trace-Based Root Cause Localization

under space constraints.
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Chapter 2

Motivation

In recent times, distributed services have become increasingly vital to the global econ-

omy. To maintain high performance and low latency in these services, operators must

be able to respond quickly to any issues that arise by identifying the underlying cause

and fixing it. However, identifying the root cause of a problem can be a significant

challenge, leading to delays in mitigating production issues. This issue is particularly

pronounced in large, complex industry systems, where identifying root causes can

be a significant challenge at scale and can cause significant delays in response time.

A recent work [10] from Microsoft analyzed the response to production incidents in

Microsoft Teams, and the various strategies used to diagnose and mitigate the issues.

The study found that identifying complex root causes for production issues created

lengthy delays, and in fact caused the longest delays in the process of mitigating pro-

duction issues. In the majority of cases, this delay was due to engineers taking a long

time to read through the code and identify and fix the bugs. Due to the difficulty

of identifying root causes and bugs in code in a short amount of time, the Microsoft

paper found that it was also very common for engineers to not directly fix the root

cause. The study found that while roughly 40% of incidents were caused by code

or configuration bugs, only about half of those were mitigated with a change to the
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code or configuration. The most common strategy used was simply to rollback the

recent changes to an older, working version. While this removes the bug and may

be a quicker immediate fix, heavily relying on rollbacks rather than fixing the issue

directly has its own drawbacks. Firstly, broadly rolling back recent commits removes

other new features or changes that did not contribute to the bug, meaning that good,

working code is not included in production. Secondly, failing to address the root cause

runs the risk of a similar issue arising in the future, as the engineer may reimplement

the same buggy ideas. In fact, in 35% of Microsoft Teams incidents, there was not a

completed postmortem report detailing the issue, root cause, and mitigation, which

can lead the team to lack information about different kinds of incidents that could

arise going forward.

To address this concern and ensure that more incidents are properly root-caused

and mitigated, there is a need for tools that can reduce the amount of time taken to

find the root cause of an issue. Issues in distributed systems can range in severity,

anywhere from small performance bumps, to individual request failures, to a complete

outage of the entire system. However, this thesis focuses specifically on identifying

the root causes of performance regressions, i.e. cases where the system performs ex-

ceptionally slowly or poorly utilizes resources. While these may be less notable issues

than complete system outages, performance metrics such as latency are still of critical

importance, and companies are deeply invested in their improvement. Therefore, a

tool that can help operators identify the root cause of performance regressions more

quickly can be of great importance for companies using microservice.

Distributed traces have been growing in popularity for large distributed systems

as a way of tracing requests end-to-end and getting the necessary information about

the system, which can then be utilized for a variety of diagnostic and troubleshooting

tasks. However, the adoption and utilization of distributed traces among industry

systems in production has been hampered by a lack of knowledge of how to use
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distributed traces, a steep learning curve to properly set up and utilize tracing frame-

works, and a significant amount of tedious manual work needed to extract insights

from the trace files [23] [6] [4]. A report from Dynatrace [7] suggests that the dis-

tributed traces must be complemented by tools built on top of the traces that allow

users to more easily extract the insights from the traces in an easy to consume man-

ner. Such tools can make using distributed tracing more accessible to industry system

operators and engineers, and help them utilize the technology to its full potential and

gain deeper insights about the traces and their system.

Currently, distributed tracing is not heavily utilized as a method of localizing and

identifying issues, particularly with regards to software bugs [6]. Therefore, a method

like Trace-Based Root Cause Localization that can ingest distributed traces to find

root causes and commonalities among poorly performing traces has a wide variety

of novel use cases in a large distributed system. Its first use case is for an on-call

engineer or system administrator trying to respond to a reported spike in latency

on a system in a production environment. When responding to an outage, speed is

paramount, and the respondent must be able to quickly diagnose the problem before

it can be fixed. In a large system, the possibilities for where the issue might lie are

massive, so a tool that reduces the potential problem space into ranked likelihoods

can help the operator search and identify where the issue actually lies.

Trace-Based Root Cause Localization can also be used to identify edge case per-

formance issues that are not immediately obvious from an aggregate analysis. Even if

the actual additional latency is not very high, Trace-Based Root Cause Localization

could detect that all traces in the 90th percentile or higher for latency share similar

characteristics, or pass through the same specific nodes. This might be a sign of a

mild performance issue in that node, and remediating that issue early might prevent

future spikes, as well as improve performance consistency and overall runtime in the

system. This is especially important because in addition to performance optimiza-
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tion, system operators also want to see strong performance stability with predictable

service performance at an acceptable level being preferred over a wild ebb and flow

in performance.

Trace-Based Root Cause Localization is also useful for benchmarking multiple

versions of a service against each other, which can be useful both in development

when experimenting and testing new versions as well as for diagnostic benchmarking

and comparison in a production environment. Such a use case is akin to A/B testing,

either before a new version is deployed in an experimental framework, or in production

as a ”continuous” A/B test. Given various versions of a service that are present in

a system, and a load balancer or other logic that feeds requests to one of these

versions, Heimdall can be used to identify whether one or more of the versions is

more associated with poorly performing traces. Such an analysis might uncover bugs

or performance faults in one specific version, that could then be patched.

A survey of industry participants [23] who use microservice-architectured systems

found that adoption of distributed traces has been hampered because companies are

not sure how to adequately leverage them, and could not put in the necessary time to

set up and understand tracing systems. Another respondent noted that distributed

tracing was only useful to them ”months in or years [later when] something’s gone

really wrong somewhere and you’re trying to figure out who broke it”. Other respon-

dents from various companies shared that they were dissatisfied with the amount of

testing. The more tools that exist that allow users to interface with the insights from

their traces without having to learn the details of the tracing frameworks directly,

the more accessible distributed tracing will become. Trace-Based Root Cause Local-

ization fills these gaps and shortcomings and provides an accessible way to extract

insights from the trace data and apply it to improve system performance.
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Chapter 3

Design

3.1 Problem Overview

As a small illustrative example, consider Figure 3.1 as a miniature distributed system,

where each node is representative of some microservice that handles the request.

