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Abstract

Multiple Roots in Logistic Regression With Errors-in-Covariates

By Jian Chen

The unbiased estimating function method is a flexible approach to estimate and make

inferences on the parameters of interest. However, special problems arise when covariates

are measured with error.

Measurement errors arise in public health studies when some covariates are not mea-

sured precisely. We focus on the important case where the outcome is a binary variable and

the interest is in coefficients from a logistic regression model. Two widely used estimating

function methods for logistic regression with errors-in-covariates are the conditional score

(Stefanski & Carroll 1987) and the parametric-correction estimation procedure (Huang &

Wang 2001). The conditional score can have multiple-roots and not all of them are consis-

tent, whereas the parametric-correction estimation only generate consistent roots. On the

other hand, the conditional score in theory has an efficiency advantage in that its consis-

tent estimator is asymptotically locally efficient. Despite the multiple-roots problem, the

conditional approach is regarded as the standard method.

In this dissertation research, we aim to resolve the multiple-roots problem of the condi-

tional score in logistic regression with errors-in-covariates. We investigate the root behav-

iors of the conditional score in finite samples and demonstrate the existence and seriousness

of the problem posed by multiple roots, which have not been studied adequately in litera-

ture.

We propose two methods to achieve our research goal. In the first approach, we develop

a weighted-correction estimating function that only yields consistent estimators and com-

bine it with the conditional score using empirical likelihood. We prove that, asymptotically,

the proposed approach admits only consistent estimators and is locally efficient.

In the second approach, we construct objective functions based on the weighted-correction

estimating function and use them to distinguish among multiple roots from the conditional



score.

In addition to developing the large sample theories of the proposed methods, we investi-

gate their finite-sample properties through an extensive simulation. The simulation studies

show that the proposed methods work well in finite samples and outperform existing meth-

ods in many situations. Finally, the proposed methods are applied to data presented in

Hammer et al. (1996) and Pan et al. (1990).
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Chapter 1

Introduction

1.1 Overview

Biomedical research often involves studying the effects of certain covariates on some binary

outcome variable, and logistic regression is the most used binary regression to investigate

those mechanisms. When some covariates are subject to measurement errors, special meth-

ods are needed to correct for the effects of measurement errors. This dissertation research

is motivated by two real studies where covariates are measured with errors.

The AIDS Clinical Trials group (ACTG) 175 study (Hammer et al. 1996) is a ran-

domized, double-blind, placebo-controlled trial to compare treatment with either a single

nucleoside or two nucleosides in adults infected with human immunodeficiency virus type

1 (HIV-1) whose CD4 cell counts were from 200 to 500 per cubic millimeter and had

no history of an AIDS-defining illness. A total of 2467 HIV-1-infected patients were re-

cruited from 43 AIDS Clinical Trials Units and 9 National Hemophilia Foundation sites

in the United States and Puerto Rico. A particular research question is to assess the effect

of the true baseline CD4 count on the symptomatic HIV infection defined as candidiasis,

oral hairy leukoplakia, or herpes zoster reported within 30 days before randomization in

antiretroviral-naive patients (Huang & Wang 2000, 2001). A single covariate logistic re-
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gression model that treats the symptomatic HIV infection as outcome and the true baseline

log(CD4) count as the covariate can be fitted to assess their relationship. Since the true

baseline CD4 count is unobservable, the screening baseline CD4 count is usually used as

a substitute as the true baseline CD4 count. As a fact, the screening baseline CD4 count

is subject to both instrumental error and biological diurnal fluctuation. Therefore, the true

baseline CD4 count is measured with errors.

The second example is the blood pressure study in Pan et al. (1990). In this study, the

relationship between 24-hour urinary sodium chloride and blood pressure were investigated

in 397 middle-aged Chinese men living in Taipei. A logistic regression model with high

systolic blood pressure as outcome and the 24-hour urinary sodium chloride measurement,

plus age and body mass index (BMI) as covariates can be applied here. A single (the most

recent) urinary sodium chloride measurement can be used as a surrogate of the unobserv-

able true 24-hour urinary sodium chloride measurement in the model, which induces the

measurement errors.

When covariates are measured with errors, the naive approach that ignores the mea-

surement errors by treating the surrogates as the true unobservable covariates would lead to

inconsistent results. Therefore, correction methods must be applied to the naive approach

to correct for the effects of measurement errors. Two widely used methods for logistic re-

gression with errors-in-covariates are the conditional score (Stefanski & Carroll 1987) and

the parametric-correction estimation procedure (Huang & Wang 2001).

1.2 The problems of existing methods

The conditional score (Stefanski & Carroll 1987) is regarded as the default functional

method for logistic regression with errors-in-covariates. The main advantage of the condi-

tional score over other approaches is its theoretical efficiency property: it is asymptotically

locally efficient as described in Stefanski & Carroll (1987). Stefanski & Carroll (1987)
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showed that , however, the conditional score can have multiple-roots and not all of them

are consistent. In the example of the blood pressure study, the conditional score yields three

solutions for the coefficient of urinary sodium chloride : -4.36, 0.61, and 6.63. Unfortu-

nately, the conditional score does not indicate which one is appropriate.

In the presence of multiple solutions, Stefanski & Carroll (1987) suggest choosing the

solution closest to the naive estimator obtained by ignoring the measurement error. To

implement this strategy, they suggest iterating from the naive estimator to find the condi-

tional score estimator using a standard numerical method such as Newton-Raphson. How-

ever, this heuristic and theoretically unjustifiable approach can break down when mea-

surement error is large (Stefanski & Carroll 1987). Hanfelt & Liang (1997) proposed a

conditional quasi-likelihood function to distinguish between the multiple roots of the con-

ditional score. This approach appears to work well, but, the conditional quasi-likelihood

function is formed by a, in general, path-dependent line integral and therefore may not be

unique.

To secure consistent estimation, Huang & Wang (2001) developed a parametric-correction

estimation procedure. Instead of finding roots of estimating functions, Huang & Wang

(2001) construct an objective function by combining two estimating functions and search-

ing for the global minimizer of the objective function. Each estimating function has the

same dimension as the parameters and only admits consistent roots. Compared with the

conditional score, the parametric-correction estimation procedure does not yield inconsis-

tent estimators. However, this approach is generally less efficient than the conditional score,

especially when the measurement error is large (Huang & Wang 2001).

In summary, both the conditional score (Stefanski & Carroll 1987) and the parametric-

correction estimation procedure (Huang & Wang 2001) have advantages and disadvantages.

The conditional score is in general preferred in that its consistent estimator is asymptoti-

cally locally efficient.

Even though the multiple-roots problem of the conditional score has been reported in
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the literature for a long time (Stefanski & Carroll 1987, Hanfelt & Liang 1997, Small et al.

2000), its seriousness in practice remains unclear. The investigations of multiple roots of

conditional score in finite samples are very limited so far. The potential practical difficulties

due to multiple roots have not been examined adequately.

1.3 Objectives

In this dissertation research, the goal is to resolve the multiple-roots problem of the con-

ditional score in in Logistic regression with errors-in-covariates. This can be achieved by

two approaches.

Sparked by the idea of combining estimating functions (Huang & Wang 2001), we can

combine the conditional score and the two estimating functions in the parametric-correction

estimating procedure (Huang & Wang 2001) to produce consistent estimators. The incon-

sistent roots of the conditional score are eliminated since those two other estimating func-

tions do not generate inconsistent roots. On the other hand, the local optimality property of

the conditional score will be preserved if a proper combining technique is chosen. As a re-

sult, the new procedure has the advantages and gets rid of disadvantages from each individ-

ual approach. However, practical concerns arise since we need to estimate P-dimensional

parameters using 3P-dimensional estimating functions, which could cause numerical diffi-

culties in small or medium sized samples. A better approach is to develop a P-dimensional

estimating function that has no multiple-roots problem and combine it with the conditional

score.

The second approach is to build objective functions to distinguish among multiple roots

of the conditional score. As long as the consistent root of the conditional score can be iden-

tified, the asymptotical local efficiency is secured.

The objectives of this dissertation are summarized as follows:



5

1. Investigate the root behaviors of the conditional score (Stefanski & Carroll 1987)

and the parametric-correction estimation procedure (Huang & Wang 2001) in finite

samples.

2. Develop an estimation procedure that is guaranteed to produces asymptotically lo-

cally efficient estimator by combining the conditional score Stefanski & Carroll

(1987) with a new estimating function that has no multiple roots in large samples.

Develop the large sample theory of the proposed estimator.

3. Develop objective functions to distinguish among multiple roots of the conditional

score (Stefanski & Carroll 1987).

4. Investigate the finite-sample properties of the two proposed methods through simu-

lations and apply them to two real examples (Hammer et al. 1996, Pan et al. 1990)



6

Chapter 2

Background

2.1 Functional methods for logistic regression with errors-

in-covariates

2.1.1 Introduction

Measurement error models arise in making inference on the relationship of a response vari-

able and predictor variables that may be subject to measurement errors. When a covariate

is measured with error, the corresponding maximum likelihood estimator is biased and

therefore, adjustments must be made to account for the effects of measurement errors.

Let Y be the response variable and X be the covariate vector. Often, a component of

X is measured with error. Instead of observing X, we observe a surrogate for X, W. The

model p(W | X) is called the measurement error model (MEM) and typically assumed to

be known. The most commonly used MEM is the classical unbiased additive normal error

model:

W = X + U, (2.1)

where the error U ∼ N(0,Σuu) and it is independent of (Y, X). In other words, E(Y |X,W) =

E(Y |X): the measurement errors are nondifferential.
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The effects of measurement error can be illustrated via a simple linear measurement

model. Consider the model

E(Y |X) = β0 + βX,

where the unobservable X has variance of σ2
x. The nondifferential measurement error U

has a variance of σ2
u. Fuller (1987) showed that the naive approach that ignores the mea-

surement error and regress Y on W would yield inconsistent estimator of β. Indeed, the

naive approach consistently estimates β∗ = λβ, where

λ =
σ2

x

σ2
x + σ2

u
.

It is clear that λ < 1. Therefore, the naive estimator is biased toward zero in large sam-

ples, a phenomenon called attenuation. In addition, var(Y |W) > var(Y |X). That is, the

measurement error also makes the data more noisy. It should be noticed that attenuation is

the natural consequence only for simple linear model with classical additive measurement

error model.

To make consistent inference on β, one needs to correct the bias induced by measure-

ment error. In the simple linear model, the correction can be performed easily by method-

of-moments method. If λ̂ is a consistent estimator of λ, then β is consistently estimated by

β̂ = β̂∗/λ̂. The method-of-moments method can be extended to multiple linear regression

models with covariates measured with errors.

For nonlinear models, the effects of measurement error are more complicated. The

above method-of-moments method is inadequate to correct the bias induced by the mea-

surement errors. General approaches include the approximately consistent methods: Re-

gression calibration and SIMEX, and consistent functional methods: conditional score and

corrected score.

Regression calibration was first presented by Prentice (1982), and was later extended by

B.Armstrong (1985) and Rosner et al. (1989, 1990), among others. It is a popular method



8

to estimated the coefficients in models with one or more continuous covariates measured

with an error. It can be easily implemented into the models and the computation is straight-

forward and stable. Indeed, regression calibration is often regarded as a benchmark in

evaluating error-correction methods. The nondifferential assumption is required to apply

regression calibration. Suppose that we have a model with covariates X measured with

error and covariates Z measured precisely. First, E(X|Z,W) needs to be estimated using

replication, validation or instrumental data. Then the unobservable X is replaced by the

estimate of E(X|Z,W) in the original model so that the standard analysis can be applied to

estimate the parameters. SIMEX (Cook & Stefanski 1995) is a simulation-based method

and is computationally intensive. Both methods are fully consistent for linear regression

models. However, they are only approximately consistent for nonlinear models.

In the classical functional method approach, the unobservable true covariates X are

regarded as fixed but unknown constant and hence are nuisance parameters. The func-

tional method approach usually assume the classical additive measurement error model

W = X + U. The conditional score (Stefanski & Carroll 1987), and the corrected score

(Nakamura 1990, Stefanski 1989) are two major functional method methods. For the

special case of logistic regression with errors-in-covariates, Stefanski (1989) showed that

the corrected score does not exist. Huang & Wang (2001) developed a corrected-type

parametric-correction estimation procedure to logistic regression with errors-in-covariates.

2.1.2 Logistic regression with errors-in-covariates

The logistic regression model takes the form

Logit(Pr(Y = 1 | X,Z)) = α + βT
x X + βT

z Z (2.2)
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where Y is the binary outcome and X and Z are covariates. Straightforward calculations

show that the score function for θ = (α, βT
x , β

T
z )T is

S (θ) = {Y − F(α + βT
z Z + βT

x X)}


1

Z

X

, (2.3)

where F(t) ≡ {1+e−t}−1. Assume that X is measured with error and Z is measured precisely

. In stead of observing X, we observe a surrogate of X, W. In the presence of measurement

error, (2.3) can no longer be used to obtain consistent estimates of parameters.

2.1.3 The conditional score

Stefanski & Carroll (1987) adopted the conditional score by Lindsay (1982) and considered

the generalized linear model in canonical form where some covariates are measured with

independent normal error.

Assume that the distribution of Y given (X,Z) takes the form of the canonical general-

ized linear models (McCullagh & Nelder 1989)

f (Y |X,Z, θ) = exp
{

Yη − b(η)
φ

+ c(Y, φ)
}
, (2.4)

where the natural parameter η = β0 + βT
x X + βT

z Z, and the parameter to be estimated is

θ = (β0, β
T
x , β

T
z , φ)T. The independent random variables (Y,W) has the joint density

f (Y,W |X,Z, θ) = f (Y |X,Z, θ) f (W |X). (2.5)

Under (2.1), W |X ∼ N(X,Σuu). (2.5) is also a canonical generalized linear model. If the

unobservable X is regarded as unknown parameters and all other parameters are fixed in
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(2.5), a complete and sufficient statistic for X is

∆ = W + YΣuuβx/φ.

Let H = (∂/∂θ)log f (y,w|x, z, θ) be the θ-score. The conditional score takes the form

Ψcs(Y,W,Z, θ) = H − E(H|∆).

Taking advantage of the fact that f (y,w|x, z, θ) is a canonical generalized linear model, one

can show that

Ψcs(Y,W,Z, θ) =


{Y − E(Y |Z,∆)}

φ


1

Z

X

(n − p
n

)
φ −
{Y − E(Y |Z,∆)}2

var(Y |Z,∆)/φ


(2.6)

The unknown nuisance parameters X appear in (2.6) only as a weight. One can substitute

any estimator of X into (2.6) and the unbiasedness of Ψcs(Y,W,Z, θ) remains unchanged.

Since ∆ is a sufficient and complete statistic for X, any real function of ∆: t(∆) would be a

candidate. Intuitively, the choice of t(∆) should be close to X.

Logistic model belongs to canonical generalized linear models (2.4) with φ = 1 and

c(y, φ) = 0. Therefore, the conditional score (2.6) reduces to

Ψcs(θ) = {Y − F(α + βT
z Z + βT

x (W + (Y − 1/2)Σuuβx)}


1

Z

t(∆)

, (2.7)

where t(·) is some known function of ∆. Then the conditional score estimator θ̂cs can be

obtained by solving
n∑

i=1

Ψcs(yi,wi, zi, θ̂cs) = 0.
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Under certain circumstances, Ψcs can be fully efficient (Stefanski & Carroll 1987).

Treating X as independent and identically distributed random variables with unknown dis-

tribution, Stefanski & Carroll (1987) derived the efficient score for θ that has the same

expression of (2.6) with X replaced by E(X|Z,∆). The efficient score achieves the so-called

semiparametric efficiency bound if E(X|Z,∆) is correctly modeled. Since the efficiency of

the efficient score depends on the unknown density of X, the efficient score is called semi-

parametric locally efficient. Therefore, the choice of t(∆) = E(X|Z,∆) leads the conditional

score (2.6) to be the locally optimal efficient score. However, E(X|Z,∆) is typically com-

plicated and not feasible to model. Stefanski & Carroll (1987) consider to choose t(∆) that

is linear in (Z,∆). Then the conditional score would be optimal if E(X|Z,∆) is also linear

in (Z,∆). Stefanski & Carroll (1987) present the conditions for the density of X that would

lead to a linear E(X|∆ = δ) in (Z,∆).

The efficiency advantages of the conditional score have been investigated by Stefanski

(1989) and Huang & Wang (2001), among others. The results show that the conditional

score is in general more efficient than other functional consistent methods.

2.1.4 The parametric-correction estimation procedure

The conditional score (Stefanski & Carroll 1987) removes biases by conditioning on a com-

plete and sufficient statistic of the unobservable X . Its unbiasedness is based on the crucial

additive normal error assumption. The corrected score (Nakamura 1990, Stefanski 1989)

removes biases by correcting the error-contaminated score function. In the corrected score

approach, the measurement error is not restricted to be normally distributed. However, the

classical additive error model is usually assumed.

Let l(θ; Y, X,Z) be the loglikelihood function based on (Y, X,Z). If we observe X, we

can construct the score function S (Y, X,Z; θ) = ∂l(θ; Y, X,Z)/∂θ. It is well-known that the

score function produce consistent and efficient estimator. Since we are not able to observe

X, we can not use S (Y, X,Z; θ) to estimate parameters. Let l∗(θ; Y,W,Z) be the corrected
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loglikelihood function based on the observed data that satisfies

E{l∗(θ; Y,W,Z)|(Y, X,Z)} = l(θ; Y, X,Z).

Then the corrected score function is

S ∗(Y,W,Z; θ) =
∂l∗(θ; Y,W,Z)

∂θ
. (2.8)

It is easily to show that

E{S ∗(Y,W,Z; θ)|(Y, X,Z)} = S (Y, X,Z; θ).

Therefore, S ∗(Y,W,Z; θ) is also unbiased and the estimating equations

n∑
i=1

S ∗(Y,W,Z; θ) = 0

yields consistent estimators.

