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Abstract

Bayesian Space-time Analysis in Carcinogenesis

By Zhiheng Xu

Although the etiology of cancer remains under investigation, evidence has suggested that
multiple events occur during carcinogenesis, the process of the transformation of normal
cells into cancer cells. Statistical modeling of carcinogenesis has been used to study the
cancer formation and cancer risk assessment. In this dissertation, I present three studies
involving carcinogenesis models in estimating cancer mortality rates.

First, I develop a Bayesian Armitage-Doll multistage carcinogenesis model. The Armitage-
Doll multistage model has been successfully employed in many carcinogenesis studies due to
its simplicity in predicting cancer mortality rate. The model provides estimates of different
numbers of stages for various types of cancer. This research is the first effort to use an
alternative Bayesian approach in the Armitage-Doll multistage model. Different likelihoods
and prior settings are discussed and sensitivity analysis and model assessment show that
the Bayesian Armitage-Doll model fits the cancer mortality data well.

Second, two carcinogenesis models, the Armitage-Doll multistage model and the Moolgavkar-
Venzon-Knudson Two-stage Clonal Expansion (TSCE) model, are used in updating the
age-period-cohort (APC) model to target issues of lack of sound biological explanation and
identifiability problems. I develop a Bayesian extended APC model where non-specific age
effects are replaced by the hazard functions derived from multi-stage carcinogenesis models.
The Bayesian extended APC model is applied to study colon cancer mortality rates in the
US achieving high consistency between the estimated rates and observed rates for older
age groups (≥ 45). In addition, model comparisons show that the Bayesian extended APC
model can be used to replace the conventional APC model without increasing the deviance
information criterion (DIC) values while providing a more sound biological meaning to the
model.

Third, I further apply the Bayesian extended APC model to study the spatio-temporal
variation in cancer mortality rates. Both the Armitage-Doll and TSCE carcinogenesis model
are also used in the Area-APC model to replace the main age effect. The county level lung
and colon cancer mortality data in Iowa are used as examples. The study shows the Bayesian
extended AAPC model with area-cohort interaction and Armitage-Doll age effects achieved
the lowest DIC values and good convergency among all models. The Bayesian extended
AAPC model can be used to study spatial-temporal patterns of cancer mortality with
strong biological prior beliefs in the age effects.

In summary, my dissertation focuses on developing carcinogenesis analytic approaches using
Bayesian methods. The three studies show that carcinogenesis model can be used to study
the relationship between cancer mortality rate and spatial and temporal effects from the
underlying disease process.
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Chapter 1

Introduction

Cancer, the second most common cause of death in the United States, has become a critical

public health concern since the last decade. The annual number of cancer deaths estimated

by American Cancer Society is 292,540 for men and 269,800 for women which accounts

for one quarter of total US mortality in 2009 [ACS, 2009]. Furthermore, among the three

principle death causes in the United States, cancer mortality has consistently increased since

1950 while the mortalities from heart disease and cerebrovascular diseases have decreased

more than 50%. The lifetime probability of developing cancer is 1 in 2 in men and 1 in 3

in women. The cancer statistics are dire, thus the need to improve cancer prevention and

treatment is increasingly urgent. Fortunately, considerable amounts of money, effort, and

resources have been allocated to cancer research from the federal and state governments

and non-profit organizations since 1970s.

Quantitative methods have been used to model incidence, progression, and mortality of

cancer. Much evidence has supported the assumption that multiple events are involved

in carcinogenesis, the process that describes how normal cells are transformed into cancer

cells. It is widely recognized that the multistage random process in carcinogenesis includes

genetic changes and stochastic proliferation and differentiation of normal stem cells and ge-

netically altered stem cells. Molecular biologists have discovered that a series of irreversible

genetic changes have occurred on a single stem cell before developing into a tumor cell
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through stochastic proliferation and differentiation. In addition, the number of stages and

pathways of the carcinogenesis process are significantly influenced by environmental factors

underlying the individual. Among many mathematical models formulated in the structure

of multistage stochastic process in carcinogenesis in the past 60 years, the Armitage-Doll

model [Armitage and Doll, 1954] and the Moolgavkar-Venzon-Knudson Two-stage Clonal

Expansion (TSCE) Carcinogenesis Model [Moolgavkar and Venzon, 1979, Moolgavkar and

Knudson, 1981, Moolgavkar and Luebeck, 1990] have made influential impacts on cancer

researchers, and have been widely applied to analyze cancer incidence and mortality rates.

In addition to multistage carcinogenesis model in analyzing cancer trends, a three-factor

multiplicative model, age-period-cohort (APC) model, has gained much attention among

statisticians and epidemiologists studying the separate effects and trends due to age, period

and cohort for cancer incidence and mortality rates. Periods effects such as cancer screening

technologies, have played important roles in cancer prevention and control. The occurrence

of medical milestones such as mammograph has significantly reduced the breast cancer

incidence and mortality in the past decades. Furthermore, cohort effects include both

factors that occurred at the year of birth and those that affect disease rates related to year

of birth. Therefore, period and cohort effects should be considered in the model along with

age effect in fitting cancer incidence and mortality data. However, it is well known that there

is a non-identifiability problem associated with all three factors (age, period and cohort)

because of the exact linear relationship among them [Holford, 1983, 1991]. La Vecchia, et.al.

[1998] also pointed out the random variation in the classical estimates of age, period and

cohort effects. In order to overcome the nonidentifiability issues and random variations in

APC model, Bayesian approaches have been used in fitting breast cancer incidence [Breslow

and Clayton, 1993] and lung cancer mortality rates [Berzuini and Clayton, 1994] where a

priori beliefs to smooth the temporal effects are incorporated and model constraints are

added as well.

In this dissertation, I apply Bayesian approaches to the Armitage-Doll multistage carcino-

genesis model to improve the precision in predicting cancer incidence and mortality rates.

The Armitage-Doll multistage model has been successfully employed in carcinogenesis stud-
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ies due to its simplicity in predicting cancer mortality rate. It estimates different numbers

of stages for various types of cancer. This research is the first effort to use an alternative

Bayesian approach in the Armitage-Doll multistage model. This carcinogenesis model de-

scribes a typical underlying disease process in which normal cells are transformed into cancer

cells and age is a deterministic factor in the model. Therefore, I introduce the carcinogenesis

model into an APC model to better explain the relationship between cancer mortality and

temporal effects from the underlying disease process. Spatial-temporal pattern of cancer

mortality rates are also studied in the area-age-period-cohort (AAPC) model.

In Chapter 2, I introduce the fundamental biological basis of cancer development and the

concept of multistage carcinogenesis, focusing on the Armitage-Doll multistage model and

the TSCE model through the literature review. The APC model and the Area-APC (AAPC)

model are discussed in Chapter 2 as well. In Chapter 3, I develop the Bayesian Armitage-

Doll multistage carcinogenesis model to derive posterior estimates with greater precision

from the combined information of prior and likelihood. Different likelihoods and prior

settings are discussed in this chapter. In addition, sensitivity analysis and model assessment

conducted here show that the Bayesian Armitage-Doll model fits the cancer mortality data

well. In Chapter 4, I develop the Bayesian extended APC model in which non-specific age

effects are replaced by hazard functions derived from multi-stage carcinogenesis models.

Autoregressive Gaussian priors are assigned to period and cohort effects while priors for

carcinogenesis parameters are specified too. The proposed model is believed to help address

the issue of lack of sound biological explanation and identifiability problems. In Chapter 5,

Bayesian extended AAPC is described and applied to the study of spatio-temporal mappings

of disease rates. Lastly, I present summary discussion and the direction for future works in

chapter 6.
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Chapter 2

Literature Review

2.1 Mechanisms of Carcinogenesis

Cancer is a term used for disease in which abnormal cells divide without control and are able

to invade other tissues. In most cases, these cancer cells form a tumor. A benign tumor can

proliferate but cannot grow into other tissues. In contrast, a malignant tumor can spread

to other parts of body through the blood and lymph systems which is defined as metastasis.

No matter where a cancer may spread, it is always named for the place where it started.

For example, breast cancer that has spread to the liver is still called breast cancer, not liver

cancer. Likewise, prostate cancer that has spread to the bone is metastatic prostate cancer,

not bone cancer.

The mechanism of cancer development is still unclear. However, most of cancer researchers

strongly believe there are multiple events involved in carcinogenesis, the process by which

normal cells are transformed into cancer cells [Armitage and Doll, 1954, Moolgavkar and

Venzon, 1979, Moolgavkar and Knudson, 1981, Moolgavkar and Luebeck, 1990]. Research

shows that several genomic mutations occurred in the cells, such as the activation of onco-

genes and inactivation of tumor suppressor genes, which demonstrated the multistage na-

ture of carcinogenesis [Bishop, 1991, Fearon and Vogelstein, 1990]. Inheritable genetic

alterations for neoplastic transformation also accounts for the carcinogenic process [Bishop,
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1991, Fearon and Vogelstein, 1990].

Three consecutive phases are assumed in the carcinogenesis: initiation, promotion and

progression. The first step is cell initiation, where normal stem cells are initiated to start

to divide and expand slowly so that they can form the tumor. The substances that triggers

the cell initiation is called initiator, for example, radiation, chemical agents or a virus. In

the promotion phase, with the help of promoter, an initiated cell can expand clonally and

reproduce a population of initiated cells. A promoter is a substance that stimulates the

growth of initiated cells. During tumor progression, initiated cells can convert to malignant

cancer cells via additional genetic alterations. The fast growth of malignant cancer cells

can outpace cell apoptosis and enable cancer cells to invade other organs (metastasis) and

build up their own vessel system for nutrition (angiogenesis). Aggressive metastatic tumors

can kill their hosts quickly.

Stochastic models for carcinogenesis have been developed in the last 50 years to predict

the risk of cancer. The process of carcinogenesis is widely views as normal cells deterio-

ration in a number of stages to malignancy through initiation, promotion and progression

[Moolgavkar and Venzon, 1979]. The Armitage-Doll multistage carcinogenesis model [Ar-

mitage and Doll, 1954] and the Moolgavkar-Venzon-Knudson Two-stage Clonal Expansion

(TSCE) Carcinogenesis Model [Moolgavkar and Venzon, 1979, Moolgavkar and Knudson,

1981, Moolgavkar and Luebeck, 1990] will be introduced in the next section.

2.2 Carcinogenesis Models

2.2.1 Armitage-Doll Multistage Model

In the early 1950s, Armitage and Doll first proposed the multistage model of carcinogenesis

which described the quantitative relationship between cancer mortality and age in indus-

trialized nations [Armitage and Doll, 1954]. A stochastic model was used to describe the

development of a malignant cancer from a normal cell as a finite number of stages on transi-

tions. They found that the mortality rate (r) is proportional to age at death (t) raised to a
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power that is one less than the number of stages (s) between normal health and death, i.e.,

r = α× ts−1, where α is a proportionality constant. The parameter α is affected by various

factors such as gender, race, diet, genetic, environmental factors. This relationship is a di-

rect consequence of the properties of a time-homogeneous birth process, the mathematical

theory underpinning the multistage model. By taking the logarithm of this relationship

we can write log(r) = θ + (s − 1) × log(t) where θ is some unknown constant. Thus the

logarithm of the rate increases linearly with the log of age at death, and the slope of this

line is s− 1, that is, the number of stages less 1. Specifically Armitage and Doll noted that

mortality increased with the sixth power of age, an observation that is consistent with the

occurrence of seven successive cellular changes (i.e., stages) leading up to the development

of cancer.

To derive this mathematical model, Armitage and Doll assumed a constant probability of

occurrence of mutation throughout the lifetime and each mutation is a relatively rare event

[1954]. Suppose during the time interval [0, t] the probability that mutation i happened

is pit, then the probability that n − 1 mutations happened is
∏n
i=1 pit

n−1. If order of

n mutations is not considered, there will be (n − 1)! possible orderings of the mutations.

Therefore, the probability of one right-ordered mutation sequences is 1
(n−1)!

∏n
i=1 pit

n−1. A

detailed mathematical proof can be found in Armitage’s paper [Armitage and Doll, 1954].

Moreover, Armitage and Doll were able to incorporate features into this model, such as

varying hormonal levels with age, to allow for non-constant probabilities over time.

Due to the mathematical simplicity of Armitage-Doll model, many cancer researchers have

been willing to apply this model to analyze experimental and observational data. Frank

[2005] stated a distinct and predicted pattern at the population level. Biologists prefer

simple models rather than complicated ones, that is why the Armitage-Doll model still

remains popular among biologists 50 years after its publication. The Armitage-Doll model

has contributed to the understanding of the underlying mechanism of carcinogenesis to

cancer researchers and scientists. It demonstrated the application of mathematical models

in the explanation of the biological events and built a bridge to connect those two fields:

mathematics and biology.
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2.2.2 Moolgavkar-Venzon-Knudson Two-stage Clonal Expansion (TSCE)

Carcinogenesis Model

It is widely recognized that the clonal expansion of genetically altered cells (by cell division

and cell death/differentiation) is fundamental in carcinogenesis. However, the Armitage-

Doll multistage carcinogenesis model did not take into account such key features in cancer

development. Moolgavkar,Venzon, and Knudson [1979, 1981, 1990] proposed the two-stage

clonal expansion (TSCE) model which incorporates two steps of birth processes for the

development of cancer. Two classes of the TSCE models were proposed with the first one

being an entirely stochastic model and second one consisting of both deterministic and

stochastic elements. Due to mathematical difficulties, Moolgavkar only derived the approx-

imate hazard function for the second class of models. Three assumptions are established

for the second class of models where normal cells assumedly grow deterministically and

intermediate cells proliferate stochastically. In a small time interval 4 t,

1. The transformation of normal cells to intermediate cells is a non-homogeneous Poisson

process with intensity µ1(t)X(t), where µ1(t) is the rate of the first mutation per cell

per unit time, and X(t) indicates the total number of normal cells at time t. In a

small time interval 4 t, the probability of intermediate cells is µ1(t)X(t)4 t+o(4 t).

2. The proliferation of intermediate cells is a Poisson process as well. An intermediate

cell divides into two intermediate stem cells with probability α(t)4 t+ o(4 t); dies or

differentiates with probability β(t)4 t+o(4 t); divides into one intermediate cell and

one malignant cell with probability µ2(t)4 t + o(4 t); the probability of more than

one event occurring is o(4 t).

3. The probability of a malignant cell developing into a malignant tumor is 1.

The hazard function h(t) at time t is given by

h(t) = µ2(t)E(Y (t)|Z(t) = 0)
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where Y (t), Z(t) are the number of intermediate and malignant cells at time t respec-

tively. Given a very small chance of cancer malignance, the conditional expectation can be

simplified to the unconditional expectation as

h(t) = µ2(t)E(Y (t)).

Moolgavkar and his colleagues has obtained the approximate form for h(t) through solving

the differential equation for E(Y(t)) [Moolgavkar and Venzon, 1988]. The hazard function

derived in TSCE model is approximately

h(t) ≈ µ2(t)

∫ t

0
µ1(s)X(s) exp[

∫ t

s
(α(u)− β(u))du] ds.

By assuming constant parameters µ1, α, β, and µ2, Moolgavkar [1979] has presented a

closed form solution for the exact hazard function:

h(t) =
µ1
α
pq

e−qt − e−pt

qe−pt − pe−qt
,

where

p =
1

2
(−α+ β + µ2 −

√
(α+ β + µ2)2 − 4αβ),

q =
1

2
(−α+ β + µ2 +

√
(α+ β + µ2)2 − 4αβ).