Requests first pass through at Node 1 and node 2, before being being directed to

either node 3a or 3b based on some load balancing or other choice mechanism. Then,

the request is complete upon arriving at node 4.

1 2

3a

3b

4

Figure 3.1: A Small Mock Microservice Distributed System

However, now suppose some performance issue occurs in node 3b (perhaps a new

buggy version of the service that leads to unnecessary added delay was pushed to
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only one machine, or there was an issue with the hardware). Therefore, all future

requests that are serviced by node 3b will experience a spike in latency, while the

requests directed through node 3a will perform as expected with an adequately low

latency.

Therefore, all future requests that pass through node 3b should experience unusu-

ally high end-to-end latency compared to requests directed through node 3a. Identi-

fying these poorly performing requests and flagging them as problematic can be done

by a fairly quick analysis of the distributed traces (finding the total duration of each

request, and then flagging some top percentile of them). However, the true challenge

is identifying why these requests are slow, the true root cause of the latency.

To narrow down the true root cause, the operator of the system is in need of some

method or heuristic that identifies the actual problem area (in this case node 3b) as a

strong suspect for the root cause, so that the operator is pointed in the right direction

to diagnose and mitigate the problem quickly. Given the available distributed traces

for both slow and successful requests, we can attempt to use the traces as a set of

clues that we can analyze to narrow down and localize the true source of the problem.

We then must decide how to methodically utilize the information in the traces to

find the true root cause. One approach is to simply find the commonalities between

all the slow requests, naively ranking the system components with respect to the

number of poorly performing requests that they services. However, this runs into an

obvious problem in the above graph, where all the poorly performing requests are not

only serviced by the correct root cause node 3b, but also by the healthy nodes 1, 2,

and 4. Ranking the nodes in order of the number of poorly performing requests fails

to single out node 3b in any meaningful way. Instead, what the operator needs is a

metric that can pick out the components or variables that are most associated with

poorly performing traces, and subsequently less likely to be associated with healthy

traces.
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3.2 Localization Metric

In the search for an appropriate metric to accurately identify the faulty component,

we need to highly weight association with poorly performing traces, while giving lower

rankings to components and variables associated with healthy traces. For this, we

set up a metric we call a suspicion ratio or odds-ratio. Somewhat inspired by the

Bayes Factor [19], our ratio compares the support for two competing hypotheses:

our ”null hypothesis,” that the component or variable in question is not the true root

cause of the observed regression, and the ”alternative hypothesis,” that the particular

component is the true root cause of the regression. What we seek to evaluate is

the ratio between how much the data supports the notion that the component is

associated with performance regression and how much it supports the notion that it

is more associated with healthy traces.

Before fully defining our suspicion ratio σx, we must first formally define the

components that make up our definition. For any trace T, we say that x ∈ T if the x

was included in the trace. In the case of x representing system nodes or microservices,

as it does for the majority of our analysis, this means that the particular service or

services were executed as part of servicing the request. If x refers to some other

characteristic (see Section 3.5), then x ∈ T might be interpreted as the variable being

a part of the original request.

We also use FT to represent whether a trace T was flagged as being poorly perfor-

mant. For the case of our analysis, we flag poorly performing traces as being in some

top percentile of latency, however the classification of flagged traces can be defined in

any way according to the needs of the operator. If FT = 1, we say that trace T was

flagged for demonstrating poor performance. If FT = 0, then trace T was not flagged

for poor performance, which we also often refer to as healthy traces.

Once we have defined all the subparts of our suspicion ratio, we can use them to

construct our overall localization metric. Formally, we express σx, our suspicion ratio
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for some system component or variable x, with the following formula:

σx =
P (x ∈ T |FT = 1)

P (x ∈ T |FT = 0)

In the numerator, we have the likelihood that that a flagged trace includes the vari-

able or component in question, and the denominator is the likelihood that a healthy

trace contains the variable, based on the trace data collected. This metric addresses

and problems and meets the needs in Section 3.1, as it increases the score when a

variable is closely linked with flagged traces, but conversely decreases the score for

variables associated with healthy traces, avoiding the case where a variable associated

with many or even all traces is assigned a high score despite being unproblematic.

The formula does encounter an edge case if P (x ∈ T |FT = 0) = 0, i.e. there are

no traces where the variable x is present and the trace is healthy. In this case, we

can just assign the score as σx = ∞, as having no relation to any healthy traces is a

good sign that the component is problematic, and we want it to appear at the top of

our rankings.

3.3 Example: Applying Localization Method to

Mock System

Now that we have a definition of our localization metric, we can begin to test it, first

using the mock system drawn in Figure 3.1. Imagine that there are 100 requests that

pass through the system, with random load balancing after node 2 that splits requests

evenly between node 3a and 3b. Let the first 90 requests pass through without any

issue, with 45 requests being services by 3a and 3b each. However, between the

completion of request 90 and the beginning of request 91, some unspecified issue

occurs in node 3b that causes a spike in latency for any request that passes through
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that node. Thus, in the next 10 requests, of the 5 that pass through node 3b, all

experience high latency.

Now let’s assume that we define the threshold for flagging poorly performing traces

as being in the top 10%, or the 90th percentile, of traces in terms of total end-to-end

latency. In this case, the 10 flagged traces include the 5 problematic traces that passed

through node 3b after the latency injection, as well as the 5 slowest traces among the

90 that were completed before the issue arose. For this mock experiment, we say that

3 of those requests were serviced by node 3a, and 2 by node 3b. (Note that while the

5 flagged traces don’t actually suffer from the big issue at hand, our threshold still

includes them, as in reality we are blinded to the number of truly symptomatic traces

affected by an issue. Given the defined threshold, we simply take the traces that fall

under that definition and find commonalities).

