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Abstract

Flexible Association Methods for Bivariate Survival Data

By Jing Yang

Biomedical follow-up studies often involve multiple event times. The inter-
relationship among these event times is often of great scientific interest. In this
dissertation, we focus on two scenarios involving multiple event times, semi-competing
risks (Fine et al., 2001) and recurrent events.

The first project is to study the dependence structure between the nonterminal
event and the terminal event in the semi-competing risks setting. We propose
a new robust dependence measure without requiring distributional assumption,
which can accommodate the exploration of the potential changing pattern of the
dependence in the identifiable region of semi-competing risks data. We develop a
nonparametric estimation procedure for the proposed measure by adopting a quantile
regression framework. The estimation method can be readily extended to adjust for
covariates. The proposed methods are evaluated by extensive simulation studies and
an application to the Denmark diabetes registry data.

The second project is to develop a new nonparametric estimator of the dependence
measure proposed in the first project. The new estimator can accommodate left
truncation that occurs in semi-competing risks settings, requiring weaker constraints
on the truncation mechanism. Asymptotic properties and inference procedures are
established for the resulting estimator. We conduct simulation studies to assess the
finite-sample performance of the new estimator. We also apply it to a Denmark
diabetes registry dataset.

The third project is to explore the association between bivariate recurrent even-
t processes under an observation window structure, which is motivated by the US
Cystic Fibrosis Foundation Patient Registry (CFFPR) study. We propose a novel
measure which can flexibly depict the association between two recurrent event pro-
cesses. We further develop a regression framework for the proposed measure to allow
for assessing whether and how the association is influenced by covariates. We es-
tablish the estimation procedure, which show promising results by some preliminary
simulation studies. We also apply the proposed method to the CFFPR study.
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Chapter 1

Introduction
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1.1 Background

In biomedical follow-up studies, subjects may experience multiple events, which are

often monitored for studying certain disease. The events can be of the same type, for

example, a sequence of tumor recurrences or infection episodes. They can also be of

different types, for example, complications causing diseases in different organs. The

inter-relationship among these disease-related events often carry important informa-

tion that can advance the understanding of disease progression. Thus, how to well

assess the interplay among these events is of great scientific interest. In my disserta-

tion, we focus on two scenarios involving multiple event times, semi-competing risks

and recurrent events.

Semi-competing risks, termed by Fine et al. (2001), is a special structure of bi-

variate event times that consist of a nonterminal event (e.g., disease landmark) and

a terminal event (e.g., death), with the characteristics that time to the nonterminal

event can be censored by time to the terminal event, but not vice versa. The de-

pendence between the nonterminal event and the terminal event can offer valuable

insight on disease prognosis and thus poses an important problem to study. In the

Denmark diabetes registry study (Andersen et al., 1993), for example, investigators

have been interested in knowing how diabetic nephropathy (an indicator of kidney

failure) influences mortality of diabetes, where time to diabetic nephropathy and time

to death form a semi-competing risks structure. To address such an issue, as elab-

orated later in Section 1.2.1, a typical way is to employ a copula model linking the

joint distribution and the marginal distributions of the two event times and let the

association parameter capture the dependence structure. However, a main limitation

of using such a copula based approach is that the dependence structure relies on the

assumed relation between the joint distribution and its marginal distributions, which

may be hard to verify based on the observed semi-competing risks data. This motives

us to propose a new robust measure without any distributional assumption to capture
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the dependence structure between the nonterminal event and the terminal event in

the semi-competing setting. Also, left truncation on the terminal event is often en-

countered in observational studies. For example, only patients who lived long enough

to enter the registry can provide data for the Denmark diabetes registry study. This

thus motivates us to develop methods that can accommodate left truncation.

Recurrent event data arise when the event of interest occurs repeatedly. Examples

include repeated asthmatic attacks, recurrent infections and repeated hospitalization-

s. Often, a subject may experience more than one type of recurrent events, and the

observation of these events are subject to an observation window that is from the start

of follow-up to the last follow-up visit. In this setting, our interest is to assess the as-

sociation between two recurrent event processes under a general window observation

scheme. A motivating example is the US Cystic Fibrosis Foundation Patient Registry

(CFFPR) study. Cystic Fibrosis (CF) is a lethal autosomal disease without known

cure yet that commonly affects Caucasians due to mutation of CFTR gene. Pseu-

domonas aeruginosa (Pa) and Staphylococcus aureus (Sa) are two major pathogens

of medical concerns for CF patients, and are often found to co-exist in the same niche

influencing the CF pathogenesis. Recurrences of one type of pathogens may affect the

risk of the other type, and thus there is an interest in the interplay occurring between

the two. Investigators hope to know, for example, whether early recurrences of Sa

infection would postpone the recurrences of Pa infection and how the interplay would

be influenced when risk factors are involved. In CFFPR, not all CF children entered

the registry right after birth. In fact, a large proportion of CF children delayed their

entries due to late diagnosis of CF or some other reasons. As a result, the observations

of Pa infection and Sa infection started from subject’s first CFFPR visit and contin-

ued until the most recent follow-up. In other words, observations of recurrences of Pa

infection and Sa infection are subject to an observation window. Without available

records of Pa infection or Sa infection before registry entry, the nonzero lower bound



4

of the observation window can potentially complicate the analyses. To best of our

knowledge, little has been done in literature to handel the association between two

different types of recurrent events under an observation window structure. Therefore,

we hope to fill in this gap by proposing a novel association measure and developing

a regression framework for the new measure.

Throughout this dissertation research, we focus on developing methods to address

the problems stated above for the semi-competing risks setting and the recurrent

event setting. In the rest of this chapter, we present literature review separately on

methods that study the dependence for semi-competing risks data and association for

bivariate recurrent events data. An outline of this dissertation is given at the end of

this chapter.

1.2 Literature Review

1.2.1 Existing work on dependence for semi-competing risks

data

Let T1 denote time to nonterminal event and T2 denote time to terminal event.

In the literature tailored to semi-competing risks data, the dependence between

the nonterminal event and the terminal event is often captured by the association

parameter of a copula function, where the copula model is assumed for the joint

distribution of (T1, T2) on the upper wedge T1 ≤ T2. Fine et al. (2001) posited

the Clayton (1978) copula and derived a closed-form estimator for the association

parameter from a concordance estimating equation, which was determined as the

ratio of concordant to discordant pairs. Their idea was based on the fact that the

cross-ratio function was equal to the association parameter for the Clayton copula

(Oakes, 1989). Wang (2003) subsequently studied the degree of dependence under a

more general class of Archimedean copulas and suggested several estimating functions
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for the association parameter. Lakhal et al. (2008) provided a general method for

estimating the association parameter for Archimedean copulas. They also showed

that the estimating functions provided by Fine et al. (2001) and Wang (2003) were

their special cases.

For regression modelling, Ghosh (2006) extended the method of Fine et al. (2001)

to association estimation across strata of one discrete covariate. Peng and Fine

(2007) linked the joint distribution of (T1, T2) to its marginals through a known

time-independent copula function but with an unknown time-varying association pa-

rameter, which accommodated more realistic scenarios that the dependence between

T1 and T2 may change over time. Hsieh et al. (2008) generalized the method of

Wang (2003) with covariates. Their approach allowed association parameter to vary

in different subgroups, but required that covariates only took discrete values. More

recently, Chen (2012) studied a nonparametric maximum likelihood approach under

a general specification of the copula model.

While modeling the dependence structure between T1 and T2 based on a copula

model is intuitive and useful, such an approach can impose some implicit limitations

that may often be ignored. For example, it may be hard to verify the assumed re-

lationship between the joint distribution of (T1, T2) and its marginal distributions,

particularly with the observed semi-competing risks data. A similar problem also

lies in the work of Shen and Thall (1998), in which a bivariate generalized von Mor-

genstern distribution that characterized the dependence by a single parameter was

assumed. In addition, the interpretation of a copula parameter, constant or time-

dependent, relies on the selection of the copula function. When there are covariates

involved, a copula based approach is further prone to issues due to potential misspec-

ifications of the marginal regression models for T1 and T2. All these considerations

constitute the motivations of our first project, which proposes a new robust measure

for the dependence structure between the nonterminal event and the terminal event
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in the semi-competing risks setting.

1.2.2 Existing work on association for bivariate survival data

Association measures for bivariate failure times have been extensively studied. Ex-

isting measures such as correlation coefficient, Spearman’s rho and Kendall’s tau

(Hougaard, 2000) are widely used and are designed to capture the association pat-

tern over a whole study area. There are also measures that study the local association

pattern, for example, cross ratio (Clayton, 1978; Oakes, 1982), local Kendall’s tau

(Oakes, 1989) and martingale covariance function (Prentice and Cai, 1992). Regres-

sion analysis has been studied for global measures (e.g., Hsu and Prentice, 1996;

Therneau and Grambsch, 2000; Gorfine et al., 2006; Hsu et al., 2007; Gijbels et al.,

2011; Veraverbeke et al., 2011) and local measures (e.g., Li et al., 2014). However,

it is not straightforward to extend these methods to the bivariate recurrent event

setting.

In the context of multi-type recurrent event data, main methods in the litera-

ture are regression analyses based on marginal models (e.g., Cai and Schaubel, 2004;

Schaubel and Cai, 2005; Sun et al., 2009; Chen et al., 2012) in which dependence

structures are left arbitrary, or conditional models (e.g., Abu-Libdeh et al., 1990;

Cook et al., 2010) in which dependence structures are characterized by shared ran-

dom effects. But methods that focus on handling the association between two different

types of recurrent events are quite limited. Doss (1989) adapted Ripley’s K measure

(Ripley, 1976) to capture the association between bivariate point processes. Ventura

et al. (2005) studied the dependence between two neurons by comparing the joint

firing probability of two neurons spikes to the probability of firing predicted by inde-

pendence. Both their methods did not account for censoring, and can not be easily

adapted to survival settings. For survival data, Yan and Fine (2005) studied the time-

varying association among multivariate continuously-observed temporal processes in
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the regression setting. They proposed a GEE-type estimating equation, which was

stratified based on the availability status of the response temporal processes at each

time point. Their work provided some useful insight for modeling the association

structure of bivariate recurrent events. That is, one may take the underlying count-

ing processes of recurrent events as the response temporal processes. However, there

is some challenge with using their estimating equation for the recurrent event setting

considered here. This is because a non-zero lower bound of the observation window

would result in the underlying counting processes of recurrent events unobservable

at all time points. This prevents us from directly applying Yan and Fine (2005)’s

method to our problem.

Most recently, Ning et al. (2015) proposed to capture the association between

bivariate recurrent event processes by defining a rate ratio measure

ρ̃(s, t) =
λ1|2(s|t)
λ1(s)

, s, t ≥ 0,

interpreted as the additional probability for the occurrence of at least one event

at time s in the first process due to the occurrence of the second type of event at

time t, where λ1|2(s|t) = lim∆→0+ P{N1(s + ∆) − N1(s) > 0|N2(t + ∆) − N2(t) >

0}/∆ and λ1(s) = lim∆→0+ P{N1(s + ∆) − N1(s) > 0}/∆. Here N1(t) and N2(t)

denote the number of type-1 and type-2 events that have occurred before time t,

respectively. They modeled the rate ratio by a parametric function of time and

developed a composite likelihood procedure for parameter estimation. However, their

work did not consider any adjustments for covariates.

To best of our knowledge, there is little existing method for assessing the associ-

ation between two different types of recurrent events under an observation window

structure with covariates properly adjusted. Thus, we aim to propose a novel associ-

ation measure and develop a regression framework for the new measure.
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1.3 Outline

In Chapter 2, we introduce a new dependence measure well tailored to the semi-

competing risks structure. Then we develop a simple nonparametric estimator, which

requires that the gap time between truncation and censoring is independent of the

truncation time itself. We present asymptotic studies of the proposed estimator as

well as inference procedures. An extension to adjusting for covariates is subsequently

discussed. Extensive simulation studies are conducted to evaluate the finite-sample

performances of the proposed estimator. We illustrate the proposed method by ap-

plying to the Denmark diabetic registry data.

In Chapter 3, we propose a new estimator of the dependence measure proposed

in Chapter 2. The new estimator can handle left truncation without requiring the

strong assumption assumed by the estimator in Chapter 2. Asymptotic properties are

established and simulation studies are conducted. The new proposal is also applied

to the Denmark diabetic registry data.

In Chapter 4, we propose a novel measure that can flexibly depict the associa-

tion between bivariate recurrent events processes. We further develop a regression

framework for the proposed measure to allow for assessing how the association is

in influenced by covariates. We propose an estimating procedure, utilizing stochas-

tic integrals to facilitate computations. Our simulation studies suggest proper finite

sample performance of the proposed method. We also apply the proposed method to

a CFFPR dataset.

In Chapter 5, we discuss the plans and directions for future work.
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Chapter 2

A New Flexible Dependence

Measure for Semi-competing Risks

Data
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2.1 Proposed Dependence Measure

Let Qτ (Y |A) ≡ inf{t : Pr(Y ≤ t|A) ≥ τ} denote the τ -th quantile of Y given

condition A holds. For the terminal event of interest, the quantile residual time at a

given time point t0 is defined as Qτ (T2 − t0|T2 > t0).

To assess the dependence between T1 and T2, our basic idea is to compare the

quantile residual time to the terminal event given the nonterminal event having oc-

curred and that without the past occurrence of the nonterminal event. That is, we

consider the cross quantile residual ratio (CQRR) defined as

CQRR(τ ; t0) =
Qτ (T2 − t0|T2 > t0, T1 > t0)

Qτ (T2 − t0|T2 > t0, T1 ≤ t0)
, τ ∈ (0, 1), t0 > 0.

It is clear that a larger CQRR(τ ; t0), which reflects a larger difference in Qτ (T2−

t0|T2 > t0, T1 > t0) andQτ (T2−t0|T2 > t0, T1 ≤ t0), indicates a larger impact of having

T1 > t0 (versus T1 ≤ t0) on the subsequent progression of T2. Note that CQRR(τ ; t0)

bears some similarity with the cross-ratio function in the semi-competing risks setting,

λ(t2|T1 = t1)

λ(t2|T1 > t1)
, t1 ≤ t2,

where λ(t2|·) = d
dε
P (T2 < t2 + ε|T2 ≥ t2, ·)|ε=0. Both of them assess the difference in

the terminal event progression according to the timing of the nonterminating event.

The distinction lies in that the cross-ratio function uses hazard functions to evaluate

the progression of the terminating event, while the proposed CQRR(τ, ; t0) adopts

quantile residual time, which can be directly interpreted in the time scale. Like the

cross-ratio function defined above, CQRR(τ ; t0) only concerns the joint distribution of

(T1, T2) at the upper wedge (i.e. T1 ≤ T2) and hence is nonparametrically identifiable

with semi-competing risks data.

We further take a log transformation on CQRR(τ ; t0). Our proposed measure for
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the dependence of semi-competing risks events is given by

LCQRR(τ ; t0) = log

{
Qτ (T2 − t0|T2 > t0, T1 > t0)

Qτ (T2 − t0|T2 > t0, T1 ≤ t0)

}
, τ ∈ (0, 1), t0 > 0.

It is easy to interpret LCQRR(τ ; t0). For example, LCQRR(τ ; t0) > 0 (< 0) sug-

gests that the nonterminal event occurring before t0 may be associated with a faster

(or slower) progression to subsequent terminal event. The larger the magnitude of

LCQRR(τ ; t0), the bigger the impact of having T1 ≤ t0 on the residual lifetime for

T2. When T1 and T2 are independent, LCQRR(τ ; t0) = 0 for any τ ∈ (0, 1) and

t0 > 0. Examining LCQRR(τ ; t0) with different t0’s may help understand how the

dependence between the nonterminal event and the terminal event evolves time. One

may also vary the value of τ to evaluate the influence of T1 on multiple segments of

the residual time distribution of T2.

2.2 Estimation and Inference Procedures

2.2.1 Data and notation

We begin with a formal introduction of data and notation. Let T1 denote time to

nonterminal event, T2 denote time to terminal event, and C denote time to censoring,

which is independent of (T1, T2). Without considering left truncation, the observed

semi-competing risks data are X = T1 ∧ T2 ∧ C, Y = T2 ∧ C, δ = I(T1 < Y ) and

η = I(T2 < C), where ∧ is the minimum operator.

With truncation, the observed data consist of n independent and identically dis-

tributed replicates of (X∗, Y ∗, δ∗, η∗, L∗), denoted by (X∗i , Y
∗
i , δ

∗
i , η
∗
i , L

∗
i )
n
i=1, where

(X∗, Y ∗, δ∗, η∗, L∗) follows the conditional distribution of (X, Y, δ, η, L) given Y > L.

We restrict L to be always less than C, meaning that censoring only occurs after

sampling time. Such assumption has been imposed in much previous work, for exam-
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ple, Wang (1991), Asgharian et al. (2002) and Li and Peng (2011). In addition, we

assume that L is independent of (T1, T2) and D = C − L.

To simplify the presentation hereafter, we define additional notation, A∗(t0) =

(1, I(X∗ > t0))T , Ã∗(t0) = (1, I(T ∗1 > t0))T , A(t0) = (1, I(X > t0))T and Ã(t0) =

(1, I(T1 > t0))T . For a vector v, we use v(l) to denote the lth component of v.

2.2.2 The proposed estimator

We first study the standard semi-competing risks setting without left truncation. To

estimate LCQRR(τ ; t0), we consider a working quantile residual lifetime regression

model, which takes the form,

Qτ (T2 − t0|T2 > t0, I(T1 > t0)) = exp{Ã(t0)Tβ0(τ, t0)}, (2.1)

where β0(τ, t0) is a 2 × 1 vector of unknown coefficients. In model (2.1), I(T1 > t0)

serves as the only covariate, which is binary. Consequently, model (2.1) essential-

ly does not impose any parametric assumptions. The coefficients, β
(1)
0 (τ, t0) and

β
(2)
0 (τ, t0), correspond to logQτ (T2 − t0|T2 > t0, T1 ≤ t0) and logQτ (T2 − t0|T2 >

t0, T1 > t0)− logQτ (T2 − t0|T2 > t0, T1 ≤ t0) respectively. This indicates the equiva-

lence between LCQRR(τ ; t0) and β
(2)
0 (τ, t0). Therefore, estimating β

(2)
0 (τ, t0) in the

quantile regression framework leads to an estimator of LCQRR(τ ; t0).