In contrast to the simple form of the hazard function in the Armitage-Doll model, the

hazard function for the TSCE model is much more difficult. Four derived parameters will

be summarized in the TSCE model, the rate of initation, µ1, the rate of division, α, and

death, β, of initial cells, and the rate of malignant conversion, µ2. p and q are the roots of

a quadratic equation, with p+ q = (α−β−µ2) and pq = αµ2. Three estimated parameters

p, q, and r ≡ µ1/α will be treated in the model. As we can see, the TSCE model requires

one parameter more than the Armitage-Doll model.
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2.3 Age-Period-Cohort (APC) Model

2.3.1 Background

Cancer mortality and incidence data are commonly presented in two-way tables with mor-

tality and incidence rates distinguished by age-group and period. Recently, a three-factor

multiplicative model, age-period-cohort (APC) model, has gained much attention among

statisticians and epidemiologists studying the separate effects and trends due to age, period

and cohort for cancer incidence and mortality rates [Holford, 1991, Berzuini and Clayton,

1994, Bray, 2002, Congdon, 2006b]. For example, children born during the years when

diethylstilbestrol was a common prescription to pregnant women may have higher probabil-

ities to get certain types of cancer as compared to children born at another time [Holford,

1991]. Cohort effects include both factors occurring at the year of birth and those that affect

disease rate that is related to year of birth. The period effect is also a nonegligible factor.

For instance, medical advances, such as the clinical application of cancer screening tech-

nology, have significantly reduced the cancer incidence and mortality in the past decades.

It is necessary to include period effect in the model by taking those medical milestones

into account. In the APC model, cancer incidence and mortality rates can be estimated as

follows:

Nij ∼ Poisson(λij),

log(λij) = µ+ αi + βj + γk,

i = 1, ..., I, j = 1, ..., J, k = j − i+ I,

where i, j, and k denote age, period and cohort respectively. Nij is the number of cancer

cases at age-group i and period j. λij refers to the unknown true mortality and incidence

rate at age-group i and period j, µ is the intercept term, and the αi, βj , and γk refer to

effects due to age, period and cohort.
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2.3.2 Identifiability Issue

Despite the popular application of APC model, equivalently log-linear model, it is well

known that there is a non-identifiability problem associated with all three factors because

of the exact linear relationship among them [Holford, 1983, 1991]. For any c ∈ IR, the

linear predictor for log(λij) is not changed between the parameter set (µ, αi, βj , γk) and

(µ∗, α∗i , β
∗
j , γ

∗
k), where

µ∗ = µ− c · I ; α∗i = αi + c · i ; β∗j = βj − c · j ; γ∗k = γk + c · k.

Since k = I + j − i, we can have

log(λ∗ij) = µ∗ + α∗i + β∗j + γ∗k

= µ− c · I + αi + c · i + βj − c · j + γk + c · k

= µ + αi + βj + γk − (I + j − i) + k

= µ + αi + βj + γk

= log(λij).

Therefore, the age, period, and cohort effects cannot be identified and interpreted uniquely.

Figure 2.1 demonstrates the problem of nonidentifibility in APC models. Here we choose

the arbitrarily c value as 1 and make the transformation on the age-period-cohort estimates

as shown above. As we can see from Figure 2.1, the period effect is increasing in the top

row but the new period effects in the bottom row has a decreasing trend over period j.

Significant changes are also observed on age and cohort effects. In the top row, we can see

the trends of age effects changing at age group of 5 but in the bottom row, a straight linear

pattern is shown in the age effects. The cohort effects are orginially decreasing over the

cohorts k, however, after transformation, the decreasing trend diminishes around cohort 6.

To overcome this non-identifiability problem, several parameter constraints or assumptions

were proposed for the APC model [Osmond and Gardner, 1982, Clayton and Schifflers,

1987]. However, those constraints lack a sound biological explanation. To explain the
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Figure 2.1: Two sets of posterior estimates for APC effects in colon cancer mortality; top
row: (µ, αi, βj , γk); bottom row: (µ∗, α∗i , β

∗
j , γ

∗
k) and c = 1.

biological meaning of age effects, the multistage carcinogenesis model was introduced to the

APC model. Specially, the non-specific age effect of traditional APC models was replaced by

the hazard function derived from multistage carcinogenesis models [Moolgavkar and Meza,

2009]. It is based on the assumption of fundamental role of age in determining the cancer

incidence rates and subsidiary roles of period and cohort in modulating the age effect [Jeon

and Moolgavkar, 2006]. However, Moolgavkar admitted that this model did not completely

eliminate the non-identifiability problem even though the performance was better than the

classical APC models based on AIC values [Moolgavkar and Meza, 2009].

2.3.3 Area-APC Model

To study the space and time variation for the risk of disease, many general or more heavily

parameterized Bayesian approaches in Area-APC (AAPC) models have been proposed to

study spatio-temporal mappings of disease rates [Waller et al., 1997, Carlin and Louis, 2009].

AAPC models have been studied in some recent work in considering spatial correlation in

time or important cohort effects [Congdon, 2006a]. In an analysis of lung cancer rates in

Tuscany, Lagazio et al. [2003] introduced a full area-age-period-cohort (AAPC) model to
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study the spatio-temporal pattern of disease risk. The model incorporates the main effect of

area, age, period and cohort, and interaction terms such as the area-cohort and area-period

interactions. The model is as follows:

log(λiap) = νi + µi + θa + γp + δc + ϕip + ϕic,

where λiap is the relative risk for the αth age group and the pth calendar period in the ith

area, νi and µi are the spatial terms, θa, γp, and δc are the age, period, and cohort main

effects, ϕip is the space-period interaction and ϕic is the space-cohort interaction. Two

different spatial effects considered in this model can be viewed as random effects where

unstructured spatial effects νi represents the spatial heterogeneity and structured spatial

effects µi considers the spatial clustering [Lagazio et al., 2003]. A Kronecker product of the

structure matrix for the relevant dimensions [Congdon, 2006a, Lagazio et al., 2003, Schmid

and Held, 2004] is used to derive the prior distribution for the interaction terms.

The joint distribution for spatio-temporal interactions is modeled as a multinormial distri-

bution. For example, the joint spatio-period interactions ϕ = (ϕip, i = 1, ..., N, p = 1, ..., P )

are taken as ϕ ∼ N(0, τϕKµ p). The structure matrix Kµ p is the Kronecker product of Kµ

for the spatial effect and Kp for the period effect, such as

Kµ p = Kµ ⊗ Kp.

Since both Kµ and Kp are symmetric and singular matrices, their Kronecker product Kµ p

is symmetric and singular as well. Therefore, the joint density for spatio-temporal effects is

improper [Waller et al., 1997]. Carlin and Louis [2009] pointed out that the proper posterior

may not always result, thus extra care must be taken when using the improper priors. As

an alternative solution, Congdon [2006b] introduced the parsimonious product interactions

schemes with generic form

αiβp, i = 1, ..., N, p = 1, ..., P,
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where αi are the structured spatial effects, subject to
∑

i αi = 0, while

βp = exp(ηp)/[1 +

P−1∑
p=1

exp(ηp)], p = 1, ..., P − 1,

βP = 1/[1 +
P−1∑
p=1

exp(ηp)],

and ηp are the period effects.

Similar interaction priors for spatio-cohort and spatio-age can be defined as well.
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Chapter 3

Bayesian Armitage-Doll Multistage

Carcinogenesis Model

3.1 Background

Armitage and Doll applied their model to study the cancer incidence data in England and

Wales in 1950 and 1951 for various types of cancers. Considering too much variation in cell

development at early age and unreliable source of death at old age, Armitage and Doll only

include patients with age distribution between 25 and 74 into the study [Armitage and Doll,

1954]. The Armitage-Doll model fit the data very well for esophageal, stomach, pancreatic,

colon and rectal cancer for both men and women (see Figure 3.1).

The model fitting is not very satisfactory for the cancer of lung, bladder, prostate, breast,

ovary, cervix uteri and corpus uteri. Figure 3.2 displays the model fitting for breast and

cervix uteri cancer using the Armitage-Doll model. Among those sex organ cancers, such

as breast, ovary and cervix uteri for women and prostate for men, the hormonal control

of growth should be considered as an important factor in determining the development of

cancer cells. As we know, hormonal secretions differ considerably over a human’s lifespan.

A constant mutation probability may not be valid in the situation like this. Therefore,

Armitage and Doll recommended an alternative approach to allow the probability of stage
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Figure 3.1: Fitting of Armitage-Doll model to non-hormone type of cancer
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Figure 3.2: Fitting of Armitage-Doll model to hormone type of cancer

conversion varying over time, deriving the hazard rate in a complicated mathematical for-

mat [Armitage and Doll, 1954]. It was also widely recognized that considerable lung cancer

cases are related to cigeratte smoking and a large proportion of bladder cancer cases is

due to occupational hazards. Thus Armitage and Doll [1954] suggested a uniform relation-

ship between death rates and any power of the age is impossible for cancer at these sites.

Table 3.1 demonstrates the discrepancy in the estimation of parameter number of stages

for cancinogenesis models at these sites (lung, bladder, prostate, breast, ovary, and cervix

uteri).

Table 3.1: Fit of Armitage-Doll Model
Cancer Estimate P-value 95% CI R2

Esophagus 6.45 <.0001 (5.67, 7.24) 0.9817

Colon 5.07 <.0001 (4.77, 5.37) 0.9948

Pancreas 6.44 <.0001 (6.02, 6.85) 0.9938

Lung 6.95 <.0001 (6.56, 7.34) 0.9552

Breast 4.02 <.0001 (3.21, 4.83) 0.9422

Bladder 5.89 <.0001 (5.38, 6.40) 0.9889

Stomach 4.59 <.0001 (4.40, 4.78) 0.9975

Overy 3.74 <.0001 (3.40, 4.07) 0.9883

Rectum 4.46 <.0001 (4.17, 4.74) 0.9938

Cervix Uteri 0.58 .02 (0.11, 1.04) 0.5066

As we can see from Table 3.1, the application of the Armitage-Doll model leads to different

estimates for the number of stages across various types of cancer. Biologically this variation

by type reflects the different pathophysiological mechanisms leading to different cancer out-
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comes. In the standard statistical analysis of Armitage-Doll model, log transformations of

cancer incidence rate and age have been conducted in order to fit a linear regression model.

Normal distributions of residuals in the log-linear model are assumed. Maximum likelihood

estimation (MLE) has been used to obtain the estimate for the number of stages. Consid-

ering Armitage-Doll model has not been applied with a Bayesian procedure, we first fit a

Bayesain Armitage-Doll multistage model. The advantages of applying the Bayesian method

includes the ability to formally incorporate prior information and easily interpretable re-

sults. Bayesian model doesn’t need separate theories of estimation, testing and multiple

comparisons [Carlin and Louis, 2009]. Bayesian method may also improve the precision of

model estimates. Bayesian analysis provides a more intuitive interpretation of p-value and

confidence intervals [Congdon, 2006a].

3.2 Significance and Innovation

Armitage-Doll multistage model has been successfully employed in the carcinogenesis stud-

ies due to its simplicity in predicting cancer mortality rate. It estimates different numbers

of stages for various types of cancer. This research is the first effort to use an alternative

Bayesian approach in the Armitage-Doll multistage model. One of the advantages of the

Bayesian method over the classical method is the ability to formally incorporate prior in-

formation. Based on preliminary studies and literature reviews, knowledge of the number

of stages could be translated into the prior distribution. Therefore, the posterior estimate

derived from the combined information (prior and likelihood) could result in greater pre-

cision as compared to the classical estimators. In addition, it is much easier to interpret

the confidence interval and probability values under the Bayesian frameworks than classical

methods.
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3.3 Build the Bayesian Armitage-Doll Multistage Carcino-

genesis Model

To develop a Bayesian model, we need to make selections for the prior distribution and

also obtain likelihood from the data we are using. In this project, I use two different prior

settings in deriving the Bayesian Armitage-Doll multistage model. The first prior used

is the conjugate prior where the posterior distribution is in the same family as the prior

distribution. A conjugate prior gives a closed-form expression for the posterior and posterior

modes could be conveniently derived from the expression. The normal-inverse-gamma(NIG)

distribution will be used as a conjugate prior for the normal linear model. The second prior

used is the noninformative prior which is the default choice in many situations when no

reliable information concerning the parameter is available.

3.3.1 Normal Likelihood and Conjugate Prior

As explained in the background, after a logarithm transformation, the Armitage-Doll mul-

tistage carcinogenesis model can be written as the format of log-linear model:

log(r) = α+ (s− 1) log(t).

To simplify the expression, the above linear model can be expressed as

y = Xβ + ε,

where y is an n × 1 vector of observations, X is an n × p design matrix and β is a p × 1

vector of parameters and ε an n× 1 vector of random errors. In this example, y = log(r),

X = (1, log(t)), and β = (α, s − 1)′. In most scenarios, the error terms ε are assumed

have a N(0, σ2) distribution and the model is described as the normal linear model where

y|β, σ2 ∼ N(Xβ, σ2 I) and I is an n× n identity matrix. The likelihood takes the format

of

f(y|β, σ2) = (2πσ2)−n/2 exp{−(y −Xβ)′(y −Xβ)/(2σ2)}.
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The Normal-inverse-gamma (NIG) prior is then employed to define parameters β and σ2 in

the form of

f(β, σ2) ∝ (σ2)−(d+p+2)/2 exp{−[(β −m)′V −1(β −m) + a]/(2σ2)},

where a, d ∈ R. The prior distribution can be written as

(β, σ2) ∼ NIG(a, d,m, V )

and the normal-inverse gamma prior can be equivalently derived from

σ2 ∼ IG(a, d) and β|σ2 ∼ N(m,σ2 V ).

We can also obtain weak prior information about (β, σ2) within the conjugate family by

letting prior variances go to infinity [O’Hagan, 1994]. If parameters a and d in the inverse

gamma prior for variance σ2 are taken to be 0, we can derive an improper prior for σ2 as

f(σ2) ∝ σ−2 based on the probability density function for inverse gamma distribution. In

addition, if we let V −1 → 0, we can simplify the joint prior f(β, σ2) ∝ σ−(p+2).

The posterior can be derived after combining the likelihood and the prior. By the conjugate

structure, the posterior is still with normal-inverse-gamma

f(β, σ2|y) ∝ f(y|β, σ2)f(β, σ2) ∝ (σ2)−(d+n+p+2)/2 exp{−Q/(2σ2)}

where

Q = (y −Xβ)′(y −Xβ) + (β −m)′V −1(β −m) + a = (β −m∗)′(V ∗)−1(β −m∗) + a∗,

and the posterior distribution can be written as

(β, σ2|y) ∼ NIG(a∗, d∗,m∗, V ∗)

where
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V ∗ = (V −1 +X ′X)−1,

m∗ = (V −1 +X ′X)−1(V −1m+X ′y),

a∗ = a+m′V −1m+ y′y − (m∗)′(V ∗)−1m∗,

d∗ = d+ n.

If X ′X is non-singular, the posterior estimate of β which is E(β|y) = m∗ can be written as

m∗ = (V −1 +X ′X)−1(V −1m+X ′Xβ̂) = (I −A)m+Aβ̂,

where A = (V −1 +X ′X)−1X ′X.

In the log-normal Armitage-Doll model, we have

(X ′X)−1 =

 n
∑

logti∑
logti

∑
(logti)

2


−1

and X ′y =

 ∑
logri∑

logti logri

 ,

then we can calculate the classical estimate β̂ = (X ′X)−1(X ′y) and the posterior mean of

β is a weighted average of its prior mean m and its classical estimate β̂. The prior mean m

and variance V of β|σ2 will be approximated from the preliminary analysis results on the

SEER data.

