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Abstract 

 

The development and application of advanced PM2.5 exposure models driven by satellite 

data 

By Qingyang Xiao 

Introduction  

Satellite aerosol optical depth (AOD) has been increasingly used to predict ground level 

PM2.5 concentrations and assess PM2.5 exposures. However, non-random missing AOD 

due to cloud/snow cover and the complex non-linear relationship between AOD and 

PM2.5 concentration make this task highly challenging. Previous studies used ground 

PM2.5 measurements to fill missing data and included predictors constructed from ground 

measurements to improve model performance; however, these strategies cannot be 

applied in developing regions where historical air quality measurements are unavailable. 

In this study, we developed an original gap-filling method that provided high-resolution 

complete-coverage PM2.5 predictions (Aim 1). Then the maternal PM2.5 exposure was 

assessed by satellite-based PM2.5 predictions to estimate its associations with adverse 

birth outcomes in Shanghai, China (Aim 2). In Aim 3, an ensemble machine learning 

model was developed to hindcast historical PM2.5 levels in China where routine air 

quality monitoring began only recently. 

Methods  

For Aim 1, we applied the Multiple Imputation (MI) method that combined the emerging 

high-resolution satellite retrievals with chemical transport model (CTM) AOD 

simulations and cloud fraction retrievals to fill missing AOD. Then we fitted a two-stage 

statistical model driven by gap-filled AOD, meteorology and land use information to 

estimate daily PM2.5 concentrations in the Yangtze River Delta at 1-km resolution. For 

Aim 2, birth registration records of 132 783 singleton live births during 2011-2014 in 

Shanghai were obtained and maternal exposures were assessed with satellite predictions 

from Aim 1. Linear and logistic regressions were used to estimate associations with term 

birth weight and term low birth weight, respectively. Logistic and discrete-time survival 

models were used to estimate associations with preterm birth. For Aim 3, a clustering 

method was designed to control unobserved spatial heterogeneity in PM2.5 prediction 

models. Regional models for each cluster were trained with various machine learning 

algorithms, including random forest, generalized additive model and extreme gradient 

boosting. Then we fitted a generalized additive model that fused predictions from these 

algorithms to improve hindcast accuracy and robustness. 

Results  

In Aim 1, our gap-filling method did not rely on ground PM2.5 measurements and 

performed better than previous gap-filling methods with complete coverage and high 

accuracy. In Aim 2, we observed decreased term birth weight, increased risk of preterm 

birth, and increased risk of term low birth weight in association with maternal PM2.5 

exposure. We noticed that satellite-based exposure assessments without accounting for 

missing data led to attenuation of estimated health effects. In Aim 3, our ensemble model 



provided more accurate PM2.5 hindcasts at daily and monthly level compared with 

previous models. Cluster-based models outperformed corresponding national models.  

Conclusions  

We presented a gap-filling method that corrected the exposure bias due to missing 

satellite data and a machine learning-based ensemble model that provided reliable 

historical PM2.5 predictions. Our methods can support epidemiological studies on the 

chronic and acute health effects of PM2.5 in highly polluted regions with limited ground 

PM2.5 monitoring.  
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INTRODUCTION 

Numerous studies have documented the associations between PM2.5 (fine particulate matter with 

an aerodynamic diameter of 2.5 µm or less) and adverse health outcomes. The 2015 Global 

Burden of Diseases study identified ambient PM2.5 as the fifth largest overall risk factor for global 

mortality and PM2.5 exposure is responsible for 4.2 million deaths in 2015 [1]. This study also 

pointed out that the uncertainty of the estimated health burden was partly due to the lack of 

epidemiological evidence on the health effects of PM2.5 in highly polluted regions. Most studies 

on the health effects of PM2.5, especially chronic health effects of PM2.5, are conducted in 

developed regions where historical monitoring records are available and exposure levels are low. 

Epidemiological studies in highly polluted regions are needed to further elucidate the magnitude 

of PM2.5-associated health effects, and provide crucial information on the shape of PM2.5 

concentration-response curves at high exposure levels [2]. However, these studies are hindered by 

the lack of PM2.5 measurements. For instance, in China, the annual average PM2.5 exposure can be 

over 150 μg/m3, but the national air quality monitoring network was established since 2013 so 

that PM2.5 measurements before 2013 were unavailable.  

To extend ground air quality monitoring networks, satellite remote sensing retrieved aerosol 

optical depth (AOD) has been increasingly used for air pollution monitoring and exposure 

assessment in the past decade [3, 4]. Satellite data with broad coverage, a long historical record 

and high spatial resolutions can contribute to assessment of air pollution exposure levels in 

epidemiological studies. Specifically, for studies in the U.S., satellite predictions were employed 

to increase spatial coverage and resolution of ground measurements. For studies in developing 

regions where long-term monitoring of PM2.5 is unavailable, satellite predictions can not only 

extend ground monitoring networks in space, but also provide valuable information on historical 

PM2.5 levels. However, missingness in satellite data and degraded hindcast quality have raised 
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concerns regarding the usage of satellite predictions in epidemiological studies in these regions 

[5, 6]. Previously developed PM2.5 prediction models in the North America and Europe used 

ground PM2.5 measurements to fill missing satellite data [7-9], and included daily random effects 

or predictors constructed from PM2.5 measurements to improve model performance [7, 10]. 

Unfortunately, these strategies cannot be applied to regions where historical air pollution 

measurements are unavailable. Thus, a gap-filling method without relying on ground 

measurements is needed in developing regions to ensure unbiased long-term exposure 

assessments aggregated during certain exposure windows. Similarly, although daily random 

effects controlled the unobserved temporal variations in associations between PM2.5 

concentrations and explanatory variables, applying these random effects outside the model fitting 

period imposes a strong and often unrealistic assumption that the estimated daily random effects 

during the model fitting period will remain constant during the hindcast period. Violation of this 

assumption can partly explain the decreased hindcast accuracy reported in previous models [11, 

12]. Including smooth surfaces of PM2.5 constructed from ground measurements better described 

the spatial auto-correlation in PM2.5, but sacrificed the model hindcast ability. Thus, a PM2.5 

prediction model that provides high-accuracy PM2.5 hindcast predictions is urgently needed to 

support environmental health studies in highly polluted regions. 

DISSERTATION AIMS  

The three aims of this dissertation are listed as follows. Aim 1: To develop a multi-stage model 

that fills the missing AOD values and predicts ground PM2.5 concentrations with complete 

coverage at high resolution. Aim 2: To apply satellite predictions from Aim 1 for exposure 

assessment and estimate the associations between maternal PM2.5 exposure and adverse birth 

outcomes in Shanghai, a highly polluted region. Aim 3: To train a machine learning based 

ensemble model that provides high-accuracy hindcast PM2.5 predictions.  
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To address these aims, we conducted three studies in China. Aim 1 was conducted in Yangtze 

River Delta, where summer monsoon season with weeks of rainy and cloudy weather leads to 

more than 60% missing satellite data annually. We obtained the emerging satellite aerosol 

retrievals at 1-km resolution to reveal local scale variation in PM2.5 distribution. We developed an 

original gap-filling method including satellite cloud products in order to account for aerosol-cloud 

interactions when filling missing AOD data. Thus, our model provides PM2.5 predictions with 

complete coverage in space and time. To examine the potential benefits of employing fine-

resolution satellite predictions in exposure assessment and the effects of missing satellite data on 

the estimated chronic health effects, we conducted an epidemiological study in Shanghai with 

three exposure metrics assessed from satellite predictions with missingness, gap-filled satellite 

predictions with complete coverage, and measurements from ground central monitors (Aim 2). In 

Aim 3, a national model was developed with satellite data at 10-km resolution. We aimed to 

extend PM2.5 monitoring networks in time. Thus, we abandoned daily effects and predictors 

constructed from ground measurements. We also proposed a clustering method that improved 

model performance by controlling unobserved spatial heterogeneity. To improve accuracy and 

robustness of the satellite driven PM2.5 predictions, we trained various machine learning models, 

including random forest, extreme gradient boosting, and generalized additive model, and fused 

predictions from these models by an ensemble model.  

The methods developed in Aim 1 and Aim 3 allow researchers to estimate PM2.5 levels in regions 

with limited PM2.5 monitoring data and assess health effects of PM2.5 in these regions. The 

findings in Aim 2 indicated that satellite predictions without accounting for missing data led to 

attunation of estimated chronic health effects of PM2.5. Exposure assessed from high-resolution 

satellite predictions revealed local-scale spatial variations and increased the precision of 

estimated health effects.  



4 

 

REFERENCES 

 

1. Forouzanfar, M.H., et al., Global, regional, and national comparative risk assessment of 
79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 
1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The 
Lancet, 2016. 388(10053): p. 1659-1724. 

2. Tonne, C., A call for epidemiology where the air pollution is. The Lancet Planetary Health, 
2017. 1(9): p. e355-e356. 

3. Sorek-Hamer, M., A.C. Just, and I. Kloog, Satellite remote sensing in epidemiological 
studies. Current opinion in pediatrics, 2016. 28(2): p. 228-234. 

4. Weng, Q., et al., Use of earth observation data for applications in public health. 
Geocarto International, 2014. 29(1): p. 3-16. 

5. Li, R., et al., Estimating ground-level pm 2.5 using fine-resolution satellite data in the 
megacity of Beijing, China. Aerosol Air Qual. Res, 2015. 15: p. 1347-1356. 

6. Ma, X., et al., Can MODIS AOD be employed to derive PM2. 5 in Beijing-Tianjin-Hebei 
over China? Atmospheric Research, 2016. 181: p. 250-256. 

7. Kloog, I., et al., A new hybrid spatio-temporal model for estimating daily multi-year PM 
2.5 concentrations across northeastern USA using high resolution aerosol optical depth 
data. Atmospheric Environment, 2014. 95: p. 581-590. 

8. Kloog, I., et al., Using new satellite based exposure methods to study the association 
between pregnancy PM 2.5 exposure, premature birth and birth weight in 
Massachusetts. Environmental Health, 2012. 11(1): p. 1. 

9. Just, A.C., et al., Using high-resolution satellite aerosol optical depth to estimate daily 
PM2. 5 geographical distribution in Mexico City. Environmental science & technology, 
2015. 49(14): p. 8576-8584. 

10. Di, Q., et al., Assessing PM2. 5 exposures with high spatiotemporal resolution across the 
continental United States. Environmental science & technology, 2016. 50(9): p. 4712-
4721. 

11. Ma, Z., et al., Satellite-based spatiotemporal trends in PM2. 5 concentrations: China, 
2004-2013. Environmental Health Perspectives (Online), 2016. 124(2): p. 184. 

12. Xiao, Q., et al., Full-coverage high-resolution daily PM2. 5 estimation using MAIAC AOD 
in the Yangtze River Delta of China. Remote Sensing of Environment, 2017. 199: p. 437-
446. 

 



1 

 

Chapter 1 
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ABSTRACT  

Satellite aerosol optical depth (AOD) has been used to assess population exposure to fine 

particulate matter (PM2.5). The emerging high-resolution satellite aerosol product, Multi-

Angle Implementation of Atmospheric Correction (MAIAC), provides a valuable 

opportunity to characterize local-scale PM2.5 at 1-km resolution. However, non-random 

missing AOD due to cloud/snow cover or high surface reflectance makes this task 

challenging. Previous studies filled the data gap by spatially interpolating neighboring 

PM2.5 measurements or predictions. This strategy ignored the effect of cloud cover on 

aerosol loadings and has been shown to exhibit poor performance when monitoring 

stations are sparse or when there is seasonal large-scale missingness. Using the Yangtze 

River Delta of China as an example, we present a Multiple Imputation (MI) method that 

combines the MAIAC high-resolution satellite retrievals with chemical transport model 

(CTM) simulations to fill missing AOD. A two-stage statistical model driven by gap-

filled AOD, meteorology and land use information was then fitted to estimate daily 

ground PM2.5 concentrations in 2013 and 2014 at 1 km resolution with complete coverage 

in space and time. The daily MI models have an average R2 of 0.77, with an inter-quartile 

range of 0.71 to 0.82 across days. The overall model 10-fold cross-validation R2 (root 

mean square error) were 0.81 (25 µg/m3) and 0.73 (18 µg/m3) for year 2013 and 2014, 

respectively. Predictions with only observational AOD or only imputed AOD showed 

similar accuracy. Comparing with previous gap-filling methods, our MI method 

presented in this study performed better with higher coverage, higher accuracy, and the 

ability to fill missing PM2.5 predictions without ground PM2.5 measurements. This method 
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can provide reliable PM2.5 predictions with complete coverage that can reduce bias in 

exposure assessment in air pollution and health studies. 

KEYWORDS 

PM2.5, MAIAC, Chemical Transport Model (CTM), multiple imputation, gap filling, 

cloud fraction 
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INTRODUCTION  

Ambient air pollution, mostly PM2.5 (fine particulate matter with an aerodynamic diameter of 2.5 

µm or less), is responsible for more than 3 million premature deaths per year around the world in 

2010 [1]. The highest per capita mortality is reported in the Western Pacific region where 

persistent high PM2.5concentrations together with extremely high population density have raised 

serious public health concerns [2]. However, accurately assessing air pollution exposure in this 

region is challenging due to limited air pollution monitoring. To support exposure assessment for 

epidemiological studies and risk analysis, satellite aerosol optical depth (AOD) with global 

coverage, relatively high resolution, and a long data record has been employed to predict air 

pollution levels in the past decade [3-5]. Previous studies indicated that satellite data can 

effectively extend ground air quality monitoring networks, but are challenged by non-random 

missingness due to cloud/snow cover, high surface reflectance, and extremely high aerosol 

loading that can be misclassified as cloud [6, 7].The non-random missingness in AOD retrievals 

may lead to bias in exposure assessment due to potential systematic differences in PM2.5 

concentrations when AOD is missing or retrieved. Zheng, Zhang [8] reported that the accuracy of 

annual PM2.5 predictions was lower than daily PM2.5 predictions due to missingness in AOD, even 

after correcting annual PM2.5 predictions with ground measurements. Other researchers raised 

concerns that large-scale seasonal missingness in satellite AOD will limit its usage in exposure 

assessment [9, 10].  

 

To improve the coverage of PM2.5 predictions and reduce bias in exposure assessment, various 

gap-filling methods have been proposed recently. One strategy is to develop regional retrieval 

algorithms that are more suitable for local geographic conditions and atmospheric characters to 
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retrieve more AOD pixels. For example, Li, Chen [11] improved the AOD retrieval algorithm and 

successfully retrieved AOD over bright targets in urban areas of north China during winter time 

where the MODIS Dark Target algorithm has failed. Van Donkelaar, Martin [7] relaxed the cloud 

screening criteria of MODIS Dark Target algorithm when studying the Moscow fire event in 

2010, leading to a 21% increase in AOD coverage. Although this strategy can significantly 

increase the coverage and potentially improve the accuracy of satellite AOD, it is restricted to 

specific study regions and cannot fill missing AOD with true cloud coverage. Another strategy is 

to use spatial statistical models to estimate missing retrievals from the spatiotemporal 

autocorrelation of PM2.5. For example, Just, Wright [12] used regional daily average PM2.5 

concentration and spatial smooth function to fill in missing PM2.5 predictions. Kloog, Nordio 

[3]used inverse probability weighting to address the non-random missingness when fitting 

prediction models, and then interpolated the missing PM2.5 predictions using PM2.5 predictions or 

measurements in surrounding grid cells with spatial smoothing. This method can improve the 

prediction coverage, but by relying on measurements from monitoring stations, it cannot fill 

missing data when predicting historical PM2.5 concentrations before the establishment of air 

quality monitoring network, and it may exhibit poorer performance if the monitoring networks 

are sparse or when data over large geographical regions are missing. For example, in 

Southeastern China, monsoon season leads to several months of rainy and cloudy weather 

covering several provinces. Additionally, since the spatial pattern was normally fitted monthly or 

seasonally, it may underestimate the variance of PM2.5. Moreover, complex cloud-aerosol 

interaction has been reported by previous studies [13, 14]. Cloud cover is associated with 

meteorological conditions that affect aerosol production and deposition [15], thus PM2.5 

concentrations may not be spatially similar under versus outside a cloud and filling PM2.5 

concentrations from nearby predictions may introduce error. 
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In addition to remote sensing techniques, chemical transport models (CTM), such as GEOS-

Chem [16] and CMAQ [17], have also been widely used to characterize atmospheric aerosol 

distribution, including PM2.5 concentrations, PM2.5 composition, and AOD. However, the 

accuracy of CTM simulations depend on the emissions inventory, meteorological input data as 

well as parameterization of chemical and physical processes included in the model[18]. Previous 

studies reported that the prediction error of CTM model varied spatially and seasonally [19, 20], 

and biased health effect estimates in epidemiological study [21]. For example, Appel, Chemel 

[20] reported that CMAQ overestimated PM2.5 by more than 30% over North America and 

underestimated PM2.5 by up to 55% in winter in Europe. Quennehen [22] evaluated seven models’ 

performance in predicting ozone and aerosols over East Asia. They showed an overestimation in 

black carbon and sulfate aerosols in urban regions in China, as well as a general underestimation 

in scattering aerosols in the boundary layer, due to errors in emissions inventory and physical 

processing. Although fusing ground measurements and model simulations could improve 

prediction accuracy [23], the error in CTM simulations may not be fully corrected in the fusion 

results. Moreover, although the spatial resolution of some CTM simulations can be as high as 4 

km in regional studies, typical model simulations are at a relatively low spatial resolution (> 10 

km), thus can hardly detect local-scale pollution variability that may be critical for some 

epidemiological studies [24].  