However, Stefanski (1989) showed that the corrected score (2.8) does not exist for

logistic regression. Huang & Wang (2001) observed that the correction is not limited to the

original score (2.3) only. They argued that the corrections can be performed on a class of

positive weighted estimating function function

S w(θ) = w(α + βT
z Z + βT

x X){Y − F(α + βT
z Z + βT

x X)}


1

Z

X

, (2.9)

where w(·) is some positive weight. It is clear that S w(θ) satisfies Eθ0[S w(θ)] = 0 only at

θ = θ0 as S (θ) does. Huang & Wang (2001) chose a pair of weights, 1+exp(−α−βT
z Z−βT

x X)
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and 1 + exp(α + βT
z Z + βT

x X), to form a pair of correction-amenable estimating functions:

Φ−(θ) = {Y − 1 + Yexp(−α − βT
z Z − βT

x X)}


1

Z

X

, (2.10)

Φ+(θ) = {Y + (Y − 1)exp(α + βT
z Z + βT

x X)}


1

Z

X

. (2.11)

(2.10) and (2.11) are served as bases on which all the corrections are performed. One of

the advantages of choosing these two particular weights is that recoding the outcome event

leads to the opposite sign in the coefficients, a property of the original score function.

Under the additive measurement error assumption, the parametric-correction estimation

procedure based on (2.10) and (2.11) includes two pairs of estimating functions

Φ−(θ) = (Y − 1)


1

Z

W − E(U)

 +

Yexp(−α − βT
z Z − βT

x W)
E(exp(−βT

x U))


1

Z

W − E(exp(−βT
x U)U)

E(exp(−βT
x U))


, (2.12)
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Φ+(θ) = Y


1

Z

W − E(U)

 +

(Y − 1)exp(α + βT
z Z + βT

x W)
E(exp(βT

x U))


1

Z

W − E(exp(βT
x U)U)

E(exp(βT
x U))


. (2.13)

More flexible than the conditional score, the parametric-correction estimation procedure

does not require the normal error assumption. When U ∼ N(0,Σuu), E(exp(βT
x U)) =

exp(βT
x Σuuβx/2) and E(exp(βT

x U)U) = exp(βT
x Σuuβx/2)Σuuβx. Then (2.12) and (2.13) re-

duces to

Φ−(θ) = (Y − 1)


1

Z

W

 + Yexp(−α − βT
z Z − βT

x W −

βT
x Σuuβx/2)


1

Z

W + Σuuβx

, (2.14)

Φ+(θ) = Y


1

Z

W

 + (Y − 1)exp(α + βT
z Z + βT

x W −

βT
x Σuuβx/2)


1

Z

W − Σuuβx

. (2.15)
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Since there are more estimating functions than parameters, Huang & Wang (2001) sug-

gested using the generalized method-of-moments (GMM) method to combine Φ−(θ) and

Φ+(θ) to obtain the consistent estimator that is efficient in the class of estimators based on

Φ−(θ) and Φ+(θ). According to their results, the parametric-correction estimation procedure

estimator has a very good efficiency performance that is almost compared to the asymp-

totically locally efficient conditional score estimator (Stefanski & Carroll 1987), with or

without measurement error. Its finite-sample performance has been investigated through an

extensive simulation and the results show that it is comparable to the consistent conditional

score estimator in terms of bias and efficiency.
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2.2 Multiple Roots

2.2.1 Introduction

In point estimation, consistent estimators are often obtained by solving unbiased estimat-

ing functions. Crowder (1986) proves that an unbiased estimating function is guaranteed to

have a consistent root under mild regularity. However, Crowder’s theory does not rule out

the possibility that an unbiased estimating function could have inconsistent roots. in finite

samples , multiple solutions of an unbiased estimating function are often encountered. If

solutions are far apart, distinguishing among them could be a major challenge in applica-

tions. In this section, we give a brief review of the mechanisms of multiple roots in the

unbiased estimating function approach.

2.2.2 Unbiased estimating functions and multiple roots

Let y1, . . . , yn be observations of random variables with density function f (y; θ), where

θ ∈ Θ, a compact parameter space. The estimates of the true value θ0 are typically obtained

by solving
n∑

i=1

g(yi, θ̂) = 0, (2.16)

where g(yi, θ) is some unbiased estimating function satisfying

Eθ0[g(Y, θ)] = 0. (2.17)

The estimator θ̂ is often referred as M-estimator. Under mild regularity, a consistent θ̂

exists, i.e., θ̂
p
−→ θ0. Nevertheless, the definition of unbiased estimating functions in (2.17)

does not rule out the possible existence of inconsistent roots .

According to Small & Wang (2003), g(Y, θ) can be categorized into two classes: the

class of regular unbiased estimating functions that satisfies (2.17) if and only if θ = θ0, and
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the class of irregular unbiased estimating functions that may have

Eθ0[g(Y, θ1)] = 0, for some θ1 , θ0. (2.18)

The class of regular unbiased estimating functions has no inconsistent roots . For example,

the score functions of exponential families are regular. On the other hand, the class of

irregular unbiased estimating functions admit inconsistent roots and the multiple roots arise

in large samples. For example, the conditional score (Stefanski & Carroll 1987) is irregular

.

Even though regular unbiased estimating functions do not suffer from multiple roots in

large samples, they can have multiple solutions in finite samples. That is, the root advantage

of regular unbiased estimating functions in large samples becomes vague in finite samples.

To see when an estimating function can have multiple roots in finite samples, we should

study the Hessian matrix. Let

ġ(θ) =
∂g(θ)
∂θT

be the Hessian matrix. When θ̂ exists , its uniqueness is guaranteed if ġ(θ) is negative

definite for all θ ∈ Θ. This is generally the case for the exponential family score function.

Within exponential family, the loglikelihood is strictly concave for all θ ∈ Θ. As a result,

the MLE of θ uniquely exists in Θ. However, for most of the regular unbiased estimating

functions, the Hessian matrix is not always negative definite and attentions should be paid

in finite samples root searchings since there may be more than one solution satisfying
n∑

i=1
g(θ̂) = 0 and some of them may not be consistent. For examples, the corrected-type

estimating functions (Nakamura 1990, Stefanski 1989, Huang & Wang 2001) are regular

unbiased estimating functions whose Hessian matrixes are not always negative definite. As

a result, the multiple roots could arise in finite samples, even though they would become

arbitrarily close to each other for sufficiently large sample sizes. For irregular estimating

functions, it is clear that the Hessian can not be always negative definite by the fact that
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irregular estimating functions admit inconsistent roots even for large sample.

In practice, a major task is to distinguish among multiple roots in finite samples. The

root uniqueness only happen to special cases. In the presence of multiple solutions, a good

strategy should be able to distinguish good solutions from bad solutions.

2.2.3 Choosing from multiple roots

When ġ(θ) fails to be negative definite for all θ, a rational solution is to find all the possible

roots and compare them to select the good one. There are two popular approaches to detect

all the roots. The first approach is to search for roots from random starting points (RSPs)

(Robbins 1968, Thode et al. 1987, Finch et al. 1989). The basic idea is to start from r

RSPs to search for roots. When r is big enough, the probability of finding a new root

not found by the first r − 1 RSPs will be very small. Another approach is a bootstrap

root search proposed by Markatou, Basu & Lindsay (1998) in their weighted likelihood

equations analysis. The idea is that all the possible roots are supported by some subsets

of the data . To implement this idea, one need to draw m ≤ n bootstrap samples from

the original data. For each bootstrap sample, the root is found by solving the unbiased

estimating function based on that bootstrap sample. For big enough m, all the possible

roots would be found. Both approaches have their own merits and are good methods to

detect multiple roots in practice.

If ġ(θ) is symmetric,i.e.,
∂gi(y, θ)
∂θT

j

=
∂g j(y, θ)
∂θT

i

, (2.19)

for i , j, the vector field of g(Y, θ) is conservative and there exists an objective function that

has g(Y, θ) as its derivative. In this case, different roots can be compared at their correspond-

ing objective function values. Likelihood score function S(θ) satisfies (2.19) and therefore

all the stationary points satisfying
n∑

i=1
S(θ̂) = 0 can be compared at their loglikelihood val-

ues. Huzurbazar (1948) proved that the consistent root of score function is asymptotically
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unique and corresponds to a local maximum of the likelihood function. Another example is

the trivial case where θ is a scalar. Then g(Y, θ) is always conservative. Therefore we can al-

ways intergrade g(Y, θ) to a scalar objective function and compare the roots. Unfortunately,

in general, unbiased estimating functions do not have the property of (2.19) and can not be

expressed as derivatives of some scalar objective functions. Therefore, the distinguishing

among roots is problematic.

When the explicit forms of roots are available, the roots can be compared with respect

to their asymptotic properties (Heyde & Morton 1998). Their methods suggest choosing

the correct root θ̂ that is:

1.
√

n-consistent;

2. ġ(θ) behaves asymptotically as Eθ[ġ(θ)] at θ = θ̂;

3. using a least square or goodness-of-fit criterion to select the best root.

Their approaches are useful if the analytic formulas of roots can be derived, which are

often not the case for nonlinear models. For example, for logistic regression with errors-

in-covariates.

Gan & Jiang (1999) and Biernacki (2005) constructed a test statistics to test for global

maximum of the likelihood to choose among multiple roots of a likelihood score func-

tion. Some other root selection methods include iterating from consistent estimators (Rao

1973, Lehmann 1983), bootstrap method and selecting roots based on information crite-

rion. Those approaches, however, are not very useful for logistic regression with errors-in-

covariates.

Among all the methods to distinguish among multiple roots, building an objective func-

tion appears to be attractive and draws great attention and has been applied to distinguish

among roots of the conditional score (Hanfelt & Liang 1997). We will briefly review the

relevant methodologies in the next section.
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2.2.4 Artificial likelihood functions

A big drawback of general unbiased estimating functions compared to likelihood score

function is that in general there does not exist a scalar objective function that has derivative

as the estimating function as score function does. In the case that score function has mul-

tiple roots, the relative likelihood principle would prefer a root having a bigger likelihood

than others. On the other hand, it is not clear how to distinguish among multiple roots for

a general unbiased estimating function that is not derived by maximizing or minimizing

some objective functions.

Recently attentions have been turn to construct objective functions based on optimal

estimating functions . The term optimal estimating function refer to the one whose consis-

tent root has the smallest asymptotical variance among the class of estimating functions.

McCullagh & Nelder (1989) shows that the optimal estimating function based on g(Y, θ)

takes the form

U(Y, θ) = DTV−1g(Y, θ) (2.20)

where

D = E[−ġ(Y, θ)], V = Cov[g(Y, θ)].

The asymptotic variance of estimator θ̂ is DTV−1D. (2.20) reduces to the score function if

g(Y, θ) is the score function. Also, when g(Y, θ) = Y−µ(θ), (2.20) reduces to the quasi-score:

q(Y, θ) = DTV−1(Y − µ(θ)). (2.21)

(2.20) shares many nice properties with the score function. For example, it is unbiased and

information unbiased.

Wedderburn (1974) obtains the quasi-likelihood function by performing line integral on

quasi-score (2.21)

Q(θ, y) =

∫ µ

y
V−1(y − t) dt. (2.22)
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The quasi-likelihood Q(θ, y) should behave like a real loglikelihood at least in a neighbor-

hood of the true value of θ. Then, different roots of quasi-score q(Y, θ) can be compared

using the quasi-likelihood ratio (Wedderburn 1974)

Q(θ, η) =

∫ µθ

µη

V−1(y − t) dt, (2.23)

which is analogous to the real loglikelihood ratio. If the variance component V is a diagonal

matrix, the line integral in (2.22) is path-independent. Therefore, Q(θ, y) is unique and

has the quasi-score as its gradient vector. However, in general, V is not diagonal and the

derivative matrix of quasi-score is not symmetric such as

∂qi

∂θT
j

,
∂q j

∂θT
i

for i , j.

Therefore, the vector field of quasi-score is in general not conservative and the line integral

in (2.22) is path-dependent. Consequently, no quasi-likelihood Q(θ, y) that has quasi-score

as its gradient vector exists. Therefore, the quasi-score estimators can not be viewed as

the stationary points of scalar objective functions and using quasi-likelihood to distinguish

among multiple roots would be problematic when q(Y, θ) is not conservative.

Notice that optimal estimating function (2.20) has

E[U̇(Y, θ)] = DTV−1D,

where U̇(Y, θ) = ∂U/∂θT. That is, even though U̇(Y, θ) may not be symmetric, E[U̇(Y, θ)]

is always symmetric. Therefore, optimal estimating function is E-conservative. in large

samples, it should be very close to conservative. Therefore, an approximate objective func-

tion can be constructed by performing a path-dependent line integral on optimal estimating

function. Hanfelt & Liang (1995) generalizes the quasi-likelihood to consider other opti-

mal estimating functions. Hanfelt & Liang (1995, 1997) uses the artificial likelihood as an
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objective function to distinguish among multiple roots in the conditional score approach

(Stefanski & Carroll 1987).

Artificial likelihoods may also be constructed through projection. Li (1993) and Hanfelt

& Liang (1995) suggested projecting the centred likelihood ratio

R(θ, η) =
L(θ)
L(η)

− 1

into a space spanned by the unbiased elementary estimating function g(Y, η):

Lη = {r = atg(y, η) + b},

where r is square integrable. The resulting projection only depends on the first two mo-

ments of g:

Dη(θ, η) = {C(θ, η)}tVη
−1g(y, η),

where C(θ, η) = Eθ{g(y, η)} and Vη = Covη{g(y, η)}. Similarly, one can define the reverse

projection:

Dθ(η, θ) = {C(η, θ)}tVθ
−1g(y, θ).

The generalized linear projected likelihood ratio (Li 1993, Hanfelt & Liang 1995) takes the

form

D(θ, η) =
1
2

Dθ(η, θ) −
1
2

Dη(θ, η)

=
1
2
{C(θ, η)}tVη

−1g(y, η) −
1
2
{C(η, θ)}tVθ

−1g(y, θ),

which approximates the true loglikelihood ratio between θ and η. Li (1993) considered

a special case that takes g = y − µ and constructed a projected likelihood ratio for the

quasi-score.

Other methods to build artificial likelihood as objective function include McCullagh
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(1991), Li & McCullagh (1994) and Small & Wang (2003), among others.
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2.3 Empirical Likelihood

2.3.1 Overview

The parametric likelihood method is the most widely used technique in statistical inference.

When the model is specified correctly, the Wilks’s theorem (Wilks 1938) states that the log

likelihood ratio statistics follows an asymptotic chisquare distribution. This result can be

used to perform hypothesis testings and construct likelihood ratio based confidence inter-

vals. Empirical likelihood (EL), introduced by Owen (1988, 1990, 1991), offers likelihood

ratio statistics that shares many properties with the parametric parallel without making any

distribution assumptions.

Let x1, x2, . . . , xn be a random sample from an d -variate unknown distribution function

F with mean µ0 and finite covariance matrix Σ of rank r > 0. The empirical likelihood is

defined as the nonparametric likelihood of the distribution function F

L(F) =

n∏
i=1

dF(xi) =

n∏
i=1

P(Xi = xi) =

n∏
i=1

pi,

which is maximized by the empirical distribution function of F

Fn(x) =
1
n

n∑
i=1

I(Xi ≤ x).

The empirical likelihood ratio is defined as

R(F) =
L(F)
L(Fn)

=

n∏
i=1

npi

Suppose that we are interested in making inference on some parameter θ = θ(F). For
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example, µ of F. The profile empirical likelihood ratio function for µ is

lE(µ) = sup

 n∏
i=1

npi | pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pixi = µ

 .
lE(µ) is uniquely well defined provided that µ is in the convex hull of {xi, i = 1, . . . , n}.

Owen (1988, 1990) showed that the Wilks’s theorem (Wilks 1938) holds for lE(µ0). That

is, under regularity conditions,

−2lE(µ0)
d
−→ χ2

r as n→ ∞,

which parallels the results for the parametric likelihood in Wilks (1938). This asymptotic

result allows us to test H0 : µ = µ0 and construct empirical likelihood confidence region for

the mean. An approximate α-level confidence region for µ is given by

Rc = {µ : −2lE(µ) ≤ χ2
r (1 − α)}.

The accuracy of this empirical likelihood ratio confidence region is of order n−1:

P(µ0 ∈ Rc) = 1 − α + O(n−1),

which is the same as the accuracy of the parametric likelihood ratio confidence regions.

Similar asymptotic results can be extended to more general smooth functions of means

(Owen 2001).

2.3.2 EL for estimating equations

Qin & Lawless (1994) extended the methods by Owen (1988, 1990, 1991) to link the em-

pirical likelihood and estimating equations together to develop methods of combining pa-

rameter information through unbiased estimating functions. Let θ ∈ Rp be the parameter
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of interest of the population F, and the information about θ can be summarized in terms of

functional independent unbiased estimating functions g(x, θ) ∈ Rs

EF{g(x, θ)} = 0.

When s = p, the true value θ0 is usually estimated by solving

1
n

n∑
i=1

g(xi, θ̂) = 0

for θ̂. Under appropriate regularity conditions, an
√

n-consistent θ̂ exists.

However, when s > p, one may not be able to find a solution that solves the unbi-

ased estimating equations. To obtain a consistent point estimator for this over-determined

case, Qin & Lawless (1994) developed method to combine estimating equations through

empirical likelihood. The profile empirical likelihood function for θ is defined as

L(θ) = sup

 n∏
i=1

pi | pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pig(xi, θ) = 0

 .
A unique maximum of L(θ) exists provided that 0 is in the convex hull of {g(xi, θ), i =

1, . . . , n}.

To obtain the estimator, one needs to maximize the empirical likelihood function L(θ).

It is generally more convenient to maximize the logarithm of the empirical likelihood:
n∑

i=1
log(pi). This constrained optimization process can be conducted using Lagrange multi-

pliers. Let

L =

n∑
i=1

log(pi) + γ(1 −
n∑

i=1

pi) − nλT
n∑

i=1

pig(xi, θ),
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where γ and λ = (λ1, . . . , λd)T are Lagrange multipliers. Straightforward calculous yields

∂L

∂pi
=

1
pi
− γ − nλTg(xi, θ) = 0,

n∑
i=1

pi
∂L

∂pi
= n − γ = 0.

Therefore,

γ = n

pi =
1

n(1 + λTg(xi, θ))
,

where the Lagrange multiplier λ = λ(θ) ∈ Rs solves

1
n

n∑
i=1

g(xi, θ)
1 + λTg(xi, θ)

= 0.

It is understood that
n∏

i=1
pi is maximized at pi = n−1 if there are no parametric constraints.