3.3.2 Poisson Likelihood and Noninformative Prior

Suppose r = y/n, where r is the death rate, y is the number of deaths, and n is the

size of the population at risk. A typical assumption for count data is that they take

on a Poisson distribution. Thus, if we assume that y ∼ Poisson with parameter θts−1n

where t is the age, s is the number of stages, and θ is another unknown parameter, then

the data distribution y|s, θ can be written as f(y|s, θ) ∝ (θts−1n)y exp(−(θts−1n)). The

conjugate prior for Poisson likelihood is the Gamma distribution. However, the Poisson
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model parameter θts−1n has two unknown parameters θ and s. It is difficult to derive

specific distributions for θ and s in order to obtain the Gamma distribution for θts−1n.

Therefore, we consider the noninformative prior distributions for θ and s then use Markov

chain Monte Carlo (MCMC) sampler methods to obtain the posterior estimates for them.

Prior 1: θ ∼ N(0, σ2)

A weak normal prior with large variance can be assigned to the unknown parameter θ. Given

little information we know about this parameter, the prior mean is set to zero. Gamma

or Beta priors are not used for the unknown parameter θ since possible negative value is

observed for θ. The variance for the normal prior can be fixed at a large value (i.e., 106),

or defined as a hyperprior with Gamma distribution (i.e., σ2 ∼ Gamma(0.1, 100)).

Prior 2: s ∼ N(5, σ2)

Similarly to the unknown parameter θ, a weak normal prior with large variance can be

assigned to the parameter s. Based on preliminary literatures and classical approaches, we

know the number of stages in the carcinogenesis model is about 6 to 7 for most cancers.

Since one less the number of stages is assigned to the power of age in the Armitage-Doll

model, we can simplify the prior mean for the s as 5. The choice of σ2 can be either a fixed

large number or hyperprior with Gamma distribution.

Prior 3: s ∼ Gamma(α, β)

We can then assume a Gamma prior distribution for s with parameter α and β, i.e.,

f(s|α, β) ∝ sα−1 e−θ/b where 0 < ϕ < 1. Since the mean of the Gamma distribution

is αβ and variance is αβ2, we choose α = 1 and β = 10 in order to design the Gamma

distribution with mean at 10 and variance at 100.

Alternatively, we can define hyperpriors for the shape and scale parameters (α and β) in the

Gamma distribution. By Bayes rule [Carlin and Louis, 2009] we have the posterior density

f(s, ϕ|y) ∝ f(y|s)f(s|ϕ)f(ϕ),
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then the marginal posterior distribution of s can be derived at

f(s|y) =

∫
f(s, ϕ|y)dϕ ∝

∫
f(y|s)f(s|ϕ)f(ϕ)dϕ

where ϕ = (α, β).

At this point there are several choices to be made on the hyperpriors with respect to the

direction of inference, especially for the derivation of the marginal posterior, f(s|y). Since

the Gamma distribution is a two-parameter exponential family, I set the hyperprior for

shape parameter α to be the Exponential distribution with mean at 5 and the hyperprior

for the scale parameter β as the Gamma distribution with the shape value 0.1 and scale

value 10.

3.3.3 Binomial Likelihood and Noninformative Priors

The Poisson distribution was assumed previously for cancer death count.The Poisson distri-

bution with parameter λ = np can be used as an approximation to the Binomial distribution

B(n, p) if n is sufficiently large and p is sufficiently small. In the Bayesian framework for the

Armitage-Doll model, we can also assume a Binomial observation model for cancer death

count y with an unknown cancer mortality rate p. In other words, y ∼ Bin(n, p) where n

is the total persons at risk and p denotes the probability of persons at risk will die from

cancer. We decompose the log-odds π = log(p/(1 − p)) of these probabilities into a linear

combination of constant and a multiplication of number of stage (s) and log transformation

of age t. More specifically, the logit model will be written as

log
p

1− p
= α+ (s− 1)logt

so

p =
eα+(s−1)logt

1 + eα+(s−1)logt .
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3.3.4 Weibull Likelihood and Noninformative Priors

An alternative approximation for cancer mortality rates is the Weibull distribution [Berry,

2007]. It displays the distribution of failures, where the failure rate is proportional to a

power of time. The probability density function of a Weibull random variable x is

f(x;λ, k) =
k

λ
(
x

λ
)k−1e−(x/λ)

k

where x ≥ 0, the shape parameter k > 0, and the scale parameter λ > 0. The advantage

of the Weibull distribution is that its failure rate (or hazard rate) is exactly in the format

of the Armitage-Doll model:

h(x; k, λ) =
k

λ
(
x

λ
)k−1

where k is equivalent to the number of stage s in the Armitage-Doll model. To further

demonstrate the application of Weibull distribution in modeling cancer mortality rate, we

will treat the Bayesian Weibull model as an alternative model in this Bayesian framework

for the Armitage-Doll model while taking noninformative priors for its shape parameter k

and scale parameter λ.

3.3.5 Results - NIG Priors

Normal-inverse-gamma priors are first employed in the Bayesian Armitage-Doll model to

obtain the posterior estimate for the parameter of number of stages. The NIG priors are

σ2 ∼ IG(a, d) and β|σ2 ∼ N(m,σ2 V ),

where a and d are set as .001 and the prior for m is defined as (5, 5)′. I let V as 1000I and

I is 2 by 2 identity matrix.

As discussed previously, the posterior estimate of β which is E(β|y) = m∗ can be written
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Table 3.2: Fit of NIG priors in the Bayesian Armitage-Doll Model
Cancer Estimate SD MCSE HPD Geweke Diagnostics pvalue

Esophagus 6.27 0.57 .008 (5.14, 7.42) .89

Colon 4.99 0.28 .004 (4.44, 5.54) .35

Pancreas 6.33 0.34 .005 (5.64, 7.08) .28

Lung 6.84 0.36 .005 (6.13, 7.57) .05

Breast 3.94 0.40 .02 (3.11, 4.73) .80

Bladder 5.78 0.36 .005 (5.11, 6.53) .85

Stomach 4.51 .25 .003 (4.03, 5.00) .11

Overy 3.67 .25 .003 (3.17, 4.15) .86

Rectum 4.37 0.26 .004 (3.87, 4.89) .49

Cervix Uteri 0.56 0.22 .01 (0.15, 1.02) .82

as

m∗ = (V −1 +X ′X)−1(V −1m+X ′Xβ̂) = (I −A)m+Aβ̂,

where A = (V −1 +X ′X)−1X ′X. The assumption for the above formulation is that X ′X is

non-singular matrix. In the log-normal Armitage-Doll model, I have

(X ′X)−1 =

 n
∑

logti∑
logti

∑
(logti)

2


−1

where age t is chosen as the median age in every age group from 25 to 75 years old so that

t = (27, 32, 37, 42, 47, 52, 57, 62, 67, 72). Therefore, I can calculate the X ′X and (X ′X)−1

matrix as following

X ′X =

 10 38.56

38.56 149.67


and

(X ′X)−1 =

 15.65 −4.03

−4.03 1.05

 .

In order to compare the parameter estimates between classical approach (log-linear nor-

mal model) and Bayesian approach using NIG priors (Table 3.2), I generate Table 3.3 to

demonstrate the relationship between the classical estimate and the posterior estimate for

the parameter of number of stages. How the prior setting affects the posterior estimate is
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Table 3.3: Different prior settings in affecting the posterior estimate
Posterior m∗

Cancer Classical Estimate V = 1000I V = 100I V = 10I

Esophagus 6.45 6.32 5.14 1.98

Colon 5.07 4.99 4.32 1.81

Pancreas 6.44 6.33 5.46 2.10

Lung 6.95 6.84 5.96 2.55

Breast 4.02 3.95 3.48 1.56

Bladder 5.89 5.79 5.01 2.01

Stomach 4.59 4.51 3.86 1.43

Overy 3.74 3.67 3.15 1.17

Rectum 4.46 4.37 3.79 1.42

Cervix Uteri 0.58 0.56 0.42 -0.09

also displayed in Table 3.3. The classical estimates are obtained from the standard log-

linear normal model which is shown in Table 3.1 and the prior mean m is set as (0, 0) as

the starting point. Therefore, the prior variance V plays an important role in determining

the posterior mean of β. Strong prior gives more weight to the prior mean since V is small,

while weak prior gives more weight to the classical estimate. As we can see from Table

3.3, if we choose V = 10I which means strong prior belief since the variance is small, the

posterior estimate is close to the prior mean which is 0. However, if we increase V to 1000I

which indicates a weak prior due to large variance, the posterior estimates tend to shift to

the classical estimate.

Inverse-gamma prior for the variance component in the normal model is a conditional con-

jugate prior. The posterior distribution for the variance in the normal model is still within

inverse-gamma family. However, the inverse-gamma prior can become an ”improper” flat

prior as the parameter ε in IG(ε, ε) causes its variance approaches infinity. Therefore, the

posterior inferences are sensitive to ε. We chose different ε values in the inverse-gamma prior

for variance component to see whether they affect the posterior inference on the model pa-

rameter s (number of stage -1). Uniform prior for the variance was also considered as well.

Result shows the choice of inverse-gamma or uniform prior for the variance works well in

the model to obtain proper posterior inference for model parameters.
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3.3.6 Results - Noninformative Priors

The relative influence of the prior and data on the posterior belief depends on how much

weight is given to the prior and the strength of the data. In general, if the sample was

small with an informative prior, then the prior distribution would have a relatively greater

influence on the posterior belief about the parameter of interest. However, a large data

sample would tend to have a predominant impact on the posterior belief on the parameter

of interest unless the prior was informative [Congdon, 2006a]. Since the sample size is

small (n = 10) in this study, noninformative priors are used to avoid the possible negative

influence on the posterior belief of the parameter of number of stages by wrongly defined

informative priors. Likelihoods are computed based on different data assumptions such as

Poisson, Binomial and Weibull distribution. Results from different noninformative priors

are displayed in Table 3.4. Figure 3.3 shows the mean and 95% confidence intervals of

cancer rates estimated by Bayesian Armitage-Doll model and compares with the observed

colon cancer mortality rate. The model fits the data well except at older age.

Table 3.4: Different likelihood and noninformative priors in estimating the posterior for
colon cancer

Prior m Posterior m∗ p value

Likelihood θ s hyperprior θ s θ s

Poisson

N(0, 106) N(5, 106) NA -31.57 5.80 < .001 < .001
N(0, 106) Gamma(.1, 100) NA -31.60 5.80 .51 .52
N(0, σ2) N(5, σ2) σ2 ∼ Gamma(.1, 100) -31.61 5.78 .26 .28
N(0, 106) Gamma(α, β) α ∼ Exp(5); -31.57 5.80 .85 .88

β ∼ Gamma(.1, 100)

Binomial

N(0, 106) N(0, 106) NA -31.58 5.80 .67 .67
N(0, 106) Gamma(.1, 100) NA -31.58 5.80 .20 .19
N(0, σ2) N(0, σ2) σ2 ∼ Gamma(.1, 100) -31.58 5.80 .83 .77
N(0, 106) Gamma(α, β) α ∼ Exp(5); -31.58 5.80 .83 .82

β ∼ Gamma(.1, 100)
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Figure 3.3: Fitting of Bayesian Armitage-Doll model

3.4 Assess the Bayesian Armitage-Doll Multistage Carcino-

genesis Model

To prove the Bayesian model robustness, several possible concerns related to the prior dis-

tribution, the precise form of the likelihood, and the numbers of levels in the hierarchical

model [Carlin and Louis, 2009] need to be addressed. In this section, I investigate the ro-

bustness of the conclusion from the Bayesian Armitage-Doll multistage model by checking

whether the conclusion still holds subject to changes in the prior, likelihood, or some other

aspect of the model.

3.4.1 Sensitivity Analysis

Consider the log-linear model after log transformation of the Armitage-Doll multistage

model

log(ri) = α+ (s− 1) log(ti) + εi, i = 1, ..., n,
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where log(ri) is the cancer mortality rate for age group i, log(ti) is the median age for

age group i and the εi are independent random errors having density f with mean 0.

Andrews and Mallows [1974] proved that defining the distribution of the error term to

εi|σ2, λi ∼ N(0, λiσ
2), i = 1, ..., n, and putting a prior on λi can incorporate various familiar

and more widely dispersed error densities. In other words, the scale mixture of normal

densities is created as follows:

f(εi|σ2) =

∫
p(εi|σ2, λi)p(λi)dλi, i = 1, ..., n.

The following list gives different formats for p(λi) to obtain non-normal distributions.

� Student’s t errors: λi ∼ IG(ν/2, 2/ν);

� Double exponential errors: λi ∼ expo(2);

� Logistic errors: if 1/
√
λi has the asymptotic Kolmogorov distance distribution, then

εi|σ2 is logistic.

Due to the uncertainty about the error density and the impact of possible outliers, three

different error densities are compared:

� εi ∼ N(0, σ2);

� εi ∼ t(0, σ2, ν = 2);

� εi ∼ double expo(0, σ)).

Sensitivity analysis is implemented on the Bayesian Armitage-Doll model for colon, esopha-

gus, breast and lung cancer, as shown in Table 3.5. In colon cancer, the parameter s is more

precisely estimated in the nonnormal errors (t and double exponential distribution) than

in the normal errors, as indicated by the smaller standard deviations and narrower HPDs.

The heavier tails in the t and double exponential errors can dissolve the negative effects

caused by the possible large outliers more quickly than the normal errors. Therefore, the

posterior estimates for the parameter s can be achieved with higher accuracy and efficiency
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[Carlin and Louis, 2009]. In esophagus, breast and lung cancer, we observe the disturbance

in the posterior estimate for the number of stage s as we change the prior assumptions

for the model error terms. The posterior estimate in esophagus cancer is apparently in-

accurate when t errors are defined. Furthermore, the standard deviations obtained in the

t errors cases for breast and lung cancer are even higher than those in the normal errors

cases, showing that it is not efficient in the posterior estimate as the error terms change

from normal to t distribution. However, the performance of double exponential errors in

esophagus, breast and lung cancer is satisfactory with improved efficiency and accuracy in

obtaining the posterior estimate for the number of stage s.

Table 3.5: Sensitivity analysis results
Cancer Error εi Estimate SD MCSE HPD p value

Colon
N(0, σ2) 4.99 0.28 .004 (4.44, 5.54) .35
t(0, σ2, ν = 2) 4.93 0.18 .005 (4.59, 5.25) .74
double expo(0, σ)) 4.93 0.17 .003 (4.59, 5.25) .48

Esophagus
N(0, σ2) 6.27 0.57 .008 (5.14, 7.42) .89
t(0, σ2, ν = 2) 0.40 0.29 .013 (-0.18, 0.98) .95
double expo(0, σ)) 5.64 0.52 .013 (4.55, 6.54) .55

Breast
N(0, σ2) 3.94 0.40 .02 (3.11, 4.73) .80
t(0, σ2, ν = 2) 1.48 0.55 .108 (0.57, 2.74) < .001
double expo(0, σ)) 3.63 0.29 .005 (3.03, 4.19) .37

Lung
N(0, σ2) 6.84 0.36 .005 (6.13, 7.57) .05
t(0, σ2, ν = 2) 6.63 0.48 .067 (5.75, 7.22) .01
double expo(0, σ)) 6.71 0.24 .005 (6.22, 7.13) .02

3.4.2 Model Assessment

It is important to conduct diagnostic measurements to see whether the model is an ade-

quate fit with justified assumptions. For example, standard linear regression requires the

normality, independence, linearity, and homogeneity of variance [Carlin and Louis, 2009].

