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Abstract 

 

Predicting Housing Price in Beijing Using ARIMA Models 

By Yue Gao 

 

With the rapid increase in housing demand, more and more homebuyers in Beijing tend to purchase 

housing properties without collecting enough information. To provide a solution for information 

asymmetry and high information acquiring cost in the housing market, this study focusses on the 

housing price forecasting. Reliable forecasts could provide valuable information for homebuyers 

and sellers and help them better understand the local housing market. This paper seeks to predict 

the housing price in Beijing using ARIMA models due to the model’s demonstrated 

outperformance in predicting time series data accuracy. In addition, district-by-district housing 

price prediction is also performed. 

 

Index Terms—ARIMA models, housing price data, time series analysis  
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1. Introduction 
 

Information asymmetry in the housing market is a common problem home buyers 

encounter. For example, home sellers may have more information about the local housing markets 

than homebuyers; and local buyers can acquire more comprehensive housing information than 

non-local buyers. According to Qiu et al. (2019), "homebuyers from outside a geographical area 

(non-locals) typically pay more for a given property compared to local buyers" due to more 

information search costs and weaker bargaining power. The problem of asymmetric information 

worsens in global cities like Beijing. The modifications of the hukou (household registration) 

system in China encourage population mobility and create the chance for vast inter-regional 

migration. (Shen, 2013) Beijing, as the political, cultural, and economic center of China, has also 

attracted enormous internal migrants from other cities in China or global migrants from foreign 

countries. According to the 2020 Chinese census, inter-regional migrants to Beijing are about 8.42 

million, making up 38.5% of permanent residents.  

A significant number of migrants lead to a massive non-local homebuyers’ group in Beijing. 

Therefore, a potential solution to the problem of information asymmetry in the housing market 

benefits non-local homebuyers by providing them applicable information of the local housing 

market and bringing down their time and financial cost when acquiring housing information.  

Researchers have done many studies to predict housing prices with different approaches. 

Wu and Brynjolfsson (2009) collected housing search index data from search engines like Google 

to predict future housing market activities and forecasted housing price trends based on searching 

frequencies. Research by Park and Bae (2015) proposed a housing price prediction model based 

on machine learning algorithms including C4.5, RIPPER, Naïve Bayesian, and AdaBoost to 

analyze the housing data in Fairfax County, VA. Wang et al. (2019) suggested a housing price 
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forecasting model based on deep learning and the ARIMA model to capture the relationship 

between determinant factors and housing price. In this study, ARIMA models are adopted to 

forecast the housing price in Beijing because it is one of the most used models in estimating 

housing prices and other commodity prices.  

For example, in the study by Contreras et al. (2003), ARIMA models have been applied to 

forecast the next-day electricity price. ARIMA models have also been used to estimate the gold 

price and show satisfying performance in predicting the short-run gold price, but they failed to 

capture the sudden changes in the gold price (Bandyopadhyay and Guha, 2016). ARIMA models 

are also being applied to forecast Pu'er tea price and showed relatively low prediction errors, 

especially with shorter forecasting periods (Dou et al. 2021). Although ARIMA models generated 

relatively low prediction error in predicting these commodity prices, we are curious if ARIMA 

models can produce reliable prediction results for Beijing's housing price. Since housing prices are 

influenced by factors such as property characteristics, surrounding infrastructures, government 

housing policies, etc., housing prices could exhibit more volatility and are relatively unstable. In 

this study, we will focus on the performances of ARIMA models in predicting the housing price 

level in Beijing. In addition, the housing price changing pattern differs from district to district in 

Beijing because of the districts' distinctive location, economic status, and more. Therefore, we will 

also investigate the different housing price changing patterns and ARIMA models' prediction 

accuracy based on districts. 
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2. Research Methodology 

 
This part of the article discusses the basic principles of the ARIMA model used for 

prediction, elaborates the modeling processes to fit ARIMA models with the time series data, and 

introduces the success criteria adopted to evaluate the forecasting performances. 