Therefore, the empirical loglikelihood ratio for θ is

lE(θ) = −

n∑
i=1

log{1 + λTg(xi, θ)}.

The maximum empirical likelihood estimator (MELE) θ̃ of θ0 can be obtained by maxi-

mizing lE(θ). The maximization involves two stages. At the first stage, one minimize lE(θ)

with respect to λ for a given θ. Then lE(θ) is maximized with respect to θ. That is

θ̃ = arg max
θ∈Rp

lE(θ) = arg max
θ∈Rp

min
λ∈Rs
−

n∑
i=1

log(1 + λTg(xi, θ)). (2.24)

Therefore the estimator for pi is

p̃i =
1

n(1 + λ̃Tg(xi, θ̃))
,
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and the empirical likelihood estimator for F is

F̃n(x) =

n∑
i=1

p̃iI(xi < x).

Notice that if we set g(xi, µ) = xi − µ, the above results can be applied to the empirical

likelihood for the mean µ automatically. When s = p, the MELE θ̃ = θ̂, the solution

to n−1
n∑

i=1
g(xi, θ̂) = 0 and p̃i = n−1. In other words, the empirical likelihood would be

maximized at zero-crossings of estimating functions. As a special case, the MELE for µ0

is µ̃ = µ̂ = x̄ = n−1
n∑

i=1
xi, the sample mean.
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Chapter 3

Root Behaviors

3.1 Introduction

The multiple-roots problem of the conditional score in large samples has been reported by

many researchers (Stefanski & Carroll 1987, Hanfelt & Liang 1995, 1997). Nevertheless,

whether or not multiple solutions arise frequently in practice is still not very clear. The

seriousness of multiple roots in practice have not been investigated adequately.

Compared with the conditional score for logistic regression with errors-in-covariates,

the parametric-correction estimation procedure (Huang & Wang 2001) does not have multiple-

roots problem in large samples. However, similar to the corrected score (Nakamura 1990),

they can also have multiple solutions in finite samples. So far, limited research has been

done to study the multiple solutions in finite samples for corrected-type estimating func-

tions either.

Indeed, what really matters is the multiple-roots phenomena in finite samples. We be-

lieve that investigations on root behaviors are needed to better understand both approaches

in finite samples. In this chapter, We study the finite-sample root behaviors of each ap-

proach through graphic illustrations with a focus on the conditional score.
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3.2 Root Behaviors in finite samples

For simplicity, we consider a logistic regression model with single covariate X ∼ N(0, 1)

that is measured with errors. The true values for (α0, β0) are (0,1). The measurement error

U ∼ N(0, σ2
u). For the conditional score (5.2), we choose t(∆) = W + (Y − 1/2)σ2

uβx. To

investigate the influences of the magnitude of the measurement error and sample size on

the appearance of the multiple roots, we consider four scenarios: (a) n = 200 and σ2
u = 0.5,

(b) n = 500 and σ2
u = 0.5, (c) n = 200 and σ2

u = 1, and (d) n = 500 and σ2
u = 1. In

the simulated data, the naive estimators for these four scenarios are 0.58, 0.86, 0.38, and

0.70, respectively. We plot out the conditional score in those four scenarios. For illustration

purpose, we profile the intercept out and only draw the plots with respect to slope β only.

The range for β we considered is [-8, 8], which is adequate for our purposes.

Figure 3.1 shows that when the variance of the measurement error is half of the variance

of the true covariate, the conditional score performs well and generate a single root at both

sample sizes. As the measurement error increases, the multiple roots appear. When the

measurement error and the true covariate have the same variance, three and two roots were

found for n = 200 and n = 500, respectively. Therefore, both the the magnitude of the

measurement error and the sample size play roles on the appearance of multiple roots. As

the measurement decreases or the sample size increases, the multiple roots would be less

likely to occur. Table 3.1 shows the mean number roots for each scenario based on 1000

simulations. It appears that the magnitude of the measurement error has a bigger influence

on the appearance of the multiple roots than the sample size. When the measurement

error and the true covariate have equal variances, the conditional score usually generates

multiple roots even at a large sample size of 500. Plot (c) of Figure 3.1 represents a typical

three-roots scenario for a single covariate model with large measurement errors and small

sample size. The distribution of roots is usually: a correct root at the middle, two false

roots at each side of the correct root. And three roots are far apart. Similar phenomena

was found in the blood pressure study (Pan et al. 1990). The conditional score yields three
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Table 3.1: The mean and range of number of roots of the conditional score in a single and
error-prone covariate logistic regression model

Scenario Size σ2
u Mean Range

a 200 0.5 1.14 1-2
b 500 0.5 1.01 1-2
c 200 1.0 2.94 1-3
d 500 1.0 2.29 1-3

Note: X ∼ N(0, 1). Measurement error U ∼ N(0, σ2
u). Results are based on 1000 replications.

roots for the unobservable true urinary sodium chloride : -4.36, 0.61, and 6.63. Out of the

three roots, the root 0.61 appears to be the correct one (Hanfelt & Liang 1997). By using

replicated measurements to reduce the measurement error, a single root (0.65) is generated

by the conditional score (Hanfelt & Liang 1997).

Our findings are based on a single covariate model. If there are multiple covariates

measured with errors, the multiple roots problem of the conditional score would be more

severe (Carroll et al. 2006). Hanfelt & Liang (1997) found an average of seven conditional

score roots in a simulation study of multiple covariates subject to error logistic model.

Our study has confirmed that the existence of the multiple roots for the conditional

score. Typically, those roots are far apart and how to distinguish from them are of chal-

lenged. When the measurement error is large, the multiple roots are quite frequent. In the

case of (c) in Figure 3.1, 3 roots were found in 983 out of 1000 simulations.

The parametric-correction estimation procedure (Huang & Wang 2001) contains two

corrected-type estimating functions Φ−(θ) (2.14) and Φ+(θ) (2.15). To investigate their root

behaviors in finite samples, we use the same set up and data as used in Figure 3.1. to obtain

the profiled plots for both Φ−(θ) (Figure 3.2) and Φ+(θ) (Figure 3.3).

As seen, both Φ−(θ) and Φ+(θ) experiences multiple roots in finite samples. It appears

that their multiple roots are even severer than the conditional score in finite samples. For the

plots (d) in Figure 3.2 and (c) and (d) in Figure 3.3 , both Φ−(θ) and Φ+(θ) fail to generate

a root reasonably close to the truth. Even though they do not have multiple roots in large

samples, this theoretical advantage may not be of significantly meaningful in practice. In
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stead of searching roots of either Φ−(θ) or Φ+(θ) that might not behave well enough in finite

samples, Huang & Wang (2001) successfully overcame the dilemma by combining Φ−(θ)

and Φ+(θ) together as an objective function to be minimized, which performs well in finite

samples.
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Figure 3.1: Multiple roots of conditional score of logistic regression model with single
covariate measured with error. (α0, β0) = (0, 1). The true covariate follows a standard
normal distribution. The measurement error is normal distributed with mean zero and
variance σ2

u.(a) n = 200 and σ2
u = 0.5 (b) n = 500 and σ2

u = 0.5 (c) n = 200 and σ2
u = 1

(d) n = 500 and σ2
u = 1
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Figure 3.2: Multiple roots of Φ−(θ) of logistic regression model with single covariate mea-
sured with error. In the plot, ”HW neg Weight” stands for Φ−(θ). (α0, β0) = (0, 1). The
true covariate follows a standard normal distribution. The measurement error is normal
distributed with mean zero and variance σ2

u.(a) n = 200 and σ2
u = 0.5 (b) n = 500 and

σ2
u = 0.5 (c) n = 200 and σ2

u = 1 (d) n = 500 and σ2
u = 1
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Figure 3.3: Multiple roots of Φ+(θ) of logistic regression model with single covariate mea-
sured with error. In the plot, ”HW pos Weight” stands for Φ+(θ). (α0, β0) = (0, 1). The
true covariate follows a standard normal distribution. The measurement error is normal
distributed with mean zero and variance σ2

u.(a) n = 200 and σ2
u = 0.5 (b) n = 500 and

σ2
u = 0.5 (c) n = 200 and σ2

u = 1 (d) n = 500 and σ2
u = 1
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3.3 Discussions

The study shows that both the conditional score and the corrected-type estimating func-

tions ((2.14) and (2.15)) can have multiple solutions in finite samples, especially when the

measurement error is large. The corrected-type estimating functions have theoretical ad-

vantage over the conditional score in terms of root consistency in large samples. However,

in finite samples, it appears the conditional score has better root behaviors than the existing

corrected-type estimating functions, in the logistic regression case.

In the presence of multiple solutions, both Stefanski & Carroll (1987) and Nakamura

(1990) suggest an heuristic procedure iterating from the naive estimator to obtain a good

root in the numerical practice. This approach appears to work well in practice when the

measurement error is small. However, when the measurement error is large, this approach

may break down. The plots (d) in Figure 3.2 and (c) and (d) in Figure 3.3 indicates that

there are no roots reasonably close to the truth. Conditional score also has this ill-behaved

no-good-root scenario, but less frequent. Figure 3.4 shows an example that the conditional

score generate a single root that is far from the truth. If one performs a thorough root search

to find all the roots, then the heuristic procedure will lead to a false root. However, this no-

good-root scenario is rare for the conditional score. Table 3.2 summarizes the percentages

of no-good-root scenario for cases considered in Figure 3.1. As seen, Only 1.7% of the

samples do not generate a good root for a single case. As the sample size goes larger or the

measurement error becomes smaller, this no-good-root scenario would disappear.

Table 3.2: The percentages of no-good-root scenario for the conditional score in a single
and error-prone covariate logistic regression model

Size σ2
u Percentage

200 0.5 0
200 1.0 1.7%
500 0.5 0
500 1.0 0

Note: X ∼ N(0, 1). Measurement error U ∼ N(0, σ2
u). Results are based on 1000 replications.
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Figure 3.4: An example of no roots around the truth or naive estimator for logistic regres-
sion model with single covariate measured with error. N=200. (α0, β0) = (0, 1). Both the
true covariate and the additive measurement error follow a standard normal distribution.
(β̂Naive = 0.54)
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Chapter 4

The combined estimation procedure

4.1 Introduction

To resolve the multiple-roots problem of the conditional score, one could combine the con-

ditional score with the corrected-type estimating functions ((2.14) and (2.15)) to eliminate

inconsistent roots of the conditional score in large samples. However, by doing so, we need

to estimate P-dimensional parameters using 3P-dimensional estimating functions. Our sim-

ulation shows that the numerical difficulties arise, especially under small or medium sized

samples.

In this chapter, we develop a new corrected-type estimating function named the weighted-

correction estimating function for logistic regression with errors-in-covariates. Its asymp-

totical properties and finite-sample performances will be presented. We propose to com-

bine the conditional score with the weighted-correction estimating function using empirical

likelihood. By combining, we eliminate the inconsistent roots induced by the conditional

score in large samples. The resulting maximum empirical likelihood estimator is asymptot-

ically locally efficient. Its asymptotical properties and finite-sample performances will be

presented. The proposed combined estimation procedure is guaranteed to produce asymp-

totically locally efficient estimator for logistic regression with errors-in-covariates. The



39

finite-sample simulations show that the proposed combined estimation procedure outper-

forms existing methods in many situations and could be a more reliable estimation proce-

dure. Applications to the ACTG 175 study (Hammer et al. 1996) and the blood pressure

study (Pan et al. 1990) are provided.
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4.2 The weighted-correction estimating function

In this section, we develop a new consistent functional method, namely the weighted-

correction estimating function, for logistic regression with errors-in-covariates. Similar

to the parametric-correction estimation procedure (Huang & Wang 2001), the proposed

estimating function only produces consistent estimators in large samples.

Huang & Wang (2001) chose a pair of weights to (2.9) to form the parametric-correction

estimation procedure (Section 2.1.4). We consider applying a single weight

w(·) = exp((−α − βT
z Z − βT

x X)/2) + exp((α + βT
z Z + βT

x X)/2)

to (2.9). Then the resulting correction-amenable estimating function is given by

Ψ(θ) =

{
(Y − 1)exp(

α + βT
z Z + βT

x X
2

) + Yexp(−
α + βT

z Z + βT
x X

2
)
} 

1

Z

X

. (4.1)

Ψ(θ) also enjoys the recoding properties of the score function: recoding the outcome event

leads to the opposite sign in the coefficients.

To obtain the root of Ψ(θ), one can solve the unbiased estimating equation

1
n

n∑
i=1

Ψ(yi, xi, zi, θ) = 0.

Lemma 4.2.1 Under regularity conditions A1 and A2 in Appendix, the roots of Ψ(θ), θ̃

exists in probability and converge to θ0, and
√

n(̃θ − θ0)
d
−→ N(0,V1), where

V1 =

E (
∂Ψ

∂θ

)T

(E(ΨΨT))−1E
(
∂Ψ

∂θ

)−1

.
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Under the additive error model W = X + U, the weighted-correction estimating function

that performs correction based on (4.1) is given by

Ψws(θ) =
(Y − 1)exp((α + βT

z Z + βT
x W)/2)

E(exp(βT
x U/2))


1

Z

W − E(exp(βT
x U/2)U)

E(exp(βT
x U/2))


+

Yexp(−(α + βT
z Z + βT

x W)/2)
E(exp(−βT

x U/2))


1

Z

W − E(exp(−βT
x U/2)U)

E(exp(−βT
x U/2))


, (4.2)

which satisfies

E{Ψws(θ)|(Y, X,Z)} = Ψ(θ).

To obtain the root of Ψ(θ), one can solve the unbiased estimating equation

1
n

n∑
i=1

Ψws(yi,wi, zi, θ) = 0.

Theorem 4.2.2 Under regularity conditions A1, A2 and A3 in the appendix, the roots of

Ψws(θ), θ̂ exists in probability and converge to θ0, and
√

n(θ̂ − θ0)
d
−→ N(0,V2), where

V2 =

E (
∂Ψws

∂θ

)T

(E(ΨwsΨ
T
ws))

−1E
(
∂Ψws

∂θ

)−1

.

Similar to the parametric-correction estimation procedure (Huang & Wang 2001), the

weighted-correction estimating function does not require the normal error assumption to se-

cure its consistent estimation. It is usually assumed that U ∼ N(0,Σuu). Then E(exp(βT
x U/2)) =
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exp(βT
x Σuuβx/8) and E(exp(βT

x U/2)U) = exp(βT
x Σuuβx/8)Σuuβx/2. Therefore, (4.2) becomes

Ψws(θ) = (Y − 1)exp((α + βT
z Z + βT

x W)/2 − βT
x Σuuβx/8)


1

Z

W − Σuuβx/2


+Yexp(−(α + βT

z Z + βT
x W)/2 − βT

x Σuuβx/8)


1

Z

W + Σuuβx/2

. (4.3)

It is of interest to compare the asymptotical efficiency of the weighted-correction es-

timating function with the parametric-correction procedure. Without measurement errors,

the parametric-correction procedure achieves remarkable efficiency performance compare

with the maximum likelihood estimator (Huang & Wang 2001). We perform similar stud-

ies to compare the asymptotical relative efficiency of the weighted-correction estimating

function estimator θ̂ to the parametric-correction estimation procedure estimator θ̄, in the

absence of measurement error. We consider the case that the model only contains a single

covariate X ∼ N(0, σ2). The asymptotic efficiency depends on |α0| and |β0σ|. We inves-

tigated several different true parameter values and reported the results in Table 4.1. The

relative asymptotical efficiency of θ̂ decreases as |α0| or |β0σ| increases. Compared with θ̄,

θ̂ is slightly less efficient.

In the presence of normal measurement errors, the parametric-correction estimator is

generally less efficient than the semiparametrically efficient conditional score estimator

(Huang & Wang 2001). Since the proposed weighted-correction estimating function also

does not have the asymptotical local efficiency property, its estimator is in theory less ef-

ficient than the semiparametrically efficient conditional score estimator. Indeed, it is of

more interest to compare the weighted-correction estimating function estimator with the

parametric-correction estimator in the presence of measurement errors, which will be in-

vestigated through simulations.
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Table 4.1: The asymptotic relative efficiency between the weighted-correction estimating
function estimator and the parametric-correction estimation procedure estimator (Huang
& Wang 2001) in a single covariate (X ∼ N(0, 1)) error-free logistic regression model
α0 β0 α̂ β̂

-1.4 0.7 0.987 0.939
1 0.968 0.909

1.4 0.953 0.892

-0.7 0.7 0.993 0.974
1 0.982 0.951

1.4 0.975 0.926

0 0.7 0.995 0.987
1 0.987 0.966

1.4 0.983 0.937

We conduct several simulation studies to evaluate the finite-sample properties of the

weighted-correction estimating function estimator. Suppose we have a logistic model with

a single covariate that is measured with error. We consider four distributions for the true co-

variate X. That is, X ∼ N(0, 1), X ∼ Unif(−
√

3,
√

3), X ∼ exp(1)−1, and X ∼ (χ2
(1)−1)/

√
2.

A single surrogate of X is observed. We consider two substantial amount of measurement

errors for each model: U ∼ N(0, 0.25) and U ∼ N(0, 0.5). The true values for (α0, β0) are

(0,1). The true variances of the measurement errors are used in the simulations. For each

model, we conduct 1000 simulations on sample sizes of 300 and 600. For comparison, the

naive estimator, the regression calibration estimator with formulas given by Carroll et al.

(2006) in Section 4.4.2, the conditional score estimator with t(∆) = W + (Y − 1/2)σ2
uβx in

(5.2), the weighted-correction estimating function estimator, and the parametric-correction

estimation procedure estimator estimator are also reported in the simulations. The mean

bias, the estimated standard deviations and the empirical coverage based 95% Wald type

confidence interval are reported. A modified Newton-Raphson procedure (Appendix) start-

ing from the naive estimators was applied to find the roots of the conditional score and

weighted-correction estimating function. The parametric-correction estimation procedure

estimator (Huang & Wang 2001) was obtained by the standard two-step GMM estimation
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procedure and the identity matrix was used in the first step to obtain a consistent estimator.