Similar to classical approach, we define a Bayesian residual as ri = yi−E(Yi|z), i = 1, ..., n,

where z = (z1, ..., zm) is the fitting sample and y = (y1, ..., yn) is the validation sample.

Cross-validatory

The limited number of observations in cancer mortality data per age group pushes us

to consider the cross-validatory (or ”leave one out”) approach [Carlin and Louis, 2009],
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where the estimated value for yi is computed conditional on all the data except yi. In

other words, we calculate the Bayesian residual as ri = yi − E(Yi|y(i)), i = 1, ..., n, where

y(i) = (y1, ..., y(i−1), y(i+1), ..., yn)′. And the standardized residual is defined as

d′i =
yi − E(Yi|y(i))√
V ar(Yi|y(i))

.

In the cross-validatory approach, the posterior mean and variance are computed based on

the conditional predictive distribution

f(yi|y(i)) =
f(y)

f(y(i))
=

∫
f(yi|θ, y(i)) p(θ|y(i))dθ

which gives the likelihood of each point without taking itself into account.

Figure 3.4 shows the means of standard errors at each age group are approximately zero

and the majority of standard errors (from the first quartile to the third quartile) are within

the range of ± 1.5. Therefore, the cross-validatory (leave-one-out) approach concludes that

Armitage-Doll model is a good fit for the colon cancer mortality data.

Posterior Predictive Distribution

An alternative method for model assessment is using the posterior predictive distribution

as a model checking tool. The posterior predictive distribution is defined as

p(ypred|y) =

∫
p(ypred|θ)p(θ|y)dθ

and samples from p(ypred|y) are generated as yipred for i = 1, ...,M , where M is the total

number of replicates. Replicated samples are compared with the observed data to see

whether there are any large and systematic differences. Bayesian p-value can be calculated

as follows:

Pr(T (ypred) > T (y)|θ)

where T (·) denotes the test statistics, such as the mean, standard deviation, order statistics,

and so on. T (y) is based on the observed data while T (ypred) are from the replicated data
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Figure 3.4: Box plot of standard error by age in fitting colon cancer mortality rate

sampled from the posterior predictive distribution.

In Figure 3.5, we observe that the Bayesian p-value for posterior means is 0.74 which

indicates no overall lack of fit using the Bayesian normal model. Similarly, the Bayesian

p-values for maximum and minimum values are 0.64 and 0.90 respectively, indicating no

problem with fit in either tail of the predictive distribution. The small Bayesian p-value

for standard deviation indicates the samples from the posterior predictive distribution have

less variation than those from observed data. In summary, the model is a good fit for the

data.
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Figure 3.5: Model assessment through posterior prediction distribution

3.5 Simulation

For different types of cancer, the posterior estimates for the number of stages are rounded

to the nearest integers. For example, Bayesian Armitage-Doll carcinogenesis model shows

the posterior estimate for colon cancer is 4.99 (see Table 3.2). Therefore, I conclude there

are six stages of transition from normal health cells to malignant cancer cells (the number

of stages equals to the posterior estimate plus 1). Simulation studies are implemented to

check the accuracy of such claims from the Armitage-Doll model.

Parametric Bootstrapping samples are generated using the Poisson distribution with the
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means equal to observed colon cancer death count for each age group, i.e.,

yi ∼ Poisson(di)

where i = 1, ..., 10 for ten different age groups, di is the total colon cancer death count

reported in SEER database at age group i for the population with SEER coverage, and yi

is the simulated colon cancer death count at age group i. The population size of each age

group (Ni) is considered as constant and used as the denominator to compute the simulated

colon cancer mortality rate ri as

ri =
yi
Ni
.

1000 datasets are generated and the Bayesian Armitage-Doll model is used to obtain the

posterior estimate for the number of stages β̂. Several numerical results are calculated as

follows:

Bias = β̂ − 5,

MSE = V ar(β̂) +Bias2,

where β̂ is the sample mean of 1000 bootstrapped estimate for the number of stage and

V ar(β̂) is their variance. The simulation result shows that the average of posterior estimates

for β is β̂ = 4.9957 and their variance is 0.00016. Then we can get

Bias = 4.9957− 5 = −0.0043,

MSE = V ar(β̂) +Bias2 = 0.00018

In conclusion, the simulation shows that the posterior estimate is a good approximation for

the true value with negligible bias and MSE.
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Chapter 4

Bayesian extended

Age-Period-Cohort Model

4.1 Background

Trend analysis for disease incidence and mortality is very important to public health and

those trends have been used by researchers in understanding disease etiology and making

disease projections [Holford, 1991]. A display of age-specific rates is commonly used to

present the age patterns in the distribution of disease incidence and mortality rates. Holford

[1991] stated that age is an important factor in the etiology of most diseases and the risk

for disease would vary as people aged from birth. Meanwhile, birth cohort effects are often

observed when different birth cohorts exposed to different levels of risk factors and resulted

in changes in disease incidence and mortality rates. For example, children born during

the years when diethylstilbestrol was a common prescription to pregnant women may have

higher probabilities to get certain types of cancer as compared to children born at another

time [Holford, 1991]. In vital statistics, disease incidences are often reported by year of

diagnosis and age. Similarly, disease death are also reported by year of death and age. One

approach in trend analysis is to present the patterns by year of diagnosis for the incidence

and by year of death for the mortality. The changes in the disease rates by calendar
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period are expected. For instance, medical advances, such as the clinical application of

breast cancer screening technology in the late 1980s, have significantly reduced the cancer

incidence and mortality since that period.

Therefore, a three-factor multiplicative model, age-period-cohort (APC) model, has gained

much attention in statisticians and epidemiologists to study the separate effects and trends

due to age, period and cohort for cancer incidence and mortality rates [Holford and McKay,

1994, Bray, 2002, Moolgavkar and Meza, 2009]. In the APC model, cancer incidence and

mortality rates can be estimated as follows:

Nij ∼ Poisson(λij),

log(λij) = µ+ αi + βj + γk,

i = 1, ..., I, j = 1, ..., J, k = j − i+ I,

where i, j, and k denote age, period and cohort respectively. Nij is the number of cancer

cases for age-group i and period j. λij refers to the unknown true mortality and incidence

rate for age-group i and period j, µ is the intercept term, and the αi, βj , and γk refer to

effects due to age, period and cohort.

Despite the popular application of APC model, equivalently the log-linear model, it is well

known that there is a non-identifiability problem associated with all three factors because

of the exact linear relationship among them [Holford, 1983, 1991]. To overcome this non-

identifiability problem, several parameters constraints or assumptions were proposed for

the APC model [Osmond and Gardner, 1982, Clayton and Schifflers, 1987]. Since the age,

period and cohort effects are linearly dependent, the conventional strategy is to transform

at least one variable related to age, period, or cohort so that its relationship to the oth-

ers is nonlinear. However, those constraints usually lack a sound biological explanation.

In addition, statisticians and epidemiologists often find that it is difficult to explain the

modifying effects of those temporal effects (age, period, and cohort) [Richardson, 2008].

Carcinogenesis models of a typical underlying disease process describe how the normal cells
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are transformed into cancer cells and age is a deterministic factor in the model. Typically

conventional regression modeling techniques are used to smooth and summarize the can-

cer epidemiological data and goodness-of-fit of the model doesn’t depends on the validity

of any particular theoretical carcinogenesis model derived from those epidemiological data

[Richardson, 2008]. However, theoretical carcinogenesis models can be used as a compli-

mentary approach to the empirical models to explore the association between response and

time from the underlying disease process.

To explain the biological meaning of age effects, multistage carcinogenesis models are intro-

duced to the APC model. Specially, the non-specific age effect of traditional APC models is

replaced by the hazard function derived from multistage carcinogenesis models [Moolgavkar

and Meza, 2009]. It is based on the assumption of the fundamental role of age in determin-

ing cancer incidence rates and the subsidiary roles of period and cohort in modulating the

age effect [Jeon and Moolgavkar, 2006]. However, Moolgavkar admitted that this model did

not completely eliminate the non-identifiability problem even though the performance was

better than the classical APC models based on AIC values [Moolgavkar and Meza, 2009].

Bayesian methods have been applied to the APC model to estimate the age, period and

cohort effect in cancer incidence and mortality [Bray and Brennan, 2001]. A prior belief

about the smoothness of the parameters was considered in the Bayesian model. Model

constraints were implemented in the sampling procedures. However, the non-identifiability

problem is still a challenge with Bayesian models.

4.2 Significance and Innovation

Bayesian APC models have been applied to study various cancer incidence and mortality

rates in the UK and United States [Breslow and Clayton, 1993, Berzuini and Clayton, 1994,

Bray, 2002]. Different from the classical approaches which make strong parametric assump-

tions, Bayesian models improve the precision in estimating the parameters by updating its

posterior density from the combination of the prior belief and data [Carlin and Louis, 2009].
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In this study, we first introduce multistage carcinogenesis models to the Bayesian APC

model. Thus we can incorporate the biological meaning of age effects in the cancer develop-

ment to predict cancer incidence and mortality rates while taking period and cohort effects

into account as well. Prior settings for number of stages (s) and constant (θ) we described

in Chapter 3 are used in determining the prior for age effect. Noninformative priors are

assigned to model parameters in the TSCE carcinogenesis model. Inspired by Berzuini and

Clayton [1994] and Bray [2002], we implement a Gaussian autoregressive prior in the for-

ward direction for cohort and period effects. The use of the autoregressive prior for cohort

effects can avoid excessive variability problems in the data caused by few early and late

cohorts. The autoregressive prior structure can be viewed as an exchangeable prior model

for second differences of period and cohort effects which are all identifiable. An arbitrary

linear constraint on the log-linear trend components of APC effects can be imposed to solve

the identifiability problem and optimistically will have no effect on the prediction of the

model.

The introduction of carcinogenesis model can make Bayesian APC model more biological

sound in explaining cancer mortality and incidence. Furthermore, the entry of carcinogenesis

model into APC model may help reduce the nonidentifiability concerns across the linear

relationships in age, period and cohort effects. The Bayesian extended APC model can be

used as a tool to estimate the cancer incidence and mortality rates with greater precision

and to make more accurate projections for the near future. The estimation and prediction

derived from the Bayesian extended APC model can be better used to inform public health

policy makers in understanding the trend of cancer incidence and mortality.

4.3 Apply Armitage-Doll Multistage Carcinogenesis Model

into APC Model

The hazard function derived from the Armitage-Doll multistage carcinogenesis model is

introduced to the APC model. As I discussed before, Armitage-Doll multistage model

estimates the hazard function as h(t) = cts−1 where s is the number of stages, t is the age
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and c is constant. The log-linear model takes the format of log(h(t)) = θ+(s−1)logt which

will be plugged into the APC model to replace the age effect αi. The extended APC model

will become

log(λij) = µ+ αi + βj + γk,

i = 1, ..., I, j = 1, ..., J, k = j − i+ I,

where αi = θ + (s− 1) log ti and ti is the median age in age group i.

Model Constraints

To improve the convergence rate in the MCMC samples, I add constraints to age, period

and cohort effect to make them sum to zeros by substracting to their means [Berzuini and

Clayton, 1994], i.e.,

αci = αi −
1

I

I∑
i=1

αi,

βcj = βj −
1

J

J∑
j=1

βj ,

γck = γk −
1

I + J − 1

I+J−1∑
k=1

γk.

Therefore we can get ∑
i

αci =
∑
j

βcj =
∑
k

γck = 0.

Holford [1994] stated that further constraints are still needed in order to solve the non-

identifiability issues in addition to the above constraints to center all three temporal effects.

Additional constraints include the reparameterization of APC parameters, equating the first

and second levels of APC effects, removing the linear trend in age effects, etc. In this APC

model, I obtain the posterior estimate using a Bayesian setting. No additional constraints

is imposed since in Bayesian modeling it is not crucial to ensure identifiability of latent

parameters as long as the quantities in which we are interested (the prob of cancer risk in

each subgroup) are identifiable (Knorr-Held and Rain, 2001).
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Priors

I use prior settings introduced in chapter 3 for the number of stage s and constant θ in

the Armitage-Doll model. In addition, I use a Gaussian autoregressive prior model in the

forward direction to smooth effects on period and cohort. Non-informative priors will be

defined for the first two parameters for period and cohort. Suppose the projection is need

for N future periods, so for the P +N period effects:

β1 ∼ N(0, 1000000
1

τβ
),

β2|β1 ∼ N(0, 1000000
1

τβ
),

βp|β1,...,p−1 ∼ N(2βp−1 − βp−2,
1

τβ
)

3 ≤ p ≤ P +N,

τβ ∼ gamma(0.0001, 0.0001).

For C +N cohort effects:

γ1 ∼ N(0, 1000000
1

τγ
),

γ2|γ1 ∼ N(0, 1000000
1

τγ
),

γc|γ1,...,c−1 ∼ N(2γc−1 − γc−2,
1

τγ
)

3 ≤ c ≤ C +N,

τγ ∼ gamma(0.0001, 0.0001).

Likelihoods

The Surveillance, Epidemiology and End Results (SEER) database at National Cancer

Institute (NCI) provides cancer mortality data (i.e., cancer death count and population

size) by their age group (5 years interval) and period (every year from 1969 to 2007). I then

divide the cancer mortality data into 8 periods of 5 years each (J = 8) summarizing the

death count and population size within each period. Since the Armitage-Doll model fit the
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cancer data well for the ages 25 to 74, I delete those observations with age less than 24 or

greater than 74. The total number of age group is 10 (I=10). Therefore, the total number

of cohort effect is 17 (I + J − 1 = 17) and the cohort (k) assignment for each observation is

determined by its period (j) and age (i) where k = j − i+ I. The index of age, period and

cohort effects is listed in Table 4.1.

Table 4.1: Index of age, period and cohort effects in cancer mortality data
Index (n) Age (i) Period (j) Cohort (k)

1 25-29 (i=1) 1969-1973 (j=1) 1942-1946 (k=10)

2 25-29 (i=1) 1974-1978 (j=2) 1947-1951 (k=11)

3 25-29 (i=1) 1979-1983 (j=3) 1952-1956 (k=12)

4 25-29 (i=1) 1984-1988 (j=4) 1957-1961 (k=13)

5 25-29 (i=1) 1989-1993 (j=5) 1962-1966 (k=14)

6 25-29 (i=1) 1994-1998 (j=6) 1967-1971 (k=15)

7 25-29 (i=1) 1999-2003 (j=7) 1972-1976 (k=16)

8 25-29 (i=1) 2004-2008 (j=8) 1977-1981 (k=17)

... ... ... ...

... ... ... ...

... ... ... ...

73 70-74 (i=10) 1969-1973 (j=1) 1897-1901 (k=1)

74 70-74 (i=10) 1974-1978 (j=2) 1902-1906 (k=2)

75 70-74 (i=10) 1979-1983 (j=3) 1907-1911 (k=3)

76 70-74 (i=10) 1984-1988 (j=4) 1910-1916 (k=4)

77 70-74 (i=10) 1989-1993 (j=5) 1917-1921 (k=5)

78 70-74 (i=10) 1994-1998 (j=6) 1922-1926 (k=6)

79 70-74 (i=10) 1999-2003 (j=7) 1927-1931 (k=7)

80 70-74 (i=10) 2004-2008 (j=8) 1932-1936 (k=8)

The Poisson distribution is used to model the cancer death count Yn at index n, i.e.