 

2.1. Background: ARIMA Model Approach 

 

This section explains the background knowledge of the time series model used in this 

article. ARIMA is an acronym for Autoregressive Integrated Moving Average. After Box and 

Jenkins (1976) developed a systematic ARIMA modeling approach, this linear approach has 

become the standard and widely applied to perform time series forecasting on future quantities or 

prices based on historical data. 

ARIMA (p, d, q) is a composite time series model that incorporates differencing with 

autoregression and moving average approach. Since the ARIMA model involves differencing, it 

can be viewed as a generalized form of a simple ARMA model. The acronym AR, I, and MA 

represent Autoregressive, Integrated, and Moving Average. Autoregression stands for regressing 

the variable against itself. The autoregression model, AR (p), studies the dependencies between 

the variable of interests and several past values of the variable with lag order p. We can write the 

formula of the AR (p) as: 

yt =  ∅1yt−1 + ∅2yt−2 + ⋯ + ∅pyt−p + εt + c, 

where yt is the stationary variable, predictors yt−i are lagged values of yt,  ∅i is the autocorrelation 

coefficient at lag i, εt is the normally distributed white noise with mean zero and variance one, and 

c is the constant. 

Integration corresponds to a differencing step which is one way to make non-stationary 

data stationary by calculating the differences of two consecutive observations. A time series {yt} is 



 4 

stationary if, for all s, the distribution of (yt , yt+1, … , yt+s) does not depend on t. In other words, 

to apply the autoregression model and moving average approach, we are looking for a time series 

without trend and periodic fluctuations (seasonality). This is because trend and seasonality 

influence the value of times series over time. Differencing can be applied one or more times to 

stabilize the mean and eliminate rising or decreasing trends. When seasonality presents in the time 

series, seasonal differencing, also referred to as “lag-m” differences, can remove the seasonal 

component by taking the difference between an observation and another observation from the 

previous season. The parameter d, in I (d), stands for the degree of differencing, which is the times 

of differencing. 

MA (q) refers to a moving average model with order q. Moving average model is very 

similar to the autoregressive model. But instead of regress on its own past values, MA model 

forecasts the variable of interest based on past forecast errors. The formula of the MA (q) model 

can be written as: 

yt =  θ1εt−1 + θ2εt−2 + ⋯ + θpεt−p + εt + μ, 

where yt is the stationary variable, predictors εt, εt−i are white noise error terms,  θi is the moving 

average coefficient at lag i, and μ is the mean of the series (usually assumed to be zero because of 

the stationarity).  

We can add these models together and form the function for an ARIMA (p, d, q) model: 

y′t =  ∅1yt−1 + ⋯ + ∅pyp−1 +  θ1εt−1 + ⋯ + θpεt−p + εt + c, 

where y′t indicates the differenced time series. 
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2.2. Workflow Chart 

 

 The process of fitting an ARIMA model to the time series housing data to forecast the 

housing price is summarized below in Figure 1. 

  

Figure 1. ARIMA Model Workflow Chart 

Note: the auto.arima () function is developed based on the Hyndman-Khandakar algorithm 

(Hyndman & Khandar, 2008). 
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2.3. Evaluation Criteria of ARIMA models 

 

Future values are always unknown. No matter what orders an ARIMA model adopts, it is 

impossible for this model to yield 100% accurate results. In other words, a certain level of error 

that exists in the prediction needs to be measured and studied. According to Sarı (2016), the most 

important criteria to evaluate the predictive success is the accuracy of the prediction, which is 

measured by analyzing the predicted errors. Therefore, in step 8, we adopt the Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) to 

measure the predictive success of different ARIMA models. The formulas to calculate the RMSE, 

MAE, and MAPE are shown below in Table 1. (Sallehuddin et al. 2009). In the below formulas, 

yt represents the actual value, ŷt represents predicted value, n represents the number of predicted 

periods. ARIMA models that produce the lowest RMSE, MAE, MAPE should be selected as the 

best fit model. 