In this study, we propose a method that brings together the emerging satellite aerosol product and 

CTM simulations by multiple imputation to fill missing AOD. Taking advantage of the high 

resolution and high accuracy of the latest MAIAC satellite AOD and the complete coverage of 

CTM AOD, our model provide high-accuracy PM2.5 predictions with complete coverage at a 1-

km resolution. By filling in the missingness in AOD rather than in PM2.5 predictions, this model 
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also reduced systemic prediction error by including the meteorology and land use information of 

all the grid cells in model development. This method is generalizable and can provide high-

quality PM2.5 predictions in other regions, especially in regions with large-scale missingness in 

AOD. 

METHODS 

Study Region 

The study region (about 200,000 km2) covers the Yangtze River Delta of China including Jiangsu 

Province, Zhejiang Province and Shanghai Metropolitan area (Figure 1.1). It is one of the most 

populated regions on earth with approximately 156 million residents in 2010. This region is 

affected by summer monsoon with rainy and cloudy weather. A 50-km buffer was used in data 

collection and model development to ensure that gap-filled AOD and estimated PM2.5 

concentrations are of the same accuracy near the boundary as in the rest of the study domain. 

Datasets  

MAIAC AOD data 

The latest AOD data retrieved by the Multi-Angle Implementation of Atmospheric Correction 

(MAIAC) algorithm from measurements of the Aqua (crossover at 1:30 pm local time) and Terra 

(crossover at 10:30 am local time) Moderate Resolution Imaging Spectroradiometer (MODIS) 

instruments were used in this study [25, 26]. The fine spatial resolution (1 km) and high accuracy 

of MAIAC AOD makes it possible to characterize local-scale aerosol heterogeneity [27]. MAIAC 

algorithm uses time series analysis to characterize spectral surface reflectance which is required 

for aerosol retrievals. The combination of the time series and spatial analysis helps improve 

quality of cloud and snow detection. Because high AOD levels over China often trigger false 

cloud detection thus limiting aerosol retrievals, specific cloud tests and thresholds have been 
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regionally adjusted to ensure good MAIAC performance. MAIAC AOD retrievals have been used 

to estimate ground PM2.5 distributions and support air pollution epidemiological studies in the US 

and Mexico [12, 28-30]. In the current study, MAIAC data from January 1, 2013 to April 30, 

2015 were obtained from the MAIAC team. 

MAIAC provides quality assurance (QA) flags indicating the retrieval quality, including cloud 

mask, land/water/snow mask and adjacency mask (i.e., proximity to cloud or snow). Data 

cleaning was conducted based on the QA codes after calibrating MAIAC AOD against ground 

AOD from the Aerosol Robotic Network (AERONET). MAIAC pixels that were cloud 

contaminated or covered with snow were excluded [31]. To improve the coverage of MAIAC 

retrievals, a linear regression between daily Aqua and Terra MAIAC AOD was fitted and the 

regression coefficients were used to estimate missing Aqua/Terra AOD when only one of them is 

present. Then the observed and predicted AOD values were averaged to reflect daily aerosol 

loadings [32]. The 1-km grid of the MAIAC data was used for data integration. 

AERONET data 

AERONET measurements have been widely used as “ground truth” in satellite retrieval 

calibration and aerosol characterization [33]. AERONET AOD at 550 nm, interpolated from 

AOD at 500 and 675 nm, from two stations in our study region (Figure 1. 1), i.e., the Taihu 

station and the Xuzhou-CUMT station, were downloaded from the Goddard Space Flight Center 

(http://aeronet.gsfc.nasa.gov/). 

PM2.5 measurements 

There are 204 air quality monitoring stations in the study region (Figure 1. 1). Hourly PM2.5 

measurements from these stations are published in real time by the China National Environmental 

Monitoring Center (CNEMC, http://www.cnemc.cn/). Measurements were downloaded from 

PM25.in (http://pm25.in/), a direct mirror of data from CNEMC. Repeated identical 

http://aeronet.gsfc.nasa.gov/
http://www.cnemc.cn/
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measurements for at least three continuous hours were removed because these measurements are 

likely caused by instrument malfunction [34]. Hourly measurements less than 1μg/m3 were also 

removed because it is below the instruments’ limit of detection. Daily average PM2.5 

concentrations, calculated from hourly concentrations during 0:00-23:00 local time, were used as 

the dependent variable of our statistical model. For 2014 and 2015, days with less than 18 (75%) 

valid hourly measurements were excluded from the analysis. Due to lack of hourly data, ground 

PM2.5 measurements of year 2013 included all the daily average data [5]. 

Cloud, meteorology and land use data 

Cloud fraction (CF) data were obtained from Aqua and Terra Collection 6 level 2 cloud products 

(MYD06_L2 and MOD06_L2), at 5-km spatial resolution, downloaded from the LAADS website 

(https://ladsweb.nascom.nasa.gov/index.html). Daily CF was calculated as the average of Aqua 

and Terra CF. Other meteorological data including planetary boundary layer height (PBLH), 

mean air temperature, relative humidity, and wind speed in the planetary boundary layer, surface 

incident shortwave flux, relative humidity and air temperature at 2 m, and total precipitation 

during the previous day, were extracted from the Goddard Earth Observing System Data 

Assimilation System GEOS-5 Forward Processing (GEOS 5-FP) at a spatial resolution of 0.25° × 

0.3125°. Normalized Difference Vegetation Index (NDVI) data were obtained from Terra 

MODIS 16-day global NDVI dataset at 500m resolution (MOD13A1).The elevation data were 

obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

Global Digital Elevation Model (GDEM) version 2 at 30 m resolution. Population density data 

were obtained from the LandScan Global Population Database at 1km resolution [35]. 

CMAQ simulation 

The community multi-scale air quality (CMAQ) model version 5.1 was utilized to simulate PM2.5 

component concentrations over China during 2013-2015 with a spatial resolution of 36 km. The 
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model used CB05 as the gas-phase mechanism, AERO6 as the aerosol module, and Regional 

Acid Deposition Model (RADM) model as the aqueous-phase chemistry. CMAQ was driven by 

meteorological fields simulated by the Weather Research and Forecasting model (WRF) v3.5.1 

(http://www.wrf-model.org/) and emission inventory data from the Multi-resolution Emission 

Inventory of China (MEIC, http://www.meicmodel.org/). Following Zhang, Vijayaraghavan [36], 

hourly AOD columns were calculated from the simulated PM2.5 component concentrations using 

empirical equation suggested by Chameides, Luo [37]. Daily AOD values were calculated from 

hourly AOD values between 9:00 am and 3:00 pm. 

Data processing 

All these datasets were integrated to the 1-km MAIAC grid covering the study region. The cloud 

data were matched to the centroid of the MAIAC grid cells by nearest neighbor approach to avoid 

artificial smoothing of the cloud fraction data. Elevation data were averaged to the 1-km grid. 

Meteorological data and NDVI data were matched to grid cell centroids by inverse distance 

weighting to create smooth surfaces of these parameters. CMAQ AOD data were matched to the 

1-km grid cells whose centroids were within a given CMAQ grid cell. ArcMap 10.3.1. was used 

to calculate the road length (km) and green space area (km2) within each grid cell. 

Methods 

The workflow of this study is shown in Figure 1. 2. First, we conducted 10-time imputation to fill 

the missing AOD with an additive imputation model including CMAQ AOD simulation, 

elevation, MODIS CF, as well as temperature and humidity data from GEOS FP as predictor 

variables. Second, a two-stage hierarchical statistical model was developed to predict ground 

PM2.5 concentrations. 

http://www.meicmodel.org/
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Multiple imputation 

Imputation methods have been developed to substitute missing data with values estimated from 

other observed parameters, assuming that the variability in the missing data can be fully 

explained by these parameters. Imputation leads to extra variability due to random error [38]. To 

address this extra variability, we conducted multiple imputation that imputed missing data 

multiple times with plausible values. The multiple imputation method properly addresses the 

uncertainty of the imputation model and the random error in drawing the imputation value [39].  

In this study, we employed a flexible statistical model, including cloud fraction, elevation, 

humidity, temperature, and spatiotemporal trends, to impute the missing AOD. By including 

cloud fraction and meteorological information, our imputation model also considered the aerosol-

cloud interaction. We used a bootstrap method, by repeatedly sampling the original dataset with 

replacement, to fit this imputation model in order to account for uncertainty in the imputation 

procedure [40]. Smoothing splines of the X and Y coordinates of grid cell centroids were fitted to 

represent the spatial trend of AOD. On a given day with no or very few AOD retrievals over the 

study region, we took advantage of the temporal autocorrelation of AOD and included data on 

two days prior to and two days after that day for model fitting. Thus, by assuming that the spatial 

pattern of the relationship between MAIAC AOD and CTM AOD remains constant during each 

rolling 5-day period controlling for daily variation in cloud fraction, temperature, humidity, and 

elevation, we predicted the missing AOD on the 3rd day of this 5-day period from the imputation 

model. Dummy variables of day, ranging between 1 and 5, were included in the model to account 

for temporal differences of AOD. Smooth functions of quadratic polynomials of X and Y 

coordinates of the grid cell centroid, as well as the interaction term between X and Y, were 

included in the model to allow a flexible spatial surface of AOD.  Each missing AOD value was 
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imputed 10 times to generate 10 complete datasets that were used in the following analyses. The 

additive model is shown as Equation 1: 

𝐴𝑂𝐷𝑗𝑡 = 𝑠(𝑋𝑗) + 𝑠(𝑌𝑗) + 𝑠(𝑋𝑗
2) + 𝑠(𝑌𝑗

2) + 𝑠(𝑋𝑗 × 𝑌𝑗) + 𝛽1𝐶𝐹𝑗𝑡 + 𝛽2𝐶𝑀𝐴𝑄_𝐴𝑂𝐷𝑗𝑡 +

𝛽3𝑇𝑒𝑚𝑝𝑗𝑡 + 𝛽4𝑅𝐻𝑗𝑡 + 𝛽5𝑆𝐻𝑗𝑡 + 𝛽6𝐸𝑙𝑒𝑣𝑗 + 𝐷𝑡 + 𝜀𝑗𝑡  (1) 

where AODjt is the average daily MAIAC AOD at cell j on day t; Xj and Yj are the coordinates 

(km) of the centroid of grid cell j; CFjt is the daily average cloud fraction at grid cell j on day t; 

CMAQ_AODjt is the daily average CMAQ AOD at grid cell j on day t; Tempjt, RHjt, and SHjt are 

the daily average air temperature (K), average relative humidity, and average specific humidity 

(kg/kg) under the boundary layer at grid cell j on day t; Elevj is the elevation (m) at grid cell j; Dt 

is the dummy variable of five levels that representing the day of period index, and s() represents a 

smoothing spline with 10 knots specific to the 5-day period. We also considered precipitation in 

the MI model, but it did not significantly improve the model performance, thus we excluded it 

from the final MI model. 

LME-GAM prediction model 

A two-stage statistical model was developed to calibrate the spatiotemporal relationships between 

PM2.5, AOD, meteorological parameters, and land use [41, 42]. The ten datasets from multiple 

imputation were used to fit the two-stage model separately, and then the PM2.5 predictions from 

these ten models were averaged as final PM2.5 predictions. The first stage model is a linear mixed-

effects (LME) model that allows the AOD-PM2.5relationship to vary daily. Quadratic terms for 

AOD and interactions between AOD and PBLH were added in the model to account for the non-

linear relationship between AOD and PM2.5. We also explored other variables, including 

evaporation from turbulence, wind speed and wind direction at 10 m and at 500 m above the 

ground, and surface pressure. Including these parameters did not significantly improve the model 
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performance. Thus we excluded them from the final model. The LME model structure can be 

expressed as Equation 2: 

𝑃𝑀2.5𝑗𝑡
= (𝛽0 + 𝜃0) + (𝛽1 + 𝜃1)𝐴𝑂𝐷𝑗𝑡 + (𝛽2 + 𝜃2)𝐴𝑂𝐷𝑗𝑡

2 + 𝛽3𝑃𝐵𝐿𝐻𝑗𝑡 × 𝐴𝑂𝐷𝑗𝑡 +

(𝛽4 + 𝜃4)𝑃𝐵𝐿𝐻𝑗𝑡 + (𝛽5 + 𝜃5)𝑆𝐻𝑗𝑡 + 𝛽6𝑇𝑒𝑚𝑝𝑗𝑡 + 𝛽7𝑆𝑊𝐺𝐷𝑁𝑗𝑡 + 𝛽8𝑆𝑊𝐺𝐷𝑁𝑗𝑡
2 + 𝛽9𝑊𝑖𝑛𝑑𝑗𝑡 +

𝛽10𝑁𝐷𝑉𝐼𝑗𝑡 + 𝛽11𝑃𝑅𝐸𝐶𝑇𝑂𝑇𝑗𝑡 + 𝜀1𝑗𝑡
(𝜃0, 𝜃1, 𝜃2) + 𝜀2𝑗𝑡

(𝜃4, 𝜃5)      

 𝜀1𝑗𝑡
~𝑁(𝟎, 𝝍𝟏)𝜀2𝑗𝑡

~𝑁(𝟎, 𝝍𝟐)                         (2) 

where β0 is the fixed intercept; β1 and β2 are the fixed slopes of square polynomials for AOD; β3 is 

the slope of the interaction between PBLH and AOD; β7 and β8 are the fixed slopes of square 

polynomials for surface incident shortwave flux (SWGDN); β4, β5, β6, β9, β10, and β11 are the 

fixed slopes of PBLH, specific humidity at 2 m, temperature at 2 m, wind speed under PBL, 

NDVI, and total precipitation during the previous day; θ0 is the daily random intercept; θ1 and θ2 

are the daily random slopes of square polynomials for AOD; θ4 andθ5 are the monthly random 

slope of PBLH and SH.   

Then we modeled the residuals of the LME model using a second stage GAM with land use and 

population density. This GAM was fitted monthly to account for temporal variability, which has 

the following general structure: 

𝑃𝑀2.5𝑅𝑒𝑠𝑖𝑑𝑗𝑡 = 𝜇 + 𝑠((𝑋, 𝑌)𝑗) + 𝑠(𝐺𝑟𝑒𝑒𝑛𝑆𝑝𝑎𝑐𝑒𝑗) + 𝑠(𝑅𝑜𝑎𝑑𝐿𝑒𝑛𝑔𝑡ℎ𝑗) + 𝑠(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗) +

𝛽(𝐺𝑎𝑠𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑗) + 𝜀𝑗𝑡(3) 

where s((X,Y)j) is the smooth function of the X and Y coordinates of the centroid of cell j, 

s(GreenSpacej) is the smooth function of the area of green space of cell j, s(RoadLengthj) is the 

smooth function of road length of cell j, s(Populationj) is the smooth function of population 

density of cell j, GasStationj is the number of gas stations in cell j, ranging between 0 and 4. Other 
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land use parameters explored, such as number of railway stations and area of water body, did not 

contribute significantly to the model and were excluded from the final model. 

Ten-fold cross-validation was conducted to detect overfitting of this two-stage prediction model. 

To detect the over fitting in spatial interpolation, we also conducted spatial ten-fold cross-

validation by dropping ten percent of grid cells when fitting the model and using the model to 

predict PM2.5 of the dropped grid cells. For model validation, we fitted a linear regression 

between measured and predicted PM2.5. The linear regression R2, slope, and intercept, as well as 

root mean square error (RMSE) and relative prediction error (RPE), were used to evaluate model 

performance. 