Yn ∼ Poisson(µn)

and

log(µn) = log(Popun) + αci + βcj + γck

where Popun is the population size at index n. The relationship between index n and the

values for i, j, k is included in Table 4.1.
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4.4 Apply TSCE Carcinogenesis Model into APC Model

The hazard function derived from the TSCE model is introduced to the APC model as

well. In contrast to the simple format of the hazard function in the Armitage-Doll model,

the hazard function from the TSCE model is more difficult. Four derived parameters will

be summarized in the TSCE model, the rate of initiation, ν, the rate of division, α, and

death, β, of initial cells, and the rate of malignant conversion, µ. The hazard function in

the TSCE model is given by Moolgavkar [1979, 1981, 1990, 2009] as

h(t) =
ν

α
pq

e−qt − e−pt

qe−pt − pe−qt
,

where p and q are the roots of a quadratic equation, with p + q = −(α − β − µ) and

pq = αµ. Three estimated parameters p, q, and r ≡ ν/α will be treated in the model. As

we can see, the TSCE model requires one parameter more than the Armitage-Doll model.

However, it adds additional complexity to the model, incorporates the stochastic feature of

the carcinogenic process and characterizes the kinetics of clonal expansion.

Priors

In cancer development, the mutation rate µ is considered much smaller than the cell division

rate α and the cell death rate β [Moolgavkar and Meza, 2009]. Therefore,

p+ q ≈ −(α− β).

The quantity α−β represents the net proliferation rate of intermediate cells [Moolgavkar and

Luebeck, 1992]. For colon cancer, Moolgavkar and Luebeck [1992] estimated the quantity of

α−β as approximately 0.107 per cell per year which indicates on the average level a stem cell

experiences an effective clonal expansion approximately once every 10 years. In addition,

Moolgavkar and Luebeck [1992] also estimated the quantity of β/α as close to 1 through

fitting the two and three-stage clonal expansion carcinogenesis models. The parameter q is
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much smaller than p and can be estimated as

q ' µ/(1− β/α).

Based on Moolgavkar and Luebeck’s calculation [1992], the estimated mutation rates and

initiation rates are on the magnitude of 10−6 to 10−8 . Therefore, I summarize the prelim-

inary information and make our noninformative priors as follows:

r ∼ Uniform(0, 10−5),

p ∼ Uniform(−0.2, 0),

q ∼ Uniform(0, 10−5).

4.5 Results

4.5.1 Convergence Diagnostics

In theory, Markov chain Monte Carlo (MCMC) samples after infinite runs will eventually

converge to the stationary distribution, which is assumed to be the true posterior distri-

bution [Carlin and Louis, 2009]. The way to know whether the samples have actually

converged is to implement the convergence monitoring and diagnosis tests, both visual and

statistical. The convergence diagnosic test is a way to detect the failure of the convergence,

not a proof of convergence.

Gelman and Rubin Diagnostic

Among all the convergence diagnostic test, the Gelman and Rubin multiple sequence diag-

nostic test [Gelman and Rubin, 1992] is perhaps the most popular approach. Here I run

m ≥ 2 chains of length 2n from overdispersed starting points and discard the first n sam-

ples in each chain. The within-chain (W ) and between-chain (B) variances are calculated
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as follows:

W =
1

m

n∑
j=1

s2j

where

s2j =
1

n− 1

n∑
i=1

(θij − θ̄j)2.

Here θij is the ith MCMC samples at jth chain and θ̄j is the mean of MCMC samples atjth

chain. Basically, s2j is the variance for the jth chain and W is the mean of the variances of

each chain.

B =
n

m− 1

m∑
j=1

(θ̄j − ¯̄θ)2

where

¯̄θ =
1

m

m∑
j=1

θ̄j .

The variance of the stationary distribution is measured as a weighted average of W and B.

ˆV ar(θ) = (1− 1

n
)W +

1

n
B.

Then the convergence is monitored by the estimated scale reduction factor at

R̂ =

√
ˆV ar(θ)

W
,

where R̂ close to 1 suggests good convergence [Carlin and Louis, 2009]. Brooks and Gel-

man[1998] extended the Gelman and Rubin approach to generalize a multivariate analysis

for simultaneous convergence diagnosis for every parameter in a model [Carlin and Louis,

2009]. The Brooks-Gelman-Rubin approach is available in the latest WinBUGS software

and is shown as ”bgr diag” in its sample monitor tool. From Table 4.2, I conclude the

convergency of the posterior estimates is met since the estimated scale reduction factors R̂

are close to 1 for all parameters. In addition, I select τa, τp and τc in Figure 4.1 and αc4,

βc4 and γc4 in Figure 4.2 as examples to demonstrate the convergency visually.
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Table 4.2: Brooks-Gelman-Rubin Convergence Diagnostics

Parameter R̂ Parameter R̂

αc1 1.000475 γc1 1.003891
αc2 1.003729 γc2 1.005464
αc3 1.001545 γc3 1.007351
αc4 1.000746 γc4 1.007656
αc5 1.000757 γc5 1.007936
αc6 1.001491 γc6 1.005536
αc7 1.003153 γc7 1.004627
αc8 1.005947 γc8 1.003926
αc9 1.008871 γc9 1.001019
αc10 1.008653 γc10 1.00023
βc1 1.002581 γc11 1.000781
βc2 1.002195 γc12 1.000707
βc3 1.001924 γc13 1.000048
βc4 1.000472 γc14 1.000017
βc5 1.000168 γc15 1.001583
βc6 1.002058 γc16 1.006247
βc7 1.001891 γc17 1.005061
βc8 1.003495 γc18 1.003596
βc9 1.000556 γc19 1.002865
βc10 1.000424 γc20 1.002452
βc11 1.000383 τa 1.036245
s 1.001584 τc 1.000367

τp 1.00019

4.5.2 Model Comparison

To compare different models in fitting cancer incidence and mortality data, I use the de-

viance information criterion (DIC) [Spiegelhalter et al., 2002] which is the posterior average

of the deviance plus a measure of complexity. The DIC is an addition of two statistics D̄ and

pD, where D̄ is the posterior mean deviance which can be computed from the distribution

of posterior deviance D(λiap) and pD is the effective number of parameters which is used

to penalize increasing model complexity [Schmid and Held, 2004]. The posterior deviance

is computed as

D(λij) = −2
∑
ij

(l(λij)− l(λ̂ij)),
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Figure 4.1: Convergency plots for posterior estimate τ

where l(λij) is the observed log likelihood and λ̂ij is the estimated cancer mortality rate at

age i and period j. The effective number of parameters can be derived as

pD = D̄ −D(λ̄ij)

where λ̄ij denotes the posterior mean of λij . The DIC is calculated as

DIC = pD + D̄.

Table 4.3 displays the DIC and posterior estimates for model parameters. When the

Armitage-Doll carcinogenesis model is considered in the Bayesian extended APC model,

we get DIC equals to 1287 and the posterior estimate for number of stage (s) at approx-
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Figure 4.2: Convergency plots for posterior estimate apc effects

imately 5. The DIC value is almost the same when the TSCE carcinogenesis model is

incorporated into Bayesian extended APC model. For both Bayesian extended APC mod-

els, autoregressive priors are chosen for period and cohort effects. Model constraints as

illustrated before are added. Compared with the DIC value (DIC=1286.43) derived from

conventional Bayesian APC model where all age, period and cohort effects are taking au-

toregressive priors, we don’t see much difference on the improvement of DIC values between

these two models. However, the age effect in the extended BAPC model has more sound

biological meanings since we replace it with the hazard function from the carcinogenesis

model.

To consider alternative prior settings for TSCE model parameters, three different uniform
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Table 4.3: Model comparisons using DIC
Extended BAPC Model DIC Parameter Posterior Estimate 95% HPD

Armitage-Doll 1287.0 s 4.867 [4.237, 5.5]

TSCE 1286.98 p -0.1495 [-0.1984, -0.05376]
q 4.9× 10−4 [2.7× 10−4, 9.8× 10−4]
r 7.5× 10−6 [2.6× 10−6, 9.9× 10−6]

priors for model parameter p were chosen. Result shows that the posterior inference varied

when we change the uniform intervals in the prior setting. From the biological perspective,

we chose the first prior setting where p is uniformed distributed between -0.2 and 0.

4.5.3 Rate Estimation and Projection

In the Bayesian extended APC model, I also compute the estimated mortality rate at each

iteration of MCMC samplings as

λ[i, j] = 100, 000× exp(αci + βcj + γck)

where

i = 1, ..., I, j = 1, ..., J +N, k = j − i+ I,

N denotes the future period where the projected rates are computed. Here, I choose N = 3

to represent the future periods at 2009-2013, 2014-2018, and 2019-2023. The posterior

estimates for age, period and cohort effects are listed in Table 4.4.

Through visually checking the history of posterior estimates on the mortality rates, I found

the estimated mortality rates converge. Figure 4.3 compares the observed cancer mortal-

ity rate with the estimated rates derived from the Bayesian extended APC model using

Armitage-Doll model. In the younger age groups (25-29, 30-34 and 35-39), the estimated

rates seem to deviate a little from the observed rates. A closer look at the cancer mortal-

ity rates at younger age groups, I found those rates at very small scale and the difference

between the observed rates and estimated rates is magnified as compared with its absolute

small value. For example, the observed colon cancer death count at age group 30-34 in
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Table 4.4: Posterior estimates for age, period and cohort effects in the Bayesian extended
APC models
Age α̂ci Period β̂cj Cohort γ̂ck
25-29 (i=1) -9.663 1969-1973 (j=1) -2.004 1897-1901 (k=1) 4.872
30-34 (i=2) -9.492 1974-1978 (j=2) -1.387 1902-1906 (k=2) 4.271
35-39 (i=3) -9.369 1979-1983 (j=3) -0.776 1907-1911 (k=3) 3.672
40-44 (i=4) -9.252 1984-1988 (j=4) -0.186 1912-1916 (k=4) 3.069
45-49 (i=5) -9.154 1989-1993 (j=5) 0.332 1917-1921 (k=5) 2.447
50-54 (i=6) -9.116 1994-1998 (j=6) 0.843 1922-1926 (k=6) 1.835
55-59 (i=7) -9.171 1999-2003 (j=7) 1.361 1927-1931 (k=7) 1.218
60-64 (i=8) -9.302 2004-2008 (j=8) 1.818 1932-1936 (k=8) 0.591
65-69 (i=9) -9.497 2009-2013 (j=9) 2.275 1937-1941 (k=9) -0.041
70-74 (i=10) -9.728 2014-2018 (j=10) 2.733 1942-1946 (k=10) -0.685

2019-2023 (j=11) 3.189 1947-1951 (k=11) -1.3
1952-1956 (k=12) -1.884
1957-1961 (k=13) -2.475
1962-1966 (k=14) -3.055
1967-1971 (k=15) -3.622
1972-1976 (k=16) -4.181
1977-1981 (k=17) -4.73
1982-1986 (k=18) -5.28
1987-1991 (k=19) -5.829
1992-1996 (k=20) -6.379

1969-1973 is about 1.2 per 100,000 while the estimated death count is 1 per 100,000 which

makes their difference at only 2 per 1 million people. Considering more than 90% of colon

cancer cases are in people age 50 and older, we are more interested in precisely estimating

the mortality rates among older age groups. In Figure 4.3, I found high consistency be-

tween the estimated rates and observed rates for those older age groups (≥ 45). It shows

the Bayesian extended APC can be used in determining the colon cancer mortality rates

among age, period and cohort. In addition, I project the mortality rates heading downward

in future periods (2009-2013, 2014-2018, and 2019-2023). Our projection on the decreasing

trend of colon cancer mortality rate can be supported by the fact that colon cancer is often

highly treatable and the promising development of cancer screening methods in the near

future.

The results displayed here are computed from 10000 iterations after a burn-in of 1000 itera-

tions in WinBUGS software. MCMC samples were drawn to derive the posterior distribution

about model parameters and function of these parameters, such as rates. The estimated
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Figure 4.3: Posterior estimates for the colon cancer mortality rates
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mortality rates are calculated by medians of the parameters (age, period and cohort) and

their 95% credible intervals are based on the 95% highest posterior density (HPD) regions

of these parameters. Figure 4.3 shows the posterior estimates and their 95% HPD for the

estimated colon cancer mortality rates for each age group at different period. The observed

rates are also displayed in Figure 4.3.
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Chapter 5

Bayesian extended

Area-Age-Period-Cohort (AAPC)

Model

5.1 Background

Disease mapping is an important topic in epidemiology to study the space and time variation

for the risk of disease. Many general or more heavily parameterized Bayesian models have

been proposed to study the spatio-temporal mappings of disease rates [Waller et al., 1997,

Carlin and Louis, 2009]. Disease incidence and mortality data may vary considerably among

different geographical regions. Areas with a small population could result in an extreme

observation of incidence and mortality due to the small population at risk. Therefore,

to consider the high sampling variability in small areas when estimating disease incidence

and mortality rates across each region, we usually add a weight matrix to the set of model

parameters to smooth variation among neighboring areas and improve the estimation in the

small regions by borrowing strength from their adjacent regions [Buenconsejo and Holford,

2008].

In an analysis of lung cancer rates in Tuscany, Lagazio, Dreassi, and Biggeri [2003] proposed
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a full spatio-temporal Bayesian model which include main effects of area, age, period and

cohort as well as area-period and area-cohort interactions. Gaussian first-order and second-

order random walk priors (RW1, RW2) were given to age, period and cohort effects in

Lagazio’s full model. To better explain the biological meaning of age effect in determining

cancer mortality rate, multistage carcinogenesis models will be considered in AAPC models

to replace the main age effects. It is based on the assumption of fundamental role of

age in determining the cancer incidence rates and subsidiary roles of period and cohort in

modulating the age effect [Jeon and Moolgavkar, 2006].

5.2 Significance and Innovation

The AAPC model provides a general framework to jointly study the evolution in time

and the spatial pattern of the risk of disease [Lagazio et al., 2003]. The interaction terms

over area can reduce the identifiability burden in the standard APC model [Clayton and

Schifflers, 1987]. Gaussian RW1 and RW2 structures on the age, period and cohort effects

can improve model estimation and prediction of future mortality rates [Schmid and Held,

2004, Knorr-Held and Rainer, 2001]. Model constraints can be further implemented in the

Bayesian framework to handle the identifiability issues in APC models.

In this study, I develop a new Bayesian extended AAPC model where multistage carcinogen-

esis models are introduced into the AAPC model to incorporate more biological meaning of

the age effects in studying the spatio-temporal pattern of cancer mortality rates. The prior

means of age effects in the AAPC model are replaced by the log transformation of hazard

functions derived from the Armitage-Doll multistage carcinogenesis model and the TSCE

model. The proposed extended AAPC model is also compared with the conventional AAPC

model where age effects are assigned as RW1 or RW2 priors in fitting cancer mortality data.

Model selection procedures (DIC) are implemented to compare the performance of several

alternative models.
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5.3 Bayesian AAPC Model

Lagazio et al. [2003] introduced a full area-age-period-cohort (AAPC) model to study the

spatio-temporal pattern of disease risk. The model incorporates the main effect of area,

age, period and cohort, and interaction terms such as the area-cohort and area-period

interactions. The model is as follows:

log(λiap) = νi + µi + θa + γp + δc + ϕip + ϕic,

where λiap is the relative risk for the αth age group and the pth calendar period in the

ith area, νi is the unstructured spatial term for the spatial heterogeneity effects, µi is the

structured spatial term to incorporate spatial clustering effect, θa, γp and δc are the age,

period, and cohort main effects, ϕip is the space-period interaction and ϕic is the space-

cohort interaction.