Evaluation Criterion Formula 

Root Mean Square Error (RMSE) RMSE = √
1

n
∑ (yt − ŷt)2

n

t = 1

 

Mean Absolute Error (MAE) MAE =  (∑ |
yt  −  ŷt

n
|

n

t = 1

 ) 

Mean Absolute Percentage Error (MAPE) MAPE =  (∑ |
yt  −  ŷt

yt
|

n

t = 1

 ) 
100

n
 

Table 1. Evaluation Criteria Formulas 
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3. Data and Data Pre-Processing 

 

3.1. Data 

 

 The data used in this study are daily housing transaction data in Beijing. It is fetched from 

the website Lianjia, an online Chinese real-estate transaction platform with open access. The total 

sampling period studied is from January 2010 to December 2017. The table below shows that 

although data from a more extended period are available, the number of transactions recorded is 

unevenly distributed across the years. 

Table 2. Number of Transactions Recorded by Year 

The table below shows that the number of transactions recorded before 2010 is too limited 

to perform a thorough analysis. Therefore, we select the data from 2010 to 2017 to ensure the 

study's statistical power. After further examination of the data, four variables: Date (the transaction 

date of each property), Total Price (the total price of the property in 10,000 yuan), Price (the price 

per square meter in yuan), and District (housing located districts in Beijing) are selected to build 

the model and answer the research questions. The "District" variable includes 12 districts: 

ChangPing, ChaoYang, DaXing, DongCheng, Fangshan, FengTai, HaiDian, MenTouGou, 

ShiJingShan, ShunYi, TongZhou, and XiCheng districts. 
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3.2. Data Pre-Processing 

 

 During data pre-processing, we first examine the distribution of two key variables, unit 

housing price and total housing price, to get an overview of Beijing's housing price level. From 

the histogram of unit price in Figure 2, we observe that majority of the observations fall into the 

range of 25,000 to 65,000 yuan per square meter, with the lowest unit price around zero yuan and 

the highest around 150,000 yuan. And the observation frequency flattens with the increasing unit 

price. Overall, the distribution of the unit price skewed to the right with a long right tail. For the 

total price histogram, observations between the 2000,000-to-5000,000-yuan range are the most 

common. The lowest total price is around 500,000 yuan, and the highest total price is closing to 

20,000,000 yuan. This histogram also exhibits a right-skewed distribution with a long right tail. 

The lowest unit and total price, as well as the long tails of these two histograms, indicate the 

potential risk of erroneous data. According to the data, the actual average housing price in 2010 

was around 1.35 million yuan, and the average unit price was around 15,574 yuan. In addition, it 

is unrealistic to sell housing properties for free. This means that the data entries with 0-yuan unit 

prices are likely to be inaccurate or erroneous. To mitigate the negative effect caused by mistaken 

data entries, we cleaned the dataset by removing the missing values and entries with 0-yuan unit 

prices. 
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Figure 2. Total Price and Unit Price Distribution 

 

To perform the ARIMA model, we create two time series objects: total price monthly 

average over time and unit price monthly average. The trends of the changing unit price and total 

price are plotted in Figure 3. The overall trends for the average unit price and average total price 

are very similar. They both show a significant increasing trend from 2010 to 2017. However, 

they differ in specific periods. For example, there was a sharp increase in the average total price 

around the first and second quarters of 2010, but the average unit price did not rocket until the 

last quarter of 2010. And the unit price soon increased again during 2011 when the total price 

remained at a steadily increasing rate. Since the total price is highly influenced by the size of the 

property and the size of houses in Beijing can range from under 20 square meters to over 500 

square meters, we choose the unit price variable instead of the total price as the indicator for 

price level in Beijing in this study.  
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Figure 3. Total Price and Unit Price Trend 