A main challenge with fitting model (2.1) is that the covariate I(T1 > t0) is not

always observed because T1 is subject to censoring by both T2 and C. Suppose there

is no independent censoring by C, and then T2 is fully observed. In this case, we

see that I(T1 > t0) is observed and equals I(X > t0) as long as Y > t0. This

suggests estimating β0(τ, t0) by a stratified quantile regression analysis, which solves
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the following estimating equation for b ∈ R2:

n−1/2

n∑
i=1

I(Yi > t0)A(t0){I[log(Yi − t0) ≤ A(t0)Tb]− τ} = 0. (2.2)

When T2 is subject to independent censoring by C, we still have I(T1 > t0) =

I(X > t0) given Y > t0 and η = 1. This nice feature allows us to adapt existing

methods for quantile residual lifetime model to handle the effect of censoring. Specif-

ically, we can use a stratified version of Ma and Yin (2010)’s estimating equation,

which takes the form,

n−1/2

n∑
i=1

I(Yi > t0)ηi

Ĝc(Yi)
Ai(t0){I[log(Yi − t0) ≤ AT

i (t0)b]− τ} = 0,

where Ĝc(·) is the Kaplan-Meier estimate of the survival function of C.

When left truncation is present, we need to further modify the estimating equa-

tion (2.2) because I(T1 > t0) may be missing and if observed, may not be randomly

sampled. Our strategy is to weigh the observed data in an appropriate way such

that the bias induced by truncation and censoring is corrected in the estimation of

β0(τ, t0). Let D∗ = C∗ − L∗. It is critical to note that under the independence be-

tween D and (T1, T2, L), the distributions of D and D∗ are equivalent, and D∗ is also

independent of (T ∗1 , T
∗
2 , L

∗). This fact greatly facilitates the application of the inverse

probability of censoring weighting (IPCW) in the present problem with truncated



14

data. Note that I(Y ∗ > t0)η∗A∗(t0) = I(T ∗2 > t0, T
∗
2 < C∗)Ã∗(t0), we can show that

E

{
I(L∗ ≤ t0)I(Y ∗ > t0)η∗

G(Y ∗ − L∗)
A∗(t0){I[log(Y ∗ − t0) ≤ A∗T (t0)β0(τ, t0)]− τ}

}
= E

{
I(L∗ ≤ t0)I(T ∗2 > t0, T

∗
2 < C∗)

G(T ∗2 − L∗)
Ã∗(t0){I[log(T ∗2 − t0) ≤ Ã∗

T
(t0)β0(τ, t0)]− τ}

}
= E

{
I(L∗ ≤ t0)I(T ∗2 > t0)Ã∗(t0){I[log(T ∗2 − t0) ≤ Ã∗

T
(t0)β0(τ, t0)]− τ}

G(T ∗2 − L∗)

× E[I(T ∗2 − L∗ < D∗)|T ∗1 , T ∗2 , L∗]
}

= E

{
I(L∗ ≤ t0)I(T ∗2 > t0)Ã∗(t0){I[log(T ∗2 − t0) ≤ Ã∗

T
(t0)β0(τ, t0)]− τ} × G(T ∗2 − L∗)

G(T ∗2 − L∗)

}
= c(t0)E

{
I(T2 > t0)Ã(t0){I[log(T2 − t0) ≤ ÃT

(t0)β0(τ, t0)]− τ}
}

= 0,

where G(t) = P (D > t), α = P (Y > L) and c(t0) = P (L ≤ t0)/α. These suggest

estimating β0(τ, t0) by solving the following estimating equation for b:

Sn(b, τ, t0) = 0, (2.3)

where

Sn(b, τ, t0) = n−1/2

n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗i

Ĝ(Y ∗i − L∗i )
A∗i (t0){I[log(Y ∗i − t0) ≤ A∗Ti (t0)b]− τ}.

The resulting estimator is denoted by β̂(τ, t0). Here, Ĝ(t) is the Kaplan-Meier esti-

mator of G(t) obtained from (Y ∗i − L∗i , 1− η∗i )ni=1,

Ĝ(t) =
∏

Y ∗i −L∗i≤t

{
1−

∑n
j=1 I(Y ∗j − L∗j = Y ∗i − L∗i , η∗j = 0)∑n

j=1 I(Y ∗i − L∗i ≤ Y ∗j − L∗j)

}
.

Equation (2.3) can be easily solved given that it is a monotone estimating equa-

tion (Fygenson and Ritov, 1994). Specifically, following similar lines of Peng and
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Fine (2009), we can transform the solution finding to equation (2.3) to locating the

minimizer of the convex function Un(b, τ, t0) given by

Un(b, τ, t0) =
n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗i

∣∣∣∣∣ log(Y ∗i − t0)

Ĝ(Y ∗i − L∗i )
− bT A∗i (t0)

Ĝ(Y ∗i − L∗i )

∣∣∣∣∣
+

∣∣∣∣∣M − (2τ − 1)bT
n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗i
A∗i (t0)

Ĝ(Y ∗i − L∗i )

∣∣∣∣∣
where M is a sufficiently large positive number that can bound

∣∣∣∣∣(2τ −
1)bT

∑n
i=1 I(L∗i ≤ t0)I(Y ∗i > t0)η∗i

A∗i (t0)

Ĝ(Y ∗i −L∗i )

∣∣∣∣∣. Minimization of the L1-type function

Un(b, τ, t0) can be solved by using standard software, like the rq() function in the

contributed R package quantreg.

2.2.3 Asymptotic results

Given that the proposed estimator of LCQRR(τ ; t0) is the second element of β̂(τ, t0),

it suffices to derive the asymptotic properties of β̂(τ, t0).

We assume the following regularity conditions:

C1. There exists ν > 0 such that P (D = ν) > 0 and P (D > ν) = 0.

C2. (i) 0 < τL ≤ τU ≤ 1; (ii) tL and tU are interior points of the support of X∗.

C3. (i) β0(τ, t0) is Lipschitz continuous for τ ∈ [τL, τU ] and t0 ∈ [tL, tU ]; (ii) f(t|Ã(t0))

is continuous and bounded above uniformly in t, t0 and Ã(t0), where f(t|Ã(t0)) =

dF (t|Ã(t0))/dt and F (t|Ã(t0)) = E{I(T2 ≤ t)|Ã(t0)}.

C4. For some ρ0 > 0 and c0 > 0, infb∈B(ρ0),t0∈[tL,tU ]eigminH(b, t0) ≥ c0, where

B(ρ) = {b ∈ R2 : infτ∈[τL,τU ],t0∈[tL,tU ]||b − β0(τ, t0)|| ≤ ρ} and H(b, t0) =

E[c(t0)Ã(t0)⊗2f(t0 + exp(Ã
T

(t0)b)|ÃT
(t0)) exp(Ã

T
(t0)b)]. Here || · || is the Eu-

clidean norm and u⊗2 = uuT for a vector u.
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Define NG
i (t) = I(Y ∗i −L∗i ≤ t, η∗i = 0), Yi(t) = I(Y ∗i −L∗i ≥ t), y(t) = P (Y ∗−L∗ ≥

t), λG(t) = lim∆→0P (Y ∗ − L∗ ∈ (t, t + ∆)|Y ∗ − L∗ ≥ t)/∆, ΛG(t) =
∫ t

0
λG(s)ds,

and MG
i (t) = NG

i (t) −
∫∞

0
Yi(s)dΛG(s). Let w(b, τ, t0, t) = E{A∗(t0)Y (t)I(L∗ ≤

t0)I(Y ∗ > t0)η∗{I[log(Y ∗−t0) ≤ A∗T (t0)b]−τ}G(Y ∗−L∗)−1}, ζi(τ, t0) = ξ1,i(τ, t0)−

ξ2,i(τ, t0), where ξ1,i(τ, t0) = I(L∗i ≤ t0)I(Y ∗i > t0)η∗iA
∗
i (t0){I[log(Y ∗i − t0) ≤

A∗Ti (t0)β0(τ, t0)] − τ}G(Y ∗i − L∗i )
−1 and ξ2,i(τ, t0) =

∫∞
0
w(β0(τ, t0), τ, t0, s)

dMG
i (s)

y(s)
,

i = 1, ..., n.

We have following theorems:

Theorem 2.2.1. Under conditions C1–C4,

lim
n→∞

sup
τ∈[τL,τU ],t0∈[tL,tU ]

||β̂(τ, t0)− β0(τ, t0)|| →p 0.

Theorem 2.2.2. Under conditions C1–C4,
√
n{β̂(τ, t0)−β0(τ, t0)} weakly converge

to a mean zero Gaussian process with covariance matrix given by

Φ(τ ′, t′0, τ, t0) = H{β0(τ ′, t′0), t′0}−1E{ζ1(τ ′, t′0)ζ1(τ, t0)T}[H{β0(τ, t0), t0}−1]T ,

where τ, τ ′ ∈ [τL, τU ] and t0, t
′
0 ∈ [tL, tU ].

Theorem 2.2.1 implies that the proposed estimator of LCQRR(τ ; t0) is uniformly

consistent in τ ∈ [τL, τU ] and t0 ∈ [tL, tU ]. Theorem 2.2.2 presents a closed form

expression for the asymptotic distribution of the proposed estimator of LCQRR(τ ; t0).

Detailed proofs of Theorem 2.2.1 and 2.2.2 are provided in Section 2.7 Appendix.

2.2.4 Inference procedures

The asymptotic covariance matrix of
√
n{β̂(τ, t0)−β0(τ, t0)} involves unknown den-

sity functions. It is straightforward to use bootstrapping procedures or adapt re-
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sampling approaches, such as Parzen, Wei, and Ying (1994) and Jin, Ying, and Wei

(2001), to estimate the asymptotic covariance without requiring density estimation.

Alternatively, we can also derive a consistent plug-in estimate for the covariance ma-

trix following the lines of Peng and Fine (2009). The specific procedure follows.

1. Calculate Σ̂(τ, t0, τ, t0) = n−1
∑n

i=1 ζ̂i(τ, t0)⊗2, where

ζ̂i(τ, t0) =
I(L∗i ≤ t0, Y

∗
i > t0)η∗i

Ĝ(Y ∗i − L∗i )
A∗i (t0){I[log(Y ∗i − t0) ≤ A∗Ti (t0)β̂(τ, t0)]− τ}

− I(η∗i = 0)

(
n∑
j=1

A∗j(t0)I(Y ∗j − L∗j ≥ Y ∗i − L∗i )I(L∗j ≤ t0, Y
∗
j > t0)η∗j

× {I[log(Y ∗j − t0) ≤ A∗Tj (t0)β̂(τ, t0)]− τ}{Ĝ(Y ∗j − L∗j)}−1

/ n∑
j=1

I(Y ∗j − L∗j ≥ Y ∗i − L∗i )

)
.

2. Use spectral decomposition to find a symmetric matrix En(τ, t0) such that

Σ̂(τ, t0, τ, t0) = E2
n(τ, t0).

3. Calculate Dn(τ, t0) = [S−1
n {en,1(τ, t0), τ, t0} − β̂(τ, t0),S−1

n {en,2(τ, t0), τ, t0} −

β̂(τ, t0)], where en,j is the jth column of En(τ, t0), and S−1
n {e, τ, t0} is defined

as the solution to Sn(b, τ, t0)− e = 0.

4. A consistent estimate for the asymptotic covariance matrix of
√
n{β̂(τ, t0) −

β0(τ, t0)} is given by

nDn(τ ′, t′0)E−1
n (τ ′, t′0)Σ̂(τ ′, t′0, τ, t0)E−1

n (τ, t0)DT
n (τ, t0).

In the special case that τ ′ = τ and t′0 = t0, a consistent estimate for the asymptotic

variance matrix is simplified as n{D⊗2
n (τ, t0)}.

We can also develop second-stage inferences following the lines of Peng and

Fine (2009). For example, we can summarize LCQRR(τ ; t0) over t0 ∈ [tL, tU ]

by Ωτ = 1
tU−tL

∫ tU
tL
β

(2)
0 (τ, t0)dt0, which may be consistently estimated by Ω̂τ =
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1
tU−tL

∫ tU
tL
β̂

(2)
(τ, t0)dt0. We can show that the limiting distribution of

√
n(Ω̂τ − Ωτ )

is a mean zero normal distribution, the variance of which may be consistent-

ly estimated by nσ̂2
Ωτ

, where σ̂2
Ωτ

equals the (2,2) element of 1
n2

∑n
i=1{

1
tU−tL

∫ tU
tL

√
nDn(τ, t0)E−1

n (τ, t0)ζ̂i(τ, t0)dt0}⊗2. This result naturally renders a Wald-type test,

TΩτ = Ω̂τ/σ̂Ωτ , for the null hypothesis H01 : LCQRR(τ ; t0) = 0, t0 ∈ [tL, tU ]. That

is, we reject H01 when |TΩτ | > 100(1 − α/2)th percentile of N(0, 1) distribution,

where α is the desired significance level. Similar results can be obtained for the

overall summary and testing of LCQRR(τ ; t0) over τ ∈ [τL, τU ], corresponding to

Ωt0 = 1
τU−τL

∫ τU
τL
β

(2)
0 (τ, t0)dτ , and H03 : LCQRR(τ ; t0) = 0, τ ∈ [τL, τU ] respectively.

We can also test the constancy of LCQRR(τ ; t0) over t0 or τ . For example, a null

hypothesis of interest may take the form, H02 : LCQRR(τ ; t0) = Cτ , t0 ∈ [tL, tU ],

where Cτ is an unspecified constant and may change with τ . Let Ξ(τ, t0) denote a

known weight function satisfying Ξ(τ, t0) ≥ 0 and
∫ tU
tL

Ξ(τ, t0)dt0 = 1. If H02 holds,

then
∫ tU
tL

Ξ(τ, t0)β
(2)
0 (τ, t0)dt0−Ωτ = [

∫ tU
tL

Ξ(τ, t0)dt0−1]Cτ = 0. This motivates us to

construct a test statistic for H02 based on Γτ =
√
n{
∫ tU
tL

Ξ(τ, t0)β̂
(2)

(τ, t0)dt0 − Ω̂τ}.

Following the same line for proving Theorem 2.2.2, we can show that the limiting

distribution of Γτ under H02 is normal with mean 0. A consistent variance estimate

for Γτ may be given by σ̂2
Γτ

, which is the (2,2) element of

n−1

n∑
i=1

[∫ tU

tL

{Ξ(τ, t0)− 1

tU − tL
}
√
nDn(τ, t0)E−1

n (τ, t0)ζ̂i(τ, t0)dt0

]⊗2

.

A Wald-type test for H02 is then given by TΓτ = Γτ/σ̂Γτ . A similar testing procedure

can be developed for testing the constancy over t0 ∈ [tL, tU ], H04 : LCQRR(τ ; t0) =

Ct0 , τ ∈ [τL, τU ].
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2.3 An Extension to Adjusting for Covariates

Exploiting population heterogeneity in semi-competing risks dependence is often sci-

entifically meaningful, and for example, can help uncover uncommon disease mecha-

nisms in subgroups. To this end, we propose an extension, which adjusts for covariates

(captured by Z̃ ∈ Rp) in the assessment of the dependence between the nonterminal

event and the terminal event.

First, we define the covariate-adjusted log cross quantile residual ratio as

LCQRR(τ ; t0|Z̃) = log

[
Qτ (T2 − t0|T2 > t0, T1 > t0, Z̃)

Qτ (T2 − t0|T2 > t0, T1 ≤ t0, Z̃)

]
.

When all covariates of interest are discrete, one may conduct stratified analyses based

on the methods in Section 2.2 to estimate and make inference on LCQRR(τ ; t0|Z̃).

In many practical settings, covariates of interest can be continuous. Thus we

investigate a general scenario where Z̃ can include both continuous and discrete

covariates. Specifically, we are interested in formulating linear covariate effects on

LCQRR, which may be expressed as

LCQRR(τ ; t0|Z̃) = Ž
T
α0(τ, t0), (2.4)

where Ž = (1, Z̃
T

)T . The non-intercept coefficients in α0(τ, t0) depict how LCQRR

changes per unit change in the corresponding covariate.

To address the interest in the linear effects of covariates on LCQRR, we consider

the following quantile residual lifetime model:

Qτ (T2 − t0|T2 > t0, I(T1 > t0), Z̃) = exp{ZT (t0)γ0(τ, t0)}

≡ exp[γ
(1)
0 (τ, t0) + I(T1 > t0)γ

(2)
0 (τ, t0) + Z̃

T
γ

3:(2+p)
0 (τ, t0)

+Z̃
T
I(T1 > t0)γ

(3+p):(2+2p)
0 (τ, t0)], (2.5)
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where Z(t0) = (1, I(T1 > t0), Z̃
T
, Z̃

T
I(T1 > t0))T , and va:b denotes the vector that

includes the ath to bth components of vector v. It is important to note that (2.5)

implies

LCQRR(τ ; t0|Z̃) = γ
(2)
0 (τ, t0) + Z̃

T
γ

(3+p):(2+2p)
0 (τ, t0).

When there are only discrete covariates, model (2.5) and model (2.4) can be equiv-

alent. These suggest that under slightly stronger assumptions regarding the effects

of continuous covariates, model (2.5) defines the same linear relationship between

covariates and LCQRR as does model (2.4). Compared to model (2.4), model (2.5)

is more convenient to tackle. This is because model (2.5) takes the same form as

the working quantile residual lifetime model (2.1) considered for the one-sample case.

As shown below, this fact greatly facilitates an extension to the general case with

covariates. By these considerations, we adopt model (2.5) as the vehicle to explore

the linear covariate effects on LCQRR.

Suppose the observed data include n i.i.d. replicates, (X∗i , Y
∗
i , δ

∗
i , η
∗
i , L

∗
i , Z̃

∗
i )
n
i=1,

where Z̃
∗
i is the truncated counterpart of Z̃i following the conditional distribution

of Z̃ given Y > L. We assume that D is independent of (T1, T2, L, Z̃) and L is

independent of T2 given (T1, Z̃). Define K∗(t0) = (1, I(X∗i > t0), Z̃
∗T
i , Z̃

∗T
i I(X∗i >

t0))T . Adapting the idea presented for the one-sample case, we propose to estimate

γ0(τ, t0) by solving the following estimating equation for r ∈ R2+2p:

Sn(r, τ, t0) = 0,

where

Sn(r, τ, t0) = n−1/2

n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗i

Ĝ(Y ∗i − L∗i )
K∗i (t0){I[log(Y ∗i − t0) ≤K∗Ti (t0)r]− τ}.

The resulting estimator is denoted by γ̂(τ, t0). It is easy to see that the subvector,
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γ̂(3+p):(2+2p)(τ, t0), can be used to describe the linear effect of Z̃ on LCQRR. With an

additional assumption that Z̃ is uniformly bounded (i.e. supi||Z̃i|| ≤ M1 < ∞), we

can established the same asymptotic properties and inference procedures for γ̂(τ, t0)

as those presented in Section 2.2.