In the prior assumptions, νi is an unstructured area effect, and µi follows an intrinsic

conditional Gaussian spatial autoregressive model (ICAR). For the unstructured spatial

effect νi, we usually assign a homoscedastic distribution to them such as νi ∼ N(0, σ2)

where σ can be further defined as a hyperprior with an inverse-gamma distribution, i.e.,

σ ∼ IG(αν , βν). For the structured spatial effect µi, Congdon [2006a] illustrated the joint

distribution for spatial effects µ = (µ1, ..., µn) derived from their pairwise differences and a

variance term κ as follows:

P (µ1, ..., µn) ∝ exp[−0.5κ−1
∑
i

∑
j

cij(µi − µj)2],

where the cij are contiguity measures based on spatial adjacency between areas i and j.

cij =

 1, if areas i and j are first-order neighbours;

0, otherwise.
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Congdon [2006a] further demonstrated that the conditional prior of µi given the remaining

spatial effects µj where j 6= i follows a normal distribution.

P (µi|µ[i]) ∼ N(ωi, τ
−1
i ),

where µ[i] refers to remaining spatial effects µj where j 6= i. The weighted average ωi is

computed as

ωi =

∑
j cijµj∑
j cij

=
∑
j

ωijµj

and

τ−1i =
κ∑
j cij

are conditional variances. This is recognized as the intrinsic conditional autoregressive

(ICAR) prior since the conditional distribution involves row-standardised weights [Congdon,

2006a].

The effects γp and δc are modeled as Gaussian RW1 and RW2 [Berzuini and Clayton, 1994].

The Kronecker product of these structure matrices Kµ p = Kµ ⊗ Kp(or Kµ c = Kµ ⊗ Kc)

defines the structure matrix for the joint prior and provides a prior for the interaction terms

ϕip(or ϕic) [Congdon, 2006a]. For example, the joint spatio-period interactions ϕ = (ϕip, i =

1, ..., N, p = 1, ..., P ) are taken as ϕ ∼ N(0, τϕKµ p). Usually, the hyperprior τϕ is set as a

noninformative gamma distribution [Lagazio et al., 2003], i.e., τϕ ∼ Gamma(ατ , βτ ). The

structure matrix Kµ p is the Kronecker product of Kµ and Kp where for the RW1 prior in

the period effect

Kp[cd] =



−1, if periods c and d are adjacent;

0, if periods c and d are not adjacent;

1, if c=d=1 or c=d=P;

2, if c=d=k where k is not equal to 1 or P.
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and for the spatial effect

Kµ[ij] =


−1, if areas i and j are adjacent;

0, for non-adjacent areas;

Li, when i=j.

and Li is the cardinality of area i which is the measure of its total number of neighbors.

Lagazio [2003] derived the conditional distribution of the spatio-period interaction term ϕip

at area i and period p given the remaining terms have Normal distribution with mean

ϕ̄ip =


ϕi,p+1 +

∑
j∈Si

ϕjp

ni
−

∑
j∈Si

ϕj,p+1

ni
, if p = 1

ϕi,p+1+ϕi,p−1

2 +

∑
j∈Si

ϕjp

ni
−

∑
j∈Si

(ϕj,p+1+ϕj,p−1)

2ni
, if p = 2, ..., P − 1

ϕi,p−1 +

∑
j∈Si

ϕjp

ni
−

∑
j∈Si

ϕj,p−1

ni
, if p = P

and precision

τip =

 niτϕ, if p = 1 or p = P

2niτϕ, if p = 2, ..., P − 1

where Si is the set of areas adjacent to area i, ni is the number of areas adjacent to area i

and hyperprior τϕ is taken as noninformative Gamma distribution.

5.4 Bayesian extended AAPC Model - Introduction of Car-

cinogenesis Model into AAPC Model

Inspired by recent works on using carcinogenesis models into APC model to study cancer

trends [Moolgavkar and Meza, 2009, Jeon and Moolgavkar, 2006], I use various forms of mul-

tistage carcinogenesis models in this study to represent age effects in the extended AAPC

model. Due to its flexibility in prior settings and advantages in handling identifiability

problems, the Bayesian method is used to obtain posterior estimates of model parameters

in the AAPC model. The likelihood and the choice of priors are discussed below.
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Likelihood

Cancer death counts yiap at area i, age a and period p are modelled as Poisson distribution

with parameters rate λiap and population size Niap, i.e.,

yiap ∼ Poisson(Niapλiap),

where λiap is the relative risk for the αth age group and the pth calendar period in the ith

area, and can be modeled as

log(λiap) = νi + µi + θa + γp + δc + ϕip + ϕic.

Therefore, we can write the likelihood as

P (y|λ) ∝
∏
i,a,p e

Niapλiap(Niapλiap)
yiap

∝
∏
i,a,p e

λiap(λiap)
yiap

,

where λ = (λiap) includes all i, a, and p and represents all the parameters which need to

have prior distributions. Niap is a known quantity which can be ignored here.

Priors

The joint prior distribution can be written as

P (λ) = P (ν, µ, θ, γ, δ, ϕ1, ϕ2),

where ν is the joint spatial unstructured effect, µ is the joint spatial structured effect, θ is

the age effect, γ is the period effect, δ is the cohort effect, ϕ1 and ϕ2 are the joint spatial-

period and spatial-cohort interactions, respectively.

Age effects

As we introduced before, we apply the carcinogenesis model into the AAPC model by

replacing the age effects with hazard functions derived from the carcinogenesis model. For
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example, the age effect θa at age group a is given a noninformative prior as below:

θa ∼ N(θ̄a, τa)

where

θ̄a = log(h(ta)),

and

τa ∼ Gamma(0.001, 0.001).

Armitage and Doll [1954] assumed multiple transformations happened in stages for a cell

to grow into a cancerous tumor. In the Armitage-Doll model, h(t) = cts−1 where s is the

number of stages, ta is the age and c is constant. Therefore, we have the following age

effects in a nonlinear function of age,

θ̄a = c+ (s− 1) ∗ log(ta).

Hyperpriors are given to c and s at

c ∼ N(0, τc)

s ∼ N(5, τs)

where Gamma hyperpriors are given to two precision terms as below:

τc ∼ Gamma(0.001, 0.001)

and

τs ∼ Gamma(0.001, 0.001).

The hazard function derived from the TSCE model is introduced to the AAPC model as

well. In contrast to the simple format of the hazard function in the Armitage-Doll model,

the hazard function from the TSCE model is more difficult. Four derived parameters will
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be summarized in the TSCE model, the rate of initiation, ν, the rate of division, α, and

death, β, of initial cells, and the rate of malignant conversion, µ. The hazard function in

the TSCE model is given by Moolgavkar [1979, 1981, 1990, 2009] as

h(t) =
ν

α
pq

e−qt − e−pt

qe−pt − pe−qt
,

where p and q are the roots of a quadratic equation, with p+q = −(α−β−µ) and pq = αµ.

Three estimated parameters p, q, and r ≡ ν/α will be treated in the model. As we can see,

the TSCE model requires one parameter more than the Armitage-Doll model. However,

it adds additional complexity to the model by incorporating the stochastic feature of the

carcinogenic process and characterizing the kinetics of clonal expansion. The prior mean

for age effect is written as

θ̄a = log(rpq) + log(e−qta − e−pta)− log(qe−pta − pe−qta).

For the TSCE parameters, we can assign noninformative priors as follows:

r ∼ Uniform(0, 10−5),

p ∼ Uniform(−0.2, 0),

q ∼ Uniform(0, 10−5).

Spatial effects

The prior for νi is taken as

νi ∼ N(0, τ)

where τ is a hyper prior which is defined as gamma distribution

τ ∼ Gamma(0.001, 0.001).

Independence is assumed to all spatial unstructured effects.
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The intrinsic Gaussian conditional autoregressive (ICAR) priors are considered for the spa-

tial structured effects. Congdon [2006a] showed the joint prior for the structured spatial

effect µ can be taken as

P (µ1, ..., µn) ∝ exp[−0.5κ−1
∑
i∼ j

cij(µi − µj)2].

In Winbugs, we use the distribution car.normal to assign ICAR priors to the joint spatial

structured effects µ = (µ1, ..., µC).

Period and Cohort effects

The Gaussian RW2 [Berzuini and Clayton, 1994] priors are assigned to the period and

cohort effects, which result in a joint form as improper multivariate normals

γ ∼ N(0, τpK
−
p ),

δ ∼ N(0, τpK
−
c ),

where Kp is the structure matrix for period effects with generalized inverse K−p , and Kc

is the structure matrix for cohort effects with generalized inverse K−c . Suppose there are

six period effects (P = 6), we can derive the structure matrix in the RW2 priors for period

effects (Kp) at

Kp =



1 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 1


and structure matrix for cohort effect (Kc) whose pattern is similar to those for period

effects.

Interactions

The joint distribution for spatio-temporal interactions is modeled as a multinormal distri-
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bution. For example, the joint spatio-period interactions ϕ = (ϕip, i = 1, ..., N, p = 1, ..., P )

are taken as ϕ ∼ N(0, τϕKµ p). The structure matrix Kµ p is the Kronecker product of Kµ

for the spatial effect and Kp for the period effect, such as

Kµ p = Kµ ⊗ Kp.

Since both Kµ and Kp are symmetric and singular matrices, their Kronecker product Kµ p

is symmetric and singular as well. Therefore, the joint density for spatio-temporal effects is

improper [Waller et al., 1997]. Carlin and Louis [2009] pointed out that the proper posterior

may not always result, thus extra care must be taken when using improper priors. As an

alternative solution [Congdon, 2006b], we consider the parsimonious product interactions

schemes with generic form

αiβp, i = 1, ..., N, p = 1, ..., P,

where αi is the structured spatial effects, subject to
∑

i αi = 0, while

βp = exp(ηp)/[1 +
P−1∑
p=1

exp(ηp)], p = 1, ..., P − 1,

βP = 1/[1 +
P−1∑
p=1

exp(ηp)],

and ηp is the period effects.

Posterior

Given the likelihood and prior density, we can derive the posterior distribution for model

parameters

P (λ|y) ∝ P (y|λ)P (λ)

∝
∏
i,a,p e

λiap(λiap)
yiapP (ν, µ, c, s, γ, δ, ϕ1, ϕ2)

.

Markov chain Monte Carlo (MCMC) methods have been used to sample from the posterior
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density. Due to the non-identifiability issues in the model parameters, certain constraints

are added in the model to improve numerical stability and mixing [Bray, 2002]. Area, age,

period and cohort effects are each adjusted by subtracting their respective means [Bray,

2002]. Winbugs software is used to derive the posterior distribution about model parameters

from 10000 iterations after a burn-in of 1000 iterations. The convergence plots of model

parameters are provided along with convergence diagnostics. The posterior estimates of

main effects and interactions in the AAPC model are summarized by the mean and 90%

highest posterior density (HPD) derived from posterior samples.

Statistical software R and WinBUGS are used in this study.

5.5 Example 1 - Lung Cancer Mortality in Iowa

The SEER Program registries routinely collect data on patient demographics, primary

tumor site, tumor morphology and stage at diagnosis, first course of treatment, and follow-

up for vital status. There are 17 SEER registries in the U.S. which cover about 26% of the

US population. To study the performance of the AAPC model at the county level in the

specified state, we chose states which have full coverage in the SEER surveillance network.

Lung cancer mortality records in the state of Iowa are retrieved from SEER database for

this study. The death counts are aggregated by county, age group, and period. The state

of Iowa has 99 counties and the county adjacent matrix is obtained using the open-source

Geographic Information Software - GeoDa. Since the Armitage-Doll model fit the cancer

data well for the age between 25 and 74, I drop those observations with age less than 24

or greater than 74. The total number of age group is 10. To calculate the mortality rate, I

visited the US Census website to download files containing population sizes per age group

in each county of Iowa in the 1980s, 1990s and 2000s. I took five consecutive calendar

years as one period group and group them into six period groups (1980-1984, 1985-1989,

1990-1994, 1995-1999, 2000-2004, 2005-2008). Table 5.1 describes age and period specific

rates (×100,000) and number of cases. Figure 5.1 displays Iowa lung cancer mortality rate

in 1980-2008 at each county level for all age groups from 25 to 74.
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Table 5.1: Age-period specific mortality rates (×100,000) and number of deaths. Lung
cancer, Iowa, 1980-2008

Period

Age 1980−1984 1985−1989 1990−1994 1995−1999 2000−2004 2005−2008

25-29 0.50 (6) 0.70 (8) 0.52 (5) 0.55 (5) 0.69 (6) 0.67 (5)

30-34 1.02 (11) 1.28 (14) 1.75 (19) 1.78 (17) 1.31 (12) 1.73 (12)

35-39 4.22 (36) 3.91 (39) 5.30 (58) 5.51 (61) 4.65 (47) 2.27 (17)

40-44 16.50 (120) 12.73 (103) 9.74 (98) 12.60 (140) 14.24 (161) 8.83 (73)

45-49 37.39 (249) 35.25 (241) 34.08 (271) 26.87 (266) 33.00 (362) 22.81 (206)

50-54 77.30 (533) 83.27 (524) 73.61 (497) 62.65 (494) 58.00 (562) 45.03 (386)

55-59 137.41 (976) 156.62 (1008) 137.11 (848) 137.03 (911) 116.97 (888) 80.02 (594)

60-64 203.54 (1363) 227.81 (1482) 232.45 (1446) 223.90 (1348) 212.21 (1310) 150.32 (847)

65-69 260.07 (1556) 295.36 (1797) 335.60 (2009) 316.06 (1755) 319.67 (1708) 233.29 (1049)

70-74 300.95 (1496) 351.17 (1801) 372.57 (1969) 417.04 (2168) 406.16 (2029) 303.45 (1154)

To compare different models in fitting lung cancer mortality data in Iowa, I use the deviance

information criterion (DIC) [Spiegelhalter et al., 2002] which is the posterior average of the

deviance plus a measure of complexity. Table 5.2 displays the DIC and posterior estimates

for model parameters.

Table 5.2: Model comparisons using DIC
Age Effect

Model ICAR prior Armitage-Doll Model TSCE model

AA 20966.60 20973.90 20969.20
AAP 19499.80 19506.30 19501.30
AAC 19813.90 19886.80 19842.40
AAP + AP 19592.40 19606.60 19575.70
AAC + AC 19814.40 19838.20 19823.00
AAPC 19231.30 19233.00 19234.70
AAPC + AP 19021.30 19230.70 19240.70
AAPC + AC 18985.00 18996.30 19235.80
AAPC + AP + AC 19227.00 19228.30 19223.40

Compared with the DIC values derived from the conventional Bayesian APC model where

all age, period and cohort effects are taking autoregressive priors, we don’t see much dif-

ference on the improvement of DIC values when the multistage carcinogenesis models are

incorporated into AAPC model. However, the age effect in the Bayesian extended AAPC

model has a more sound biological meaning since we replace it with the hazard function from

the carcinogenesis model. The temporal evolutions of age effects derived from the carcino-
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Figure 5.1: Lung cancer mortality rate in Iowa from 1980 to 2008 for all age groups (blue
star represents Des Moines, Iowa capital)

genesis model clearly demonstrates the association between age and mortality rate. With

the introduction of the carcinogenesis model into AAPC model, we reduce the complexity

of any possible linear or nonlinear age effects in determining the mortality rate, except for

those derived from the Armitage-Doll model and the TSCE model. With similar model fit-

ting criterior (DIC values), the extended AAPC model outperforms the conventional AAPC

model due to its strong biological meaning of age effects.