Model prediction 

Using a PM2.5 prediction model with daily random effects to estimate PM2.5 concentrations 

outside the model fitting period tends to generate larger prediction errors, but does not affect 

point estimate for normal outcomes. However, one advantage of employing the satellite remote 

sensing data is its long data record that provides information of air pollution before the 

establishment of ground monitoring networks. To evaluate the model’s ability of predicting 

historical PM2.5 concentrations, we used data during a separate period, 2015 January to April, for 

prediction and evaluation. Since the fitted daily random effects and the second stage residual 

model may not be valid when predicting PM2.5 levels outside the modeling period, we adjusted 

the LME model by removing the daily random effect and dropped the residual predictions from 

the GAM model. The average of the ten imputed AOD together with the AOD observations were 

used to provide complete-coverage PM2.5 prediction. Thus, the PM2.5 concentrations outside the 

modeling period were predicted from the LME model with the estimated fixed effects and 

random effects at monthly level. Two models that were fitted from data of year 2013 and data of 

year 2014, separately, were used to predict PM2.5 levels in 2015. 
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Case study using other gap-filling methods 

To quantitatively compare the performance of the MI gap-filling method with previously reported 

methods, we selected three representative studies by Lv, Hu [43], Just, Wright [12], and Kloog, 

Koutrakis [41] that presented various gap filling methods. We used data over Xuzhou and Wuxi 

in 2014, two cities where AERONET stations are located, as a case study. We compared the 

AOD filled by the method of Lv, Hu [43] to AERONET AOD and compared the PM2.5 filled by 

the methods of Just, Wright [12] and Kloog, Koutrakis [41] to ground PM2.5 measurements.  

Following the method presented by Lv, Hu [43], we fitted linear regressions to fill the AOD 

missingness in grid cells with PM2.5 monitoring stations (Equation 4). Linear regressions were 

fitted separately for each city during the warm (April 16 – October 15) season or the cold season. 

Then we used ordinary kriging (OK) to interpolate daily AOD surfaces and fill missing AOD. 

The gap filled AOD in the grid cells with AERONET stations were compared with AERONET 

AOD. We also compared our filled AOD in the same grid cells with AERONET AOD for 

evaluation. 

AODjt = β0 + β1
PMjt

PMjs
AODjs + ε (4) 

where AODjt and PMjt are the AOD value and PM2.5 concentration at grid cell j on day t, 

respectively; AODjs and PMjs are the seasonal average AOD value and PM2.5 concentration at grid 

cell j and season s that containing day t, respectively; and Β0 and β1 are the city- and season-

specific intercept and slope, respectively.  

Similarly, following the gap-filling methods presented by Just, Wright [12] and Kloog, 

Chudnovsky [44], we used GAM (Equation 5) and GAM with random effects (Equation 6) to 

interpolate PM2.5 surfaces from PM2.5 measurements. The PM2.5 monitoring stations in Xuzhou 

were highly clustered: the furthest distance between two stations in Xuzhou is only 16 km. Thus, 
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to better evaluate the accuracy of these spatial smoothing methods, we used data over Wuxi, 

where 13 PM2.5 monitoring stations distributed as three clusters, for the case study (Figure 1. S1). 

To evaluate the spatial inference of the GAM methods, we also used PM2.5 measurements from 

one cluster to fill the missing PM2.5 predictions at stations that are not in this cluster but within a 

60 km buffer of the center of the cluster. The filled PM2.5 concentrations in grid cells with PM2.5 

monitoring stations were compared with PM2.5 measurements.  

√PredPMjt = β0 + β1√MPMt + s((X, Y)j) + εjt (5) 

PredPMjt = (β0 + θ0) + (β1 + θ1)MPMt + s((X, Y)j) + εjt(θ0, θ1)  εjt~N(𝟎, 𝛙)  (6) 

where PredPMjt and √PredPMjt are the predicted PM2.5 concentration and its square root at grid 

cell j on day t, respectively. PredPMjt was estimated from observed MAIAC AOD, using the 

model developed with gap-filled AOD, thus the sampling bias of model fitting was corrected. 

MPMt and √MPMt are the regional mean measured PM2.5 concentration and its square root on day 

t, respectively; Β0 and β1 are the fixed intercept and slope, respectively; θ0 and θ1 are the daily 

random intercept and slope, respectively; s((X,Y)j) in Equation 5 is a monthly tensor product of 

cubic spline of the X and Y coordinates of the centroid of grid cell j; and s((X,Y)j) in Equation 6 

is a monthly thin plate spline of X and Y. 

RESULTS AND DISCUSSION 

Coverage of satellite data and multiple imputation 

Figure 1. 3 shows the coverage of daily MAIAC AOD after combining Aqua and Terra data. On 

average, for each cell more than 60% of days are missing. During the summer monsoon season, 

about 75% of days are missing. The southern region of our modeling domain showed more 

missingness than the northern region, and elevated areas showed more missingness. 
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The daily MI model had an average model fitting R2 as 0.77, ranging between 0.48 and 0.97, with 

an inter-quartile range of 0.71 to 0.82 across days. In general, days with high coverage also had 

high model fitting R2 values, and days with large-scale missingness tended to have lower R2 

values. The imputation method increased data coverage to 100% by filling all the missing AOD 

values. The mean annual AOD distributions before and after imputation are shown in Figure 1. 4. 

The spatial patterns of AOD were similar before and after imputation: the AOD value increased 

from south to north in our modeling region, with relatively high values occurred at urban centers. 

However, the annual average AOD after imputation is higher than that of retrieved AOD by 

approximately 0.1. Since AERONET uses a specific procedure for cloud detection [45], it 

provides AOD observations sometimes when MAIAC had missing AOD. We conducted a student 

t-test with AERONET AOD on cloudy days when satellite AOD is missing and clear days when 

satellite AOD is present. The comparison results indicated that AERONET AOD values when 

satellite AOD is missing were 0.16 higher than those when satellite AOD is present (p-value< 

0.01). Previous studies reported that high AOD associated with high cloud fraction from March to 

August and when AOD is larger than 0.4 [14, 46], because cloud cover leads to increased 

humidity that favors the hygroscopic growth of aerosols [13]. Since the missingness in satellite 

AOD in Yangtze River Delta is mainly due to cloud cover, filling the AOD gap led to a higher 

annual average AOD. We also conducted a student t-test with specific humidity at 2 m, average 

specific humidity under boundary layer as well as relative humidity under boundary layer of 

cloudy pixels that has missing AOD and those of clear pixels that has successfully retrieved 

MAIAC AOD in the modeling dataset. The t-test indicated that all three parameters showed 

significantly higher values on cloudy days. The results of comparing daily average MAIAC 

AOD, with and without imputation, and average AERONET AOD are shown in the Figure 1. S2. 

The average MAIAC AOD before imputation slightly overestimated the average AERONET 
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AOD. The gap-filled MAIAC AOD agreed with AERONET, with the slope of 0.91. The 

imputation model underestimated AOD at high aerosol loading. 

Performance of the prediction model 

Table 1. 1 shows the summary statistics of AOD and PM2.5 in 2013 and 2014 model fitting 

datasets. The average PM2.5 level in 2013 was higher than that in 2014 by more than 10 µg/m3. 

There were more precipitation events and higher humidity levels in 2014 than in 2013. On 

average, the year of 2014 had 8% more missing days year round and 25% more missing days in 

summer than the year of 2013. 

Figure 1. 5 shows the performance of our two-stage prediction model from ten-fold cross-

validation. The cross-validation results indicated that PM2.5 predictions matched well with 

observations, with the fitted linear regression line having a slope near unity. Our PM2.5 prediction 

model provided higher accuracy than the previous high-resolution PM2.5 prediction model in the 

YRD. The cross validation R2 of a 3-km PM2.5 prediction model developed by Ma, Liu [47] was 

0.67 in 2013, while our model had the cross validation R2 of 0.81. Our model fitted with 2013 

data had a higher R2 (0.81) than the model fitted with 2014 data (R2 as 0.73), but the 2013 model 

had a higher RMSE (25 µg/m3) and RPE (34%) than the 2014 model (RMSE as 18 µg/m3 and 

RPE as 29%). This may be partly due to the relatively higher PM2.5 level in 2013. When 

comparing model predictions with measurements, the R2 of predictions from observed AOD and 

the R2 of predictions from AOD imputation were both 0.80 for the year of 2013 and 0.76 vs. 0.69 

for the year of 2014. This suggests that the imputation process did not or slightly decrease model 

accuracy. No overfitting was detected since the model performed similarly in model fitting and in 

cross-validation. The model fitting R2 and the cross-validationR2 was 0.82 and 0.81 for the year 

of 2013, and 0.75 and 0.73 for the year of 2014 (Figure 1. S3). The ten-fold spatial cross-
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validation had R2 as 0.80 and 0.72 in 2013 and 2014, respectively, indicating that the spatial 

interpolation of this two-stage model is validated. 

By filling the AOD gap, we corrected the bias in annual average PM2.5 predictions that was 

reported in Zheng, Zhang [8]. Zheng showed that their model had leave-one-out cross-validation 

R2 of 0.76 when predicting annual average PM2.5, lower than the leave-one-out cross-validation 

R2 (0.8) when predicting daily average PM2.5. In our model, when predicting the annual average 

PM2.5 in 2013 and 2014, the 10-fold cross-validation R2 was 0.94 and 0.87, respectively, with the 

relative prediction errors of 7% and 6%, respectively. 

PM2.5 prediction 

In general, predicted PM2.5 concentrations from AOD imputation was lower than that from 

observational AOD. In 2013, the average predicted PM2.5from imputed AOD was 56 µg/m3 while 

the average predicted PM2.5 from observational AOD was 69 µg/m3. Similarly, in 2014, the 

average predicted PM2.5 from imputed AOD and from observational AOD was 50 µg/m3 and 62 

µg/m3, respectively. In other words, PM2.5 levels on cloudy pixels were lower relative to sunny 

pixels. A student t-test comparing ground PM2.5 measurements on cloudy days (i.e., satellite AOD 

is missing) and clear days (i.e., satellite AOD is observed) indicated that PM2.5 concentrations on 

cloudy days were lower than those on clear days by 20 µg/m3 (p-value < 0.01) in the study 

region. This agrees with previous findings in the Southeastern US that PM2.5 levels were 

negatively associated with cloud fraction [15]. We noticed that the AOD values on cloudy days 

were higher than on clear days, even though in general AOD was positively associated with PM2.5 

concentrations. One explanation is that in the Yangtze River Delta, a majority of AOD 

missingness is due to precipitation and cloud cover. Cloud cover leads to reduced photochemical 

reaction-related PM2.5 production and precipitation removes PM2.5 from the atmosphere, leading 

to decreased PM2.5 dry mass concentration. However, cloud cover is also associated with 
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increased humidity that favors the hygroscopic growth of aerosols and leads to higher AOD 

values. Since PM2.5 concentrations are measured at ground monitoring stations with controlled 

constant humidity and temperature, the increased humidity does not affect PM2.5 measurements as 

significantly as AOD. We also noticed higher average humidity, higher average AOD value, but 

lower average PM2.5 concentrations in 2014 comparing with 2013 (Table 1. 1) likely due to the 

same reason. Our results indicated that cloud cover and missing AOD was associated with lower 

in PM2.5 measurements but higher AOD loading. Thus, cloud cover and humidity modified the 

association between AOD and PM2.5, and this effect need to be considered when filling missing 

data. 

Figure 1. 6 shows the annual average PM2.5 distribution in 2013 and 2014. Over most regions 

except southern Zhejiang province, the annual PM2.5 concentration was higher than the annual 

National Ambient Air Quality Standard of China (35 µg/m3). The highest PM2.5 values occurred 

in urban centers in Jiangsu province, including Taizhou, Changzhou, and Nanjing city. In 

Zhejiang province, cities in the Jin-Qu Basin and on the coast also had relatively high PM2.5 

concentrations due to higher population density and associated anthropogenic emissions. The 

high-resolution prediction map successfully shows local-scale variability in PM2.5 concentrations. 

For example, in Figures 1. 6C and 1. 6D, regions covered by forest (dark green in Figure 1. 6D) 

had lower PM2.5 concentrations relative to their surrounding regions; while urbanized regions, 

such as Town of Jurong (the blue dot in the lower right corner), had higher PM2.5 concentrations 

relative to their surrounding regions. Temporally, the PM2.5 levels decreased from 2013 to 2014 

by 7 µg/m3 (11%) on average. The largest decrease occurred at urban centers, such as Huai’an, 

Changzhou, and Taizhou (Figures 1. 6A and 1. 6B).   

We used a separate time period to validate our model’s prediction ability. Models fitted with data 

of year 2013 and year 2014 were used to predict weekly and monthly average PM2.5 
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concentrations of year 2015 (Figure 1. 7). At the weekly level, the R2 value, RMSE, and RPE 

were 0.45, 32 µg/m3, and 48% using the 2013 model and 0.48, 19µg/m3, and 28% using the 2014 

model. At the monthly level, the R2 value, RMSE, and RPE were 0.70, 25 µg/m3, and 38% using 

the 2013 model and 0.71, 11µg/m3, and 17% using the 2014 model. The 2013 model 

overestimated PM2.5 levels in 2015. This may result from the effect of a few severe PM2.5 

pollution episodes in 2013 that affect the model coefficients when AOD value was high. For 

example, in the LME model, the fixed slopes of AOD2 in 2013 and 2014 were 5.19 and -9.56, 

respectively (Table 1. 1). When the AOD value is high, the model fitted by 2013 data will predict 

higher PM2.5 concentrations relative to the model fitted by 2014 data, and such difference widens 

with increase in AOD. 

Comparisons with other gap-filling methods 

A limitation of previously reported gap-filling methods is that they rely on PM2.5 measurements. 

As a result, these methods are not suitable for prediction of historical PM2.5 concentrations when 

PM2.5 measurements were sparse or nonexistent. For example, in China, this method cannot be 

used to fill missingness in PM2.5 predictions before 2013. In our case study in Xuzhou and Wuxi, 

the gap-filling methods of Lv, Hu [43], Just, Wright [12] and Kloog, Koutrakis [41] were able to 

increase data coverage to 94% in 2013, with 6% missingness due to lack for valid ground 

measurements; our MI method increased the data coverage to 100% (Table 1. 2). Another 

limitation of previous gap-filling methods is that they do not consider the aerosol-cloud 

interactions, leading to bias in spatial inference. When comparing filled AOD with AERONET 

AOD, the MI method provided higher R2 (0.44) than the Lv, Hu [43] method (R2 = 0.18), 

indicating that the filled AOD from our MI method had higher accuracy. When comparing filled 

PM2.5 concentrations with PM2.5 measurements, the MI method provided comparable R2 (0.78) 

with the Just, Wright [12] (R2 as 0.84) and Kloog, Koutrakis [41] (R2 = 0.79) methods. When 
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using PM2.5 measurements from stations in one cluster to fill missing PM2.5 predictions over 

stations in other clusters, the R2 of the Just, Wright [12] method and Kloog, Koutrakis [41] 

method dropped to 0.73 and 0.68, respectively, indicating that the spatial smoothing method is 

more likely to be negatively affected by the spatial distribution of ground monitors than ours. 

Since our MI method does not rely on ground measurements, it is more robust in spatial 

inference. 

CONCLUSIONS 

In this study, we developed a multiple imputation model using satellite-retrieved cloud fraction, 

CMAQ-simulated AOD, and meteorological parameters to fill the gaps of MAIAC AOD. A two-

stage statistical model was then used to predict ground PM2.5 concentrations from the gap-filled 

AOD, meteorological parameters, and land use information. This method improved the coverage 

of PM2.5 prediction by about two-fold per year and provided predictions with high accuracy at 1-

km resolution. By including all the pixels of all days into model development, this method can 

correct the sampling bias in exposure assessment due to non-random missingness in AOD, 

especially in regions with large-scale seasonal missingness. Comparing with previously reported 

gap-filling methods, the MI method has the strength of not relying on ground PM2.5 

measurements, therefore allows the prediction of historical PM2.5 levels prior to the establishment 

of regular ground monitoring networks. This study advanced our capabilities to integrate ground 

observations, satellite data, model simulations, and land cover information in PM2.5 exposure 

modeling, and will support epidemiological studies on the air pollution related health burden in 

China as well as other regions in the world with limited air pollution monitoring. 
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Table 1. 1 Summary statistics and coefficients of fixed effects in the LME model of 

year 2013 and 2014. 

 Mean (Std) Coefficient 

 2013 2014 2013 2014 

PM2.5 (µg/m3) 73 (57) 61 (35)   

AOD 0.98 (0.44) 1.11 (0.57) 33.97 48.5 

PBLHa (m) 1.19×103 (413) 1.18×103 (401) -1.85 -1.12 

SHb (kg/kg) 9.93×10-3 (6.17×10-3) 1.06×10-2 (5.67×10-

3) 

-9.30 -5.85 

Tempc (K) 294 (10) 294 (8) 3.62 3.50 

SWGDNd 

(W/m2) 

517 (188) 506 (190) 1.10×10-2 5.18×10-3 

Winde (m/s) 5.81 (3.22) 5.44 (3.00) -2.05 -1.11 

NDVIf 0.26 (0.13) 0.28 (0.11) -13.8 -9.74 

PRECTOTg 

(kg/m2s2) 

3.23 (10.08) 4.94 (12.69) -6.67×10-2 -2.93×10-2 

AOD2   5.19 -9.56 

AOD×PBLH   1.56 0.49 

SWGDN2   3.00×10-5 -1.47×10-5 

a Planetary boundary layer height 

b Specific humidity at 2 m 

c Temperature at 2 m 

d Surface incident shortwave flux  

e Wind speed under planetary boundary layer 

f Normalized difference vegetation index 

g Total precipitation during the previous day 
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Table 1. 2 Performance of different gap-filling methods in a case study in 2014. 

