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Abstract 

 

Estimating acute cardiorespiratory effects of ambient air pollution mixtures 

By Dongni Ye 

 

Introduction  

There is an ongoing effort to identify health-relevant components of ambient air pollution 

and to estimate combined effects of air pollution mixtures. For Aim 1 and Aim 2, we 

estimated acute cardiorespiratory effects of a broad range of pollutants that were not 

well-studied previously, as an attempt to gain a better understanding of causal agents in 

air pollution. In Aim 3, we estimated joint effects of multiple pollutants on pediatric 

asthma and compared across cities.   

Methods  

In a time-series framework, we estimated associations between daily ambient 

concentrations of air pollutants and daily counts of emergency department (ED) visits 

using Poisson regression. For Aim 1, daily concentrations of volatile organic compounds 

(VOCs) and daily counts of ED visits for cardiovascular diseases and asthma were 

obtained in Atlanta during 1998-2008. To seek coherence in understanding health effects 

of a large number of VOCs, we grouped VOCs based on chemical structure and 

compared different analytic approaches in estimating VOC group effects. For Aim 2, 

ambient concentrations of PM2.5 metals and daily counts of ED visits for cardiovascular 

diseases were obtained in Atlanta during 1998-2013. We estimated cardiovascular 

associations for PM2.5 metals and assessed co-pollutant confounding. For Aim 3, we 

estimated and compared joint effects of muliple pollutants on pediatric asthma ED visits 

across four cities (Atlanta, Dallas, Pittsburgh, and St. Louis).  

Results  

Findings in Aim 1 further support the link between incomplete combustion pollutants and 

cardiovascular health, and between atmospheric oxidation products and respiratory 

health. Findings in Aim 2 suggest that certain water-soluble metals (particularly water-

soluble iron), or species from roadway emissions, impact cardiovascular health. In Aim 3, 

joint effects of major pollutants were generally similar across cities.  

Conclusions  

To understand health effects of pollution mixtures is challenging, given that multiple 

pollutants could affect a health outcome, pollutants are correlated, and only a subset of 

pollutants could be measured. Findings in Aim 1 and Aim 2 inform future directions in 

identifying health-relevant components in air pollution. Aim 3 evaluated the homogeneity 

of multi-pollutant joint effects across cities, and our findings advance the understanding 

of the combined effects of air pollution mixtures.  
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INTRODUCTION 

The Great London Smog of 1952 drew attention of the scientific community to the health 

impacts of ambient air pollution. Since then, numerous epidemiologic and toxicological 

studies have been conducted to understand acute and chronic effects of air pollution.[1] 

Evidence indicates that even at moderate-to-low levels, air pollution contributes to the 

development of cardiorespiratory conditions (e.g., asthma, chronic obstructive pulmonary 

diseases), exacerbation of symptoms among individuals with these conditions, and deaths 

from cardiovascular diseases.[1-4] Recent studies also suggest effects of air pollution on 

reproductive (e.g., preterm delivery, low birthweight) and neurological health (e.g., 

cognitive impairment).[3, 5-7]  

Ambient air pollution is a mixture of gaseous pollutants and particulate matter (PM). 

Pollutants in the gas phase include carbon monoxide, nitrogen oxides, sulfur oxides, 

ozone, and various volatile organic compound. PM are solid or liquid particles varying in 

size and composition suspended in the air. The size distribution of total suspended 

particles is tri-modal, including coarse, fine, and ultrafine particles. Fine particulate 

matter, or particles with aerodynamic diameter less than 2.5 micrometer (PM2.5), has 

received most attention in health studies, as these particles are small enough to be 

breathed in to the lung and deposit in the alveolar region. PM2.5 consists of various 

chemical components. Among them, carbonaceous components (organic carbon and 

elemental carbon) and secondary ions (nitrate, sulfate, and ammonium) contribute the 

majority of total PM2.5 mass, while metals and metalloids are present in trace amounts.  

One perspective in investigating health effects of air pollution mixtures is to identify 

which pollutants or groups of pollutants are harmful. Traditionally, air pollution 



2 
 

epidemiologic studies considered a limited number of pollutants that are routinely 

measured at the ambient level. These include pollutants regulated by the U.S. 

Environmental Protection Agency (EPA) – carbon monoxide (CO), nitrogen oxides 

(NOX), sulfur dioxides (SO2), ozone (O3), lead, and particulate matter (PM2.5, PM10), as 

well as PM2.5 major components – organic carbon (OC), elemental carbon (EC), nitrate 

(NO3), sulfate (SO4), and ammonium (NH4). Health effects of other co-existing 

pollutants, for example, volatile organic compounds (VOCs) and PM2.5 metals and 

metalloids, are not well studied due to lack of routine measurements at the ambient level.  

Ambient volatile organic compounds (VOCs) are organic pollutants that primarily exist 

in the gas phase. There is increasing evidence on the health effects of organic aerosols.[8] 

Epidemiologic studies have suggested cardiorespiratory effects of mixtures from fossil 

fuel combustion, which contain large fractions of organic pollutants.[8] Ambient organic 

carbon and its constituents have been associated with cardiorespiratory health outcomes 

in previous studies.[8-17] VOCs may also have an impact on health. Previous 

epidemiologic studies have suggested respiratory effects of indoor VOCs.[18] Controlled 

human exposure studies have suggested inflammatory effects of VOCs.[19, 20] However, 

epidemiologic evidence on cardiorespiratory effects of ambient VOCs is sparse.[21-29] 

Most previous studies considered only a limited number of species and are not 

representative of the wide range of VOCs found in urban air. This knowledge gap 

motivates Aim 1 of this dissertation.  

In addition to trace pollutants in the gas phase, trace pollutants in the particle phase may 

also have an impact on health. In particular, transition metals, which contribute trace 

amounts of total PM2.5 mass, have been suggested as toxic components of PM2.5 due to 
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their potential for generating reactive oxygen species in living systems, leading to 

oxidative stress.[30-32] The Chemical Speciation Network (CSN), established by U.S. EPA 

in 1999, provides measurements of PM2.5 metals and metalloids in 192 counties across 

the country. However, these CSN measurements are only operated every one-in-three or 

one-in-six days, which limits the power and the assessment of lag structure for studies 

based on temporal comparisons. In addition, metals exist in different forms, with some 

being more water-soluble and thus more biologically accessible than others.[33-36] 

However, due to lack of measurements, few epidemiologic studies have considered 

water-soluble fractions of metals in their attempt to identify health-relevant components 

of PM2.5.
[37, 38]  This knowledge gap motivates Aim 2 of this dissertation.  

Another perspective in investigating health effects of air pollution mixtures is to estimate 

joint effects of multiple pollutants. Traditionally, epidemiologic studies estimate health 

associations for individual pollutants using single-pollutant models.[39-41] However, the 

observed health associations of a given pollutant could differ across study locations (e.g., 

cities) due to several reasons: 1) co-pollutant confounding where pollutant co-variations 

differ by city; 2) effect modification by other pollutants where levels of modifying 

pollutants differ by city; 3) non-linear dose-response where pollution levels differ by city; 

4) effect modification by factors other than pollution (e.g., population characteristics, 

meteorological conditions) where these factors differ by city; 5) differential measurement 

error across cities; and 6) random error. These issues complicate the interpretation and 

generalizability of health associations of individual pollutants across cities. In recent 

years, various multi-pollutant approaches have been employed to estimate combined 

effects of air pollution mixtures.[39, 40, 42, 43] Considering a hypothetical joint effect of all 
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pollutants changing from one set of concentrations to another provides a way to 

conceptualize health effects of the total pollution mixture, although it is not achievable in 

reality given that only a limited number of pollutants could be identified and measured. 

And even such a hypothetical joint effect could depend on factors other than pollution 

(e.g., population characteristics, meteorological conditions). Nonetheless, perhaps joint 

effects of multiple pollutants could be similar across cities given that: 1) a joint effect 

would not be confounded by pollutants that are part of the joint effect and 2) a joint effect 

could account for potential pollutant interactions and non-linear dose-response in the 

estimation to reflect health impacts of simultaneous exposures to multiple pollutants. The 

estimation and comparison of joint effects across cities motivates Aim 3 of this 

dissertation.  

DISSERTATION AIMS  

The three aims of this dissertation are as follows. Aim 1: To estimate acute 

cardiorespiratory effects of ambient volatile organic compounds. Aim 2: To estimate 

acute cardiovascular effects of ambient PM2.5 metals. Aim 3: To estimate joint effects of 

multiple pollutants on pediatric asthma and compare across cities  

To address these aims, we conducted three studies in a time-series framework. We used 

counts of emergency department visits as indicators for morbidity, and ambient 

concentrations of pollutants as exposures. Poisson generalized linear models were used to 

estimate associations between daily counts of emergency department visits and daily 

ambient concentrations of pollutants. Aim 1 and Aim 2 were conducted in Atlanta, 

Georgia, U.S., utilizing up to 15 years of data on ambient air pollution and emergency 

department visits. Aim 3 was conducted across four metropolitan areas in the U.S.: 
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Atlanta, Georgia; Dallas-Fort Worth, Texas; Pittsburgh, Pennsylvania; and St. Louis, 

Missouri/Illinois.  

In Aim 1 and Aim 2, we estimated health effects of air pollutants that were not well 

studied previously. Specifically, in Aim 1, we estimated acute cardiorespiratory effects of 

a large number of ambient volatile organic compounds (VOCs) in a coherent manner by 

grouping these VOCs a priori by chemical structure and comparing different analytic 

approaches of defining and estimating VOC group effects. In Aim 2, we estimated acute 

cardiovascular effects of PM2.5 components, including water-soluble fractions of a suite 

of metals that are not routinely measured at the ambient level. Our findings in Aim 1 and 

Aim 2 contribute to the ongoing effort to identify health-relevant components in air 

pollution mixtures. In Aim 3, we estimated joint effects of multiple pollutants as an 

attempt to better understand health impacts of air pollution mixtures. We explored 

different specifications of dose-response (i.e., pollution interactions and non-linearity) in 

the estimation and compared joint effect estimates across cities.  
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ABSTRACT  

Background  

The health effects of ambient volatile organic compounds (VOCs) have received less 

attention in epidemiologic studies compared to other commonly measured ambient 

pollutants. In this study, we estimated acute cardiorespiratory effects of ambient VOCs in 

an urban population. 

Methods 

Daily concentrations of 89 VOCs were measured at a centrally-located ambient 

monitoring site in Atlanta and daily counts of cardiovascular and asthma emergency 

department (ED) visits in the 5-county Atlanta area were obtained for the 1998-2008 

period. To seek coherence in understanding the health effects of the large number of 

species, we grouped these VOCs a priori by chemical structure and estimated the 

associations between VOC groups and daily counts of ED visits in a time-series 

framework using Poisson regression. We applied three analytic approaches to estimate 

the VOC group effects: an indicator pollutant approach, a joint effect analysis, and a 

random effect meta-analysis, each with different assumptions. We performed sensitivity 

analyses to evaluate co-pollutant confounding.  

Results  

Hydrocarbon groups, particularly the alkene and alkyne groups, were associated with 

cardiovascular ED visits, while the ketone group was associated with asthma ED visits.  

Conclusions  
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The associations between cardiovascular ED visits and the alkene and alkyne groups may 

reflect the effect of traffic exhaust, while the association between asthma ED visits and 

the ketone group may reflect the effect of secondary organics. The different patterns of 

associations we observed for cardiovascular and asthma ED visits suggest different 

modes of action of these pollutants or pollution mixtures they represent.  
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INTRODUCTION  

Ambient air pollution is a complex mixture of particulate matter varying in size and 

composition and gaseous pollutants. Health effects of particulate matter, its constituents, 

and criteria gases have been frequently investigated.[1, 2] Other coexisting pollutants, for 

example, the volatile organic compounds (VOCs), have received less attention in 

epidemiologic studies.  

Organic pollutants include a variety of compounds, such as hydrocarbons, halocarbons, 

and oxygenates. These compounds reside in the vapor phase, particle phase, or both, 

depending on organic equilibrium properties (e.g., vapor pressure) and particle surface 

composition (e.g., water content). There is a dynamic continuum among VOCs, semi-

volatile organic compounds (SVOCs), and particle phase organics, and together they 

constitute the total organic aerosol.[3, 4] There is increasing evidence on the health effects 

of organic aerosols. Epidemiologic studies have suggested cardiorespiratory effects of 

mixtures from fossil fuel combustion, which contain large fractions of organic 

pollutants.[4] Ambient fine particle organic carbon (PM2.5 OC) and its constituents have 

been associated with various cardiorespiratory health outcomes in previous 

epidemiologic studies.[4-13] VOCs may also have an impact on health. Previous 

epidemiologic studies have suggested respiratory effects of indoor VOCs.[14] Controlled 

human exposure studies have suggested inflammatory effects of VOCs.[15, 16] However, 

epidemiologic evidence on cardiorespiratory effects of ambient VOCs is sparse.[17-25] 

Most previous studies considered only a limited number of species and are not 

representative of the wide range of compounds found in urban air.  
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To advance our understanding of the health relevance of ambient VOCs, we estimated 

their acute cardiorespiratory effects in the Atlanta, Georgia, metropolitan population. 

This analysis capitalizes on our ongoing Study of Particles and Health in Atlanta 

(SOPHIA) that has information on ambient air pollution, including a wide range of 

VOCs, and emergency department (ED) visits.[26-29] To seek coherence in understanding 

the health effects of a large number of VOCs, we grouped VOCs a priori by chemical 

structure and estimated the group effects. Grouping by chemical structure was motivated 

by several considerations: 1) as chemical structure determines the reactivity of a 

compound, pollutants sharing a common chemical structure may be similar in toxicity, so 

grouping by chemical structure may enhance the understanding of their health 

associations from a biological perspective; and 2) pollutants sharing a common chemical 

structure may be generated from common emission sources or atmospheric chemical 

processes, so grouping by chemical structure may suggest health effects of these sources 

or processes.  

While we grouped these VOCs by commonalities, pollutants within a group may still 

differ in their health associations and be subject to different levels of measurement error. 

As there is little understanding of the nature of these variations, we applied three analytic 

approaches to estimate the group effects, each with different assumptions concerning the 

variations within a group. 

METHODS 

VOC measurements and formation of VOC groups 

Daily 24-hour average concentrations of VOCs were measured at the Atlanta Jefferson 

Street ambient monitoring site during 8/14/1998-12/31/2008 as part of the Aerosol 
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Research and Inhalation Epidemiology Study (ARIES). Sampling details were previously 

published by Hansen et al.[30] Briefly, 24-hour samples were collected in evacuated 6-L 

passivated stainless canisters and then analyzed via gas-chromatography with flame 

ionization detection. Data included daily concentrations of 89 identified individual 

species (77 hydrocarbons and 12 oxygenates), total identified hydrocarbons, and total 

identified oxygenates (Supplement, eTable 1.1). Concentrations were reported in part per 

billion, as carbon (ppb-C), and the limit of detection (LOD) for all species was 0.1 ppb-C. 

We grouped individual VOCs a priori by chemical structure. Groups among the 77 

hydrocarbons included alkanes, alkenes, alkynes, and aromatic hydrocarbons, and among 

the 12 oxygenates included aldehydes, acids, ketones, and ethers. We further divided the 

alkanes into four groups (n-alkane, iso/anteiso-alkane, other branched alkane, 

cycloalkane) based on branching. For this analysis, we only included species with 

concentrations above the LOD on at least 90% of days. This left 46 species in 7 

hydrocarbon groups (n-alkane, iso/anteiso-alkane, other branched alkane, cycloalkane, 

alkene, alkyne, and aromatic) and 3 oxygenate groups (aldehyde, acid, and ketone) (Table 

1.1). Observations below LOD were replaced with half the detection limit (0.05 ppb-C).  

Emergency department visits  

We obtained daily counts of cardiovascular and asthma ED visits for patients living 

within the 5-county Atlanta area (Clayton, Cobb, DeKalb, Fulton, and Gwinnett) during 

8/14/1998-12/31/2008. Daily counts of ED visits were aggregated from individual-level 

billing records from metropolitan Atlanta hospitals as part of SOPHIA.[26-29] We 

identified cardiovascular ED visits as those with primary International Classification of 

Diseases, 9th Revision (ICD-9) diagnosis codes for ischemic heart disease (410-414), 



18 
 

cardiac dysrhythmias (427), congestive heart failure (428), or peripheral vascular and 

cerebrovascular disease (433-437, 440, 443-445, 451-453). Asthma ED visits were 

identified as those with primary ICD-9 diagnosis codes for asthma (493) or wheeze 

(786.09, before 10/1/1998; 786.07, after 10/1/1998). 

Analytic approaches 

We first estimated the effects of total identified hydrocarbons and total identified 

oxygenates, and then estimated VOC group effects using three analytic approaches. All 

analyses were conducted in a time-series framework, in which we estimated the 

associations between daily levels of VOCs and daily counts of ED visits using Poisson 

regression accounting for over-dispersion. Based on our previous research on ambient air 

pollution and ED visits in Atlanta,[26-29] and studies on ambient VOC health effects in 

other cities,[22, 24] we used same-day (lag 0) pollution levels in models predicting 

cardiovascular ED visits and 3-day moving average (of lags 0, 1, and 2) pollution levels 

in models predicting asthma ED visits. All models included the same covariate control 

for temporal trends and meteorology: time splines with monthly knots, cubic function of 

same-day maximum temperature, cubic function of lag 1-2-day moving average 

minimum temperature (when using 3-day moving average pollution levels), cubic 

function of mean dew point temperature (same-day or 3-day moving average, matching 

the temporal metric of the pollution term), day of week, indicators for holidays, seasons, 

season-maximum temperature interaction, season-day of week interaction, and indicators 

for hospital participation periods. The estimated associations were reported as rate ratios 

per interquartile range (IQR) increase in pollutant concentrations.  



19 
 

Analyses of cardiovascular ED visits included all ages. For asthma ED visits, we 

performed analyses among all ages, and analyses stratified by age category (5-18 and 19+ 

years old), given our previous work suggesting that effects of air pollution on asthma 

may differ for children.[31] 

Estimation of total VOC effects  

We used single-pollutant models to estimate the effect of total identified hydrocarbons 

and total identified oxygenates, as follows: 

Log[E(Y)] = 𝛽0 + 𝛽1 ∗ (𝑡𝑜𝑡𝑎𝑙) + covariate control                         

Eq. 1 

where Y was the daily count of ED visits for cardiovascular disease or asthma, and total 

was the daily concentration of the total identified hydrocarbons or the total identified 

oxygenates.  

Estimation of VOC group effects  

We estimated VOC group effects using three analytic approaches: an indicator pollutant 

approach, a joint effect analysis, and a random effect meta-analysis.  

1. Indicator pollutant approach  

Pollutants in the same group may not be equally well measured. To minimize the impact 

of instrument measurement error on health effect estimation, we selected the pollutant 

with the highest median/LOD ratio as the indicator pollutant for each group, and 

considered the effect of the indicator pollutant as the group effect. This approach is based 

on the assumption that the pollutant with the concentration distribution furthest from the 
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LOD is less prone to instrument-related measurement error. The effects of indicator 

pollutants were estimated using single-pollutant models as follows:  

Log[E(Y)] = 𝛽0 + 𝛽𝑔 ∗ (𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑔) + covariate control                     

Eq 2. 

where 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑔 was the concentration of the indicator pollutant 

for group g.  

2. Joint effect analysis 

The effect of a given indicator pollutant may not fully represent the effect of its group if 

pollutant effects within a group differ. To capture the contribution of different pollutants 

within a group, we estimated a joint effect per IQR increase in all pollutants of a group as 

follows:  

Log[E(Y)] = 𝛽0 + ∑ 𝛽i * (pollutant
𝑖

i=ng

i=1
) + covariate control                                                  

Eq 3. 

where 𝑛g is the number of pollutants in group g, and pollutant
𝑖
 represented the 

concentration of each pollutant in group g. The estimated joint effect of group g was 

calculated as 𝑒∑ 𝐼𝑄𝑅𝑖∗�̂�𝑖
𝑖=𝑛𝑔
𝑖=1 , where 𝐼𝑄𝑅𝑖 was the interquartile range of pollutant

𝑖
 in group 

g. [32] 

3. Random effect meta-analysis 

In the joint effect analysis, we considered the individual pollutant effects as fixed, and 

estimated a combined effect per increase in all pollutants in a group. In this random effect 

meta-analysis, we considered pollutant effects within a group as random (normally 
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distributed) and estimated the group mean as the group effect. We applied a two-stage 

regression to estimate the group means and the within-group variance. [33-35]  

In the first stage, we included all 46 VOCs in the Poisson model as follows:  

Log[E(Y)] = 𝛽0 + ∑ 𝛽𝑖* (pollutant
𝑖
)𝑖=46

𝑖=1  + covariate control                                                   

Eq 4. 

where pollutant
𝑖
 represented the concentration of each of the 46 VOCs. We obtained the 

estimated pollutant effects and their estimated variance-covariance matrix from the first 

stage model. 

Let �̂� denote the vector of the estimated pollutant effects per IQR increase in pollutant 

concentrations, and let �̂� denote the corresponding variance-covariance matrix. In the 

second stage, we regressed the first stage estimates against indicator variables 

representing the groups:  

�̂� = Z𝜶 + 𝜽 + 𝜺                                                                                                                         

Eq 5. 

where Z is the design matrix indexing the grouping; 𝜶 is a vector of the group means; 𝜽 

is a vector of pollutant-specific deviation from its group mean with 𝜽 ~ N (0, 𝜏2𝑰), where 

𝜏2 is within group variance, and 𝜺 is the estimation error with 𝜺 ~ N (0, �̂�).  

We estimated the group means and within-group variance under a Bayesian framework 

using Markov chain Monte Carlo. Prior distributions for the group means and the within-

group variance 𝜏2 were Normal with dispersed variance and inverse-gamma (0.001, 

0.001), respectively. 
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Sensitivity analyses  

We performed a series of sensitivity analyses for the indicator pollutant approach, using 

ED visits among all ages. First, we evaluated model misspecification by estimating the 

associations between tomorrow’s pollutant levels (lag negative 1) and today’s ED visits, 

controlling for today’s pollutant and covariate levels. Tomorrow’s pollutant levels should 

not be associated with today’s ED visits in the absence of confounding, measurement 

error, or other model misspecification, as cause must precede effect.[36] Second, we 

evaluated potential confounding by VOCs, where we estimated the effect of each VOC 

group conditioning on others by including the 10 VOC indicator pollutants in one model. 

Third, we evaluated potential confounding by selected major pollutants by controlling for 

them one at a time in each VOC indicator pollutant model. The major pollutants 

considered in this analysis included 24-hour average PM2.5 OC, one-hour maximum 

carbon monoxide (CO), one-hour maximum nitrogen dioxide (NO2), and eight-hour 

maximum ozone (O3). These pollutants were also measured at the Atlanta Jefferson 

Street ambient monitor during the study period.[30]  

RESULTS 

Descriptive statistics and grouping information for the 46 VOCs included in the analysis 

are listed in Table 1.1, and their Pearson correlations are listed in Supplementary eTable 

1.2. Hydrocarbons had moderate-to-strong positive correlations with one another (r from 

0.48 to 0.98, with mean of 0.82). Oxygenates had weak-to-moderate positive correlations 

with one another (r from 0.20 to 0.64, with mean of 0.42). Correlations between 

hydrocarbons and oxygenates were weak-to-moderate (r from -0.32 to 0.67, with mean of 

0.28).  
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Descriptive statistics of the major pollutants (PM2.5 OC, CO, NO2, and O3) considered in 

the sensitivity analysis are listed in Table 1.1, and their correlations with the 46 VOCs are 

listed in the Supplementary eTable 1.3. Hydrocarbons had moderate-to-strong positive 

correlations with PM2.5 OC, CO, and NO2 (r from 0.40 to 0.76, with mean of 0.60), while 

weak correlations with O3 (r from -0.26 to 0.23, with mean of 0.10). Oxygenates had 

weak-to-moderate correlations with these major pollutants (r from -0.03 to 0.57, with 

mean of 0.22).  