As an alternative, I also use predictive model selection procedure where the full posterior

predictive distribution is utilized to sample replicated data ynew and calculate the discrep-

ancy function d(ynew, yobs). Since Poisson likelihood is used for cancer death counts, Waller

[1997], Carlin and Louis [2009] recommended to choose the discrepancy function as

d(ynew, yobs) = 2
∑
l

yl,obslog(yl,obs/yl,new)− (yl,obs − yl,new),

where l is the index in y. For every model Mi, I compute the expected predictive deviance

(EPD) as E[d(ynew, yobs)|yobs,Mi] and select the model with the lowest EPD. The predictive

model selection procedure also detects the similarity in EPD values between conventional

model and extended AAPC models with carcinogenesis models incorporated. Similar to
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DIC procedure, the predictive model selection also find the model AAPC+AC achieves

lowest EPD values than other types of model do.

Figure 5.2 and 5.3 show the convergence plots for posterior estimates from Armitage-Doll

and TSCE carcinogenesis model. Clearly the convergence is met for the Bayesian extended

AAPC model.

Figure 5.2: Convergency plots for posterior estimate of Armitage-Doll model parameter

Figure 5.3: Convergency plots for posterior estimates of TSCE model parameters

The model we chose to first fit Iowa lung cancer mortality data is AAPC+AC using

Armitage-Doll carcinogenesis model due to its low DIC value and good convergence. The

posterior estimate for age, period and cohort effects are listed in Table 5.3.
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Table 5.3: Posterior estimates for age, period and cohort effects in the Bayesian extended
AAPC models
Age α̂ci Period β̂cj Cohort γ̂ck
25-29 (i=1) -3.021 1980-1984 (j=1) -0.330 1908-1912 (k=1) 0.969
30-34 (i=2) -2.289 1985-1989 (j=2) -0.125 1913-1917 (k=2) 0.907
35-39 (i=3) -1.375 1990-1994 (j=3) 0.014 1918-1922 (k=3) 0.840
40-44 (i=4) -0.529 1995-1999 (j=4) 0.157 1923-1927 (k=4) 0.792
45-49 (i=5) 0.211 2000-2004 (j=5) 0.308 1928-1932 (k=5) 0.641
50-54 (i=6) 0.757 2005-2008 (j=6) -0.024 1933-1937 (k=6) 0.473
55-59 (i=7) 1.209 1938-1942 (k=7) 0.270
60-64 (i=8) 1.522 1943-1947 (k=8) -0.021
65-69 (i=9) 1.714 1948-1952 (k=9) -0.285
70-74 (i=10) 1.801 1953-1957 (k=10) -0.394

1958-1962 (k=11) -0.518
1963-1967 (k=12) -0.694
1968-1972 (k=13) -0.865
1973-1977 (k=14) -0.996
1978-1982 (k=15) -1.12

Age, period and cohort main effects are displayed in Figure 5.6 where the age, period and

cohort effects are centered by their means. The inclusion of those constraints is to improve

numeric stability and mixing in the MCMC samplings. The age effects show an increasing

pattern over time, which means older age leads to higher cancer mortality rate than younger

age does as we controlled for other covariates. The age pattern can be easily explained by

Armitage-Doll carcinogenesis model since we assume a log-linear relationship between age

and hazard function. The change point for the period effects is in period 2000-2004. The

period effects are increasing before the year 2000 but sharply decreasing after the year

2000. The anti-smoking campaign has been introduced in the U.S. in the 90s and since

then people’s behaviors on smoking have signficantly changed which explain the decreasing

trend in period effects since 2000. The lung cancer mortality rate is continuously declining

by birth cohorts. The main area effects are displayed in Figure 5.4 which shows a higher

lung cancer mortality rate in the south of Iowa as compared to that in the north of Iowa. In

southern Iowa, there are higher rates of radon gas and a higher rate of smoking, blue-collar

workers, and manufacturing jobs where coal mining previously occurred. The scatter plot

of main spatial effects versus Iowa county population from 2000 to 2004 is displayed in

Figure 5.5. It supports the conclusion of higher spatial effects in largely populated areas,
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such as Polk county where Iowa capital city Des Moines is located. Compared to the main

area and cohort effects in the AAPC model, the coefficients of area-cohort interactions are

much smaller and can be ignored. In the extended AAPC model, there is no intercept to

indicate the overall mean. The negative value of log transformation of mortality rate (at a

scale of 10−4 to 10−6) falls into main spatial effects since temperate effects were small. To

solve this problem, we can add an intercept term in the extended AAPC model or adjust

the normal mean of noninformative prior for unstructured spatial effects from 0 to negative

values, i.e., -5.

Figure 5.4: Area main effects in AAPC model (blue star represents Des Moines, Iowa
capital)
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Figure 5.5: The scatter plot of main spatial effects versus Iowa county population from 2000
to 2004 in lung cancer mortality
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Figure 5.6: Age, period and cohort main effects in AAPC model
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Figure 5.7: Colon cancer mortality rate in Iowa from 1981 to 2007 for age 50 and more
(blue star represents Des Moines, Iowa capital)

5.6 Example 2 - Colon Cancer Mortality in Iowa

Colon cancer mortality data in Iowa is used to further study the performance of the Bayesian

extended AAPC model in estimating cancer mortality rates. Since the most colon cancer

death is associated with older population, I limit the study population with the age 50 or

above. The age group use five years interval and eight age groups are reported (50-54, 55-59,

60-64, 65-69, 70-74, 75-79, 80-84, 85+). The calendar period is chosen from 1981 to 2007.

The 2010 SEER program provides cancer mortality data in three years intervals. Eight

period groups are reported (1981-1983, 1984-1986, 1987-1989, 1990-1992, 1993-1995, 1996-

1998, 1999-2002, 2003-2007). Table 5.4 describes age and period specific rates (x100,000)

and number of cases. Figure 5.7 displays Iowa colon cancer mortality rate in 1981-2007 at

each county level for population at age 50 or more.

Moolgavkar’s TSCE carcinogenesis model is used to update the age effect in the AAPC

model for colon cancer since Armitage-Doll model only consider the age group from 25

to 74. Figure 5.8 displays the distribution of unstructured spatial effects for colon cancer

mortality county-wide in Iowa. At those remote counties especially in south and west, we
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observe higher spatial effects in estimating the colon cancer mortality rates. Part of the

reasons are due to the lack of colorectal cancer screening. Cancer statistics show that the

survival rate is high if the colon cancer is diagnosed early [ACS, 2009]. However, the early

stage diagnosis colorectal cancer ratio varies across counties in Iowa [Iowa Department of

Public Health, 2006]. The rural counties have the lowest rate of early stage diagnosis than

the urban counties or metropolitan counties have [Iowa Department of Public Health, 2006].

Such negative association between spatial effects and population size can be demonstrated

in Figure 5.9, where we see highly populated areas have smaller spatial effects while less

populated areas can have larger spatial effects.

Figure 5.8: Unstructured spatial effects for colon cancer mortality in Iowa (blue star repre-
sents Des Moines, Iowa capital)

Figure 5.10 shows the three main temporal effects in the AAPC model. The overall age

effect is in increasing mode. The upward trend is higher in 50s than that in later age groups.

The period effect is increasing while the birth cohort effects is decreasing over time.
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Figure 5.9: The scatter plot of main spatial effects versus Iowa county population from 1999
to 2002 in colon cancer mortality

5.7 Future Work

It is very important to determine the trends of disease risk both temporally and spatially

[Lagazio et al., 2003]. However, it is difficult to explain some of those temporal effects (age,

period, and cohort) [Richardson, 2008] due to lack of biological meanings. Carcinogenesis

models of a typical underlying disease process describe how normal cells are transformed

into cancer cells and age is a deterministic factor in the model. Therefore, we propose a new

extended AAPC model by incorporating carcinogenesis model into our study to improve our

prior knowledge of age effects in determining disease trends. Both Armitage-Doll and TSCE

carcinogenesis model are considered in this study. The lung cancer mortality study shows

the extended AAPC model with area-cohort interaction and Armitage-Doll age effects can

be used to estimate lung cancer risk while we control the age effect from the underline disease

process. The colon cancer mortality study also demonstrates the use of extended AAPC

model in estimating colon cancer risk from the carcinogenesis process. The convergence

of model parameters is guaranteed as well. The extended AAPC model can be used in

studying spatial-temporal pattern of cancer mortality with strong biological prior beliefs in
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Figure 5.10: Temporal effects for colon cancer mortality in Iowa
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the age effects.

Non-identifiability is the common challenge in fitting APC models. We have added model

constraints in our extended AAPC models in considering the identifiability issues. However,

further works are still needed in the extended AAPC models in this area. A different

sampling technique which uses multivariate Metropolis steps [Lagazio et al., 2003, Rue,

2001] would be a better approach to handle efficiently the identification problems. Choosing

different priors for temporal effects instead of autoregressive Gaussian distribution can also

be considered in the Bayesian model. More complicated forms for spatial priors can be added

in the future study. For example, Waller [1997] suggested to include the distance between

county i and j in the formula of computing the weights ωij . Furthermore, covariates such

as smoking status, socialeconomic status of the counties might be included in the model.
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Chapter 6

Conclusion

The development of carcinogenesis models has improved our understanding of the biological

processes in the formation of cancer and provided scientific evidences in evaluating the risk

of cancer. In this dissertation, I apply a new Bayesian approach to study the Armitage-

Doll multi-stage carcinogenesis model in estimating cancer mortality rates. Mortality data

for different types of cancer are retrieved from SEER database. The posterior estimates

for the number of stages conclude there are six to seven stages of transitions involved in

cancer formation. The sensitivity analysis and model checking show that the Bayesian

Armitage-Doll model fits the data well.

To enhance the biological meanings of age effects in the APC model, I introduce the ex-

tended APC model where age effects are taking the format of multi-stage carcinogenesis

models. Both Armitage-Doll and TSCE carcinogenesis models are considered in the ex-

tended APC models. Bayesian approaches are used in order to ease the concern of non-

identifiability problems commonly presented in the APC models. The Bayesian extended

APC model obtains the similar DIC value as conventional APC does (DIC=1286.98 for ex-

tended APC model using TSCE model, 1287.00 for extended APC model using Armitage-

Doll model, 1286.43 for conventional APC model). However, the explanation of age effects

in the Bayesian extended APC model has more sound biological meanings that that in

APC model. The Bayesian extended APC model is applied to study colon cancer mortal-
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ity rate in the US, achieving high consistency between estimated and observed rates for

older age groups (≥ 45). Furthermore, I apply the Bayesian extended APC model to study

the spatio-temporal variation in cancer mortality rates. The Bayesian extended Area-APC

(AAPC) model is developed to study the county level lung and colon cancer mortality data

in Iowa. The study shows the Bayesian extended AAPC model with area-cohort interac-

tion and Armitage-Doll age effects can be used to estimate lung cancer risk while the age

effects are controlled by the underline disease process. The colon cancer mortality study

also demonstrates the use of extended AAPC model in estimating colon cancer risk from

the carcinogenesis process. The convergence of model parameters is guaranteed as well.

The Bayesian extended AAPC model can be used in studying spatial-temporal pattern of

cancer mortality with strong biological prior beliefs in the age effects.

I apply the extended Bayesian APC model to project the mortality rates in the future

periods (2009-2013, 2014-2018, and 2019-2023). My projection on the decreasing trend of

colon cancer mortality rate can be supported by the fact that the colon cancer is often

highly treatable and the promising development of cancer screening methods in the near

future. In addition, the a priori beliefs in smoothing period and cohort effects in the

Bayesian approach produce more precise posterior estimates of mortality rates than those

derived from the maximum likelihood approach in the classical APC model. I use the

autoregressive priors in our Bayesian model to avoid the considerable increase in the number

of parameters in the classical APC model which could lead to large standard errors and

decreased precision for making projections [Hakulinen and Dyba, 1994]. Using a Bayesian

approach, I also avoid the strong parametric assumptions often made in the classical APC

models. In the Bayesian version of this method the most appropriate degree of smoothing

can be learned from the data. The Bayesian model is also more flexible than the classical

linear models [Hakulinen and Dyba, 1994, Dyba and Hakulinen, 1997] since it copes with

both increasing and decreasing trends. In the extended Bayesian AAPC model, I study

the spatial-temporal pattern of cancer mortality rates by examining the main effects for

area, age, period, and cohort and their interactions. I compare different models which

take into account the interaction effects between period and space or cohort and space and
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substitute the main age effects with hazard functions from carcinogenesis model. With the

introduction of carcinogenesis model into AAPC model, I reduce the complexity of any

possible linear or nonlinear age effects in determining the mortality rate, except for those

derived from the Armitage-Doll model and the TSCE model. With similar model fitting

criterion (DIC values), the extended AAPC model outperforms the conventional AAPC

model due to its strong biological meaning of age effects.

Due to a large number of a priori-dependent parameters in the Bayesian model, a block

updating MCMC algorithms can be used in this study to avoid slow mixing of the Markov

chain and to allow for a proper incorporation of identifiability constraints such as sum-to zero

constraints [Schmid and Held, 2004]. However, additional development in jointly updateing

hyperparameters and parameters is needed. Alternative prior settings beside the Gaussian

prior distributions can be considered in our Bayesian model. The reparameterization of the

age, period and cohort effects can be used as well to include a joint cumulative effect for

period and cohort. Knorr-Held [2001] introduced four different prior distributions for the

spatial-temporal interactions such as area-period or area-cohort interactions which could

also be applied to our Bayesian extended AAPC model.

In the lung cancer study, I group period effects by 5-year intervals from cancer mortality data

at individual calendar years. Age groups are predetermined in SEER program by 5-year

interval. Therefore, the cohort effect for the same age and period groups could vary with a

maximum of 10 years. This could reduce the precision of model parameter estimations. One

possible approach is to model period effects by each year (not 5-year intervals) which could

lead to more accurate birth cohorts. However, the unobserved age-specific cancer death

in certain calendar years could reduce the power of parameter estimation in the classical

APC models. To address this problem, we can apply the MCMC method in the Bayesian

extended APC model to simulate data for the missing observations and derive the posterior

estimates from the full samples. The Bayesian model suggests period could be modeled by

year.

In addition to estimation in an individual calendar year, we can consider including some

important factors that affect cancer incidence and mortality into the Bayesian models.
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Smoking status has proven to be associated with lung cancer incidence and mortality [NCI,

2011]. Obtaining relevant information about smoking prevalence and cigarette consumption

geographically would help to improve the precision of estimating lung cancer rates. How-

ever, it is difficult to get reliable data on the occurrence of lung cancer by smoking status

because most cancer registries including the SEER program are population-based systems

and generally do not gather information related to individual smoking habits. The SEER

database provides information about tobacco use information at population level, but it can

only be used to determine occurrence of lung cancer amongst never smokers within wide

geographic areas. In two separate lung cancer mortality studies in Germany and Japan

[Knorr-Held and Rainer, 2001, Kaneko and Sobue, 2003], the available smoking data has

been applied to the APC models and used to explain the increasing or decreasing trend

in period and cohort effects. To further extend the research in investigating the spatial-

temporal pattern of lung cancer, we would strongly recommend obtaining available smoking

data and modifying the AAPC model to incorporate significant covariates such as smoking

prevalence.