Method MI Lv et al. Just et al. Kloog et al. 

Coverage (%) 100 94 94 94 

R2 of AOD evaluation 0.44 0.18   

R2 of PM2.5 evaluation 0.78  0.84 0.79 
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Figure 1. 1 Study region with a 50-km buffer, showing air quality monitoring 

stations and AERONET stations in the modeling region. 
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Figure 1. 2 The workflow of multiple imputation (light grey), first stage linear 

mixed-effects (LME) model (grey) and second stage generalized additive model 

(GAM) (dark grey). 
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Figure 1. 3 Annual mean MAIAC AOD coverage (left) and summer (June to 

August) seasonal average MAIAC AOD coverage (right) over Yangtze River Delta 

during 2013-2014. 
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Figure 1. 4 Annual average AOD before (left) and after (right) imputation during 

2013-2014. 
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Figure 1. 5 Ten-fold cross-validation results of the two-stage prediction model.  

The blue solid line shows the linear regression between PM2.5 measurements and PM2.5 predictions. The red dash line is the 

one-one line. 
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Figure 1. 6 Annual average PM2.5 predictions.  

PM2.5 predictions over the buffer region were not shown. A: annual average PM2.5 

predictions in 2013. B: annual average PM2.5 predictions in 2014.C: zoom in map of 

annual average PM2.5 predictions over Nanjing. D: satellite photo of Nanjing. Map 

data: Google, Landsat/Copernicus. 
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Figure 1. 7 Results of predicting 2015 weekly and monthly PM2.5 levels with models 

fitted from data of year 2013 and 2014. 
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SUPPLEMENTARY MATERIALS 

Figure 1.S 1 Map of Wuxi and Xuzhou with PM2.5 monitoring stations. 
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Figure 1.S 2 Comparing daily AERONET AOD (during 9:00-3:00 local time) with 

gap-filled MAIAC AOD, daily AERONET AOD with observational MAIAC AOD 

and daily AERONET AOD with imputed AOD. 

The blue solid line shows the linear regression between MAIAC AOD and 

AERONET AOD. The red dash line is the one-one line. 
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Figure 1.S 3 Model fitting results of the two-stage prediction model. 
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Chapter 2 

Associations between birth outcomes and maternal PM2.5 exposure in Shanghai: a 

comparison of three exposure assessment approaches 

Qingyang Xiao, Hanyi Chen, Matthew J. Strickland, Haidong Kan, Howard H. Chang, 

Mitchel Klein, Chen Yang, Xia Meng, Yang Liu 
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ABSTRACT  

Background: Few studies have estimated effects of maternal PM2.5 exposure on birth outcomes 

in China due to the lack of historical air pollution data.  

Objectives: We estimated the associations between maternal PM2.5 exposure and birth outcomes 

including birth weight and preterm birth using gap-filled satellite estimates in Shanghai, China. 

Methods: We obtained birth registration records of 132 783 singleton live births during 2011-

2014 in Shanghai. PM2.5 exposures were assessed from satellite-derived estimates or central-site 

measurements. Linear and logistic regressions were used to estimate associations with term birth 

weight and term LBW, respectively. Logistic and discrete-time survival models were used to 

estimate associations with preterm birth. Effect modifications by maternal age and parental 

education levels were investigated.  

Results: A 10 µg/m3 increase in gap-filled satellite-based whole-pregnancy PM2.5 exposure was 

associated with a -12.85 g (95% CI: -18.44, -7.27) change in term birth weight, increased risk of 

preterm birth (OR 1.27, 95% CI: 1.20, 1.36), and increased risk of term LBW (OR 1.22, 95% CI: 

1.06, 1.41). Sensitivity analyses during 2013-2014, when ground PM2.5 measurements were 

available, showed that the estimated health effects using gap-filled satellite PM2.5 were higher 

than using satellite PM2.5 without accounting for missingness. The estimated health effects using 

gap-filled satellite PM2.5 had similar magnitudes to those using central-site measurements, but 

with tighter confidence intervals.  

Conclusions: The magnitude of associations between maternal PM2.5 exposure and adverse birth 

outcomes in Shanghai was higher than previous findings. One reason could be reduced exposure 

error of the gap-filled high-resolution satellite PM2.5 estimates.   
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INTRODUCTION  

Preterm birth and low birth weight have been widely documented as significant predictors of 

infant mortality and have negative long-term effects in adulthood [1-3]. Liu, Oza [4] estimated 

that in 2013, preterm birth ranked as the first cause of death before age 5 and was responsible for 

15.4% (0.965 million) of deaths before age 5 in the world. Adverse birth outcomes in association 

with maternal exposure to PM2.5 (fine particulate matter with an aerodynamic diameter of 2.5 µm 

or less) have been studied in various populations [5, 6]. While results from recent meta-analyses 

support the link between maternal PM2.5 exposure and adverse birth outcomes, substantial 

heterogeneity in health effect estimates exists among different studies [7, 8]. This heterogeneity is 

partly due to differences in exposure assessment methods and the authors reported that studies 

assessing individual-level exposures tended to report stronger associations relative to studies 

assessing regional-level exposures. In addition, similar to many other health endpoints reported in 

the literature, the overwhelming majority of the included studies in these meta-analyses were 

conducted in the U.S. where PM2.5 levels are relatively low. Studies in highly polluted regions 

such as China can further elucidate the magnitude of PM2.5-associated health effects and provide 

crucial information on the shape of concentration-response curve at high exposure levels. 

However, ground measurements of PM2.5 levels are often very sparse or nonexistent in most part 

of the developing world. For countries where its air quality monitoring network was established 

recently, lack of long-term measurements remains an obstacle to studying the association between 

adverse birth outcomes and exposure to PM2.5. Additionally, measurements from ground central 

monitors have limited spatial representativeness. Previous studies used specific buffers, ranging 

from 6.4 km to 50 km in radius, around monitoring stations to select study populations and assign 

exposure, with the intent of reducing exposure error (Chang et al. 2011; Darrow et al. 2011; 

Hyder et al. 2014). However, this method reduces sample size, and an optimal cutoff distance is 

difficult to determine.  
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To assess historical air pollution levels and characterize local-scale variability in air pollution, 

satellite-retrieved aerosol optical depth (AOD) has been used in health effects studies during the 

past decade [9]. Polar-orbiting satellites have global coverage, long data records, and high 

spatiotemporal resolution, but missingness in satellite data has raised concerns regarding its use in 

epidemiological studies. Annually, 30 to 70% satellite retrievals can be missing due to cloud 

cover and high surface reflectance [10]. Unfortunately, situations that lead to failed satellite 

retrievals often influence the production and deposition of PM2.5, e.g. cloud cover leads to 

reduced photochemical reactions. Thus, using satellite predictions without accounting for the 

non-random missingness may result in exposure misclassification. Strickland, Hao [11] evaluated 

the influence of missing satellite-derived PM2.5 predictions on the association between short-term 

PM2.5 exposure and pediatric emergency department visits in Georgia, US. They reported that, in 

general, a large proportion of missing satellite predictions tended to overestimate regional 

average PM2.5 exposure compared with ground measurements and led to lower health association 

estimates. To date, studies on the influence of missing satellite data on PM2.5 longer-term 

exposure assessment are very limited.  

We developed a gap-filling method that provided full-coverage daily PM2.5  predictions at 1-km 

resolution using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol 

product [12]. In this study, we analyzed the associations between birth outcomes (birth weight 

and preterm birth) and maternal PM2.5 exposure in Shanghai, China, during 2011-2014, using 

three exposure metrics: satellite predictions with missingness, gap-filled satellite predictions with 

complete coverage, and measurements from ground central monitors. We reported that exposure 

errors can arise when satellite predictions without accounting for missing data were used in 

exposure assessment. 
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METHODS 

Data and Outcome Assessments 

Birth registration data for live births between January 1st, 2011 and December 31st, 2014 were 

obtained from Pudong New Area Centers for Disease Control and Prevention (CDC) (n=173 

403). Data of all births born in Pudong New Area were collected by health facilities and reported 

to the Pudong New Area CDC. Although born in Pudong New Area, some of these births had 

maternal residential address in other distracts of Shanghai (Figure 2. A1). Shanghai is located on 

the east coast of China (Figure 2. A1) and is one of the largest cities in the world with more than 

24 million residents. Benefited from the establishment of a special economic zone in 1993, 

Pudong New Area as well as Shanghai has become one the most economically developed regions 

in China as well as in East Asia.  

The gestational age was calculated from the last menstrual period and the birth weight was 

measured at the time of birth using standard digital scales. The maternal residential address was 

geo-coded for exposure assignment. Maternal residential address outside Shanghai or with failed 

geo-coding, mainly due to incomplete address, were excluded (13%). Singleton births without 

congenital anomalies (96%) and with clinically estimated gestational age between 27 and 42 

weeks were selected to ensure that we followed the complete first and second trimester of all 

births. We further excluded births with maternal age younger than 15 years or older than 44 years 

(0.04%). In birth cohort studies using birth records ascertained based on birth dates, the study 

population tends to include longer gestations at the start of the study period and shorter gestations 

at the end of the study period [13]. To avoid this issue, we included births with the estimated 

conception date after June 26, 2010 (27 weeks before January 1st, 2011) and before March 12, 

2014 (42 weeks before December 31st, 2014) (n=133 120). Births with missing variables were 

excluded (0.2%). Thus, 132 783 births were analyzed in this study. Preterm birth was defined as a 
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birth with less than 37 weeks but at least 27 weeks of gestation. Term low birth weight (LBW) 

was defined as a full term birth (≥ 37 weeks of gestation) with a birth weight less than 2500 g. 

Exposure Assessment 

To analyze the influence of different exposure assessment approaches on estimated health effects, 

we considered three exposure metrics from satellite data and ground measurements: 1) daily 

PM2.5 predictions from MAIAC AOD without accounting for missingness, 2) daily PM2.5 

predictions from gap-filled MAIAC AOD with complete coverage, and 3) daily average PM2.5 

measurements from ten monitoring stations. The satellite derived PM2.5 predictions were 

estimated during 2010-2014. PM2.5 measurements from central station were only available since 

2013. 

Details of the multiple imputation gap-filling method and the two-stage PM2.5 concentration 

prediction model can be found elsewhere [12] and a brief description is provided here. First, we 

brought together the emerging MAIAC satellite aerosol optical depth (AOD) retrieval, the 

Moderate Resolution Imaging Spectroradiometer (MODIS) cloud fraction [14], the Community 

Multi-scale Air Quality (CMAQ) AOD simulations [15] and elevation data by multiple 

imputation to fill missing satellite AOD. After gap-filling, the coverage of satellite retrieval 

increased from below 40% to 100%. Then, for daily average PM2.5 concentration prediction, we 

fitted a first stage linear mixed effects model driven by gap-filled AOD and meteorology 

variables, and a second stage generalized additive model (GAM) driven by land use information. 

This method provided PM2.5 predictions at 1 km resolution with complete coverage in space and 

time. In Shanghai, the model cross validation R2 (root mean square error) between daily model 

predictions and ground measurements was 0.74 (22 µg/m3) [12]. When aggregating during a 

certain exposure window, the gap-filled predictions had smaller bias compared to ground 

measurements. For example, the gap-filled satellite predictions better estimated monthly average 

PM2.5 concentrations (10-fold cross-validation R2=0.92 and relative prediction error=9%) than 



45 

 

 

satellite predictions without accounting for missing data (R2=0.84 and relative prediction 

error=14%) in 2014. Trimester-specific and whole-pregnancy PM2.5 exposures were assigned by 

maternal residential address of each birth record and averaged from daily satellite derived PM2.5 

predictions, with and without gap-filling, across each exposure window based on the estimated 

gestation date.  

Hourly PM2.5 measurements from 10 air quality monitoring stations in Shanghai were published 

by the China National Environmental Monitoring Center (CNEMC, http://www.cnemc.cn/), and 

were downloaded from PM25.in (http://pm25.in/), a direct mirror of data from CNEMC. We 

removed repeated identical measurements for at least three continuous hours, assuming that such 

repetition was due to instrument malfunction (Rohde and Muller 2015). Daily average 

concentrations, calculated from hourly concentrations during 0:00-23:59 local time with at least 

18 hourly measurements, were included for exposure assessment. Since more than 95% of the 

study population reside within 25 km of at least one monitoring station (Figure 2. 1) and these 

stations were clustered with high temporal correlations ranging between 0.88 and 0.99 (Figure 2. 

A.2), we used the daily regional average concentrations to assess exposure across each exposure 

window. 

Meteorological variables (temperature, humidity, surface pressure) were obtained from the 

Goddard Earth Observing System Data Assimilation System GEOS-5 Forward Processing 

(GEOS 5-FP) [16]. 

Statistical Models 

Health effects on birth weight and term LBW in association with maternal PM2.5 exposure were 

estimated by linear regression and logistic regression among full term births, respectively. 

Logistic regression models were fitted to estimate associations between preterm birth and 

maternal PM2.5 exposure during the first (from conception date through gestational week 13) and 

second (gestational week 14-26) trimester. Discrete-time survival models were fitted to estimate 
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associations during the third trimester (gestational week 27- date of birth) and the entire 

pregnancy [17], because the length of third trimester exposure and entire pregnancy exposure are 

affected by the birth date. Specifically, the discrete-time survival model assumes each birth was 

no longer at-risk (censored) of being preterm at week 37. The discrete-time survival model can be 

expressed as Equation 1 [18, 19]. 

𝐿𝑜𝑔𝑖𝑡𝑃(𝑌𝑖𝑡) =  𝛽0 + 𝛽1𝐸𝑖𝑡 + 𝛿𝑋𝑖 + 𝛾𝐺𝑒𝑠𝑡𝑊𝑒𝑒𝑘𝑡                                          Equation 1 

where Yit indicates for pregnancy i, whether a birth occurred during gestational week t; Eit 

indicates the average pollution level for pregnancy i from gestational week 27 to gestational week 

t for associations with the third trimester exposure or from gestational week 1 to gestational week 

t for associations with the entire pregnancy exposure, respectively; Xi indicates covariates that 

were controlled in this study and GestWeekt indicates the gestational week. 

We controlled the following covariates in all models: parental education levels (high school or 

lower, college, graduate school), maternal age (continuous), parity (1, 2, >2), birth location 

(hospital, maternal health service center, others), infant sex, average temperature and average 

surface pressure during the corresponding exposure period (continuous), season for conception (a 

categorical variable with four levels), and long-term temporal trend (a cubic spline with one knot 

per year) [18, 20]. Paternal age and average relative humidity were included in the initial 

regression, but they resulted in no meaningful changes in the point estimates and were excluded 

from the final model. Analyses were performed separately using each of the three exposure 

metrics described above. We used 10 µg/m3 as the exposure increment to benefit the comparison 

of health association estimates across exposure metrics. Since PM2.5 measurements are only 

available since 2013, we only included births with an estimated gestation date after January 1st 

2013 when comparing across exposure metrics. We also reported health association estimates per 

interquartile range (IQR) change in PM2.5 exposure to facilitate the comparison across exposure 

windows. IQRs were calculated from each trimester-specific/pregnancy exposures of all births.  
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To investigate the potential effect modification of maternal age, we stratified the study population 

by mothers younger than 35 years or not [21]. We also investigated the potential effect 

modification of parental social economic status by stratifying the study population by maternal 

and paternal education levels (college and higher or not), separately. To investigate the potential 

confounding due to unobserved spatial trends, we conducted a sensitivity analysis using 

generalized additive models with the spatial trends being controlled by a thin-plate spline of 

longitude and latitude of the centroid of each grid cell. 

RESULTS  

The annual average PM2.5 concentrations from satellite predictions and central-site measurements 

in 2014 are shown in Figure 2. 1. PM2.5 concentrations decreased from west to east. 