The simulation results for the slope estimators are summarized in Table 4.2. The per-

formance of the naive estimator is unacceptable with large biases and very poor coverage

probabilities. This confirms that correction procedures must be employed in the presence of

measurement error. The approximately consistent regression calibration estimator performs

reasonable well under normal X, as expected. It also performs well when X is uniform dis-

tributed. However, it performs poorly when X has a skewed distribution. For the three

consistent methods, the bias performances are overall comparable. The estimated stan-

dard errors of the weighted-correction estimating function estimator and the conditional

score estimator are in general close, which indicates the weighted-correction estimating

function achieves good efficiency performance in the presence of measurement error. Both

the weighted-correction estimating function and conditional score estimator have excellent

coverage probabilities. The HW’s estimator appears to have the smallest estimated stan-

dard errors among three consistent approaches, but its coverage probabilities tend to be

below the nominal level. Huang & Wang (2001) showed that the coverage probabilities

could be improved using bootstrap methods. Notice that both the weighted-correction esti-

mating function and conditional score estimator experience root-finding failures when X is

skewed and measurement error is large, which indicates that there are no zero-crossings in

a neighborhood of naive estimators. HW’s estimator does not suffer from the root-finding

issues in that it is not defined as a zero-crossing of unbiased estimating functions. Overall,

the proposed weighted-correction estimating function estimator has a comparable bias and

efficiency performance with the conditional score estimator in finite samples. The HW’s

estimator performs slightly better in terms of mean bias than the weighted-correction es-

timating function estimator when the underlying distribution of X is skewed. In general,

the weighted-correction estimating function estimator outperforms the HW’s estimator in

coverage probabilities.

The weighted-correction estimating function estimator has very good finite-sample per-
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formance overall, especially when the sample size is moderate large. We believe that it is a

valuable approach and can be applied to large-scale epidemiologic studies as an alternative

to the conditional score approach.
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Table 4.2: Summary of the performances of Slope estimators in a single and error-prone
covariate logistic regression model.
size σ2

u NV RC CS HW WS NV RC CS HW WS
X ∼ N(0, 1) X ∼ Unif(−

√
3,
√

3)
300 0.25 Bias -223.2 -27.2 19.7 -19.8 28.6 -197.6 4.1 12.3 -22.4 17.3

SD 129.7 162.9 186.1 203.3 198.1 129.1 163.0 169.0 183.4 178.3
SE 129.5 162.3 185.6 172.4 190.2 125.8 157.5 168.0 153.9 174.3
EC 55.7 94.3 95.5 85.7 94.9 63.2 94.8 95.6 85.8 94.9
F 0 0 0 0 0 0 0 0 0 0

0.5 Bias -368.3 -47.9 32.7 -23.5 49.8 -338.8 -5.0 20.1 -31.0 31.1
SD 115.4 177.5 224.6 230.6 248.4 114.7 177.9 197.4 209.3 218.4
SE 113.9 171.9 221.1 203.4 231.7 112.7 169.8 196.0 180.0 209.1
EC 13.3 93.3 96.0 85.8 95.5 16.6 94.1 96.4 85.7 95.8
F 0 0 0 0 0 0 0 0 0 0

600 0.25 Bias -228 -34.6 9.6 -14.0 13.7 -202.6 -3.1 3.6 -16.0 6.0
SD 91.7 114.4 129.5 140.5 134.0 91.9 116 119.4 130.4 123.1
SE 91.1 114.0 129.9 126.9 133.3 88.5 110.6 117.5 114.1 121.9
EC 28.5 93.9 95.3 89.7 94.4 37.1 93.9 94.3 88.4 94.5
F 0 0 0 0 0 0 0 0 0 0

0.5 Bias -372.4 -57.3 16.6 -22.3 23.4 -343.2 -13.6 7.0 -23.1 11.9
SD 80.7 122.3 151.2 162.3 159.3 81.8 126.4 136.7 147.1 144.0
SE 80.1 120.4 152.7 147.9 158.6 79.2 119.1 135.8 132.6 144.3
EC 0.7 91.4 95.6 89.2 95.8 2.0 93.0 94.8 89.0 94.7
F 0 0 0 0 0 0 0 0 0 0

X ∼ exp(1) − 1 X ∼ (χ2
(1) − 1)/

√
2

300 0.25 Bias -280.9 -98.7 29.0 21.4 50.6 -322.3 -145.3 51.6 47.5 71.4
SD 130.4 165.1 230.1 253.3 250.5 144.4 184.6 302.9 305.4 308.3
SE 136.7 171.5 226.2 198.1 224.6 141.8 179.2 273.2 220.3 259.6
EC 43.5 90.0 95.7 86.5 94.2 36.2 80.6 94.5 84.0 93.3
F 0 0 0 0 0 0 0 0 0 0

0.5 Bias -434.7 -147.9 44.6 1.8 76.9 -476.9 -202.7 88.7 19.5 103.4
SD 110.3 171.7 290.5 271.6 332.8 119.5 190.2 408.6 318.7 396.5
SE 116.1 175.4 283.8 313.6 302.1 118.1 180.8 369.6 298.5 362.0
EC 5.4 84.4 95.9 86.1 96.8 4.1 73 93.8 85.1 94.5
F 0 0 0.3 0 0.3 0 0 0.3 0 1.0

600 0.25 Bias -287.6 -108.3 11.2 3.1 22.4 -329.5 -159.2 20.3 18.8 31.6
SD 91.7 115.4 155.5 171.9 164.9 99.5 126.7 193.8 200.8 194.8
SE 96.1 120.4 157.0 145.5 156.9 99.5 124.8 184.4 160.9 177.8
EC 17.2 84.4 95.5 89.7 95.6 11.5 70.9 95.1 88.5 93.7
F 0 0 0 0 0 0 0 0 0 0

0.5 Bias -439.5 -157.1 19.7 -9.5 33.3 -482.2 -218.8 35.5 9.6 47.6
SD 78.0 120.2 191.6 200.7 204.2 82.5 129.8 241.6 227.6 239.5
SE 81.7 123.1 191.5 171.2 191.3 82.9 125.2 232.3 191.5 221.7
EC 0 71.9 96.0 88.5 96.0 0 53.5 95.5 88.9 95.2
F 0 0 0 0 0 0 0 0 0 0

Note: measurement error U ∼ N(0, σ2
u); NV: naive estimator; RC: regression calibration estimator; CS: conditional score estimator; HW:

Huang & Wang (2001) parametric-correction estimation procedure estimator; WS: weighted-correction estimating function estimator;
Bias: mean bias (× 1000); SD: empirical Monte Carlo standard deviations (× 1000) of estimators; SE: the average of estimated standard
errors(× 1000); EC: empirical coverage probability (%) of 95% Wald confidence interval based on SE; F: root finding failure (%).
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4.3 The combined estimation procedure

When there are more estimating functions than parameters, a general approach is to com-

bine estimating functions to use as much as possible the information available to estimate

the parameters of interest. Among methods to combine estimating functions, empirical

likelihood provides a flexible and efficient way to combine information about parameters

and distributions. Qin & Lawless (1994) showed that the nonparametric empirical likeli-

hood approach holds many nice parametric properties (Section 2.3.2). For example, the

empirical log likelihood ratio follows a limiting distribution of chi-square. Analog to the

parametric approach to obtain an efficient estimator, maximizing the empirical likelihood

function yields the efficient estimator in the class of estimators based on combined estimat-

ing functions (Qin & Lawless 1994, Owen 2001).

We propose to combine the conditional score with the weighted-correction estimating

function using the empirical likelihood. The essence of combining two estimating func-

tions is that at the limit, the weighted-correction estimating function and the conditional

score only share the unique zero crossing at the true value of the parameter. Therefore, the

combined estimation procedure does not have multiple roots problem in large samples. In

addition, the combined estimation procedure maintains the asymptotical local optimality

of the conditional score since the maximum empirical likelihood estimator is at least as

efficient as the estimators from each estimating function combined. Moreover, as a non-

parametric method, the empirical likelihood is expected to have satisfactory finite-sample

performance. Therefore, we adopt the empirical likelihood method to combine the condi-

tional score and the weighted-correction estimating function.

Let O = (Y,W,Z) be the observed data and

g(o, θ) =

(
Ψcs(o, θ)
Ψws(o, θ)

)
,

where Ψcs(θ) and Ψws(θ) are defined in (5.2) and (4.2), respectively. The profile empirical
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likelihood function for θ is

L(θ) = sup

 n∏
i=1

pi | pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pig(oi, θ) = 0

 . (4.4)

A unique maximum of L(θ) exists provided that 0 is in the convex hull of {gi(θ), i =

1, . . . , n}. (4.4) is a constraint optimization problem. Section 2.3.2 shows that the empirical

loglikelihood ratio for θ is

lE(θ) = −

n∑
i=1

log{1 + λTg(oi, θ)},

and the maximum empirical likelihood estimator for θ0 ∈ R
p is given by

θ̃ = arg max
θ∈Rp

min
λ∈R2p
−

n∑
i=1

log(1 + λTg(oi, θ)), (4.5)

where λ is the Lagrange multiplier.

Theorem 4.3.1 Assume that θ ∈ Rp and g(θ) ∈ Rs. Under regularity conditions B1-B9 in

the appendix, then
√

n(θ̃ − θ0)
d
−→ N(0,V),

−2lE(θ0)
d
−→ χ2

s ,

−2{lE(θ0) − lE(θ̃)}
d
−→ χ2

p,

−2lE(θ̃)
d
−→ χ2

q,

where q = s − p and

V = [E(
∂g
∂θ

)T(E(ggT))−1E(
∂g
∂θ

)]−1.

Corollary 4.3.2 Let θT = (θ1, θ2)T, where θ1 ∈ R
k and θ2 ∈ R

p−k. The empirical loglikeli-
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hood ratio statistic for testing H0 : θ1 = θ0
1 is

−2{lE(θ0
1, θ̃

0
2) − lE(θ̃1, θ̃2)}

d
−→ χ2

k ,

where θ̃0
2 is the MELE of lE(θ0

1, θ2).

The empirical loglikelihood ratio statistic is analogous to the parametric loglikelihood

ratio statistic in many large sample properties. We can conduct testing and obtain confi-

dence regions for parameters of interest using the empirical likelihood similar to the general

parametric likelihood approach.

Corollary 4.3.3 θ̃ is asymptotically locally efficient.

Corollary 4.3.3 is a natural result from Corollary 1, 2 and 3 (Qin & Lawless 1994).

Indeed, θ̃ is the optimal estimator among the linear combinations of Ψcs(o, θ) and Ψws(o, θ).

The fact that the consistent conditional score estimator is asymptotically locally efficient

implies θ̃ is asymptotically locally efficient.

In addition to showing the large-sample advantages of the combined estimation pro-

cedure over either the conditional score or weighted-correction estimating function, we

investigate the finite-sample advantages of combining two estimating functions.

we consider a single and error-prone covariate logistic regression model with X ∼

N(0, 1). The true values for (α0, β0) are (0,1). The measurement error follows a stan-

dard normal distribution. The sample size considered is 200. For illustration purpose, we

profile the intercept out and only draw the weighted-correction estimating function plots

with respect to slope β only. We also plot out the conditional score and the combined es-

timation procedure. Figure 4.1 and Figure 4.2 are plots of two samples. For the sample in

Figure 4.1, we found three roots for both the conditional score and the weighted-correction

estimating function. Only the middle one appears to be the correct solution. For the sam-

ple in Figure 4.2, the only root for the weighted-correction estimating function is a false
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root and is far from the truth. We again found three roots for the conditional score. Af-

ter combining these two estimating functions, we found a global empirical likelihood ratio

maximizer around the truth. The empirical likelihoods are maximized at β̂ = 0.87 and

1.17 for those two samples, respectively. These two plots show a very promising picture

that combining the conditional score and the weighted-correction estimating function has

great potential to produce a unique global maximizer around the truth. In finite samples,

the global empirical likelihood maximizer may not be attainable in a neighborhood of the

truth. However, starting from the naive estimator, our approach typically identifies a good

local empirical likelihood maximizer around the truth. As the measurement error becomes

smaller or sample size goes larger, a global maximum of the empirical likelihood can be

attainable around the truth in a compact parameter space.
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Figure 4.1: Plots of (a) the profiled conditional score , (b) profiled weighted-correction
estimating function , and (c) the empirical likelihood ratio (ELR) based on the combined
estimation procedure for a single and error-prone covariate logistic regression model. For
this sample data: N=200. True values (α0, β0) = (0, 1). Both the true covariate and the
additive measurement error follow a standard normal distribution. β̂naive = 0.38. The ELR
is maximized at β̂ = 0.87.
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Figure 4.2: Plots of (a) the profiled conditional score , (b) profiled weighted-correction
estimating function , and (c) the empirical likelihood ratio (ELR) based on the combined
estimation procedure for a single and error-prone covariate logistic regression model. For
this sample data: N=200. True values (α0, β0) = (0, 1). Both the true covariate and the
additive measurement error follow a standard normal distribution. β̂naive = 0.54. The ELR
is maximized at β̂ = 1.17.
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4.4 Simulations

We conduct simulation studies to evaluate the finite-sample performance of the proposed

maximum empirical likelihood estimator. Suppose we have a logistic model with a single

covariate that is measured with large measurement error. We consider two distributions

for the true covariate X: X ∼ N(0, 1) and X ∼ (χ2
(1) − 1)/

√
2. A single surrogate of X

is observed. We consider a model with large measurement error: U ∼ N(0, 1). The true

values for (α0, β0) are (0,1). The true variances of the measurement errors are used in the

simulations. For each model, we conduct 1000 simulations on sample sizes of 200 and

500. For comparison, the naive estimator, the regression calibration estimator, the con-

ditional score estimator, the weighted-correction estimating function estimator , and the

parametric-correction procedure estimator (Huang & Wang 2001) are also reported in the

simulations. Considering that each estimator has some skewness due to the large amount

of measurement errors, we report the bias and efficiency performance using the median

bias and interquartile divided by 1.349, which are similar to Huang & Wang (2001). The

empirical coverage probabilities are evaluated using the 95% bootstrap percentile confi-

dence interval. The bootstrap size considered is 39. A bootstrap size of 39 might not be

big enough to obtain very accurate confidence intervals. However, it is suffice to compare

different approaches here. The naive estimators are chosen as the starting points to perform

all numerical iterations. The simulation results are summarized in Table 4.3.

As seen, the naive estimator has expected large bias. As a natural consequence, its

coverage are extremely poor. The regression calibration estimator has good bias perfor-

mance under normal X. However, its performance becomes very poor under chi-square

X. Both the conditional score estimator and the weighted-correction estimating function

estimator experience certain amount of root finding failures, especially when sample size

is small. Other than that, both estimators have good bias performance on successful root-

findings. The bias performance of maximum empirical likelihood estimator is also very

good, whereas the HW’s estimator tends to have a larger bias than other consistent es-
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Table 4.3: The performance of Slope estimators in a single and error-prone covariate lo-
gistic regression model: Summary of simulation studies.

Size NV RC CS HW WS EL

X ∼ N(0, 1)

200 Bias -541.0 -74.2 31.2 -103.4 16.5 -10.4
SD 118.9 261.7 349.6 278.9 371.0 392.3
EC 2.3 88.2 94.1 91.0 95.8 96.6
F 0 0 1.7 0 8.4 0

500 Bias -542.2 -89.4 17.8 -50.5 33.2 27.7
SD 70.1 159.7 228.0 198.5 236.2 234.5
EC 0 87.3 93.0 91.0 93.3 93.2
F 0 0 0 0 1.0 0

X ∼ (χ2
(1) − 1)/

√
2

200 Bias -637.9 -267.3 -38.0 -195.1 -72.7 62.8
SD 108.6 264.4 491.0 307.0 407.3 479.0
EC 0.8 78.3 92.1 84.1 96.8 95.2
F 0 0 8.5 0 19.3 0

500 Bias -639.4 -278.7 19.1 -68.0 28.1 86.7
SD 71.1 161.4 331.1 244.8 310.9 351.2
EC 0 59.1 93.0 90.9 93.5 91.0
F 0 0 1.4 0 4.9 0

Note: measurement error U ∼ N(0, 1); NV: naive estimator; RC: regression calibration estimator; CS: conditional score estimator; HW:
Huang & Wang (2001)parametric-correction estimation procedure estimator; WS: weighted-correction estimating function estimator;
EL: the maximum empirical likelihood estimator; Bias: median bias (× 1000); SD: estimated standard deviations (× 1000) based on
interquartile; EC: empirical coverage probability(%) of 95% bootstrap percentile confidence interval; F: root-finding failure (%).

timators when the sample size is small. The HW’s estimator has the smallest estimated

standard deviation associated with lower coverage probabilities than other consistent esti-

mators. The the proposed maximum empirical likelihood estimator, the conditional score

estimator and the weighted-correction estimating function estimator have similar perfor-

mance on empirical coverage rates. Similar to HW’s estimator, the proposed maximum

empirical likelihood estimator does not suffer from the root finding failures by maximiz-

ing an objective function. Figures 4.3 and 4.4 show QQ plots for each slope estimator of

the four consistent methods. The HW’s estimator has the smallest skewness. Both the

conditional score and the weighted-correction estimating function estimators suffers from

outliers. Consequently, it is not surprised that the proposed maximum empirical likelihood
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estimator has outstanding outliers. The problems of outliers become more noticeable when

X has a modified chi-square distribution.

For the proposed maximum empirical likelihood estimator, there are at least for dif-

ferent ways to obtain the 95% confidence intervals: the Wald type confidence interval,

the bootstrap percentile confidence interval, the empirical likelihood ratio confidence inter-

val based on Chi-square approximation (Appendix), and the bootstrap empirical likelihood

ratio confidence interval (Appendix). The last two types of confidence intervals are not

available to HW’s estimator based on the GMM approach. This is an advantage of the em-

pirical likelihood over the GMM approach to combine estimating functions since empirical

likelihood provides more ways to obtain confidence intervals. To compare those four types

of confidence intervals, we summarize the coverage probabilities for the slop estimator

from each confidence interval using the same set up as in Table 4.3. The results are shown

in Table 4.4.

Table 4.4: The comparison of empirical coverage probabilities (%) of four 95% confidence
intervals of the maximum empirical likelihood slope estimators in a single and error-prone
covariate logistic regression model

Size Wald ELC BP BELR

X ∼ N(0, 1)

200 75.0 89.5 96.6 98.4
500 91.3 93.1 93.2 95.6

X ∼ (χ2
(1) − 1)/

√
2

200 71.1 84.7 95.2 97.2
500 84.1 87.5 91.0 94.6

Note: measurement error U ∼ N(0, 1); Wald: Wald confidence interval. ELC: Empirical likelihood ratio confidence interval. BP:
bootstrap percentile confidence interval with the bootstrap size of 39. BELR: bootstrap empirical likelihood ratio confidence interval
with the bootstrap size of 39.