During the study period, there were 251,030 cardiovascular ED visits (66 per day) and 

233,121 asthma ED visits (61 per day overall; 18 per day among 5-18 year olds; and 27 

per day among 19+ year olds).  

Primary analysis  

We first estimated associations between total VOCs and ED visits using single-pollutant 

models. For cardiovascular ED visits, 𝑅�̂� (95% CI) per IQR increase in total 

hydrocarbons and in total oxygenates were 1.005 (1.001, 1.009) and 1.004 (0.996, 1.013), 

respectively. For asthma ED visits among all ages, the association for total oxygenates 

was stronger than that for total hydrocarbons, with 𝑅�̂�s (95% CI) of 1.008 (1.001, 1.015) 

and 1.024 (1.007, 1.041), respectively. We observed this pattern among 5-18 and 19+ 

year olds as well (Supplement, eTable 1.4).    

We then estimated VOC group effects using the three analytic approaches (Table 1.2). 

Note that the alkyne, acid, and ketone groups included only one pollutant, and thus their 

joint effect estimates were the same as their indicator pollutant effect estimates. For 

cardiovascular ED visits, 𝑅𝑅𝑠̂  per IQR increase in hydrocarbon groups were generally 
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similar with one another when estimated using the indicator pollutant approach and the 

joint effect analysis. However, in the random effect meta-analysis, only the alkyne group 

was associated with cardiovascular ED visits, with a 𝑅�̂� (95% CI) of 1.007 (1.001, 

1.012). Among oxygenates, associations with cardiovascular ED visits were generally 

consistent with the null except for the aldehyde group in the joint effects analysis (Table 

1.2). 

For asthma ED visits among all ages, the association with the ketone group was the 

largest, with 𝑅𝑅𝑠̂  per IQR increase of 1.026 (1.004, 1.048), 1.026 (1.004, 1.048), and 

1.024 (1.000, 1.049), using the indicator pollutant approach, the joint effect analysis, and 

the random effect meta-analysis, respectively. The association for the aldehyde group 

was also large in the joint effect analysis, with a 𝑅�̂� (95% CI) of 1.021 (1.004, 1.037). In 

comparison, the associations for hydrocarbon groups were weaker (Table 1.2). We 

observed this pattern of associations within the 5-18 and 19+ year age categories as well 

(Supplement, eTable 1.5). The biggest difference between these two age categories was 

that the association for the acid group was stronger among 5-18 than 19+ year olds.  

Sensitivity analysis  

We performed sensitivity analyses using ED visits among all ages.  

For the indicator pollutant approach, we found associations between cardiovascular ED 

visits and tomorrow’s levels for the acid and ketone groups, and between asthma ED 

visits and tomorrow’s levels for the alkyne group, suggesting possible model 

misspecification when estimating these associations. Other associations with tomorrow’s 

pollutant levels were consistent with the null, as expected under a well-specified model 

(Table 3).  
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We estimated the association for each VOC group conditioning on others by including 

the 10 VOC indicator pollutants in one model. The estimated associations between 

cardiovascular ED visits and the alkene and alkyne groups had little change compared to 

those in the primary analysis using the indicator pollutant approach, while the estimated 

associations for other hydrocarbon groups were closer to the null (Table 1.3). For asthma 

ED visits, results of this sensitivity analysis appeared to be unstable.  

We estimated the association for each VOC indicator pollutant controlling for major 

pollutants one at a time in two-pollutant models. The estimated associations between 

cardiovascular ED visits and hydrocarbon groups were weaker when controlling for CO; 

the associations for CO were also weaker in two-pollutant models with the alkene or 

alkyne groups, compared to its estimated association in a single-pollutant model (Table 

1.4). The estimated associations between asthma ED visits and the oxygenate groups had 

little change when controlling for any of these major pollutants, and 𝑅𝑅𝑠̂  per IQR 

increase in the ketone group were the largest (𝑅�̂�s from 1.025 to 1.027). The associations 

between asthma ED visits and hydrocarbon groups, on the other hand, were weaker when 

controlling for OC, CO, or NO2 (Table 1.5).  

DISCUSSION 

In this study, we estimated acute cardiorespiratory effects of ambient VOCs by grouping 

these compounds based on chemical structure and estimating VOC group effects. As few 

epidemiologic studies have examined the health effect of ambient VOCs, there is little 

understanding on the variation of pollutant effects and measurement error within a group, 

confounding by VOCs, and confounding by other fractions of air pollution. Because of 
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these challenges, we applied multiple analytic approaches to estimate VOC group effects, 

and performed a range of sensitivity analyses.  

We used the indicator pollutant approach as an attempt to minimize the instrument 

measurement error by using what we believed to be the best-measured pollutant. In the 

joint effect analysis, we considered individual pollutant effects as fixed and estimated a 

combined effect per increment of all pollutants in a group. In the random effect meta-

analysis, we considered individual pollutant effects as random (normally distributed 

within a group) and estimated the group mean effect. Any inconsistency among group 

effect estimates using these approaches does not necessarily indicate that any of the 

estimates are wrong, but could reflect that these approaches define the group effects 

differently.  

In our primary analysis of cardiovascular ED visits, we observed similar associations 

across hydrocarbon groups when using the indicator pollutant approach (Table 1.2). We 

performed a sensitivity analysis to estimate the effect of each group conditioning on 

others, and the results suggested that many of the hydrocarbon groups might be 

surrogates of the alkene and the alkyne groups (Table 1.3). The finding of alkyne being 

associated with cardiovascular ED visits conditioning on other VOC groups agreed with 

the random effect meta-analysis results in the primary analysis, in which the estimated 

associations of each group was adjusted for others (Table 1.2).  

However, it is also possible that these VOC groups are surrogates of other pollutants in 

the ambient air, and that the alkene and the alkyne groups in our analysis were merely 

better surrogates compared to other VOCs. To understand what the VOCs might be 

surrogates of, we performed an additional sensitivity analysis controlling for selected 
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major pollutants one at a time in each VOC indicator pollutant model. When controlling 

for CO, the estimated associations between cardiovascular ED visits and the alkene and 

the alkyne groups were weaker, and the CO association was also weaker (Table 1.4). The 

alkene and the alkyne groups may be part of a causal mixture with CO, or, these 

pollutants could all be surrogates of other unmeasured pollutants in the causal mixture. 

Considering that pollutants in the alkene and alkyne groups are mainly generated from 

combustion, among which acetylene (the pollutant in the alkyne group) is a tracer of 

automobile emission, and CO is a classic traffic marker, their associations with 

cardiovascular ED visits may reflect the effect of traffic exhaust.  

In our primary analysis of asthma ED visits, we observed relatively strong associations 

with the ketone group among all ages (Table 1.2) and among specific age categories 

(Supplement, eTable 1.5). We performed sensitivity analyses on asthma ED visits of all 

ages, and found that the estimated associations for the ketone group had little change 

after controlling for any of the major pollutants (Table 1.5). While certain ketones are 

byproducts of ozone formation, and the pollutant in our ketone group is moderately 

correlated with ozone in this analysis, the association between ketone and asthma ED 

visits had little change after controlling for ozone. The association between ketone and 

asthma ED visits could reflect something beyond the effect of ozone, perhaps, the effect 

of other secondary organics that are also generated through atmospheric oxidation 

processes. 

Overall, we found that hydrocarbon groups, particularly the alkene and alkyne groups, 

were associated with cardiovascular ED visits, while the ketone group was associated 

with asthma ED visits. Some hydrocarbon groups were associated with asthma ED visits, 
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however, the magnitudes of their associations were smaller compared to the ketone 

group. The different patterns of associations we observed for the cardiovascular ED visits 

and the asthma ED visits suggest there could be different modes of action of these 

pollutants or the pollution mixtures they represent. The hydrocarbons included in our 

analysis are primarily emitted from traffic or other combustion sources, while oxygenates 

such as ketones are largely secondary. Previous studies of particle-phase pollutants have 

suggested that secondary organics are more related to respiratory inflammation, as they 

are hydrophilic and thus more readily react with constituents in the respiratory tract,[6] 

while primary organics are more related to systemic inflammation.[6, 7, 37] Our results on 

vapor-phase organics are consistent with these previous findings on particle-phase 

pollutants.  

Previous epidemiologic studies reported positive associations between cardiovascular 

health outcomes and ambient hydrocarbons.[23, 25] Our finding of the alkyne group being 

associated with cardiovascular health outcomes has not been reported previously, 

although Suh et al. combined alkyne with other VOCs in a combustible category and 

reported its positive association with cardiovascular hospital admission.[35] Our findings 

on asthma ED visits and ambient VOCs are supported by existing evidence in general. 

Previous epidemiologic studies reported positive associations between respiratory health 

outcomes and ambient hydrocarbons, aldehydes, and ketones.[17-19, 21, 22, 24] Among them, 

Delfino et al. showed in a panel of asthmatic children that aldehyde (formaldehyde) and 

ketone (acetone) were associated with severe asthma symptoms with greater magnitudes 

compared to hydrocarbons (benzene, toluene, and xylenes),[19] similar to the pattern we 

observed here.  
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Our results are subject to spatial misalignment and instrument measurement error. The 

degree of these sources of error likely differs by VOC group, and thus the estimated 

group effects should be compared in light of these limitations. Compared to oxygenates, 

hydrocarbons as primary pollutants may be more subject to spatial misalignment, due to 

larger spatially heterogeneity. If this is the case, the estimated associations for 

hydrocarbon groups may be more biased towards the null compared to those for the 

oxygenate groups. Additionally, pollutants with a lower ambient concentration (e.g., the 

cycloalkane and aldehyde groups) may be more subject to instrument measurement error 

leading to underestimation of effects.  

We chose to group pollutants based on a prior knowledge (chemical structure) rather 

than the statistical relationships among them (e.g., factor analysis, principle components 

analysis, etc). In doing so, the group definition is not specific to the data, and will allow 

for replication in future studies. Collinearity could be a concern when including multiple 

correlated pollutants in the same model (eq. 3 and eq. 4). One consequence of collinearity 

is that it could lead to inflation of the variances for individual pollutant effect estimates. 

However, in our approaches where multiple pollutants were included in the same model, 

our interest was not in estimating individual pollutant effects, but rather, the group 

effects. Specifically, in the random effect meta-analysis, the second stage regression 

accounted for this variance inflation by estimating the group effect as a weighted-average 

of the first stage estimates, with the inverse variance-covariance matrix of the first stage 

estimates serving as the weights. In the joint effect analysis, the variance of the joint 

effect estimate incorporates negative co-variances between individual pollutant estimates, 

and thus could be more modest compared to the variances of individual pollutant 
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estimates. In addition, our relatively long time-series (over 10 years) with relatively large 

counts of outcome events allow for a high degree of collinearity with less impact on the 

estimates than would be the case for a study with fewer observations.[32] 

We grouped these VOCs by chemical structure with the idea that this grouping may 

enhance the understanding of their health associations from commonalities that are 

related to their structures, such as toxicity, source, and atmospheric process. However, 

pollutants sharing a common chemical structure may still differ in these factors, and the 

estimated group effect may not be easily generalized to pollutants that fall into the same 

group but are not included in our analysis. For example, alkenes included in our analysis 

were mainly anthropogenic, as biogenic alkenes measured at Jefferson St. were lower in 

concentration and thus excluded from the analysis due to  >10% of measurements being 

below detection (Supplement, eTable 1.1). Biogenic alkenes, such as isoprene, are 

important in the generation of ozone and secondary organics; these pollutants may exert 

health effects through pathways that are different from the anthropogenic alkenes 

included in this analysis. 

Nonetheless, our approach allowed us to compare and understand the health associations 

of a large number of species in a coherent manner. Our findings further support the link 

between incomplete combustion and cardiovascular health, and the link between 

atmospheric oxidation products and respiratory health.  
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Table 1.1. Summary statistics of daily 24-hour average ambient air pollutants 

measured at the Atlanta Jefferson Street monitoring site during 8/14/1998-

12/31/2008: total hydrocarbons, total oxygenates, 46 individual VOCs grouped by 

chemical structure, and four major pollutants that are included in analyses.a  

VOC GROUPS INDIVIDUAL VOCs 50th (25th, 75th) 

percentiles 

 

TOTAL 

HYDROCARBONSb 

92.7 (63.2, 

159.3) 

 

TOTAL 

OXYGENATESb 

19.3 (11.8, 27.6) 

HYDROCARBONS:  
 

N-ALKANE Ethane 6.9 (4.9, 10.2) 

 Propanec 10.3 (6.5, 19.5) 

 n-Butane 6.2 (3.5, 11.0) 

 n-Pentane 3.2 (2.2, 5.4) 

 n-Hexane 1.5 (1.0, 2.6) 

 n-Heptane 0.9 (0.6, 1.5) 

 n-Octane 0.5 (0.3, 0.8) 

 n-Nonane 0.6 (0.4, 0.9) 

 n-Decane 0.7 (0.5, 1.3) 

ISO/ANTEISO-ALKANE i-Butane 2.3 (1.4, 4.2) 

 i-Pentanec 6.7 (4.3, 12.4) 

 2-Methylpentane 1.9 (1.2, 3.4) 

 3-Methylpentane 1.2 (0.8, 2.1) 
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 2-Methylhexane 0.8 (0.5, 1.5) 

 3-Methylhexane 1.1 (0.7, 1.9) 

 2-Methylheptane 0.3 (0.2, 0.6) 

OTHER ALKANE 2,2-Dimethylbutane 0.5 (0.3, 1.0) 

 2,3-Dimethylbutane 0.6 (0.4, 1.1) 

 2,3-Dimethylpentane 0.5 (0.3, 1.0) 

 2,4-Dimethylpentane 0.3 (0.2, 0.7) 

 2,2,4-Trimethylpentanec 2.0 (1.2, 3.9) 

 2,3,4-Trimethylpentane 0.6 (0.3, 1.2) 

 3-Ethylhexane 0.3 (0.2, 0.6) 

CYCLOALKANE Cyclopentane 0.3 (0.2, 0.5) 

 Methylcyclopentanec 0.8 (0.5, 1.4) 

 Methylcyclohexane 0.5 (0.3, 0.8) 

ALKENE Ethylenec 3.1 (2.0, 5.4) 

 Propene 1.4 (0.9, 2.6) 

ALKYNE Acetylenec 4.2 (2.7, 7.6) 

AROMATIC Benzene 2.4 (1.8, 3.8) 

 Toluenec 7.1 (4.7, 12.5) 

 Ethylbenzene 1.4 (0.9, 2.4) 

 n-Propylbenzene 0.4 (0.2, 0.7) 

 m-Xylene & p-Xylene 3.7 (2.2, 6.9) 

 o-Xylene 1.5 (0.9, 2.8) 

 m-Ethyltoluene 0.6 (0.3, 1.0) 
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 p-Ethyltoluene 1.3 (0.8, 2.2) 

 1,2,4-Trimethylbenzened 1.7 (1.0, 3.0) 

 1,3,5-Trimethylbenzene 0.7 (0.4, 1.2) 

   

OXYGENATES:   

ALDEHYDE Hexanal 0.8 (0.5, 1.1) 

 Heptanal 0.6 (0.4, 0.8) 

 Octanal 1.2 (0.7, 1.8) 

 Decanal 0.7 (0.4, 1.1) 

 Benzaldehydec 1.7 (1.2, 2.5) 

ACID Acetic Acidc 3.6 (1.5, 7.2) 

KETONE 2-Butanonec 1.7 (1.0, 2.9) 

   

 

MAJOR 

POLLUTANTS 

50th (25th, 75th) 

percentiles 

 24-hr PM2.5 OC (μg/m3) 3.6 (2.6, 5.0) 

 1-hr max CO (ppm) 0.69 (0.43, 1.27) 

 1-hr max NO2 (ppb) 39.3 (29.5, 50.0) 

 8-hr max O3 (ppb) 39.5 (25.7, 56.7) 

aThere were 3793 days during 08/14/1998-12/31/2008. Hydrocarbons were available for 

3233 of these days, while oxygenates were available for 3231 of these days. The unit is 

ppb-C and the limit of detection (LOD) is 0.1 ppb-C for all VOCs. VOC concentrations 

below 0.1 ppb-C were replaced with 0.05 ppb-C in all analyses. 
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bTotal hydrocarbons denotes total identified non-methane hydrocarbons. Total 

oxygenates denotes total identified oxygenated hydrocarbons.  

cSpecies in bold text are the indicator pollutants for each VOC group.  

d1,2,4-Trimethylbenzene & sec-Butylbenzene 
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Table 1.2. Estimated associations between VOC groups and cardiovascular and 

asthma ED visits using three analytic approaches.a 

VOC GROUPS INDICATOR 

POLLUTANT 

APPROACHb 

JOINT EFFECT 

ANALYSISc 

RANDOM 

EFFECT META-

ANALYSISd 

    

 CARDIOVASCULAR ED VISITS AMONG ALL AGES 

HYDROCARBONS  

N-ALKANE 1.002 (1.000, 1.005) 1.006 (1.001, 1.011) 0.999 (0.997, 1.001) 

ISO/ANTEISO-

ALKANE 

1.004 (1.001, 1.008) 1.005 (1.000, 1.010) 1.000 (0.997, 1.003) 

OTHER ALKANE 1.005 (1.001, 1.008) 1.006 (1.001, 1.011) 1.000 (0.997, 1.002) 

CYCLOALKANE 1.005 (1.001, 1.009) 1.005 (1.001, 1.010) 1.002 (0.997, 1.007) 

ALKENE 1.006 (1.002, 1.009) 1.006 (1.002, 1.009) 1.001 (0.997, 1.006) 

ALKYNE 1.006 (1.003, 1.010) 1.006 (1.003, 1.010) 1.007 (1.001, 1.012) 

AROMATIC 1.006 (1.002, 1.010) 0.998 (0.992, 1.005) 1.000 (0.999, 1.001) 

OXYGENATES    

ALDEHYDE 1.001 (0.998, 1.004) 1.008 (1.000, 1.016) 1.000 (0.998, 1.002) 

ACID 1.002 (0.995, 1.010) 1.002 (0.995, 1.010) 1.001 (0.993, 1.009) 

KETONE 1.005 (0.995, 1.014) 1.005 (0.995, 1.014) 1.003 (0.993, 1.013) 

    

 ASTHMA ED VISITS AMONG ALL AGES 

HYDROCARBONS  

N-ALKANE 1.004 (1.000, 1.009) 1.005 (0.995, 1.014) 0.999 (0.994, 1.003) 
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VOC GROUPS INDICATOR 

POLLUTANT 

APPROACHb 

JOINT EFFECT 

ANALYSISc 

RANDOM 

EFFECT META-

ANALYSISd 

ISO/ANTEISO-

ALKANE 

1.006 (1.000, 1.013) 1.010 (1.000, 1.019) 1.006 (0.999, 1.013) 

OTHER ALKANE 1.006 (1.000, 1.013) 1.007 (0.999, 1.016) 0.999 (0.993, 1.004) 

CYCLOALKANE 1.009 (1.002, 1.016) 1.009 (1.002, 1.016) 0.995 (0.986, 1.007) 

ALKENE 1.005 (0.998, 1.011) 1.005 (0.998, 1.011) 0.992 (0.983, 1.003) 

ALKYNE 1.006 (0.999, 1.012) 1.006 (0.999, 1.012) 1.000 (0.987, 1.014) 

AROMATIC 1.009 (1.002, 1.017) 1.008 (0.995, 1.021) 1.002 (0.998, 1.005) 

OXYGENATES    

ALDEHYDE 0.998 (0.991, 1.005) 1.021 (1.004, 1.037) 1.000 (0.995, 1.006) 

ACID 1.008 (0.991, 1.026) 1.008 (0.991, 1.026) 1.003 (0.983, 1.021) 

KETONE 1.026 (1.004, 1.048) 1.026 (1.004, 1.048) 1.024 (1.000, 1.049) 

aThis analysis included 3224 days on which all VOCs were available during 8/14/1998-

12/31/2008. VOC concentrations below the limit of detection (LOD) of 0.1 ppb-C were 

replaced with 0.05 ppb-C in all analyses. We used same-day (lag 0) pollution levels in 

models predicting cardiovascular ED visits and 3-day moving average (of lags 0, 1, and 

2) pollution levels in models predicting asthma ED visits. All methods included the same 

covariate control for temporal trends and meteorology: time splines with monthly knots, 

cubic function of same-day maximum temperature, cubic function of lag 1-2-day moving 

average minimum temperature (when using 3-day moving average pollution levels), 

cubic function of mean dew point temperature (same-day or 3-day moving average, 

matching the temporal metric of the pollution term), day of week, indicators for holidays, 

seasons, season-maximum temperature interaction, season-day of week interaction, and 
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indicators for hospital participation periods. The estimated associations are expressed as 

rate ratios (95% confidence interval) per interquartile range (IQR) increase in pollutant 

concentrations (listed in Table 1).  

bThe “indicator pollutant approach” estimated the effect of each indicator pollutant 

increasing by its IQR in single-pollutant models. 

cThe “joint effect analysis” estimated the effect of all pollutants in a group jointly 

increasing by their IQRs in multi-pollutant models that included all pollutants of the 

group. The joint effect estimates for VOC groups comprised of only one pollutant were 

the same as the estimates obtained from the indicator pollutant approach.  

dThe “random effect meta-analysis” estimated the mean effect of any of the pollutants in 

a group increasing by its IQR in a two-stage regression, where the 46 individual pollutant 

effects were estimated simultaneously in the Poisson model in the first stage, and the 

mean of each group was estimated under a Bayesian framework using Markov chain 

Monte Carlo in the second stage. The estimated rate ratio (95% CI) for the random effect 

meta-analysis is median (2.5th, 97.5th percentiles) from the posterior distribution. 
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Table 1.3. Sensitivity analyses evaluating model misspecification and confounding 

by VOCs.a 

VOC GROUPS 

PRIMARY 

ANALYSISb 

LAG NEGATIVE 1c 

CONTROL FOR 

OTHER VOC 

GROUPSd 

    

CARDIOVASCULAR ED VISITS AMONG ALL AGES 

HYDROCARBONS    

N-ALKANE 1.002 (1.000, 1.005) 1.002 (0.999, 1.005) 1.000 (0.997, 1.003) 

ISO/ANTEISO-

ALKANE 

1.004 (1.001, 1.008) 1.003 (0.999, 1.007) 0.996 (0.985, 1.008) 

OTHER ALKANE 1.005 (1.001, 1.008) 1.002 (0.998, 1.006) 0.994 (0.981, 1.007) 

CYCLOALKANE 1.005 (1.001, 1.009) 1.003 (0.999, 1.007) 1.002 (0.988, 1.016) 

ALKENE 1.006 (1.002, 1.009) 1.002 (0.998, 1.005) 1.005 (0.998, 1.011) 

ALKYNE 1.006 (1.003, 1.010) 1.002 (0.998, 1.006) 1.005 (1.000, 1.011) 

AROMATIC 1.006 (1.002, 1.010) 1.002 (0.997, 1.006) 1.005 (0.988, 1.021) 

OXYGENATES    

ALDEHYDE 1.001 (0.998, 1.004) 0.999 (0.996, 1.002) 1.000 (0.997, 1.003) 

ACID 1.002 (0.995, 1.010) 1.010 (1.002, 1.018) 1.001 (0.993, 1.009) 

KETONE 1.005 (0.995, 1.014) 1.012 (1.002, 1.021) 1.003 (0.993, 1.013) 

    

ASTHMA ED VISITS AMONG ALL AGES 

HYDROCARBONS    

N-ALKANE 1.004 (1.000, 1.009) 1.000 (0.997, 1.003) 1.001 (0.995, 1.007) 
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VOC GROUPS 

PRIMARY 

ANALYSISb 

LAG NEGATIVE 1c 

CONTROL FOR 

OTHER VOC 

GROUPSd 

    

ISO/ANTEISO-

ALKANE 

1.006 (1.000, 1.013) 1.000 (0.996, 1.005) 0.986 (0.963, 1.010) 

OTHER ALKANE 1.006 (1.000, 1.013) 1.002 (0.998, 1.007) 0.985 (0.961, 1.009) 

CYCLOALKANE 1.009 (1.002, 1.016) 1.001 (0.996, 1.006) 1.027 (0.999, 1.056) 

ALKENE 1.005 (0.998, 1.011) 1.002 (0.998, 1.007) 0.993 (0.979, 1.006) 

ALKYNE 1.006 (0.999, 1.012) 1.004 (1.000, 1.008) 1.001 (0.990, 1.013) 

AROMATIC 1.009 (1.002, 1.017) 1.002 (0.997, 1.007) 1.019 (0.987, 1.052) 

OXYGENATES    

ALDEHYDE 0.998 (0.991, 1.005) 1.002 (0.998, 1.006) 0.994 (0.987, 1.001) 

ACID 1.008 (0.991, 1.026) 0.998 (0.987, 1.010) 1.001 (0.984, 1.020) 

KETONE 1.026 (1.004, 1.048) 1.003 (0.990, 1.017) 1.027 (1.003, 1.050) 

aThese analyses included 3224 days on which all VOCs were available during 8/14/1998-

12/31/2008. VOC concentrations below the limit of detection (LOD) of 0.1 ppb-C were 

replaced with 0.05 ppb-C in all analyses. We used same-day (lag 0) pollution levels in 

models predicting cardiovascular ED visits and 3-day moving average (of lags 0, 1, and 

2) pollution levels in models predicting asthma ED visits. All methods included the same 

covariate control for temporal trends and meteorology: time splines with monthly knots, 

cubic function of same-day maximum temperature, cubic function of lag 1-2-day moving 

average minimum temperature (when using 3-day moving average pollution levels), 

cubic function of mean dew point temperature (same-day or 3-day moving average, 

matching the temporal metric of the pollution term), day of week, indicators for holidays, 
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seasons, season-maximum temperature interaction, season-day of week interaction, and 

indicators for hospital participation periods. The estimated associations are expressed as 

rate ratios (95% confidence interval) per interquartile range (IQR) increase in pollutant 

concentrations (listed in Table 1). 

bThe “primary analysis” is the indicator pollutant approach in the primary analysis. It 

estimated the effect of each indicator pollutant increasing by its IQR in single-pollutant 

models. 

cThe “lag negative 1” is based on indicator pollutant approach. It estimated the 

associations between tomorrow’s indicator pollutant level (lag negative 1) and today’s 

ED visits, controlling for today’s indicator pollutant and covariate levels. We reported the 

estimates of the lag negative 1 pollutant levels in this column. 

dThe “control for other VOC groups” included all indicator pollutants in one model 

simultaneously.  
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Table 1.4. Sensitivity analysis controlling for selected major pollutants one at a time in each VOC indicator pollutant 

model predicting cardiovascular ED visits among all ages.a 

  PM2.5 OC CO NO2 O3 

SINGLE-POLLUTANT MODELS OF  

MAJOR POLLUTANTS: → 

1.006 (1.000, 1.012) 1.009 (1.003, 1.015) 1.004 (0.995, 1.013) 1.001 (0.985, 1.017) 

SINGLE-POLLUTANT MODELS OF  

VOC INDICATOR POLLUTANTS: ↓ 

TWO-POLLUTANT MODELS: MAJOR POLLUTANT (TOP OF CELL). 