Characteristics of the study population are shown in Table 2. 1. The mean birth weight among 

term births was 3389 g, with a standard deviation of 403 g. The preterm birth rate in Shanghai 

during 2011-2014 was 4.41% and the term LBW rate was 0.95%. Previous studies reported 

higher preterm birth rate in China (4.8%) during 2004-2008 [22] and in one hospital in Shanghai 

(6.8%) during 2010-2012 [23]. However, Xue, Shen [23] included multiple pregnancies (17.7%) 

and births with fetal anomalies (0.8%) in their study. Multiple pregnancies have a significantly 

higher preterm birth rate than singletons [24]. Another study reported the preterm birth rate being 

7.4% and term LBW rate being 2.06% during 2012-2014 [25] in China; however, this study also 

included multiple pregnancies (3.3%) in the analysis and reported that multiple pregnancies had a 

higher risk of term LBW than singletons (OR = 21.9, 95% CI: 20.9, 22.9). The LBW rate in 

developed regions of China, e.g. Shanghai, has been reported to be lower than the national 

average [26]. Additionally, our data included births from hospitals as well as births from maternal 

health service centers and other places. Consistent with previous findings, we noticed that births 

in hospital (preterm birth rate=4.81% and term LBW rate 1.09%) had a higher rate of adverse 

birth outcomes than births in other places (preterm birth rate=3.64% and term LBW rate 0.70%) 
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[25]. The male/female ratio was 1.13 and 96.8% of mothers are ethnic Han. Shanghai is one of 

the most developed regions in China and more than half of parents have a Bachelor’s degree or 

higher. The births with failed geocoding of maternal address had similar preterm birth rate 

(4.6%), term LBW rate (0.95%), and birth weight distribution among term births (mean 3399, 

standard deviation 414). However, fewer mothers with failed geocoding had a Bachelor’s degree 

or higher (42.2%) relative to mothers with successful geocoding (52.5%). 

Table 2. 2 shows the characteristics of the three PM2.5 exposure metrics. The PM2.5 exposure 

derived from satellite data with missingness had higher average values (e.g., 72 µg/m3 during the 

entire pregnancy) than exposure from gap-filled satellite predictions (60 µg/m3) and central-site 

measurements (58 µg/m3). One explanation of the lower average PM2.5 predictions after gap-

filling is that cloud cover leads to reduced photochemical reaction and precipitation removes 

PM2.5 from the atmosphere, leading to decreased PM2.5 dry mass concentration [27]. The PM2.5 

exposure assessed from gap-filled satellite predictions and from central-site measurements were 

highly correlated, with the Pearson’s correlation coefficients of exposures during the first, second, 

third trimester and whole pregnancy being 0.96, 0.97, 0.97, and 0.83, respectively. The relatively 

low correlation coefficients of exposures during pregnancy is because when averaging during a 

longer time (pregnancy), the spatial variations became more important and the 1-km satellite 

predictions had larger footprints than point measurements from ground monitors. The correlation 

between exposure estimated from satellite data without accounting for missingness and from 

ground measurements was weaker (Table 2. A1). 

Figure 2. 2 presents the adjusted health association estimates for term birth weight, preterm birth, 

and term LBW in relation to trimester-specific and pregnancy maternal PM2.5 exposures for births 

during 2011-2014, using gap-filled satellite predictions. PM2.5 exposures during all time windows 

were associated with decreased birth weight in term births. The associations per 10 µg/m3 

increase in PM2.5 exposure during entire pregnancy were a -12.85 g (95% CI: -18.44, -7.27) 
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change in birth weight and increased risk of term LBW (OR = 1.22, 95% CI: 1.06, 1.41). 

Magnitudes of associations with term birth weight were higher for exposures during the first (-

4.66 g, 95% CI: -8.15, -1.16 per 10 µg/m3 increase in PM2.5 exposure) and the third trimester (-

4.47 g, 95% CI: -8.01, -0.93) compared with exposures during the second trimester (-2.55g, 95% 

CI: -5.99, 0.89). Regarding preterm birth, exposures during the first trimester were observed with 

a higher risk (OR= 1.15, 95% CI: 1.10, 1.20 per 10 µg/m3 increase in PM2.5 exposure) than 

exposures during the second (OR= 1.08, 95% CI: 1.03, 1.12) and the third trimester (OR= 1.06, 

95% CI: 1.03, 1.08). Results using exposure window-specific IQRs as the exposure increment are 

shown in Figure 2. B1. Effects of exposure during the whole pregnancy had larger magnitudes 

with term birth weight (-13.60 g, 95% CI: -19.50, -7.69 per IQR increase in PM2.5 exposure) and 

preterm birth (OR=1.40, 95% CI: 1.28, 1.52) relative to effects of trimester-specific exposures. 

The third trimester exposure showed the highest risk of term LBW (OR= 1.30, 95% CI: 1.03, 

1.63 per IQR) relative to exposures during other time windows. 

The comparison results across three exposure metrics for births with estimated gestation date in 

2013-2014 are shown in Figure 2. 3. Non-random missingness in satellite predictions decreased 

the accuracy of exposure assessment. For both birth weight and preterm birth, estimated effects 

using exposure from satellite data without accounting for missingness were weaker than 

estimated effects using exposure from gap-filled satellite data and ground measurements. 

Estimated effects using ground-based exposure had similar magnitude, but wider confidence 

intervals, sometimes including the null, than those using gap-filled satellite-based exposure. For 

example, the estimated ORs of preterm birth in association with the second trimester exposures 

assessed with central-site measurements and gap-filled satellite predictions were 1.06 (95% CI 

0.96, 1.18) and 1.10 (95% CI: 1.03, 1.18), respectively. 

Figure 2. 4 shows adjusted health effect estimates respectively stratified by maternal age and 

maternal education level, using exposures based on gap-filled satellite predictions. In pregnant 
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women older than 35 years, we observed stronger associations between PM2.5 exposure and 

adverse health outcomes. Due to the small proportion of births with mother older than 35 years, 

this group had a much wider 95% CI than the > 35 year-old group. Among women with college 

or higher education, the estimated risk of preterm birth (OR=1.19, 95% CI: 1.08, 1.32 per 10 

µg/m3 increase in entire pregnancy PM2.5 exposure) were lower; however, the estimated effects of 

PM2.5 exposure on birth weight (-45.57 g, 95% CI: -54.31, - 36.83) were higher. For mothers 

without college education, the estimated OR for preterm birth was 1.32 (95% CI: 1.22, 1.43) and 

the estimated decrease in birth weight was -26.01 g (95% CI: - 34.44, 17.59). We also stratified 

the population by paternal education level and had parallel findings (Figure 2. B2). 

When controlling for spatial trends, the estimated trimester-specific associations with adverse 

birth outcomes became weaker while the association for whole pregnancy remain statistically 

significant (Table 2. 3), probably because the spatial variations in PM2.5 were surrogated by the 

flexible spatial spline smoother. As seen in Figure 2. B3, the GAM-estimated thin-plate spline 

that related preterm births and PM2.5 exposure showed a similar pattern to the spatial distribution 

of PM2.5 concentrations in Shanghai, with higher values in the northwest. Due to this additional 

control of spatial trends, the confidence interval of most health association estimates expanded to 

contain the null value.  

DISCUSSION 

In this study, we observed associations between maternal PM2.5 exposure during all exposure 

windows and adverse birth outcomes, including decreased birth weight, increased risk of term 

LBW, and increased risk of preterm birth in a highly polluted region. Exposure assessment 

approaches affected the estimated health effects and satellite based exposures without accounting 

for missing data led to underestimate of health effects. Maternal age and parental education levels 

appeared to modify the associations between maternal PM2.5 exposure and birth outcomes.   
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The exposure levels in Shanghai are much higher than other areas that have been studied 

previously. Research in the U.S. reported mean PM2.5 exposure during the entire pregnancy 

ranging between 9.9 µg/m3 in Florida and 18.7 µg/m3 in California [8]. In our study, the mean 

PM2.5 exposure during the whole pregnancy was 60 µg/m3, estimated from gap-filled satellite 

predictions. We reported associations with higher magnitude between PM2.5 exposure and birth 

outcomes than previous studies. Previous meta-analyses reported combined estimate of OR for 

preterm birth per 10 µg/m3 increase in PM2.5 exposure during the whole pregnancy being 1.13 

(95% CI: 1.03, 1.24) [7] and 1.02 (95% CI: 0.93, 1.12) [6]. Dadvand, Parker [28] collected data 

from 14 centers (nine countries) and reported the combined OR for term LBW being 1.10 (95% 

CI: 1.03, 1.18) per 10 µg/m3 increase in PM2.5 exposure during entire pregnancy. We reported the 

OR for preterm birth and term LBW being 1.27 (95% CI: 1.20, 1.36) and 1.22 (95% CI: 1.06, 

1.41) in association with 10 µg/m3 increase in PM2.5 exposure during entire pregnancy. This 

difference could be partly due to different exposure assessment methods, i.e., most previous 

studies used central-site measurements for exposure assessment while we used high-resolution 

satellite predictions in this study. Since most monitoring sites are located in urban centers, their 

measurements may overestimate individual exposure and attenuate health effect estimates. We 

found two studies that estimated health effects of PM2.5 exposure on birth outcomes in China. 

Qian, Liang [29] reported the OR of preterm birth was 1.03 (95% CI: 1.02, 1.05) per 5 µg/m3 

increase in PM2.5 exposure during the entire pregnancy in Wuhan, China. Fleischer, Merialdi [22] 

analyzed data of the World Health Organization Global Survey (WHOGS) and reported that the 

OR of preterm birth and LBW were 1.11 (95% CI: 1.04, 1.17) and 1.07 (95% CI: 1.01, 1.14) per 

10 µg/m3 increase in PM2.5 exposure during the entire pregnancy in China, separately. These two 

studies assessed exposure from two ground monitoring stations [29] or from seasonal adjusted 

long-term (2001-2006) average PM2.5 predictions from satellite [22]. By employing high-

resolution satellite predictions for exposure assessment, we reduced potential exposure 

misclassification in this study. 
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We observed that satellite-based PM2.5 predictions without accounting for non-random 

missingness overestimated gestational PM2.5 exposure compared to ground measurements [12], 

thus led to attenuation in health effect estimates. This finding is consistent with previous studies 

[11, 30]. As discussed in previous research, in studies using daily exposures, the missing daily air 

pollution estimates result to a smaller study population, and gap-filling intends to increase the 

precision of estimated effects. In studies using long-term average exposures, such as this study, 

the missing daily air pollution estimates did not decrease the population size, rather increases the 

exposure error since the observed daily pollution levels are systematically different from the 

missing daily pollution levels. Thus, gap-filling is needed to increase the accuracy of exposure 

assessments. In our study, health associations estimated using satellite-based exposures had 

similar magnitudes but tighter confidence intervals compared to health associations estimated 

using ground-based exposures. Although central-site measurements have high accuracy, they 

ignored the local-scale spatial variability in PM2.5 exposure, leading to more Berkson error and 

wider confidence intervals. Employing high-resolution complete-coverage satellite data may be 

able to improve accuracy of exposure assessments and benefit the health effect estimates.  

In this study, we examined potential effect modification and found higher estimated risk of PM2.5 

exposure on adverse birth outcomes among pregnant women older than 35 years. We also found 

that pregnant women with higher education level had a lower estimated risk of preterm birth, but 

a larger decrease in birth weight in association with PM2.5 exposure. Findings from previous 

studies on the effect modification of maternal education level were not consistent [18, 31-34]. 

Pregnant women with higher education level may be more vulnerable to air pollution-associated 

decrease in birth weight due to less exposure to competing risks, e.g. smoking and alcohol 

consumption.  

In Shanghai, we found high correlation coefficients between daily regional average PM2.5 and 

other air pollutants: CO (0.87), NO2 (0.75), and SO2 (0.76). Thus, a multipollutant model can 
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result in unstable estimates due to the high collinearity and we did not fit such a model. Our 

estimated PM2.5 associations may in fact represent a broader pollutant mixture in our study. 

There are 13% of births with failed geocoding mainly due to incomplete address which were 

removed from the study population. However, these excluded births due to failed geocoding did 

not have a higher risk of adverse birth outcomes than those with successful geocoding. Another 

limitation of this study is the potential spatial confounding. There is a benefit of allowing both 

spatial and temporal contrast in this study; however, spatial confounding, especial social 

economic status, may bias the health association estimates. To account for potential confounding 

due to social economic factors, we controlled parental education levels in statistical models. We 

also conducted sensitivity analyses by adding a spatial spline smoother to control potential spatial 

confounding. When controlling for spatial trends, almost all the health association estimates 

decreased, partly due to the control of spatial variation in PM2.5 exposure. The ability of flexible 

spatial smoothers to attenuate effects of spatial covariates due to collinearity has been well 

documented by previous studies [35, 36]. 

Another limitation of this study is the lack of behavioral information. Indoor smoking and alcohol 

consumption were treated as potential confounders in some previous studies on birth outcomes 

[18, 20], but this information is not recorded in birth registration dataset. However, Ritz, Wilhelm 

[37] reported that adjusting for personal behavioral variables, including active and passive 

smoking, marital status, and alcohol consumption, did not change the health effect estimates of 

preterm birth in association with air pollution. Darrow, Woodruff [38] also reported that though 

maternal smoking was a strong predictor of infant respiratory mortality, it did not confound the 

associations between ambient air pollution and mortality. Residential mobility may be an 

additional limitation, leading to exposure misclassification when assigning maternal exposure 

with PM2.5 concentrations at the residence of birth. Pennington, Strickland [39] estimated that 

without accounting for residential mobility led to -2% to -10% bias towards the null in cohort that 
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18.6% of children were born to mothers changed resident during pregnancy. A previous study 

reported that 8.4% of pregnant women changed residence in Wuhan, China [29]. Unfortunately, 

there is no study on residential mobility in Shanghai, but we expect residential mobility to be 

nondifferential with respect to exposure and birth outcomes, thus the potential bias would be 

toward to null. 

CONCLUSIONS 

We reported decreased birth weight as well as increased risk of preterm birth and term LBW in 

association with maternal PM2.5 exposure in Shanghai, China, from 2011-2014. The magnitude of 

associations between maternal PM2.5 exposure and birth outcomes was slightly higher than 

previously reported findings. Health association estimates were influenced by exposure 

assessment approaches, and when using satellite predictions for exposure assessment, researchers 

should account for missing data. We observed higher magnitudes of associations between first 

and third trimester exposure and birth weight, as well as between first trimester exposure and 

preterm birth. Mothers older than 35 years and without college education tended to have higher 

risk of preterm birth. 
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Table 2. 1 Descriptive statistics of the birth cohort in Shanghai during 2011-2014 

(n=132 783). 

Variable Level  

Birth weight among term births 

(g) 

Mean (std) 3352 

(447) 

Preterm birth (%)  4.41 

Gestational age (week) Mean (std) 39.0 (1.3) 

Term low birth weight (%)  0.95 

Gender (%) Female 47.0 

Parity (%) 1 69.9 

 2 27.5 

 >2 2.6 

Birth location (%) Hospital  65.0 

 Maternal health service 

center 

35.0 

 others 0.02 

Mother’s age (year) Mean (std) 28 (5) 

Father’s education level (%) Graduate 9.4 

College 43.6 

High school or lower 47.0 

Mother’s education level (%) Graduate 7.1 

College 45.4 

High school or lower 47.5 
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Table 2. 2 Descriptive statistics of the three PM2.5 exposure metrics. 

 Pregnancy 1st trimester 2nd trimester 3rd trimester 

 Mean 

(std) 

IQR Mean 

(std) 

IQR Mean 

(std) 

IQR Mean 

(std) 

IQR 

Gap-filled PM2.5 prediction 60 (9) 11 63 (17) 24 61 (16) 23 57 (16) 25 

PM2.5 prediction with 

missingness 

72 (10) 13 71 (19) 29 69 (18) 26 65 (19) 19 

PM2.5 measurements from 

stations 

58 (7) 14 59 (18) 18 58 (17) 16 55 (18) 19 
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Table 2. 3 Health effect estimates per 10 µg/m3 increase in gap-filled satellite based 

PM2.5 exposure for births during 2011-2014, controlling for spatial and temporal 

trends by generalized additive model. 

  Change in birth weight OR for preterm birth 

First trimester 1.08 (-2.81, 4.96) 1.06 (1.01, 1.11) 

Second trimester 0.66 (-3.61, 4.93) 0.96 (0.91, 1.01) 

Third trimester -1.40 (-5.78, 2.97) 1.00 (0.97, 1.03) 

Entire pregnancy -15.32 (-25.76, -4.88) 1.06 (0.95, 1.17) 

 

  



61 

 

 

Figure 2. 1 Annual average PM2.5 concentrations from gap-filled satellite predictions 

and central-site measurements (circle) in 2014.  

The boundary of Shanghai (black line) and the main roads (thin grey lines) are 

overlaid on the map. 
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Figure 2. 2 Adjusted health association estimates per 10 ug/m3 increase in PM2.5 

exposure during each trimester and entire pregnancy for births between 2011 and 

2014, using exposure assessed from gap-filled satellite predictions.  