Overall, we find that of the 10 problematic traces, 3 were serviced by node 3a,

and 7 by node 3b. We also notice that all 10 of these traces were serviced by nodes

1, 2, and 4. Similarly, all 90 of the healthy traces were serviced by nodes 1, 2, and 4,

while node 3a serviced 47, and node 3b serviced 43.

For the sake of our example, we walk through the calculation of the suspiciousness

ratio for each component. For nodes 1, 2, and 4, we calculate them together, as the

set of traces executed by each component is identical. Regardless of whether the trace

was triggered or not, the probability that the component serviced the trace is 100%,

as these components serviced every trace. Thus, we find that σ1 = σ2 = σ4 = 1/1 = 1

For node 3a, of the 10 flagged traces, node 3a serviced 3 of them. Thus, we find

from our data that P (3a ∈ T |FT = 1) = 3/10. Of the 90 healthy traces, node 3a

serviced 50− 3 = 47 of them, so P (3a ∈ T |FT = 0) = 47/90. When we compare the

ratios, we find that σ3a =
3/10
47/90

≈ 0.574.

For node 3b, of the 10 flagged traces, node 3b serviced 7 of them. Thus, we find

from our data that P (3b ∈ T |FT = 1) = 7/10. Of the 90 healthy traces, node 3b
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Rank Node Ratio
1 3b 1.465
T2 1 1
T2 2 1
T2 4 1
5 3a 0.574

Table 3.1: Suspicion Ratios of Components in Mock System

serviced 50− 7 = 43 of them, so P (3b ∈ T |FT = 0) = 43/90. When we compare the

ratios, we find that σ3b =
7/10
43/90

≈ 1.465.

Taking these ratios and ordering them by their score, we can generate the ranked

list of the possible root cause locations in Table 3.1, giving a system operator or

engineer a treasure map of where to look first for the issue. Following this list, they

are directed to look at node 3b first, saving them time that they otherwise might

have spent first looking at other nodes or possible issues. Also note that our example

case contains a tie in the rankings. In this case, nodes 1, 2, and 4 are unable to be

meaningfully differentiated, so there is no way to break the tie. We don’t propose an

explicit tie-breaking mechanism, since with a larger number of requests and systems

with more complex branching, ties are very uncommon. If the scores are actually

perfectly identical in practice, we recommend that the operator check both variables

and assess them as equally suspicious, or perhaps use their own judgement with

information not in the traces (perhaps some component or variable is known to cause

issues often).

3.4 Statistical Fault Localization Notation

We have defined our odds ratio using probability notation, more similar to the

Bayesian statistical methods used for hypothesis testing. However, we can also ex-

press this metric with a definition that uses fault localization notation from [21], which

can make it easier to experiment and evaluate against other methods and metrics for



15

statistical software fault localization.

Under this notation, let s represent a variable or set of variables present in some

subset of traces. Members of this set might include specific nodes or services a request

passes through, but could also be extended to include other information about the

request, such as which particular version or commit of the service is running, the

system and hardware specifications of the machines servicing the request, or the

locale from which the request originated.

Once we have identified our set s, we can divide all traces into one of four clas-

sifications — asep, a
s
ef , a

s
np, and asnf . The subscript e represents that the set s exists

in the trace, whereas the subscript n represents that s does not exist in the trace.

The second subscript refers to whether the request performed properly or not. In this

case, we use p to represent that a request demonstrated proper, healthy performance

or f if it was flagged or triggered for poor performance. Therefore, asep, for example,

represents the number of traces where the qualities of set s are present and the trace

performed properly.

Statistical fault localization has been utilized across a variety of fields, and has

already yielded a variety of different existing localization measures. [22] [2] [12][14]

[26] While each of these metrics was developed for a slightly different localization

use case, we can use them as a comparative benchmark to our suspicion ratio, and

both assess how our new metric compares to existing standards and discern any

shortcomings or needed improvements. Below we list four of the most popular of the

existing metrics [24] using our above notation:

Ochiai :
asef√

(asef + asnf )(a
s
ef + asep)

Tarantula :

asef
asef+asnf

asef
asef+asnf

+
asep

asep+asnp

Zoltar :
asef

asef + asnf + asep +
10000asnfa

s
ep

asef

Wong − II : asef − asep
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Now that we have proper definitions of the other metrics, we define our new metric

using the same notation. This is for ease of experimentation and evaluation, as it

allows us to more easily compare and analyze the results across the various metrics

with the same experimental data in the same format. With the notation above, the

suspicion ratio used in Heimdall is expressed as:

σx =

asef
asef+asnf

asep
asep+asnp

3.5 Other Root Causes

In our design and implementation of Heimdall, we focus on a simpler, though still

common, case of performance issues, where the performance regression occurs due to

an single, isolated issue, that is part of a singly particular service or machine. These

single-source performance regressions could be caused by a variety of issues, spanning

both hardware and software. For example, the same spike in latency might be due

to a new, buggy version of a service that has an abnormally long runtime duration,

network issues in a particular physical data center, or issues with caching or memory

access on a specific machine, just to name a few. However, since the aim of Heimdall

is simply to help localize the source of the fault, rather than directly diagnose the

root cause on its own, the actual cause of the latency is not relevant to Heimdall. In

all of these cases, Heimdall simply aims to identify a rough idea of the root cause or

the area where the issue stems from, which in our implementation and testing case is

a specific node running a version of a service.

However, the logic of Heimdall can be extended to cases beyond single-node per-

formance issues. For example, performance problems in a system might arise when

two particular services are active in the same timeframe working on the same request,

but not when just one service or the other is executed. This might be because the
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two services have shared resources, and when they both run at the same time, the

system experiences slowdown. Another possibility is the presence of data format or

compatibility bugs in particular versions of software, identified in [18] as a common

issue in distributed systems. Regardless of the detailed reason for the issue, a frame-

work that only identifies single nodes may not be effective in mitigating the issue, as

a detailed troubleshooting of only that service might not yield any breakthroughs in

improving performance. However, if Heimdall identifies the potential issue area s not

as one service or the other, but as the set of the two services, the insight is clearer

that the two services together, not one or the other, is more likely to cause the issue.