 The study by Ngai and Tenreyro (2014) suggests that "each year a housing boom of 

considerable magnitude takes place in the second and third quarters of the calendar year (the "hot 

season"), followed by a bust in the fourth and first quarters (the "cold season")." Since the housing 

market tends to have hot and winter seasons, it is necessary to consider seasonality before fitting 

prediction models. We draw the seasonality plot based on the time series data to examine if there 

is an apparent periodic pattern in the Beijing housing price. The seasonality plot in Figure 4 has a 

circular time axis. One complete circle represents one year. Suppose the plot is in the shape of a 

regular circle, the housing price increases at a stable rate from month to month. If the plot is in the 

form of an ellipse or other irregular shapes, these can be the signs for potential periodic patterns. 

From Figure 4, we can see a sign of seasonality in 2010 and 2011 because the average housing 

price was higher around January and July. However, the pattern did not continue through the 

following years. Starting from 2012, the average price level increases yearly without a significant 
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seasonal pattern. Since ARIMA models can handle certain types of seasonality and the periodic 

pattern in our time series data is not significant, we do not decompose the seasonality from the 

time series object before fitting ARIMA models.  

Figure 4. Seasonality Plot of Housing Price in Beijing 

Before fitting ARIMA models, it is crucial to check the data’s stationarity and differencing 

the data if necessary. The ACF plot of the time series in Figure 5 can help identify the stationarity. 

The ACF will quickly drop to zero if the time series is stationary. In Figure 5, the ACF decreases 

slowly, showing the training series was non-stationary. Also, we can use the Augmented Dickey-

Fuller (ADF) test to examine if the time series is stationary. ADF test is a robust unit root test. The 

null hypothesis is that a unit root is present in the time series sample, and the alternative hypothesis 

is that the sample is stationary. In our case, the p-value is 0.4078. Since the p-value is greater than 

0.05, there is no significant evidence to reject the null.  
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Figure 5. ACF Plot for Time Series Sample 

 To make the non-stationary time series sample stationary, we take the first difference 

between consecutive observations and plot the ACF of the differenced series in Figure 6. After the 

first differencing, we draw the ACF of the differenced time series and apply the ADF test. 

Although the ACF of the differenced series quickly decreases to zero, the p-value is 0.1917 

indicating there is no sufficient evidence to reject the null. Because the time series sample is still 

non-stationary after the first differencing, we take the second difference to check the ACF and 

ADF statistics again. With the ACF quickly dropping to 0 and a p-value of 0.01, there is enough 

evidence to reject the null hypothesis, indicating the differenced time series is stationary. 

              Figure 6. ACF with 1st Difference                                Figure 7. ACF with 2nd Difference    
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Finally, the time series is split into the training and test data set with the 87% and 13% 

ratios to test the forecasting performances. The final time series are shown in Table 3. It contains 

the monthly average unit housing price from 2010, March to 2017, December with 94 entries in 

total (first 2-month data lost due to differencing). The monthly average unit prices from 2010 to 

2016 are treated as the in-sample data. The monthly average unit prices in 2017 are treated as the 

hold-out sample for testing purposes. 

Table 3. Differenced Time Series 

 

 

 

 

 

 

 

 

 

 



 14 

4. Result 

 

4.1. RQ1: What is the performance of ARIMA in predicting housing price in Beijing? 

 

To answer the first research question, 21 different ARIMA (p, d, q) models were selected 

and tested to forecast the average housing price in Beijing. The various combinations of the 

parameters are first determined by the automated function in R. The complete ARIMA models and 

their corresponding AIC scores are recorded in the Appendix. Four models are selected among the 

21 ARIMA models based on the AIC score. AIC is short for Akaike Information Criterion, one of 

the most widely used model selection criteria. AIC estimates the relative quality of each model by 

rewarding goodness of fit and penalizing overfitting. The AIC value of a model is calculated by: 

AIC =  2k −  2ln(L̂), 

where k is the number of estimated parameters and is the maximum value of the likelihood function 

for the model. Among a set of candidates ARIMA models, ones with smaller AIC values are 

preferred. Apart from the AIC value, the ACF and PACF plot of the final time series sample in 

Figure 8 also provides useful information in choosing the AR and MA orders in the ARIMA model. 