The coverage probabilities of the Wald intervals are consistently below the nominal

level. The empirical likelihood ratio confidence interval has better coverage probabilities

than the Wald interval. However, it is in general below the nominal level in finite samples.

Compared to the bootstrap percentile confidence interval, the bootstrap empirical likeli-
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hood ratio confidence interval tends to have a larger coverage probabilities and shows a

satisfactory coverage probability at sample size of 500. Theoretically, the bootstrap empir-

ical likelihood ratio confidence interval is O(n−2) accurate. We recommend using either the

bootstrap percentile method or the bootstrap empirical likelihood ratio method in practice

to obtain confidence intervals.

In the previous numerical studies, the measurement error and the true covariate have

the same standard deviation. The results show that the proposed estimator has a good

performance especially at sample size of 500. Indeed, it is possible that more substantial

measurement error would occur in practice due to the difficulties to obtain accurate mea-

surements of the true covariates. To investigate the abilities of the proposed procedure to

obtain valid point and interval estimates in heavily contaminated data, we conduct another

set of numerical studies with an increased amount of measurement error. We consider

a logistic model with single covariate measured with error and four distributions for the

true covariate X with standard deviation of 1. That is, X ∼ N(0, 1), X ∼ Unif(−
√

3,
√

3),

X ∼ exp(1) − 1, and X ∼ (χ2
(1) − 1)/

√
2. A single surrogate of X is observed. We consider

a model with very large measurement error: U ∼ N(0, 1.32). The true values for (α0, β0)

are (0,1). The empirical coverage probabilities are evaluated using the 95% bootstrap per-

centile confidence interval. The bootstrap size is 39. The true variances of the measurement

errors are used in the simulations. Simulation results based on 1000 simulations are sum-

marized in Table 4.5.

It is not surprised that both the naive estimator and the regression calibration estimator

perform poorly in general. Compared to the results in Table 4.3, both the conditional score

estimator and the weighted-correction estimating function estimator experience even larger

percents of root finding failures, due to a larger measurement error. Other than that, both

estimators have good performance on bias and coverage probabilities. The HW’s estimator

appears to have an undesired median bias performance. In addition, its coverage probabil-

ities are consistently below the nominal level, a natural consequence of its large biases and
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small estimated standard deviations. The proposed maximum empirical likelihood estima-

tor performs excellent in terms of its small median bias. Its performance on coverage prob-

abilities is slightly better than the conditional score estimator and the weighted-correction

estimating function estimator. In general, it outperforms all other estimators.

In summary, both the proposed combined estimation procedure and parametric-correction

estimation procedure (Huang & Wang 2001) have the theoretical advantages over the condi-

tional score in that they only admit consistent sequences in large samples. In finite samples,

they do not suffer the possible root-finding failures as the conditional score and weighted-

correction estimating function does. In general, the proposed estimator has the efficiency

advantage over HW’s estimator in large samples. In addition, it has a better coverage prop-

erty than HW’s estimator in finite samples. When the measurement error is not too large,

HW’s estimator works excellent even if the sample size is small. The HW’s estimator is

also less skewed than the proposed estimator. The proposed estimator appears to work

better when the measurement error is large. When the sample size is small, the proposed

estimator shows some undesired skewness performance. However, the proposed maxi-

mum empirical likelihood estimator has evident advantages over other existing estimators

in dealing with large measurement errors at moderate or large-scale studies.
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Figure 4.3: QQ plots for Slope estimators in a single and error-prone covariate logis-
tic regression model with successful root-finding only. Under the set ups in Table 4.3.
X ∼ N(0, 1). U ∼ N(0, 1). CS: conditional score estimator; HW: Huang & Wang
(2001)parametric-correction estimation procedure estimator; WS: weighted-correction es-
timating function estimator; EL: the maximum empirical likelihood estimator; 200 and 500
are sample sizes.
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Figure 4.4: QQ plots for Slope estimators in a single and error-prone covariate logis-
tic regression model with successful root-finding only. Under the set ups in Table 4.3.
X ∼ (χ2

(1) − 1)/
√

2. U ∼ N(0, 1). CS: conditional score estimator; HW: Huang & Wang
(2001)parametric-correction estimation procedure estimator; WS: weighted-correction es-
timating function estimator; EL: the maximum empirical likelihood estimator; 200 and 500
are sample sizes.
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Table 4.5: The performance of Slope estimators in a single and error-prone covariate lo-
gistic regression model with very large measurement errors

NV RC CS HW WS EL

X ∼ N(0, 1)

Bias -669 -103.2 15.5 -148.6 9.6 9.6
SD 60.2 193.2 288.3 189.6 287.3 290.6
EC 0 87.2 94.4 78.0 96.8 95.2
F 0 0 2.7 0 10.6 0

X ∼ Unif(−
√

3,
√

3)

Bias -647.1 -38.5 4.7 -139.1 -1.3 -21.3
SD 56.8 195.6 226.2 172.2 238.3 202.5
EC 0 91.3 96.1 84.0 96.2 95.4
F 0 0 1.2 0 8.5 0

X ∼ exp(1) − 1

Bias -713.7 -227.6 -16.9 -188.8 -39.3 17.3
SD 57.2 179.2 319.6 214.2 300.2 341.4
EC 0 73.1 96.0 70.0 96.4 96.4
F 0 0 5.6 0 18.0 0

X ∼ (χ2
(1) − 1)/

√
2

Bias -740.6 -304.9 -4.6 -214.1 -44.4 33.8
SD 57.6 189.9 381.4 228.1 343.1 412.5
EC 0 65.2 93.3 67.4 97.2 96.2
F 0 0 7.1 0 20.8 0

Note: Sample size: 500. Measurement error U ∼ N(0, 1.32); NV: naive estimator; RC: regression calibration estimator; CS: conditional
score estimator; HW: Huang & Wang (2001)parametric-correction estimation procedure estimator; WS: weighted-correction estimating
function estimator; EL: the maximum empirical likelihood estimator; Bias: median bias (× 1000); SD: estimated standard deviations
(× 1000) based on interquartile; EC: empirical coverage probability(%) based on 95% bootstrap percentile confidence interval; F: root-
finding failure (%).
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4.5 Real studies

The proposed maximum empirical likelihood estimator and the weighted-correction es-

timating function estimator are evaluated using two real examples. For comparisons, the

analysis results from the naive approach, regression calibration approach, conditional score

approach, and the HW’s parametric-correction estimation procedure approach are also re-

ported.

The ACTG study

The AIDS Clinical Trials group (ACTG) 175 study (Hammer et al. 1996) is a randomized,

double-blind, placebo-controlled trial to compare treatment with either a single nucleoside

or two nucleosides in adults infected with human immunodeficiency virus type 1 (HIV-1)

whose CD4 cell counts were from 200 to 500 per cubic millimeter and had no history of

an AIDS-defining illness. A total of 2467 HIV-1-infected patients were recruited from 43

AIDS Clinical Trials Units and 9 National Hemophilia Foundation sites in the United States

and Puerto Rico. A particular research question is to assess the effect of the true baseline

CD4 count on the symptomatic HIV infection defined as candidiasis, oral hairy leukoplakia,

or herpes zoster reported within 30 days before randomization in antiretroviral-naive pa-

tients (Huang & Wang 2000, 2001). Since the true baseline CD4 count is unobservable,

the screening baseline CD4 count is usually used as a substitute as the true baseline CD4

count. As a fact, the screening baseline CD4 count is subject to both instrumental error and

biological diurnal fluctuation. Therefore, the true baseline CD4 count is measured with

errors. In this study, 1067 patients without antiretroviral therapy were included and 1036

of them had duplicated screening baseline CD4 count measurements prior to the start of

treatment and within 3 weeks of randomization. Huang & Wang (2001) adopted a single

covariate logistic regression model by treating the symptomatic HIV infection as outcome

and the true baseline log(CD4) count as the covariate to assess their relationship based on

the 1036 patients. The average of the duplicated screening baseline log(CD4) counts were
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used as the observed covariate in the model. The measurement error is assumed to be zero

mean normally distributed. The variances of the measurement error and the true baseline

log(CD4) count are estimated to be 0.033 and 0.076 , respectively, using the formulas given

by Carroll et al. (2006) in Section 4.4.2. The amount of the measurement error is substantial

(43% variation compared to the true covariate).

Table 4.6 Shows the analysis results using the six approaches. The naive approach that

treats the average of the two duplicated screening baseline log(CD4) counts as the true

covariate. The 95% confidence intervals are bootstrap percentile intervals based on 999

bootstrap samples, as adopted in Huang & Wang (2001). As seen, the naive estimate has

substantially smaller magnitude than others. All other approaches show similar results. The

weighted-correction estimating function estimate and the maximum empirical likelihood

estimate have slightly shorter lengths of confidence intervals than those of the conditional

score estimate and the parametric-correction estimation procedure estimate. The regression

approach works comparable to other consistent methods, which suggests that both the true

covariate and the measurement error are approximately normal. A better approach to find

the 95% confidence interval of the maximum empirical likelihood estimator is to perform

bootstrap calibration on the empirical likelihood ratio. However, for illustration purpose,

all the approaches adopt the same technique to obtain the interval estimates.

Table 4.6: The summary of the coefficient estimators in ACTG 175 study: Comparison of
different approaches

Intercept ln(CD4)

Estimate 95% CI Estimate 95% CI

NV 4.636 (1.516, 7.883) -1.080 (-1.647, -0.531)
RC 6.004 (2.168, 9.981) -1.313 (-2.003, -0.645)
CS 5.896 (2.134, 9.726) -1.296 (-1.957, -0.644)
WS 5.767 (2.125, 9.659) -1.274 (-1.943, -0.642)
HW 5.955 (2.231, 9.769) -1.306 (-1.965, -0.652)
EL 5.939 (2.038, 9.679) -1.304 (-1.941, -0.636)

Note: NV: naive estimator; RC: regression calibration estimator; CS: conditional score estimator; WS: weighted-correction estimating
function estimator; HW: Huang & Wang (2001)parametric-correction estimation procedure estimator; EL: The proposed maximum
empirical likelihood estimator; 95% CI: Bootstrap percentile confidence interval based on 999 bootstrap samples.
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A blood pressure study

In this study, the relationships between 24-hour urinary sodium chloride and blood pressure

were investigated in 397 middle-aged Chinese men living in Taipe by Pan et al. (1990).

Hanfelt & Liang (1997) used this example to investigate their conditional quasi-likelihood.

Seven overnight urinary sodium chloride measurements had a within-subject variability

of 1.2 when standardized so that the mean urinary sodium chloride measurements had a

variability of 1 across the 397 subjects (Hanfelt & Liang 1997). A logistic regression model

with high systolic blood pressure as outcome and the 24-hour urinary sodium chloride

measurement, plus age and body mass index (BMI) as covariates was adopted by Hanfelt

& Liang (1997). The measurement error in the model is induced since the true 24-hour

urinary sodium chloride measurement is not measurable. In the model, a single (the most

recent) urinary sodium chloride measurement was used. Therefore, the variance of the

measurement error can be assumed to be 1.2 as aforementioned. The estimated variance

of the most recent urinary sodium chloride measurement is 1.82. Then the variance of the

unobservable true covariate can be estimated by 0.62 under additive measurement error

assumption. The amount of the measurement error is very large (about 200% variation

compared to the true covariate). The age and BMI are assumed to be measured with a very

small amount of error due to rounding off. Their measurement error variances are assumed

to be 0.083.

Table 4.7 shows the analysis results using the six approaches. As seen, for the coef-

ficient of urinary sodium chloride, the naive estimate has substantially smaller magnitude

than others. The regression calibration estimate has the largest magnitude and estimated

standard error. The proposed empirical likelihood estimate appears to have a smaller mag-

nitude than those of the other three consistent methods. The proposed empirical likelihood

estimate and the parametric-correction estimation procedure estimate have obvious smaller

estimated standard errors than the conditional score estimate and the weighted-correction

estimating function estimate. This is not very surprise since the normal approximation does
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not perform well for the proposed estimator and the parametric-correction estimation pro-

cedure estimator in terms of interval estimations. Different from the ACTG example, those

four consistent approaches show some discrepancies in estimation in the blood pressure

study. Indeed, when the measurement error is relative small, each of the four consistent

approach would perform similar. However, when the measurement error is very large, they

may show some differences.

It is worth pointing out that using bootstrap method to obtain more accurate variance

estimates does not apply to this study due to the numerical difficulties resulting from the

small rate (7.8%) of subjects having high systolic blood pressure in the original data.

Table 4.7: The summary of the coefficient estimators in the blood pressure study (Pan et al.
1990): Comparison of different approaches

Intercept USC Age BMI

Estimate SE Estimate SE Estimate SE Estimate SE

NV -2.86 0.25 0.33 0.13 0.08 0.03 0.28 0.08
RC -2.84 0.25 0.96 0.38 0.08 0.03 0.28 0.08
CS -2.91 0.27 0.61 0.29 0.08 0.04 0.26 0.09
HW -2.93 0.26 0.59 0.15 0.08 0.04 0.26 0.10
WS -2.98 0.28 0.55 0.22 0.09 0.04 0.27 0.09
EL -2.90 0.25 0.47 0.11 0.06 0.03 0.32 0.08

Note: USC: urinary sodium chloride. NV: naive estimator; RC: regression calibration estimator; CS: conditional score estimator; WS:
weighted-correction estimating function estimator; HW: Huang & Wang (2001)parametric-correction estimation procedure estimator;
EL: The proposed maximum empirical likelihood estimator; SE: estimated standard error.
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4.6 Discussions

When the dimension of estimating functions is larger than the dimension of the parameters

(s > p), empirical likelihood provides a way to combine estimating functions and yields

consistent estimators. There are also other approaches available in the case of s > p. In

generally, one could consider a class of linear combinations of g(x, θ)

ψ(x, θ) = A(θ)g(x, θ),

where A(θ) is a p× s real-functions matrix with rank of p for all the values of θ. The optimal

choice of A(θ) yields the most efficient estimator or θ based on g1(x, θ), . . . , gs(x, θ). Sur-

prisingly, maximizing the empirical likelihood automatically determine the optimal choice

of A(θ). As a result, the MELE is fully efficient in the class of p × 1 estimating functions

based on any linear combinations of g1(x, θ), . . . , gs(x, θ).

Another popular method to combine estimating functions is the generalized method-of-

moments (GMM) method (Hansen 1982). The GMM estimator is defined as the minimizer

of the quadratical form

θ̄ = arg min
θ∈Rp

1
n

n∑
i=1

g(xi, θ)


T

W−1

1
n

n∑
i=1

g(xi, θ)

 , (4.6)

where W is some positive definite matrix. Different choices of W yield different estimators

and they are all consistent. The GMM estimator θ̄ is efficient in the class of estimators

based on g1(x, θ), . . . , gs(x, θ) if the optimal W is chosen. More specifically,

W =
1
n

E{g(θ, X)g(θ, X)T}. (4.7)
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The optimal W can be consistently estimated by

Ŵ =

 1
n2

n∑
i=1

g(θ̂∗, xi)g(θ̂∗, xi)T

 , (4.8)

where θ̂∗ is any consistent estimator of θ. In practice, the GMM estimator is usually ob-

tained using a popular two-steps routine. At the first step, a consistent estimator of θ is

found by setting the weight matrix to be the identity matrix. At the second step, plug the

consistent estimator of θ into (4.8) to obtain the estimated optimal W. Then, the efficient

GMM estimator can be obtained by minimizing the quadratic form in (4.6) using the esti-

mated optimal W. The HW’s estimator (Huang & Wang 2001) was obtained this way.

Asymptotically, the GMM estimator is equivalent to MELE. However, Kitamura (2006)

and Kunitomo & Matsushita (2003), among others, found that the MELE in general has a

better finite-sample performance than the GMM estimator. Our simulations (not shown)

also showed that the empirical likelihood is in general better than the GMM approach in

finite samples.
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4.7 Appendix

4.7.1 Proofs

Conditions for Lemma 4.2.1 and Theorem 4.2.2:

Assume that θ ∈ Θ is sufficient for −θ ∈ Θ, and Θ is compact. Let β = (βT
z , β

T
x )T and

C = (ZT, XT)T.

A1: E{F(α0+β
T
0 C)

(1
C
)⊗2
} and E{F(−α0−β

T
0 X)

(1
C
)⊗2
} are nonsingular, where V⊗2 ≡ VVT

for a vector V.

A2: E(CTC) < ∞ and E{supθ∈ΘCTCexp(2βTC)} < ∞.

A3: E(UTU) < ∞ and E{supθ∈Θexp(2βT U)} < ∞.

The proofs of Lemma 4.2.1 and Theorem 4.2.2 are similar to Huang & Wang (2001)

and therefore omitted here.
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Conditions for Theorem 4.3.1: Assume that the parameter space Θ is compact.

B1: θ0 is uniquely determined by E[g(O, θ)] = 0.

B2: In a neighborhood Θ of θ0, there is a function M(o) with E(M(O)) < ∞.

B3: E[∂g(O, θ0)/∂θ] has rank p.

B4: E[g(O, θ0)g(O, θ0)T] is positive definite.

B5: ∂g(o, θ)/∂θ is continuous in Θ.

B6: ∂2g(o, θ)/∂θ∂θT is continuous in θ in Θ.

B7: ‖g(o, θ)‖3 ≤ M(o) in Θ.

B8: ‖∂g(o, θ)/∂θ‖3 ≤ M(o) in Θ.

B9: ‖∂2g(o, θ)/∂θ∂θT‖ ≤ M(o) in Θ.