Other possible causes for performance regression could be related not directly to

the actual services and machines that run to service the request, but characteristic

about the trace itself. While these may not always correlate directly to simple software

fixes, the ability to identify them can still be useful to companies managing large

distributed systems. For example, we might let s in the analysis to represent requests

that originate from a specific geographical region. If the ranking for a geographic

region is high in the Heimdall rankings, this indicates that requests from that region

are strongly associated with poor performance. This might be indicative of a lack

of adequate service or coverage in that region, and a company might be motivated

to construct more data centers nearer to that area, or improve load balancing, in

response to this insight.
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Chapter 4

Implementation

4.1 Basic Implementation

Our implementation of Heimdall begins with the ingestion of distributed traces col-

lected by some distributed tracing system. The traces contain information linking

requests to the individual services or service versions that serviced them. This in-

formation can be linked across services because the distributed tracing paradigm is

intended to trace a request end to end, so the unique identifier for the trace is main-

tained throughout.

The input must also contain some sort of indicator for what traces are considered

problematic or symptomatic. This is up to the user to designate their own thresholds

and criteria for poorly performing traces, although the usual use case would be to

designate problematic traces as being in the top k% of latency or some other perfor-

mance metric. For the purpose of our implementation and testing, we set the bar for

problematic traces to be the traces in the top 1% for end to end latency.

Once we have established relationships between traces and the services that they

used, and a list of triggered traces, we can find the four component metrics identified

in the above section, asep, a
s
ef , a

s
np, and asnf . From these counts, we are then able to
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compute the suspicion ratios as well as the various other fault localization metrics

in Section 3.4 and sort the components in order of their scores to find the issue

localization rankings, provided a guided map to the system operator of where to look

for the issue.

4.2 Sampling

It is highly impractical to store traces for every request that passes through a sys-

tem, due to the large storage overhead when the number of requests scales. As such,

distributed tracing tools must use some sampling methodology, deciding which traces

end up stored in the long term. Most traditional distributed tracing tools, includ-

ing Jaeger, use a head-based sampling, meaning that a small percentage of requests

are randomly selected to be stored. However, this sampling decision occurs at the

beginning of the request, meaning that the sampling does not know whether or not

the request may end up demonstrating performance problems. This poses a problem

when attempting to diagnose poorly performing requests. If the poorly performing

requests, which might make up only a small percentage of cases, are not sampled

and stored, there is no way to use them as part of a fault localization analysis, as

no traces exist as record of their performance. As such, use of traces for root cause

localization has previously been thought to be unfeasible for high-scale industry sys-

tems with large numbers of requests, as they cannot possible store every request and

head-based sampling does not produce satisfactory results.

To address this shortcoming of head-based sampling, Heimdall can benefit from

the use of retroactive sampling, proposed in [27]. Under retroactive sampling, all

traces are temporarily stored in a buffer at each node. If the request reaches com-

pletion and is then flagged as problematic due to high latency, then the trace gets

stored for the long term. If the request is healthy, then the trace is not stored, and
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can then be deleted or overwritten. The use of buffers and retroactive sampling is

also combined with head-based sampling to keep some percentage of healthy traces as

well. By using this combination, it is possible to get a full view of more problematic

traces, as well as some picture of the healthy traces, all while maintaining a storage

overhead that is relatively low.

4.3 Simulating Retroactive Sampling

For this project, the DeathStarBench microservice benchmark system used for ex-

perimentation was implemented using Jaeger, which collects traces under head-based

sampling. However, even with a tracing framework that does not naturally support

retroactive sampling, we are able to implement a subsampling method to simulate

the effects of retroactive sampling and evaluate the effects of this sampling approach

on our predictive rankings compared to head-based sampling.

To simulate the retroactive sampling method, we begin by running Jaeger with a

100% head-based sampling rate, which collects traces for every single request, both

symptomatic and healthy. After the traces are collected and the poorly performing

requests are flagged, we can randomly select a small percentage of the healthy traces

to be kept, and a large percentage of the problematic traces to be kept. Thus, we

simulate the dataset that we would get if we were to use a retroactive sampling tracing

tool such as Hindsight, with a full view of all the poorly performing traces, and a

small subset of the healthy traces. By running analysis on this reduced dataset, we are

able to see the effects that retroactive sampling has on the strength of the Heimdall

predictions, and can compare it to the accuracy of pure head-based sampling for a

similarly sized sample.
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Chapter 5

Experiments

5.1 Experimentation Process

In order to evaluate the predictions generated by Heimdall, we subject it to a series

of tests in which a latency issue is injected into a benchmark service, and Heimdall,

blinded to the true location of the performance issue, uses the generated distributed

traces to evaluate and rank the possible problem nodes. Since the goal of Heimdall

is to save the system administrator time in diagnosing and root-causing the issue,

Heimdall is considered more successful the higher it ranks the true root cause. Thus,

we evaluate the Heimdall rankings by whether it ranked the true cause sufficiently

high, which we define using both a top-k metric, i.e. the percentage of cases in which

the true root cause scored in the top k in the prediction rankings, and the mean

reciprocal rank, or MRR, of the prediction. More information on the evaluation

metrics can be found in Section 5.3.

For the experiments, we followed the following process:

• Send requests to the DeathStarBench social network system, an established

microservice benchmark, with latency injected into one specific version of one

service using the usleep command.
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• Collect and store traces from DeathStarBench instrumented with the Jaeger

distributed tracing framework.

• Feed the distributed traces into Heimdall, which will use Trace-Based Root

Cause Localization to generate a ranking of services predicted to be the true

cause. Note that Heimdall only takes the Jaeger traces as input, but is blinded

to the actual service that was injected with extra latency.