Left: adjusted birth weight change among term births and 95% confidence interval 

(CI). Right: adjusted odds ratio (OR) and 95% CI for preterm birth and term low 

birth weight. 
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Figure 2. 3 Adjusted OR for preterm birth (left), adjusted birth weight change in 

term births (middle) and adjusted OR for term LBW (right) per 10 µg/m3 increase 

in PM2.5 exposure during each trimester and entire pregnancy for births between 

2013 and 2014.  

Exposures were based on gap-filled satellite predictions, satellite predictions without 

accounting for missingness, and ground measurements. 
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Figure 2. 4 Adjusted health effect estimates per 10 µg/m3 increase in trimester-

specific and entire pregnancy PM2.5 exposures, stratified by maternal age and 

maternal education level for term births during 2011-2014. Exposures were based 

on gap-filled satellite predictions. 
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APPENDIX A 

 

Figure 2.A 1 Study population distribution in Shanghai, China, during 2011-2014. 
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Figure 2.A 2 Temporal trends of PM2.5 concentrations measured at ten monitoring 

stations (1-10) in Shanghai during 2013-2014. 
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Table 2.A 1 Correlation coefficients between the three PM2.5 exposure metrics. 

 Gap-filled 

predictions vs. 

Measurements 

With-missing 

predictions vs. 

Measurements 

Gap-filled predictions 

vs. with-missing 

predictions 

1st trimester 0.96 0.88 0.93 

2nd trimester 0.97 0.87 0.91 

3rd trimester 0.97 0.89 0.92 

Pregnancy 0.83 0.80 0.96 
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APPENDIX B 

Figure 2.B 1 Adjusted health effect estimates per IQR increase in PM2.5 exposures 

during each trimester and entire pregnancy for births between 2011 and 2014, using 

exposure assessed from gap-filled satellite predictions. Left: adjusted birth weight 

change among term births and 95% confidence intervals. Right: adjusted odds ratio 

(OR) and 95% confidence intervals for preterm birth and term low birth weight. 
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Figure 2.B 2 Adjusted health effect estimates per 10 µg/m3 increase in trimester-

specific and entire pregnancy PM2.5 exposure, stratified by paternal education level 

for term births during 2011-2014. Exposures were based on gap-filled satellite 

predictions. 
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Figure 2.B 3 The fitted spatial patterns from GAM in the sensitivity analysis.  

a-d: spatial patterns in models relating term birth weight to exposure during the 

first (a), second (b), third (c) trimester and entire pregnancy (d). e-f: spatial patterns 

in models relating preterm birth to exposure during the first (e), second (f), third (g) 

trimester and entire pregnancy (h). 
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Chapter 3 

 

A machine-learning model to predict historical PM2.5 concentrations in China from 

satellite data 

Qingyang Xiao, Howard H. Chang, Guannan Geng, Yang Liu 
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ABSTRACT 

Background: The long satellite aerosol data record enables assessments of historical PM2.5 level in 

developing countries such as China where routine PM2.5 monitoring began only recently. 

However, most previous models reported decreased prediction accuracy when predicting PM2.5 

levels outside the model-training period. This limitation greatly hinders the application of 

satellite-driven exposure assessments in the research on health effects of long-term PM2.5 

exposure. 

Objectives: We proposed an ensemble machine learning approach that provided reliable PM2.5 

hindcast capabilities in China. 

Methods: Non-random missing satellite data due to cloud cover were first filled by multiple 

imputation to ensure unbiased long-term exposure estimates. Then the modeling domain, China, 

was divided into seven regions using a spatial clustering method to control for unobserved spatial 

heterogeneity. A set of machine learning models including random forest, generalized additive 

model, and extreme gradient boosting were trained in each region separately. Finally, a 

generalized additive ensemble model was developed to combine predictions from different 

algorithms. 

Results: The ensemble prediction characterized the spatiotemporal distribution of daily PM2.5 well 

with the cross-validation (CV) R2 (RMSE) of 0.79 (21 μg/m3). The cluster-based sub-region 

models outperformed national models and improved the CV R2 by ~0.05. Compared with 

previous studies, our model provided more accurate hindcasts at the daily level (R2 = 0.53, RMSE 

= 28 μg/m3) and monthly level (R2 = 0.81, RMSE = 13 μg/m3). 

Conclusions: Our hindcast modeling system allows for the construction of long-term, unbiased 

historical PM2.5 levels that can support epidemiologic studies on the chronic health effects of 

PM2.5 in China.  
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INTRODUCTION  

Numerous studies have documented associations between PM2.5 (fine particulate matter with an 

aerodynamic diameter of 2.5 µm or less) and adverse health outcomes, including respiratory 

diseases, cardiovascular diseases, and lung cancer [1, 2]. The 2015 Global Burden of Diseases 

study identified ambient PM2.5 as the fifth largest overall risk factor for global mortality and 

estimated that PM2.5 exposure is responsible for 4.2 million deaths in 2015 [3]. However, studies 

on the health effects, especially chronic health effects, of PM2.5 exposure are limited in highly 

polluted regions [4], due to the lack of PM2.5 measurements. For instance, in China, the national 

air quality monitoring network was established in 2013 such that PM2.5 measurements before 

2013 were unavailable, making it difficult to assess long-term PM2.5 exposure levels. To extend 

ground air quality monitoring networks, satellite-retrieved aerosol optical depth (AOD) has been 

increasingly used for air pollution monitoring and population exposure assessment in the past 

decade. Satellite data with broad spatial coverage, a long data record and high spatial resolutions 

could support the assessment of historical air pollution levels in environmental epidemiological 

studies.  

Previous studies revealed that the relationship between satellite AOD and ground PM2.5 

concentration is complex and non-linear. Various statistical models have been presented to 

describe this relationship, addressing the effects of meteorological parameters, emission sources, 

and land use information [5-9]. Benefited from the long PM2.5 ground monitoring record, 

previous PM2.5 prediction models in the North America and Europe have aimed to extend the 

spatial coverage of PM2.5 monitoring networks rather than to generate historical PM2.5 levels. 

These models often included daily random effects or day-stratification to improve performance. 

Although day-specific intercepts and slopes can capture the unobserved fine-scale temporal 

trends in the associations between PM2.5 concentration and explanatory variables, applying the 
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daily effects outside the model fitting period imposes a strong and often unrealistic assumption 

that the estimated daily effects during the model fitting period will remain constant during the 

hindcast period. When applying these models in regions lacking historical measurements, e.g. 

China, the model performance degraded significantly outside the model fitting period. For 

example, Ma et al. (2016) reported that when using a model fitted with data of 2013 to predict 

daily PM2.5 concentrations in 2014, the R2 was 0.41 compared with the 10-fold CV R2 of 0.79. He 

and Huang [10] also reported that using model fitted with data of 2015 to predict daily PM2.5 

concentrations in 2014 had R2 of 0.47, wheare the model CV R2 was 0.80.  

Another PM2.5 modeling approach, driven by atmospheric chemical transport model (CTM) 

simulations, has also been reported [11, 12]. This approach estimated the scaling factor between 

AOD and PM2.5 from model simulations, and applied the scaling factor to satellite retrieved AOD 

to get PM2.5 estimations. Because CTMs simulate historical AOD and PM2.5, this approach can 

estimate historical PM2.5 levels from satellite AOD at global scale. However, the relatively low 

accuracy of CTM simulations limited the performance of this approach and the prediction 

accuracy was not comparable to statistical models. For example, Geng, Zhang [13] reported that 

the R2 of the linear relationship between five-month-mean PM2.5 predictions and ground 

measurements was 0.72 in China in 2013. 

Most recently, machine learning algorithms have been applied to PM2.5 prediction. Machine 

learning algorithms can deal with complex non-linear relationships with interactions, making 

them promising in air pollution prediction. Di, Kloog [9] fitted a neural network to predict PM2.5 

concentrations from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD 

at 1 km resolution over the continental U.S. The model 10-fold CV R2 is 0.84. Hu, Belle [14] 

fitted a random forest model with the Moderate Resolution Imaging Spectroradiometer (MODIS) 

AOD and reported the 10-fold CV R2 of 0.80. These two studies included convolutional layers of 

PM2.5 estimated from ground measurements to characterize the spatial correlation of PM2.5. As a 
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result, these US-based models cannot estimate historical PM2.5 levels when ground measurements 

were unavailable. Li, Shen [15] trained a deep belief network in China with the 10-fold CV R2 of 

0.88, but this model relied on both spatial and temporal correlations of PM2.5 estimated from 

ground observations, making it unable to hindcast in space and time. Gradient boosting [16] and 

Generalized regression neural network [17] have also been employed to predict daily PM2.5 

concentrations in China, with the 10-fold CV R2 of 0.76 and 0.67, respectively. Although these 

models did not rely on PM2.5 measurements to construct input variables, neither of these two 

studies examined their models’ hindcast ability.  

Still at its infancy, machine learning PM2.5 models could be improved in several aspects. For 

example, previous studies revealed significant spatial heterogeneity in relationships between 

PM2.5, satellite AOD, and meteorological parameters [9, 18]. Thus, dividing a large modeling 

domain and training regional models could help control for unobserved spatial features and 

improve model performance [14]. Additionally, parallelizing the cluster-based model fitting 

process can significantly increase computational efficiency, especially for machine learning 

algorithms that normally require a longer time to converge. Previous studies in the U.S. divided 

study domains according to climate regions defined by the National Oceanic and Atmospheric 

Administration (NOAA) [14, 19], but it is not clear how to divide China into reasonable sub-

regions. Ma et al. (2016) fitted their multi-stage model for each province in China but provincial 

areas vary dramatically, ranging from 0.03 million km2 (Hainan) to 1.6 million km2 (Xinjiang). In 

addition, provincial boundaries do not necessarily reflect any geographic or emission patterns and 

observations from one province is generally insufficient to support a complex model. Thus, 

researchers had to select different buffer radii manually to ensure sufficient model fitting data in 

each province-based region and the buffer radii changed when the number of ground monitoring 

stations changed. 
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In this study, we proposed a machine-learning approach specifically designed to provide high-

quality historical PM2.5 concentration estimates in developing countries such as China. We 

developed a clustering method to divide China into seven temporally stable regions. Then we 

trained a set of machine learning models in each region that did not rely on daily effects during 

2013-2016. We finally combined predictions from various models by an additive ensemble model. 

We evaluated model hindcast predictions in 2017 and during the 2008 Beijing Olympic Games. 

METHODS 

Data 

The study domain covers mainland China, Hong Kong special administrative region and Taiwan 

(Figure 1). We constructed a 0.1 degree modeling grid covering this study domain for data 

integration. We used data during 2013-2016 for model training, and data during the 2008 Beijing 

Olympic Games as well as the first seven months of 2017 for hindcast evaluation. 

PM2.5 measurements 

Hourly PM2.5 concentrations in 2013-2017 were measured at ~1,593 air quality monitoring 

stations across mainland China (Figure 1). Since the national air quality monitoring network was 

under development during the study period, the number of monitoring stations increased over the 

years. Measurements are published by the China National Environmental Monitoring Center 

(CNEMC, http://www.cnemc.cn/), and were downloaded from PM25.in (http://pm25.in/), a direct 

mirror of data from CNEMC. Additionally, we collected PM2.5 measurements in Hong Kong from 

the Hong Kong environmental protection department (http://epic.epd.gov.hk/) and PM2.5 

measurements of Taiwan from the Taiwan environmental protection agency 

(http://taqm.epa.gov.tw/). We removed repeated identical measurements for at least three 

continuous hours, assuming that such repetition was due to instrument malfunction. Daily average 

concentrations were calculated from hourly measurements during 0:00-23:59 local time. Days 

with less than 18 hourly measurements were excluded. Daily average PM2.5 measurements from 

http://www.cnemc.cn/


77 

 

 

stations located within the same grid cell were averaged. Finally, we analyzed PM2.5 

concentrations during the 2008 Summer Olympic Games measured at three locations in Beijing, 

China: Tsinghua University, Daxing District, and Miyun District during June to October, 2008 

[20] as a test of model hindcast capabilities. These three temporary sampling sites were 

established during a field experiment and their locations do not coincide with any regulatory 

monitors later. 

Satellite data 

The MODIS Collection 6 level 2 aerosol products at 10 km resolution from Aqua and Terra 

satellites were downloaded from the Atmospheric Archive and Distribution System 

(http://ladsweb.nascom.nasa.gov/). Since MODIS retrievals were affected by the bow-tie effect 

(pixels were stretched at the border of each scan), to correctly assign AOD retrievals to the 0.1 

degree-grid cell, we created Thiessen polygons from centroid of AOD pixels. Two retrieval 

algorithms, Deep Blue (DB) algorithm and Dart Target (DT) algorithm, have been developed to 

retrieve AOD at 10 km resolution [21, 22]. These two algorithms use different methods to 

characterize and remove surface reflectance. Thus, they are suitable for retrievals over different 

land surfaces. The Dark Target algorithm provides high quality retrievals over vegetation covered 

land, while the Beep Blue algorithm is able to retrieve AOD over bright land, e.g. urban regions. 

The MODIS Collection 6 products also provided a parameter, “combined AOD” that combines 

high quality retrievals from Deep Blue and Dark Target algorithms, accounting for surface 

situations. Since the combination only includes high quality retrievals, its coverage is very 

limited. In this study, we included all three AOD parameters as separate inputs in our machine 

learning models.  

Due to cloud cover or high surface reflectance, about 40-70% of satellite retrievals are missing on 

average in East Asia[23]. To improve the coverage of satellite retrievals without decreasing 

retrieval quality, we filled data gaps in DB AOD, DT AOD and combined AOD separately using 

http://ladsweb.nascom.nasa.gov/
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multiple imputation. The details of this method are provided elsewhere and here is a brief 

summary [7]. We first fitted daily linear regressions between AOD retrievals from Aqua satellite 

(overpass time at 1:30 pm local time) and Terra satellite (over pass time at 10:30 am local time), 

and used the regression coefficients to estimate the missing Aqua/Terra AOD when only one of 

them is present. Then the observed and predicted AOD values were averaged to reflect daily 

aerosol loadings [24]. We then filled the missing daily average AOD by multiple imputation with 

an additive model driven by chemical transport model AOD simulations, temperature and 

humidity in the boundary layer, elevation, and MODIS cloud fraction [25]. Each missing daily 

AOD was imputed five times to account for the additional uncertainty due to imputation and the 

average of the five imputed AODs served as a predictor in machine learning models.  

The MODIS active fire data were obtained from the Fire Information for Resource Management 

System (FIRMS, https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms). We 

developed buffers with various radii, including 20 km, 30 km, 50km, and 75 km, to assign fire 

information to the corresponding 0.1° modeling grid cell. Specifically, we searched and summed 

the number of fire spots within each buffer centered on the centroid of each grid cell. We 

extracted cloud_fraction_day from Aqua and Terra Collection 6 level 2 cloud products 

(MYD06_L2 and MOD06_L2), at 5 km spatial resolution. Daily cloud fraction was calculated as 

the average of Aqua and Terra cloud fraction that were interpolated to 0.1 degree grid cell by the 

nearest neighbor approach. Normalized Difference Vegetation Index (NDVI) data were obtained 

from Terra MODIS monthly global NDVI dataset at 1 km resolution (MOD13A3). The NDVI 

value of each grid cell was assigned as the average of NDVI pixels falling within the 

corresponding grid cell. Missing data in NDVI were interpolated by inverse distance weighting. 

The tropospheric vertical column NO2 density and absorbing aerosol index (AAI) data in visible 

light and UV light from Ozone Monitoring Instrument (OMI) was downloaded from the Goddard 

Earth Sciences Data and Information Services Center (https://mirador.gsfc.nasa.gov/). We 

https://catalog.data.gov/dataset/goddard-earth-sciences-data-and-information-services-center-ges-disc
https://catalog.data.gov/dataset/goddard-earth-sciences-data-and-information-services-center-ges-disc
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extracted and processed the parameters ColumnAmountNO2Trop from the OMI NO2 level 2 data 

(OMNO2), AerosolIndexUV and AerosolIndexVIS from the OMI Aerosol Extinction Optical 

Depth and Aerosol Types level 2 data (OMAERO), and UVAerosolIndex from the OMI Near-UV 

Aerosol Absorption and Extinction Optical Depth and Single Scattering Albedo level 2 data 

(OMAERUV). These retrievals are at 13 × 24 km2 resolution at nadir. Due to row anomaly 

started from 2007, retrievals with the cross track anomaly flag as nonzero were removed and 

oversampling was conducted to smooth the systematic noise. Regarding the NO2 column density, 

the value of each 0.1° grid cell was assigned as the average of samples from a 20 km-radius 

buffer centered on this grid cell during each season. Regarding the AAI parameters, retrievals 

with lower than 0.5% percentile were removed and the value of each 0.1° grid cell were assigned 

as the average of samples from a 30 km-radius buffer centered on this grid cell during each 

season. This oversampling approach led to ~100 NO2 column density measurements and ~250 

AAI measurements being averaged per season in each grid cell.   