The condition B1 is satisfied since E[Ψws(O, θ)] = 0 if and only if θ = θ0. Under

B2-B9, Qin & Lawless (1994) proved the asymptotical properties of maximum empirical

likelihood estimators. Therefore, the results in Theorem 4.3.1 and Corollary 4.3.2 are rather

standard.
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4.7.2 Asymptotic relative efficiency

We give the details to generate the Table 4.1. Assume that X ∼ N(0, σ2
x). When there

are no measurement errors, the weighted-correction estimating function (4.2) reduces to

the correction-amenable estimating function (4.1). For a single covariate logistic model

without measurement error, (4.1) takes the form

Ψ(θ) =

(
Ψ1

Ψ2

)
=

{
(Y − 1)exp(

t
2

) + Yexp(−
t
2

)
} (

1
X

)
, (4.9)

where t = α+ βX. According to Lemma 4.2.1, the asymptotical variance of the estimator θ̃

is

AVAR(̃θ) =
1
n

E (
∂Ψ

∂θ

)T

(E(ΨΨT))−1E
(
∂Ψ

∂θ

)−1

. (4.10)

In (4.10),

∂Ψ

∂θ
=

J11 J12

J21 J22


=


∂Ψ1
∂α

∂Ψ1
∂β

∂Ψ2
∂α

∂Ψ2
∂β

 ,
where

J11 = 0.5
n∑

i=1

{
(Yi − 1)exp(

ti

2
) − Yiexp(−

ti

2
)
}

J12 = 0.5
n∑

i=1

{
(Yi − 1)Xiexp(

ti

2
) − YiXiexp(−

ti

2
)
}

J21 = J12

J22 = 0.5
n∑

i=1

{
(Yi − 1)X2

i exp(
ti

2
) − YiX2

i exp(−
ti

2
)
}
.
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Since Y |X ∼ Bernoulli(P), where P = exp(t)/(1 + exp(t)), E(Y |X) = P. Therefore,

E(J11|X) = −

n∑
i=1

exp(
ti

2
)

1 + exp(ti)

E(J12|X) = −

n∑
i=1

Xiexp(
ti

2
)

1 + exp(ti)

E(J22|X) = −

n∑
i=1

X2
i exp(

ti

2
)

1 + exp(ti)

Then

E
(
∂Ψ

∂θ

)
= E

[
E

(
∂Ψ

∂θ
|X

)]
.

Similarly,

E(ΨΨT) =

n∑
i=1

E

 Ψ2
1i Ψ1iΨ2i

Ψ1iΨ2i Ψ2
2i

 ,
where

Ψ2
1i = (Y2

i − 2Yi + 1)exp(ti) + Y2
i exp(−ti) + 2(Y2

i − Yi),

Ψ1iΨ2i = Ψ2
1iXi and Ψ1iΨ2i = Ψ2

1iX
2
i . Since E(Y2|X) = Var(Y |X)+E2(Y |X) = P(1−P)+P2 =

P,

E(Ψ2
1i|Xi) = (P − 2P + 1)exp(ti) + Pexp(−ti)

= 1.

Consequently,

E(Ψ1iΨ2i|Xi) = Xi

E(Ψ2
2i|Xi) = X2

i .
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Then,

E(Ψ2
1i) = 1

E(Ψ1iΨ2i) = E [E(Ψ1iΨ2i|Xi)] = E(Xi) = 0

E(Ψ2
2i) = E

[
E(Ψ2

2i|Xi)
]

= E(X2
i ) = σ2

x.

Therefore,

E(ΨΨT) =

n 0

0 nσ2
x

 .

For the parametric-correction estimation procedure (Huang & Wang 2001),

Φ(θ) =

(
Φ−(θ)
Φ+(θ)

)
, (4.11)

where

Φ−(θ) =

(
Φ1−

Φ2−

)
=

{
(Y − 1) + Yexp(−t)

} (1
X

)
Φ+(θ) =

(
Φ1+

Φ2+

)
=

{
Y + (Y − 1)exp(t)

} (1
X

)
.

the asymptotical variance of the estimator θ is

AVAR(θ) =
1
n

E (
∂Φ

∂θ

)T

(E(ΦΦT))−1E
(
∂Φ

∂θ

)−1

. (4.12)
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Let ∂Φ
∂θ

= M. The elements of the 2 by 4 matrix M are of following:

M11 =
∂Φ1−

∂α
= −

n∑
i=1

Yiexp(ti)

M12 =
∂Φ1−

∂β
= −

n∑
i=1

YiXiexp(ti)

M21 =
∂Φ2−

∂α
= −

n∑
i=1

YiXiexp(ti)

M22 =
∂Φ2−

∂β
= −

n∑
i=1

YiX2
i exp(ti)

M31 =
∂Φ1+

∂α
=

n∑
i=1

(Yi − 1)exp(ti)

M32 =
∂Φ1+

∂β
=

n∑
i=1

(Yi − 1)Xiexp(ti)

M41 =
∂Φ2+

∂α
=

n∑
i=1

(Yi − 1)Xiexp(ti)

M44 =
∂Φ2+

∂β
=

n∑
i=1

(Yi − 1)X2
i exp(ti)

with the conditional expectation

E(M11|X) = −

n∑
i=1

1
1 + exp(ti)

E(M12|X) = −

n∑
i=1

Xi

1 + exp(ti)

E(M21|X) = −

n∑
i=1

Xi

1 + exp(ti)

E(M22|X) = −

n∑
i=1

X2
i

1 + exp(ti)
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E(M31|X) = −

n∑
i=1

exp(ti)
1 + exp(ti)

E(M32|X) = −

n∑
i=1

Xiexp(ti)
1 + exp(ti)

E(M41|X) = −

n∑
i=1

Xiexp(ti)
1 + exp(ti)

E(M42|X) = −

n∑
i=1

X2
i exp(ti)

1 + exp(ti)

Straight algebra shows

E(ΦΦT|X) =

n∑
i=1

E



exp(−ti) Xiexp(−ti) 1 0

Xiexp(−ti) X2
i exp(−ti) 0 σ2

x

1 0 exp(ti) Xiexp(ti)

0 σ2
x Xiexp(ti) X2

i exp(ti)


Then

E
(
∂Φ

∂θ

)
= E

[
E

(
∂Φ

∂θ
|X

)]
,

and

E(ΦΦT) = E
[
E(ΦΦT|X)

]
.

E
(
∂Ψ
∂θ

)
, E

(
∂Φ
∂θ

)
, and E(ΦΦT) can be evaluated numerically using QUADPACK routines.

The asymptotic relative efficiency between θ̃ and θ is then can be calculated by

ARE =
AVAR(θ)

AVAR(̃θ)
.
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4.7.3 The modified Newton-Raphson procedures

In point estimation, the point estimator is usually defined as root of an unbiased estimating

function. A suitable numerical algorithm is crucial to locate the point estimators success-

fully. In practice, it is usual that there is no analytic form for the roots of the unbiased

estimating function. Therefore, finding the roots typically involves numerical iteration and

is computationally intensive.

The Newton-Raphson method is the most widely used method to solve nonlinear equa-

tions G =
n∑

i=1
g(yi, θ) = 0:

θ(k+1) = θ(k) − a(k)
{
Ġ(θ(k))

}−1
G(θ(k)), (4.13)

where the step size a(k) ≡ 1. The iterations stop upon achieving a pre-specified stopping

rule. The Newton-Raphson method has a quadratic converge rate and can usually find

the root quickly given that the start point is not too far from the root. Since the step size

a(k) ≡ 1 is greedy, the Newton-Raphson method may fail to converge at certain situations.

Therefore, some cautions need to be paid when applying it to find roots. A common mod-

ification to (4.13) is to halve the step size at each iteration if necessary until the algorithm

converges. This strategy appears work well in practice. The choice of stopping rule is also

very important to secure a successful root finding. Two common stopping rules are

• ‖θ(k+1) − θ(k)‖ < ε

• ‖G(θ(k+1))‖ < ε,

where ‖ · ‖ denotes the norm and ε > 0 is the pre-specified tolerance level. Either stop-

ping rule works well for well-shaped estimating functions. However, when the estimating

functions are ill-behaved, for example, the conditional score and the weighted-correction

estimating function, one may encounter the situations that the Newton-Raphson ends up

with some non-zero-crossings based on a single stopping rule. Sometimes those non-zero-



75

crossings can be numerically quite large. Therefore, a stopping rule that guarantees to

locate the zero-crossing whenever there is one needs to be established. We found that the

desired approach is to combine these two stopping rules together and it appears to work ex-

cellent in our simulations. The modified Newton-Raphson procedure has following steps:

1. k = 0. a(0) = 1. ε = 10−8.

2. Calculate

∆1(θ(k)) = G(θ(k))

and

∆2(θ(k)) =
{
Ġ(θ(k))

}−1
G(θ(k))

If max(‖∆1(k)‖, ‖∆2(k)‖) < ε, stop the iterations. θ̂ = θ(k). Otherwise go to next

step.

3. Let a(k) = 1. If ‖∆1(θ(k) − a(k)∆2(θ(k)))‖ > ‖∆1(θ(k))‖, a(k) = a(k)/2 and repeat this

step.

4. θ(k+1) = θ(k) − a(k)∆2(θ(k)). Go to step 2 with k = k + 1.

We conducted extensive simulations to evaluate this modified Newton-Raphson pro-

cedure for the conditional score and weighted-correction estimating function. The results

show that this procedure works excellent and never pick up non-zero-crossings due to nu-

merical issues.

Now we give the detailed formulas to perform the modified Newton-Raphson procedure

for the conditional score and weighted-correction estimating function for a single errors-in

covariate logistic regression model used in Table 4.2, 4.3 and 4.5. Let the measurement

error U ∼ N(0, σ2
u). Let the Hessian matrix for each estimating funciton be

H =

H11 H12

H21 H22


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Conditional score

The conditional score takes the form

Ψcs(θ) = {Y − F(α + βx(W + (Y − 1/2)σ2
uβx)}

(
1

W + (Y − 1/2)σ2
uβx

)
, (4.14)

where F(t) ≡ {1 + e−t}−1. The elements in the Hessian matrix H are

H11 = −

n∑
i=1

F(α + βx(Wi + (Yi − 1/2)σ2
uβx)

1 + exp(ti)

H12 = −

n∑
i=1

F(α + βx(Wi + (Yi − 1/2)σ2
uβx)

1 + exp(ti)
{Wi + (2Yi − 1)σ2

uβx}

H21 = −

n∑
i=1

F(α + βx(Wi + (Yi − 1/2)σ2
uβx)

1 + exp(ti)
{Wi + (Yi − 1/2)σ2

uβx}

H22 =

n∑
i=1

[
F(α + βx(Wi + (Yi − 1/2)σ2

uβx))
1 + exp(ti)

{Wi + (2Yi − 1)σ2
uβx}{Wi + (Yi − 1/2)σ2

uβx}

+(Yi − F(α + βx(Wi + (Yi − 1/2)σ2
uβx)))(Yi − 1/2)σ2

u].

weighted-correction estimating function

The weighted-correction estimating function takes the form

Ψws(θ) = (Y − 1)exp((α + βxW)/2 − σ2
uβ

2
x/8)

(
1

W − σ2
uβx/2

)
+Yexp(−(α + βxW)/2 − σ2

uβ
2
x/8)

(
1

W + σ2
uβx/2

)
. (4.15)
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The elements in the Hessian matrix H are

H11 = 0.5
n∑

i=1

[(Yi − 1)Ai − YiBi]

H12 = 0.5
n∑

i=1

[(Yi − 1)AiCi − YiBiDi]

H21 = H12

H22 = 0.5
n∑

i=1

[
(Yi − 1)Ai(C2

i − σ
2
u) + YiBi(σ2

u − D2
i )
]
,

where

Ai = exp((α + βxWi)/2 − σ2
uβ

2
x/8)

Bi = exp(−(α + βxWi)/2 − σ2
uβ

2
x/8)

Ci = Wi − σ
2
uβ

2
x/2

Di = Wi + σ2
uβ

2
x/2



78

4.7.4 Computations of Empirical Likelihood

The main task of empirical likelihood approach is to find the MELE and confidence re-

gions for some interested parameters. Especially, empirical likelihood provides a way to

find the consistent estimator when there are more estimating functions than the parameters

of interest. Owen (2001) gives detailed discussions on empirical likelihood computations.

Kitamura (2006) discussed valuable computational issues on empirical likelihood. Chen

et al. (2002), Wu (2004, 2005), Chen et al. (2008) proposed some useful bisection and

modified Newton-Raphson algorithms to compute empirical likelihood ratios. Wood et al.

(1996) discussed bootstrapping empirical likelihood ratios to obtain correct critical val-

ues. Indeed, there are many different methods to compute the empirical likelihood and

each method has its own merits on different situations. In this section, we will present the

algorithms to find the MELE θ̃ in (2.24) and its empirical likelihood confidence regions.

The objective function to be maximized is the empirical loglikelihood ratio for θ

lE(θ) = −

n∑
i=1

log{1 + λTg(xi, θ)}. (4.16)

The maximization of lE(θ) is best executed via a nested optimization routine (Owen 2001).

For a fixed θ, the maximization of lE(θ) is equivalent to the minimization of lE(θ) over λ,

an example of convex duality. Therefore, the nested optimization contains two loops:

• Inner loop minimization : lE(θ) is minimized over λ for a fixed θ

• Outer loop maximization: lE(θ) is maximized over θ,

where the inner loop is nested in the outer loop.

Since it is required that pi lies between 0 and 1, 1 + λTg(xi, θ) ≥ 1/n is needed for

each i. In addition, the success of the optimizations relies on the crucial condition that 0 is

inside of the convex hull of g(xi, θ)’s. As long as those conditions are met, the inner loop

minimization is a well-behaved convex function optimization problem and is usually done
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by Newton-Raphson procedure. To see why lE(θ) is convex in λ

∂lE(θ)
∂λ

= −

n∑
i=1

g(xi, θ)
1 + λTg(xi, θ)

, (4.17)

∂2lE(θ)
∂λλT =

n∑
i=1

g(xi, θ)g(xi, θ)T

(1 + λTg(xi, θ))2 . (4.18)

As seen, the Hessian for λ is always positive definite. As a result, Newton-Raphson proce-

dure should work well here.

The outer loop maximization is much more complicated than the inner loop minimiza-

tion in that lE(θ) is in general not concave in θ. Owen (2001) gave detailed formulas for

the outer loop optimization using Newton-Raphson procedure with a warning that it can

be unstable. Indeed, it is also the author’s experience that Newton-Raphson procedure is

not stable and can sometimes behaves unpredictable in the outer loop. The major problem

is that the Hessian in the outer loop can be nearly singular, especially when the estimat-

ing functions are not well-behaved. A more stable optimization method is the simplex

method by Nelder & Mead (1965). This method does not evaluate the second derivative

of estimating functions and it is very reliable with a little sacrifice on efficiency compared

to Newton-Raphson method. We adopted this optimization routine to perform outer loop

maximization. The software R has a built-in function for the simplex method.

Even though the inner loop optimization is a well-behaved convex problem, some cau-

tions are still needed and the Newton-Raphson procedure should be tuned to guarantee a

successful minimization process. Let

l̇(λ) =
∂lE(θ)
∂λ

, l̈(λ) =
∂2lE(θ)
∂λλT .

The modified Newton-Raphson procedure for a fixed θ in the inner loop contains following

steps

1. k = 0. λ(0) = 0, a(0) = 1. ε = 10−8.
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2. Calculate

∆(λ(k)) =
{
l̈(λ(k))

}−1
l̇(λ(k))

If (‖∆(λ(k))‖) < ε, stop the iterations. λ̂ = λ(k). Otherwise go to next step.

3. Let a(k) = 1. If 1+λTg(xi, θ) ≤ 1/n for some i or lE(θ, λ(k)−a(k)∆(λ(k))) < lE(θ, λ(k)), a(k) =

a(k)/2 and repeat this step.

4. λ(k+1) = λ(k) − a(k)∆(λ(k)). Go to step 2 with k = k + 1.

The inner loop optimization usually causes no computational issues since the objective

function is convex in λ. However, the inner loop optimization could fail to converge if 0 is

not in the convex hull of the points {gi(θ), i = 1, . . . , n}. This scenario could happen when

the updated θ̃ is far enough from the truth during iterations. Hence, a bad start point may

cause algorithm fail to converge. Adopting the strategy suggested by Stefanski & Carroll

(1987), we recommend starting from the naive estimator to find the maximum empirical

likelihood estimator. Indeed, in our finite-sample simulation studies with different amounts

of measurement errors, the nested optimization never failed if starting from the naive esti-

mators.

The confidence regions for θ̃ can be constructed using either normal or χ2 approxima-

tion applying the asymptotic results in the previous section. The χ2 calibration is usually

preferred since it reflects the data-shaped confidence regions, a property that is not shared

by the symmetric normal calibration that can cause undesired coverage probabilities. How-

ever, the χ2 approximation is an asymptotic result and its validity can be distorted with

small sample size. Indeed, the χ2 confidence region is usually too conservative in finite

samples. As a result, its coverage probability in finite samples can be consistently below

the nominal level. A second-order correction, Bartlett correction, can reduces the cover-

age error of the χ2 calibration from O(n−1) to O(n−2) to improve the coverage accuracy

(Hall & Scala 1990, DiCiccio et al. 1991). However, such analytical correction procedures

can be very difficult to perform in practice. In addition, the Bartlett correction is accurate
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only if n is large. in finite samples, the Bartlett correction may not be able to make much

improvement. Owen (2001), among others, suggests using bootstrap empirical likelihood

ratio method to obtain the confidence regions. This method also achieves an O(n−2) cov-

erage error asymptotically with a much better finite-sample performance than the Bartlett

correction procedure.

Now we give the algorithm to obtain the 95% bootstrap empirical likelihood ratio con-

fidence interval of the scalar β in Table 4.5. Let θ = (α, β)T.

1. Find the MELE θ̃ = (α̃, β̃)T from the original data using the algorithms aforemen-

tioned.

2. Draw bootstrap samples (Xb
1 , . . . , X

b
n) with replacement and with equal probability

from the original data, b = 1, 2, . . . , B.

3. Calculate

Rb = −2{max
α

lE(Xb
1 , . . . , X

b
n , α, β̃) −max

α,β
lE(Xb

1 , . . . , X
b
n , α, β)}, b = 1, 2, . . . , B

and find the 95% quantile of Rb, denotes as CB.