2.4 Simulation Studies

Simulation studies are conducted to examine the finite-sample performance of the

proposed methods in the left-truncated semi-competing risks setting. Specifically, we

generate (T1, T2) from a gamma frailty model,

P (T1 > x, T2 > y) = [P (T1 > x)1−θ + P (T2 > y)1−θ − 1]1/(1−θ),

in which Ti follows a Weibull(αi, λi) distribution and P (Ti > x) = exp(−λixαi),

i = 1, 2. The truncation time L = r × L0, where r is a random variable following

Bernoulli distribution with probability p, and L0 is a positive random variable that is

independent of r. Such a truncation scenario mimics the Denmark diabetes registry

study, where the distribution of L has a point mass at 0. We generate the censoring

time C as L+D, where D is a positive-valued random variable independent of L.

The simulations are conducted under two scenarios,

Scenario 1: T1 ∼Weibull(1.4, 0.6), T2 ∼Weibull(3.5, 0.5), L0 and D following unifor-

m distributions.

Scenario 2: T1 ∼ Weibull(3, 0.85), T2 ∼ Weibull(3, 0.4), L0 and D following Weibull

distributions.

For Scenario 1, there is a low truncation level with P (Y < L) = 0.3, and a high

dependent censoring rate with P (δ∗ = 0, η∗ = 1) close to 0.4. For Scenario 2, there

is a high truncation level of 0.5 and a low dependent censoring rate around 0.15. In

each scenario, we consider three different θ values, 1, 2 and 3, corresponding to inde-
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pendence, moderate positive association, and high positive association respectively.

The choice of p, detailed marginal distributions of L0 and D as well as censoring and

truncation proportions are shown in Table 2.1.

Table 2.1: Summary of simulation setups: the choices of {p, L0, D} as well as the
resulting truncation and censoring proportions, where p1 = P (Y < L), p2 = P (δ∗ =
0), p3 = P (η∗ = 0) and p4 = P (δ∗ = 0, η∗ = 1).

θ p L0 D0 p1 p2 p3 p4

Scenario 1: T1 ∼Weibull(1.4, 0.6), T2 ∼Weibull(3.5, 0.5)
1 0.86 Unif(0,1.67) Unif(0.05,3.2) 0.30 0.52 0.21 0.39
2 0.86 Unif(0,1.67) Unif(0.17,2.6) 0.30 0.59 0.22 0.42
3 0.86 Unif(0,1.67) Unif(0.15,2.55) 0.30 0.63 0.23 0.44

Scenario 2: T1 ∼Weibull(3, 0.85), T2 ∼Weibull(3, 0.4)
1 0.90 Wei(2.6,0.35) Wei(1.1,0.38) 0.50 0.26 0.20 0.16
2 0.90 Wei(1.2,0.49) Wei(1.3,0.3) 0.50 0.27 0.20 0.15
3 0.90 Wei(0.5,0.55) Wei(1.5,0.22) 0.50 0.27 0.20 0.15

We perform the proposed methods on 1000 simulated datasets with sample size

n = 200 or 400 for each simulation setup, where M is set as 107. For Scenario 1, Fig-

ure 2.1 presents the empirical bias (EmpBias), empirical standard error (EmpSE) and

average estimated standard error (EstSE) for the proposed estimator of LCQRR(τ ; t0)

under different combinations of (θ, τ, t0), where τ = 0.25, 0.5, 0.75, t0 = 0.55, 0.84, 1.1

and circles denote corresponding values. It is observed that the proposed estimator of

LCQRR(τ ; t0), performs well with moderate sample size. The point estimates have

small biases. The corresponding standard error estimates agree well with empirical

standard errors, and the agreement generally improves as sample size increases. We

have very similar observations from Figure 2.2, which presents the simulation results

for Scenario 2.

We also examine the proposed second-stage inferences. With fixed τ , we evaluate

the average of LCQRR over t ∈ [tL, tU ], and test whether LCQRR(τ ; t0) equals 0

for t ∈ [tL, tU ] and whether LCQRR(τ ; t0) is constant over t ∈ [tL, tU ]. We consider
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three τ values, 0.25, 0.5, and 0.75. For Scenario 1, we set tL = 0.42 and tU = 1.20.

For Scenario 2, we set tL = 0.68 and tU = 1.28. We compute integrals using left

Riemann sums on intervals of equal length 0.001 and choose the weight function

Ξ(τ, t0) = 2I[t0 ≤ (tL + tU)/2]/(tU − tL). In Table 2.2, we summarize the EmpBias,

EmpSE and EstSE of Ω̂τ , and the empirical rejection rates (EmpRR) for the proposed

Wald tests for H01 and H02. Note that for both H01 and H02, the EmpRR gives

empirical sizes when θ = 1 and empirical power when θ = 2, 3. Table 2.2 shows that

for both scenarios, the empirical biases of Ω̂τ are small and the estimated standard

errors match the empirical standard errors very well. The test for either H01 or H02

appear to have empirical sizes close to the nominal levels. The power for testing H01

is good, while the constancy tests appear to be conservative. The empirical power

increases considerably as sample size and θ value increase for both tests.

With fixed t0, we assess the second-stage inferences over [τL, τU ]. For Scenario

1, we consider t0 = 0.55, 0.84, 1.10 and set [τL, τU ] = [0.1, 0.87]. For Scenario 2, we

consider t0 = 0.85, 1.00, 1.20 and set [τL, τU ] = [0.1, 0.9]. In both scenarios, Ξ(τ, t0) =

2I[τ ≤ (τL + τU)/2]/(τU − τL). Table 2.3 presents the EmpBias, EmpSE and EstSE

of Ω̂t0 and the EmpRR for the proposed tests. Similarly, we observe small empirical

biases, well-matched estimated and empirical standard errors, and pretty accurate

empirical sizes. The power for the constancy tests is not high but increases as sample

size increases.
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Figure 2.1: Simulation results for Scenario 1: Empirical bias (EmpBias), empirical
standard error (EmpSE) and average estimated standard error (EstSE) of the pro-
posed estimator of LCQRR(τ ; t0). EmpBias for n = 200 and EmpBias for n = 400 are
plotted in solid lines and dotted lines respectively. EmpSE and EstSE for n = 200 are
plotted in solid lines and bold solid lines respectively. EmpSE and EstSE for n = 400
are plotted in dotted lines and bold dashed lines respectively.
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Figure 2.2: Simulation results for Scenario 2: Empirical bias (EmpBias), empirical
standard error (EmpSE) and average estimated standard error (EstSE) of the pro-
posed estimator of LCQRR(τ ; t0). EmpBias for n = 200 and EmpBias for n = 400 are
plotted in solid lines and dotted lines respectively. EmpSE and EstSE for n = 200 are
plotted in solid lines and bold solid lines respectively. EmpSE and EstSE for n = 400
are plotted in dotted lines and bold dashed lines respectively.
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Table 2.2: EmpBias, EmpSE and EstSE of Ω̂τ and empirical rejection rates for H01

and H02.

Ω̂τ H01 H02

θ τ n EmpBias EmpSE EstSE EmpRR EmpRR

Scenario 1
t0 ∈ [0.42, 1.20]

1 0.25 200 0.008 0.181 0.191 0.041 0.051
400 0.003 0.128 0.132 0.053 0.046

0.50 200 0.006 0.153 0.160 0.056 0.043
400 0.005 0.112 0.110 0.052 0.046

0.75 200 0.008 0.143 0.149 0.065 0.037
400 0.001 0.101 0.104 0.054 0.048

2 0.25 200 0.006 0.172 0.188 0.927 0.102
400 0.003 0.119 0.127 1.000 0.149

0.50 200 0.007 0.140 0.153 0.928 0.142
400 0.003 0.102 0.107 0.995 0.215

0.75 200 0.003 0.137 0.148 0.857 0.160
400 0.005 0.099 0.104 0.988 0.234

3 0.25 200 0.014 0.166 0.182 0.999 0.118
400 0.001 0.112 0.122 1.000 0.213

0.50 200 0.011 0.143 0.149 0.999 0.184
400 0.003 0.097 0.103 1.000 0.313

0.75 200 0.010 0.143 0.147 0.981 0.200
400 0.005 0.097 0.103 1.000 0.347

Scenario 2
t0 ∈ [0.68, 1.28]

1 0.25 200 -0.004 0.243 0.237 0.066 0.066
400 0.001 0.168 0.164 0.053 0.059

0.50 200 -0.004 0.193 0.198 0.065 0.049
400 0.002 0.133 0.138 0.048 0.050

0.75 200 -0.001 0.174 0.179 0.080 0.047
400 0.003 0.119 0.127 0.056 0.039

2 0.25 200 0.003 0.172 0.176 0.984 0.117
400 0.001 0.124 0.120 1.000 0.211

0.50 200 -0.004 0.140 0.141 0.984 0.128
400 -0.001 0.098 0.097 1.000 0.194

0.75 200 -0.001 0.128 0.133 0.965 0.096
400 0.000 0.087 0.093 1.000 0.144

3 0.25 200 -0.007 0.133 0.137 1.000 0.161
400 0.002 0.087 0.093 1.000 0.259

0.50 200 -0.002 0.113 0.116 1.000 0.125
400 0.000 0.078 0.080 1.000 0.161

0.75 200 0.000 0.108 0.117 1.000 0.100
400 0.001 0.075 0.081 1.000 0.118
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Table 2.3: EmpBias, EmpSE and EstSE of Ω̂t0 and empirical rejection rates for H03

and H04.

Ω̂t0 H03 H04

θ t0 n EmpBias EmpSE EstSE EmpRR EmpRR

Scenario 1
τ ∈ [0.1, 0.87]

1 0.55 200 0.006 0.193 0.195 0.060 0.041
400 0.004 0.128 0.134 0.043 0.047

0.84 200 0.006 0.197 0.201 0.052 0.036
400 0.001 0.144 0.141 0.054 0.046

1.10 200 0.005 0.262 0.247 0.061 0.050
400 0.002 0.175 0.174 0.052 0.054

2 0.55 200 0.018 0.205 0.211 0.575 0.051
400 0.007 0.139 0.144 0.893 0.069

0.84 200 0.018 0.221 0.219 0.791 0.092
400 0.006 0.153 0.152 0.982 0.139

1.10 200 -0.005 0.269 0.274 0.697 0.053
400 -0.004 0.191 0.193 0.955 0.091

3 0.55 200 0.017 0.220 0.216 0.918 0.072
400 0.001 0.146 0.149 0.999 0.154

0.84 200 -0.005 0.223 0.225 0.984 0.126
400 0.006 0.156 0.157 1.000 0.292

1.10 200 0.000 0.302 0.310 0.908 0.051
400 -0.001 0.214 0.216 0.997 0.114

Scenario 2
τ ∈ [0.1, 0.9]

1 0.85 200 0.003 0.244 0.236 0.066 0.045
400 0.003 0.167 0.164 0.052 0.047

1.00 200 0.004 0.242 0.232 0.061 0.045
400 0.007 0.161 0.164 0.052 0.047

1.20 200 -0.009 0.303 0.279 0.075 0.064
400 -0.003 0.215 0.203 0.073 0.060

2 0.85 200 0.002 0.204 0.198 0.859 0.092
400 0.005 0.138 0.139 0.992 0.180

1.00 200 -0.012 0.188 0.194 0.929 0.157
400 0.003 0.136 0.137 1.000 0.314

1.20 200 -0.007 0.220 0.213 0.938 0.271
400 0.004 0.156 0.151 0.997 0.426

3 0.85 200 0.010 0.185 0.182 0.998 0.236
400 0.003 0.129 0.128 1.000 0.492

1.00 200 0.003 0.178 0.179 1.000 0.363
400 -0.002 0.126 0.126 1.000 0.664

1.20 200 -0.007 0.187 0.190 1.000 0.492
400 0.001 0.136 0.134 1.000 0.837
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2.5 An Application to Denmark Diabetes Registry

Data

We apply the proposed method to a dataset from the Denmark diabetes registry

study (Andersen et al., 1993). The Denmark diabetes registry study is a prospective

cohort study on insulin-dependent diabetes patients referred to the Steno Memorial

Hospital in Greater Copenhagen. Diabetic nephropathy (DN), an indicator of kidney

failure, is a significant complication among patients with diabetes. From 1933 to 1981,

2727 patients who were diagnosed with insulin-dependent diabetes mellitus prior to

age 31 and between 1933 and 1972 were accrued. At entry, patients’ age at diabetes

diagnosis and the presence of DN were recorded. All patients were then followed until

death, emigration or December 31, 1984. In our analysis, the time origin is the age

at diabetes diagnosis, with event times recorded in years since diagnosis. It is seen

that time to DN and time to death naturally formed a semi-competing risks structure

because death terminated the observation on time to DN, but remained observable

after the occurrence of DN. Administrative left truncation on mortality was also

involved. That is, patients who had died before study enrollment were excluded. Out

of 2727 patients, there were 731(26.8%) experiencing DN, 718(26.3%) dead in the

end and 652(24%) with diabetic onset at entry. Summary statistics for the data are

presented in Table 2.4.

Table 2.4: Summary statistics for diabetes registry data.

n(%)
(δ, η) = (0, 0) 1729(63.4%)
(δ, η) = (0, 1) 267(9.8%)
(δ, η) = (1, 0) 280(10.3%)
(δ, η) = (1, 1) 451(16.5%)

L = 0 652(24%)
X < L 116(4.25%)
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Our focus is first to quantify the relationship between DN and death by using

the proposed measure LCQRR(τ ; t0). We fit model (2.1) to the data and adopt

M = 107 as in the simulations. We restrict t0 to be within [6,40] to ensure reasonable

sample sizes accumulated for strata defined by I(X∗ > t0). In Figure 2.3, we display

the results for τ = 0.25, 0.5, 0.75 and t0 values at an equally space grid on [6, 40]

with step size=0.1. Estimated LCQRR(τ ; t0) are plotted in bold solid lines. The

corresponding 95% pointwise confidence intervals are in dotted lines and the 95%

pointwise Wald-type bootstrapping confidence intervals are in long-dashed lines. In

Figure 2.3, we see that for all three τ values, the estimated LCQRR(τ ; t0) is generally

positive; the lower bounds of confidence intervals are above 0 for t0 less than 30, which

is roughly the third quartile of X∗. This observation is consistent with the common

belief that DN is positively associated with mortality. Our formal test for H01 yields

p-values, < 0.001, 0.002, < 0.001, respectively, for τ = 0.25, 0.5, 0.75, confirming that

DN is a significant prognostic factor for mortality.

We note that the confidence intervals for LCQRR(τ ; t0) with t0 > 30 become

wider and mostly cover 0. This may be partly due to the reduced power/efficiency as

t0 approaches the upper tail of X, resulting in smaller effective sample sizes for the

proposed estimator. The insignificant difference between LCQRR(τ ; t0) and 0 with

t0 > 30 may also have the implication that the occurrence of DN has diminished prog-

nostic power for mortality among patients who had lived long since diabetes diagnosis.

In addition, we observe that the estimated LCQRR(τ ; t0) appears rather constant for

τ = 0.25 and τ = 0.5, but the decreasing trend in the estimated LCQRR(τ ; t0) with

τ = 0.75 is quite apparent. This observation is confirmed by the constancy tests for

H02, which yield p-values, 0.95, 0.23, and 0.01 for τ = 0.25, 0.5, 0.75 respectively. The

significant changing pattern of LCQRR(τ ; t0) may second the previously conjectured

inhomogeneous prognostic ability of DN on mortality.

We also choose three t0 values, t0 = 15, 21, 29, which stand for the 25th, 50th
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Figure 2.3: Denmark Diabetes Registry Study: Estimated LCQRR(τ ; t0) (bold sol-
id lines), the corresponding 95% pointwise confidence intervals (dotted lines), 95%
pointwise Wald-type bootstrapping confidence intervals (long-dashed lines), and the
overall influence of DN across time (horizontal dashed lines).

and 75th quantile of X∗, respectively, to explore the patterns of LCQRR(τ ; t0) over

τ ∈ [0.1, 0.82]. Figure 2.4 displays estimated R̂l(τ, t0) in bold solid lines at equally

spaced τ -grids with step size 0.001, with the corresponding 95% pointwise confidence

intervals in dotted lines and 95% pointwise Wald-type bootstrapping confidence in-

tervals in long-dashed lines. We observe that LCQRR(τ ; t0) may be significantly

different from 0 for all three t0’s. This is confirmed by tests for H03, which give

p-values, < 0.001, < 0.001, and 0.002, respectively. For t0 = 21 and 29, we observe

a clear decreasing trend in the estimated LCQRR(τ ; t0). Constancy tests for H04

yield p-values, 0.24, 0.004, 0.004, for t0 = 15, 21, 29, respectively. The finding that

LCQRR(τ ; t0) may decrease with τ aligns with previous results, manifesting a weak

or negligible association between DN and mortality in long-term diabetes survivors.

Next, we study how diabetes onset age, a continuous covariate, affects the depen-

dence between DN and mortality. We fit model (2.5) to the data and the coefficient

γ
(4)
0 (τ, t0) represent the change in LCQRR per one year increase in diabetes onset



31

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

t0=15

τ

LC
Q

R
R

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

t0=21

τ

LC
Q

R
R

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

t0=29

τ

LC
Q

R
R

Figure 2.4: Denmark Diabetes Registry Study: Estimated LCQRR(τ ; t0) (bold sol-
id lines), the corresponding 95% pointwise confidence intervals (dotted lines), 95%
pointwise Wald-type bootstrapping confidence intervals (long-dashed lines), and over-
all influence of DN over τ (horizontal dashed lines)

age. For τ = 0.25, 0.5, 0.75, we estimate γ
(4)
0 (τ, t0) at an equally spaced grid on [8, 36]

with step size 0.1 for t0. In Figure 2.5, we display the estimates for γ
(4)
0 (τ, t0) along

with their 95% pointwise confidence intervals. We see from Figure 2.5 that with all

selected τ ’s, γ̂
(4)
0 (τ, t0) is generally significantly positive for t0 belong to the first half

of the time interval [8, 36], but loses significance from 0 for larger t0. This suggests

that for patients who were diagnosed with diabetes at older age, the occurrence of DN

before t0 may imply a bigger disadvantage in residual survival time. Such an effect of

diabetes onset age may diminish for large t0’s, which point to the groups of patients

who had survived for a long time since diagnosis. Tests for H01 over t0 ∈ [8, 22) con-

firm our observation from Figure 2.5, yielding three nearly zero p-values. Constancy

tests for H02 gave p-values, 0.64,0.11,0.07, respectively, for τ = 0.25, 0.5, 0.75. This

provides some evidence for the observed diminishing effect of diabetes onset age over

t0.