• Compare the ranking generated by Heimdall with the actual service that was

given added latency, and calculate the hitrate and MRR evaluation metrics,

and compare them to alternative methods and related work.

5.2 Latency Injection Process

The latency injection process into a specific service is designed to be a controlled

simulation of some latency-causing error that might occur within a service. The

possible causes of such latency are numerous, although Heimdall cares only where

the issue occurs, not what it actually is. Therefore, we find that it is sufficient to use

any method to inject a set amount of latency into a machine of our choosing, so long

as we can observe this latency in the trace files for that service as well as potentially

any upstream services.

We simulate latency in our service using is injected using the usleep Linux com-

mand [20], which sets the program to sleep for a specified microsecond value. To

configure this in a way that only affects one version of one service, we can build two

separate docker images for the symptomatic service being experimented on, one with

a call to usleep and one without. This is analogous to a software bug, that causes the

program runtime to be anomalously longer than expected

To set this up for our experiments, we create two versions of every service, and

make sure to host them on separate nodes in the docker swarm. Then we select the
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service we wish to experiment on, and inject latency into one of the versions by adding

a usleep command. For our experiments, we used usleep(5000), which causes 5000

microseconds, or 5 milliseconds, of delay. We then built the two versions into two

separate docker images under the same image name, which allowed the service to be

replicated across two different nodes running slightly different versions of the service

(one with delay, one without).

5.3 Evaluation Metrics

To evaluate the Heimdall rankings relative to the ground truth of the true cause,

we turn to two kinds of evaluation metrics. The first style of evaluation uses top-k

hitrate, also written HR@k, for some chosen integer k. Such a metric is formally

defined [17] as:

HR@k =
1

|A|

|A|∑
i=1

(ri ∈ Rankk
i )

where |A| represents the total number of issues (i.e. the total number of experi-

ments run in our case), ri is the true root cause of the ith issue, and Rankk
i is the

list of top-k ranked outputs in the ranked result list.

Put simply, this type of metric evaluates how often the true root cause was ranked

among the top k possible root causes in the ordered ranking. Specifically, we chose

to look at the top-1, top-3, and top-5 hitrates, which is in line with existing systems

that we can benchmark against.

The second type of evaluation metric is the mean reciprocal rank, or MRR. Mean

reciprocal rank is defined by [17] as the multiplicative inverse of the rank of the correct

answer, or formally as:

MRR =
1

|A|

|A|∑
i=1

1

Indexi
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where Indexi is the numerical placement of the true root cause among the list of

ranked outputs, and all other component are defined the same as in the top-k case.

The range of the MRR metric ranges between 1/n and 1, where n is the number

of possible root causes. The formal definition also contains the caveat that if the

correct root cause does not exist in the rankings, then the MRR is infinity; however

this cannot happen in Heimdall as every component is evaluated and included in the

rankings.

5.4 Sampling

Both the sampling rate and the type of sampling used by the distributed traces

inputted into Heimdall are important variables to consider when subjecting Heimdall

to experimentation and evaluation. While Heimdall might be able to accurately rank

problem areas when it has access to all the traces for all the requests, it is important

for practical applications that Trace-Based Root Cause Localization is able to work

with a smaller subset of traces, that is more manageable to store. With Jaeger, this

is by default done using head-based sampling, though retroactive sampling can also

be simulated as outlined in section Section 4.3.

To test the accuracy of Heimdall under different sampling rates and methodolo-

gies, we can subject it to a series of tests. Under head-base sampling, the sampling

rate is a modifiable parameter in the Jaeger configuration files; we can also take a

sample by a simple random sample of our dataset at the a specified sampling rate.

Adjusting this sampling rate at various levels, we can evaluate how a change in sam-

pling rate affects the Trace-Based Root Cause Localization prediction quality, and

specifically the magnitude of the dropoff as the sampling rate, and therefore trace

storage overhead, decreases.

When simulating retroactive tracing with Jaeger, the methodology has a few more
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steps. Since the reason for sampling in the first place is to keep the space used for

storing traces relatively low, we should compare the two sampling methodologies in a

way that keeps the total traces stored equal. For the case where the head-based sam-

pling is 100%, the approaches are equivalent, since all traces are captured. However,

when the head based sampling rate is reduced, we adjust the random sampling in our

retroactive sampling simulation to get an equal number of traces. Doing so depends

on how we define symptomatic traces, and the sampling rate desired for symptomatic

traces.

For the purpose of this example, say that we define symptomatic traces as the

top 1% of requests in terms of latency, and we want to collect 100% of symptomatic

traces. Additionally, we are trying to match the space footprint of the experiment

with a head-based sampling rate of 10%, i.e. randomly selecting 10% of all traces.

To simulate this beginning with our dataset of all traces sampled at 100%, we start

by taking the 1% of traces marked as symptomatic, and then pick 1/11, or 9.09%, of

the healthy traces. This collects a total of 1%+99/11%, or 10% of total traces, so the

space taken by the two sampling methodologies is equal. Thus, under equal resource

constraints, we can then evaluate the efficacy of the sampling methods in generat-

ing accurate fault prediction rankings and see if a change in sampling methodology

reduces the dropoff in prediction accuracy as sampling rate decreases.
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Chapter 6

Results

After collecting traces from the DeathStarBench social network using the first few

steps of the process in Section 5.1, we were able to input these traces into Heimdall

and generate predictions of the true root cause service. Heimdall is blinded to the

root cause service, and must ascertain a ranking from the traces. Once the ranking

is generated, we can compare it to the true root cause and compute the evaluation

metrics outlined in Section 5.3.

We then compared the predictions generated by Heimdall against previous works

in fault localization, comparing our Trace-Based Root Cause Localization approach

against alternative strategies that did not utilize distributed tracing. In Table 6.1, we

see that the odds ratio method scored top-1, top3, and top-5 hitrates of 0.50, 0.79,

and 0.83 respectively, with an MRR of 0.65, and the Ochiai method scored 0.62, 0.83,

0.84, and 0.73 respectively, both outperforming the previous works across all four

evaluation metrics.