4. Find β such that

{
β : −2{max

α
lE(X1, . . . , Xn, α, β̃) −max

α,β
lE(X1, . . . , Xn, α, β)} ≤ CB

}
,

which gives the 95% bootstrap calibration confidence interval of β̃. The standard

empirical likelihood confidence interval is obtained by replacing CB by χ2
1 = 3.841.
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Chapter 5

Building Objective Functions

5.1 Introduction

Combining the conditional score with the weighted-correction estimating function pro-

vides a way to resolve the multiple-roots problem of the conditional score and yield lo-

cally efficient estimators. Even though this approach is theoretically solid, its finite-sample

properties might be distorted by combining a typically less efficient estimating function

with the asymptotically locally efficient conditional score. We observed that the combined

procedure estimator may have noticeable skewness (Figure 4.3 and 4.4). In addition, our

simulation did not show an obvious efficiency gain by combining two estimating functions

(Table 4.3 and Table 4.5). In fact, we usually found that the combined procedure estimator

has larger estimated standard deviations than those of the conditional score estimator.

In theory, combining estimating functions would not result in first-order efficiency loss.

Typically, possible efficiency gains may be expected by combining estimating functions.

However, this desirable efficiency property is based on first-order asymptotical theory. In

finite samples, combining estimating functions may reduce the second-order efficiency that

can offset the first-order efficiency gains (Qu et al. 2008). In our case, the conditional

score is already locally efficient. By including a typically less efficient weighted-correction



83

estimating function, we may encounter efficiency loss, as shown in the simulation studies

(Table 4.3 and Table 4.5).

Another approach to resolve the multiple-roots problem of the conditional score is to

build an objective function to distinguish among multiple roots of the conditional score.

Once the consistent estimator of the conditional score is identified, the local efficiency is

secured. This approach could avoid the potential efficiency loss of the combining approach

in Chapter 4.

In the presence of multiple solutions, Stefanski & Carroll (1987) suggested choosing

the root closest to the naive estimator. This approach usually works well unless measure-

ment errors are too large. However, this approach is rather heuristic, and lacks of solid

theoretical justifications compared with maximum likelihood estimation. To resolve this

issue, Hanfelt & Liang (1997) constructed an objective function, called the conditional

quasi-likelihood, by performing a line integral on the conditional score. The correct solu-

tion to the conditional score is the one maximizing the conditional quasi-likelihood in large

samples. This approach appears to work well in practice. Nevertheless, the conditional

quasi-likelihood is in general not unique in finite smaples.

In this chapter, we aim to develop objective functions to distinguish among multiple

roots of the conditional score.
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5.2 Conditional quasi-likelihood

Building an objective function to distinguish among multiple roots for estimating functions

is a very attractive approach since it shares the merit of maximum likelihood estimation.

However, since most of the unbiased estimating functions are not conservative, they can not

be written as derivatives of objective functions. As a result, building objective functions is

nontrivial in general.

Inspired by the unconditional quasi-likelihood approach (Wedderburn 1974, McCullagh

1983), Hanfelt & Liang (1997) proposed to integrate the conditional score (Stefanski &

Carroll 1987) to form the conditional quasi-likelihood. For an arbitrary path θ(s), a ≤ s ≤ b,

in θ−space from two values θ and η, the conditional quasi-likelihood ratio of θ to η is give

by the line integral

Qθ(s)(θ, η) =

∫ θ(b)

θ(a)
Ψcs(θ(s)) dθ(s). (5.1)

For the logistic model, the conditional score (Stefanski & Carroll 1987) takes the form

Ψcs(θ) = {Y − F(α + βT
z Z + βT

x (W + (Y − 1/2)Σuuβx)}


1

Z

t(∆)

. (5.2)

Since the conditional score is not conservative:

∂Ψ j(θ)
∂θT

i

,
∂Ψi(θ)
∂θT

j

for i , j,

it can not be written as the derivative of an objective function in general. To overcome this

issue, Hanfelt & Liang (1997) carefully chose

t(∆) = ∆ + (E(Y |∆) − 1))Σuuβx. (5.3)

The specific choice of t(∆) (5.3) makes Qθ(s) to be independent of path θ(s) as n → ∞.
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Therefore, one could apply Qθ(s) to distinguish among multiple roots in large samples.

Hanfelt & Liang (1997) showed that in large samples the consistent root of Ψcs is corre-

sponding to a local maximizer of Qθ(s). On the other hand, local minimizers of Qθ(s) are

corresponding to inconsistent roots.

In finite samples, Qθ(s) is typically path-dependent and not unique. However, simula-

tions results suggest that Qθ(s) works very well under large measurement errors (Hanfelt &

Liang 1997).

The conditional quasi-likelihood is a valuable method to resolve the multiple-roots

problem of the conditional score. Even though its finite-sample performance is very good,

it is typically path-dependent in finite samples and therefore, remains an incomplete solu-

tion to the multiple-roots problem.
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5.3 The objective functions

In this section, we construct two objective functions that are based on the weighted-

correction estimating function Ψws(θ) (4.2). We will show that these two objective func-

tions are well defined in a compact parameter space and can be used to distinguish among

multiple roots of the conditional score in large samples.

In section 4.2, we developed Ψws(θ) by performing correction on the correction-amenable

estimating function Ψ(θ) (4.1). However, Ψws(θ) can also be developed in terms of objec-

tive function. It is easy to show that Ψ(θ) can be written as the derivative of the following

objective function

K(Y, X,Z, θ) = 2
{

(Y − 1)exp(
α + βT

z Z + βT
x X

2
) − Yexp(−

α + βT
z Z + βT

x X
2

)
}
. (5.4)

Similar to the score function (2.3), K(θ) is strictly concave since its Hessian matrix is

always negative definite for all θ:

HK(Y, X,Z, θ) = 0.5
{

(Y − 1)exp(
α + βT

z Z + βT
x X

2
) − Yexp(−

α + βT
z Z + βT

x X
2

)
} (

Z
X

)(
Z
X

)T

.

(5.5)

In the presence of measurement error, the corrected score based on the logistic regres-

sion loglikelihood function does not exist (Stefanski 1989). However, one could perform

correction on K(Y, X,Z, θ). Under additive measurement error model, The resulting objec-

tive function Q(Y,W,Z, θ) is given by

Q(Y,W,Z, θ) = 2
 (Y − 1)exp((α + βT

z Z + βT
x W)/2)

E(exp(βT
x U/2))

−
Yexp(−(α + βT

z Z + βT
x W)/2)

E(exp(−βT
x U/2))

 ,
(5.6)

which satisfies

E{Q(Y,W,Z, θ)|(Y, X,Z)} = K(Y, X,Z, θ).

That is, Q(Y,W,Z, θ) and K(Y, X,Z, θ) achieve the same limit, and Q(Y,W,Z, θ) is concave
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at the limit. The weighted-correction estimating function Ψws(θ) can then be obtained by

take the derivative of Q(Y,W,Z, θ) with respect to θ. It can be shown that Q(Y,W,Z, θ) is

non-positive. As usual, the measurement error is often assumed to be normally distributed:

U ∼ N(0,Σuu). Then Q(Y,W,Z, θ) becomes to

Q(Y,W,Z, θ) = 2
 (Y − 1)exp((α + βT

z Z + βT
x W)/2)

exp(βT
x Σuuβx/8)

−
Yexp(−(α + βT

z Z + βT
x W)/2)

exp(βT
x Σuuβx/8)

 .
(5.7)

We define the corrected quasi-likelihood as:

Qn(θ) =
1
n

n∑
i=1

Q(yi,wi, zi, θ). (5.8)

For convenience, we use the notation Q(θ) to denote Q(Y,W,Z, θ) (5.7). The existence

of an objective function Qn(θ) for Ψws(θ) makes it possible to define the estimator of Ψws(θ)

as the maximizer of Qn(θ). A potential issue here is that Qn(θ) has a correction factor

exp(βT
x Σuuβx/8). As a result, Qn(θ) will be maximized towards zero as |βx| → ∞. However,

if the parameter space is compact, the estimator of Ψws(θ) can be defined as the maximizer

of Qn(θ). Similar scenarios were also found for the corrected score (Nakamura 1990, Ste-

fanski 1989) that is derived as the derivative of corrected loglikelihood functions (2.8).

Unlike the loglikelihood functions in the absence of measurement errors, the corrected log-

likelihood functions are, in general, unbounded as |βx| → ∞ (Nakamura 1990, Stefanski

1989). Therefore, the corrected score estimator may not be regarded as the maximizer of

the corrected loglikelihood functions either unless the parameter space is compact.

In a compact parameter space, the maximizer of Qn(θ) is consistent. The maximizer can

be found by solving the weighted-correction estimating function. By the fact that both the

weighted-correction estimating function and conditional score yield consistent roots of the

same parameter, one can use Qn(θ) as an objective function to distinguish among multiple

roots of the conditional score in large samples.
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Theorem 5.3.1 Assume that there exists a consistent root for the conditional score. Then,

among all the roots of the conditional score as n→ ∞, the maximizer of Qn(θ) is consistent

if following regularity conditions are met:

1. The parameter space θ ∈ Θ is compact

2. X and Z are bounded

In addition to solve the unbiased estimating equation

1
n

n∑
i=1

Ψws(yi,wi, zi, θ) = 0, (5.9)

one can also use empirical likelihood method to obtain the weighted-correction estimating

function estimator θ̂ws. Based on Ψws(θ) only, the profile empirical likelihood function for

θ is

L(θ) = sup

 n∏
i=1

pi | pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piΨws(yi,wi, zi, θ) = 0

 .
Using Lagrange multipliers (Section 2.3.2), one can show that the empirical loglikelihood

ratio for θ is

lws(θ) = −

n∑
i=1

log{1 + λTΨws(yi,wi, zi, θ)},

where λ is the Lagrange multiplier that solves

1
n

n∑
i=1

Ψws(yi,wi, zi, θ)
1 + λTΨws(yi,wi, zi, θ)

= 0

for fixed θ. Note that λ is a continuous differentiable function of θ (Qin & Lawless 1994).

Maximizing the objective function lws(θ) yields the maximum empirical likelihood esti-

mator for θ. Since the parameters and estimating functions have the same dimension, the

resulting maximum empirical likelihood estimator is the same as the one obtained by solv-

ing the equation (5.9). For any roots of Ψws(θ), lws(θ) will attain its maximum value of 0. As

n→ ∞, lws(θ) will be only maximized to 0 by its consistent roots in a compact parameter
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space. Define the corrected empirical likelihood

Dn(θ) = −
1
n

n∑
i=1

log{1 + λTΨws(yi,wi, zi, θ)}. (5.10)

Since Ψws(yi,wi, zi, θ) has a unique zero crossing at θ0 at the limit, Dn(θ) has the desired

concavity property at the limit with the maximum value of zero at θ0. Again, by the fact

that both the weighted-correction estimating function and conditional score yield consistent

roots of the same true parameter, one may use Dn(θ) as an objective function to distinguish

among multiple roots of the conditional score in large samples.

We conjecture that under the same conditions in Theorem 5.3.1, among all the roots of

the conditional score as n → ∞, the maximizer of Dn(θ) is consistent (See Section 5.5 for

a discussion on this conjecture).

In finite samples, both approaches have their own advantages and disadvantages. The

weighted-correction estimating function Ψws(θ) could have multiple solutions. Qn(θ) and

Dn(θ) behave different at those multiple solutions. As a matter of fact, the correct root of

Ψws(θ) is corresponding to a local maximizer of Qn(θ), whereas local minimizers of Qn(θ)

are corresponding to improper roots. Indeed, for a correct root of Ψws(θ), its observed in-

formation matrix must be positive-definite. On the other hand, Dn(θ) will be maximized to

zero at all of roots of Ψws(θ). That is, Qn(θ) provides more information about the roots of

Ψws(θ) than Dn(θ) in the sense of positive or negative definiteness of the observed informa-

tion matrix at roots .

However, due to the existence of the correction factor exp(βT
x Σuuβx/8), Qn(θ) might be

maximized towards zero for arbitrarily large |βx|. In addition, when the measurement error

is large enough, Qn(θ) might also be maximized towards zero because of the correction

factor. On the other hand, Dn(θ) does not necessarily become larger as |βx| becomes larger.

Therefore, Dn(θ) may have a better tail behavior than Qn(θ) in finite samples, which could

be crucial for the ability to distinguish among conditional score roots in practice.
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To better understand the finite-sample behaviors of Qn(θ) and Dn(θ), let’s consider a

single and error-prone covariate logistic model with sample size of 200. True values of

(α0, β0) considered are (0, 1). Both the true covariate and the additive measurement error

follow a standard normal distribution. Figure 5.1 plots out the weighted-correction esti-

mating function Ψws(θ), the corrected quasi-likelihood Qn(θ), and the corrected empirical

likelihood D(θ) with respect to β. In this example, Ψws(θ) has three roots. only The middle

one (β̂ = 0.94) appears to be the correct root since it is the only root that has positive-

definite observed information matrix. As seen from the graph of Qn(θ), this root (β̂ = 0.94)

is corresponding to a local maximizer of Qn(θ), whereas the other two roots are correspond-

ing to local minimizers of Qn(θ). On the other hand, Dn(θ) is maximized to zero at all of

those three roots. Examining the tails of Qn(θ) and Dn(θ), we can find that the tails of Qn(θ)

go up as |β| increases, whereas the tails of Dn(θ) go down eventually as |β| increases.

In the next section, the abilities of Qn(θ) and Dn(θ) to distinguish among roots of the

conditional score will be investigated through simulations.
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Figure 5.1: An illustration of Qn(θ) and Dn(θ). The weighted-correction estimating function
has three roots. Plots in this graph are (a) profiled weighted-correction estimating func-
tion, (b) Qn(θ) , and (c) Dn(θ). For this sample data: N=200. True values (α0, β0) = (0, 1).
Both the true covariate and the additive measurement error follow a standard normal dis-
tribution.
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5.4 Distinguish among multiple roots

5.4.1 Simulations

We conduct three simulation studies to investigate the abilities of Qn(θ) and Dn(θ) to dis-

tinguish among multiple roots of the conditional score in finite samples. To apply objective

functions to the conditional score, one wants to find all the possible roots of the conditional

score. We adopted the random start points approach (Robbins 1968, Thode et al. 1987,

Finch et al. 1989). This approach was also adopted by Hanfelt & Liang (1997) in their

study of the conditional quasi-likelihood. For each simulated data set, we search all possi-

ble roots using 8000 random start points from {−6 ≤ θ ≤ 6}. Then the probability of a new

root remains unfound is less than 0.05.

In Chapter 3, we have discussed that the conditional score may fail to generate a good

root when the measurement error is large. Typically, the conditional score yields a single

but bad root (Figure 3.4) at that situation. In this simulation study, we focus on the cases

where the conditional score yield at least a good root. Indeed, this is a prerequisite for

applying an objective function to distinguish among roots.

In our simulation studies, we evaluate the values of Qn(θ) and Dn(θ) at each conditional

score root. The root being selected by each objective function is the one maximizing the

corresponding objective function. The performance of each objective function will be eval-

uated by its successful rate (%) of identifying the correct conditional score root, which is

defined as the one closest to the truth in Euclidean distance.

In the first simulation study, we consider a single measured with error covariate logistic

regression. The true covariate X ∼ N(0, 1). A large measurement error is considered: ε ∼

N(0, 1). The true values θ0 = (0, 1). We simulated 1000 data sets with a sample size of sizes

of 200. 17 samples fail to generate a good conditional score root. That is, the conditional

score yields a single but bad root (Figure 3.4). In other 973 samples, the conditional score

generated 3 roots for each data set. Similar to the conditional score, the weighted-correction
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estimating function yields either one or three roots. When only one root is generated,

that single root is a bad root and far from the truth. We also found out whenever the

conditional score has a single but bad root, the weighted-correction estimating function

yields a single but bad root for sure. This indicated that the conditional score is more

computationally stable than the weighted-correction estimating function. For the weighted-

correction estimating function, 84 samples fail to generate a good root. Table 5.1 shows the

multiple conditional score roots of a simulated data set. Each roots are evaluated for their

values of Qn(θ) and Dn(θ). As seen, both Qn(θ) and Dn(θ) successfully identify the root

(θ̂1) closest to θ0 in Euclidean distance. Qn(θ) and Dn(θ) had a successful rate of 89.9% and

98.3%, respectively, to identify the correct rootin 973 samples. The heuristic procedure by

Stefanski & Carroll (1987) identifies all of the correct roots in 973 samples.

Table 5.1: Distinguish among multiple roots of the conditional score: one sample from
simulation study 1

Multiple Roots d Qn(θ) Dn(θ)

θ̂1 = (0.11,1.08) 0.14 -1.83 -0.07
θ̂2 = (-3.27,6.74) 6.61 -12.32 -0.89
θ̂3 = (0.64,-6.12) 7.15 -13.14 -3.14

Naive Estimator
θ̂N = (-0.31,0.71) 0.42

Note: d: Euclidean distance to θ0. n = 200. θ0 = (0, 1). xi ∼ N(0, 1) and the measurement errors ui ∼ N(0, 1). The naive estimator θ̂N
ignores the measurement error.

We now draw graphs to illustrate how Qn(θ) and Dn(θ) distinguish among conditional

score roots in simulation study 1. For illustration purpose, we profile the intercept out and

only draw the plots with respect to slope β only.

When the weighted-correction estimating function yields a single root, Qn(θ) would fail

to identify the correct root of the conditional score for sure in simulation study 1 (Figure

5.2 and 5.3) since Qn(θ) would just keep increasing at the tail. On the other hand, Dn(θ),

even though fails in some cases (Figure 5.2), can pick up the correct root most of the

time (Figure 5.3). The reason is that Dn(θ) typically have a local maximizer around the
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correct conditional score root even though the local maximizer can not be zero at that case.

That local maximizer may still provide some information to help to identify the correct

conditional score root.

When the weighted-correction estimating function yields three roots. Both Qn(θ) (Fig-

ure 5.4) and Dn(θ) (Figure 5.4 and 5.5) have high successful rates to identify the correct

root. However, Qn(θ) is more likely to fail than Dn(θ) does (Figure 5.5). The cases that both

Qn(θ) and Dn(θ) fail to pick up the correct root, or Qn(θ) succeeds but Dn(θ) fails to identify

the correct root are extremely rare when the weighted-correction estimating function yields

three roots.