We also evaluate γ̂
(4)
0 (τ, t0) over a τ -range [0.1, 0.82] for fixed t0 values, 15, 21, 29.
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Figure 2.5: Denmark Diabetes Registry Study: Estimated γ
(4)
0 (τ, t0) (bold solid lines),

corresponding 95% pointwise confidence intervals (dotted lines), and 95% pointwise
Wald-type bootstrapping confidence intervals (long-dashed lines).

Results displayed in Figure 2.6 suggest similar findings. That is, DN may have a

bigger influence on subsequent mortality for patients with later diabetes diagnosis

compared to those with earlier diagnosis. Such an effect of diagnosis age may varnish

when t0 is large.

2.6 Remarks

In this paper, we propose a robust measure to assess the dependence of the nonter-

minal event and the terminal event in a semi-competing risks setting. Evaluating

this measure at multiple t0 and τ allows us to perform a comprehensive and robust

evaluation of semi-competing risks dependence. It also offers the flexibility to explore

the dynamic pattern of the dependence structure. The developed estimation and

inference procedures well utilize the semi-competing risks structure with left trunca-

tion, and can be extended to adjust for covariates. Simulation studies show that the

proposed estimation procedure performs well in finite sample cases.
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Figure 2.6: Denmark Diabetes Registry Study: Estimated γ
(4)
0 (τ, t0) (bold solid lines),

the corresponding 95% pointwise confidence intervals (dotted lines), and 95% point-
wise Wald-type bootstrapping confidence intervals (long-dashed lines).

Other approaches to obtaining a nonparametric estimator of LCQRR(τ ; t0) are

available. For example, in the standard semi-competing risks setting without left

truncation, note that T1 ∧ T2 is only subject to independent censoring by C and thus

the joint survival function of (T1, T2) on the upper wedge can be consistently esti-

mated by using methods, such as Lin and Ying (1993). Then we can estimate the

two conditional residual quantiles in LCQRR(τ ; t0) by reversing their corresponding

conditional distribution estimates. Our preference of adopting a quantile residual life-

time regression framework is primarily because of the resulting simple extension to

accommodate covariates in the consideration of LCQRR(τ ; t0). Our strategy of con-

necting LCQRR with quantile residual lifetime regression models enables a unified

approach to characterizing semi-competing risks dependence with or without covari-

ates. Existing techniques for quantile regression can readily be applied to inferences

and make our work neat.

In practice, the choices of τ and t0 mainly depend on the interest of investigators.

They may be adjusted according to the empirical observations of the data. For
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example, the estimation efficacy may be unsatisfactory at small or large values of

t0. This is because the number of observations satisfying X∗ ≤ t0 (or X∗ > t0)

may be quite small when t0 is small (or larger), making the estimate for Qτ (T2 −

t0|T2 > t0, T1 ≤ t0) (or Qτ (T2 − t0|T2 > t0, T1 > t0)) inaccurate or unstable. Based

on our numerical experiences, we find that our method works well for estimating

both LCQRR(τ ; t0) and covariance matrix when nt0,1 ∧ nt0,2 > 15, where nt0,1 =∑n
i=1 I(L∗i ≤ t0, Y

∗
i > t0, X

∗
i > t0)η∗i and nt0,2 =

∑n
i=1 I(L∗i ≤ t0, Y

∗
i > t0, X

∗
i ≤ t0)η∗i .

For a larger τ , we may need nt0,1 and nt0,2 to be larger. These can serve as useful

empirical rules to guide the selection of τ and t0 in real data analysis.
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2.7 Appendix

Define

Sn(b, τ, t0) = n−1/2

n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗i

Ĝ(Y ∗i − L∗i )
A∗i (t0){I[log(Y ∗i − t0) ≤ A∗Ti (t0)b]− τ},

SGn (b, τ, t0) = n−1/2

n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗i
G(Y ∗i − L∗i )

A∗i (t0){I[log(Y ∗i − t0) ≤ A∗Ti (t0)b]− τ},

µ(b, τ, t0) = n−1/2E{SGn (b, τ, t0)}.

For brevity, we use supb, supτ and supt0 to denote supremum taken over b ∈ R2,

τ ∈ [τL, τU ] and t0 ∈ [tL, tU ], respectively.

2.7.1 Proof of Theorem 2.2.1

By condition C1, we have supt<ν |Ĝ(t) − G(t)| = o(n−1/2+r), a.s., for every r > 0.

This implies that

sup
b,τ,t0

‖n−1/2Sn(b, τ, t0)− n−1/2SGn (b, τ, t0)‖ = o(n−1/2+r), a.s.

Define F =

{
I(L∗i≤t0)I(Y ∗i >t0)η∗i

G(Y ∗i −L∗i )
A∗i (t0){I[log(Y ∗i − t0) ≤ A∗Ti (t0)b] − τ}, b ∈ R2, τ ∈

[τL, τU ], t0 ∈ [tL, tU ]

}
. The function class F is Donsker and thus Glivenko-

Cantelli because the class indicator functions is Donsker and both A∗i (t0) and

G(Y ∗i − L∗i ) is uniformly bounded (Van der Vaart and Wellner, 1996). Then

supb,τ,t0 ‖n
−1/2SGn (b, τ, t0) − µ(b, τ, t0)‖ = o(1), a.s. by the Glivenko-Cantelli Theo-

rem and thus supb,τ,t0 ‖n
−1/2Sn(b, τ, t0)−µ(b, τ, t0)‖ = o(1), a.s.. This, coupled with

the fact that µ{β0(τ, t0), τ, t0} = 0 and n−1/2Sn(β̂(τ, t0), τ, t0) = o(1), a.s., implies
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that

sup
τ,t0

‖µ{β̂(τ, t0), τ, t0} − µ{β0(τ, t0), τ, t0}‖ = o(1), a.s.

Following the same line of Peng and Fine (2009), we can show that Condition C3

and the monotonicity of µ(b, τ, t0) in b imply

inf
b/∈B(ρ0),τ,t0

‖µ{b, τ, t0} − µ{β0(τ, t0), τ, t0}‖ ≥ c0ρ0.

Consequently, {β̂(τ, t0) : τ ∈ [τL, τU ], t0 ∈ [tL, tU ]} ⊆ B(ρ0) for large enough n with

probability 1. Applying Taylor expansion to µ{β̂(τ, t0), τ, t0} around β0(τ, t0) gives

sup
τ,t0

‖β̂(τ, t0)− β0(τ, t0)‖

= sup
τ,t0

‖H{β̆(τ, t0), t0}−1[µ{β̂(τ, t0), τ, t0} − µ{β0(τ, t0), τ, t0}]‖

≤ c−1
0 sup

τ,t0

‖µ{β̂(τ, t0), τ, t0} − µ{β0(τ, t0), τ, t0}‖

where β̆(τ, t0) lies between β̂(τ, t0) and β0(τ, t0) and is therefore within B(ρ0) for large

enough n. The uniform consistency of β̂(τ, t0) to β0(τ, t0) for τ ∈ [τL, τU ], t0 ∈ [tL, tU ]

then follows.

2.7.2 Proof of Theorem 2.2.2

From Pepe (1991), supt∈[0,ν) ‖n1/2[Ĝ(t)−G(t)]−n−1/2
∑n

i=1G(t)
∫ t

0
y(s)−1dMG

i (s)‖ →

0. Using similar empirical process arguments for F , we can show that

n−1
∑n

i=1A
∗
i (t0)Yi(t)I(L∗i ≤ t0)I(Y ∗i > t0)η∗i {I[log(Y ∗i − t0) ≤ A∗Ti (t0)b]− τ}G(Y ∗i −

L∗i )
−1 converges to w(b, τ, t0, t) uniformly in b, τ, t0 and t.

Let ≈ denote asymptotic equivalence uniformly in τ ∈ [τL, τU ] and t0 ∈ [tL, tU ].
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Simple algebraic manipulations show that

Sn{β0(τ, t0), τ, t0}

= SGn {β0(τ, t0), τ, t0}+ [Sn{β0(τ, t0), τ, t0} − SGn {β0(τ, t0), τ, t0}]

= n−1/2

n∑
i=1

ξ1,i(τ, t0)− n−1/2

n∑
i=1

A∗i (t0)
Ĝ(Y ∗i − L∗i )−G(Y ∗i − L∗i )
Ĝ(Y ∗i − L∗i )G(Y ∗i − L∗i )

I(L∗i ≤ t0)I(Y ∗i > t0)η∗i

× {I[log(Y ∗i − t0) ≤ A∗Ti (t0)β0(τ, t0)]− τ}

≈ n−1/2

n∑
i=1

ξ1,i(τ, t0)− n−1

n∑
i=1

A∗i (t0)
n−1/2

∑n
j=1

∫∞
0
Yi(s)y(s)−1dMG

j (s)

G(Y ∗i − L∗i )
I(L∗i ≤ t0)I(Y ∗i > t0)η∗i

× {I[log(Y ∗i − t0) ≤ A∗Ti (t0)β0(τ, t0)]− τ}

= n−1/2

n∑
i=1

ξ1,i(τ, t0)

− n−1/2

n∑
i=1

∫ ∞
0

{ n∑
j=1

A∗j(t0)Yj(s)I(L∗j ≤ t0)I(Y ∗j > t0)η∗j{I[log(Y ∗j − t0) ≤ A∗Tj (t0)β0(τ, t0)]− τ}
nG(Y ∗j − L∗j)

}
× dMG

i (s)

y(s)

≈ n−1/2

n∑
i=1

ξ1,i(τ, t0)− n−1/2

n∑
i=1

∫ ∞
0

w(β0(τ, t0), τ, t0, s)
dMG

i (s)

y(s)

= n−1/2

n∑
i=1

{ξ1,i(τ, t0)− ξ1,2(τ, t0)}.

We claim that F∗ = {ξ1,i(τ, t0), τ ∈ [τL, τU ], t0 ∈ [tL, tU ]} and F∗∗ = {ξ2,i(τ, t0), τ ∈

[τL, τU ], t0 ∈ [tL, tU ]} are Donsker classess by using similar arguments of Peng and

Fine (2009). As a result of the Donsker theorem, Sn{β0(τ, t0), τ, t0} converges

weakly to a mean zero Gaussian process with covariance matrix Σ(τ ′, t′0, τ, t0) =

E{ζ(τ ′, t′0)ζ(τ, t0)T}, where ζ(τ, t0) = ξ1(τ, t0)− ξ2(τ, t0).

Next, we establish the asymptotic linearity of SGn (b, τ, t0) in the vicinity of b =
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β0(τ, t0); that is, for any positive sequence of {dn}∞n=1 such that dn → 0,

sup
b,b′∈B(ρ0),‖b−b′‖≤dn

‖{SGn (b, τ, t0)−SGn (b′, τ, t0)}−n1/2{µ(b, τ, t0)−µ(b′, τ, t0)}‖ = o(1), a.s.

(2.6)

Its proof greatly resembles the lines of Alexander (1984) and Lai and Ying (1988).

The key is to show

V ar(I(L∗i ≤ t0)I(Y ∗i > t0)η∗iG(Y ∗i − L∗i )−1A∗i (t0){I[log(Y ∗i − t0) ≤ A∗Ti (t0)b]

− I[log(Y ∗i − t0) ≤ A∗Ti (t0)b′]}) ≤ G0‖b− b′‖.

This follows from the uniform boundedness of f(t|Ã(t0)) and boundedness of B(ρ0)

and G(t).

It follows from (2.6) that

Sn(β̂(τ, t0), τ, t0)− Sn(β0(τ, t0), τ, t0)

= n−1/2

n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗iG(Y ∗i − L∗i )−1A∗i (t0){I[log(Y ∗i − t0) ≤ A∗Ti (t0)β̂(τ, t0)]

− I[log(Y ∗i − t0) ≤ A∗Ti (t0)β0(τ, t0)]}

+ n−1/2

n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗iA
∗
i (t0){I[log(Y ∗i − t0) ≤ A∗Ti (t0)β̂(τ, t0)]

− I[log(Y ∗i − t0) ≤ A∗Ti (t0)β0(τ, t0)]}{Ĝ(Y ∗i − L∗i )−1 −G(Y ∗i − L∗i )−1}

≈ n1/2[µ{β̂(τ, t0), τ, t0} − µ{β0(τ, t0), τ, t0}].

Taylor expansion of µ(b) around b = β0(τ, t0), along with the fact that β̂0(τ, t0)

uniformly converges to β0(τ, t0), gives that

Sn(β̂(τ, t0), τ, t0)− Sn(β0(τ, t0), τ, t0) ≈H{β0(τ, t0), t0}n1/2{β̂(τ, t0)− β0(τ, t0)}.
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This implies

n1/2{β̂(τ, t0)− β0(τ, t0)} ≈ −H{β0(τ, t0), t0}−1Sn(β0(τ, t0), τ, t0)

and then n1/2{β̂(τ, t0)−β0(τ, t0)} converges weakly to a mean zero Gaussian process

with covariance matrix

H{β0(τ ′, t′0), t′0}−1E{ζ(τ ′, t′0)ζ(τ, t0)T}H{β0(τ, t0), t0}−T .

2.7.3 Justification for the proposed covariance estimate

Denote bn,j(τ, t0) = S−1
n {en,j(τ, t0), τ, t0}, j = 1, 2. It is implied from the proof of

Theorem 2.2.1 that {bn,j(τ, t0), τ ∈ [τL, τU ], t0 ∈ [tL, tU ]} is within B(ρ0) with proba-

bility 1 for large enough n, and thus supτ,t0 ‖bn,j(τ, t0)−β0(τ, t0)‖ → 0, a.s., j = 1, 2.

Using arguments similar to proof of weak convergence, we can show that

Sn(bn,j(τ, t0), τ, t0)− Sn(β0(τ, t0), τ, t0) ≈H{β0(τ, t0), t0}n1/2{bn,j(τ, t0)− β0(τ, t0)}.

The definitions of Dn(τ, t0) and En(τ, t0) imply H−1{β0(τ, t0), t0} ≈
√
nDn(τ, t0)E−1

n (τ, t0). It follows immediately that

nDn(τ ′, t′0)E−1
n (τ ′, t′0)Σ̂(τ ′, t′0, τ, t0)E−1

n (τ, t0)DT
n (τ, t0)

is a consistent estimate for Φ(τ ′, t′0, τ, t0) = H{β0(τ ′, t′0), t′0}−1Σ(τ ′, t′0, τ, t0)H{β0(τ, t0), t0}−T ,

which is the asymptotic covariance matrix of
√
n{β̂(τ, t0)− β0(τ, t0)}.
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Chapter 3

Estimation of the New Dependence

Measure for Semi-competing Risks

Data under the General

Truncation Scheme
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In Chapter 2, we have proposed a dependence measure LCQRR(τ ; t0) that can

capture a dynamic relationship between the nonterminal and the terminal event in

the semi-competing risks scenario without requiring distributional assumptions. We

have also developed an estimating approach for LCQRR(τ ; t0) that can address the

semi-competing risks data subject to left truncation. One crucial assumption taken

in Chapter 2 was that the gap time between truncation and censoring (i.e. C − L)

was independent of the truncation time (L) itself. Such an assumption, however, can

be restrictive in practice. For example, for some cohort studies that end up at a

fixed calendar time, subjects who enter the study earlier intuitively are more likely

to have longer follow-up time. This would make the independence of C −L and L be

inappropriate. In this chapter, we consider a more general scenario where L is allowed

to depend on C − L. Our numerical studies will show that the proposed estimator

in Chapter 2 is considerably biased under this general scenario. We propose a new

estimator for LCQRR(τ ; t0) that can handle the left truncation, without requiring

the independent assumption of C − L and L.

3.1 Estimation and Inference Procedures

We first consider one-sample case. Here, we assume that (L,C) is independent of

(T1, T2) and C has a continuous distribution.

3.1.1 The proposed estimator

To estimate LCQRR(τ ; t0) in the general truncation-censoring scheme that allows C−

L to depend on L, our idea is similar to that in Chapter 2. That is, we appropriately

weigh the contributions of subjects who have complete observations on T2 and also

live beyond t0, consisting of those satisfying conditions that Y ∗i > t0, L∗i ≤ t0 and

η∗i = 1. Define D(s, t) = 1
α
P (L ≤ s, C > t), where α = P (Y > L). Note a fact
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that f(L∗,C∗,T ∗1 ,T
∗
2 )(l, c, t1, t2) = 1

α
f(L,C,T1,T2)(l, c, t1, t2) in the region of {(l, c, t1, t2) : l ≤

t0, t2 > t0, t2 < c, t1 > t0}, where f(L,C,T1,T2)(l, c, t1, t2) denote the joint distribution

functions of (L,C, T1, T2), and f(L∗,C∗,T ∗1 ,T
∗
2 )(l, c, t1, t2) denote the joint distribution

function of (L∗, C∗, T ∗1 , T
∗
2 ). We can show that

E

{
I(L∗ ≤ t0)I(Y ∗ > t0)η∗

D(t0, Y ∗)
A∗(t0){I[log(Y ∗ − t0) ≤ A∗T (t0)β0(τ, t0)]− τ}

}
= E

{
I(L∗ ≤ t0)I(T ∗2 > t0, T

∗
2 < C∗)

D(t0, T ∗2 )
Ã∗(t0){I[log(T ∗2 − t0) ≤ Ã∗

T
(t0)β0(τ, t0)]− τ}

}
= E

{
I(L ≤ t0)I(T2 > t0, T2 < C)

αD(t0, T2)
Ã(t0){I[log(T2 − t0) ≤ ÃT

(t0)β0(τ, t0)]− τ}
}

= E

{
I(T2 > t0)Ã(t0){I[log(T2 − t0) ≤ ÃT

(t0)β0(τ, t0)]− τ}
αD(t0, T2)

E[I(L ≤ t0, C > T2)|T1, T2]

}
= E

{
I(T2 > t0)Ã(t0){I[log(T2 − t0) ≤ ÃT

(t0)β0(τ, t0)]− τ}
}

= 0.

These suggest that D(t0, Y
∗) sever as a weight for bias correction in the estimation of

β0(τ, t0). In light of the equations above, we propose to estimate β0(τ, t0) by solving

the following estimating equation for b:

Sn(b, τ, t0) = 0, (3.1)

where

Sn(b, τ, t0) = n−1/2

n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗i

D̂(t0, Y ∗i )
A∗i (t0){I[log(Y ∗i − t0) ≤ A∗Ti (t0)b]− τ}.

We denote the resulting estimator by β̂GE(τ, t0). To distinguish, we denote the esti-

mator proposed in Chapter 2 as β̂SP (τ, t0). Here, D̂(s, t) is a reasonable estimate for

D(s, t).