Metric Odds Ratio Ochiai MicroHECL MonitorRank Microscope
HR@1 0.50 0.62 0.48 0.32 0.35
HR@3 0.79 0.83 0.67 0.40 0.49
HR@5 0.83 0.84 0.72 0.43 0.59
MRR 0.65 0.73 0.58 0.37 0.44

Table 6.1: Prediction Evaluation Against Various Localization Systems
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Metric Odds Ratio Ochiai Tarantula Zoltar Wong-II
HR@1 0.50 0.62 0.50 0.29 0.21
HR@3 0.79 0.83 0.79 0.31 0.37
HR@5 0.83 0.84 0.83 0.34 0.50
MRR 0.65 0.73 0.65 0.35 0.35

Table 6.2: Prediction Evaluation Across Fault Localization Methods

We also attempt to compare the ”suspiciousness ratio” against previously existing

fault localization metrics from Section 3.4. In this table, all methods use the same set

of distributed traces generated from the same set of requests, where the only difference

is the way in which the asep, a
s
ef , a

s
np, and asnf components are used to generate a

metric. In Table 6.2, we observe that our ratio outperforms both the Zoltar and

Wong-II metrics, performs roughly equivalently with the Tarantula method, and is

outperformed by the Ochiai method.

To gain even further insight into these evaluation metrics, we can evaluate the

statistical significance of the difference in proportions. Specifically focusing on the

HR@1, we use a 2-proportion significance with n = 197 for both proportions. We

find that Heimdall performs significantly better than both the Zoltar and Wong-II

methods with p = 6.3 ∗ 10−6 and p = 1.4 ∗ 10−10 respectively, and the Ochiai method

performs significantly better than Heimdall with p = 7.8 ∗ 10−3.

Given that the Ochiai metric performed significantly higher than any other metric

in the evaluation, we include Ochiai in our analysis and experiments going forward,

and it should be considered when evaluating improvements to Trace-Based Root

Cause Localization and more accurate root cause localization. More information on

the Ochiai method can be found in 7.4.

Though our initial evaluation of Trace-Based Root Cause Localization performed

very well, beating out alternative approaches, there remain some concerns about the

feasibility of storing a large number of traces as the number of requests scales, as

outlined in Section 4.2. We therefore must attempt to use Trace-Based Root Cause
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Figure 6.1: Heimdall Prediction Accuracy Under Sampling

Localization with a smaller sampling of the available traces, and determine whether

it still performs well under our evaluation. We test this both under the random head-

based sampling found in Jaeger [25], as well as under the retroactive sampling method

[27].

In Figure 6.1, we observe the dropoff in each of the HR@K hitrate evaluation met-

rics as the percentage of traces sampled decreases. We test this under both approaches

to sampling, with the solid lines representing head-based sampling, and the dashed

lines representing retroactive sampling with the same sampling rate (representing the

same constraints on trace storage). While we observe a dropoff under both methods,

we see that the retroactive sampling method exhibits a slightly less severe dropoff

is prediction accuracy as sampling rate decreases compared to the head-based sam-

pling, indicating that this more targeted method of selecting which traces to keep is

beneficial when dealing with root cause localization. These advantages of retroactive

sampling are especially pronounced at lower sampling rates, with improvements of

between 5 and 15% when the sampling rate is below 50%.
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Figure 6.2: Ochiai Prediction Accuracy Under Sampling

Since the Ochiai localization method performed very well in the 100% sampling

case, we also can observe how it performs under the two sampling methodologies.

Figure 6.2 models the same dropoff in HR@k metrics for the Ochiai method, and once

again we observe that this method seems to outperform the ”suspiciousness ratio”

method. Additionally, we observe that the Ochiai method performs exceptionally

well at low sampling rates under retroactive sampling. In fact, at a sampling rate

of 0.2 and using retroactive sampling, the Ochiai method scores at HR@1 = 0.48,

HR@3 = 0.62, HR@5 = 0.65, and MRR = 0.57, still outperforming both the

MonitorRank and Microscope projects while needed to store just 20% of the traces,

significantly reducing the storage overhead.

The improved prediction accuracy of retroactive sampling of traces compared to

head-based sampling at is in line with our thoughts in Section 4.2. Since head-

based sampling randomly samples requests regardless of whether they are flagged as

problematic, the chance of keeping the problematic traces decreases with the sampling

rate This makes it difficult for Heimdall to gain any insights into what components
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are associated with the problem, as the available set of problematic traces is small and

incomplete. This becomes especially pronounced the more the system scales, as both

the percentage of traces sampled and the threshold for problematic traces decreases,

both of which reduce the chance that enough problematic traces are included in the

sampled set.

Under retroactive sampling, the sampling method ensures that a full picture of

the problematic traces is kept, making it easier for Heimdall to discern which com-

ponents are strongly associated with the problem. Even under lower sampling rates,

all the problematic traces remain in the sampled set, making the dropoff less severe.

However, the fault localization techniques also rely on the healthy traces, which are

still sampled at random under retroactive sampling. In fact, since all problematic

traces are included in the sample set at a higher rate than the sampling rate, the

healthy traces are included at a rate even lower than the sampling rate. Since the

Trace-Based Root Cause Localization metric also considers both the executed and

non-executed healthy traces when calculating its metric, we do still expect and ob-

serve a dropoff in prediction accuracy as the sampling rate, and therefore the number

of collected healthy traces, decreases. The Ochiai method, on the other hand, con-

siders the executed healthy traces, asep, but not the non-executed healthy traces, asnp.