Meteorological and land use data 

Meteorological parameters in 2013-2017 were extracted from the Goddard Earth Observing 

System Data Assimilation System GEOS-5 Forward Processing (GEOS 5-FP) at 0.25° latitude × 

0.3125° longitude resolution. Meteorological parameters in 2008 were extracted from the 

Goddard Earth Observing System Model, Version 5 (GEOS 5) at 0.5° × 0.5° resolution. The 

meteorological data were downscaled to 0.1 degree grid cell through a daily smooth surface 

estimated by inverse distance weighting. The elevation data were obtained from the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation 

Model (GDEM) version 2 at 30 m resolution. Population density data were obtained from the 

LandScan Global Population Database at 1 km resolution [26]. 

Since we extracted various wind parameters at different heights of the atmosphere (wind direction, 

u and v component of wind speed at 10 m, averaged in the boundary layer, and at 500 mb), to 
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reduce feature space and avoid the curse of dimensionality [27], we applied dimension reduction 

by Linear Discriminant Analysis (LDA) on these wind parameters  [28]. The categorical output 

required by LDA was defined by separating the continuous PM2.5 concentrations into 164 levels. 

We extracted the first and second components from LDA that cumulatively explained over 95% 

of variabilities in all wind parameters.  

MERRA-2 PM2.5 reanalysis data 

We obtained daily PM2.5 simulations from the Modern-Era Retrospective analysis for Research 

and Applications, Version 2 (MERRA-2) [29]. The MERRA-2 PM2.5 simulations have complete 

coverage and relatively high accuracy at 0.5° latitude × 0.625° longitude resolution. Evaluation 

studies in the U.S. showed that MERRA-2 PM2.5 simulations agreed well with ground 

measurements [30]. MERRA-2 data provided additional information on PM2.5 distribution at 

broad scale. The total concentration of PM2.5 was calculated using the following equation [31, 32]: 

PM2.5 = 1.375 × SO4 + 2.1 × OC + BC + Dust2.5 + Sea salt2.5 

where SO4, OC, BC represent the MERRA-2 concentration of sulfate ion, organic carbon, and 

black carbon, respectively. Dust2.5 and Sea salt2.5 are the concentration of dust and sea salt with a 

radius less than 2.5 µm. Since MERRA-2 simulates dust and sea salt by five size bins, we 

summed dust concentrations of Bin 1 (radius 0.1~1.0 µm), Bin 2 (radius 1~1.5 µm), and Bin 3 

(radius 1.5~3.0 µm), and sea salt concentrations of Bin 1 (radius 0.03~0.1 µm), Bin 2 (radius 

0.1~0.5 µm), and Bin 3 (radius 0.5~1.5 µm). We multiplied SO4 by 1.375 to get the concentration 

of sulfate aerosol, assuming that sulfate is primarily presented as ammonium sulfate. The ratio 

between organic carbon and organic matter, 2.1, was estimated from PM2.5 observations and 

MERRA-2 organic carbon simulations in China during 2013-2016. The MERRA-2 PM2.5 

simulations at 50 km resolution was interpolated by inverse distance weighting to the 0.1° 

modeling grid. 
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Visibility data 

The visibility data were extracted from the Integrated Surface Dataset (IDS) from the U.S. 

National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental 

Information (NCEI). Visibility was measured at 407 stations in China (Figure 1). The daily 

average visibility was interpolated by inverse distance weighting and assigned to the 0.1° 

modeling grid. 

METHODS  

A diagram of our modeling method is shown in Figure 2. First, we divided our study domain 

according to the coefficient surface estimated from geographically weighted regression (GWR) 

by the K-Means algorithm. Then we trained three machine learning models, including random 

forest, extreme gradient boosting (XGBoost), and generalized additive model (GAM) in each 

region, separately. The decision tree based algorithms, random forest and XGboost, provided the 

estimated importance of predictors that guided parameter selection and construction of future 

models. These two algorithms performed well when predicting PM2.5 concentrations in the U.S. 

[14, 33]. The GAM model has been widely used to characterize the spatial distribution of PM2.5 

[8, 34]. Finally, to improve the hindcast accuracy and robustness, we combined predictions from 

the three individual machine learning models by a GAM ensemble model. We trained and 

evaluated prediction models at the daily level, while predictions outside the model fitting period 

were aggregated to monthly level for hindcast performance evaluation, because studies on the 

chronic health effects of PM2.5 normally assess exposure levels over a relatively long exposure 

window. Training prediction models at daily level allows flexible start and end dates of exposure 

windows in epidemiological studies.  

The R package “mlr” was used to optimize hyperparameters of each algorithm through 5-fold CV 

and fixed holdout. Since this study aims to train a model with accurate hindcasts, we favor low 

variance than low bias in the bias-variance trade off. We evaluated the model performance by 10-
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fold CV at daily level that we randomly selected 90% of data to train individual models and the 

ensemble model, and then we used the remaining 10% of data to examine the model performance. 

This process was repeated 10 times so that each data record was left for testing once. Because in 

such a standard cross validation, the randomly selected training dataset usually contains enough 

observations to estimate local spatial and temporal trends that may not hold constant outside the 

model fitting domain and period, we also conducted 10-fold CV spatially and temporally to detect 

potential spatial and temporal overfitting. For the spatial CV, we used data from randomly 

selected 90% of monitors to train the models and used data from the remaining 10% of monitors 

to test the model. Similarly, for the temporal CV, we used data from randomly selected 90% of 

days during the modeling period to train the model and used data from the remaining 10% of days 

to test the model. Since the CV results may underestimate the hindcast prediction error, we used 

data outside the training period (i.e. 2017) and outside the existing monitoring network (three 

temporary sites in 2008), to further characterize the prediction error. 

Cluster analysis 

We applied Geographically Weighted Regression (GWR), K-Means algorithm and GIS methods 

to identify appropriate clusters and divide our study domain to sub-regions. First, we fitted a 

GWR model with the annual average PM2.5 concentrations together with annual mean DB AOD, 

meteorological variables, population density, and elevation (Equation 1). DB AOD was included 

because it had the highest coverage before gap-filling. GWR has been widely used to analyze 

spatially varying relationships [35]. It generates a continuous surface of regression coefficients 

through a spatial weighting mechanism from observations within a certain distance from each 

location. Since we aimed to control the spatial trend by clustering, we used annual average values 

for GWR fitting and ignored the temporal variations to avoid short-term fluctuations in cluster 

patterns.  
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𝑃𝑀2.5𝑡,𝑖~𝐸𝑙𝑒𝑣𝑖 + 𝐷𝐵_𝐴𝑂𝐷𝑡,𝑖 + 𝑃𝑜𝑝𝑡,𝑖 + 𝑇𝑒𝑚𝑡,𝑖 + 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑡,𝑖 + 𝑃𝑟𝑒𝑐𝑡,𝑖 + 𝑃𝐵𝐿𝐻𝑡,𝑖 +
𝐴𝐴𝐼_𝑈𝑉𝑡,𝑖 + 𝐶𝑜𝑙𝑢𝑚𝑛_𝑁𝑂2𝑡,𝑖 + 𝑒𝑡,𝑖                                                                                                                               
Equation 1 

 

where PM2.5t,i represents the annual average PM2.5 concentrations of year t at grid cell i; Elevi 

represents the elevation of grid cell i; DB_AODt,i represents the annual average Deep Blue AOD 

of year t at grid cell i; Popt,i represent the population of year t at grid cell i; Temt,i, Humidityt,i, 

Prect,i, PBLHt,i, AAI_UVt,i, and Column_NO2t,irepresent the annual average temperature, 

humidity, precipitation, planetary boundary layer height, AAI in UV light, and tropospheric 

vertical column NO2 density of year t at grid cell, respectively. 

 

After fitting the GWR, we clustered PM2.5 monitors according to the vector of estimated 

coefficients by the K-Means algorithm and assigned PM2.5 monitoring stations to different 

clusters. The number of clusters (k) was decided after comparing the clustering results using 

various values of k, ranging between 4 and 20. The estimated coefficients from GWR were 

normalized before clustering and we gave longitude and latitude higher weights to favor spatially 

continuous clusters. To examine the effects of randomization on the clustering results, we 

examined 20 different random seeds when selecting initial centroids and compared the K-Means 

clustering results. We used the most common clustering pattern for the following analysis. 

Thiessen polygons were generated from monitors and we assigned grid cells within each Thiessen 

polygon to the same cluster of the corresponding monitor in the center (Figure 3). We added a 

one degree buffer to each region and averaged the PM2.5 predictions from different regional 

models in the buffer to ensure that the daily PM2.5 predictions are spatially continuous. To 

examine the long-term stability of the clusters, we also estimated the clustering pattern by year as 

a sensitivity analysis. 
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Generalized additive model 

GAM is a non-parametric model where the dependent variable depends linearly on smooth 

functions of predictors. We log transformed PM2.5 concentrations to improve the prediction 

accuracy of high PM2.5 values. The GAM model is shown as: 

lg _𝑃𝑀2.5𝑖,𝑗 = 𝑠((𝐿𝑜𝑛, 𝐿𝑎𝑡)𝑖) + 𝑠(𝐷𝐵_𝐴𝑂𝐷𝑖,𝑗) + 𝑠(𝐷𝑇_𝐴𝑂𝐷𝑖,𝑗) + 𝑠(𝐴𝐴𝐼_𝑈𝑉𝑖,𝑗) + 𝑠(𝑃𝑟𝑒𝑐𝑖,𝑗) +

𝑠(𝑃𝑟𝑒𝑐_𝑙𝑎𝑔1𝑖,𝑗) + 𝑠(𝐶𝑜𝑙𝑢𝑚𝑛_𝑁𝑂2𝑖,𝑗) + 𝑠(𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑖,𝑗) + 𝑠(𝑇𝑒𝑚𝑖,𝑗) + 𝑠(𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖,𝑗) +

𝑠(𝑀𝐸𝑅𝑅𝐴2_𝑃𝑀2.5𝑖,𝑗) + 𝑠(𝑃𝑜𝑝𝑡,𝑖) + 𝑃𝐵𝐿𝐻𝑖,𝑗 + 𝑒𝑖,𝑗                                                                          

Equation 2 

where lg_PM2.5i,j represents the log of PM2.5 concentrations on day j at grid cell i; s((Lon, Lat)i) 

represents a thin plate surface of longitude and latitude of grid cell i; s() represents a smooth 

function of the corresponding parameter. 

Random forest model 

Initially proposed by Breiman [36], the random forest algorithm is a bagged classifier based on 

decision tree. The random forest algorithm offers several advantages over other machine learning 

algorithms: it can handle a large number of features without overfitting; it allows both continuous 

and categorical input variables; it is robust to outliers; and it provides variable importance as well 

as out of bag error for model evaluation. The random forest algorithm has been widely used for 

classification and regression. One limitation of the random forest algorithm is that with the 

increase of number of trees and complexity of each tree, the model training and prediction time 

can increase significantly. The hyperparameters of the random forest model were optimized by 

grid search and the training model performance was evaluated by out-of-bag statistics 

(Supplementary Text 1). Since the contribution of each predictor varied across regions, we 

selected predictors separately in each region. 

Extreme gradient boosting model 

The XGBoost algorithm is developed from gradient boosting [37]. Gradient boosting model has 

been shown to outperform various statistical and machine learning models in predicting PM2.5 

levels during a wildfire event [33]. XGBoost requires less training and predicting time than 
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random forest and has been widely used in data mining competitions [38, 39]. The R package, 

xgboost, was used to train the XGBoost model [40]. The hyperparameters of XGBoost model 

were selected by grid search (Supplementary Text 1). To avoid overfitting, only parameters with 

the evaluation statistic Gain, which describes the improvement in accuracy after splitting on the 

corresponding feature, larger than 0.01 were included in the model. 

Ensemble model 

To ensure a spatially continuous prediction surface, we fitted a national GAM model including 

predictions from the three individual models during the 4-year modeling period, 2013-2016. 

Predictions from the GAM model were transformed to normal scale before training the ensemble 

model. The ensemble model is shown as: 

𝑃𝑀2.5𝑖,𝑗 = 𝑠(𝑃𝑟𝑒𝑑_𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡𝑖,𝑗) + 𝑠(𝑃𝑟𝑒𝑑_𝑋𝐺𝐵𝑜𝑜𝑠𝑡𝑖,𝑗) + 𝑠(𝑃𝑟𝑒𝑑_𝐺𝐴𝑀𝑖,𝑗) + 𝑒𝑖,𝑗             

Equation 3 

where Pred_RandomForesti,j, Pred_XGBoosti,j and Pred_GAMi,j are the predictions of PM2.5 

concentrations on day j at grid cell i from random forest, XGBoost and GAM, respectively. 

RESULTS   

Cluster analysis results 

The estimated cluster map is shown in Figure 3. As expected, the separation of clusters did not 

follow provincial boundaries. Three northeastern provinces, i.e., Heilongjiang, Jilin, and 

Liaoning, as well as the northern Inner Mongolia constituted the Northeast cluster, characterized 

by its long winter/heating season and large presence of heavy industry. The North China Plain 

constituted the North cluster, characterized by its coal consumption [41, 42] and stagnant 

atmospheric conditions in winter, contributing to frequent regional haze events [43, 44]. The 

Yangtze River Delta was separated into two clusters: the relatively cold north (YRD) with central 

heating in winter and the relatively warm south without central heating (Southeast). The Pearl 

River Delta (PRD) was another cluster, located on the coast and characterized by its warm 
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weather. The PRD and Southeast clusters also produce more hydroelectricity than other regions 

[45]. The Qinghai-Tibetan Plateau, Sichuan, Yunnan, and Gansu province constituted the largest 

cluster (West) with a high altitude and low population density. Xinjiang Uygur Autonomous 

Region dominated the Northwest cluster, characterized by substantial dust emissions from the 

Taklamakan Desert. Changing the initial randomly selected centroid only led to slightly different 

cluster patterns (Figure S1). This cluster pattern was also stable across years (Figure S2), slightly 

affected by the increase in number of monitors during the modeling period. Increasing the 

number of clusters resulted in some scattered small clusters that did not have enough samples for 

model training, and decreasing the number of clusters led to merging of clusters into larger 

clusters. Thus, we used this seven-cluster map for modeling.  

Individual machine learning model performance 

Table 1 shows the model fitting and CV performance of individual cluster-based models and 

national models without clustering at the daily level. The density plots of model fitting 

performance of cluster-based models are shown in Figure S3. The density plots of the CV 

performance of cluster-based models and the reference national models are shown in Figure S4. 

The ensemble prediction outperformed all individual models in cross-validation, with a CV R2 of 

0.79, RMSE of 21 µg/m3, slope of 1.00 and intercept of 0.0 at the daily level. The XGBoost 

model had the lowest CV RMSE (21 µg/m3) and the highest CV R2 (0.78) among individual 

models, followed by random forest (CV R2 0.77, RMSE 22 µg/m3). The random forest and GAM 

performed equally well in model training and standard 10-fold CV, while the XGBoost model’s 

CV R2 was 0.06 lower than model fitting R2.  

The cluster-based approach performed better than the national approach in all three algorithms 

(Table 1). The CV R2 values of cluster-based XGBoost, random forest, and GAM model were 

0.06, 0.06, and 0.05 higher than their national counterparts. As expected, prediction error 

increased in temporal and spatial CV relative to the standard CV, indicating that unobserved 



87 

 

 

spatial and temporal trends contributed to the prediction of PM2.5. The random forest algorithm 

and the XGBoost algorithm relied more on the temporal trend: the R2 in spatial CV was 

approximately 0.03 higher than the R2 in temporal CV. On the contrary, GAM relied more on the 

spatial trend and showed no temporal overfitting with the spatial CV R2 (0.58) lower than the 

temporal CV R2 (0.65). 

Model hindcast performance 

We observed large variations in model hindcast performance across clusters and across 

algorithms. In general, the Northeast cluster had the lowest prediction accuracy (Table 2). The 

Northeast cluster had a long winter up to five months, leading to significant missingness in AOD 

retrievals due to snow/ice cover. These missing satellite data can hardly be accurately imputed by 

the current imputation model that aims to fill missing data due to cloud cover. The Northwest 

cluster showed the best hindcast performance that the monthly hindcast R2 was 0.87, 0.85, 0.83 

from random forest, GAM, and XGBoost respectively. This high prediction accuracy may be due 

to the single major particulate source from the Taklimakan Desert in this region thus the aerosol 

type had less variation across years. The relative model performance using different algorithms 

remained stable across clusters, i.e., the random forest model outperformed the XGBoost model 

in all clusters, and the XGBoost model outperformed GAM in all clusters expect the northwest 

cluster. However, the magnitude of model performance statistics varied in space. For example, all 

the algorithms described PM2.5 levels in the Southeast cluster well, but random forest model 

provided significantly better hindcast in the Northeast cluster. 