To obtain an estimator for D(t0, Y
∗
i ), note that estimating equation (3.1) is based
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on the subsample satisfying Y ∗i > t0. It thus suffices to estimate the bivariate function

D(s, t) for s < t rather than over the whole domain. Let G(s) = P (L ≤ s < C),

S(t|s) = P (C > t|L ≤ s < C) and ST2(s) = P (T2 > s). Based on facts that

αD(s, t) = G(s)S(t|s) for s < t and G(s) = αP (L∗ ≤ s < Y ∗)/ST2(s), we have

D(s, t) = P (L∗ ≤ s < Y ∗)S(t|s)/ST2(s), for s < t.

Therefore, we propose to estimate D(s, t) by substituting each of its elements with

corresponding estimates, as

D̂(s, t) =
1

n

n∑
i=1

I(L∗i ≤ s < Y ∗i )Ŝ(t|s)
ŜT2(s)

, s < t.

ŜT2(s) can be a Kaplan-Meier type of estimator

ŜT2(s) =
∏
Y ∗j ≤s

{
1−

∑n
i=1 I(Y ∗i = Y ∗j , η

∗
i = 1)∑n

i=1 I(L∗i ≤ Y ∗j ≤ Y ∗i )

}
.

To construct an estimator for S(t|s), one may base on the Nelson-Aalen type of

estimator for Λ(t|s), where Λ(t|s) =
∫ t
s
λ(u|s)du and λ(t|s) = limh→0 P (t ≤ C <

t + h|L ≤ s < C,C ≥ t)/h. Define Ws(u) = P (L∗ ≤ s < Y ∗ ≤ u, η∗ = 0) and

Cs(u) = P (L∗ ≤ s < u ≤ Y ∗). It is easy to show

Λ(t|s) =

∫ t

s

Ws(du)

Cs(u)
, s < t.

Thus, an estimator for Λ(t|s) can take the form as

Λn(t|s) ≡
∫ t

s

Wn,s(du)

Cn,s(u)
=

∑
s<Y ∗j ≤t

∑n
i=1 I(L∗i ≤ s, Y ∗i = Y ∗j , η

∗
i = 0)∑n

i=1 I(L∗i ≤ s, Y ∗i ≥ Y ∗j )
,

where Wn,s(u) = 1
n

∑n
i=1 I(L∗i ≤ s < Y ∗i ≤ u, η∗i = 0) and Cn,s(u) = 1

n

∑n
i=1 I(L∗i ≤
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s < u ≤ Y ∗i ). In light of the fact that S(t|s) = exp{−Λ(t|s)}, one may estimate

S(t|s) as

Ŝ(t|s) = exp{−Λn(t|s)}.

Under some regularity conditions, we can show the uniform consistency of D̂(s, t), for

s < t (see Appendix).

When a proper D̂(s, t), s < t, is available, equation (3.1) can be easily solved by

following the same lines of Chapter 2. Given the monotonicity of equation (3.1), we

can transform its solution finding to locating the minimizer of the convex function

Un(b, τ, t0) given by

Un(b, τ, t0) =
n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗i

∣∣∣∣∣ log(Y ∗i − t0)

D̂(t0, Y ∗i )
− bT A∗i (t0)

D̂(t0, Y ∗i )

∣∣∣∣∣
+

∣∣∣∣∣M − (2τ − 1)bT
n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗i
A∗i (t0)

D̂(t0, Y ∗i )

∣∣∣∣∣,

where M is a sufficiently large positive number that can bound

∣∣∣∣∣(2τ −
1)bT

∑n
i=1 I(L∗i ≤ t0)I(Y ∗i > t0)η∗i

A∗i (t0)

D̂(t0,Y ∗i )

∣∣∣∣∣. Minimization of the L1-type function

Un(b, τ, t0) can be solved by using standard software, like the rq() function in the

contributed R package quantreg.

3.1.2 Asymptotic results

For a non-negative random variable K, define aK = inf{k : P (K ≤ k) > 0} and

bK = sup{k : P (K ≤ k) < 1}. We assume the following regularity conditions:

C1. aL < aY , bL ≤ bY .

C2. (i) 0 < τL ≤ τU ≤ 1; (ii) infs∈(aL∗ ,bY ∗ ],u∈(s,bY ∗ ] P (L∗ ≤ s < u ≤ Y ∗) > 0; (iii) tL

and tU are interior points of the support of X∗.
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C3. (i) β0(τ, t0) is Lipschitz continuous for τ ∈ [τL, τU ] and t0 ∈ [tL, tU ]; (ii) f(t|Ã(t0))

is continuous and bounded above uniformly in t, t0 and Ã(t0), where f(t|Ã(t0)) =

dF (t|Ã(t0))/dt and F (t|Ã(t0)) = E{I(T2 ≤ t)|Ã(t0)}.

C4. For some ρ0 > 0 and c0 > 0, infb∈B(ρ0),t0∈[tL,tU ]eigminH(b, t0) ≥ c0, where B(ρ) =

{b ∈ R2 : infτ∈[τL,τU ],t0∈[tL,tU ]||b−β0(τ, t0)|| ≤ ρ} and H(b, t0) = E[Ã(t0)⊗2f(t0 +

exp(Ã
T

(t0)b)|ÃT
(t0)) exp(Ã

T
(t0)b)]. Here ||·|| is the Euclidean norm and u⊗2 =

uuT for a vector u.

We then have the following theorems:

Theorem 3.1.1. Under conditions C1–C4,

lim
n→∞

sup
τ∈[τL,τU ],t0∈[tL,tU ]

||β̂GE(τ, t0)− β0(τ, t0)|| →p 0.

Theorem 3.1.2. Under conditions C1–C4,
√
n{β̂GE(τ, t0) − β0(τ, t0)} weakly con-

verge to a mean zero Gaussian process with covariance matrix given by

Φ(τ ′, t′0, τ, t0) = H{β0(τ ′, t′0), t′0}−1E{ι1(τ ′, t′0)ι1(τ, t0)T}[H{β0(τ, t0), t0}−1]T ,

where the formal definition of ι1(τ, t0) is provided in Appendix, τ, τ ′ ∈ [τL, τU ] and

t0, t
′
0 ∈ [tL, tU ].

Detailed proof of Theorem 3.1.1 and 3.1.2 are provided in Section 3.6 Appendix.

3.1.3 Inference

For inference on β̂GE(τ, t0) , we use bootstrapping procedures, given the complexity

in the asymptotic distribution of β̂GE(τ, t0) shown in the proof of Theorem 3.1.2.

Denote β∗(τ, t0) as the bootstrap estimator. It can be shown that the distribution of
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n1/2{β∗(τ, t0)− β̂GE(τ, t0)} conditionally on the observed data and the unconditional

distribution of n1/2{β̂GE(τ, t0) − β0(τ, t0)} have the same limiting distribution. By

repeatedly resampling from the observed data (X∗i , Y
∗
i , δ

∗
i , η
∗
i , L

∗
i )
n
i=1, one may obtain a

large number of realizations of n1/2{β∗(τ, t0)− β̂GE(τ, t0)}, the empirical distribution

of which can be used to give the asymptotic covariance matrix estimate for β̂GE(τ, t0)

or the 95% Wald-type confidence interval for β0(τ, t0).

Second-stage inferences can also be conducted in a similar fashion to that of Sec-

tion 2.2.4. First, we can summarize the average of LCQRR(τ ; t0) over t0 ∈ [tL, tU ]

by Ωτ = 1
tU−tL

∫ tU
tL
β

(2)
0 (τ, t0)dt0. One natural estimate for Ωτ may be obtained by

simply replacing β
(2)
0 (τ, t0) by β̂

(2)

GE(τ, t0), that is, Ω̂τ = 1
tU−tL

∫ tU
tL
β̂

(2)

GE(τ, t0)dt0. We

can show that Ω̂τ is consistent and asymptotic normal. Bootstrapping-based in-

ference on Ωτ can be developed using realizations of Ω∗τ = 1
tU−tL

∫ tU
tL
β∗(2)(τ, t0)dt0,

naturally rendering a Wald-type test for the null hypothesis H01 : LCQRR(τ ; t0) =

0, t0 ∈ [tL, tU ]. Similar results can be obtained for the overall summary and testing of

LCQRR(τ ; t0) over τ ∈ [τL, τU ], corresponding to Ωt0 = 1
τU−τL

∫ τU
τL
β

(2)
0 (τ, t0)dτ , and

H03 : LCQRR(τ ; t0) = 0, τ ∈ [τL, τU ] respectively.

Another second-stage hypothesis of interest is given by H02 : LCQRR(τ ; t0) = Cτ ,

t0 ∈ [tL, tU ], where Cτ is an unspecified constant and may change with τ . To test

H02, one may adopt the test statistic Γτ =
√
n{
∫ tU
tL

Ξ(τ, t0)β̂
(2)

GE(τ, t0)dt0− Ω̂τ}, where

Ξ(τ, t0) is a non-constant weight function satisfying
∫ tU
tL

Ξ(τ, t0)dt0 = 1. We can show

that the limit distribution of Γτ under H02 is normal with mean 0. A consistent

variance estimate for Γτ can be obtained through bootstrapping. This would render

a Wald-type test for H02. A similar testing procedure can also be developed for testing

the constancy over τ ∈ [τL, τU ], H04 : LCQRR(τ ; t0) = Ct0 , τ ∈ [τL, τU ].
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3.2 An Extension to Covariates Adjustment

As Chapter 2, we are interested in the linear effects of covariates on LCQRR(τ ; t0),

expressed as model (2.4). Our strategy is also to employ model (2.5) as a working

model.

To estimate γ0(τ, t0) in model (2.5), we adapt the methods presented for the

one-sample case based on the observed data (X∗i , Y
∗
i , δ

∗
i , η
∗
i , L

∗
i , Z̃

∗
i )
n
i=1. Under the

assumption that (L,C) is independent of (T1, T2, Z̃), we propose to estimate γ0(τ, t0)

by solving the following estimating equation for r ∈ R2+2p:

Sn(r, τ, t0) = 0,

where

Sn(r, τ, t0) = n−1/2

n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗i

D̂(t0, Y ∗i )
K∗i (t0){I[log(Y ∗i − t0) ≤K∗Ti (t0)r]− τ}.

With an additional assumption that Z̃ is uniformly bounded (i.e. supi||Z̃i|| ≤M1 <

∞), we can establish the same asymptotic properties and inference procedures for the

estimator for γ0(τ, t0), denoted by γ̂(τ, t0), as those presented in Section 3.1.

3.3 Simulation Studies

Extensive simulation studies are conducted to evaluate the finite sample performances

of the proposed estimators in the left-truncated semi-competing risks setting. Specif-

ically, we generate (T1, T2) from a gamma frailty model,

P (T1 > x, T2 > y) = [P (T1 > x)1−θ + P (T2 > y)1−θ − 1]1/(1−θ),
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in which Ti follows a Weibull(αi, λi) distribution and P (Ti > x) = exp(−λixαi),

i = 1, 2. The truncation time L = r × L0, where r is a random variable following

Bernoulli distribution with probability p, and L0 is a positive random variable that is

independent of r. Such a truncation scenario mimics the Denmark diabetes registry

study, where the distribution of L has a point mass at 0. We generate the censoring

time C as L+D0, where D0 is a positive-valued random variable dependent on L.

The simulations are conducted under two scenarios and each scenario consists of

three setups correspondent to three θ values, 1, 2 and 3, which separately reflects in-

dependence, moderate positive association and high positive association. In Scenario

1, let T1 ∼Weibull(2, 0.5) and T2 ∼Weibull(3.2, 0.35); the truncation rate P (Y < L)

is set low to moderate as 0.3, and the dependent censoring rate P (δ∗ = 0, η∗ = 1) is

set moderate to high, close to 0.36. Scenario 2 involves a moderate to high level of

truncation as 0.45 and a low to moderate level of dependent censoring around 0.2,

with T1 ∼ Weibull(2.5, 0.75) and T2 ∼ Weibull(3, 0.4). In both scenarios, the pro-

portion of zero truncation time P (L∗ = 0) is set as 0.2. Details about the choice of

{p, L0, D0} in each setup as well as corresponding censoring proportions are given in

Table 3.1.

Table 3.1: Summary of simulation setups: the choice of {p, L0, D0} and the resulting
truncation and censoring proportions, where p1 = P (Y < L), p2 = P (δ∗ = 0),
p3 = P (η∗ = 0) and p4 = P (δ∗ = 0, η∗ = 1).

θ p L0 D0 p1 p2 p3 p4

Scenario 1: T1 ∼Weibull(2, 0.5), T2 ∼Weibull(3.2, 0.35)
1 0.86 Unif(0, 1.9) Beta(1.4, 1)× (1.95− 0.8L)2 0.30 0.47 0.24 0.35
2 0.86 Unif(0, 1.9) Beta(1.4, 1)× (1.95− 0.8L)2 0.30 0.54 0.24 0.36
3 0.86 Unif(0, 1.9) Beta(1.4, 1)× (1.95− 0.8L)2 0.30 0.57 0.24 0.38

Scenario 2: T1 ∼Weibull(2.5, 0.75), T2 ∼Weibull(3, 0.4)
1 0.89 min{Weibull(1.4, 0.52), 1.9} Beta(1.3, 1)× (2− 0.8L)2 0.45 0.33 0.24 0.24
2 0.89 min{Weibull(1.2, 0.54), 1.9} Beta(1.4, 1)× (2.2− 1.1L)2 0.45 0.32 0.24 0.20
3 0.89 min{Weibull(1.0, 0.55), 1.9} Beta(1.6, 1)× (2.2− 1.2L)2 0.45 0.28 0.24 0.17
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Under each setup, we implement the proposed methods on 1000 simulated datasets

with sample size n = 400, where M is set as 107. For bootstrapping-based inference,

we set the resampling size as 250. The empirical bias (EmpBias), empirical standard

error (EmpSE) and average estimated standard error based on bootstrapping (EstSE)

as well as the empirical coverage rate of the 95% Wald-type confidence intervals for

the proposed estimator of LCQRR(τ ; t0), are reported under different combinations

of (θ, τ, t0), where τ = 0.25, 0.5, 0.75, and t0 are at grid over an interval [tL, tU ] with

grid size 0.005. In Scenario 1, we set tL = 0.65 and tU = 1.30. In Scenario 2, we

set tL = 0.62 and tU = 1.20. Figure 3.1 presents the results for Scenario 1, showing

that the proposed estimator of LCQRR(τ ; t0) performs well with moderate sample

size. The point estimates have small biases. The bootstrapping-based standard error

estimates closely match their empirical counterparts, and the Wald-type confidence

intervals based on normal approximation provide satisfactory empirical coverage. For

comparison purpose, we also provide the empirical bias of the estimator proposed in

Chapter 2 (i.e., LCQRRSP (τ ; t0)), which requires the independence of L and C − L.

It is shown that, under our scenario that C − L depends on L, LCQRRSP (τ ; t0) can

lead to substantial biases, in particular in cases with larger θ and t0 values. We have

similar findings in Figure 3.2, which presents the simulation results for Scenario 2.

We also evaluate the performance of the proposed average estimator of LCQRR

over t0 ∈ [tL, tU ] for fixed τ , as well as the Wald tests for H01 and H02 in second-stage

inferences. Still consider three τ values, 0.25, 0.5, 0.75, and the interval [tL, tU ] as

previously mentioned. We compute integrals using left Riemann sums on intervals of

equal length 0.005 and choose the weight function Ξ(τ, t0) = 2I[t0 ≤ (tL+tU)/2]/(tU−

tL). Table 3.2 summaries the EmpBias, EmpSE and EstSE of Ω̂τ , and the empirical

rejection rates (EmpRR) for the two Wald tests. It shows that for both scenarios,

the empirical biases of Ω̂τ are small and the estimated standard errors agree very well

with corresponding empirical standard errors. The test for either H01 or H02 appear
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to have empirical sizes (when θ = 1) close to the nominal levels. The power for testing

H01 (when θ = 2 and 3) is good, while the constancy tests seems conservative.

Table 3.2: Summary of simulation study: EmpBias, EmpSE and EstSE of Ω̂τ and
empirical rejection rates for H01 and H02.

Ω̂τ H01 H02

θ τ EmpBias EmpSE EstSE EmpRR EmpRR

Scenario 1
t0 ∈ [0.65, 1.30]

1 0.25 0.000 0.143 0.148 0.048 0.050
0.50 0.001 0.125 0.125 0.052 0.047
0.75 -0.002 0.113 0.114 0.055 0.045

2 0.25 -0.001 0.133 0.134 1.000 0.090
0.50 -0.003 0.111 0.112 0.999 0.125
0.75 -0.001 0.103 0.106 0.989 0.142

3 0.25 0.000 0.118 0.122 1.000 0.112
0.50 0.000 0.102 0.106 1.000 0.171
0.75 -0.00 0.103 0.103 1.000 0.202

Scenario 2
t0 ∈ [0.62, 1.20]

1 0.25 0.000 0.150 0.153 0.051 0.053
0.50 0.001 0.124 0.124 0.048 0.056
0.75 -0.002 0.108 0.109 0.045 0.056

2 0.25 0.001 0.125 0.127 1.000 0.124
0.50 0.001 0.098 0.102 1.000 0.163
0.75 -0.004 0.087 0.093 0.999 0.167

3 0.25 0.001 0.107 0.108 1.000 0.162
0.50 -0.003 0.087 0.091 1.000 0.173
0.75 -0.000 0.103 0.103 1.000 0.202

For fixed t0, we examine the second-stage inferences over [τL, τU ]. We set

t0 = 0.7, 1.0, 1.2 for Scenario 1, and t0 = 0.7, 0.9, 1.1 for Scenario 2. Let [τL, τU ] =

[0.15, 0.85] with grid size 0.001 and Ξ(τ, t0) = 2I[τ ≤ (τL+τU)/2]/(τU−τL). Table 3.3

presents the EmpBias, EmpSE and EstSE of Ω̂t0 and the EmpRR for the proposed

tests. Similarly, we observe small empirical biases, well-matched estimated and em-

pirical standard errors and empirical sizes close to nominal levels. The power for H03

is good, while for the constancy tests is not high.
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Table 3.3: Summary of simulation study: EmpBias, EmpSE and EstSE of Ω̂t0 and
empirical rejection rates for H03 and H04.