                                                         VOC INDICATOR POLLUTANT (BOTTOM OF 

CELL). 

  1.006 (0.999, 1.012) 1.009 (1.003, 1.016) 1.003 (0.994, 1.013) 1.001 (0.984, 1.017) 

N-ALKANE 1.001 (0.999, 1.004) 1.001 (0.998, 1.003) 1.000 (0.997, 1.003) 1.001 (0.998, 1.004) 1.001 (0.999, 1.004) 

      

  1.005 (0.998, 1.012) 1.011 (1.003, 1.019) 1.002 (0.993, 1.012) 1.000 (0.984, 1.017) 

ISO/ANTEISO-

ALKANE 

1.003 (0.999, 1.007) 1.001 (0.996, 1.006) 0.998 (0.993, 1.004) 1.002 (0.998, 1.007) 1.003 (0.999, 1.007) 

      

  1.005 (0.998, 1.012) 1.011 (1.003, 1.019) 1.002 (0.993, 1.012) 1.000 (0.984, 1.017) 

OTHER ALKANE 1.003 (0.999, 1.007) 1.001 (0.996, 1.006) 0.998 (0.992, 1.004) 1.003 (0.998, 1.007) 1.003 (0.999, 1.007) 
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  PM2.5 OC CO NO2 O3 

  1.004 (0.997, 1.012) 1.010 (1.002, 1.018) 1.002 (0.992, 1.011) 1.000 (0.984, 1.017) 

CYCLOALKANE 1.004 (0.999, 1.008) 1.002 (0.997, 1.007) 0.999 (0.994, 1.005) 1.004 (0999, 1.008) 1.004 (0.999, 1.008) 

  1.001 (0.994, 1.009) 1.006 (0.998, 1.014) 1.000 (0.991, 1.010) 1.001 (0.985, 1.017) 

ALKENE 1.006 (1.002, 1.010) 1.005 (1.001, 1.010) 1.003 (0.998, 1.008) 1.006 (1.002, 1.010) 1.006 (1.002, 1.010) 

      

  1.002 (0.995, 1.010) 1.007 (0.999, 1.014) 1.001 (0.992, 1.010) 1.001 (0.985, 1.017) 

ALKYNE 1.005 (1.001, 1.008) 1.004 (1.000, 1.008) 1.002 (0.998, 1.007) 1.005 (1.001, 1.008) 1.005 (1.001, 1.008) 

      

  1.004 (0.996, 1.011) 1.009 (1.001, 1.018) 1.001 (0.992, 1.011) 1.000 (0.984, 1.017) 

AROMATIC 1.005 (1.000, 1.009) 1.003 (0.998, 1.009) 1.000 (0.994, 1.006) 1.004 (0.999, 1.009) 1.005 (1.000, 1.009) 

      

  1.006 (1.000, 1.012) 1.009 (1.003, 1.015) 1.004 (0.995, 1.013) 1.001 (0.985, 1.017) 

ALDEHYDE 1.000 (0.991, 1.008) 1.000 (0.997, 1.003) 1.000 (0.997, 1.003) 1.000 (0.997, 1.003) 1.000 (0.997, 1.003) 

      

  1.006 (1.000, 1.012) 1.009 (1.003, 1.015) 1.004 (0.995, 1.013) 1.001 (0.985, 1.017) 

ACID 1.000 (0.991, 1.008) 0.999 (0.991, 1.008) 0.999 (0.991, 1.008) 1.000 (0.991, 1.008) 1.000 (0.991, 1.008) 
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  PM2.5 OC CO NO2 O3 

  1.006 (0.999, 1.012) 1.009 (1.003, 1.015) 1.004 (0.995, 1.013) 1.001 (0.985, 1.017) 

KETONE 1.006 (0.996, 1.016) 1.005 (0.995, 1.015) 1.005 (0.995, 1.015) 1.005 (0.996, 1.015) 1.006 (0.996, 1.016) 

aThis analysis included 2997 days during 8/14/1998-12/31/2008 for which both data on major pollutants and VOCs were 

available. VOC concentrations below the limit of detection (LOD) of 0.1 ppb-C were replaced with 0.05 ppb-C in all analyses. 

We used same-day (lag 0) pollution levels in models predicting cardiovascular ED visits. All methods included the same 

covariate control for temporal trends and meteorology: time splines with monthly knots, cubic function of same-day maximum 

temperature, cubic function of mean dew point temperature (lag 0), day of week, indicators for holidays, seasons, season-

maximum temperature interaction, season-day of week interaction, and indicators for hospital participation periods. The 

estimated associations are expressed as rate ratios (95% confidence interval) per interquartile range (IQR) increase in pollutant 

concentrations (listed in Table 1). 
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Table 1.5. Sensitivity analysis controlling for selected major pollutants one at a time in each VOC indicator pollutant 

model predicting asthma ED visits among all ages.a 

  PM2.5 OC CO NO2 O3 

SINGLE-POLLUTANT MODELS OF  

MAJOR POLLUTANTS: → 

1.019 (1.007, 1.030) 1.018 (1.007, 1.030) 1.031 (1.014, 1.049) 1.037 (1.009, 1.066) 

SINGLE-POLLUTANT MODELS OF  

VOC INDICATOR POLLUTANTS: ↓ 

TWO-POLLUTANT MODELS: MAJOR POLLUTANT (TOP OF CELL).  

                                                         VOC INDICATOR POLLUTANT (BOTTOM OF 

CELL). 

  1.015 (1.002, 1.028) 1.015 (1.001, 1.029) 1.027 (1.009, 1.046) 1.033 (1.004, 1.062) 

N-ALKANE 1.006 (1.001,1.011) 1.003 (0.998, 1.009) 1.003 (0.997, 1.009) 1.004 (0.998, 1.009) 1.005 (1.000, 1.010) 

      

ISO/ANTEISO-  1.012 (0.997, 1.028) 1.012 (0.994, 1.030) 1.024 (1.005, 1.044) 1.030 (1.001, 1.059) 

ALKANE 1.012 (1.004, 1.020) 1.007 (0.996, 1.017) 1.006 (0.994, 1.018) 1.007 (0.998, 1.016) 1.010 (1.002, 1.018) 

      

  1.014 (0.999, 1.030) 1.015 (0.997, 1.034) 1.026 (1.007, 1.046) 1.030 (1.002, 1.060) 

OTHER ALKANE 1.011 (1.003, 1.020) 1.005 (0.994, 1.016) 1.003 (0.990, 1.016) 1.006 (0.997, 1.015) 1.010 (1.001, 1.018) 
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  PM2.5 OC CO NO2 O3 

  1.010 (0.994, 1.025) 1.008 (0.990, 1.026) 1.023 (1.003, 1.042) 1.029 (1.001, 1.058) 

CYCLOALKANE 1.014 (1.006, 1.022) 1.009 (0.999, 1.020) 1.009 (0.997, 1.022) 1.009 (1.000, 1.018) 1.012 (1.004, 1.021) 

      

  1.019 (1.003, 1.034) 1.021 (1.004, 1.039) 1.029 (1.010, 1.048) 1.034 (1.005, 1.063) 

ALKENE 1.008 (1.000, 1.015) 1.000 (0.990, 1.010) 0.998 (0.987, 1.009) 1.003 (0.995, 1.011) 1.007 (0.999, 1.014) 

      

  1.015 (1.001, 1.030) 1.017 (1.000, 1.035) 1.027 (1.008, 1.046) 1.033 (1.005, 1.063) 

ALKYNE 1.009 (1.002, 1.016) 1.003 (0.994, 1.012) 1.001 (0.990, 1.012) 1.005 (0.997, 1.012) 1.008 (1.001, 1.015) 

      

  1.012 (0.996, 1.028) 1.012 (0.994, 1.031) 1.024 (1.005, 1.044) 1.030 (1.002, 1.059) 

AROMATIC 1.013 (1.004, 1.022) 1.007 (0.995, 1.019) 1.006 (0.992, 1.020) 1.007 (0.998, 1.017) 1.011 (1.003, 1.020) 

      

  1.019 (1.007, 1.032) 1.019 (1.007, 1.031) 1.032 (1.014, 1.050) 1.037 (1.009, 1.066) 

ALDEHYDE 1.000 (0.993, 1.007) 0.997 (0.990, 1.004) 0.998 (0.991, 1.005) 0.998 (0.991, 1.005) 0.999 (0.992, 1.006) 

      

  1.018 (1.006, 1.030) 1.018 (1.006, 1.030) 1.031 (1.013, 1.049) 1.036 (1.007, 1.065) 

ACID 1.011 (0.990, 1.032) 1.009 (0.989, 1.030) 1.009 (0.988, 1.030) 1.008 (0.988, 1.029) 1.008 (0.987, 1.029) 
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  PM2.5 OC CO NO2 O3 

      

  1.017 (1.005, 1.029) 1.017 (1.005, 1.028) 1.029 (1.011, 1.047) 1.033 (1.004, 1.062) 

KETONE 1.030 (1.007, 1.054) 1.025 (1.001, 1.049) 1.025 (1.001, 1.050) 1.025 (1.001, 1.049) 1.027 (1.003, 1.051) 

aThis analysis included 2997 days during 8/14/1998-12/31/2008 for which both data on major pollutants and VOCs were 

available. VOC concentrations below the limit of detection (LOD) of 0.1 ppb-C were replaced with 0.05 ppb-C in all analyses. 

We used 3-day moving average (of lags 0, 1, and 2) pollution levels in models predicting asthma ED visits. All methods 

included the same covariate control for temporal trends and meteorology: time splines with monthly knots, cubic function of 

same-day maximum temperature, cubic function of lag 1-2-day moving average minimum temperature, cubic function of mean 

dew point temperature (3-day moving average), day of week, indicators for holidays, seasons, season-maximum temperature 

interaction, season-day of week interaction, and indicators for hospital participation periods. The estimated associations are 

expressed as rate ratios (95% confidence interval) per interquartile range (IQR) increase in pollutant concentrations (listed in 

Table 1).  
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SUPPLEMENT 

eTable 1.1. Summary statistics of daily 24-hr average ambient VOC concentrations (in ppb-C) measured at the Atlanta 

Jefferson Street monitoring site during 8/14/1998-12/31/2008: total hydrocarbons, total oxygenates, and 89 identified 

individual species grouped by chemical structure.a 

VOC GROUPS INDIVIDUAL VOCsb MEAN (SD) 50th (25th, 75th) 

percentiles 

% < 

LOD 

 TOTAL 

HYDROCARBONSc 

143.7 (148.3) 92.7 - 

 TOTAL OXYGENATESc 20.9 (12.3) 19.3 - 

HYDROCARBONS:     

N-ALKANE 

 

Ethane 9.0 (7.4) 6.9 (4.9, 10.2) 0 

Propaned 18.0 (25.6) 10.3 (6.5, 19.5) 0 

n-Butane 10.8 (14.2) 6.2 (3.5, 11.0) <1 

n-Pentane 4.8 (4.8) 3.2 (2.2, 5.4) <1 

n-Hexane 2.3 (2.5) 1.5 (1.0, 2.6) <1 
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VOC GROUPS INDIVIDUAL VOCsb MEAN (SD) 50th (25th, 75th) 

percentiles 

% < 

LOD 

n-Heptane 1.3 (1.4) 0.9 (0.6, 1.5) <1 

n-Octane 0.7 (0.7) 0.5 (0.3, 0.8) 6 

n-Nonane 0.8 (0.9) 0.6 (0.4, 0.9) 3 

n-Decane 1.1 (1.2) 0.7 (0.5, 1.3) 1 

ISO/ANTEISO-

ALKANE 

 

i-Butane 3.8 (4.6) 2.3 (1.4, 4.2) 0 

i-Pentaned 11.1 (12.7) 6.7 (4.3, 12.4) 0 

2-Methylpentane 3.1 (3.6) 1.9 (1.2, 3.4) 0 

3-Methylpentane 1.9 (2.2) 1.2 (0.8, 2.1) <1 

2-Methylhexane 1.3 (1.4) 0.8 (0.5, 1.5) 1 

3-Methylhexane 1.6 (1.5) 1.1 (0.7, 1.9) <1 

2-Methylheptane 0.5 (0.7) 0.3 (0.2, 0.6) 7 

OTHER ALKANE 

 

2,2-Dimethylpropane <0.1 <0.1 99 

2,2-Dimethylbutane 0.8 (1.3) 0.5 (0.3, 1.0) 7 
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VOC GROUPS INDIVIDUAL VOCsb MEAN (SD) 50th (25th, 75th) 

percentiles 

% < 

LOD 

2,3-Dimethylbutane 1.0 (1.1) 0.6 (0.4, 1.1) 3 

2,3-Dimethylpentane 0.9 (1.1) 0.5 (0.3, 1.0) 1 

2,4-Dimethylpentane 0.6 (0.8) 0.3 (0.2, 0.7) 7 

2,2,4-Trimethylpentaned 3.5 (4.4) 2.0 (1.2, 3.9) <1 

2,3,4-Trimethylpentane 1.1 (1.5) 0.6 (0.3, 1.2) 2 

2,3-Dimethylhexane 0.3 (0.5) <0.1 (<0.1, 0.3) 52 

2,4-Dimethylhexane 0.6 (0.8) 0.3 (<0.1, 0.7) 32 

2,5-Dimethylhexane 0.5 (0.6) 0.3 (<0.1, 0.6) 32 

3-Ethylhexane 0.5 (0.6) 0.3 (0.2, 0.6) 7 

2,2,4-Trimethylhexane 0.3 (0.5) <0.1 (<0.1, 0.4) 58 

2,2-Dimethylheptane <0.1 <0.1 >99 

CYCLOALKANE 

 

Cyclopentane 0.4 (0.4) 0.3 (0.2, 0.5) 6 

Cyclohexane 0.2 (0.5) <0.1 (<0.1, 0.2) 73 
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VOC GROUPS INDIVIDUAL VOCsb MEAN (SD) 50th (25th, 75th) 

percentiles 

% < 

LOD 

Methylcyclopentaned 1.3 (1.3) 0.8 (0.5, 1.4) <1 

Methylcyclohexane 0.7 (0.9) 0.5 (0.3, 0.8) 9 

Ethylcyclohexane <0.1 <0.1 100 

ALKENE 

 

Ethylened 4.9 (5.8) 3.1 (2.0, 5.4) 0 

Propene 2.5 (3.2) 1.4 (0.9, 2.6) <1 

1-Butene 0.5 (0.7) 0.3 (0.2, 0.6) 12 

cis-2-Butene 0.3 (0.4) 0.1 (<0.1, 0.3) 45 

trans-2-Butene 0.4 (0.6) 0.2 (<0.1, 0.5) 33 

1-Pentene 0.3 (0.5) <0.1 (<0.1, 0.3) 66 

cis-2-Pentene 0.3 (0.5) 0.1 (<0.1, 0.3) 39 

trans-2-Pentene 0.6 (0.9) 0.3 (0.2, 0.6) 18 

1-Hexene 0.1 (0.3) <0.1 (<0.1, <0.1) 92 

cis-2-Hexene <0.1 (0.1) <0.1 (<0.1, <0.1) 83 
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VOC GROUPS INDIVIDUAL VOCsb MEAN (SD) 50th (25th, 75th) 

percentiles 

% < 

LOD 

trans-2-Hexene 0.2 (0.4) <0.1 (<0.1, <0.1) 77 

i-Butene 0.8 (1.0) 0.5 (0.3, 0.9) 12 

2-Methyl-1-butene 0.5 (0.8) 0.3 (<0.1, 0.6) 27 

2-Methyl-2-butene 0.7 (1.3) 0.3 (<0.1, 0.8) 33 

3-Methyl-1-butene 0.1 (0.2) <0.1 (<0.1, 0.1) 70 

2-Methyl-1-pentene 0.1 (0.2) <0.1 (<0.1, <0.1) 92 

4-Methyl-1-pentene <0.1 <0.1 99 

2-Methyl-2-pentene 0.2 (0.4) <0.1 (<0.1, <0.1) 78 

cis-4-methyl-2-Pentene <0.1 <0.1 >99 

2,4,4-Trimethyl-1-pentene <0.1 <0.1 98 

2,4,4-Trimethyl-2-pentene <0.1 <0.1 100 

Cyclopentene 0.1 (0.2) <0.1 (<0.1, <0.1) 78 

1,3-Butadiene 0.4 (0.5) 0.2 (0.1, 0.4) 25 
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VOC GROUPS INDIVIDUAL VOCsb MEAN (SD) 50th (25th, 75th) 

percentiles 

% < 

LOD 

Isoprene 2.3 (3.3) 0.8 (0.1, 3.4) 21 

alpha-Pinene 1.7 (1.9) 1.2 (0.6, 2.1) 11 

beta-Pinene 0.1 (0.5) <0.1 (<0.1, <0.1) 94 

delta 3-Carene <0.1 <0.1 >99 

d-Limonene 0.4 (1.1) <0.1 (<0.1, <0.1) 86 

ALKYNE Acetylened 7.1 (8.2) 4.2 (2.7, 7.6) 0 

AROMATIC 

 

Benzene 3.4 (3.1) 2.4 (1.8, 3.8) 0 

Toluened 10.9 (11.0) 7.1 (4.7, 12.5) <1 

Ethylbenzene 2.2 (2.6) 1.4 (0.9, 2.4) 0 

n-Propylbenzene 0.6 (0.6) 0.4 (0.2, 0.7) 5 

i-Propylbenzene <0.1 (0.2) <0.1 (<0.1, <0.1) 92 

m-Xylene & p-Xylene 6.5 (9.0) 3.7 (2.2, 6.9) 0 

o-Xylene 2.5 (3.1) 1.5 (0.9, 2.8) 0 
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VOC GROUPS INDIVIDUAL VOCsb MEAN (SD) 50th (25th, 75th) 

percentiles 

% < 

LOD 

m-Ethyltoluene 0.9 (1.1) 0.6 (0.3, 1.0) 3 

p-Ethyltoluene 1.9 (2.2) 1.3 (0.8, 2.2) 2 

o-Ethyltoluene 0.8 (1.1) 0.5 (<0.1, 1.1) 27 

1,2,3-Trimethylbenzene 0.6 (1.4) <0.1 (<0.1, 0.4) 75 

1,2,4-Trimethylbenzenee 2.7 (3.2) 1.7 (1.0, 3.0) <1 

1,3,5-Trimethylbenzene 1.0 (1.3) 0.7 (0.4, 1.2) 4 

Styrene 0.7 (0.8) 0.5 (<0.1, 0.9) 26 

OXYGENATES:     

ALDEHYDE 

 

Pentanal 0.3 (0.3) 0.1 (<0.1, 0.4) 50 

Hexanal 0.9 (0.6) 0.8 (0.5, 1.1) 3 

Heptanal 0.7 (0.5) 0.6 (0.4, 0.8) 7 

Octanal 1.4 (1.0) 1.2 (0.7, 1.8) 6 

Nonanal 0.9 (0.9) 0.8 (0.3, 1.3) 22 
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VOC GROUPS INDIVIDUAL VOCsb MEAN (SD) 50th (25th, 75th) 

percentiles 

% < 

LOD 

Decanal 0.9 (0.8) 0.7 (0.4, 1.1) 8 

Benzaldehyded 2.2 (2.2) 1.7 (1.2, 2.5) 1 

ACID Acetic Acidd 5.3 (5.6) 3.6 (1.5, 7.2) 6 

KETONE 

 

Acetone 6.4 (6.2) 4.8 (1.9, 9.1) 10 

2-Butanoned 2.1 (1.6) 1.7 (1.0, 2.9) 3 

2-Octanone <0.1 <0.1 >99 

ETHER MTBE <0.1 <0.1 >99 

a There were 3793 days during 08/14/1998-12/31/2008. Hydrocarbons were available for 3233 of these days, while oxygenates 

were available for 3231 of these days. The limit of detection (LOD) was 0.1 ppb-C for all VOCs. VOC concentrations below 

0.1 ppb-C were replaced with 0.05 ppb-C in all analyses. 

bSpecies in black text were the 46 species included in the analysis, selected as those with concentrations above detection on at 

least 90% of days. Species in grey text had concentrations below detection on greater than 10% of days during the study period 

and were thus excluded from the analysis. 
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cTotal hydrocarbons denotes total identified non-methane hydrocarbons. Total oxygenates denotes total identified oxygenated 

hydrocarbons.  

dSpecies in bold black text are the indicator pollutants for each VOC group. 

e1,2,4-Trimethylbenzene & sec-Butylbenzene 
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eTable 1.2. Pearson correlations among the 46 VOCs included in the primary analysis.a 
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Ethane 1.00 0.76 0.82 0.64 0.63 0.61 0.57 0.51 0.48 0.80 0.61 0.61 0.61 0.57 0.54 0.60 