Since a large number of the traces that get filtered out by sampling fall into the asnp

category, this may explain why the Heimdall metric, which uses this count, exhibits

greater dropoff under sampling than the Ochiai measure, and this gap is even more

pronounced under retroactive sampling. However, more in-depth theoretical analysis

is needed to concretely evaluate the varying mathematical effects of sampling on each

of the individual fault localization metrics.
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Chapter 7

Related Work

7.1 Distributed Traces

Many modern-day applications are constructed as large-scale, distributed systems,

composed of small interconnected microservices each deployed on individual machines,

often in physically separate locations. As the number of microservices scales, the

system becomes increasingly complex, with large numbers of system calls, numerous

applications and servers to record, and dynamic graph topologies [6]. This makes it

increasingly difficult to monitor the system and track issues that occur.

Given this challenge, a new approach is needed to track requests end-to-end

through the distributed system, known as distributed tracing. Distributed tracing

provides end-to-end information at the request level, detailing how a request was

handled and serviced by the various components of the distributed system. In a large

system, even a single request leads to numerous service calls across different machines

and services, so a framework that links these calls is useful for gaining a broader view

of how the system is running at a high level while still keeping the granularity at the

service level as well.

Though adoption of distributed tracing for software fault localization has previ-
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ously been fairly limited [6] due to some of the sampling challenges outlined in Section

4.2, distributed traces have been utilized to assist a variety of tasks. Prior works have

identified distributed traces as especially helpful for proactive measures, such model-

ing workloads for resource and capacity planning to avoid future resource bottlenecks

[27] [6].

In contrast with traditional logging, in which information about the executed

code is recording locally on each machine, distributed tracing enables the ability to

connect the information from different system components into a singular directed

acyclic graph (DAG) for each request [4]. Such a graph also can provide an ordering

of the services via a topological sort, diagramming which services are upstream or

downstream relative to others. This ability to link the services under a single request

ID is critical for many applications of distributed systems, including Trace-Based

Root Cause Localization. Many distributed tracing frameworks, such as Jaeger [25],

also provide an interface to visualize the trace, which can help the user understand the

nature of the interconnected services in the application and the relationships between

them, specifically service calls between adjacent services and upstream/downstream

relationships [6].

Figure 7.1: Sample Visualization of a Jaeger Trace from DeathStarBench



33

7.2 Retroactive Sampling

When collecting distributed traces, the tracing framework is capable of producing a

massive number of traces, since logs and metrics can be produced at each stage of

the system for each request, leading to a mass of traces that is impractical to store.

As a result, many distributed tracing frameworks, such as Jaeger, randomly sample a

subset of requests to trace and store, usually using head-based sampling. This style of

sampling is an issue when trying to troubleshoot an issue as an engineer, as the edge-

case issue that caused the problem may not be present in the traces at all. Similarly,

when attempting to diagnose the root causes of issues using Heimdall, it is imperative

that Heimdall has access to the faulty traces, as well as an adequate number of healthy

traces, to accurately localize the issue. To ensure that the relevant traces are captured,

Heimdall can be paired with a distributed tracing framework that uses retroactive

sampling, as proposed by Hindsight [27]. Hindsight records all data locally for a short

amount of time, so that any request that is reported to show poor performance upon

completion can then have its trace collected for analysis. This model of tracing allows

the tracing framework to record any edge-case performance issues that occur in a small

subset of requests, and may not have otherwise been collected. In conjunction with

Heimdall, retroactive tracing can be utilized to quickly localize and diagnose small,

edge-case issues that might have otherwise gone unnoticed.

7.3 DeathStarBench

DeathStarBench [9] is an open-source benchmark suite for cloud-based applications

with microservice architecture, providing multiple end-to-end services that can be

used to test and benchmark microservice-related tools and systems. DeathStarBench

offers 5 total services; for this project we used the social network service as our

benchmark and testbed for latency injection and performance localization tests with



34

Heimdall. A diagram of the application structure can be found in Figure 7.2. Death-

StarBench can be deployed as containerized services with Docker, and comes pre-

instrumented with Jaeger tracepoints in each microservice.

Figure 7.2: Architecture of DeathStarBench Social Network

This small microservice system benchmark simulated a social network where users

can post to their timeline, send follow requests, and view the posts of others, each

of which has their own type of request that can be sent. For our experiments, we

sent compose-post requests, which simulate a user posting to their timeline. As part

of servicing this request, the request passes through individual microservices that

perform various small tasks, such as writing the post to a database or notifying other

users that were mentioned in the post.

7.4 Fault Localization

There are a number of prior works that explore the idea of software fault localization.

Early work attempts to create a generalized model that for localizing a single error in

a single program [21] [1], and design automatic tools which can diagnose faults in a

program [2] [12]. Various different fault localization or ”suspiciousness” metrics have

been proposed [22] [2] [14] [26], each of which has been demonstrated to be useful

in specific use cases, although no single metric performs best in all cases. Practical
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work in software fault localization evaluate the usefulness of these metrics in various

real world cases[24] [14]. Most of these real-world applications of fault localization

techniques focus on a single program, where parts of the program are executed or not

executed by some sort of if-else logic. By contrast, Heimdall applies these techniques

to the distributed system, where code may be executed across different machines,

and decisions over what code chunks are executed are not just due to if-else logic, but

other features of the system such as random load balancing.

We applied several of these metrics to our trace data as a way to benchmark the

performance of our new suspicious ratios against previous fault localization tools.

Notably we found the Ochiai fault localization method [22] performed very well in

our experiments, scoring the highest among the fault localization techniques across

all evaluation metrics. The Ochiai factor, originally developed in a biological study

of Japanese fish, is effectively a coefficient of similarity between two groups or sets.

When applied to the fault localization use case, the Ochiai coefficient is defined as as:

asef√
(asef + asnf )(a

s
ef + asep)

In this case, (asef + asnf ) is the set of triggered traces, and (asef + asep) is the size of

the executed cases for some component a. In the numerator, we have the size of the

overlap between these two cases, asef . Thus, the above ratio expressed the similarity

between the triggered and executed groups, i.e. the level of association between a

system component and problematic, poorly performing traces.