We use the PACF to determine the terms used in the AR model because the AR model examines 

the dependencies between two time spots, and the PACF measures the real correlation between 

two time spots by taking out the indirect effect brought by other time spots. And we use the ACF 

factor to evaluate the MA order. When examining the PACF plot, only the significant PACF values 

will be chosen to determine the order of the AR model. And we can apply the same rule to the 

ACF and AR order. In figure 8, there are horizontal blue dash lines representing significant 

thresholds and vertical solid lines representing the ACF and PACF values at each time spot. Only 

the vertical lines that exceed the horizontal dash lines are considered significant. We have three 

significant ACF values and three significant PACF values in this case. The significant ACF values 



 15 

are at lag 1, lag 3, and lag 6. The significant PACF values are at lag 1, lag 3, and lag 5. Therefore, 

possible combinations for AR and MA orders include ARMA (1, 1), ARMA (3, 1), ARMA (3,3), 

and so on. Between these models, models with minimal error terms are preferred and simpler 

models with fewer independent variables are preferred to keep our model concise. 

Figure 8. ACF/PACF 

After examining the AIC value and the ACF/PACF plot, four ARIMA models are selected 

and their error terms are further examined: ARIMA (3, 0, 1) which is the ARIMA model with the 

minimum AIC value, ARIMA (1, 0, 1), ARIMA (1, 0, 3) and ARIMA (5, 0, 1).  The results of the 

evaluation criteria are given in Table 4. From Table 4, we noticed that ARIMA (1, 0, 3) has the 

minimum error terms.  

ARIMA Model Comparison 

ARIMA Model RMSE MAE MAPE 

(3, 0, 1) 1427.716 1017.948 209.7144 

(1, 0, 1) 1472.094 1035.227 180.8662 

(1, 0, 3) 1416.856 1000.855 162.9572 

(5, 0, 1) 1417.866 1009.412           189.5479 

Table 4. Evaluation Criteria Statistics  
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In addition to the error terms, we also double-check the residuals plots of the four ARIMA 

models in Figure 9. From the four ACF plots in the below figure, we discover almost all ACF 

values are within the significant threshold, which ensures the robustness of the four ARIMA 

models. In addition, ARIMA (1, 0, 3) has the smallest residual range, which is consistent with the 

evaluation criteria in Table 4. After examining the evaluation criteria statistics and the residuals 

plot, ARIMA (1, 0, 3) is selected to forecast the housing price level. 

Figure 9. Residuals Plot from 4 ARIMA Models 

 We adopted rolling forecasting and calculated the rolling window cross-validated error to 

estimate the forecasting performances in the forecasting process. Rolling forecast is a commonly 

used measure in literature and application when forecasting time series data. The basic idea is to 

always roll the training sample forward and add new data points to the training sample when 

available. Compared with the traditional multi-step forecasting, where all of the training data are 
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used to forecast the next several months simultaneously, the rolling forecast measure continuously 

incorporates new information when predicting the future values. The multi-step forecast and 

rolling forecast results are shown in Figure 10 below. There is a solid black line representing the 

actual data in the plot, a blue line indicating the prediction results based on the multi-step forecast, 

and a red line denoting the forecasting result generated by the rolling forecast. They both used the 

training sample to predict the housing price in the next ten months. While the multi-step forecasting 

is a flatter horizontal line, the rolling forecasted results are closer to the real data. 

Figure 10. Multi-step and Rolling Forecasts 

To further examine the prediction error of rolling forecast, we use the training sample to 

perform one-step, two-steps, three-steps, and six-step forward estimates, which forecast the next 

month, two months, three months, and six months housing price average, respectively. We then 

calculated the root mean square forecasting error (RMSE). The forecasting error are summarized 

in the table below. From Table 5, we noticed the RMSE is larger for longer forecasting periods. 