Propane 
 

1.00 0.78 0.75 0.80 0.78 0.73 0.68 0.66 0.83 0.78 0.79 0.78 0.77 0.72 0.75 

n-Butane 
  

1.00 0.74 0.73 0.68 0.65 0.58 0.55 0.90 0.75 0.72 0.72 0.67 0.60 0.68 

n-Pentane 
   

1.00 0.90 0.88 0.81 0.79 0.78 0.82 0.94 0.92 0.91 0.88 0.84 0.86 

n-Hexane 
    

1.00 0.92 0.85 0.82 0.81 0.80 0.93 0.96 0.96 0.93 0.88 0.90 

n-Heptane 
     

1.00 0.85 0.83 0.80 0.76 0.89 0.92 0.91 0.93 0.89 0.90 

n-Octane 
      

1.00 0.80 0.78 0.72 0.84 0.86 0.85 0.85 0.82 0.87 

n-Nonane 
       

1.00 0.87 0.66 0.82 0.84 0.83 0.84 0.81 0.83 

n-Decane 
        

1.00 0.65 0.81 0.83 0.82 0.82 0.80 0.82 

i-Butane 
         

1.00 0.83 0.80 0.79 0.75 0.71 0.76 

i-Pentane 
          

1.00 0.96 0.94 0.91 0.87 0.89 

2-Methylpentane 
           

1.00 0.97 0.94 0.90 0.92 

3-Methylpentane 
            

1.00 0.93 0.88 0.90 

2-Methylhexane 
             

1.00 0.90 0.90 

3-Methylhexane 
              

1.00 0.88 

2-Methylheptane 
               

1.00 
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Ethane 0.56 0.58 0.52 0.55 0.52 0.54 0.61 0.62 0.61 0.53 0.74 0.66 0.72 0.73 0.56 0.56 

Propane 0.68 0.76 0.71 0.72 0.73 0.74 0.76 0.76 0.78 0.69 0.77 0.79 0.74 0.81 0.75 0.77 

n-Butane 0.64 0.69 0.60 0.64 0.61 0.64 0.69 0.70 0.72 0.61 0.75 0.70 0.75 0.80 0.64 0.65 

n-Pentane 0.79 0.89 0.85 0.85 0.86 0.87 0.86 0.88 0.90 0.77 0.80 0.83 0.71 0.88 0.87 0.83 

n-Hexane 0.80 0.92 0.89 0.89 0.90 0.90 0.90 0.89 0.95 0.82 0.81 0.85 0.74 0.89 0.92 0.88 

n-Heptane 0.77 0.89 0.89 0.87 0.90 0.89 0.89 0.86 0.92 0.83 0.80 0.84 0.72 0.87 0.91 0.86 

n-Octane 0.75 0.83 0.82 0.82 0.83 0.84 0.87 0.81 0.85 0.77 0.75 0.79 0.66 0.81 0.85 0.82 

n-Nonane 0.70 0.82 0.80 0.79 0.82 0.82 0.82 0.79 0.84 0.73 0.72 0.77 0.62 0.77 0.83 0.82 

n-Decane 0.70 0.81 0.80 0.79 0.82 0.82 0.81 0.78 0.82 0.72 0.69 0.75 0.59 0.76 0.82 0.82 

i-Butane 0.72 0.77 0.71 0.73 0.71 0.74 0.77 0.78 0.79 0.69 0.80 0.77 0.76 0.85 0.74 0.75 

i-Pentane 0.82 0.93 0.89 0.89 0.91 0.91 0.89 0.90 0.94 0.80 0.81 0.85 0.73 0.89 0.90 0.87 

2-Methylpentane 0.84 0.96 0.92 0.92 0.94 0.94 0.92 0.92 0.96 0.83 0.84 0.87 0.74 0.91 0.93 0.91 

3-Methylpentane 0.82 0.94 0.89 0.90 0.92 0.92 0.90 0.89 0.95 0.81 0.81 0.85 0.73 0.90 0.92 0.88 

2-Methylhexane 0.78 0.91 0.93 0.88 0.92 0.91 0.90 0.87 0.93 0.82 0.79 0.84 0.71 0.87 0.92 0.87 

3-Methylhexane 0.78 0.89 0.91 0.89 0.91 0.89 0.87 0.85 0.89 0.83 0.78 0.83 0.68 0.83 0.88 0.88 

2-Methylheptane 0.79 0.90 0.88 0.88 0.90 0.91 0.96 0.86 0.90 0.82 0.81 0.84 0.72 0.87 0.89 0.88 

2,2-Dimethylbutane 1.00 0.85 0.80 0.82 0.81 0.83 0.80 0.84 0.81 0.71 0.75 0.75 0.64 0.79 0.79 0.79 

2,3-Dimethylbutane 
 

1.00 0.91 0.92 0.93 0.93 0.90 0.93 0.92 0.81 0.82 0.85 0.72 0.88 0.90 0.89 
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2,3-Dimethylpentane 
  

1.00 0.92 0.92 0.92 0.89 0.86 0.90 0.81 0.79 0.82 0.68 0.84 0.89 0.87 

2,4-Dimethylpentane 
   

1.00 0.91 0.92 0.89 0.88 0.91 0.80 0.80 0.83 0.70 0.85 0.88 0.87 

2,2,4-Trimethylpentane 
    

1.00 0.95 0.90 0.87 0.91 0.82 0.80 0.86 0.70 0.86 0.91 0.90 

2,3,4-Trimethylpentane 
     

1.00 0.92 0.88 0.91 0.81 0.82 0.86 0.71 0.88 0.91 0.91 

3-Ethylhexane 
      

1.00 0.87 0.91 0.81 0.82 0.85 0.72 0.88 0.89 0.88 

Cyclopentane 
       

1.00 0.89 0.79 0.80 0.82 0.70 0.86 0.87 0.85 

Methylcyclopentane 
        

1.00 0.81 0.81 0.85 0.73 0.89 0.92 0.88 

Methylcyclohexane 
         

1.00 0.72 0.76 0.66 0.80 0.82 0.81 

Ethylene 
          

1.00 0.86 0.84 0.88 0.79 0.80 

Propene 
           

1.00 0.73 0.87 0.84 0.85 

Acetylene 
            

1.00 0.84 0.70 0.70 

Benzene 
             

1.00 0.87 0.87 

Toluene 
              

1.00 0.89 

Ethylbenzene 
               

1.00 
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Ethane 0.55 0.57 0.58 0.55 0.54 0.56 0.56 0.08 0.22 0.04 0.35 0.02 -0.23 -0.32 

Propane 0.70 0.78 0.77 0.71 0.72 0.74 0.72 0.29 0.30 0.27 0.50 0.18 -0.02 -0.06 

n-Butane 0.62 0.67 0.68 0.63 0.63 0.65 0.64 0.11 0.23 0.14 0.39 0.05 -0.17 -0.31 

n-Pentane 0.81 0.83 0.83 0.82 0.84 0.84 0.81 0.42 0.40 0.39 0.58 0.34 0.11 0.10 

n-Hexane 0.83 0.88 0.88 0.84 0.86 0.87 0.84 0.46 0.40 0.43 0.60 0.34 0.12 0.12 

n-Heptane 0.82 0.86 0.86 0.83 0.86 0.86 0.83 0.46 0.42 0.42 0.60 0.37 0.12 0.14 

n-Octane 0.79 0.82 0.82 0.79 0.81 0.81 0.79 0.46 0.42 0.39 0.56 0.35 0.10 0.11 

n-Nonane 0.80 0.82 0.83 0.81 0.82 0.83 0.81 0.49 0.44 0.44 0.59 0.41 0.19 0.20 

n-Decane 0.83 0.82 0.82 0.84 0.85 0.86 0.85 0.51 0.43 0.47 0.61 0.42 0.20 0.20 

i-Butane 0.70 0.76 0.76 0.72 0.72 0.73 0.73 0.23 0.32 0.21 0.48 0.15 -0.09 -0.17 

i-Pentane 0.83 0.88 0.88 0.85 0.87 0.87 0.84 0.46 0.43 0.42 0.61 0.36 0.13 0.13 

2-Methylpentane 0.87 0.91 0.91 0.88 0.90 0.90 0.88 0.48 0.45 0.44 0.62 0.36 0.15 0.14 

3-Methylpentane 0.85 0.89 0.88 0.86 0.88 0.88 0.86 0.46 0.41 0.43 0.61 0.35 0.13 0.13 

2-Methylhexane 0.83 0.88 0.87 0.84 0.87 0.86 0.84 0.47 0.41 0.44 0.61 0.37 0.13 0.15 

3-Methylhexane 0.83 0.88 0.88 0.85 0.85 0.86 0.84 0.58 0.47 0.46 0.62 0.39 0.15 0.20 

2-Methylheptane 0.86 0.89 0.88 0.87 0.88 0.88 0.86 0.48 0.46 0.42 0.61 0.35 0.13 0.11 

2,2-Dimethylbutane 0.78 0.79 0.79 0.79 0.79 0.79 0.79 0.40 0.44 0.35 0.54 0.29 0.11 0.09 

2,3-Dimethylbutane 0.86 0.89 0.89 0.88 0.88 0.89 0.87 0.47 0.44 0.43 0.61 0.35 0.14 0.13 

2,3-Dimethylpentane 0.84 0.87 0.87 0.86 0.86 0.88 0.85 0.52 0.45 0.45 0.64 0.37 0.15 0.17 

2,4-Dimethylpentane 0.85 0.88 0.88 0.87 0.87 0.88 0.86 0.48 0.45 0.43 0.62 0.34 0.14 0.14 
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2,2,4-

Trimethylpentane 

0.86 0.90 0.89 0.87 0.90 0.89 0.87 0.53 0.46 0.47 0.64 0.41 0.20 0.22 

2,3,4-

Trimethylpentane 

0.88 0.92 0.91 0.89 0.91 0.91 0.89 0.50 0.47 0.45 0.62 0.37 0.17 0.17 

3-Ethylhexane 0.86 0.89 0.88 0.87 0.88 0.88 0.87 0.45 0.45 0.40 0.59 0.34 0.11 0.09 

Cyclopentane 0.83 0.85 0.85 0.84 0.84 0.85 0.84 0.44 0.41 0.40 0.58 0.31 0.11 0.08 

Methylcyclopentane 0.85 0.89 0.89 0.86 0.88 0.88 0.86 0.46 0.43 0.43 0.61 0.36 0.14 0.13 

Methylcyclohexane 0.77 0.81 0.81 0.78 0.78 0.79 0.78 0.48 0.38 0.42 0.56 0.32 0.10 0.09 

Ethylene 0.77 0.81 0.81 0.80 0.78 0.80 0.79 0.32 0.40 0.29 0.52 0.21 -0.01 -0.05 

Propene 0.80 0.85 0.85 0.82 0.83 0.83 0.81 0.44 0.44 0.38 0.56 0.37 0.11 0.12 

Acetylene 0.66 0.71 0.71 0.68 0.68 0.71 0.69 0.22 0.28 0.22 0.46 0.12 -0.11 -0.17 

Benzene 0.82 0.87 0.87 0.84 0.85 0.86 0.84 0.38 0.41 0.34 0.58 0.26 0.02 -0.01 

Toluene 0.84 0.89 0.88 0.86 0.88 0.87 0.85 0.49 0.44 0.44 0.62 0.37 0.16 0.17 

Ethylbenzene 0.87 0.98 0.97 0.89 0.89 0.89 0.88 0.54 0.48 0.46 0.64 0.37 0.16 0.16 

n-Propylbenzene 1.00 0.87 0.87 0.94 0.93 0.91 0.94 0.50 0.47 0.45 0.64 0.37 0.16 0.14 

m-Xylene & p-Xylene 
 

1.00 0.98 0.89 0.89 0.90 0.88 0.51 0.46 0.44 0.63 0.34 0.15 0.13 

o-Xylene 
  

1.00 0.89 0.89 0.90 0.88 0.51 0.48 0.44 0.63 0.35 0.14 0.13 

m-Ethyltoluene 
   

1.00 0.95 0.93 0.96 0.50 0.48 0.46 0.64 0.36 0.16 0.13 

p-Ethyltoluene 
    

1.00 0.94 0.94 0.51 0.47 0.49 0.65 0.42 0.19 0.19 

1,2,4-

Trimethylbenzeneb 

     
1.00 0.93 0.49 0.45 0.47 0.67 0.37 0.16 0.12 

1,3,5-

Trimethylbenzene 

      
1.00 0.47 0.46 0.44 0.63 0.35 0.14 0.11 
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Hexanal 
       

1.00 0.48 0.64 0.54 0.52 0.40 0.47 

Heptanal 
        

1.00 0.40 0.41 0.42 0.22 0.26 

Octanal 
         

1.00 0.53 0.49 0.42 0.36 

Decanal 
          

1.00 0.39 0.24 0.20 

Benzaldehyde 
           

1.00 0.39 0.50 

Acetic Acid 
            

1.00 0.57 

2-Butanone 
             

1.00 

 

aThere were 3793 days during 08/14/1998-12/31/2008. The correlations in this table are based on 3224 days for which data on 

all VOCs were available. 

b1,2,4-Trimethylbenzene & sec-Butylbenzene  
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eTable 1.3. Pearson correlations between 46 VOCs and selected major pollutants included in the sensitivity analysis.a 

VOC GROUPS INDIVIDUAL VOCS PM2.5 OC CO NO2 O3 

HYDROCARBONS:      

N-ALKANE Ethane 0.46 0.56 0.40 -0.17 

 Propaneb 0.56 0.67 0.48 -0.02 

 n-Butane 0.48 0.63 0.41 -0.26 

 n-Pentane 0.64 0.68 0.48 0.12 

 n-Hexane 0.65 0.72 0.52 0.14 

 n-Heptane 0.64 0.71 0.54 0.16 

 n-Octane 0.59 0.65 0.47 0.12 

 n-Nonane 0.61 0.63 0.47 0.20 

 n-Decane 0.60 0.61 0.44 0.21 

ISO/ANTEISO-ALKANE i-Butane 0.55 0.68 0.46 -0.12 

 i-Pentaneb 0.67 0.72 0.52 0.16 

 2-Methylpentane 0.67 0.75 0.52 0.16 
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VOC GROUPS INDIVIDUAL VOCS PM2.5 OC CO NO2 O3 

 3-Methylpentane 0.65 0.73 0.51 0.15 

 2-Methylhexane 0.65 0.72 0.54 0.18 

 3-Methylhexane 0.64 0.70 0.50 0.22 

 2-Methylheptane 0.64 0.71 0.50 0.13 

OTHER ALKANE 2,2-Dimethylbutane 0.57 0.65 0.45 0.08 

 2,3-Dimethylbutane 0.66 0.73 0.50 0.15 

 2,3-Dimethylpentane 0.65 0.70 0.51 0.20 

 2,4-Dimethylpentane 0.64 0.71 0.49 0.17 

 2,2,4-Trimethylpentaneb 0.67 0.72 0.51 0.23 

 2,3,4-Trimethylpentane 0.67 0.73 0.51 0.18 

 3-Ethylhexane 0.64 0.72 0.51 0.11 

CYCLOALKANE  Cyclopentane 0.63 0.70 0.47 0.13 

 Methylcyclopentaneb 0.65 0.72 0.53 0.15 

 Methylcyclohexane 0.56 0.65 0.43 0.13 
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VOC GROUPS INDIVIDUAL VOCS PM2.5 OC CO NO2 O3 

ALKENE  Ethyleneb 0.59 0.72 0.47 -0.07 

 Propene 0.61 0.69 0.46 0.07 

ALKYNE  Acetyleneb 0.53 0.71 0.50 -0.10 

AROMATIC Benzene 0.65 0.76 0.51 0.01 

 Tolueneb 0.64 0.72 0.51 0.18 

 Ethylbenzene 0.65 0.71 0.48 0.14 

 n-Propylbenzene 0.63 0.67 0.47 0.15 

 m-Xylene & p-Xylene 0.65 0.72 0.49 0.12 

 o-Xylene 0.64 0.71 0.48 0.12 

 m-Ethyltoluene 0.62 0.68 0.46 0.13 

 p-Ethyltoluene 0.63 0.68 0.47 0.15 

 1,2,4-Trimethylbenzenec 0.63 0.69 0.47 0.13 

 1,3,5-Trimethylbenzene 0.62 0.68 0.47 0.11 

OXYGENATES:      
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VOC GROUPS INDIVIDUAL VOCS PM2.5 OC CO NO2 O3 

ALDEHYDE  Hexanal 0.40 0.29 0.18 0.40 

 Heptanal 0.34 0.34 0.27 0.17 

 Octanal 0.30 0.26 0.11 0.23 

 Decanal 0.50 0.44 0.33 0.21 

 Benzaldehydeb 0.27 0.20 0.18 0.34 

ACID  Acetic Acidb 0.10 -0.02 -0.03 0.36 

KETONE  2-Butanoneb 0.17 -0.02 0.05 0.57 

aThere were 3793 days during 08/14/1998-12/31/2008. The correlations in this table are based on 2997 days for which both 

data on major pollutants and VOCs were available. 

bSpecies in bold black text are the indicator pollutants for each VOC group.  

c1,2,4-Trimethylbenzene & sec-Butylbenzene 
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eTable 1.4. Estimated associations between total VOCs and asthma ED visits by age category using single-pollutant 

models.a 

TOTAL VOCs 5-18 YEAR OLDS 19+ YEAR OLDS ALL AGES 

Total 

hydrocarbonsb 

1.006 (0.994, 1.018) 1.009 (0.999, 1.019) 

1.008 (1.001, 1.015) 

Total oxygenatesb 1.039 (1.009, 1.071) 1.020 (0.997, 1.044) 1.024 (1.007, 1.041) 

aThis analysis included 3224 days on which all VOCs were available during 8/14/1998-12/31/2008. We used 3-day moving 

average (of lags 0, 1, and 2) pollution levels in models predicting asthma ED visits. All methods included the same covariate 

control for temporal trends and meteorology: time splines with monthly knots, cubic function of same-day maximum 

temperature, cubic function of lag 1-2-day moving average minimum temperature, cubic function of mean dew point 

temperature (3-day moving average), day of week, indicators for holidays, seasons, season-maximum temperature interaction, 

season-day of week interaction, and indicators for hospital participation periods. The estimated associations are expressed as 

rate ratios (95% confidence interval) per interquartile range (IQR) increase in pollutant concentrations (listed in Table 1).  

bTotal hydrocarbons denotes total identified non-methane hydrocarbons. Total oxygenates denotes total identified oxygenated 

hydrocarbons.  
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eTable 1.5. Estimated associations between VOC groups and asthma ED visits by age category using three analytic 

approaches.a 

VOC GROUPS INDICATOR 

POLLUTANT 

APPROACHb 

JOINT EFFECT 

ANALYSISc 

RANDOM EFFECT 

META-ANALYSISd 

    

 ASTHMA ED VISITS AMONG 5-18 YEAR OLDS 

HYDROCARBONS  

N-ALKANE 1.009 (1.001, 1.018) 1.000 (0.983, 1.017) 0.998 (0.984, 1.009) 

ISO/ANTEISO-

ALKANE 

1.002 (0.990, 1.014) 1.010 (0.993, 1.027) 1.016 (1.000, 1.034) 

OTHER ALKANE 0.998 (0.987, 1.010) 1.004 (0.988, 1.020) 0.991 (0.975, 1.004) 

CYCLOALKANE 1.007 (0.995, 1.020) 1.004 (0.991, 1.017) 0.993 (0.969, 1.022) 

ALKENE 0.998 (0.987, 1.009) 0.998 (0.987, 1.009) 0.989 (0.967, 1.021) 

ALKYNE 1.001 (1.089, 1.012) 1.001 (0.989, 1.012) 0.997 (0.963, 1.035) 

AROMATIC 1.002 (0.988, 1.015) 1.003 (0.981, 1.026) 1.002 (0.991, 1.013) 
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VOC GROUPS INDICATOR 

POLLUTANT 

APPROACHb 

JOINT EFFECT 

ANALYSISc 

RANDOM EFFECT 

META-ANALYSISd 

OXYGENATES    

ALDEHYDE 0.999 (0.987, 1.011) 1.021 (0.993, 1.051) 1.001 (0.986, 1.016) 

ACID 1.036 (1.004, 1.070) 1.036 (1.004, 1.070) 1.029 (0.986, 1.075) 

KETONE 1.043 (1.003, 1.085) 1.043 (1.003, 1.085) 1.033 (0.981, 1.087) 

    

 

 

ASTHMA ED VISITS AMONG 19+ YEAR OLDS 

HYDROCARBONS  

N-ALKANE 1.003 (0.996, 1.009) 1.011 (0.997, 1.024) 0.998 (0.992, 1.003) 

ISO/ANTEISO-

ALKANE 

1.008 (0.999, 1.018) 1.010 (0.997, 1.024) 0.997 (0.988, 1.006) 

OTHER ALKANE 1.010 (1.001, 1.020) 1.012 (1.000, 1.025) 1.001 (0.995, 1.008) 
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VOC GROUPS INDICATOR 

POLLUTANT 

APPROACHb 

JOINT EFFECT 

ANALYSISc 

RANDOM EFFECT 

META-ANALYSISd 

CYCLOALKANE 1.010 (1.000, 1.020) 1.012 (1.001, 1.022) 1.005 (0.991, 1.019) 

ALKENE 1.008 (0.999, 1.017) 1.008 (0.999, 1.017) 0.997 (0.984, 1.009) 

ALKYNE 1.008 (0.999, 1.017) 1.008 (0.999, 1.017) 1.003 (0.986, 1.021) 

AROMATIC 1.013 (1.003, 1.024) 1.018 (1.000, 1.036) 1.003 (0.999, 1.008) 

OXYGENATES    

ALDEHYDE 1.002 (0.993, 1.010) 1.027 (1.004, 1.050) 1.002 (0.996, 1.009) 

ACID 0.989 (0.966, 1.012) 0.989 (0.966, 1.012) 0.979 (0.954, 1.004) 

KETONE 1.029 (1.000, 1.060) 1.029 (1.000, 1.060) 1.031 (1.001, 1.065) 

aThis analysis included 3224 days on which all VOCs were available during 8/14/1998-12/31/2008. VOC concentrations 

below the limit of detection (LOD) of 0.1 ppb-C were replaced with 0.05 ppb-C in all analyses. We used 3-day moving 

average (of lags 0, 1, and 2) pollution levels in models predicting asthma ED visits. All methods included the same covariate 

control for temporal trends and meteorology: time splines with monthly knots, cubic function of same-day maximum 

temperature, cubic function of lag 1-2-day moving average minimum temperature, cubic function of mean dew point 
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temperature (3-day moving average), day of week, indicators for holidays, seasons, season-maximum temperature interaction, 

season-day of week interaction, and indicators for hospital participation periods. The estimated associations are expressed as 

rate ratios (95% confidence interval) per interquartile range (IQR) increase in pollutant concentrations (listed in Table 1).  

bThe “indicator pollutant approach” estimated the effect of each indicator pollutant increasing by its IQR in single-pollutant 

models. 

cThe “joint effect analysis” estimated the effect of all pollutants in a group jointly increasing by their IQRs in multi-pollutant 

models that included all pollutants of the group. The joint effect estimates for VOC groups comprised of only one pollutant 

were the same as the estimates obtained from the indicator pollutant approach.  

dThe “random effect meta-analysis” estimated the mean effect of any of the pollutants in a group increasing by its IQR in a 

two-stage regression, where the 46 individual pollutant effects were estimated simultaneously in the Poisson model in the first 

stage, and the mean of each group was estimated under a Bayesian framework using Markov chain Monte Carlo in the second 

stage. The estimated rate ratio (95% CI) for the random effect meta-analysis is median (2.5th, 97.5th percentiles) from the 

posterior distribution. 
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Chapter 2 

 

Estimating acute cardiovascular effects of ambient PM2.5 metals 

 

Dongni Ye, Mitchel Klein, James A. Mulholland, Armistead G Russell, Rodney Weber, 

Eric S. Edgerton, Howard H. Chang, Jeremy A. Sarnat, Paige E. Tolbert, Stefanie Ebelt 

Sarnat 
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ABSTRACT  

Background 

Few epidemiologic studies have estimated health effects of water-soluble fractions of 

PM2.5 metals, the more biologically accessible fractions of metals, in their attempt to 

identify health relevant components of ambient PM2.5.  

Objective  

In this study, we estimate acute cardiovascular effects of PM2.5 components in an urban 

population, including a suite of water-soluble metals that are not routinely measured at 

the ambient level.  