Ω̂t0 H03 H04

θ t0 EmpBias EmpSE EstSE EmpRR EmpRR

Scenario 1
1 0.7 0.004 0.139 0.145 0.045 0.045

1.0 0.002 0.150 0.149 0.055 0.045
1.2 0.002 0.179 0.175 0.055 0.046

2 0.7 0.003 0.154 0.155 0.901 0.072
1.0 -0.002 0.155 0.153 0.979 0.118
1.2 0.003 0.174 0.174 0.976 0.124

3 0.7 0.003 0.154 0.157 1.000 0.124
1.0 0.000 0.159 0.160 1.000 0.257
1.2 0.001 0.178 0.183 1.000 0.175

Scenario 2
1 0.7 -0.002 0.142 0.145 0.048 0.054

0.9 -0.003 0.145 0.143 0.048 0.046
1.1 0.001 0.173 0.170 0.058 0.052

2 0.7 0.001 0.143 0.142 0.965 0.083
0.9 -0.001 0.132 0.135 0.995 0.167
1.1 -0.004 0.143 0.146 0.998 0.237

3 0.7 0.002 0.140 0.142 1.000 0.186
0.9 -0.003 0.129 0.131 1.000 0.386
1.1 0.003 0.142 0.138 1.000 0.515

3.4 Denmark Diabetes Registry Data Analysis

In this section, we apply the proposed method to the Denmark diabetes registry

study (Andersen et al., 1993), with the same objective as in Chapter 2. That is, we

quantify the relationship between DN and death. Here, we focus on a subcohort of

patients who had diabetes onset age greater than 19 in order to reduce the population

heterogeneity as the disease mechanism of childhood diabetes may be different from

that of adult diabetes. Among the 854 patients in this subcohort, 181(21%) subjects

experienced DN and 239(28%) died during the study. Approximately 28% patients

had diabetic onset at the study entry.

We fit model (2.1) to the dataset and adopt M = 107 as in the simulations. To en-
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sure reasonable sample sizes accumulated for strata defined by I(X∗ > t0), we restrict

t0 to be within [12, 28). Table 3.4 shows results for estimated LCQRR(τ ; t0), corre-

sponding 95% pointwise Wald-type bootstrapping confidence interval with resampling

size of 500 and p-value for testing LCQRR(τ ; t0) = 0 at several combinations of (τ, t0),

where τ = 0.25, 0.5 and t0 = 12, 15, 18, 21, 25, 27. Here, t0 = 15, 21 separately

represents the 25th, 50th quantile for time to DN. We see that for either fixed τ , the

estimated LCQRR(τ ; t0) is generally significantly positive. This observation is con-

sistent with the common belief that DN is a diabetes progression landmark, positively

associated with mortality. Such belief is also confirmed by our formal test for H01, in

which t0s are equally-spaced on [12, 28) with step size=0.1, yielding p-values < 0.001.

We note that the difference between LCQRR(τ ; t0) and 0 becomes insignificant when

t0 is generally beyond 25. This may imply that the occurrence of DN would lose

its prognostic power for mortality among patients who has lived long since diabetes

diagnosis. For fixed τ , the estimated LCQRR(τ ; t0) appears to have a decreasing

trend over t0, possibly indicating DN’s prognostic power for mortality get weaker as

time goes by.

In Table 3.4, we also provide results for the estimated LCQRR(τ ; t0) based on

β̂
(2)

SP (τ, t0). In contrast to the estimated LCQRR(τ ; t0) based on β̂
(2)

GE(τ, t0), the ap-

proach in Chapter 2 would result in some quite different estimated LCQRR(τ ; t0)

values. For example, at (τ, t0) = (0.5, 21), ˆLCQRRSP (τ ; t0) (i.e., β̂
(2)

SP (τ, t0)) is 0.29

with p-value=0.62, showing a non-significant difference between 0; while our proposed

ˆLCQRRGE(τ ; t0) (i.e., β̂
(2)

GE(τ, t0)) is 1.15 with p-value=0.004, indicating a significant-

ly positive association between DN and mortality there. Such big discrepancy may be

caused by the potential dependence of underlying C − L and L for this real dataset.

Recall our findings in simulation studies, a violation of the independent assumption

of C − L and L would lead to severely biased estimation in LCQRR(τ ; t0).

We next study whether diabetes onset age, a continuous covariate, affects the
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Table 3.4: Denmark Diabetes Registry Study: estimated ˆLCQRRGE(τ ; t0) and
ˆLCQRRSP (τ ; t0), 95% pointwise Wald-type bootstrapping confidence interval and

corresponding p-value.

t0 ˆLCQRRGE(τ ; t0) 95% CI P-value ˆLCQRRSP (τ ; t0) 95% CI P-value

τ = 0.25
12 1.95 (1.40, 2.50) < 0.001 2.08 (1.53, 2.62) < 0.001
15 1.87 (1.23, 2.52) < 0.001 1.95 (1.27, 2.62) < 0.001
18 1.87 (1.41, 2.34) < 0.001 1.54 (1.05, 2.03) < 0.001
21 1.30 (0.78, 1.82) < 0.001 1.10 (0.37, 1.83) 0.003
25 0.98 (0.21, 1.76) 0.013 0.69 (−0.66, 2.04) 0.31
27 0.85 (−0.32, 2.01) 0.15 0.47 (−0.97, 1.91) 0.52

τ = 0.5
12 1.75 (1.20, 2.50) < 0.001 1.87 (1.35, 2.40) < 0.001
15 1.44 (1.10, 1.77) < 0.001 1.61 (1.22, 2.00) < 0.001
18 1.48 (0.89, 2.08) < 0.001 1.53 (0.75, 2.31) < 0.001
21 1.15 (0.37, 1.93) 0.004 0.29 (−0.87, 1.44) 0.62
25 0.76 (−0.36, 1.89) 0.18 0.06 (−1.02, 1.14) 0.91
27 0.44 (−0.73, 1.62) 0.46 0.07 (−0.85, 0.99) 0.88

dependence between DN and mortality. We fit model (2.5) to the data and the

coefficient γ
(4)
0 (τ, t0) represents the change in LCQRR(τ ; t0) per one year increase

in diabetes onset age. For τ = 0.25 and 0.5, we estimate γ
(4)
0 (τ, t0) at several t0

values mentioned above. In Table 3.5, we display the estimated γ
(4)
0 (τ, t0) along with

corresponding 95% pointwise Wald-type bootstrapping confidence interval and p-

value for testing γ
(4)
0 (τ, t0) = 0. We see that there is no significant difference between

γ
(4)
0 (τ, t0) and 0. Tests for H01 confirm our observations, yielding p-values around

0.37. These suggest diabetes onset age may not affect the dependence between DN

and mortality in groups of young adults.

3.5 Remarks

We propose a new robust estimator for LCQRR(τ ; t0) to address the general semi-

competing risks scenario with left truncation. The proposed approach does not require
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Table 3.5: Denmark Diabetes Registry Study: change rate of LCQRR(τ ; t0) by dia-

betes onset age (i.e., γ̂
(4)
0 (τ, t0)), 95% pointwise Wald-type bootstrapping confidence

interval and corresponding p-value.

t0 change rate of LCQRR(τ ; t0) 95% CI P-value

τ = 0.25
12 -0.04 (−0.19, 0.10) 0.55
15 -0.07 (−0.24, 0.10) 0.41
18 -0.01 (−0.14, 0.11) 0.84
21 -0.02 (−0.27, 0.23) 0.89
25 0.12 (−0.25, 0.48) 0.54
27 0.18 (−0.28, 0.64) 0.43

τ = 0.5
12 0.05 (−0.07, 0.17) 0.42
15 -0.05 (−0.18, 0.08) 0.43
18 0.03 (−0.16, 0.22) 0.77
21 0.14 (−0.10, 0.38) 0.24
25 0.24 (−0.12, 0.59) 0.19
27 0.19 (−0.23, 0.62) 0.39

additional assumptions other than the typical independence of (L,C) and (T1, T2).

This makes the proposed estimator be able to handel problems in a more general sam-

pling schemes, while in comparison to the one proposed in Chapter 2. The developed

estimation and inference procedures can be easily extended to adjust for covariates.

Simulation studies show that the proposed estimation procedure performs well in

finite sample cases.

To use LCQRR(τ ; t0) in practice, we recommend specifying τ and t0 beforehand

according to scientific interests. For example, common choices of τ are 0.25, 0.5 and

0.75, reflecting below average, average, and above average progression to the terminal

event. The choice of t0 may be at time points that landmark the development of

the nonterminal event. Specifying τ and t0 may also be adjusted according to the

empirical observations of the data. For example, the estimation efficacy may be

unsatisfactory at small values of t0 because of a small weight D̂(t0, Y
∗
i ) or a small

number of observations satisfying X∗ ≤ t0. Based on our numerical experiences,
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we find that our method generally works well for estimating both LCQRR(τ ; t0)

when min(nt0,1, nt0,2) > 30, where nt0,1 =
∑n

i=1 I(L∗i ≤ t0, Y
∗
i > t0, X

∗
i > t0)η∗i and

nt0,2 =
∑n

i=1 I(L∗i ≤ t0, Y
∗
i > t0, X

∗
i ≤ t0)η∗i . For a larger τ , we may need nt0,1 and

nt0,2 to be larger. These can serve as useful empirical rules to guide the selection of

τ and t0 in real data analysis.

3.6 Appendix

Define

Sn(b, τ, t0) = n−1/2

n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗i

D̂(t0, Y ∗i )
A∗i (t0){I[log(Y ∗i − t0) ≤ A∗Ti (t0)b]− τ},

SDn (b, τ, t0) = n−1/2

n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗i
D(t0, Y ∗i )

A∗i (t0){I[log(Y ∗i − t0) ≤ A∗Ti (t0)b]− τ},

µ(b, τ, t0) = n−1/2E{SDn (b, τ, t0)}.

For brevity, we use supb, supτ and supt0 to denote supremum taken over b ∈ R2,

τ ∈ [τL, τU ] and t0 ∈ [tL, tU ], respectively. In the sequel, oSp (n−1/2) means root n

convergence to 0 in probability uniformly on set S.

3.6.1 Proof of Theorem 3.1.1

The first step is to sort out the asymptotic properties of D̂(s, t), for s < t. To this

end, we need to look at each specific element of this plug-in weight.
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Define

ξs(L
∗
i , Y

∗
i , η

∗
i , t) =

I(L∗i ≤ s < Y ∗i ≤ t, η∗i = 0)

Cs(Y ∗i )
−
∫ t

s

I(L∗i ≤ s < u ≤ Y ∗i )

C2
s (u)

Ws(du)

R1n,s(t) =

∫ t

s

[Cs(u)− Cn,s(u)]2

Cn,s(u)C2
s (u)

Ws(du)

R2n,s(t) =

∫ t

s

{
1

Cn,s(u)
− 1

Cs(u)

}[
Wn,s(du)−Ws(du)

]
Rn,s(t) = R1n,s(t) +R2n,s(t)

Then

Λn(t|s)− Λ(t|s) =
1

n

n∑
i=1

ξs(L
∗
i , Y

∗
i , η

∗
i , t) +Rn,s(t)

with E[ξs(L
∗
i , Y

∗
i , η

∗
i , t)] = 0. We can show

sup
(s,t)∈S×T

|Rn,s(t)| = op(n
−1/2),

where S × T = {(s, t) : s ∈ (aL∗ , bY ∗ ], u ∈ (s, bY ∗ ]}. This is because

|R1n,s(t)| ≤ sup
s<u≤t

|Cs(u)− Cn,s(u)|2/ inf
s<u≤t

[Cn,s(u)C2
s (u)].

By the LIL for empirical distribution functions and almost surely uniformly zero-away

boundness of both Cn,s(u) and C2
s (u) on S × T , we have

sup
(s,t)∈S×T

|R1n,s(t)| = O(n−1 log log n), a.s.

Similarly, we can show sup(s,t)∈S×T |R2n,s(t)| = O(n−1 log log n), a.s. and thus

sup
(s,t)∈S×T

|Rn,s(t)| = op(n
−1/2).
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By Taylor expansion, we have

Ŝ(t|s)− S(t|s) =
1

n

n∑
i=1

{−S(t|s)ξs(L∗i , Y ∗i , η∗i , t)}+ oS×Tp (n−1/2)

≡ 1

n

n∑
i=1

li(s, t) + oS×Tp (n−1/2), (3.2)

where li(s, t) = −S(t|s)ξs(L∗i , Y ∗i , η∗i , t) and Eli(s, t) = 0.

By results in Gijbels and Wang (1993), we have

ŜT2(s)− ST2(s) =
1

n

n∑
i=1

ai(s) + o[0,b̃]
p (n−1/2), b̃ < bY ,

where

ai(s) = −ST2(s)
{
I(L∗i ≤ Y ∗i ≤ s, η∗i = 1)

R̃(Y ∗i )
−
∫ s

0

I(L∗i ≤ u ≤ Y ∗i )

R̃2(u)
dW̃ (u)

}
,

W̃ (u) = P (L∗ ≤ Y ∗ ≤ u, η∗ = 1), R̃(u) = P (L∗ ≤ u ≤ Y ∗) and Eai(s) = 0. Taylor

expansion indicates

Ŝ(t|s)
ŜT2(s)

− S(t|s)
ST2(s)

=
1

n

n∑
i=1

{
li(s, t)

ST2(s)
− S(t|s)ai(s)

S2
T2

(s)

}
+ oS×Tp (n−1/2)

≡ 1

n

n∑
i=1

ki(t, s) + oS×Tp (n−1/2)

with Eki(s, t) = 0. Further,

D̂(s, t)−D(s, t) =
1

n

n∑
i=1

{[
I(L∗i ≤ s < Y ∗i )

S(t|s)
ST2(s)

−D(s, t)

]
+

1

n

n∑
j=1

ki(s, t)I(L∗j ≤ s < Y ∗j )

}
+ oS×Tp (n−1/2)

≡ 1

n

n∑
i=1

di(s, t) + oS×Tp (n−1/2) (3.3)

with Edi(s, t) = 0. If we can claim that the functional class {di(s, t), s ∈ S, t ∈ T } is
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Donsker, then thus Glivenko-Cantelli and D̂(s, t) is uniformly consistent for D(s, t)

on S × T . By the functional law of the iterated logarithm (Goodman et al., 1981),

equation (3.3) implies sup(s,t)∈S×T |D̂(s, t) −D(s, t)| = o(n−1/2+r) for 0 < r < 1
2

and

consequently

sup
b,τ,t0

‖n−1/2Sn(b, τ, t0)− n−1/2SDn (b, τ, t0)‖ = o(n−1/2+r), a.s. (3.4)

To show {di(s, t), s ∈ S, t ∈ T } is Donsker, we first prove that {li(s, t), s ∈ S, t ∈

T } forms a Donsker class. This can be shown because the class of indicator functions

is Donsker, Cs(u) and Cs(Y
∗
i ) are uniformly bounded away from 0 on S × T and the

map π : x(s, u) →
∫ t
s
x(s, u)Ws(du) is a linear continuous map. Similar arguments

and the boundness of S−1
T2

(s) on S lead to show {di(s, t), s ∈ S, t ∈ T } is Donsker.

Now we can finish the proof by following the same line of Section 2.7.1.

Define F =

{
I(L∗i≤t0)I(Y ∗i >t0)η∗i

D(t0,Y ∗i )
A∗i (t0){I[log(Y ∗i − t0) ≤ A∗Ti (t0)b] − τ}, b ∈

R2, τ ∈ [τL, τU ], t0 ∈ [tL, tU ]

}
. The function class F is Donsker. Then

supb,τ,t0 ‖n
−1/2SDn (b, τ, t0) − µ(b, τ, t0)‖ = o(1), a.s. by the Glivenko-Cantelli Theo-

rem and thus supb,τ,t0 ‖n
−1/2Sn(b, τ, t0)−µ(b, τ, t0)‖ = o(1), a.s.. This, coupled with

the fact that µ{β0(τ, t0), τ, t0} = 0 and n−1/2Sn(β̂GE(τ, t0), τ, t0) = o(1), a.s., implies

that

sup
τ,t0

‖µ{β̂GE(τ, t0), τ, t0} − µ{β0(τ, t0), τ, t0}‖ = o(1), a.s.

Following the same line of Peng and Fine (2009), we can show that Condition C3

and the monotonicity of µ(b, τ, t0) in b imply

inf
b/∈B(ρ0),τ,t0

‖µ{b, τ, t0} − µ{β0(τ, t0), τ, t0}‖ ≥ c0ρ0.

Consequently, {β̂GE(τ, t0) : τ ∈ [τL, τU ], t0 ∈ [tL, tU ]} ⊆ B(ρ0) for large enough n with
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probability 1. Applying Taylor expansion to µ{β̂GE(τ, t0), τ, t0} around β0(τ, t0) gives

sup
τ,t0

‖β̂GE(τ, t0)− β0(τ, t0)‖

= sup
τ,t0

‖H{β̆(τ, t0), t0}−1[µ{β̂GE(τ, t0), τ, t0} − µ{β0(τ, t0), τ, t0}]‖

≤ c−1
0 sup

τ,t0

‖µ{β̂GE(τ, t0), τ, t0} − µ{β0(τ, t0), τ, t0}‖

where β̆(τ, t0) lies between β̂GE(τ, t0) and β0(τ, t0) and is therefore within B(ρ0) for

large enough n. The uniform consistency of β̂GE(τ, t0) to β0(τ, t0) for τ ∈ [τL, τU ], t0 ∈

[tL, tU ] then follows.

3.6.2 Proof of Theorem 3.1.2

Let ≈ denote asymptotic equivalence uniformly in τ ∈ [τL, τU ] and t0 ∈ [tL, tU ]. First,

by equation (3.3), simple algebraic manipulations show that

Sn{β0(τ, t0), τ, t0}

= SDn {β0(τ, t0), τ, t0}+ [Sn{β0(τ, t0), τ, t0} − SDn {β0(τ, t0), τ, t0}]

≈ n−1/2

n∑
i=1

ξ1,i(τ, t0)− n−1/2

n∑
i=1

A∗i (t0)
n−1

∑n
j=1 dj(t0, Y

∗
i )

D2(t0, Y ∗i )
I(L∗i ≤ t0)I(Y ∗i > t0)η∗i

× {I[log(Y ∗i − t0) ≤ A∗Ti (t0)β0(τ, t0)]− τ}

= n−1/2

n∑
i=1

ξ1,i(τ, t0)

− n−1/2

n∑
i=1

{ n∑
j=1

A∗j(t0)I(L∗j ≤ t0)I(Y ∗j > t0)η∗j{I[log(Y ∗j − t0) ≤ A∗Tj (t0)β0(τ, t0)]− τ}
nD2(t0, Y ∗j )

di(t0, Y
∗
j )

}

≈ n−1/2

n∑
i=1

{ξ1,i(τ, t0)− ξ2,i(τ, t0)}.

where ξ1,i(τ, t0) = I(L∗i ≤ t0)I(Y ∗i > t0)η∗iA
∗
i (t0){I[log(Y ∗i − t0) ≤ A∗Ti (t0)β0(τ, t0)]−

τ}D(t0, Y
∗
i )−1 and ξ2,i(τ, t0) = Eω∗j [ξ1,j(τ, t0)D(t0, Y

∗
j )−1di(t0, Y

∗
j )] with ω∗i de-
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noting (X∗i , Y
∗
i , δ

∗
i , η
∗
i , L

∗
i ) and Eω∗j representing the expectation over ω∗j , j =

1, ..., n. Following similar arguments in the proof of Theorem 3.1.1, we claim that

{ξ1,i(τ, t0) − ξ2,i(τ, t0), τ ∈ [τL, τU ], t0 ∈ [tL, tU ]} is also a Donsker class. Thus,

Sn{β0(τ, t0), τ, t0} converges weakly to a mean zero Gaussian process with covariance

matrix Σ(τ ′, t′0, τ, t0) = E{ι1(τ ′, t′0)ι1(τ, t0)T}, where ιi(τ, t0) = ξ1,i(τ, t0)− ξ2,i(τ, t0).