Air pollution is another important risk factor for cancer. Thirty-six out of 1 million U.S.

residents will develop cancer due to breathing toxic air pollution, according to estimates by

the Environmental Protection Agency (EPA). Large cities appear to carry greater cancer

risk because of a higher volume of cars, trucks, construction equipment, gas stations, and

in some cases, dry cleaners. However, there are also many rural industrial areas where

residents have an elevated risk, according to the EPA report. The air quality data at each

county level could be a good resource to be considered to be included in the model to study

the cancer mortality rates.
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Appendix A

R2WINBUGS code

A.1 R code

library("arm")

library(R2WinBUGS)

setwd("G:/Ph.D. research/Computations/AD")

aapc <- read.table ("iowa.txt", header=TRUE)

adj<-read.table("IA_counties_adj.txt")[,1]

num<-read.table("IA_counties_num.txt")[,1]

Nneigh<-588

A <- 10

P<-6

Co<-15

C<-99

county <- aapc[,1]

age <- aapc[,2]

period <- aapc[,3]

cohort <- A+period-age

pyr <- aapc[,4]
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cases <- aapc[,5]

rate<-100000*cases/pyr

#create adjacent matrix adj_max<-mat.or.vec(C,C) begin<-1 end<-0 for

(i in 1:C){

end<-end+num[i]

for (j in begin:end){

adj_max[i,adj[j]]<-1

}

begin<-begin+num[i]

}

vec10<-c(1:10)*0.01 vec6<-c(1:6)*0.01 vec99<-c(1:99)*0.01

vec15<-c(1:15)*0.01

# area and age

data <- list ("Nneigh","adj","num", "C","county","age", "A","cases", "pyr")

inits <- function() {list (tauc=1, taua=1, r=0.07, p2=-0.0885, q=0.000029, alpha=vec10,u=vec99,v=vec99)}

parameters <- c("tauc", "u","alphac","taua","v", "r", "p2", "q", "cases_dev")

aapc.sim <- bugs (data, inits, parameters, "aa.bug", n.chains=1, n.iter=10000, debug=TRUE)

##AD model

inits <- function() {list (tauc=1, taua=1, s=5,c=-10, alpha=vec10,u=vec99,v=vec99)}

parameters <- c("tauc", "u","alphac","taua","c", "s", "cases_dev")

aapc.sim <- bugs (data, inits, parameters, "aa_AD.bug", n.chains=1, n.iter=10000, debug=TRUE)

##Conventional Age model

inits <- function() {list (tauc=1, taua=1, alpha=vec10,u=vec99,v=vec99)}

parameters <- c("tauc", "u","alphac","taua","cases_dev")

aapc.sim <- bugs (data, inits, parameters, "aa_conv.bug", n.chains=1, n.iter=10000, debug=TRUE)
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# area and age,period

data <- list ("Nneigh","adj","num", "C","county","age", "A","period","P","cases", "pyr")

inits <- function() {list (tauc=1, taua=1,taua2=10, s=5,c=-10, u=vec99,alphac=vec10,v=vec99,beta=vec6)}

parameters <- c("tauc", "u","alphac","taua2", "taua", "c", "s","taup","betac")

aapc.sim <- bugs (data, inits, parameters, "aap.bug", n.chains=1, n.iter=100, debug=TRUE)

# area, age, and cohort

data <- list ( "Nneigh","adj","num","C","county","age", "A", "cohort","Co","cases", "pyr")

inits <- function() {list ( taua=1, tauco=1,r=0.07, p2=-0.0885, q=0.000029,alpha=vec10, u=vec99,v=vec99,gamma=vec15)}

parameters <- c( "u","v","alphac","r", "p2", "q","taua", "gammac","tauco")

aapc.sim <- bugs (data, inits, parameters, "aac.bug", n.chains=1, n.iter=1000, debug=TRUE)

# area and age,period and area-period interaction

data <- list ("Nneigh","adj","num","C","county","age", "A", "period", "P", "cases", "pyr")

inits <- function() {list ( taua=1, taup=1,r=0.07, p2=-0.0885, q=0.000029, alpha=vec10, beta=vec6,

u=vec99,v=vec99)}

parameters <- c("tauc", "u","v","alphac","r", "p2", "q","taua", "betac", "taup", "phi_area","phi_period")

aapc.sim <- bugs (data, inits, parameters, "aap+ap.bug", n.chains=1, n.iter=10000, debug=TRUE)

# area, age,period and cohort

data <- list ( "Nneigh","adj","num","C","county","age", "A", "period", "P","cohort","Co","cases", "pyr")

inits <- function() {list ( taua=1, taup=1,tauco=1,r=0.07, p2=-0.0885, q=0.000029, alpha=vec10, beta=vec6,u=0,v=vec99,gamma=vec15)}

parameters <- c( "u","v","alphac","r", "p2", "q","taua", "betac", "taup","gammac","tauco", "cases_dev")

#parameters <- c( "cases_dev")

aapc.sim <- bugs (data, inits, parameters, "aapc.bug", n.chains=1, n.iter=10000, debug=TRUE, codaPkg=T)

# AAPC + AP

data <- list ( "Nneigh","adj","num","C","county","age", "A", "period", "P","cohort","Co","cases", "pyr")
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inits <- function() {list ( taua=1, taup=1,tauco=1,r=0.07, p2=-0.0885, q=0.000029, alpha=vec10, beta=vec6,u=0,v=vec99,gamma=vec15)}

parameters <- c( "u","v","alphac","r", "p2", "q","taua", "betac", "taup","gammac","tauco", "phi_area","phi_period")

aapc.sim <- bugs (data, inits, parameters, "aapc+ap.bug", n.chains=1, n.iter=1000, debug=TRUE)

# AAPC + AC

data <- list ( "Nneigh","adj","num","C","county","age", "A", "period", "P","cohort","Co","cases", "pyr")

inits <- function() {list ( taua=1, tau2=1,taup=1,tauco=1,cons=-10,s=5, alpha=vec10, beta=vec6,u=0,v=vec99,gamma=vec15)}

parameters <- c( "u","v","alphac","s","cons","taua", "betac", "taup","gammac","tauco", "phi_area","phi_cohort", "cases_dev")

aapc.sim <- bugs (data, inits, parameters, "aapc+ac.bug", n.chains=1, n.iter=10000, debug=TRUE, save.history=TRUE)

#TSCE model

inits <- function() {list ( taua=1, tau2=1,taup=1,tauco=1,r=0.07, p2=-0.0885, q=0.000029, alpha=vec10, beta=vec6,u=0,v=vec99,gamma=vec15)}

parameters <- c( "u","v","alphac","r","p2","q","taua", "betac", "taup","gammac","tauco", "phi_area","phi_cohort", "cases_dev")

aapc.sim <- bugs (data, inits, parameters, "aapc+ac_TSCE.bug", n.chains=1, n.iter=10, debug=TRUE, save.history=TRUE)

# AAPC + AC2

data <- list ( "Nneigh","adj","num","C","county","age", "A", "period", "P","cohort","Co","cases", "pyr")

inits <- function() {list ( taua=1, tau2=1,taup=1,tauco=1,alpha=vec10, beta=vec6,u=0,v=vec99,gamma=vec15)}

parameters <- c( "u","v","alphac","taua", "betac", "taup","gammac","tauco", "phi_area","phi_cohort")

aapc.sim <- bugs (data, inits, parameters, "aapc+ac2.bug", n.chains=1, n.iter=1000, debug=TRUE, save.history=TRUE)

# AAPC + AP+ AC

data <- list ( "Nneigh","adj","num","C","county","age", "A", "period", "P","cohort","Co","cases", "pyr")

inits <- function() {list ( taua=1, taup=1,tauco=1, s=5, cons=0,alpha=vec10, beta=vec6,u=0,v=vec99,gamma=vec15)}

parameters <- c( "u","v","alpha","alphac","taua", "s", "cons","betac", "taup","gammac","tauco", "phi_area","phi_cohort")

aapc.sim <- bugs (data, inits, parameters, "aapc+apac.bug", n.chains=1, n.iter=1000, debug=TRUE, save.history=TRUE,codaPkg=TRUE)

# AAPC (car.normal for period and cohort)
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data <- list ( "Nneigh","adj","num","C","county","age", "A", "period", "P","cohort","Co","cases", "pyr")

inits <- function() {list ( taua=1, taup=1, tauc=1, tauco=1,s=5, cons=0,alpha=vec10, beta=vec6,u=0,v=vec99,gamma=vec15)}

parameters <- c( "u","v","alpha","alphac", "s", "cons","betac","gammac")

aapc.sim <- bugs (data, inits, parameters, "aapc2.bug", n.chains=1, n.iter=100, debug=TRUE, save.history=TRUE)

# area and age,cohort and area-cohort interaction

data <- list ("Nneigh","adj","num","C","county","age", "A", "cohort", "Co", "cases", "pyr")

inits <- function() {list ( taua=1, tauco=1,r=0.07, p2=-0.0885, q=0.000029, alpha=vec10, gamma=vec15,

u=0,v=vec99)}

parameters <- c("tauc", "u","v","alphac","r", "p2", "q","taua", "gammac", "tauco", "phi","phi_period")

aapc.sim <- bugs (data, inits, parameters, "aacac.bug", n.chains=1, n.iter=1000, debug=TRUE)

# area and age,cohort and area-cohort interaction

data <- list ("Nneigh","adj","num","C","county","age", "A", "cohort", "Co", "cases", "pyr")

inits <- function() {list ( taua=1, tauco=1, alpha=vec10, gamma=vec15,

u=0,v=vec99)}

parameters <- c("tauc", "u","v","alphac","taua", "gammac", "tauco", "phi","phi_period")

aapc.sim <- bugs (data, inits, parameters, "aapc_aacACold.bug", n.chains=1, n.iter=1000, debug=TRUE)

# area, age,period and area-period interaction

data <- list ( "adj_max","Nneigh","adj","num","C","county","age", "A", "period", "P", "cases", "pyr")

inits <- function() {list (tauc=1, taua=1, taup=1,tauphi=1,s=5, alpha=mat.or.vec(10,1), beta=mat.or.vec(6,1),

u=0,v=mat.or.vec(99,1), phi=mat.or.vec(99,6)+0.001)}

parameters <- c("tauc", "u","v","alphac","s","taua", "betac", "taup", "phi","tauphi")

aapc.sim <- bugs (data, inits, parameters, "aapc_inter.bug", n.chains=1, n.iter=1000, debug=TRUE)
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# area, age,period and area-period interaction-Condgon formula

data <- list ("Nneigh","adj","num","C","county","age", "A", "period", "P", "cases", "pyr")

inits <- function() {list (tauc=1, taua=1, taup=1,s=5, alpha=vec10, beta=vec6,

u=0,v=vec99, phi=mat99by6)}

parameters <- c("tauc", "u","v","alphac","s","taua", "betac", "taup", "phi","phi_period")

aapc.sim <- bugs (data, inits, parameters, "aapc_condgon.bug", n.chains=1, n.iter=1000, debug=TRUE)

# Without area main effect APC + AC

data <- list ( "Nneigh","adj","num","C","county","age", "A", "period", "P","cohort","Co","cases", "pyr")

inits <- function() {list ( taua=1, taup=1,tauco=1,cons=-10,s=5, alpha=vec10, beta=vec6,gamma=vec15)}

parameters <- c( "alphac","s","cons","taua", "betac", "taup","gammac","tauco", "phi_area","phi_cohort", "cases_dev")

aapc.sim <- bugs (data, inits, parameters, "apc+ac.bug", n.chains=1, n.iter=100, debug=TRUE, save.history=TRUE)

# Without cohort main effect AAP + AC

data <- list ( "Nneigh","adj","num","C","county","age", "A", "period", "P","cohort","Co","cases", "pyr")

inits <- function() {list ( taua=1, taup=1,tauco=1,cons=-10,s=5, alpha=vec10, beta=vec6,u=vec99, v=vec99)}

parameters <- c( "alphac","s","cons","taua", "betac", "taup","phi_area","phi_cohort", "cases_dev")

aapc.sim <- bugs (data, inits, parameters, "aap+ac.bug", n.chains=1, n.iter=100, debug=TRUE, save.history=TRUE)

A.2 BUG code

model {

#likelihood for age effect for(i in 1:5940) {

cases[i] ~ dpois(mu[i])

log(mu[i])<-log(pyr[i]) + u+ v[county[i]]+ alphac[age[i]]+ betac[period[i]]+gammac[cohort[i]]

+phi[county[i],cohort[i]]

cases_exp[i] ~ dpois(mu[i])
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cases_diff[i]<-(cases[i]+0.5)*log((cases[i]+0.5)/(cases_exp[i]+0.5))-(cases[i]-cases_exp[i])

#log(mu[i])<-log(pyr[i]) + u[(county[i]+1)/2] + alphac[age[i]]

} cons~dflat() #for (i in 1:C){ # u[i]~dnorm(0,tauc) #} u ~

dnorm(0,tauc) tauc~dgamma(1, 1.0E-2)

# ICAR(1) Spatial Prior v[1:C] ~ car.normal(adj[], w[], num[],

kappa) kappa ~ dgamma(1,0.001) for (j in 1:Nneigh) {w[j] <- 1}

for (a in 1:A) {

#alphamean[a]<-log((r/100000)*p2*q2*(exp(-q2*age[a])-exp(-p2*age[a]))/(q2*exp(-p2*age[a])-p2*exp(-q2*age[a])))

alphamean[a]<-cons+s*log(27+5*(a-1))

alphaprec[a]<-taua

} for (a in 1:A){

alpha[a]~dnorm(alphamean[a],alphaprec[a])

} taua~dgamma(1.0E-1,1.0E-1) s~dnorm(5, tau2)

tau2~dgamma(0.001,0.001) #remove linear trend from the age effects

for (a in 1:A) {

ivec[a]<-a-(A+1)/2

aivec[a]<-ivec[a]*alpha[a]

#alphac[a]<-alpha[a]-ivec[a]*sum(aivec[])/(A*(A+1)*(A-1)/12)

alphac[a]<-alpha[a]-mean(alpha[1:A])

}

betamean[1]<-0.0 betaprec[1]<-taup*1.0E-6 betamean[2]<-0.0

betaprec[2]<-taup*1.0E-6 for (p in 3:P) {

betamean[p]<-2*beta[p-1]-beta[p-2]

betaprec[p]<-taup

} for (p in 1:P){
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#beta[p]~dnorm(betamean[p],betaprec[p])

beta[p]~dnorm(betamean[p],betaprec[p])

betac[p]<-beta[p]-mean(beta[1:P])

} taup~dgamma(1.0,1.0E-3)

gammamean[1]<-0.0 gammaprec[1]<-tauco*1.0E-6 gammamean[2]<-0.0

gammaprec[2]<-tauco*1.0E-6 for (c in 3:Co) {

gammamean[c]<-2*gamma[c-1]-gamma[c-2]

gammaprec[c]<-tauco

} for (c in 1:Co){

#gamma[c]~dnorm(gammamean[c],gammaprec[c])

gamma[c]~dnorm(gammamean[c],gammaprec[c])

gammac[c]<-gamma[c]-mean(gamma[1:Co])

} tauco~dgamma(1.0,1.0E-3) #spatial-cohort interaction for (i in

1:C){

for (j in 1:Co){

phi[i,j]<-phi_area[i]*phi_cohort[j]

}

} # ICAR(1) Spatial Prior phi_area[1:C] ~ car.normal(adj[], w2[],

num[], kappa2) kappa2 ~ dgamma(1,0.001) for (j in 1:Nneigh) {w2[j]

<- 1}

#unstructured cohort effect for (j in 1:Co){

beta2[j]~dnorm(0,100)

} for (j in 1:Co-1){

beta2_exp[j]<-exp(beta2[j])

phi_cohort[j]<-beta2_exp[j]/(1+sum(beta2_exp[1:Co-1]))

} phi_cohort[Co]<-1/(1+sum(beta2_exp[1:Co-1]))

cases_dev<-sum(cases_diff[])*2 }
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