Methods  

Ambient concentrations of criteria gases, PM2.5, and PM2.5 components were measured at 

a central monitor in Atlanta during 1998-2013, with some PM2.5 components only 

measured during 2008-2013. In a time-series frame work using Poisson regression, we 

estimated associations between these pollutants and daily counts of emergency 

department visits for cardiovascular diseases in the 5-county Atlanta area.  

Results  

Among the PM2.5 components we examined during 1998-2013, water-soluble Fe had the 

strongest estimated effect on cardiovascular outcomes. The associations for PM2.5 and 

other PM2.5 components were consistent with the null when controlling for water-soluble 

Fe. Among PM2.5 components that were only measured during 2008-2013, water-soluble 

V was associated with cardiovascular ED visits.  

Discussion  
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Transition metals, such as water-soluble Fe and water-soluble V, could be biologically 

relevant components of PM2.5 due to their ability to generate reactive oxygen species in 

living systems. In addition, as water-soluble Fe is mainly from roadway emissions, the 

observed associations with water-soluble Fe may also point to certain aspects of traffic 

pollution as a mixture harmful for cardiovascular health.  

Conclusions  

Our study suggests cardiovascular effects of certain water-soluble metals that have not 

been well-studied previously. Our findings further elucidate the link between traffic 

emissions and cardiovascular health, and contribute to the ongoing effort to identify 

causal mixtures in air pollution. 
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INTRODUCTION  

Epidemiologic studies have indicated acute cardiovascular effects of fine particulate 

matter (PM2.5; particulate matter with aerodynamic diameter ≤ 2.5 µm).[1-4] As PM2.5 is a 

complex mixture of various chemical species, there is an ongoing effort to identify its 

health-relevant components. Nation-wide multi-site studies in the U.S. have examined 

whether the associations between PM2.5 and cardiovascular morbidity and mortality are 

modified by PM2.5 chemical composition.[5-7] Other time-series studies have estimated 

associations between cardiovascular morbidity and mortality and individual PM2.5 

components directly.[8-17] Although the specific components that are associated with 

health outcomes vary across studies, there is growing evidence on the acute 

cardiovascular effects of metals/metalloids and carbonaceous components of PM2.5.
[18-20]  

Metals/metalloids exist in PM2.5 in different forms, with some forms being more water-

soluble and thus more biologically accessible than others.[21-24] However, most ambient 

air pollution monitoring networks only measure these components in total elemental 

concentrations, and not in water-soluble concentrations. As a result, few epidemiologic 

studies have estimated health associations with water-soluble fractions of PM2.5 metals in 

their attempts to identify health-relevant components of PM2.5.
[25, 26]  

To advance our understanding of acute cardiovascular effects of PM2.5 and its 

components, we conducted a time-series study in Atlanta, Georgia, to estimate the 

associations between daily counts of cardiorespiratory emergency department (ED) visits 

and daily concentrations of PM2.5 components, including a suite of PM2.5 water-soluble 

metals/metalloids that are not routinely measured at the ambient level. This analysis 
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utilized up to 15 years of data on ambient air pollution and ED visits obtained as part of 

our ongoing Study of Particles and Health in Atlanta (SOPHIA).[27-29]  

METHODS 

Air pollution data 

Ambient concentrations of criteria gases, PM2.5, and PM2.5 components were measured at 

the Atlanta Jefferson Street ambient monitoring site during 8/14/1998-12/15/2013 as part 

of the South Eastern Aerosol Research and Characterization (SEARCH) network and the 

Aerosol Research and Inhalation Epidemiology Study (ARIES).[30] Criteria gases were 

measured daily, including one-hour maximum carbon monoxide (CO), one-hour 

maximum nitrogen dioxide (NO2), one-hour maximum sulfur dioxide (SO2), and eight-

hour maximum ozone (O3). PM2.5 and its major components, including organic carbon 

(OC), elemental carbon (EC), ammonium (NH4), nitrate (NO3), and sulfate (SO4), were 

measured daily using filter-based 24-hour integrated Federal Reference Methods. Total 

elemental concentrations of PM2.5 metals and metalloids (henceforth all referred to as 

metals), including titanium (Ti), manganese (Mn), iron (Fe), cupper (Cu), zinc (Zn), 

aluminum (Al), lead (Pb), silicon (Si), calcium (Ca), sodium (Na), and potassium (K), 

were analyzed from the daily PM2.5 filters using X-ray fluorescence. X-ray fluorescence 

analyses were conducted by Desert Research Institute on filters collected through 

3/22/2008, and by Atmospheric Research & Analysis Inc. on filters collected after 

3/23/2008; different limits of detection (LOD) were reported before and after the 

laboratory change for each species. Water-soluble concentrations of PM2.5 metals, 

including water-soluble vanadium (WS V), water-soluble chromium (WS Cr), water-

soluble manganese (WS Mn), water-soluble iron (WS Fe), water-soluble nickel (WS Ni), 



81 
 

 

and water-soluble cupper (WS Cu), were analyzed using inductive-coupled plasma 

optical emission spectrometry (ICP-OES) during 8/14/1998 – 4/6/2008. Starting from 

4/7/2008, these water-soluble fractions were analyzed using inductive-coupled plasma 

mass spectrometry (ICP-MS); again, different LODs were reported before and after the 

analytical change for these species. Additional water-soluble species, including water-

soluble zinc (WS Zn), water-soluble cadmium (WS Cd), water-soluble lead (WS Pb), 

water-soluble selenium (WS Se), water-soluble arsenic (WS As), water-soluble barium 

(WS Ba), and water-soluble lanthanum (WS La), were reported starting in 4/7/2008 from 

ICP-MS analyses. All water-soluble measures were available daily before 2009 and one-

in-three day after 2009.  

The LODs of all PM2.5 metals are listed in Supplementary eTable 2.1. We calculated the 

percent of samples below LOD over the full time period, and over the time periods before 

and after measurement/laboratory changes separately. For this analysis, we included 

PM2.5 metals whose concentrations were above LOD on at least 85% of days.  

Ultimately, six PM2.5 metals (Si, K, Ca, Fe, Zn, WS Fe) were included in the analysis 

over the full time period (8/14/1998 – 12/15/2013), along with criteria gases (CO, NO2, 

SO2, and O3), PM2.5 mass, and PM2.5 major components (OC, EC, NO3, and SO4). We did 

not include NH4 in epidemiologic analyses since this component mainly exists as 

NH4NO3 or NH4SO4. Fifteen additional PM2.5 metals were included in the analysis over 

the later time period (4/7/2008 – 12/15/2013): Al, Na, Cu, Ti, WS Cr, WS Cu, WS Mn, 

WS Ni, WS V, WS As, WS Ba, WS Se, WS Zn, WS Cd, and WS Pb. For species 

included in the analysis, any observations below LOD were assigned a value of LOD/2.  

Emergency department visits  
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We obtained daily counts of cardiovascular ED visits for patients living within the 5-

county Atlanta area (Clayton, Cobb, DeKalb, Fulton, and Gwinnett) during 8/14/1998 – 

12/15/2013. Daily ED visit counts were aggregated from individual-level billing records 

from metropolitan Atlanta hospitals as part of SOPHIA.[28, 29, 31] We identified 

cardiovascular ED visits as those billing records with primary International Classification 

of Diseases, 9th Revision (ICD-9) diagnosis codes for ischemic heart disease (410-414), 

cardiac dysrhythmias (427), congestive heart failure (428), or peripheral vascular and 

cerebrovascular disease (433-437, 440, 443-445, 451-453).  

Analytic approach 

In a time-series framework, we estimated the associations between daily levels of air 

pollutants and daily counts of cardiovascular ED visits using Poisson regression 

accounting for over-dispersion. Based on our previous research of ambient air pollution 

and cardiovascular ED visits in Atlanta, we used the same-day (lag 0) pollution level.
[27-

29, 32]  

All models included the same covariate control for temporal trends and meteorology: 

time splines with monthly knots, cubic function of same-day maximum temperature, 

cubic function of lag 1-2-day moving average minimum temperature, cubic function of 

lag 0-1-2-day moving average mean dew point temperature, day of week, indicators for 

holidays, seasons, season-maximum temperature interaction, season-day of week 

interaction, indicators for hospital participation periods, and indicator for changes in air 

pollution measurement. The estimated associations were reported as rate ratios (RR) per 

interquartile range (IQR) increase in pollutant concentrations. 

Primary analysis 
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We included criteria gases (CO, NO2, SO2, and O3), PM2.5 mass, PM2.5 major components 

(OC, EC, NO3, and SO4), and PM2.5 metals (Si, K, Ca, Fe, Zn, WS Fe) in the analysis 

over the full time period (8/14/1998 – 12/15/2013). Fifteen additional PM2.5 metals (Al, 

Na, Cu, Ti, WS Cr, WS Cu, WS Mn, WS Ni, WS V, WS As, WS Ba, WS Se, WS Zn, 

WS Cd, and WS Pb) were included in the analysis over the later time period (4/7/2008 – 

12/15/2013).  

For pollutants included in the analysis over the full time period (1998-2013), we first 

estimated their associations with cardiovascular ED visits using single-pollutant models. 

Based on the results, we applied multi-pollutant models to assess co-pollutant 

confounding. As previous studies have suggested stronger cardiovascular effects of 

particulate matter in the cold than warm days, we then performed analyses in the warm 

and cold seasons separately to see if the patterns of associations across pollutants were 

similar. We defined the warm season as May to October, and the cold season as 

November to April.  

For pollutants included in the analysis over the later time period (2008-2013), we 

estimated their associations with cardiovascular ED visits using single-pollutant models. 

As this time period was shorter and water-soluble species were only measured every one-

in-three days after 2009, we did not perform multi-pollutant or season-specific analysis 

due to concerns of sparse data.  

For comparability, we restricted the analyses in each time period to days on which all 

pollutants were available. Thus, over the full time period (1998-2013), year-round 

analyses included 3303 days, warm season analyses included 1737 days, and cold season 
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analyses included 1566 days. Over the later time period (2008-2013), year-round 

analyses included 631 days.  

Sensitivity analyses  

We evaluated model misspecification by estimating the associations between tomorrow’s 

pollutant levels and today’s ED visits, controlling for today’s (lag 0 day) pollutant and 

covariate levels. Tomorrow’s pollutant levels should not be associated with today’s ED 

visits in the absence of confounding, measurement error, or other model misspecification, 

as cause must precede effect.[33] To accommodate pollutants with 1-in-3 day 

measurements, we defined “tomorrow” as the third day since today (negative lag 3 day).  

We restricted the primary analysis to days on which all pollutants were available so that 

the health associations of different pollutants were estimated on the same set of days 

(n=3303 for the year-round analysis). However, this led to reduced statistical power. As a 

sensitivity analysis, we performed the same set of analyses without this restriction by 

using all available days to see if the estimated associations were similar to those in the 

primary analysis.   

RESULTS  

Criteria gases (CO, NO2, SO2, O3), PM2.5 mass, PM2.5 major components (OC, EC, NO3, 

SO4), and PM2.5 metals (Si, K, Ca, Fe, Zn, WS Fe) were included in the analysis over the 

full time period (8/14/1998 – 12/15/2013). Fifteen additional PM2.5 metals were included 

in the analysis over the later time period (4/7/2008 – 12/15/2013). We calculated 

descriptive statistics of these pollutants over all seasons (Table 2.1), in the warm season 

(Supplement, eTable 2.2a), and in the cold season (Supplement, eTable 2.2b). OC, EC, 

NH4, SO4, and NO3 together contributed about 80% of the PM2.5 mass, while the 
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concentrations of metals were much lower. Among metals, Si and Fe were most 

abundant. Water-soluble Fe had the highest average concentration among water-soluble 

species (as commonly seen in other studies [21, 23, 24, 34, 35]). Secondary pollutants such as 

O3 and SO4 had higher concentrations in the warm than in the cold season, while primary 

pollutant such as CO had higher concentrations in the cold than in the warm season. The 

concentrations of metals were generally similar in the warm and cold season, while 

water-soluble Fe was higher in the warm than in the cold season.  

Pearson correlations of these pollutants were also calculated over all seasons 

(Supplement, eTable 2.3), in the warm season (Supplement, eTable 2.4a), and in the cold 

season (Supplement, eTable 2.4b). Over all seasons, PM2.5 was most correlated with SO4 

(r=0.80), OC (r=0.74), EC (r=0.67), and WS Fe (r=0.65). Water-soluble Fe was most 

correlated with SO4 (r=0.61) and Fe (r=0.69). OC and EC were highly correlated with 

one another (r=0.79), and their correlations with other PM2.5 components were weak-to-

moderate (r from 0.17 to 0.58). PM2.5 was more strongly correlated with SO4 and O3 in 

the warm season, and with EC, OC, and metals in the cold season.  

During the full time period (8/14/1998 – 12/15/2013), there were 426,252 cardiovascular 

ED visits (an average of 76 visits per day).  

Primary analysis  

We estimated the associations between cardiovascular ED visits and pollutants available 

during the full time period (8/14/1998 – 12/15/2013) using single-pollutant models. The 

estimated RRs were positive for a number of pollutants, including criteria gases, PM2.5 

mass, and PM2.5 components (OC, EC, NO3, Si, Ca, Fe, Zn, water-soluble Fe) (Figure 



86 
 

 

2.1). Among them, the estimated RR per IQR increase in water-soluble Fe was the 

highest [RR (95% CI) of 1.012 (1.005, 1.019)].  

To assess if the association for water-soluble Fe was confounded by other pollutants, we 

estimated the associations between cardiovascular ED visits and water-soluble Fe 

controlling for each of the other measured pollutants in two-pollutant models. The 

associations for water-soluble Fe changed little when controlling for any of the 

pollutants. In contrast, the associations for PM2.5 mass and PM2.5 components (OC, EC, 

NO3, Si, Ca, Fe, Zn) were weaker and consistent with the null when controlling for 

water-soluble Fe (Figure 2.2).  

We performed analyses in the warm (May-October) and cold (November-April) seasons 

separately to see if the patterns of associations were similar. In the warm season, the 

estimated RR per IQR increase in water-soluble Fe was the highest. The associations for 

PM2.5 and a number of PM2.5 components (OC, EC, SO4, K) were consistent with the null 

(Figure 2.3). While the estimated RRs for CO, Si, Ca, Fe, and Zn were positive in single-

pollutant models, they were lower in two-pollutant models with water-soluble Fe (Figures 

2.3 and 2.4).   

In the cold season, the estimated associations across pollutants were generally higher than 

those in the warm season (Figures 2.3 and 2.5). Among PM2.5 components, the estimated 

RR for water-soluble Fe was still the highest (Figure 2.5).The associations for CO, PM2.5, 

OC, EC, NO3, SO4, Si, K, and Ca were weaker and consistent with the null when 

controlling for water-soluble Fe. The association for water-soluble Fe was weaker in two-

pollutant models with Fe (Figures 2.5 and 2.6).  
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Measurements of an additional fifteen PM2.5 metals were only available during the later 

time period (4/7/2008 – 12/15/2013). We estimated their associations with cardiovascular 

ED visits using single-pollutant models. The estimated RRs were the highest for water-

soluble V [RR (95% CI) of 1.012 (1.000, 1.025)] and Na [RR (95% CI) of 1.008 (0.998, 

1.017)] (Figure 2.7).  

Sensitivity analyses  

For single-pollutant models in the year-round analysis, we evaluated model 

misspecification by estimating the associations between tomorrow’s pollutant levels and 

today’s ED visits, controlling for today’s pollutant and covariate levels. We found 

associations between cardiovascular ED visits and tomorrow’s levels of WS Mn, 

suggesting possible model misspecification when estimating this association 

(Supplement, eFigures 2.1 and 2.2). All other associations with tomorrow’s pollutant 

levels were consistent with the null, as expected under a well-specified model.  

We restricted the primary analysis to days on which all pollutants were available. 

However, this led to reduced statistical power. We performed the same set of analyses 

without this restriction as a sensitivity analysis. We observed patterns of associations 

similar to those in the primary analysis, except that the association for SO4 in the cold 

season was stronger in this sensitivity analysis than in the primary analysis (Supplement, 

eFigures 2.3-2.9).   

DISCUSSION  

In this study, we estimated acute cardiovascular effects of PM2.5 and its components, 

including a suite of water-soluble metals that are not routinely measured at the ambient 
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level. We performed multi-pollutant analysis to account for co-pollutant confounding, 

and compared the patterns of associations across pollutants in the warm and cold season. 

Among the PM2.5 components we examined during the full time period (1998-2013), 

water-soluble Fe had the strongest estimated effect in both the warm and cold seasons. 

The associations for PM2.5 and other PM2.5 components were generally weak and 

consistent with the null when controlling for water-soluble Fe. Among PM2.5 components 

that were only measured during the later time period (2008-2013), water-soluble V was 

associated with cardiovascular ED visits.  

Oxidative stress has been suggested as a central mechanism by which particulate matter 

affect health.[36] Transition metals can generate reactive oxygen species (ROS) in living 

systems, leading to oxidative stress.[36, 37] Redox-active transition metals, such as Fe, Cu, 

Mn, and V, can act as catalysts of Fenton or Fenton-like reactions, facilitating the 

conversion of superoxide anion and hydrogen peroxide to hydroxyl radical.[37, 38] As 

particle-bound metals need to dissolve and become metal ions to participate in these 

reactions, the water-soluble fractions of metals are thought to be more biologically 

relevant than total metals.[24, 39] Recent studies have used cellular and cell-free assays to 

measure oxidative potential of ambient particulate matter, and suggested that water-

soluble metals, especially water-soluble Fe, water-soluble Cu, and water-soluble Mn, 

contribute to the ROS generation of particulate matter.[40-44] In our analysis, however, we 

observed positive associations with water-soluble Fe, but not with water-soluble Cu or 

water-soluble Mn. One reason could be that these species are less abundant than water-

soluble Fe in the ambient air and thus could be more subject to measurement error, 

resulting in more underestimated health associations.  
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The observed associations with metals could also indicate cardiovascular effects of 

certain pollution mixtures. Metals are released to the atmosphere from various sources, 

including natural process acting on crustal minerals, re-suspension of road dust and 

brake/tire wear abrasion during traffic, combustion of fossil fuels and wood, industrial 

process, and waste incineration.[21, 23, 24, 34, 45-48] Crustal species such as silicon, iron, 

calcium, sodium, aluminum, and potassium are largely found in re-suspension of road 

dust; meanwhile, copper, barium, manganese, iron, zinc, and chromium are commonly 

related to brake/tire wear debris; Nickel and vanadium are often attributed to residual oil 

combustion.[21, 23, 24, 34, 45-48] The water-soluble fractions of these metals are partly from 

direct emission and partly from secondary processing of the primary insoluble metals by 

acid dissolution. A recent study in Atlanta investigated source contributions of a suite of 

water-soluble metals.[23] Roadway emissions, such as brake/tire wear debris and re-

suspension of road dust, as well as secondary processing by acid were suggested as major 

contributors of a number of water-soluble metals, including water-soluble Fe, water-

soluble Cu, water-soluble Mn, and water-soluble Zn. For water-soluble Fe, over 30% was 

attributed to mechanical abrasion of automobile brakes/tires and another 50% were 

thought to be formed secondarily through acid dissolution of insoluble Fe, which is 

primarily from resuspension of road dust.[23] Thus, the association we observed with 

water-soluble Fe could point to certain aspects of roadway emissions as a mixture 

harmful for cardiovascular health. Other co-emitted roadway pollutants may also have an 

impact. In our analysis, however, associations with other brake/tire-related species, such 

as water-soluble Cu, water-soluble Mn, water-soluble Zn, and water-soluble Ba, were 

consistent with the null. Again, these species are less abundant than water-soluble Fe in 
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the ambient air and thus could be more subject to measurement error, resulting in more 

underestimated health associations. Other road dust-related species, such as Si and Ca, 

had positive associations with cardiovascular ED visits in single-pollutant models; 

however, their associations were consistent with the null when controlling for water-

soluble Fe. Compared to these species, water-soluble Fe could be part of the causal 

mixture or a better surrogate of the mixture.  

Fe (i.e., total Fe) and water-soluble Fe were both included in our analysis over the full 

time period, and their associations with cardiovascular ED visits were similar in single-

pollutant models. In the warm season, the association with total Fe was consistent with 

the null when controlling for water-soluble Fe, suggesting that the water-soluble fraction 

was driving the association of Fe. This is expected if iron is a causal agent and its water-

soluble fraction is more biologically accessible. However, we did not observe this pattern 

of associations in the cold season.  

In fact, in the cold season, other PM2.5 components, such as EC and OC had stronger 

associations with cardiovascular ED visits than in the warm season. While the 

associations for EC and OC were weaker when controlling for water-soluble Fe, and the 

association of water-soluble Fe was also slightly weaker in two-pollutant models with 

these pollutants. EC and OC are partly from tailpipe emissions; together with road dust 

and brake/tire-related species such as total Fe and water-soluble Fe, these pollutants may 

all contribute to cardiovascular effects of traffic pollution.  

Epidemiologic evidence on cardiovascular effects of water-soluble metals is sparse. Heal 

et al., in a time-series study in Edinburgh, Scotland, estimated the associations between 

cardiovascular hospital admissions and a number of PM2.5 total and water-soluble metals, 
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including Cu, Fe, Ni, V, and Zn. However, direct measurements of these species were 

only available for one year, during which they did not find significant associations with 

total or water-soluble metals, nor with PM2.5 mass.[25] Huang et al. exposed a panel of 38 

healthy adults to concentrated ambient particles (CAP) from Chapel Hill, NC, and 

reported that water-soluble metals in CAP (the V/Cu/Zn factor by principal component 

analysis) was associated with increased blood fibrinogen levels.[26]  

A number of studies have provided general evidence for adverse cardiovascular effects of 

PM2.5 metals, although they only considered total elemental concentrations, not water-

soluble fractions of metals.[9, 10, 12, 13, 15, 26, 39, 49-53] Suh et al. combined Cu, Mn, Zn, Ti, and 

Fe in a transition metal category and reported positive associations with cardiovascular 

hospital admissions in a time-series study in Atlanta.[10] Ito et al., in a time-series study in 

New York City, reported positive associations between cardiovascular hospital 

admissions and a number of PM2.5 components (OC, EC, SO4, Ni, V, Zn, Se, Br). 

Lippmann et al., in a time-series study of 64 U.S. counties, found positive associations 

between cardiovascular hospital admissions and OC, EC, SO4, Fe, V, and Zn.[12] Zhang et 

al. reported that short-term exposures to transition metals (Cr, Fe, Cu, Mn, and Ni) in the 

ambient air were associated with decreased microvascular function in a panel of adults in 

Los Angeles.[50] Morishita et al. found that a number of PM2.5 metals (As, Ca, Ce, Fe, Mg, 

Mn, S, Se, Ti) were associated with heart rate in a panel of adults in Dearborn, 

Michigan.[53]  

Some studies reported stronger associations of carbonaceous components than metals.[13, 

14] Sarnat et al., in a time-series study in St. Louis, found positive associations between 

cardiovascular ED visits and carbonaceous constituents (OC, EC, and certain hopanes), 
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but not with metals (Si, K, Ca, Fe, Cu, Zn, and Pb).[14] Bell et al., in a time-series study in 

four New England counties, observed positive associations between cardiovascular 

hospital admissions and black carbon, Ca, Zn, and V, where the association with black 

carbon was stronger than the metals and was robust to co-pollutant adjustment of these 

metals.[13] The inconsistencies between our study and these previous studies may be due 

to a number of factors, including the specific components being examined, co-pollutant 

confounding, pollutant interactions, non-linear dose-response, differences in population 

susceptibility, and measurement error. In particular, these studies only considered total 

elemental but not water-soluble metals; besides, as OC is itself a mixture of organic 

compounds, its health effects also depend on its composition, which likely varies by 

study location. In addition, previous studies have suggested synergism between organic 

compounds and metals in generating reactive oxygen species.[36, 54] Health associations of 

organic pollutants could depend on the levels of metals, and vice versa, which further 

complicates the comparison of health effects across PM components. 