7.5 Benchmarks

In Section 6, we evaluated the accuracy of the Heimdall rankings against various

benchmarks. Some of these benchmarks were the fault localization metrics defined

in Section 3.4; however we also compared against the predictions of three existing
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tools for fault or performance anomaly localization in microservice systems, namely

MicroHECL [17], MonitorRank[15], and Microscope [16]. Each of these systems takes

their own slightly different methodological approach to the localization problem, and

used different microservice systems for their experiments and evaluation.

MicroHECL [17] is a root cause localization tool developed by Alibaba that lo-

calizes the root cause for not just performance problems, but also other kinds of

issues commonly faced by the Alibaba system, such as outages. MicroHECL ingests

information about service calls, service relationships, and dependencies in the sys-

tem, and uses machine learning techniques to construct a dynamic service call graph

that is analyzed to determine how anomalies propagate through services and where

they originated. MicroHECL was tested on and deployed into production for the Al-

ibaba system, a massive production system with over 30,000 total microservices that

comprise over 300 subsystems.

MonitorRank [15] takes a similar approach to MicroHECL, generating a graph

based on service calls between system components. They also used logs and met-

rics from within each service to assist in the model building and fault localization

predictions. Like MicroHECL, MonitorRank also focused on both performance and

reliability anomalies, and was tested on production-scale system data at LinkedIn,

with about 400 unique services deployed across thousands of nodes.

Microscope [16] also uses call data to generate a graph, algorithmically extracting

causal relationships between services. Unlike the other two, Microscope focuses solely

on performance with respect to latency rather than a wider range of issues, just like

Heimdall. Microscope was evaluated in a non-production environment, tested on the

sock-shop benchmark system, comprised of 36 service instances.

Each of these approaches takes a slightly different approach from one another, but

they all have some clear similarities that make them distinct from Heimdall. Most

notably, these tools all ingest information about service calls between microservices,
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and constructs a graph that represents relationships between nodes. None of these

tools utilize distributed traces for their analysis. MicroHECL notes the challenges

of using traces, namely the large overhead needed to store traces at scale. However,

when combined with retroactive sampling, Heimdall is able to avoid this concern.

By avoiding the graph based approach, Heimdall is also able to avoid any time or

space overhead that comes with generating this service call graph, which can become

highly complicated and large when the number of services scales up, as is the case

in large production systems. MonitorRank mentions the difficulty of service call

graph generation and analyzing issue propagation, as the root cause localizer needs

to analyze each edge of the call graph, which could theoretically scale quadratically

with the number of services.

7.6 Distributed System Outage Detection

Since distributed systems operate at great scale, the quantity and diversity of poten-

tial issues is high. Some prior work has attempted to classify these issues based on

the nature of their root causes and symptoms [30] [29]. These papers utilize similar

failure injection and fault localization techniques, and we draw from their notation

and evaluation frameworks.

However, all these analyses focus primarily on faults or outages, in which the

system shuts down or fails to complete requests. This is different from the Heimdall

use case, in which affected ”bad” traces are classified as traces that exhibit poor

performance (usually high latency), but do not fail entirely. While the methodologies

may overlap, Heimdall deals with a much smaller set of potential issue types, and

problematic traces are often somewhat less noticeable.
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7.7 Bayes Factor

The Bayes Factor is a measure proposed by Sir Harold Jeffreys [13] as a tool to contrast

the predictive performance of two competing models or hypotheses [19], measuring

how much the data supports one statistical model over another as a ratio. The Bayes

factor has found application across a wide range of disciplines in both the natural

sciences and social sciences, and are considered ”the primary tool used in Bayesian

inference for hypothesis testing and model selection.” [5] [8]

To calculate the Bayes Factor, we consider two statistical models or hypothesis.

Under the traditional framework, these are the null hypothesis H0, signifying the

absence of an effect, and the alternative hypothesis H1, signifying the presence of an

effect. [19]. The Bayes factor also requires some already observed data, notated as d.

Then, we can express our Bayes factor as:

p(d|H1)

p(d|H0)

The Bayes factor can be interpreted as the ratio of the average predictive accura-

cies of the two models, or the ratio of the likelihoods that the observed data would

be generated under that model. Thus, a Bayes factor of 3 indicates that the data is

3 times more likely to occur under the model of the alternative hypothesis H1 than

the null hypothesis H0, while a Bayes factor of 0.125, or 1/8, indicates that the data

is 8 times more likely to occur under H0 than H1.



39

Chapter 8

Conclusion and Future Work

Trace-Based Root Cause Localization scores highly in measures of its predictive ac-

curacy, outperforming many existing fault localization tools that opt to not leverage

distributed traces. Even existing fault localization metrics are found to perform very

well when coupled with distributed tracing, underlining the usefulness of distributed

traces and Trace-Based Root Cause Localization in the field of performance regression

localization. We also demonstrated the advantages of using retroactive sampling as

part of the localization process instead of head-based sampling, providing evidence in

support of the belief that use of retroactive sampling is advantageous when localizing

problems in a distributed system and addressing concerns in prior work about the

feasibility of using tracing at scale for issue localization.

More work is needed to test the limits and shortcomings of Trace-Based Root

Cause Localization under a variety of issue types and at varying levels of scale. Use

of Trace-Based Root Cause Localization in a production level system, where the

number of services and the diversity of issues is high and the sampling rate must

be relatively low, can provide further insights into the viability of using distributed

tracing for fault localization at scale.

Additional adjustments, such as incorporating ideas from the Ochiai method or
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other techniques, might also be made to the fault localization metric to improve pre-

dictions either in the general case or when applied to specific systems. More complex

analytical work should also to done to determine why some methods outperform oth-

ers, and what qualities of the system or recorded data can be leveraged to efficiently

identify the most accurate prediction method for root cause localization. Being able

to identify the mathematical foundations that cause a distributed tracing approach to

outperform a service call graph approach, or understanding why Ochiai performs bet-

ter than other localization methods, can allow greater understanding of the problem

space and more efficient and guided future work.
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