Next, we establish the asymptotic linearity of SDn (b, τ, t0) in the vicinity of b =

β0(τ, t0); that is, for any positive sequence of {dn}∞n=1 such that dn → 0,

sup
b,b′∈B(ρ0),‖b−b′‖≤dn

‖{SDn (b, τ, t0)−SDn (b′, τ, t0)}−n1/2{µ(b, τ, t0)−µ(b′, τ, t0)}‖ = o(1), a.s.

(3.5)

Its proof greatly resembles the lines of Alexander (1984) and Lai and Ying (1988).

It follows from (3.5) that

Sn(β̂GE(τ, t0), τ, t0)− Sn(β0(τ, t0), τ, t0)

= n−1/2

n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗iD(t0, Y
∗
i )−1A∗i (t0){I[log(Y ∗i − t0) ≤ A∗Ti (t0)β̂GE(τ, t0)]

− I[log(Y ∗i − t0) ≤ A∗Ti (t0)β0(τ, t0)]}

+ n−1/2

n∑
i=1

I(L∗i ≤ t0)I(Y ∗i > t0)η∗iA
∗
i (t0){I[log(Y ∗i − t0) ≤ A∗Ti (t0)β̂GE(τ, t0)]

− I[log(Y ∗i − t0) ≤ A∗Ti (t0)β0(τ, t0)]}{D̂(t0, Y
∗
i )−1 −D(t0, Y

∗
i )−1}

≈ n1/2[µ{β̂GE(τ, t0), τ, t0} − µ{β0(τ, t0), τ, t0}].

Taylor expansion of µ(b) around b = β0(τ, t0), along with the fact that β̂0(τ, t0)

uniformly converges to β0(τ, t0), gives that

Sn(β̂GE(τ, t0), τ, t0)− Sn(β0(τ, t0), τ, t0) ≈H{β0(τ, t0), t0}n1/2{β̂GE(τ, t0)− β0(τ, t0)}.
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This implies

n1/2{β̂GE(τ, t0)− β0(τ, t0)} ≈ −H{β0(τ, t0), t0}−1Sn(β0(τ, t0), τ, t0)

and then n1/2{β̂GE(τ, t0)−β0(τ, t0)} converges weakly to a mean zero Gaussian pro-

cess with covariance matrix

H{β0(τ ′, t′0), t′0}−1E{ι1(τ ′, t′0)ι1(τ, t0)T}H{β0(τ, t0), t0}−T .
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Figure 3.1: Scenario 1: EmpBias of the estimator proposed in Chapter 2 for
LCQRR(τ ; t0) (i.e., LCQRRSP (τ ; t0)); EmpBias, EmpSE and EstSE for the esti-
mator proposed in this chapter (i.e., LCQRRGE(τ ; t0)).
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Figure 3.2: Scenario 2: EmpBias of the estimator proposed in Chapter 2 for
LCQRR(τ ; t0) (i.e., LCQRRSP (τ ; t0)); EmpBias, EmpSE and EstSE for the esti-
mator proposed in this chapter (i.e., LCQRRGE(τ ; t0)).
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4.1 Association Measure and Model

4.1.1 Data and notation

Let T k = {T (1)
k , T

(2)
k , ...} be the recurrence times of type-k events and (Lk, Rk] be an

observation window to which T k is subject, where k = 1, 2. For type-k events, denote

Nk(t) =
∑∞

j=1 I(T
(j)
k ≤ t) as the underlying process of recurrent events, Ñk(t) =∑∞

j=1 I(Lk ≤ T
(j)
k ≤ t ∧ Rk) as the counting process of observed recurrent events

and Yk(t) = I(Lk ≤ t ≤ Rk) as the at risk process. Let Z = (1, Z1, ..., Zp) be

the associated (p + 1) × 1 vector of covariates. Define µZ,k(t) = E[Nk(t)|Z], which

represents the expected frequency of type-k events by time t given covariates Z.

Define τZ,k(u) = inf{t ≥ 0 : µZ,k(t) ≥ u}, representing time to expected recurrence

frequency u of type-k events (Huang and Peng, 2009).

In this work, without loss of generality, we assume that type-1 and type-2 recurrent

events share a common observation window (L,R], i.e., L1 = L2 = L and R1 = R2 =

R, and also assume that L and R are independent of Nk(·) given Z, k = 1, 2. The

observed data consists of n i.i.d. replicates of {N1(·), N2(·),Z, L,R}, denoted by

{Ni1(·), Ni2(·),Zi, Li, Ri}ni=1.

Note that when the event of interest can occur only once, u is restricted to [0, 1]

and τZ,k(u) becomes the conditional quantile of T
(1)
k given Z.

4.1.2 Proposed association measure for bivariate recurrent

event data

We start with considering the conditional covariance of N1(s) and N2(t), defined as,

CovZ(s, t) = EZ [N1(s)N2(t)]− µZ,1(s)µZ,2(t), (4.1)
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where EZ(·) = E(·|Z). This measure inherits the general interpretation of covariance.

It is easy to see that whenN1(·) andN2(·) are two independent processes, CovZ(s, t) =

0 for all s, t > 0. Since CovZ(s, t) is formulated based on the counting process notation

of recurrent events data, it has the flexibility to capture a varying association structure

between the two different types of recurrent events. However, it is important to

note that both EZ [N1(s)N2(t)] and µZ,1(s)µZ,2(t) are increasing functions of s and

t. This fact may confound the interpretation of a large value of CovZ(s, t). That

is, an increase in CovZ(s, t) may result from a scale shift in EZ [N1(s)N2(t)] and

µZ,1(s)µZ,2(t) as s and t increase, which is irrelevant to the association of interest.

A similar issue also exists in the simpler bivariate survival setting, where the

outcome may be represented by (Y1, Y2). Li et al. (2014) proposed a novel solution to

this problem by assessing the association based on quantiles. More specifically, they

presented a quantile-specific probability ratio by comparing the joint probability that

Y1 and Y2 were simultaneously less than their respective τ1th and τ2th quantiles to

the expected probability under independence, namely,

qpr(τ1, τ2|Z) =
P{Y1 ≤ Q1(τ1|Z), Y2 ≤ Q2(τ2|Z)|Z}

P{Y1 ≤ Q1(τ1|Z)|Z} × P{Y2 ≤ Q2(τ1|Z)|Z}
, (4.2)

where Qk(τk|Z) = inf{t : P (Yk ≤ t|Z) ≥ τk}, τk ∈ (0, 1), denotes the τkth quantile

function of Yk (k = 1, 2). Such a quantile-specific measure has a nice property of scale

invariance because the values of indicators I[Y1 ≤ Q1(τ1|Z)] and I[Y2 ≤ Q2(τ2|Z)]

keep the same regardless of any scale change in Y1 and Y2. Note that these indicators

are also invariant to any monotone transformations of Y1 and Y2. With different selec-

tions of (τ1, τ2), this measure can also provide a comprehensive view of the association

between Y1 and Y2.

Motivated by the work of Li et al. (2014), we propose to assess the association

between two types of recurrent events based on the frequency scale rather than the
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time scale. To exploit this idea, we first rewrite (4.2) as

qpr(τ1, τ2|Z) =
EZ{I[Y1 ≤ Q1(τ1|Z)]× I[Y2 ≤ Q2(τ2|Z]}

EZ{I[Y1 ≤ Q1(τ1|Z)]} × EZ{I[Y2 ≤ Q2(τ1|Z)]}
. (4.3)

The representation in equation (4.3) suggests a natural adaptation of qpr(τ1, τ2|Z)

to the bivariate recurrent event setting. That is, we replace I(Y1 ≤ ·) and I(Y2 ≤ ·)

by N1(·) and N2(·), respectively. As investigated by Huang and Peng (2009), τZ,k(u)

that represents time to expected recurrence frequency u for type-k events can be

considered as an analogue to the quantile in the recurrent event setting. We thus

substitute Q1(τ1|Z) and Q2(τ2|Z) with τZ,1(u) and τZ,2(v) and propose a frequency-

specific association measure for bivariate recurrent event data, taking the form,

ρZ(u, v) =
EZ{N1[τZ,1(u)]N2[τZ,2(v)]}

uv
, u, v > 0. (4.4)

Similar to the quantile-specific measure qpr(τ1, τ2|Z), ρZ(u, v) is invariant to any

scale change or monotone transformation of T k.

The definition of ρZ(u, v) also reflects calibrations of the two marginal mean func-

tions by setting µZ,1(s) = u and µZ,2(t) = v. By such calibrations, the two arguments

in ρZ(·, ·) are both on the frequency scale. This makes ρZ(u, v) more comparable a-

mong different covariate groups, and hence facilitates the interpretation of potential

regression analysis for this new association measure. It is easy to see that

ρZ(u, v) = 1 +
CovZ(τZ,1(u), τZ,2(v))

uv
.

By this connection, we name ρZ(u, v) as frequency-specific adjusted covariance mea-

sure.

The proposed measure ρZ(u, v) is easy to interpret. For example, ρZ(u, v) > 1

indicates that the counts of type-1 recurrent events at time τZ(u) and the counts
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of type-2 recurrent events at time τZ(v) are positively associated. That is, greater

(smaller) cumulative recurrences of type-1 events at time to expected frequency u tend

to be associated with greater (smaller) cumulative recurrences of type-2 events at time

to expected frequency v, conditionally on Z. Similarly, 0 < ρZ(u, v) < 1 may suggest

that greater (smaller) cumulative recurrences of type-1 events at time to expected

frequency u tend to be associated with smaller (greater) cumulative recurrences of

type-2 events at time to expected frequency v, conditionally on Z. When N1(·) and

N2(·) are independent, we have ρZ(u, v) = 1 for all u, v > 0.

4.1.3 Proposed regression model for ρZ(u, v)

Given the fact that ρZ(u, v) is always positive, we propose a regression model for

ρZ(u, v) that takes the form,

ρZ(u, v) = exp{ZTα0(u, v)}, u, v > 0, (4.5)

where α0(u, v) is a (p+ 1)×1 vector of regression coefficients and a function of u and

v. The intercept term represents the the association between N1(·) and N2(·) in the

baseline group (i.e., Z1 = ... = Zp = 0) and the remaining p coefficients depict the

deviations from the baseline association resulted from one unit or category change in

the corresponding covariates.

Note that ρZ(·, ·) involves τZ,1(·) and τZ,2(·), the marginal time to expected fre-

quency given Z. To facilitate the estimation of α0(·, ·), we propose to estimate τZ,k(·)

first, assuming accelerated recurrence time models for both types of recurrent events.

More specifically, we adopt the model

τZ,k(u) = exp{ZTβk0(u)}, u > 0, (4.6)

for k = 1, 2, where βk0(u) is a (p + 1) × 1 vector of regression coefficients and a
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function of u. The estimation of βk0(u) in model (4.6) was studied by Sun et al.

(2015) for recurrent events data subject to window observation.

4.2 Estimation Procedure

4.2.1 Estimation of βk0(·)

We estimate βk0(·) by following the method of Sun et al. (2015). Specifically, we

employ the estimating equation

n1/2Skn(βk, u) = 0, k = 1, 2,

where

Skn(βk, u) =
1

n

n∑
i=1

Zi

{
Nki(e

ZTi βk(u))−
∫ u

0

Yki(e
ZTi βk(s))ds

}
.

The estimator of βk0(·), denoted by β̂k(·), is defined as a right-continuous piece-

wise constant function jumping only on pre-specified grids that were denoted by

{0 = u0 < u1 < ... < uL(n) = U}. Set exp{ZT
i β̂k(0)} = 0 for all i because of

τZ,k(0) = 0. Then β̂k(ul), l = 1, ..., L(n), can be obtained by sequentially solving the

estimating equation,

n−1/2

n∑
i=1

Zi

{
Nki(e

ZTi βk(ul))−
l−1∑
p=0

Yki(e
ZTi β̂k(up))(up+1 − up)

}
= 0,

for βk(ul). Under certain conditions, Sun et al. (2015) established the uniform con-

sistency and the root-n weak convergence of the resultant estimators.
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4.2.2 Proposed estimation procedure for α0(·, ·)

To construct an estimating equation for α0(u, v), we use the fact that

EZ [Ñ1(s)Ñ2(t)] = EZ

{∫ s

0

∫ t

0

Y1(x)Y2(y)
∂2

∂x∂y
EZ [N1(x)N2(y)]dydx

}
. (4.7)

Equation (4.7) holds because under the assumption that L and R are independent of

Nk(·) given Z, k = 1, 2, we have

∂2

∂x∂y
EZ [Ñ1(x)Ñ2(y)]

= lim
∆x→0,∆y→0

1

∆x∆y
EZ [{Ñ1(x+ ∆x)− Ñ1(x)}{Ñ2(y + ∆y)− Ñ2(y)}]

= lim
∆x→0,∆y→0

1

∆x∆y
EZ [E({Ñ1(x+ ∆x)− Ñ1(x)}{Ñ2(y + ∆y)− Ñ2(y)}|L,R)]

= lim
∆x→0,∆y→0

1

∆x∆y
EZ [I(L ≤ x ≤ R)I(L ≤ y ≤ R){N1(x+ ∆x)−N1(x)}{N2(y + ∆y)−N2(y)}]

= EZ [Y1(x)Y2(y)]
∂2

∂x∂y
EZ [N1(x)N2(y)].

To simplify the notation, we denote ΦZ(x, y) = EZ [N1(x)N2(y)]. Then under

models (4.5) and (4.6), we have ΦZ(eZ
Tβ10(s), eZ

Tβ20(t)) = st exp{ZTα0(s, t)} for s, t >

0. Equation (4.7) implies that

EZ

{
Ñ1(eZ

Tβ10(u))Ñ2(eZ
Tβ20(v))

−
∫ u

0

∫ v

0

Y1(eZ
Tβ10(s))Y2(eZ

Tβ20(t))
∂2

∂s∂t
[st exp{ZTα0(s, t)}]dtds

}
= 0. (4.8)

Therefore, we propose the following estimating equation for α0(u, v):

n1/2Sn(β̂1, β̂2,α, u, v) = 0, (4.9)
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where

Sn(β̂1, β̂2,α, u, v) =
1

n

n∑
i=1

Zi

{
Ñi1(eZ

T
i β̂1(u))Ñi2(eZ

T
i β̂2(v))

−
∫ u

0

∫ v

0

Yi1(eZ
T
i β̂1(s))Yi2(eZ

T
i β̂2(t))

∂2

∂s∂t
[st exp{ZT

i α(s, t)}]dtds
}
.

We can show that equation (4.9) is asymptotically unbiased given equation (4.8) and

the uniform consistency of β̂k(·), k = 1, 2.

4.2.3 Algorithm to obtain the estimator of α0(·, ·)

The stochastic integral representation of Sn(β̂1, β̂2,α, u, v) suggests a grid-based esti-

mation procedure for α0(·, ·). Define grids SL1(n) = {0 = u0 < u1 < ... < uL1(n) = U}

and SL2(n) = {0 = v0 < v1 < ... < vL2(n) = V }. The proposed estimator α̂(·, ·)

is defined as a block-wise constant function jumping only at grids {(up, vq) : p =

1, ..., L1(n), q = 1, ..., L2(n)}. We let grids SL1(n) and SL2(n) satisfy the condition-

s of Sun et al. (2015) and follow their algorithm to obtain β̂1(·) and β̂2(·). Given

st exp{ZTα0(s, t)} = 0 for st = 0, we set st exp{ZT
i α̂(s, t)} = 0 for all i.

Based on equation (4.9), we propose to obtain α̂(ul, vm), l = 1, ..., L1(n),m =

1, ..., L2(n), by sequentially solving the following estimating equation for α(ul, vm):

n−1/2

n∑
i=1

Zi

{
Ñi1(eZ

T
i β̂1(ul))Ñi2(eZ

T
i β̂2(vm))− Yi1(eZ

T
i β̂1(ul−1))Yi2(eZ

T
i β̂2(vm−1))

[
ulvm exp{ZT

i α(ul, vm)}

− ulvm−1 exp{ZT
i α̂(ul, vm−1)} − ul−1vm exp{ZT

i α̂(ul−1, vm)}+ ul−1vm−1 exp{ZT
i α̂(ul−1, vm−1)}

]
− Si(l − 2,m− 2, α̂)

}
= 0, (4.10)
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where

Si(l,m,α) =
m∑
q=0

l∑
p=0

Yi1(eZ
T
i β̂1(up))Yi2(eZ

T
i β̂2(vq))

[
up+1vq+1 exp{ZT

i α(up+1, vq+1)}

− upvq+1 exp{ZT
i α(up, vq+1)} − up+1vq exp{ZT

i α(up+1, vq)}+ upvq exp{ZT
i α(up, vq)}

]
.

More specifically, we can follow the following algorithm to obtain α̂(ul, vm):

1. Let p̄ = p = 1, q̄ = q = 1. Obtain α̂(u1, v1) by solving equation (4.10).

2. Let p = p + 1. Obtain α̂(up, vq̄) by solving equation (4.10). Repeat this step

until p = l.

3. Let q = q + 1. Obtain α̂(up̄, vq) by solving equation (4.10). Repeat this step

until q = m.

4. Let p̄ = p̄+ 1 and q̄ = q̄ + 1.

5. Go back to step 2 unless p̄ = l or q̄ = m.

6. If p̄ = l, q̄ = m, then output α̂(up̄, vq̄). If p̄ < l, q̄ = m, then repeat step 2 until

p = l and output α̂(up, vq̄). If p̄ = l, q̄ < m, then repeat step 3 until q = m and

output α̂(up̄, vq).