There are several limitations to our study. Our results are subject to spatial misalignment 

and instrument measurement error, and the degree of these sources of error likely differs 

by pollutant. Compared to pollutants dominated by secondary origins (e.g., O3, PM2.5, 

NO3, SO4, water-soluble metals), primary pollutants (e.g., EC, Fe, Cu, Zn) are likely 

more subject to spatial misalignment due to greater spatiotemporal heterogeneity, and 

thus their estimated associations may be more biased towards the null. Additionally, 

pollutants with a lower ambient concentration may be more subject to instrument 

measurement error leading to underestimation of effects.  
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Overall, our study suggests cardiovascular effects of certain water-soluble metals that 

have not been well studied previously. Our findings further elucidate the link between 

traffic emissions and cardiovascular health, and contribute to the ongoing effort to 

identify causal mixtures in air pollution. 
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Table 2.1. Summary statistics of ambient air pollutants measured at the Atlanta 

Jefferson Street monitoring sitea.  

POLLUTANTS UNIT N MEAN (SD) 

50th (25th, 75th) 

PERCENTILES 

8/14/1998 – 12/15/2013 

Criteria gases 

CO ppm 5458 0.86 (0.83) 0.56 (0.36, 1.02) 

NO2 ppb 5321 37.2 (15.2) 35.9 (26.4, 46.3) 

SO2 ppb 5465 13.4 (14.7) 8.1 (3.2, 18.7) 

O3 ppb 5490 42.1 (19.9) 39.6 (27.2, 54.9) 

PM2.5 

PM2.5 mass μg/m3 5588 14.46 (7.69) 12.81 (8.93, 18.21) 

OC μg/m3 5546 3.67 (2.08) 3.22 (2.31, 4.47) 

EC μg/m3 5515 1.26 (0.98) 0.98 (0.63, 1.58) 

NH4 μg/m3 5563 1.39 (1.00) 1.10 (0.72, 1.73) 

NO3 μg/m3 5569 0.81 (0.77) 0.55 (0.31, 1.06) 

SO4 μg/m3 5572 3.88 (2.96) 2.94 (1.88, 4.87) 

Si μg/m3 4932 0.0945 (0.1124) 0.0682 (0.0398, 0.1108) 

K μg/m3 4932 0.0638 (0.0838) 0.0508 (0.0353, 0.0755) 

Ca μg/m3 4932 0.0364 (0.0297) 0.0293 (0.0183, 0.0447) 

Fe μg/m3 4921 0.0765 (0.0594) 0.0603 (0.0396, 0.0951) 

Zn μg/m3 4880 0.0114 (0.0112) 0.0088 (0.0057, 0.0133) 

water-soluble Fe ng/m3 4085 24.22 (20.63) 18.67 (10.81, 31.28) 
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POLLUTANTS UNIT N MEAN (SD) 

50th (25th, 75th) 

PERCENTILES 

4/7/2008 – 12/15/2013 

Na μg/m3 1930 0.0389 (0.0393) 0.0260 (0.0147, 0.0471) 

Al μg/m3 1931 0.0460 (0.0595) 0.0318 (0.0174, 0.0561) 

Ti μg/m3 1931 0.0045 (0.0039) 0.0036 (0.0023, 0.0054) 

Cu μg/m3 1916 0.0053 (0.0104) 0.0038 (0.0024, 0.0057) 

water-soluble V ng/m3 805 0.20 (0.19) 0.14 (0.07, 0.26) 

water-soluble Cr ng/m3 805 0.14 (0.17) 0.10 (0.06, 0.15) 

water-soluble Mn ng/m3 796 1.20 (0.98) 0.94 (0.57, 1.54) 

water-soluble Ni ng/m3 805 0.30 (0.68) 0.15 (0.09, 0.25) 

water-soluble Cu ng/m3 790 2.83 (4.56) 1.84 (1.10, 3.06) 

water-soluble Zn ng/m3 682 8.99 (6.14) 7.32 (4.69, 11.16) 

water-soluble As ng/m3 805 0.68 (0.53) 0.56 (0.36, 0.80) 

water-soluble Se ng/m3 805 0.72 (0.59) 0.55 (0.33, 0.92) 

water-soluble Cd ng/m3 805 0.08 (0.08) 0.06 (0.04, 0.09) 

water-soluble Ba ng/m3 805 3.24 (3.23) 2.45 (1.36, 4.10) 

water-soluble Pb ng/m3 803 1.39 (2.98) 0.87 (0.56, 1.42) 

aCriteria gases were measured daily, including one-hour maximum carbon monoxide 

(CO), one-hour maximum nitrogen dioxide (NO2), one-hour maximum sulfur dioxide 

(SO2), and eight-hour maximum ozone (O3). PM2.5 and its major components, including 

organic carbon (OC), elemental carbon (EC), ammonium (NH4), nitrate (NO3), and 

sulfate (SO4), were measured daily using filter-based 24-hour integrated Federal 

Reference Methods. Total elemental concentrations of PM2.5 metals and metalloids 

(henceforth all referred to as metals), including titanium (Ti), manganese (Mn), iron (Fe), 
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cupper (Cu), zinc (Zn), aluminum (Al), lead (Pb), silicon (Si), calcium (Ca), sodium (Na), 

and potassium (K), were analyzed from the daily PM2.5 filters using X-ray fluorescence. 

X-ray fluorescence analyses were conducted by Desert Research Institute on filters 

collected through 3/22/2008, and by Atmospheric Research & Analysis Inc. on filters 

collected after 3/23/2008. Water-soluble concentrations of PM2.5 metals, including water-

soluble vanadium (WS V), water-soluble chromium (WS Cr), water-soluble manganese 

(WS Mn), water-soluble iron (WS Fe), water-soluble nickel (WS Ni), and water-soluble 

cupper (WS Cu), were analyzed using inductive-coupled plasma optical emission 

spectrometry (ICP-OES) during 8/14/1998 – 4/6/2008. Starting from 4/7/2008, these 

water-soluble fractions were analyzed using inductive-coupled plasma mass spectrometry 

(ICP-MS). Additional water-soluble species, including water-soluble zinc (WS Zn), 

water-soluble cadmium (WS Cd), water-soluble lead (WS Pb), water-soluble selenium 

(WS Se), water-soluble arsenic (WS As), water-soluble barium (WS Ba), and water-

soluble lanthanum (WS La), were reported starting in 4/7/2008 from ICP-MS analyses. 

All water-soluble measures were available daily before 2009 and one-in-three day after 

2009. 
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Figure 2.1. Estimated associations between cardiovascular ED visits and pollutants available during 1998-2013 using 

single-pollutant models, year-round analysis (3303 days), Atlanta, GA. 
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Figure 2.2. Estimated associations between cardiovascular ED visits and water-soluble Fe controlling for each of the 

other pollutants, 1998-2013 year-round analysis (3303 days), Atlanta, GA.  
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Figure 2.3. Estimated associations between cardiovascular ED visits and pollutants available during 1998-2013 using 

single-pollutant models, warm-season analysis (1737 days). 
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Figure 2.4. Estimated associations between cardiovascular ED visits and water-soluble Fe controlling for each of the 

other pollutants, 1998-2013 warm-season analysis (1737 days). 
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Figure 2.5. Estimated associations between cardiovascular ED visits and pollutants available during 1998-2013 using 

single-pollutant models, cold-season analysis (1566 days). 
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Figure 2.6. Estimated associations between cardiovascular ED visits and water-soluble Fe controlling for each of the 

other pollutants, 1998-2013 cold-season analysis (1566 days). 
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Figure 2.7. Estimated associations between cardiovascular ED visits and pollutants only available during 2008-2013 

using single-pollutant models, year-round analysis (631 days). 
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SUPPLEMENT 

eTable 2.1. Limits of detection (LOD) of PM2.5 trace components measured at the Atlanta Jefferson Street monitoring 

site, and % of measurements below LOD, during 1998-2008 and 2008-2013.a   

POLLUTANTS UNIT MEASUREME

NT  

PERIOD 

ANALYSI

S 

PERIOD 

LOD  

1998-2008 

LOD  

2008-2013 

%<LOD 

1998-2008 

%<LOD 

2008-

2013 

%<LOD  

1998-2013 

Na μg/m3 2008-2013 2008-2013 n/a 0.0040 n/a 5 5 

Al μg/m3 1998-2013 2008-2013 0.0064 0.0060 26 7 19 

Si μg/m3 1998-2013 1998-2013 0.0037 0.0057 <1 2 1 

S μg/m3 1998-2013 1998-2013 0.0010 0.0015 0 0 0 

K μg/m3 1998-2013 1998-2013 0.0008 0.0007 <1 <1 <1 

Ca μg/m3 1998-2013 1998-2013 0.0086 0.0037 3 1 2 

Ti μg/m3 1998-2013 2008-2013 0.0043 0.0003 77 2 47 

Mn μg/m3 1998-2013 excluded 0.0008 0.0012 41 31 37 

Fe μg/m3 1998-2013 1998-2013 0.0049 0.0014 <1 <1 <1 

Cu μg/m3 1998-2013 2008-2013 0.0012 0.0016 49 12 34 

Zn μg/m3 1998-2013 1998-2013 0.0008 0.0007 <1 1 1 

Pb μg/m3 1998-2013 excluded 0.0023 0.0019 55 38 48 



111 
 

 

POLLUTANTS UNIT MEASUREME

NT  

PERIOD 

ANALYSI

S 

PERIOD 

LOD  

1998-2008 

LOD  

2008-2013 

%<LOD 

1998-2008 

%<LOD 

2008-

2013 

%<LOD  

1998-2013 

water-soluble V ng/m3 1998-2013 2008-2013 0.58 0.005 95 <1 77 

water-soluble Cr ng/m3 1998-2013 2008-2013 1.04 0.014 87 1 70 

water-soluble Mn ng/m3 1998-2013 2008-2013 0.29 0.023 65 0 50 

water-soluble Ni ng/m3 1998-2013 2008-2013 1.04 0.046 97 7 79 

water-soluble Fe ng/m3 1998-2013 1998-2013 2.63 0.698 1 <1 1 

water-soluble Cu ng/m3 1998-2013 2008-2013 0.79 0.741 53 12 45 

water-soluble Zn ng/m3 2008-2013 2008-2013 n/a 0.617 n/a 0 0 

water-soluble As ng/m3 2008-2013 2008-2013 n/a 0.026 n/a <1 <1 

water-soluble Se ng/m3 2008-2013 2008-2013 n/a 0.024 n/a 0 0 

water-soluble Cd ng/m3 2008-2013 2008-2013 n/a 0.004 n/a <1 <1 

water-soluble Ba ng/m3 2008-2013 2008-2013 n/a 0.118 n/a 0 0 

water-soluble La ng/m3 2008-2013 excluded n/a 0.007 n/a 51 51 

water-soluble Pb ng/m3 2008-2013 2008-2013 n/a 0.025 n/a 0 0 

a Total elemental concentrations of PM2.5 metals/metalloids, including titanium (Ti), manganese (Mn), iron (Fe), cupper (Cu), 

zinc (Zn), aluminum (Al), lead (Pb), silicon (Si), calcium (Ca), sodium (Na), and potassium (K), were analyzed from the daily 
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PM2.5 filters using X-ray fluorescence. X-ray fluorescence analyses were conducted by Desert Research Institute on filters 

collected through 3/22/2008, and by Atmospheric Research & Analysis Inc. on filters collected after 3/23/2008; different limits 

of detection (LOD) were reported before and after the laboratory change for each species. Water-soluble concentrations of 

PM2.5 metals/metalloids, including water-soluble vanadium (WS V), water-soluble chromium (WS Cr), water-soluble 

manganese (WS Mn), water-soluble iron (WS Fe), water-soluble nickel (WS Ni), and water-soluble cupper (WS Cu), were 

analyzed using inductive-coupled plasma optical emission spectrometry (ICP-OES) during 8/14/1998 – 4/6/2008. Starting 

from 4/7/2008, these water-soluble fractions were analyzed using inductive-coupled plasma mass spectrometry (ICP-MS); 

again, different LODs were reported before and after the analytical change for these species. Additional water-soluble species, 

including water-soluble zinc (WS Zn), water-soluble cadmium (WS Cd), water-soluble lead (WS Pb), water-soluble selenium 

(WS Se), water-soluble arsenic (WS As), water-soluble barium (WS Ba), and water-soluble lanthanum (WS La), were reported 

starting in 4/7/2008 from ICP-MS analyses. All water-soluble measures were available daily before 2009 and one-in-three day 

after 2009.  
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eTable 2.2a. Summary statistics of ambient air pollutants measured at the Atlanta Jefferson Street monitoring site 

during the warm season (May - October), 1998-2013 and 2008-2013.  

POLLUTANTS UNIT N MEAN (SD) 50th (25th, 75th) PERCENTILES 

8/14/1998 – 12/15/2013 

Criteria gases 

CO ppm 2755 0.74 (0.66) 0.53 (0.35, 0.88) 

NO2 ppb 2738 37.2 (15.2) 35.9 (26.4, 46.3) 

SO2 ppb 5465 13.4 (14.7) 8.1 (3.2, 18.7) 

O3 ppb 5490 42.1 (19.9) 39.6 (27.2, 54.9) 

PM2.5 

PM2.5 μg/m3 2839 16.11 (8.24) 14.64 (10.00, 20.56) 

OC μg/m3 2820 3.63 (1.79) 3.28 (2.42, 4.39) 

EC μg/m3 2811 1.27 (0.92) 1.01 (0.66, 1.59) 

NH4 μg/m3 2831 1.69 (1.18) 1.37 (0.83, 2.22) 

NO3 μg/m3 2831 0.47 (0.36) 0.36 (0.24, 0.58) 
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POLLUTANTS UNIT N MEAN (SD) 50th (25th, 75th) PERCENTILES 

SO4 μg/m3 5572 5.03 (3.47) 4.10 (2.48, 6.56) 

Si μg/m3 2564 0.1168 (0.1360) 0.0821 (0.0505, 0.1324) 

K μg/m3 2564 0.0624 (0.1014) 0.0474 (0.0343, 0.0681) 

Ca μg/m3 2564 0.0393 (0.0318) 0.0316 (0.0204, 0.0482) 

Fe μg/m3 2556 0.0825 (0.0597) 0.0673 (0.0455, 0.0997) 

Zn μg/m3 2525 0.0098 (0.0087) 0.0079 (0.0051, 0.0116) 

water-soluble Fe ng/m3 2104 31.72 (23.64) 25.83 (16.36, 40.63) 

     

4/7/2008 – 12/15/2013 

Na μg/m3 1050 0.0363 (0.0321) 0.0268 (0.0156, 0.0454) 

Al μg/m3 1051 0.0574 (0.0738) 0.0395 (0.0224, 0.0658) 

Ti μg/m3 1051 0.0050 (0.0055) 0.0040 (0.0027, 0.0057) 

Cu μg/m3 1045 0.0053 (0.0104) 0.0038 (0.0024, 0.0057) 

water-soluble V ng/m3 463 0.20 (0.17) 0.15 (0.09, 0.28) 
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POLLUTANTS UNIT N MEAN (SD) 50th (25th, 75th) PERCENTILES 

water-soluble Cr ng/m3 463 0.15 (0.21) 0.11 (0.07, 0.16) 

water-soluble Mn ng/m3 463 1.31 (0.92) 1.08 (0.66, 1.70) 

water-soluble Ni ng/m3 463 0.34 (0.69) 0.17 (0.11, 0.27) 

water-soluble Cu ng/m3 457 2.83 (3.27) 2.04 (1.31, 3.22) 

water-soluble Zn ng/m3 368 8.73 (5.90) 7.14 (4.59, 11.16) 

water-soluble As ng/m3 463 0.62 (0.40) 0.54 (0.37, 0.74) 

water-soluble Se ng/m3 463 0.75 (0.61) 0.60 (0.39, 0.94) 

water-soluble Cd ng/m3 463 0.06 (0.05) 0.05 (0.03, 0.07) 

water-soluble Ba ng/m3 463 3.24 (3.37) 2.61 (1.60, 4.34) 

water-soluble Pb ng/m3 462 1.22 (1.25) 0.89 (0.59, 1.39) 
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eTable 2.2b. Summary statistics of ambient air pollutants measured at the Atlanta Jefferson Street monitoring site 

during the cold season (November - April), 1998-2013 and 2008-2013.  

POLLUTANTS UNIT N MEAN (SD) 50th (25th, 75th) PERCENTILES 

8/14/1998 – 12/15/2013 

Criteria gases 

CO ppm 2703 0.97 (0.97) 0.61 (0.37, 1.19) 

NO2 ppb 2583 37.9 (14.4) 37.4 (27.7, 46.9) 

SO2 ppb 2694 15.2 (15.8) 9.9 (4.0, 21.0) 

O3 ppb 2704 31.9 (14.0) 30.4 (22.0, 40.6) 

PM2.5 

PM2.5 μg/m3 2749 12.77 (6.67) 11.39 (8.14, 15.93) 

OC μg/m3 2726 3.72 (2.34) 3.15 (2.18, 4.57) 

EC μg/m3 2704 1.26 (1.03) 0.96 (0.59, 1.56) 

NH4 μg/m3 2732 1.07 (0.62) 0.93 (0.64, 1.34) 

NO3 μg/m3 2738 1.17 (0.90) 0.93 (0.52, 1.57) 
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POLLUTANTS UNIT N MEAN (SD) 50th (25th, 75th) PERCENTILES 

SO4 μg/m3 2737 2.68 (1.60) 2.3 (1.58, 3.35) 

Si μg/m3 2368 0.0704 (0.0719) 0.0542 (0.0324, 0.0886) 

K μg/m3 2368 0.0652 (0.0594) 0.0557 (0.0367, 0.0820) 

Ca μg/m3 2368 0.0333 (0.0270) 0.0268 (0.0166, 0.0411) 

Fe μg/m3 2365 0.0701 (0.0584) 0.0527 (0.0344, 0.0876) 

Zn μg/m3 2355 0.0131 (0.0131) 0.0101 (0.0066, 0.0153) 

water-soluble Fe ng/m3 1981 16.25 (12.68) 13.31 (8.02, 20.29) 

     

4/7/2008 – 12/15/2013 

Na μg/m3 880 0.0419 (0.0463) 0.0253 (0.0140, 0.0490) 

Al μg/m3 880 0.0322 (0.0302) 0.0248 (0.0130, 0.0455) 

Ti μg/m3 880 0.0035 (0.0026) 0.0030 (0.0019, 0.0045) 

Cu μg/m3 871 0.0057 (0.0142) 0.0035 (0.0022, 0.0057) 

water-soluble V ng/m3 342 0.19 (0.21) 0.11 (0.06, 0.25) 



118 
 

 

POLLUTANTS UNIT N MEAN (SD) 50th (25th, 75th) PERCENTILES 

water-soluble Cr ng/m3 342 0.11 (0.10) 0.08 (0.05, 0.14) 

water-soluble Mn ng/m3 333 1.04 (1.03) 0.76 (0.47, 1.29) 

water-soluble Ni ng/m3 342 0.25 (0.67) 0.13 (0.07, 0.22) 

water-soluble Cu ng/m3 314 9.30 (6.40) 7.60 (4.96, 11.15) 

water-soluble Zn ng/m3 368 8.73 (5.90) 7.14 (4.59, 11.16) 

water-soluble As ng/m3 342 0.76 (0.65) 0.60 (0.34, 0.93) 

water-soluble Se ng/m3 342 0.66 (0.55) 0.47 (0.29, 0.85) 

water-soluble Cd ng/m3 342 0.10 (0.10) 0.08 (0.05, 0.12) 

water-soluble Ba ng/m3 342 3.00 (3.00) 2.12 (1.12, 3.83) 

water-soluble Pb ng/m3 341 1.62 (4.33) 0.84 (0.54, 1.45) 
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eTable 2.3. Year-round Pearson correlations among pollutants, 1998-2013 and 2008-2013.  

1998-2013 CO NO2 SO2 O3 PM2.5 OC EC NO3 SO4 Si K Ca Fe Zn 

WS 

Fe 

CO 1.00               
NO2 0.55 1.00              
SO2 0.32 0.30 1.00             

O3 0.01 0.33 -0.04 1.00            
PM2.5 0.47 0.50 0.24 0.44 1.00           

OC 0.64 0.53 0.21 0.22 0.74 1.00          
EC 0.73 0.58 0.28 0.12 0.67 0.79 1.00         

NO3 0.26 0.18 0.21 -0.37 0.24 0.26 0.27 1.00        
SO4 0.14 0.30 0.16 0.55 0.80 0.34 0.34 0.01 1.00       

Si 0.12 0.15 0.08 0.22 0.23 0.17 0.19 -0.11 0.13 1.00      
K 0.17 0.15 0.03 0.09 0.25 0.28 0.20 0.07 0.08 0.21 1.00     

Ca 0.38 0.43 0.28 0.27 0.44 0.38 0.47 0.08 0.28 0.62 0.20 1.00    
Fe 0.48 0.43 0.17 0.21 0.47 0.49 0.58 0.07 0.19 0.69 0.26 0.66 1.00   
Zn 0.49 0.33 0.20 -0.03 0.38 0.45 0.50 0.28 0.10 0.11 0.18 0.34 0.42 1.00  

WS Fe 0.27 0.37 0.13 0.46 0.65 0.39 0.48 -0.05 0.61 0.48 0.18 0.47 0.64 0.16 1.00 

 

2008-2013 CO NO2 SO2 O3 PM2.5 OC EC NO3 SO4 Si K Ca Fe Zn 

WS 

Fe 

Na -0.03 -0.06 -0.12 -0.06 0.08 0.11 0.02 -0.09 -0.01 0.20 0.15 0.16 0.10 0.06 0.01 

Al -0.03 -0.02 -0.05 0.15 0.17 0.07 0.05 -0.16 0.06 0.94 0.26 0.59 0.53 -0.02 0.31 

Ti 0.15 0.17 0.10 0.22 0.32 0.24 0.27 -0.10 0.16 0.87 0.28 0.70 0.70 0.18 0.43 

Cu 0.26 0.24 0.07 0.07 0.21 0.25 0.27 0.06 0.05 0.09 0.23 0.21 0.26 0.21 0.23 

WS V -0.10 -0.11 -0.05 -0.01 0.21 0.10 -0.03 -0.09 0.25 0.23 0.15 0.14 0.07 0.00 0.17 

WS Cr 0.21 0.17 0.02 0.16 0.26 0.21 0.25 -0.02 0.16 0.12 0.19 0.18 0.24 0.21 0.34 

WS Mn 0.33 0.35 0.12 0.26 0.45 0.36 0.49 -0.05 0.28 0.31 0.31 0.41 0.60 0.39 0.52 

WS Ni 0.01 -0.01 0.04 0.09 0.02 0.03 0.06 -0.08 0.02 0.04 0.07 0.01 0.06 0.03 0.07 

WS Cu 0.27 0.26 0.07 0.10 0.24 0.27 0.30 0.01 0.09 0.06 0.24 0.15 0.26 0.22 0.27 

WS Zn 0.51 0.45 0.13 0.07 0.44 0.45 0.58 0.18 0.24 0.05 0.19 0.27 0.39 0.80 0.37 

WS As 0.50 0.30 0.07 -0.05 0.28 0.40 0.47 0.23 0.01 0.00 0.12 0.11 0.29 0.29 0.20 
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WS Se 0.16 0.24 0.42 0.13 0.46 0.27 0.26 0.14 0.46 0.07 0.08 0.26 0.20 0.18 0.41 

WS Cd 0.48 0.34 0.16 -0.08 0.31 0.45 0.47 0.30 0.04 0.00 0.16 0.18 0.32 0.47 0.21 

WS Ba 0.42 0.39 0.16 0.23 0.36 0.38 0.50 0.05 0.18 0.17 0.72 0.30 0.49 0.33 0.39 

WS Pb 0.25 0.17 0.06 0.04 0.19 0.23 0.19 0.07 0.06 0.00 0.12 0.07 0.10 0.22 0.13 

 

 

2008-2013 Na Al Ti Cu 

WS 

V 

WS 

Cr 

WS 

Mn 

WS 

Ni 

WS 

Cu 

WS 

Zn 

WS 

As 

WS 

Se 

WS 

Cd 

WS 

Ba 

WS 

Pb 

Na 1.00               
Al 0.21 1.00              
Ti 0.19 0.83 1.00             

Cu 0.00 0.06 0.17 1.00            
WS V 0.48 0.21 0.21 -0.03 1.00           

WS Cr 0.04 0.11 0.15 0.17 0.09 1.00          
WS Mn 0.11 0.28 0.43 0.20 0.08 0.25 1.00         

WS Ni 0.13 0.05 0.08 0.04 0.09 0.04 0.16 1.00        
WS Cu -0.03 0.05 0.12 0.92 -0.01 0.22 0.21 0.09 1.00       
WS Zn -0.05 0.01 0.16 0.28 -0.02 0.29 0.40 0.00 0.28 1.00      
WS As -0.07 -0.01 0.04 0.24 -0.07 0.17 0.13 -0.09 0.21 0.42 1.00     
WS Se -0.01 0.01 0.10 0.10 0.15 0.18 0.11 -0.02 0.13 0.25 0.29 1.00    

WS Cd 0.02 -0.02 0.06 0.41 -0.04 0.14 0.19 -0.05 0.36 0.52 0.52 0.38 1.00   
WS Ba 0.02 0.19 0.31 0.34 -0.08 0.22 0.56 0.15 0.34 0.36 0.21 0.12 0.24 1.00  
WS Pb -0.02 0.01 0.04 0.71 0.02 0.10 0.05 -0.01 0.73 0.26 0.27 0.18 0.39 0.15 1.00 
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eTable 2.4a. Pearson correlations among pollutants during the warm season (May - October), 1998-2013 and 2008-

2013.  