One possible explanation for this observation is outside influencing factors, such as housing policy, 
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are more likely to take part and affect the housing price average when trying to predict the prices 

several months ahead. 

Rolling Forecast Error (Cross-Validated) 

Forecasting Period RMSE 

1 month 1289.098 

2 months 1346.923 

3 months 1361.159 

6 months 1428.687 

Table 5. Rolling Forecast Error 

 

4.2. RQ2: Will the forecasting performance differ from district to district? 

 

To answer this research question, we apply ARIMA models to the data collected in each 

district respectively. The error terms of the most suitable ARIMA model for each district are 

recorded in Table 6. Since the model with the minimum RMSE does not necessarily have the 

lowest MAE and MAPE, we use the Root Mean Squared Error (RMSE) as the main evaluating 

standard. The reason to choose RMSE instead of MAE and MAPE is that RMSE is more widely 

used as a predictive ARIMA model that minimizes the RMSE lead to forecasts of the mean. By 

comparing RMSE values for 12 different districts, we noticed that the performances of ARIMA 

models vary with districts. ARIMA models have better performances when predicting housing 

price change in MenTouGou, DaXing, TongZhou, and FengTai. However, ARIMA models have 

more significant forecasting errors when predicting housing price change in ChaoYang, 

ShiJingShan, DongCheng, and Xicheng. 
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Table 6. Evaluation Criteria Statistics by District 

 

 

 

 

 

 

 

 

District ARIMA Model Comparison 

District ARIMA RMSE MAE MAPE 

ChangPing (2,1,2) 1730.915 1124.315 5.256555 

ChaoYang (0,1,3) 4476.518 2543.045 7.173551 

DaXing (1,1,0) 1095.464 832.7196 2.943391 

DongCheng (0,1,2) 2561.954 1895.088 3.46419 

FangShan (0,1,0) 1771.014 1222.542 5.082396 

FengTai (0,1,1) 1205.705 870.2298 2.697913 

HaiDian (0,1,1) 1667.434 1218.876 2.352648 

MenTouGou (2,1,1) 1034.501 783.9738 3.564443 

ShiJingShan (2,1,1) 2713.665 1597.873 4.851847 

ShunYi (0,1,0) 1473.631 1051.865 4.337018 

TongZhou (1,1,0) 1157.394 830.2064 3.139349 

XiCheng (1,1,0) 2084.676 1533.075 2.778483 
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5. Discussion 
 

5.1. Limitations of Study  

 

One limitation of this study is insufficient Data. The data used is the housing transaction 

data fetched from Lianjia. It is inadequate in three aspects. First, the data covered the housing 

transaction data from 2010 to 2017, giving 96 monthly average data. There is still potential to 

improve model accuracy if ARIMA models are fitted with more training data. In addition, the 

dataset only covered the transaction data in 12 districts of Beijing, with four other districts’ housing 

prices left out. Although it covered most districts in Beijing, it failed to collect the housing price 

information from 4 additional rural districts in Beijing. The housing price data may not be a 

throughout representation of the housing price level in Beijing because it includes more data from 

the urban districts than the rural districts. And the housing price level differs significantly from 

district to district. Finally, the data is not guaranteed accurate in every entry since the data is 

fetched from a website with open access. Many individuals have the right to adjust the relevant 

data. Also, home buyers and home sellers who choose to transact through Lianjia instead of other 

platforms may be a group with specific characteristics. For example, sellers may be unwilling to 

sell luxury properties through Lianjia. They may have access to channels, such as private agencies, 

to help them target potential buyers more efficiently. With that being said, the housing price data 

from Lianjia is under the risk of selection bias because the data is collected from a selected group 

instead of a randomized group. As a result, the limitations of the data may restrict the ability to 