Note that, for each fixed (ul, vm), equation (4.10) is continuous and monotone in

α(ul, vm) and thus is not prone to the multiple solution issue. This fact facilitates

the computation. In numerical studies, we adopt the nleqslv() function in R package

nleqslv, which implements the algorithm of Dennis and Schnabel (1996).

4.2.4 Inference

To make inference on α0(u, v), bootstrapping procedures can be used. Denote

α̂∗(u, v) as the bootstrap estimator. It can be shown that the distribution of
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n1/2{α̂∗(u, v) − α̂(u, v)} conditionally on the observed data and the unconditional

distribution of n1/2{α̂(u, v) − α0(u, v)} have the same limiting distribution. By re-

peatedly resampling from the observed data {Ni1(·), Ni2(·),Zi, Li, Ri}ni=1, one may

obtain a large number of realizations of n1/2{α̂∗(u, v) − α̂(u, v)}, the empirical dis-

tribution of which can be used to give the covariance estimate for α̂(u, v) or the

confidence interval for α0(u, v).

4.3 Simulation Studies

Simulation studies are conducted to examine the finite sample properties of the pro-

posed methods. We consider a scenario, where the type-k recurrent events are gen-

erated based on a process which has the intensity function,

λk(t|Z, γ) = [2t+ ck1γ]I(Z = 1) + ck2γI(Z = 0), k = 1, 2,

where Z ∼ Bernoulli(0.5), γ is a Gamma frailty with mean 1 and variance σ2, ck1

and ck2 are some constants for k = 1, 2. It can be shown that

τZ,k(u) = exp{log(u/ck2) + [log(
−ck1 +

√
c2
k1 + 4u

2
)− log(u/ck2)]Z}, k = 1, 2,

ρZ(u, v) = exp{log(σ2 + 1) + [log(
4c11c21σ

2

(c11 +
√
c2

11 + 4u)(c21 +
√
c2

21 + 4v)
+ 1)− log(σ2 + 1)]Z}.

Covariate Z has varying-effects on τZ,k(u), k = 1, 2, and ρZ(u, v).

We set c11 = 1.5, c12 = 1.8, c21 = 1, c22 = 1.5 and choose σ2 to be 0 or 1. Note

that σ2 = 0 indicate intra-subject event times are independent. We generate L from

ω · Unif(0, 1.5) and R from Unif(L + 1, 3), where ω is a Bernoulli(0.8) variate.

Then the average numbers of observed recurrent events per subject for type-1 and

type-2 events are about 4.5 and 5.3, respectively. Under each selection of σ2, we

generate 1000 simulated data sets of sample size n = 400. For bootstrapping-based
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inference, the resampling size of 200 is chosen. We adopt an equally-spaced grid on

both u ∈ (0, 3] and v ∈ (0, 3] with grid size, 0.02.

Figure 4.1 presents the empirical bias (EmpBias) of the proposed estimator, as

well as its empirical standard error (EmpSE), average estimated standard error based

on bootstrapping (EstSE) and the ratio, EmpBias/EmpSE, for the setup with σ2 = 1.

The first row is for the intercept and the second row is for the covariate coefficient.

The plot of EmpBias in the first row shows that the intercept estimate has small bias

except for those corresponding to small u or v. The plot of EmpBias/EmpSE also

indicates the magnitude of bias is mostly within 10% of the corresponding standard

error. We have similar observations for the estimator of the covariate coefficien-

t. The EmpBias/EmpSE ratios are smaller; most have a magnitude less than 6%.

Bootstrapping-based standard error estimates for both intercept and covariate coef-

ficient agree well with corresponding empirical standard errors except at small u or

v.

Figure 4.2 presents the simulation results of α̂(u, v) for the setup with σ2 = 0 and

shows similar observations. Except at small u or v, the estimates have small bias.

The absolute values of EmpBias/EmpSE for estimated intercept are mostly within

10% and those for estimated covariate coefficient are within 6%. Bootstrapping-based

standard error estimates agree with the empirical standard errors well except at small

u or v.

4.4 An Application to CFFPR Data

Cystic Fibrosis (CF) is a lethal autosomal disease without known cure yet that com-

monly affects Caucasians due to mutation of CFTR gene. Pseudomonas aeruginosa
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(PA) and Staphylococcus aureus (SA) are two major pathogens of medical concerns

for CF patients, but the interplay occurring between the two remains largely un-

known. To address this question and also see how the interplay would be influenced

by potential risk factors, we apply the proposed method to the data from 2799 chil-

dren documented in 1986-2008 CFF Patient Registry (CFFPR), who were born in or

after 1998 with at least one F508del mutation, insufficient pancreatic status (defined

as ever on pancreatic enzymes) and at least 5 years of follow-up in the registry. The

vector Z consists of three covariates, representing gender, patient’s CFTR genotype

(F508del homozygous/heterozygous) and meconium ileus (MI) status. We let Z1 = 1

for girls and 0 otherwise; Z2 = 1 for F508del heterozygous and 0 otherwise; Z3 = 1

for MI and 0 otherwise.

In our analysis, time from birth to registry entry constitutes L and we treat L

less than one month as zero. Out of 2799 children, there are 309 (11%) children with

L = 0, 1403(50%) girls, 1047 (37%) with heterozygous F508del mutations and 779

(28%) with MI. Age at the first CFFPR visit ranges from 0 to 5.4 years with mean=0.7

years and median=0.4 years. Mean numbers of PA infections and SA infections per

subject are 3.9 and 9.5, respectively. Corresponding median numbers are 2 and 8,

respectively.

We first study the effects of covariates on the timing of PA infections by fitting

marginal model (4.6) over u ∈ (0, 2]. The resulting coefficient estimates and 95%

pointwise confidence intervals are displayed In Figure 4.3. It shows that gender and

CFTR genotype have little impact on the timing of PA infection recurrences. The

coefficient for MI is significantly smaller than zero when u is small but is close to zero

when u > 0.3. This may suggest some disadvantage for CF patients with MI in the

early occurrence of PA infections.

We make similar analysis on the timing of SA infections over v ∈ (0, 7]. Figure 4.4

depicts the estimated effects of covariates with the 95% pointwise confidence intervals.
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Interestingly, we observe that MI demonstrates a strong positive effect on the timing

of SA recurrence. This suggests that MI may have some protecting effect for CF

children in terms of SA infection recurrence.

Next, we study the effects of covariates on the frequency-specific association be-

tween early recurrences of SA infection and recurrences of PA infection, ρZ(u, v), by

fitting model (4.5). We pick three expected frequency v values of 0.5, 1, 1.5, for SA

infection. In Figure 4.5, we plot the estimated coefficients α̂(u, v) with corresponding

95% pointwise Wald-type bootstrapping confidence intervals at these selected v, re-

spectively. In this figure, negative estimates are found for the intercept and generally

significant over u ∈ (0, 1] at v = 1 and u ∈ (0, 0.76] at v = 1.5. This suggests that for

the reference group, which consists of CF boys with homozygous F508del mutations

and no MI, early recurrences of SA infection would postpone early recurrences of PA

infection. Gender and CFTR genotype seem to have no effects on on ρZ(u, v), but

MI has positive significant effect over u ∈ (0, 1.34] at v = 1 and u ∈ (0, 2] at v = 1.5,

respectively.

To garner a clearer picture about the association between recurrences of SA in-

fection and recurrences of PA infection, we further depict the estimated ρ̂Z(u, v) in

8 subgroups that are defined by the eight possible combinations of covariate values.

Figure 4.6 and Figure 4.7 plot the estimated ρ̂Z(u, v) with corresponding 95% point-

wise bootstrapping confidence intervals at fixed expected frequency v values of 0.5, 1,

1.5, respectively. In Figure 4.6, the first column is for the reference group, CF boys

with homozygous F508del mutations and no MI. Negative estimated ρ̂Z(u, v) gener-

ally over u ∈ (0, 1] at v = 1 and v = 1.5 indicate early recurrences of SA infection

being negatively associated with early recurrences of PA infection, and the same as
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suggested by Figure 4.5. The third column is for CF boys with heterozygous F508del

mutations and no MI. Its significantly negative estimates generally over u ∈ (0.6, 1.1)

at v = 1 and v = 1.5 also imply that early recurrences of SA infection would postpone

early recurrences of PA infection. In Figure 4.7, similar negative association patterns

are found for CF girls without MI, regardless of their CFTR genotypes.

We follow the same procedures to study the effects of covariates on the associa-

tion between early recurrences of PA infection and recurrences of SA infection, by

choosing three expected frequency values of 0.5, 1, 1.5, for PA infection. Figure 4.8

plot the estimated coefficients α̂(u, v) with corresponding 95% pointwise Wald-type

bootstrapping confidence intervals, showing that MI has significantly positive effect

on ρZ(u, v) generally over v ∈ (0, 4.5]. Negative association are still found in the

reference group, generally over v ∈ (0, 2] at u = 0.5 and at u = 1, suggesting early

recurrences of PA infection and early recurrences of PA infection are negatively as-

sociated. From Figure 4.9 and Figure 4.10, we can see that early recurrences of PA

infection is negatively associated with early recurrences of SA infection in subgroups

of CF girls without MI. For CF boys with heterogynous F508del mutations and MI,

estimated ρ̂Z(u, v) is positively significant for v > 2. This may indicate early recur-

rences of PA infections do not influence early recurrence of SA infection, but would

boost the latter’s later-on recurrences.
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Chapter 5

Summary and Future Work
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5.1 Summary

In this dissertation, we focus on two data scenarios that are often encountered in

biomedical follow-up studies, semi-competing risks data and bivariate recurrent events

data. We develop methods to study dynamic association patterns embedded in these

data scenarios..

In the semi-competing risks scenario, we propose a robust measure that can flexi-

bly capture the dynamic pattern of the dependence structure between the nonterminal

event and the terminal event. We develop a simple nonparametric estimator that can

account for left truncation, but require that the gap time between truncation and cen-

soring is independent of the truncation time itself. The established asymptotic results

as well as estimating and inference procedures can be extended to adjust for covari-

ates. Simulation studies show satisfactory performance of our method with moderate

sample size. An application to the Denmark diabetes registry data demonstrates

practical utility of our proposal.

We further develop an estimator for the proposed semi-competing risks depen-

dence measure which can accommodate a more general left truncation scenario. Sim-

ulation studies demonstrate that the new proposal performances well with moderate

sample size, while the former approach can lead to considerably biased estimation

due to the violation of the strong left truncation assumption. The new method is also

illustrated by an application to the Denmark diabetes registry data.

For bivariate recurrent events data setting, we propose to explore the association

between bivariate recurrent events processes under an observation window structure.

We develop a regression framework for the proposed measure to allow for assessing

how the association is in influenced by covariates. The estimating and inference

procedure are proposed along with an efficient iterative algorithm. Simulation studies

suggest the validity of our proposal. We analyze the CFFPR data by using this new

method.
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5.2 Future Work

We plan to complete the ongoing work on the bivariate recurrent event data in the

near future. First, we will establish the asymptotic properties, including uniform

consistency and weak convergence, of the proposed estimator. We will further conduct

additional simulations, for example, for the case with a continuous covariate.

In what follows we describe some possible topics for future work. One direction

is to explore the covariates effects on the dependence measure LCQRR(τ ; t0) of the

nonterminal and terminal event in a more general scenario, where (L,C) is allowed

to depend on covariates. It would also be very desirable to develop methods that can

accommodate time-dependent covariates.

For the bivariate recurrent event data, we employ grid-based estimation proce-

dures, for which sufficiently small grid size is warranted for nice asymptotic results.

It may be interesting to develop a grid-free approach. This may also merit future

research.



91

Bibliography

Abu-Libdeh, H., Turnbull, B. W., and Clark, L. C. (1990). Analysis of multi-type

recurrent event in longitudinal studies: application to a skin cancer prevention trial.

Biometrics 46, 1017–1034.

Alexander, K. (1984). Probability inequalities for empirical processes and a law of

the iterated logarithm. The Annals of Probability 12, 1041–1067.

Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding, N. (1993). Statistical Models

Based on Counting Processes. Springer, New York.

Asgharian, M., M’Lan, C., and Wolfson, D. (2002). Length-biased sampling with

right censoring. The Annals of Probability 97, 201–209.

Cai, J. and Schaubel, D. E. (2004). Marginal means/rates models for multiple type

recurrent event data. Lifetime Data Analysis 10, 121–138.

Chen, X., Wang, Q., Cai, J., and Shankar, V. (2012). Semiparametric additive

marginal regression models for multiple type recurrent events. Lifetime Data Anal-

ysis 18, 504–527.

Chen, Y. H. (2012). Maximum likelihood analysis of semicompeting risks data with

semiparametric regression models. Lifetime Data Analysis 18, 36–57.

Clayton, D. G. (1978). A model for association in bivariate life tables and its appli-



92

cation in epidemiological studies of familial tendency in chronic disease incidence.

Biometrika 65, 141–151.

Cook, R. J., Lawless, J. F., and Lee, K. A. (2010). A copula-based mixed poisson

model for bivariate recurrent events under event-dependent censoring. Statistics in

Medicine 29, 694–707.

Dennis, J. J. and Schnabel, R. (1996). Numerical Methods for Unconstrained Opti-

mization and Nonlinear Equations. Siam.

Doss, H. (1989). On estimating the dependence between two point processes. The

Annals of Statistics 17, 749–763.

Fine, J. P., Jiang, H., and Chappell, R. (2001). On semi-competing risks data.

Biometrika 88, 907–919.

Fygenson, M. and Ritov, Y. (1994). Monotone estimating equations for censored

data. Biometrika 22, 732–746.

Ghosh, D. (2006). Semiparametric inferences for association with semi-competing

risks data. Statistics in Medicine 25, 2059–2070.

Gijbels, I., Veraverbeke, N., and Omelka, M. (2011). Conditional copulas, association

measures and their applications. Computational Statistics and Data Analysis 55,

1919–1932.

Gijbels, I. and Wang, J. (1993). Strong representations of the survival function esti-

mator for truncated and censored data with applications. Journal of Multivariate

Analysis 47, 210–229.

Gorfine, M., Zucker, D. M., and Hsu, L. (2006). Prospective survival analysis with

a general semiparametric shared frailty model: A pseudo full likelihood approach.

Biometrika 93, 735–741.



93

Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer, New York.

Hsieh, J.-J., Wang, W., and Ding, A. A. (2008). Regression analysis based on semi-

competing risks data. Journal of the Royal Statistical Society Series B 70, 3–20.

Hsu, L., Gorfine, M., and Malone, K. (2007). On robustness of marginal regression

coefficient estimates and hazard functions in multivariate survival analysis of family

data when the frailty distribution is mis- specified. Statistics in Medicine 26, 4657–

4678.

Hsu, L. and Prentice, R. (1996). On assessing the strength of dependency between

failure time variates. Biometrika 83, 491–506.

Huang, Y. and Peng, L. (2009). Accelerated recurrence time models. Scandinavian

Journal of Statistics 36, 636–648.

Jin, Z., Ying, Z., and Wei, L. J. (2001). A simple resampling method by perturbing

the minimand. Biometrika 88, 381–390.

Lai, T. and Ying, Z. (1988). Stochastic integrals of empirical-type processes with

applications to censored regression. Journal of Multivariate Analysis 27, 334–358.

Lakhal, L., Rivest, L.-P., and Abdous, B. (2008). Estimating survival and association

in a semicompeting risks model. Biometrics 64, 180–188.

Li, R., Cheng, Y., and Fine, J. P. (2014). Quantile assciation regression models.

Journal of the American Statistical Association 109, 230–242.

Li, R. and Peng, L. (2011). Quantile regression for left-truncated semi-competing

risks data. Biometrics 67, 701–710.

Lin, D. and Ying, Z. (1993). A simple nonparametric estimator of the bivariate

survival function under univariate censoring. Biometrika 80, 573–581.



94

Ma, Y. and Yin, G. (2010). Semiparametric median residual life model and inference.

The Canadian Journal of Statistics 34, 665–679.

Ning, J., Chen, Y., Cai, C., Huang, X., and Wang, M. (2015). On the depen-

dence structure of bivariate recurrent event processes: Inference and estimation.

Biometrika in press.

Oakes, D. (1982). A model for association in bivariate survival data. Journal of the

Royal Statistical Society Series B 44, 414–422.

Oakes, D. (1989). Bivariate survival models induced by frailties. Journal of the

American Statistical Association 84, 487–493.

Parzen, M., Wei, L., and Ying, Z. (1994). A resampling method based on pivotal

estimating functions. Biometrika 81, 341–350.

Peng, L. and Fine, J. P. (2007). Regression modeling of semi-competing risks data.

Biometrics 63, 96–108.

Peng, L. and Fine, J. P. (2009). Competing risks quantile regression. Journal of the

American Statistical Association 104, 1140–1453.

Pepe, M. S. (1991). Inference for events with dependent risks in multiple endpoint

studies. Journal of the American Statistical Association 86, 770–778.

Prentice, R. and Cai, J. (1992). Covariance and survivor function estimation using

censored multivariate failure time data. Biometrika 79, 495–512.

Ripley, B. D. (1976). The second-order analysis of stationary point process. Journal

of Applied Probability 13, 255–266.

Schaubel, D. E. and Cai, J. (2005). Semiparametric methods for clustered recurrent

event data. Lifetime Data Analysis 11, 405–425.



95

Shen, Y. and Thall, P. F. (1998). Parametric likelihoods for multiple non-fatal com-

peting risks and death. Statistics in Medicine 17, 999–1015.

Sun, L., Zhu, L., and Sun, J. (2009). Regression analysis of multivariate recurrent

event data with time-varying covariate effects. Journal of Multivariate Analysis

100, 2214–2223.

Sun, X., Peng, L., Huang, Y., and Lai, H. (2015). A generalized framework for

censored quantile regression based on counting process. Journal of the American

Statistical Association in press.

Therneau, T. M. and Grambsch, P. M. (2000). Modeling Survival Data: Extending

the Cox Model. Springer-Verlag, New York.

Van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes:

with Applications to Statistics. Springer, New York.

Ventura, V., Cai, C., and Kass, R. E. (2005). Statistical assessment of time-varying

dependency between two neurons. J Neurophysiol 94, 2940–7.

Veraverbeke, N., Omelka, M., and Gijbels, I. (2011). Estimation of a conditional

copula and association measures. Scandinavian Journal of Statistics 38, 766–780.

Wang, M. (1991). Nonparametric estimation from cross-sectional survival data. Jour-

nal of the American Statistical Association 86, 130–143.

Wang, M. (2003). Estimating the association parameter for copula models under

dependent censoring. Journal of the Royal Statistical Society Series B 65, 257–

273.

Yan, J. and Fine, J. P. (2005). Functional association models for multivariate survival

processes. Journal of the American Statistical Association 100, 184–196.