1998-2013 
CO NO2 SO2 O3 PM2.5 OC EC NO3 SO4 Si K Ca Fe Zn 

WS 

Fe 

CO 1.00               

NO2 0.60 1.00              

SO2 0.28 0.29 1.00             

O3 0.18 0.52 0.14 1.00            

PM2.5 0.45 0.57 0.31 0.59 1.00           

OC 0.55 0.58 0.21 0.48 0.74 1.00          

EC 0.72 0.63 0.31 0.30 0.64 0.71 1.00         

NO3 0.48 0.41 0.17 0.09 0.48 0.46 0.55 1.00        

SO4 0.26 0.43 0.30 0.54 0.88 0.49 0.45 0.40 1.00       

Si 0.09 0.10 0.10 0.06 0.14 0.11 0.14 0.04 0.03 1.00      

K 0.09 0.10 0.02 0.11 0.16 0.16 0.09 0.09 0.07 0.19 1.00     

Ca 0.40 0.44 0.28 0.29 0.43 0.38 0.49 0.31 0.29 0.59 0.17 1.00    

Fe 0.44 0.40 0.20 0.22 0.38 0.39 0.54 0.26 0.18 0.76 0.20 0.70 1.00   

Zn 0.46 0.37 0.22 0.17 0.39 0.39 0.51 0.34 0.24 0.10 0.13 0.40 0.39 1.00  

WS Fe 0.36 0.44 0.24 0.39 0.64 0.48 0.58 0.28 0.56 0.45 0.18 0.50 0.66 0.27 1.00 

 

 

2008-2013 CO NO2 SO2 O3 PM2.5 OC EC NO3 SO4 Si K Ca Fe Zn 

WS 

Fe 

Na -0.12 -0.12 -0.11 -0.14 -0.02 -0.04 -0.09 -0.06 -0.06 0.32 0.13 0.20 0.17 -0.03 0.05 

Al -0.08 -0.07 -0.04 -0.02 0.11 0.01 -0.01 -0.02 -0.03 0.96 0.25 0.60 0.68 -0.03 0.30 

Ti 0.07 0.11 0.07 0.10 0.25 0.15 0.18 0.07 0.09 0.90 0.26 0.71 0.79 0.13 0.39 

Cu 0.30 0.28 0.04 0.20 0.26 0.29 0.31 0.18 0.14 0.09 0.50 0.28 0.27 0.19 0.30 

WS V -0.13 -0.12 -0.01 -0.09 0.21 0.08 -0.07 -0.01 0.21 0.33 0.12 0.20 0.19 0.01 0.22 

WS Cr 0.25 0.18 0.00 0.12 0.21 0.16 0.21 0.17 0.11 0.09 0.17 0.15 0.20 0.17 0.26 

WS Mn 0.31 0.40 0.12 0.29 0.46 0.38 0.43 0.21 0.31 0.36 0.33 0.53 0.58 0.38 0.53 

WS Ni 0.01 -0.01 0.08 0.07 0.00 0.02 0.03 0.01 0.01 0.04 0.07 0.00 0.02 0.02 0.02 
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2008-2013 Na Al Ti Cu 

WS 

V 

WS 

Cr 

WS 

Mn 

WS 

Ni 

WS 

Cu 

WS 

Zn 

WS 

As 

WS 

Se 

WS 

Cd 

WS 

Ba 

WS 

Pb 

Na 1.00               
Al 0.32 1.00              
Ti 0.30 0.87 1.00             

Cu 0.02 0.09 0.16 1.00            
WS V 0.50 0.30 0.32 -0.02 1.00           

WS Cr 0.02 0.08 0.10 0.29 0.06 1.00          
WS Mn 0.09 0.32 0.43 0.30 0.09 0.22 1.00         
WS Ni 0.14 0.05 0.07 -0.01 0.08 0.02 0.12 1.00        

WS Cu 0.00 0.08 0.14 0.83 0.03 0.38 0.30 0.08 1.00       
WS Zn -0.09 -0.01 0.10 0.24 -0.06 0.26 0.45 0.00 0.34 1.00      
WS As -0.20 -0.02 0.00 0.10 -0.15 0.18 0.05 -0.15 0.07 0.20 1.00     
WS Se -0.07 0.00 0.08 0.03 0.17 0.15 0.13 -0.03 0.08 0.20 0.36 1.00    

WS Cd -0.12 -0.01 0.06 0.21 -0.07 0.20 0.31 -0.04 0.22 0.48 0.56 0.47 1.00   
WS Ba 0.07 0.22 0.28 0.50 -0.06 0.18 0.47 0.14 0.47 0.30 0.13 0.09 0.25 1.00  
WS Pb -0.06 -0.01 0.08 0.60 0.02 0.23 0.21 0.03 0.64 0.24 0.17 0.21 0.37 0.25 1.00 

 

  

WS Cu 0.32 0.32 0.07 0.19 0.25 0.22 0.32 0.19 0.14 0.09 0.39 0.23 0.30 0.15 0.34 

WS Zn 0.40 0.43 0.11 0.17 0.41 0.31 0.49 0.32 0.38 0.03 0.11 0.32 0.31 0.77 0.39 

WS As 0.39 0.20 0.01 -0.01 0.18 0.21 0.40 0.27 0.05 -0.03 0.01 0.04 0.18 0.08 0.19 

WS Se 0.20 0.27 0.43 0.19 0.47 0.25 0.27 0.21 0.48 0.05 0.05 0.26 0.18 0.14 0.40 

WS Cd 0.48 0.41 0.09 0.07 0.28 0.30 0.45 0.36 0.16 0.02 0.12 0.24 0.31 0.34 0.26 

WS Ba 0.35 0.33 0.09 0.30 0.33 0.37 0.42 0.28 0.20 0.18 0.83 0.33 0.38 0.21 0.34 

WS Pb 0.31 0.32 0.09 0.19 0.27 0.15 0.24 0.24 0.21 0.01 0.17 0.19 0.21 0.18 0.32 
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eTable 2.4b. Pearson correlations among pollutants during the cold season (November - April), 1998-2013 and 2008-

2013.  

1998-2013 CO NO2 SO2 O3 PM2.5 OC EC NO3 SO4 Si K Ca Fe Zn 

WS 

Fe 

CO 1.00               
NO2 0.54 1.00              
SO2 0.33 0.31 1.00             

O3 0.01 0.24 -0.12 1.00            
PM25 0.61 0.47 0.24 0.04 1.00           

OC 0.70 0.50 0.21 0.06 0.82 1.00          
EC 0.75 0.54 0.27 -0.06 0.75 0.86 1.00         

NO3 0.16 0.12 0.19 -0.40 0.42 0.24 0.24 1.00        
SO4 0.24 0.22 0.18 0.16 0.65 0.34 0.30 0.24 1.00       

Si 0.30 0.33 0.12 0.35 0.35 0.32 0.33 -0.08 0.17 1.00      
K 0.32 0.26 0.04 0.10 0.49 0.49 0.40 0.09 0.18 0.31 1.00     

Ca 0.42 0.44 0.31 0.17 0.43 0.40 0.45 0.07 0.21 0.74 0.28 1.00    
Fe 0.57 0.49 0.16 0.14 0.57 0.59 0.63 0.09 0.15 0.61 0.42 0.60 1.00   
Zn 0.49 0.32 0.18 -0.07 0.50 0.50 0.53 0.21 0.15 0.25 0.30 0.36 0.50 1.00  

WS Fe 0.44 0.39 0.14 0.18 0.60 0.49 0.52 0.11 0.47 0.44 0.29 0.40 0.67 0.28 1.00 

                 

2008-2013 CO NO2 SO2 O3 PM2.5 OC EC NO3 SO4 Si K Ca Fe Zn 

WS 

Fe 

Na -0.01 -0.03 -0.13 0.09 0.21 0.21 0.10 -0.17 0.14 0.14 0.34 0.15 0.06 0.10 0.05 

Al 0.16 0.22 -0.10 0.41 0.25 0.22 0.19 -0.16 0.07 0.86 0.42 0.71 0.44 0.12 0.16 

Ti 0.41 0.44 0.17 0.27 0.43 0.42 0.47 -0.01 0.13 0.72 0.50 0.76 0.71 0.43 0.40 

Cu 0.26 0.25 0.10 0.06 0.24 0.26 0.28 0.04 0.04 0.15 0.19 0.21 0.27 0.23 0.23 

WS V -0.08 -0.10 -0.10 0.07 0.23 0.11 0.00 -0.12 0.40 0.07 0.26 0.07 -0.06 0.00 0.11 

WS Cr 0.34 0.22 0.04 0.10 0.38 0.38 0.40 0.03 0.20 0.13 0.36 0.22 0.37 0.45 0.56 

WS Mn 0.42 0.32 0.12 0.11 0.40 0.35 0.55 -0.03 0.16 0.18 0.38 0.25 0.62 0.44 0.48 

WS Ni 0.03 0.01 -0.04 0.05 0.03 0.03 0.09 -0.09 -0.03 0.01 0.08 0.01 0.09 0.05 0.11 

WS Cu 0.26 0.24 0.07 0.06 0.28 0.30 0.29 -0.01 0.08 0.03 0.16 0.11 0.24 0.29 0.27 
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WS Zn 0.59 0.48 0.17 0.01 0.53 0.56 0.67 0.19 0.13 0.12 0.47 0.23 0.50 0.83 0.43 

WS As 0.54 0.39 0.15 0.04 0.49 0.52 0.52 0.20 0.09 0.12 0.43 0.22 0.41 0.44 0.35 

WS Se 0.17 0.22 0.40 -0.04 0.43 0.32 0.27 0.28 0.47 0.05 0.19 0.24 0.21 0.28 0.40 

WS Cd 0.45 0.31 0.26 0.01 0.53 0.55 0.53 0.21 0.18 0.11 0.38 0.24 0.40 0.56 0.41 

WS Ba 0.56 0.51 0.28 0.07 0.41 0.42 0.62 0.08 0.09 0.11 0.48 0.24 0.64 0.51 0.48 

WS Pb 0.23 0.15 0.07 0.05 0.24 0.27 0.19 0.03 0.07 0.02 0.21 0.06 0.10 0.27 0.14 

 

2008-2013 Na Al Ti Cu 

WS 

V 

WS 

Cr 

WS 

Mn 

WS 

Ni 

WS 

Cu 

WS 

Zn 

WS 

As 

WS 

Se 

WS 

Cd 

WS 

Ba 

WS 

Pb 

Na 1.00               
Al 0.20 1.00              
Ti 0.13 0.62 1.00             

Cu -0.01 0.12 0.30 1.00            
WS V 0.49 0.08 0.04 -0.04 1.00           

WS Cr 0.15 0.11 0.26 0.08 0.17 1.00          
WS Mn 0.15 0.17 0.46 0.14 0.06 0.37 1.00         
WS Ni 0.14 0.01 0.07 0.07 0.11 0.06 0.20 1.00        

WS Cu -0.04 0.04 0.13 0.95 -0.03 0.11 0.16 0.10 1.00       
WS Zn -0.03 0.11 0.34 0.32 0.01 0.46 0.36 0.00 0.27 1.00      
WS As -0.02 0.13 0.21 0.31 -0.02 0.30 0.23 -0.04 0.27 0.57 1.00     
WS Se 0.07 -0.03 0.10 0.17 0.13 0.28 0.07 0.00 0.20 0.32 0.29 1.00    

WS Cd 0.04 0.14 0.25 0.51 -0.01 0.27 0.20 -0.04 0.43 0.58 0.49 0.43 1.00   
WS Ba -0.02 0.11 0.40 0.25 -0.11 0.35 0.67 0.18 0.27 0.46 0.33 0.15 0.31 1.00  
WS Pb -0.02 0.09 0.08 0.76 0.03 0.11 0.01 -0.01 0.78 0.31 0.30 0.23 0.40 0.15 1.00 
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eFigure 2.1. Estimated associations between cardiovascular ED visits and tomorrow’s pollutant levels, 1998-2013 year-

round analysis (3303 days). 
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eFigure 2.2. Estimated associations between cardiovascular ED visits and tomorrow’s pollutant levels, 2008-2013 year-

round analysis (631 days). 
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3Figure 2.3. Estimated associations between cardiovascular ED visits and pollutants available during 1998-2013 using 

single-pollutant models, year-round analysis including all days with data available for each pollutant. 
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eFigure 2.4. Estimated associations between cardiovascular ED visits and water-soluble Fe controlling for each of the 

other pollutants, 1998-2013 year-round analysis including all days with data available for each pollutant. 
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eFigure 2.5. Estimated associations between cardiovascular ED visits and pollutants available during 1998-2013 using 

single-pollutant models, warm-season analysis including all days with data available for each pollutant. 
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eFigure 2.6. Estimated associations between cardiovascular ED visits and water-soluble Fe controlling for each of the 

other pollutants, 1998-2013 warm-season analysis including all days with data available for each pollutant. 
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eFigure 2.7. Estimated associations between cardiovascular ED visits and pollutants available during 1998-2013 using 

single-pollutant models, cold-season analysis including all days with data available for each pollutant. 
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eFigure 2.8. Estimated associations between cardiovascular ED visits and water-soluble Fe controlling for each of the 

other pollutants, 1998-2013 cold-season analysis including all days with data available for each pollutant. 
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eFigure 2.9. Estimated associations between cardiovascular ED visits and pollutants only available during 2008-2013 

using single-pollutant models, year-round analysis including all days with data available for each pollutant. 
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Chapter 3 

 

Joint effects of ambient air pollutants on pediatric asthma in multiple U.S. cities 

 

Dongni Ye, Mitchel Klein, Howard H. Chang, Jeremy A. Sarnat, James A. Mulholland, 

Stefanie Ebelt Sarnat  
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INTRODUCTION  

Ambient air pollution is a complex mixture of gaseous pollutants and particulate matter 

varying in size and composition. While multiple pollutants may impact a health outcome, 

traditionally, epidemiologic studies estimate health associations of individual pollutants 

using single-pollutant models.[1] The observed health associations of a given pollutant 

could differ across study locations (e.g., cities) due to several reasons: 1) co-pollutant 

confounding where pollutant co-variations differ by city; 2) effect modification by other 

pollutants where pollution levels differ by city; 3) non-linear dose-response where 

pollution levels differ by city; 4) effect modification by factors other than pollution (e.g., 

population characteristics, meteorological conditions) where these factors differ by city; 

5) differential measurement error across cities; and 6) random error. These issues 

complicate the interpretation and generalizability of health associations of individual 

pollutants across cities.  

In recent years, various “multi-pollutant” approaches have been employed to estimate 

health effects of air pollution mixtures.[2-5] These approaches include the use of source 

apportionment metrics, principal components, broad indices of pollution (e.g., traffic 

intensity), air quality indices, and the sum of pollutant concentrations in replacement of 

the single-pollutant term in regression models; the estimation of joint effect of multiple 

pollutants in parametric and non-parametric models; and the application of statistical 

learning algorithms to identify pollutant combinations that could be responsible for health 

outcomes.[2-4, 6-11]  

Considering a hypothetical joint effect of all pollutants changing from one set of 

concentrations to another provides a way to conceptualize health effects of the total 
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pollution mixture, although it is not achievable in reality given that only a limited number 

of pollutants could be identified and measured. And even such a hypothetical joint effect 

could depend on factors other than pollution (e.g., population characteristics, 

meteorological conditions). Nonetheless, perhaps joint effects of multiple pollutants 

could be similar across cities given that 1) a joint effect would not be confounded by 

pollutants that are part of the joint effect and that 2) a joint effect could account for 

potential pollutant interactions and non-linear dose-response in the estimation to reflect 

health impacts of simultaneous exposures to multiple pollutants.  

In this study, we estimated joint effects of a set of ambient air pollutants on emergency 

department (ED) visits for pediatric asthma in a time-series framework. We considered 

criteria gases and major components of fine particulate matter as part of the joint effect 

because they dominate ambient air pollution, are routinely measured, and many of them 

are thought to impact respiratory health according to previous studies.[12] We estimated 

the joint effects in four cities to evaluate whether joint effect estimates are similar across 

cities. How well a joint effect estimate reflects the health impact of multiple pollutants 

also depends on the specification of pollutant interactions and dose-response shape. Here, 

we explored different specifications of pollutant interactions and the shape of dose-

response in the joint effect estimation. This study builds on our prior research of ambient 

air pollution and emergency department visits conducted through the Study of Particles 

and Health in Atlanta (SOPHIA) and the Southeastern Center for Air Pollution and 

Epidemiology (SCAPE).[13-16]  

METHODS  

Emergency department visits  
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We obtained daily counts of emergency department (ED) visits of pediatric asthma (5-18 

year-olds) for patients living in the following four metropolitan areas: 20-county Atlanta 

(years 2002-2008), 12-county Dallas (years 2006-2008), 16-county St. Louis (years 

2002-2007), and 3-county Pittsburg (years 2002-2008). Daily counts of ED visits were 

aggregated from individual-level billing records from individual hospitals and the 

Georgia Hospital Association for Atlanta, from Dallas Fort Worth Hospital Council 

Foundation for Dallas, from the Missouri Hospital Association for St. Louis, and from 

individual hospitals in Pittsburg. We identified ED visits for pediatric asthma as those 

between 5-18 years old with primary ICD-9 diagnosis codes for asthma (493) or wheeze 

(786.07).  

Air pollution data  

Estimates of daily ambient air pollutant concentrations at 12-km spatial resolution were 

produced by fusing the Community Multi-Scale Air Quality (CMAQ) model simulations 

and the ground-level measurements using the approach developed by Friberg et al.[17-19] 

Daily population-weighted average exposures to ambient air pollutants were obtained 

based on the CMAQ-fused pollutant concentration estimates. Data include 1-hour 

maximum carbon monoxide (CO), 1-hour maximum nitrogen dioxide (NO2), 1-hour 

maximum sulfur dioxide (SO2), 8-hour maximum ozone (O3), and 24-hour average fine 

particulate matter (PM2.5, particulate matter with aerodynamic diameter of 2.5 μm or less) 

and its major components - organic carbon (OC), elemental carbon (EC), nitrate (NO3), 

sulfate (SO4), and ammonium (NH4).  

Analytic approach  
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In a time-series framework, we estimated the associations between daily concentrations 

of air pollutants and daily counts of ED visits for pediatric asthma in each city using 

Poisson generalized linear models accounting for over-dispersion. Based on our previous 

research of ambient air pollution and ED visits for asthma,[13, 14] we used the 3-day 

moving average (of lags 0, 1, and 2) pollution level.  

All models included the same covariate control for temporal trends and meteorology: 

time splines with monthly knots, cubic function of same-day maximum temperature, 

cubic function of lag 1-2-day moving average minimum temperature, cubic function of 

lag 0-1-2-day moving average mean dew point temperature, day of week, indicators for 

holidays, seasons, season-maximum temperature interaction, season-day of week 

interaction, and indicators for hospital participation periods.  

Estimation of individual pollutant associations  

We used single-pollutant models to estimate the associations between asthma ED visits 

and individual pollutants in each city. The estimated associations were reported as rate 

ratios (RR) per interquartile range (IQR) increase in pollutant concentrations. To 

facilitate comparison across cities, we used the average IQR of pollutant concentrations 

across the four cities (Table 3.1).  

Estimation of joint effects  

We used multi-pollutant models to estimate joint effects of criteria gases and PM2.5 

components in each city (i.e., CO, NO2, SO2, O3, OC, EC, and SO4). We did not include 

NO3 in the joint effect estimation because its associations with asthma in single-pollutant 

models were close to the null in all cities. We did not include NH4 as NH4 mainly exist as 

(NH4)2SO4 and NH4NO3.  
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We first estimated the joint effect of the above seven pollutants, assuming linear dose-

response for each pollutant and no pollutant interaction. To consider potential pollutant 

interactions, we estimated the joint effects of the seven pollutants including all pairwise 

multiplicative interactions in the model (using linear terms for pollutants). Because the 

inclusion of a large number of interaction terms could lead to model instability and 

interaction may not present for every pollutant pair, we then tried to identify a subset of 

pollutant interactions that may exist across cities. To identify pollutant interactions, we 

added 2-way multiplicative interaction of each pollutant pair one at a time to the 7-

pollutant model, and selected interaction terms whose estimates were in the same 

direction in all cities (i.e., all positive or all negative), or in the same direction in three 

cities with at least one of them being significant at 0.1 level. We then estimated the joint 

effects of the seven pollutants with the identified interaction terms in the model. To 

consider potential non-linear dose-response, we estimated joint effects of the seven 

pollutants modeled as cubic polynomials.  

The estimated joint effects were reported as rate ratios (RR) contrasting the seven 

pollutants at their 75th to 25th percentiles. We also plotted joint effect estimates 

contrasting all pollutants at their 15th, 25th, 35th, 45th, 55th, 65th, 75th, 85th, and 95th 

percentiles to their 5th percentiles. To facilitate comparison across cities, we use the 

averaged percentiles across the four cities (Table 3.1). 

Sensitivity analysis  

Previous studies have indicated that secondary organics are important for respiratory 

health.[20, 21] For a sensitivity analysis, we estimated joint effects of the seven pollutants 

plus a marker of secondary organics (2-butanone, a volatile organic compound) in 
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Atlanta. We chose this pollutant because a previous study found associations between 2-

butanone and asthma ED visits in Atlanta.[22] We did not perform this analysis in the 

other three cities due to lack of measurements of volatile organic compounds.  

RESULTS   

Descriptive statistics of pollutants are listed in Table 3.1, and their Pearson correlations 

are listed in Supplementary eTable 3.1. Average concentrations of O3 were generally 

similar across cities (mean percent difference=4%), while average concentrations of SO2, 

EC, and NO3 had greater variation across cities (mean percent differences are 31, 21, and 

54%, respectively). Overall, during the respectively analytic time periods, Dallas had the 

lowest pollution level among four cities, especially for SO2 and EC. Traffic-related 

primary pollutants such as CO, NO2, and EC were moderate-to-high positively correlated 

with one another, while specific correlations differed across cities (r from 0.54 to 0.79). 

OC and EC are highly correlated (r from 0.62 to 0.78). SO2 had weak-to-moderate 

positive correlations with other pollutants, with strongest correlations with EC. Among 

PM secondary ions, SO4 and NH4 are highly correlated with one another (r from 0.69 to 

0.95). Pollutant correlations in Dallas are weak compared to other cities.  

The average daily counts of emergency department visits for pediatric asthma were 24 in 

Atlanta 20-county area during 2002-2008, 25 in Dallas 12-county area during 2006-2008, 

16 in St. Louis 16-county area during 2002-2007, and 7 in Pittsburgh 3-county area 

during 2002-2008.  