conduct a thorough analysis of the housing price forecasting in Beijing. Potential improvements 

are collecting housing price data randomly from multiple platforms within a more extended time 

range. 
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The second limitation is methodological limitations. Due to the time limit, the ARIMA 

models used in this study are univariate regression that only adopts single input— time. Since the 

housing price is highly influenced by other influencing factors such as location, build year, etc., 

adding these factors as additional input variables and adopting the multivariate approach may 

improve prediction accuracy. In addition, in this study, only ARIMA models are adopted to predict 

the housing price in Beijing. Although ARIMA is one of the most adopted time series models, it 

has been preferred as a linear model. ARIMA models are unable to capture the non-linear portion 

of the data. One potential improvement is to adopt a linear and non-linear hybrid model to improve 

the prediction accuracy. In 2011, Khashei and Bijari proposed a novel hybridization of ARIMA 

and Artificial Neural Network (ANN) to improve the time series prediction accuracy. The study 

by Temür et al. (2019) also adopted the ARIMA and LSTM Hybrid model to predict the housing 

sales in Turkey and indicated the performance of the hybrid model is better than either ARIMA or 

LSTM on its own. Therefore, the hybrid approach may have the potential to improve the prediction 

performance in the case of Beijing as well. 

5.2. ARIMA Model Performance 

 

From the results in section 4.1, we can see that the prediction error of ARIMA models 

increases with the increasing prediction window. This is because the variance and uncertainty 

increase with the expanding prediction window. Also, when the prediction window increases, the 

possibility of having additional factors influencing the housing price increases. Policy change is 

one of the possible factors, and ARIMA models cannot estimate the effect of the sudden changes 

on housing prices, which decreases the prediction accuracy.  

From the results in section 4.2, we found that the performance of ARIMA models differs 

by the district. By looking at the trend and the range of housing prices in each district (Figure 11 
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& 12), we discovered that ARIMA models perform better when predicting the housing prices of 

districts with a smaller housing price range and smoother housing price increasing trend. This 

observation may be the result of many factors. For example, the district’s location can influence 

the housing price range. Urban districts located closer to the center of Beijing experienced faster 

developments in the past years and thus experienced more rapid and significant price increases. 

On the other hand, districts located farther away from the economy center may experience fewer 

economic and political changes. The housing price in these districts may go through a slower and 

more stable increase in the price level. And for the housing price increase trend, more centered 

districts, like Chaoyang, tend to experience more sudden changes in their housing prices. These 

sudden changes create more variance and volatility in the data and weaken ARIMA model’s 

performances. 

Figure 11. Housing Price Trend by District 
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Figure 12. Housing Price Range by District 
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6. Conclusion 

 
This study proposes and investigates two research questions: the performance of ARIMA 

models in forecasting housing prices in Beijing and the performance differences in predicting 

housing prices of different districts in Beijing. Answering these two research questions will help 

identify whether ARIMA is a suitable time series model in predicting housing prices in Beijing. It 

also provides valuable information on which districts’ housing prices can be predicted more 

accurately with ARIMA models. To answer these two questions, 12 different ARIMA models are 

tested, and one best model, ARIMA (1, 0, 3), is selected based on the evaluation criteria. Also, the 

housing price dataset is divided based on the districts. The best fit ARIMA model is selected for 

each district, and the prediction accuracies are compared. Furthermore, this study shows that 

ARIMA models tend to perform better when the housing price have less variance. 

Future studies can adopt other nonlinear time series models, such as Long-Term Short 

Memory (LSTM) or other hybrid models to predict housing prices in Beijing. Also, we can 

continue to analyze the reasons behind the performance differences when predicting the housing 

prices of different districts. Furthermore, it is also interesting to investigate ARIMA models’ 

performance in predicting housing prices of other Chinese cities. 
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Appendix 

 
Appendix 1. ARIMA Models AIC Score Summary 
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