Nationwide, the cluster-based random forest model had the highest R2 (0.83) and the lowest 

RMSE (12 μg/m3), followed by the XGBoost model (R2 0.82, RMSE 13μg/m3) and GAM model 

(R2 0.78, RMSE 15 μg/m3) (Figure S5). Unfortunately, all these models underestimated the high 

PM2.5 values. Consistent with a previous study [10], we noticed that the model temporal 10-fold 

CV error still underestimated the daily hindcast prediction error. For example, the cluster-based 
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random forest model had the temporal 10-fold CV R2 (RMSE) of 0.72 (25 µg/m3), while the daily 

hindcast R2 was 0.57 (26 µg/m3). This result suggested that long-term changes in PM2.5 emission 

sources due to economic development and policy changes might affect the relationships between 

PM2.5 and its predictors, but such changes in emission profiles were not well characterized in our 

current model. 

Figure 4 shows hindcast performance of the ensemble model. The ensemble hindcast prediction 

had a slightly lower R2 than the random forest model and the XGBoost model, but the linear 

regression between the ensemble hindcast predictions and ground measurements produced a slope 

closest to 1 (1.05) and a intercept closest to 0 (-3.18 µg/m3), indicating a smaller prediction bias. 

To better evaluate our model’s hindcast performance, we predicted PM2.5 levels in 2008, five 

years before the model training period (Figure 4). During the Beijing Olympic and Paralympic 

Games, our daily hindcast prediction matched well with ground measurements from three stations 

in Beijing, with an R2 value of 0.57 and RMSE of 27 µg/m3. Compared with the daily hindcast 

performance in 2017 over the North region (R2 = 0.53), the model performance did not appear to 

deteriorate in time. 

The annual PM2.5 distribution map in 2008 (Figure 5) indicated some hot spots of PM2.5 in Beijing, 

Tianjin, Hebei province and Henan province. As a demonstration of our ensemble hindcast model, 

we estimated the annual PM2.5 change rate during 2008-2016 with linear regression and noticed 

that the air quality at these hot spots was significantly improved during this eight-year period. 

During this eight-year period, PM2.5 levels decreased or remained constant in most part of China 

[46]. The largest improvement in annual average PM2.5 concentration occurred in Sichuan basin, 

followed by Henan province, Hebei province, Tianjin City, Taiyuan City, the Yangtze River 

Delta and Pearl River Delta, at more than 3 µg/m3 per year. However, PM2.5 levels in Northeast 

and Western China increased. For example, PM2.5 levels in Heilongjiang, Jilin, Gansu, Qinghai, 

Shandong province have increased at approximately 1-2 µg/m3 per year. The Taklimakan Desert 
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also experienced an increasing trend of PM2.5 levels that was possibly due to the increased 

frequency of blowing dust events [47]. A previous study also reported increase in PM10 levels 

measured in this region after 2008 [48].  

DISCUSSION 

The ensemble machine-learning model developed in this study has several unique advantages 

when used to hindcast PM2.5 levels. First, our results indicated that spatial clustering improved 

model performance for all three algorithms in this study. This is expected because the relations 

between PM2.5 and its predictors would vary across our large spatial domain. By controlling 

unobserved spatial heterogeneity, the cluster-based models are able to capture the spatiotemporal 

variation in PM2.5 more accurately than the national model. To our knowledge, this is the first 

data-driven method that divided China into stable regions for PM2.5 modeling purpose. This 

clustering pattern is different from the so-called Heihe-Tengchong Line that divides China into 

two roughly equal parts with contrasting population density and economic development status [49] 

as many environmental factors can influence air pollution patterns. Compared with previous 

clustering methods, our method generated temporally stable regions that reflected geospatial 

heterogeneity. This clustering approach could aid modeling efforts in the future by other 

researchers. 

Second, although we removed day-specific effects that were often used to improve model 

performance within the model training period, our machine learning model had similar CV 

performance compared with previous statistical models [10, 50]. The CV R2 of our model was 

lower than some previous machine learning models that included spatial or/and temporal smooth 

surfaces of PM2.5 estimated from ground measurements [9, 15]. Our model excluded 

measurement-based predictors because ground measurements of PM2.5 are unavailable during the 
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hindcast period. Our modeling system was better suited for estimating historical PM2.5 levels 

outside the model training period.  

Third, to increase the robustness of our model, we included four years’ worth of data for model 

training, whereas previous studies only used one- or two- year data, or trained a separate model 

for each year [9, 15, 50]. Similar to the spatial clustering, training model during a short time 

period, or temporal clustering, can better characterize short-term relationships. However, these 

annual models may estimate temporally unstable relationships that cannot be applied outside the 

modeling year. For example, when using only data of year 2013 to fit the XGBoost model, our 

model fitting R2 increased to 0.94, but the hindcast R2 decreased to 0.44 (Table S1). It is worth 

noting that the hindcast performance of the annually fitted model improved when the model-

training year getting closer to 2017, the hindcast year (Table S1). This result suggested that the 

hindcast ability of annual model deteriorated when predicting PM2.5 levels long before the model-

training year. On the contrary, our ensemble hindcast prediction agreed well with ground 

measurements in 2008, five years before the model-training period. By recruiting four year’ 

worth of data, we increased sample size and estimated temporally stable relationships. Increasing 

the training sample size normally leads to increased bias but decreased variance in the bias-

variance trade-off [28]. This is another reason why our model had lower CV R2 than some 

previous machine learning models. Similarly, to ensure a robust modeling system in space and 

time, we preferred low-complexity models, e.g. trees with smaller height and smaller number of 

leaves. We noticed that although increasing model complexity to a certain degree improved 

model standard CV performance, it also increased the risk of spatial and temporal overfitting (i.e., 

lower spatial and temporal CV R2 values).  

Finally, we combined predictions from different models that characterized different aspects of the 

complex relationships between PM2.5 and various predictors. For example, the random forest and 

XGBoost were less prone to spatial overfitting and GAM was less prone to temporal overfitting 
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in cross-validation (Table 1). Additionally, while generating accurate PM2.5 estimates, decision 

tree based machine learning algorithms, e.g. random forest and XGBoost, have difficulties 

handling spatial predictors and including time-fixed spatial parameters led to unsmooth prediction 

maps. By combining predictions from various algorithms, we were able to predict the spatial and 

temporal variations in PM2.5 better.       

We observed spatial heterogeneity in parameter importance. Visibility and MERRA-2 PM2.5 

simulations are two of the most important parameters in all clusters. Different from satellite AOD 

that describes vertical column aerosol loading, visibility is an indicator of horizontal aerosol 

loading and are associated with ground PM2.5 concentrations [51]. MERRA-2 PM2.5 simulations 

integrate data from various sources and have been shown to accurately describe large-scale PM2.5 

distributions in the U.S. and Europe [31, 32]. However, both parameters are at relatively low 

spatial resolutions: the visibility data was measured at ~400 stations in China and MERRA-2 

simulations are at 0.625° × 0.5° resolution. The tropospheric vertical column NO2 density and 

AAI from OMI also contributed significantly in PM2.5 predictions. However, resampling of the 

OMI data is necessary due to a row anomaly, leading to reduced temporal resolution. Although 

satellite AOD retrievals were not the most important variables in random forest and XGBoost 

models, they provided valuable information describing the fine-resolution spatial distribution of 

PM2.5 at the daily level.  

One limitation of our ensemble prediction model is the underestimation of some high PM2.5 

values (e.g., monthly mean PM2.5 levels above 200 µg/m3, daily PM2.5 levels above 300 µg/m3, 

Figure 4), which could be attributed to the retrieval error in AOD and the relatively coarse 

resolution of our national model. Previous studies indicated that MODIS collection 6 AOD 

retrievals tend to overestimate AOD values [52, 53]. Calibrating satellite AOD against ground 

measurements from NASA’s Aerosol Robotic Network (AERONET) may further improve the 

accuracy of AOD retrievals. However, there were only 10 operational AERONET stations in 
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China during 2013-2016 that cannot support a reliable nationwide calibration. Assuming that the 

quality of satellite retrievals remain constant in time, extending the study period to include more 

AERONET stations could support a reliable calibration of satellite AOD, therefore improve the 

performance of our PM2.5 prediction models. Regarding model resolution, we constructed a 

national 0.1° x 0.1° grid for data integration and model fitting since the highest resolution 

predictors, MODIS level 2 AOD retrievals, are at a 10-km nominal resolution. Additionally, for a 

national model, the 0.1° grid cells revealed enough spatial variations. However, some abnormally 

high PM2.5 concentrations due to local emission sources can hardly be captured at this spatial 

scale. As shown in Figure S7, although the residual distribution did not show any spatial patterns, 

suggesting that the model had no systematic bias, we observed considerable spatial variations in 

PM2.5 residual within the 0.1° grid cell. As a result, the misalignment between grid level PM2.5 

predictions and point measurements may lead to underestimate of very high PM2.5 measurements. 

Employing AOD products with a higher spatial resolution, e.g. MAIAC aerosol products [54, 55], 

and constructing a finer modeling grid could result in better model performance at high PM2.5 

levels. 

CONCLUSIONS 

In this study, we presented a data-driven clustering method that divided China into seven stable 

regions and improved model performance. We then developed a hindcast model that improved 

model hindcast performance to provide reliable estimations of historical PM2.5 level. We observed 

that during 2008-2016, PM2.5 levels decreased or remained constant in most part of China. In the 

Taklimakan Desert and Northeast China, the annual PM2.5 levels increased. Our hindcast model 

could support epidemiological studies on the chronic health effects of PM2.5 in regions without 

historical PM2.5 monitoring. 
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Table 3. 1 The model fitting and 10-fold CV results at the daily level for individual 

cluster-based models, individual national models, and the ensemble model. 

R2 (RMSE (µg/m3)) 
Individual Model 

Ensemble Model 
XGBoost Random Forest GAM 

Model Fitting 
(cluster) 

0.84 (18) 0.77 (22) 0.65 (28) 0.85 (18) 

Standard CV (cluster) 0.78 (21) 0.77 (22) 0.65 (28) 0.79 (21) 
Standard CV 
(national) 

0.72 (24) 0.71 (25) 0.60 (29)  

Temporal CV (cluster) 0.71 (25) 0.72 (25) 0.65 (28) 0.73 (24) 
Spatial CV (cluster) 0.74 (22) 0.75 (23) 0.58 (30) 0.76 (22) 
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Table 3. 2 Performance of 2017 monthly hindcast from individual models over each 

cluster. 

 Northeast North YRD Southeast PRD West Northwest 

Random Forest 0.74 0.83 0.82 0.82 0.83 0.84 0.87 

XGBoost 0.71 0.83 0.81 0.81 0.80 0.84 0.83 

GAM 0.68 0.79 0.75 0.80 0.79 0.80 0.85 
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Figure 3. 1 Map of the study domain with elevation. 

Air quality monitors are shown as red dots and the weather stations included in the 

National Centers for Environmental Information (NCEI) dataset are shown as 

green triangles. 
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Figure 3. 2 Model structure. 
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Figure 3. 3 The seven clusters covering the study domain. 
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Figure 3. 4 The hindcast performance of the ensemble model in 2017 and 2008. 
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Figure 3. 5 Annual PM2.5 distribution in 2008 (above) and the estimated PM2.5 

change rate during 2008-2016 (below). 
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SUPPLEMENTARY MATERIALS 

Supplementary Text 1 

The hyperparameters of random forest model were optimized by grid search. The search space 

was: maximum number of nodesfrom 28to 213; minimum leaf node size among 10, 20, 30, 40 and 

50; number of parameters for split among 4, 6, 8, 10, and 12; and number of trees among 100, 

200, 300, 400, and 500. The model performance was evaluated by out-of-bag statistics and the 

input parameters were selected by removing the least important variables that kept the decrease in 

out of bag explained variance less than 1%.   

The hyperparameters of XGBoost model were selected by grid search. The search space was: 

maximum tree depth from 6to 12; minimum child weight from 3 to 8; subsample ratio from 0.5 to 

0.9; and the subsample ratio of columns from 0.5 to 0.9. 

  



105 

 

 

Table 3.S 1 Model fitting and hindcast performance of XGBoost model fitted 

separately by each year. 

 

  
Data of year Model fitting R2 Hindcast PM2.5 in 2017 R2 

2013 0.94 0.44 

2014 0.93 0.46 

2015 0.90 0.50 

2016 0.90 0.54 
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Figure 3.S 1 Clustering results with different random seeds. Different colors 

represent different clusters. 
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Figure 3.S 2 Clustering results by year. 
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Figure 3.S 3 Scatter density plots showing the model fitting results of individual models. 
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Figure 3.S 4 Scatter density plots showing the standard 10-fold CV (the first row), 

temporal 10-fold CV (the second row), spatial 10-fold CV (the third row) results of 

the individual cluster based model, as well as the standard 10-ford CV results of 

national models (the fourth row). 
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Figure 3.S 5 Hindcast performance at a daily level (above) and monthly level 

(below). The color scale shows the percent of points within the grid cell. 
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Figure 3.S 6 Annual PM2.5 distribution estimated from individual models. 
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Figure 3.S 7 Average residual of ensemble predictions during 2017. 
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CONCLUSIONS 

In most developing regions with serious air pollution, e.g. China, the routine monitoring 

of PM2.5 does not existent or started recently. This lack of PM2.5 monitoring hindered 

exposure assessment as well as epidemiological studies on health effects of PM2.5 in 

highly polluted regions. Thus, the dose-response curve of PM2.5 at high exposure levels is 

not well studied and disease burden attributable to ambient PM2.5 in these regions are 

poorly estimated.  

Satellite data with a long record can contribute to prediction of historical PM2.5 

concentrations, but most previous satellite data based PM2.5 prediction models were 

developed in the U.S. with limited hindcast abilities. In order to predict historical PM2.5 

concentrations in developing regions, my work focus on two major challenges of PM2.5 

hindcast model: to fill non-random missing satellite data and to improve model hindcast 

accuracy. In Aim 1 we developed a gap-filling method that improved coverage of satellite 

data to 100 percent and without relying on ground measurements. Then we predicted 

PM2.5 concentrations at 1-km with the gap-filled satellite data. In Aim 2, we applied 

satellite predictions for exposure assessment in an epidemiological study assessing 

associations between maternal PM2.5 exposures and adverse birth outcomes. For Aim 3, 

we developed a national ensemble machine learning model in China that outperformed 

previous models in hindcast accuracy. The historical PM2.5 predictions from our 

ensemble model could be used to assess chronic health effects of PM2.5 in China.   

Accurately estimating PM2.5 levels in developing regions is challenging. Previous well-

developed prediction models in the U.S. applied ground measurements to fill missing 
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data and improve model performance, but hindcast models in developing regions cannot 

employ the same strategy due to the lack of ground measurements. Additionally, previous 

models in the U.S. aimed to extend the spatial coverage of PM2.5 monitors and ignored 

potential temporal overfitting that limits model’s hindcast abilities when predicting 

historical PM2.5 levels. Our work in Aim 1 and Aim 3 developed methods that 

contributed to prediction of historical PM2.5 levels. From these work, we learned that 

cloud-aerosol interactions provide information on aerosol loadings and PM2.5 

concentrations. We observed spatial heterogeneity in model performance and showed that 

dividing a large modeling domain to appropriate smaller domains can improve model 

performance. These methods may motive future models in PM2.5 prediction, PM2.5 

hindcast, and PM2.5 forecast.  

Another question that has not been well studied is the contribution of satellite-based 

exposure assessment in epidemiological studies. In Aim 2, we assessed maternal 

exposure using three datasets: PM2.5 predictions from gap-filled satellite, PM2.5 

predictions from satellite data without accounting for missingness, and central site 

measurements. We reported that when aggregate exposure in time, missing satellite data 

led to overestimate of long-term exposure levels and attunation of health effects. We also 

noticed that fine-resolution satellite predictions revealed local-scale variations in 

exposure thus improved precision of estimated health effects. This exploratory study in 

one city observed higher magnitude of estimated health effects than previous findings. 

One reason could be the improved exposure assessment quality using fine-resolution 

satellite predictions.  
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Overall, our models are beneficial for environmental health studies in regions without 

historical PM2.5 monitoring and our work met the urgent need of estimating health effects 

of ambient air pollution in highly polluted regions. 

 