We used single-pollutant models to estimate the associations between asthma ED visits 

and individual pollutants in each city (Figure 3.1). Most single-pollutant associations 

were positive. Associations of NO3 were close to the null in all cities. The estimated 
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associations of O3 and EC differ the most across cities – in St. Louis, O3 had the highest 

estimated RR, while in Dallas, EC had the highest estimated RR.  

We estimated joint effects of the seven pollutants – CO, NO2, SO2, O3, OC, EC, and SO4 

– using linear terms for pollutants and without pollutant interactions. The joint effect 

estimates (contrasting 75th to 25th percentiles) were generally similar across cities (Table 

3.2): 𝑅𝑅𝑠̂  (95% CIs) were 1.10 (1.04, 1.16) in Atlanta, 1.14 (1.03, 1.27) in Dallas, 1.16 

(1.08, 1.24) in St. Louis, 1.08 (0.99, 1.18) in Pittsburgh.  

We then estimated joint effects of the seven pollutants with all pairwise interactions. The 

estimated joint effects with all pairwise interactions (contrasting 75th to 25th percentiles) 

were weaker in Dallas and Pittsburgh compared to Atlanta and St. Louis (Table 3.2). In 

Dallas, 𝑅�̂� (using the 5th percentiles as reference) increased as the contrast increased, 

peaked at the contrast of 65th to 5th percentiles, and decreased when the contrast increased 

further (Figure 3.2). As a result, the joint effect estimate contrasting 75th to 25th percentile 

was close to the null in Dallas (Table 3.2). Note that pollutant concentrations were 

relatively low in Dallas, especially for SO2 and EC. For these two pollutants, 

concentrations equivalent to the four-city averaged percentiles of 75th or above barely 

occurred in Dallas.  

In models with all pairwise pollutant interactions, the estimates of individual pollutant 

terms appeared to be unstable (Supplement, eFigure 3.1b). To identify pollutant 

interactions that may be present in all cities, we added 2-way multiplicative interactions 

of each pollutant pair one at a time to the 7-pollutant model, and selected interaction 

terms whose estimates were in the same direction in all cities, or in the same direction in 

three cities with at least one of them being significant at 0.1 level. The following six 
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interaction terms met our criteria: CO-NO2, SO2-O3, O3-EC, O3-OC, O3-SO4, and OC-

SO4. We estimated joint effect of the seven pollutants including the six interaction terms 

mentioned above. The estimated joint effects with the six interaction terms were 

generally similar to those estimated in models with no interaction (Figure 3.2). The 

estimated joint effects with the six interaction terms were similar across cities (Table 3.2 

and Figure 3.2).  

We also estimated joint effects of the seven pollutants modeled as cubic polynomials. 

Again, in Dallas, 𝑅�̂� (using the 5th percentiles as the reference) decreased once pollutant 

concentrations were above the 65th percentiles (Figure 3.2). The joint effect estimates 

contrasting 75th to 25th percentiles were highest in Atlanta and St. Louis, while close to 

the null in Dallas (Table 3.2).  

In the sensitivity analysis, the estimated joint effects of the seven pollutants plus 2-

butanone was 1.10 (1.03, 1.18), similar to that without 2-butanone.  

DISCUSSION  

Because multiple pollutants in the ambient air could affect respiratory health, in this 

study we are interested in the combined effect of the air pollution mixture. We included 

criteria gases and major PM components as part of the joint effect because these 

pollutants dominate ambient air pollution, are commonly measured, and previous studies 

have indicated their respiratory effects.[12]  

The joint effect estimates were generally similar across cities (𝑅�̂�𝒔 from 1.08 to 1.16 

using the model with no interaction, Table 3.2). In one of the cities, where additional data 

on volatile organic pollutants were available, we compared joint effects with and without 

adding a marker of secondary organics (which were thought to affect respiratory health) 



143 
 

 

and found similar joint effect estimates. This result suggested that health effects of 

secondary organics was “captured” by the seven pollutants included in the joint effect 

(which was expected as ozone and organic carbon were included as part of the joint 

effect) if secondary organics have an effect and 2-butanone is a good marker.  

One challenge of estimating joint effects of multiple pollutants is the potential for 

pollutant interactions and non-linear dose-response. As multiple pollutants could impact 

the same health outcome, health effects of a pollutant likely depends on the levels of 

other pollutants. Biologically, it is also plausible that different pollutants influence the 

same biological pathway at different stages.[23] In our analysis, we first estimated the joint 

effect with all pairwise interactions. The estimates of individual pollutant terms in this 

model appeared to be unstable (Supplement, eFigure 3.1b), although the joint effect 

estimates were reasonable. As interaction may not be present between every pollutant 

pair, we attempt to identify pollutant interactions that may exist. To do this, we added a 

2-way interaction for each pollutant pair in the 7-pollutant model one at a time, and 

selected interaction terms whose estimates were similar across cities (i.e., same direction, 

or same direction in three cities with at least one of them being significant at 0.1 level). 

We used these criteria instead of relying on p-value alone because with 21 interaction 

terms in 4 cities (i.e., 84 terms in total), we would expect a number of these terms being 

significant by chance. In addition, we considered that if an interaction is present between 

two pollutants, this should apply to multiple cities. However, because of the selection 

criteria we used, the joint effect estimates with the selected interactions could be 

arbitrarily similar across cities. It is possible that 2-way interactions are truly different 
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across cities when the interaction terms depend on other pollutants or non-pollution 

factors (i.e., there could be 3-way or multi-way interactions).  

As mentioned above, one source of variations in joint effect estimates across cities is the 

presence of effect modification by non-pollution factors, such as population susceptibility 

and meteorological factors. We did not evaluate the impact of these factors in this 

analysis. We tried to limit the impact of population susceptibility by focusing on pediatric 

asthma as opposed to asthma of all ages.  

Another concern when comparing health effect estimates across cities is the impact of 

differential measurement error across cities. Using ground-level measurements from 

ambient monitoring sites may lead to differential measurement error across cities as the 

patterns of monitoring site placement often differ across cities (e.g., close to major roads 

or industrial area in one city but not in the other city). To mitigate the impact of 

differential measurement error on health effect estimation, we used population-weighted 

average exposure derived from the CMAQ-fused pollution concentration estimates. The 

CMAQ model is a chemical transport model that provides air pollution concentration 

simulations at fine-scale spatial resolution, and the CMAQ air pollution simulations were 

then calibrated using ground level air pollution measurement to provide CMAQ-fused air 

pollution estimates.[17, 18] However, as the quality of CMAQ simulations and the coverage 

of ground level measurements likely varies across regions, we still expect some degree of 

differential measurement error across cities.  

A limited number of previous studies have estimated health effects of pollution mixtures 

on pediatric respiratory outcomes using the joint effect approach. Schildcrout et al. 

estimated joint effect on asthma exacerbation among children in eight cities in North 
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America, but only focused on joint effects of pairs of air pollutants.[24] Winquist et al., in 

a time-series study in Atlanta, U.S., estimated joint effects of different combinations of 

air pollutants on ED visits of pediatric asthma;[15] and Xiao et al., in a time-stratified 

case-crossover study of pediatric respiratory ED visits in Georgia, U.S., estimated joint 

effects of similar combinations of pollutants as Winquist et al.[25] However, their work 

only considered joint effects in one location. Other studies have investigated health effect 

of pollution mixtures using different approaches, including classification and regression 

tree analysis,[8] self-organizing map,[9] and Bayesian kernel machine regression.[26]  

An understanding of the combined effect of pollution mixture could potentially inform 

multi-pollutant regulation and risk assessment.[27, 28] It is possible that some pollutants 

included in a joint effect estimation are not causal but they reflect the health impact of the 

pollution mixture due to co-variation with the causal agents. This should be considered 

when applying joint effect results in pollution regulation.  
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Table 3.1. Summary statistics of pollutants in four cities  

 Unit Mean (sd) Percentiles 

   25th 50th 75th 

Atlanta (2002-2008) 

CO ppm 0.65 (0.29) 0.45 0.59 0.78 

NO2 ppb 21.58 (6.97) 16.60 21.18 26.11 

SO2 ppb 10.05 (6.90) 4.78 8.33 13.54 

O3 ppb 42.15 (17.34) 28.11 40.50 55.15 

PM2.5 µg/m3 15.41 (7.12) 10.13 14.32 19.12 

OC µg/m3 2.99 (1.54) 1.92 2.71 3.66 

EC µg/m3 1.10 (0.59) 0.69 0.98 1.37 

NO3 µg/m3 0.63 (0.57) 0.25 0.43 0.85 

SO4 µg/m3 4.50 (2.99) 2.29 3.71 5.81 

NH4 µg/m3 1.42 (0.86) 0.80 1.22 1.81 

Dallas (2006-2008) 

CO ppm 0.39 (0.20) 0.25 0.33 0.48 

NO2 ppb 19.68 (8.23) 13.21 18.52 25.50 

SO2 ppb 5.41 (3.90) 2.52 4.89 6.96 

O3 ppb 41.79 (14.38) 31.24 39.68 51.25 

PM2.5 µg/m3 10.85 (4.70) 7.39 10.00 13.28 

OC µg/m3 2.50 (1.24) 1.63 2.28 3.14 

EC µg/m3 0.48 (0.19) 0.35 0.46 0.58 

NO3 µg/m3 0.54 (0.71) 0.18 0.33 0.73 
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 Unit Mean (sd) Percentiles 

SO4 µg/m3 2.81 (1.85) 1.48 2.36 3.62 

NH4 µg/m3 1.02 (0.68) 0.56 0.86 1.31 

Pittsburgh (2002-2008) 

CO ppm 0.49 (0.22) 0.33 0.43 0.58 

NO2 ppb 26.53 (8.14) 20.57 25.94 31.87 

SO2 ppb 20.23 (9.45) 13.17 18.75 25.16 

O3 ppb 37.47 (18.61) 22.78 35.03 50.96 

PM2.5 µg/m3 15.01 (8.57) 8.79 12.94 19.17 

OC µg/m3 3.75 (1.97) 2.35 3.32 4.71 

EC µg/m3 0.93 (0.45) 0.60 0.87 1.18 

NO3 µg/m3 2.12 (2.04) 0.67 1.46 2.94 

SO4 µg/m3 4.91 (3.36) 2.59 3.92 6.19 

NH4 µg/m3 1.79 (0.95) 1.11 1.61 2.26 

St. Louis (2002-2007) 

CO ppm 0.47 (0.22) 0.33 0.41 0.56 

NO2 ppb 21.28 (6.31) 16.85 21.08 25.67 

SO2 ppb 11.56 (5.43) 7.77 10.96 14.52 

O3 ppb 38.45 (17.03) 24.95 36.45 50.29 

PM2.5 µg/m3 13.80 (6.69) 9.07 12.45 17.22 

OC µg/m3 3.34 (1.64) 2.20 3.03 4.14 

EC µg/m3 0.69 (0.33) 0.47 0.63 0.84 

NO3 µg/m3 2.12 (1.99) 0.65 1.46 3.02 
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 Unit Mean (sd) Percentiles 

SO4 µg/m3 3.37 (2.55) 1.69 2.66 4.09 

NH4 µg/m3 1.69 (1.03) 0.96 1.43 2.21 

Four-city  

 Unit Mean % difference Averaged percentiles 

   25th 50th 75th 

CO ppm 0.50 14% 0.34 0.44 0.60 

NO2 ppb 22.27 15% 16.78 21.68 27.29 

SO2 ppb 11.81 32% 7.06 10.73 15.04 

O3 ppb 39.96 5% 26.77 37.92 51.91 

PM2.5 µg/m3 13.77 8% 8.85 12.43 17.20 

OC µg/m3 3.14 15% 2.03 2.84 3.91 

EC µg/m3 0.80 21% 0.53 0.73 0.99 

NO3 µg/m3 1.35 54% 0.44 0.92 1.86 

SO4 µg/m3 3.90 17% 2.01 3.16 4.92 

NH4 µg/m3 1.48 15% 0.86 1.28 1.90 
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Table 3.2. Estimated joint effects of the seven pollutants on asthma ED visits (5-18 

year-olds) in four cities, contrasting 75th to 25th percentilesa  

𝑹�̂� (95% 

CI) 

Joint effect with 

no interactionb 

Joint effect with 

all pairwise 

interactionsd 

Joint effect with 

six interactionsc 

Joint effect with 

pollutants modeled 

as cubic 

polynomialse 

Atlanta 1.10 (1.04, 1.16) 1.13 (1.03, 1.24) 1.14 (1.06, 1.22) 1.22 (1.11, 1.33) 

Dallas 1.14 (1.03, 1.27) 1.05 (0.78, 1.40) 1.11 (0.94, 1.30) 1.08 (0.82, 1.40) 

Pittsburgh 1.08 (0.99, 1.18) 1.08 (0.95, 1.23) 1.12 (1.01, 1.25) 1.21 (1.06, 1.38) 

St. Louis 1.16 (1.08, 1.24) 1.12 (1.10, 1.31) 1.16 (1.07, 1.26) 1.16 (1.05, 1.27) 

aThe seven pollutants include CO, NO2, SO2, O3, OC, EC, and SO4. Percentiles are 

averaged percentiles of the four cities 

bJoint effect of the above seven pollutants, modeled using linear terms, no pollutant 

interaction.  

cJoint effect of the above seven pollutants, modeled using linear terms, with the six 

selected interactions: CO-NO2, SO2-O3, O3-EC, O3-OC, O3-SO4, and OC-SO4. 

dJoint effect of the above seven pollutants, modeled using linear terms, with all 21 

pairwise interactions. 

eJoint effect of the above seven pollutants, modeled using cubic polynomials.  
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Figure 3.1. Estimated associations between pediatric asthma ED visits (5-18 year-

olds) and individual pollutants in four cities using single-pollutant models
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Figure 3.2. Estimated joint effects of the seven pollutants on asthma ED visits (5-18 

year-olds) in four cities, contrasting pollutants at their 15th, 25th, 35th, 45th, 55th, 65th, 

75th, 85th, and 95th percentiles to their 5th percentilesa 

 

aThe seven pollutants include CO, NO2, SO2, O3, OC, EC, and SO4. Percentiles are 

averaged percentiles of the four cities. The “no_interaction” model includes the above 

seven pollutants, using linear terms for pollutants and without pollutant interactions. The 

“all_pairwise_interactions” model includes the above seven pollutants, using linear terms 

for pollutants and with all pairwise pollutant interactions. The “six_interactions” model 

includes the above seven pollutants, using linear terms for pollutants and with the six 

selected pollutant interactions: CO-NO2, SO2-O3, O3-EC, O3-OC, O3-SO4, and OC-SO4. 

The “cubic_polynomials” model includes the above seven pollutants, modeled as cubic 

polynomials. 
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SUPPLEMENT 

eTable 1. Pearson correlations among pollutants in four cities   

Atlanta CO NO2 SO2 O3 PM2.5 OC EC NO3 SO4 NH4 

CO 1.00          

NO2 0.79 1.00         

SO2 0.26 0.39 1.00        

O3 -0.11 0.02 0.02 1.00       

PM2.5 0.28 0.26 0.07 0.61 1.00      
OC 0.61 0.57 0.15 0.32 0.68 1.00     
EC 0.77 0.73 0.22 0.07 0.50 0.76 1.00    

NO3 0.40 0.44 0.27 -0.44 -0.03 0.20 0.29 1.00   

SO4 0.01 -0.04 0.03 0.63 0.85 0.31 0.18 -0.23 1.00  
NH4 0.05 0.02 0.04 0.55 0.86 0.35 0.23 -0.04 0.95 1.00 

 

Dallas CO NO2 SO2 O3 PM2.5 OC EC NO3 SO4 NH4 

CO 1.00          

NO2 0.79 1.00         

SO2 0.35 0.33 1.00        

O3 -0.07 0.12 0.09 1.00       

PM2.5 -0.02 0.00 0.13 0.42 1.00      
OC 0.36 0.36 0.34 0.37 0.53 1.00     
EC 0.59 0.63 0.41 0.21 0.38 0.78 1.00    

NO3 0.20 0.16 0.13 -0.39 0.07 0.12 0.16 1.00   

SO4 -0.18 -0.14 -0.01 0.42 0.79 0.39 0.23 -0.01 1.00  
NH4 -0.07 -0.01 0.03 0.28 0.73 0.42 0.28 0.35 0.88 1.00 

 

Pittsburgh CO NO2 SO2 O3 PM2.5 OC EC NO3 SO4 NH4 

CO 1.00          

NO2 0.71 1.00         

SO2 0.47 0.50 1.00        

O3 -0.11 0.17 0.02 1.00       

PM2.5 0.45 0.51 0.46 0.47 1.00      
OC 0.43 0.54 0.44 0.42 0.79 1.00     
EC 0.55 0.54 0.49 -0.01 0.58 0.73 1.00    

NO3 0.28 0.28 0.26 -0.33 0.11 0.20 0.41 1.00   

SO4 0.20 0.30 0.32 0.57 0.81 0.62 0.39 -0.12 1.00  
NH4 0.35 0.45 0.42 0.38 0.80 0.74 0.64 0.41 0.78 1.00 
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St. Louis CO NO2 SO2 O3 PM2.5 OC EC NO3 SO4 NH4 

CO 1.00          

NO2 0.66 1.00         

SO2 0.31 0.44 1.00        

O3 -0.09 0.13 0.05 1.00       

PM2.5 0.22 0.30 0.38 0.34 1.00      
OC 0.35 0.43 0.43 0.38 0.60 1.00     
EC 0.57 0.58 0.46 0.12 0.43 0.61 1.00    

NO3 0.30 0.29 0.24 -0.40 0.30 0.09 0.26 1.00   

SO4 0.05 0.15 0.22 0.51 0.82 0.43 0.32 0.02 1.00  
NH4 0.23 0.31 0.33 0.07 0.77 0.37 0.37 0.65 0.69 1.00 
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eFigure 3.1. Beta estimates in the joint effect models in four cites  
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CONCLUSION 

As ambient air pollution is a complex mixture, there is an ongoing effort to identify its 

health-relevant components, and to estimate combined effects of the mixture. For Aim 1 

and Aim 2, we investigated acute cardiorespiratory effects of a range of pollutants that 

were not well-studied previously, as an attempt to gain a better understanding of the 

causal agents in air pollution mixtures. For Aim 3, we estimated joint effects of multiple 

pollutants and compared joint effect estimates across cities.   

Specifically, in Aim 1, we estimated acute cardiorespiratory effects of a large number of 

volatile organic compounds (VOCs) in a coherent manner by grouping them based on 

chemical structure and estimating VOC group effects. Our findings further support the 

link between incomplete combustion products and cardiovascular health, and between 

atmospheric oxidation products and respiratory health. In Aim 2, we estimated acute 

cardiovascular effects of ambient PM2.5 components, including a suite of water-soluble 

metals that are not routinely measured at the ambient level. Our results suggest that 

certain water-soluble metals (particularly water-soluble iron) or species from roadway 

emissions have an impact on cardiovascular health. In Aim 3, we estimated joint effects 

of major pollutants in the ambient air and found that joint effect estimates were generally 

similar across cities.  

To understand the health effects of a pollution mixture is challenging. For example, to 

identify causal agents in a mixture, we may start with the question, “what pollutants or 

groups of pollutants are harmful in a pollution mixture?” However, when an association 

is found between a specific pollutant and a health outcome, the question becomes, “Does 

the observed association with the pollutant represent the health effects of some 
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unmeasured pollutants in certain pollution mixtures?” This seemingly circular process 

largely arises from the fact that pollutants are correlated with one another and that 

individual pollutants cannot all be enumerated. And even if all pollutants could be 

measured, it would still be a challenge to handle a large number of pollutants in health 

effect estimation. Nonetheless, our work in Aim 1 and Aim 2 helped to advance the 

understanding of the health relevance of trace pollutants that were not well-studied 

previously, and our results point to future directions to better address this question. For 

example, we learned in Aim 1 that atmospheric oxidation products may affect respiratory 

health, and that ozone, the traditional marker for photochemical oxidants, may not fully 

represent the health effects of oxidation products – a follow-up question arising from our 

work is whether it would be helpful to monitor secondary organic pollutants and to 

understand their respiratory effects in order to better protect human health. We also 

learned in Aim 1 and Aim 2 that both organic pollutants from traffic exhaust and metals 

from mechanical abrasion during traffic appear to affect cardiovascular health – follow-

up questions arising from our work include: 1) whether organics and metals are different 

surrogates of the traffic pollution or they both have an effect on cardiovascular health, 

and 2) whether there is synergism between organic pollutants and metals.  

Another perspective in understanding the health impact of a pollution mixture is to 

estimate its combined effect. In Aim 3, we estimated joint effects of seven pollutants that 

dominate ambient urban pollution and that might have an impact on the health outcome 

(pediatric asthma). Given that only a limited number of pollutants were measured and 

included as part of the joint effect, a key question is what the joint effect of the seven 

pollutants represents. As it is unlikely that these seven pollutants contain all the causal 
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agents in the air pollution mixture, this 7-polluant joint effect may not represent health 

impact of the total pollution mixture. Rather, it could represent health effects of different 

mixtures in different cities, if co-variations among pollutants differ across cities. Thus, a 

following question is: if the joint effect estimates are similar across cities, does this 

suggest that the joint effect of the seven pollutants is close to the health impact of the 

total pollution mixture? Our work in Aim 3 is exploratory given the limited number of 

pollutants available and the limited number of cities for comparison. Another issue that 

underlies the understanding of the combined effects of pollution mixtures is the presence 

of potential interactions among pollutants, and the potential heterogeneity in the patterns 

of pollution interactions across cities. Further investigations would be needed to address 

these questions. 

Because the magnitudes of effects of air pollution are relatively small, our conclusions 

could be easily influenced by sources of error (e.g., confounding, measurement error, and 

chance). Specifically, in Aim 1 and Aim 2, air pollution measurements were obtained 

from a single ambient monitor in Atlanta. Temporal variation of a pollutant at one 

location may not be representative of the variation in the entire city. Thus, our results are 

subject to spatial misalignment, and the degree of its impact likely differs by pollutant. 

Compared to secondary pollutants, primary pollutants are likely to be more subject to 

spatial misalignment due to greater spatiotemporal variability. In addition, pollutants with 

lower ambient concentrations are likely to be more subject to instrument measurement 

error. Thus, the comparison of health associations across pollutants should be made in 

light of these limitations.  
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Our long time-series of daily measurements of a broad range of air pollutants as well as 

the collection of emergency department visits data provide a unique opportunity to 

estimate health effects of pollutants that were not well-understood previously. The 

availability of speciated pollution measurements also raises the question of how to 

understand health effects of a large number of pollutants in a coherent manner. High-

dimensionality is a key challenge in investigating health effect of pollution mixtures, and 

various dimension-reduction techniques have been developed to solve this problem. Our 

work for Aim 1 tackled this issue by grouping pollutants based on a priori knowledge 

rather than based on statistical relationships in the data. One advantage of our approach is 

that the group definition is not specific to the data, which allows for replications in future 

studies. Model instability could be a concern in our study when including multiple 

correlated pollutants in a single model. However, in our study, the long time-series of 

relatively abundant daily outcome events allows for a higher degree of collinearity with 

less impact on health effect estimates than would be the case for a study with fewer 

observations.  

Ambient measurements of trace pollutants, while costly, allow further investigations of 

causal agents in air pollution mixtures. Our studies in Atlanta (Aims 1 and 2) advance the 

understanding of cardiovascular health effects of organic pollutants from incomplete 

combustion and metals from roadway emission, as well as respiratory effects of 

atmospheric oxidation products. As a future direction, it would be a benefit to have these 

findings validated in other cities. In Aim 3, we only considered major pollutants in the 

joint effect estimation. For the future, based on our findings, it would be interesting to 

include trace pollutants as part of the joint effect. In order to assess the homogeneity of 
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joint effects across cities, it would beneficial to include more cities than we currently 

have.  

Overall, our work contributes to the ongoing effort to identify health-relevant 

components of ambient air pollution and to estimate combined effects of pollution 

mixtures. Our findings could potentially inform multi-pollutant regulation and health 

impact assessment.  