The second simulation study has a sample size of 300. We simulated 500 data sets

. Four covariates were considered with two of them measured with errors. The true pa-

rameter values are θ0 = (0, 1,−0.4, 0.4,−1). Four covariates follows a multivariate normal

distribution: Xi ∼ N4(0, τI) for i = 1, 2, 3, 4. and τ = 1. x1 and x2 are measured with zero

mean normal errors with variances of τ/2 and τ/4, respectively. The measurement errors

in this model are substantial. The conditional score generated 3-11 roots with 5 roots in

average. Table (5.2) shows a successful example of Qn(θ) and Dn(θ) to identify the correct

root. In the 500 simulations, both Qn(θ) and Dn(θ) identify the correct roots 99.4% of time.

The heuristic procedure by Stefanski & Carroll (1987) identifies all of the correct roots in

500 samples.

The third simulation study was used by Hanfelt & Liang (1997) to investigate the per-

formances of the conditional quasi-likelihood to distinguish among conditional score mul-

tiple roots. The sample size they considered is 200. 500 data sets were simulated. The

true θ0 = (−1.4, 1.4,−0.3, 0.3, 0.6). The true covariates Xi ∼ N4(0, τI) and the measure-

ment errors Ui ∼ N4(0,Σuu), where τ = 0.1 and Σuu = diag{τ/3, τ, τ, τ}. Hanfelt & Liang

(1997) found that 490 samples yielded roots in the interior of the parameter space and

an average of over seven roots were generated by the conditional score. The conditional

quasi-likelihood (Hanfelt & Liang 1997) successfully identified the correct root in all 490
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Table 5.2: Distinguish among multiple roots of the conditional score: one sample from
simulation study 2

Multiple Roots d Qn(θ) Dn(θ)

θ̂1 = (-0.04,0.96,-0.29,0.46,-0.98) 0.14 -1.67 -0.12
θ̂2 = (1.11, -8.8, -5.75, -1.81,-1.14) 11.44 -24.85 -4.25
θ̂3 = (0.1,6.49,-9.92,4.69,-3.45) 12.05 -17.42 -3.85
θ̂4 = (-3.45,9.76,-5.58,3.08,-6.31) 12.28 -32.90 -4.13
θ̂5 = (-5.44,10.03,-0.38,0.04,-7.44) 12.36 -22.84 -1.84

Naive Estimator
θ̂N = (-0.02, 0.58, -0.21, 0.42, -0.93) 0.47

Note: d: Euclidean distance to θ0. n = 300. θ0 = (0, 1,−0.4, 0.4,−1). Xi ∼ N4(0, τI) and the measurement errors Ui ∼ N4(0,Σuu),
where τ = 1 and Σuu = diag{τ/2, τ/4, 0, 0}. The naive estimator θ̂N ignores the measurement error.

samples. We adopted the same set ups as in Hanfelt & Liang (1997) to compare three

approaches. Table(5.3) shows the multiple conditional score roots of a simulated data set.

In our simulated data, 10 samples fail to generate a good root and an average of over 9

roots were founded in other 490 samples for the conditional score. On the other hand, the

weighted-correction estimating function fails to generate a good root in 276 samples. Qn(θ)

and Dn(θ) had a successful rate of 90.0% and 99.0%, respectively, to identify the correct

root. An interested finding is that Qn(θ) can still identify some correct conditional score

roots even if the weighted-correction estimating function fails to generate a good root. Re-

call that in the simulation study 1 where the model has a single covariate, Qn(θ) would

fail for sure. Indeed, the finite-sample behavior of Qn(θ) is complicated under multiple

covariates and may deserve more investigations in future study. The heuristic procedure by

Stefanski & Carroll (1987) identifies all of the correct roots in 490 samples.

According to these 3 simulation studies, Dn(θ) appears to perform better than Qn(θ)

to distinguish among roots of the conditional score in finite samples (Table 5.4). Indeed,

when the measurement error is large enough, the weighted-correction estimating function

is more likely to fail to yield a good root. This fact could reduce the ability of Qn(θ), which

is heavily depends on the behave of the weighted-correction estimating function, to distin-

guish among conditional score roots. For example, in simulation study 1 and 3. We also
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Table 5.3: Distinguish among multiple roots of the conditional score: one sample from
simulation study 3

Multiple Roots d Qn(θ) Dn(θ)

θ̂1 = (-1.22,1.50,-0.37,0.13,0.80) 0.34 -1.66 -0.06
θ̂2 = (-1.51,1.82,-9.27,4.65,6.92) 11.81 -2.40 -1.88
θ̂3 = (-1.04,-2.52,-5.81,-8.40,8.48) 13.55 -2.52 -0.57
θ̂4 = (-0.96,-1.1,-11.22,-4.13,8.82) 14.59 -2.65 -2.07
θ̂5 = (-2.37,1.75,12.54,3.78,-5.55) 14.69 -2.96 -1.27
θ̂6 = (-0.91,-2.13,-9.38,-11.79,-2.85) 15.91 -2.84 -8.61
θ̂7 = (-0.47, -3.09, -11.2, -11.37,0.89) 16.62 -2.88 -4.15
θ̂8 = (-0.91,-5.17,-2.01,5.52,-14.77) 17.60 -4.87 -3.95
θ̂9 = (-1.45,-3.17,-9.87,-1.04,-14.32) 18.35 -5.07 -2.02
θ̂10 = (-1.21,-2.8,-13.4,-1.89,-11.91) 18.72 -4.90 -4.89
θ̂11 = (-0.95,5.30,12.29,-9.59,-8.51) 18.83 -6.30 -4.95
θ̂12 = (-2.58,-5.34,6.45,8.23,-13.71) 18.97 -5.14 -2.13

Naive Estimator
θ̂N = (-1.19, 1.19, -0.18, 0.09, 0.35) 0.46

Note: d: Euclidean distance to θ0. n = 200. θ0 = (−1.4, 1.4,−0.3, 0.3, 0.6). Xi ∼ N4(0, τI) and the measurement errors Ui ∼ N4(0,Σuu),
where τ = 0.1 and Σuu =diag{τ/3, τ, τ, τ}. The naive estimator θ̂N ignores the measurement error.

conducted more simulations on different sample sizes and amounts of measurement errors.

The results show that Dn(θ) performs consistently better than Qn(θ), and its successful rates

are unanimously high.

In summary, Dn(θ) has a satisfactory performance on distinguishing among multiple

roots of the conditional score in finite samples. We suggested using the corrected empirical

likelihood Dn(θ) to distinguish among multiple roots of the conditional score for logistic

regression with errors-in-covariates in practice.

Table 5.4: The successful rates (%) of identifying correct conditional score roots using
Qn(θ) and Dn(θ) in the three simulation studies

Simulation N P R Qn(θ) Dn(θ) S&C

1 200 1 3 89.9 98.3 100
2 300 4 5 99.4 99.4 100
3 200 4 9 90.9 99.0 100

Note: S&C: The heuristic procedure by Stefanski & Carroll (1987). P: number of covariates. R: average number of roots
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5.4.2 A High Blood Pressure study

We apply the proposed objective function Dn(θ), along with the Qn(θ) to a real study. In

this study, the relationships between 24-hour urinary sodium chloride and blood pressure

were investigated in 397 middle-aged Chinese men living in Taipe by Pan et al. (1990).

Hanfelt & Liang (1997) used this example to investigate their conditional quasi-likelihood.

Seven overnight urinary sodium chloride measurements had a within-subject variability

of 1.2 when standardized so that the mean urinary sodium chloride measurements had a

variability of 1 across the 397 subjects (Hanfelt & Liang 1997). A logistic regression model

with high systolic blood pressure as outcome and the 24-hour urinary sodium chloride

measurement, plus age and body mass index (BMI) as covariates was adopted. The age and

BMI were standardized by minus 53.2 years and 23.5, respectively. The measurement error

in the model is induced since the true 24-hour urinary sodium chloride measurement is not

measurable. In the model, a single (the most recent) urinary sodium chloride measurement

was used. Therefore, the variance of the measurement error can be assumed to be 1.2

as aforementioned. The estimated variance of the most recent urinary sodium chloride

measurement is 1.82. Then the variance of the unobservable true covariate can be estimated

by 0.62 under additive measurement error assumption. The amount of the measurement

error is very large (194% variation compared to the true covariate). The age and BMI are

assumed to be measured with a very small amount of error due to rounding off. Their

measurement error variances are assumed to be 0.083. Three roots were found by the

conditional score approach. Table 5.5 shows the multiple roots and the corresponding

values of Qn(θ) and Dn(θ). Both objective functions identify θ̂1 to be the correct root,

which is also the closest root to the naive estimator. Hanfelt & Liang (1997) also identified

θ̂1 as the correct root. Therefore, the estimated effects of 24-hour urinary sodium chloride,

the standardized age and BMI are 0.61, 0.08, and 0.26, respectively.
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Table 5.5: Distinguish among multiple roots of the conditional score: A High Blood Pres-
sure study

Multiple Roots d† Qn(θ) Dn(θ)

θ̂1 = (-2.91,0.61,0.08,0.26) 0.29 -0.92 -0.15
θ̂2 = (1.24,-4.47,-0.01,0.05) 6.32 -4.39 -2.76
θ̂3 = (-11.26,6.61,-0.30,-0.92) 10.85 -19.04 -2.40

Note: d†: Euclidean distance to the naive estimator θ̂N = (−2.86, 0.33, 0.08, 0.28). The measurement errors U ∼ N3(0,Σuu), where
Σuu = diag{1.2, 0.083, 0.083}.
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Figure 5.2: Distinguish among multiple conditional score roots using Qn(θ) and Dn(θ).
The weighted-correction estimating function yields a single root. Both Qn(θ) and Dn(θ)
fail to identify the correct root. Plots in this graph are (a) profiled weighted-correction
estimating function, (b) Qn(θ) , and (c) Dn(θ). For this sample data: N=200. True values
(α0, β0) = (0, 1). Both the true covariate and the additive measurement error follow a
standard normal distribution.
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Figure 5.3: Distinguish among multiple conditional score roots using Qn(θ) and Dn(θ).
The weighted-correction estimating function yields a single root. Qn(θ) fails, whereas Dn(θ)
succeeds to identify the correct root. Plots in this graph are (a) profiled weighted-correction
estimating function, (b) Qn(θ) , and (c) Dn(θ). For this sample data: N=200. True values
(α0, β0) = (0, 1). Both the true covariate and the additive measurement error follow a
standard normal distribution.
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Figure 5.4: Distinguish among multiple conditional score roots using Qn(θ) and Dn(θ). The
weighted-correction estimating function yields three roots. Both Qn(θ) and Dn(θ) succeed to
identify the correct root. Plots in this graph are (a) profiled weighted-correction estimating
function, (b) Qn(θ) , and (c) Dn(θ). For this sample data: N=200. True values (α0, β0) =

(0, 1). Both the true covariate and the additive measurement error follow a standard normal
distribution.
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Figure 5.5: Distinguish among multiple conditional score roots using Qn(θ) and Dn(θ).
The weighted-correction estimating function yields three roots. Qn(θ) fails, whereas Dn(θ)
succeeds to identify the correct root. Plots in this graph are (a) profiled weighted-correction
estimating function, (b) Qn(θ) , and (c) Dn(θ). For this sample data: N=200. True values
(α0, β0) = (0, 1). Both the true covariate and the additive measurement error follow a
standard normal distribution.
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5.5 Discussions

In this chapter, we constructed two objective functions: the corrected quasi-likelihood

Qn(θ) and the corrected empirical likelihood Dn(θ), to the conditional score. We stated

that both objective functions have desirable large-sample properties: achieve consistent in-

ference of θ as n → ∞. However, we only gave a rigorous proof to Qn(θ) (Section 5.6).

We could possibly establish a theorem to Dn(θ), similar to Theorem 5.3.1 for Qn(θ). Un-

fortunately, Dn(θ) is a much more complicated function in structure than Qn(θ) since Dn(θ)

involves a Lagrange multiplier λ that is a continuous differentiable function of θ.

A crucial step to show that, among all the roots of the conditional score as n → ∞,

the maximizer of Dn(θ) is consistent is to show that Dn(θ) converge uniformly in proba-

bility over the compact parameter space of θ and λ. Important sufficient conditions for

Dn(θ) to converge uniformly Hong et al. (2003) are (a) Ψws(yi,wi, zi, θ) is uniformly con-

tinuous in θ; and (b) Ψws(yi,wi, zi, θ) is uniformly bounded. Once the uniform convergence

in probability is true for Dn(θ), a rigorous proof of our conjecture on Dn(θ) can be done by

applying similar contradiction technique used in the proof of Qn(θ) (Section 5.6). The fact

that Ψws(yi,wi, zi, θ) is continuous in θ and the parameter space is compact implies that (a)

is true, by the Heine-Cantor theorem. However, (b) appears to be violated since the un-

derlying normal measurement error is unbounded. Note that (b) is a very strong statement

and typically may not be met. However, in practice, the observed surrogates are typically

finite regardless the underlying distribution of measurement error. That is, Ψws(yi,wi, zi, θ)

is typically finite, even though in theory we could not make that claim. Therefore, even

though the proof might be intractable, we believe that Dn(θ) is an operational valid method

in practice.

In finite samples, Qn(θ) could be ill-behaved for arbitrarily large |βx|. In addition, when

the underlying weighted-correction estimating function fails to generate a good root, Qn(θ)

may not be able to provide adequate information to distinguish roots. On the other hand,

Dn(θ), does not necessarily favor large |βx|. Moreover, Dn(θ) can still generate information
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about the correct conditional score root even if the underlying weighted-correction estimat-

ing function fails to generate a good root. Therefore, Dn(θ) is expected to be superior to

Qn(θ) in finite samples, which is confirmed by the simulations. This is also the reason that

we suggest using Dn(θ) in practice.

Our simulations showed that Dn(θ) has a satisfactory performance on identifying correct

conditional score roots in finite samples with large measurement errors. The simulation

results also indicated that the correct root is typically the one closest to the naive estimator.

Even though Dn(θ) still remains an incomplete solution to the conditional score according

to the simulations, it is a promising method to distinguish among conditional score roots

and may have the potential to be improved.

The implementation of Dn(θ) relies on a crucial assumption that a correct root exists,

which is also a requirement for the heuristic approach (Stefanski & Carroll 1987) and the

conditional quasi-likelihood (Hanfelt & Liang 1997). However, such correct root might

not exist. Indeed, the requirement of existence of correct roots is a drawback of objective

function approaches. As suggested in Hanfelt & Liang (1997), a good practical approach is

to reduce the magnitude of the measurement error by using replicated surrogates. By doing

so, one not only increases the likelihood of generating a correct root but also reduces the

possibility of observing multiple roots.
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5.6 Proofs

We give a proof of Theorem 5.3.1.

First, the expectation notation E in this proof denotes the expectation with respect to

θ0.

The basic assumption is that E[Q(θ)] < ∞ for all θ ∈ Θ. It is known that E[Q(θ)] has a

unique maximum at the true value θ0:

E[Q(θ)] < E[Q(θ0)] for θ , θ0. (5.11)

Let θ̂1n ∈ Θ and θ̂1n
p
−→ θ0 be a consistent root of the conditional score and θ̂2n ∈ Θ be

the maximizer of Qn(θ) among all the roots of the conditional score. We need to show that

θ̂2n
p
−→ θ0.

We have, by definition,

Qn(θ̂1n) ≤ Qn(θ̂2n). (5.12)

A crucial part of this proof is that Qn(θ) converges uniformly in θ:

sup
θ∈Θ

|Qn(θ) − E[Q(θ)]|
a.s.
−−→ 0. (5.13)

Three conditions sufficient for (5.13) to hold are given in Theorem 16(a) on page 108

(Ferguson 1996). In our case, those conditions are (a) Θ is compact; (b) Q(y,w, z, θ) is
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continuous in θ for all y,w, and z; (c) There exists a function M(y,w, z) ≥ |Q(y,w, z, θ)|

such that E[M(Y,W,Z))] < ∞ for all θ ∈ Θ, y,w, and z. In those conditions, (a) is assumed

and (b) is also true. We now verify the condition (c).

Q(y,w, z, θ) = 2
 (y − 1)exp((α + βT

z z + βT
x w)/2)

exp(βT
x Σuuβx/8)

−
yexp(−(α + βT

z z + βT
x w)/2)

exp(βT
x Σuuβx/8)


= 2

 (y − 1)exp((α + βT
z z + βT

x x)/2)
exp(βT

x Σuuβx/8)
exp(βT

x u/2) −
yexp(−(α + βT

z z + βT
x x)/2)

exp(βT
x Σuuβx/8)

exp(−βT
x u/2)



Since Θ is compact, θ = (α, βz, βx) is bounded. Also by assumption, X and Z are

bounded. Moreover, exp(βT
x Σuuβx/8) ≥ 1. Therefore, both

(y − 1)exp((α + βT
z z + βT

x x)/2)
exp(βT

x Σuuβx/8)
and

yexp(−(α + βT
z z + βT

x x)/2)
exp(βT

x Σuuβx/8)

are bounded. We now show that exp(βT
x u/2) can be bounded by a function M(u) with finite

mean.

Let a = (a1, ..., ap)T and b = (b1, ..., bp)T such that ak ≤ βxk ≤ bk < ∞, where k = 1, ..., p.

It is understood that p < ∞. The measurement error U ∼ N(0,Σuu), where Σuu is finite.

Let

M(u) =

p∏
k=1

[
exp(akuk/2) + exp(bkuk/2)

]
.

Then exp(βT
x u/2) ≤ M(u).

E[M(U)] = E
p∏

k=1

[
exp(akuk/2) + exp(bkuk/2)

]
,

which can be written as the sum of a finite number of terms with each term taking the form
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E[exp(vTu)/2]. Here, v is a vector of length p and vk is either ak or bk, where k = 1, ..., p.

Hence, vk < ∞. Since each term of E[M(U)]: E[exp(vTu)/2] = exp(vTΣuuv/8) < ∞,

E[M(U)] < ∞.

Similarly, once can show that exp(−βT
x u/2) can be bounded by a function of u with fi-

nite mean.

Hence, condition (c) is met and (5.13) holds.

By Mann-Wald theorem,

E[Q(θ̂1n)]
p
−→ E[Q(θ0)], (5.14)

where E[Q(θ̂1n)] = E[Q(θ)] |θ=θ̂1n
.

We have

|Qn(θ̂1n) − E[Q(θ0)]| ≤ |Qn(θ̂1n) − E[Q(θ̂1n)]| + |E[Q(θ̂1n)] − E[Q(θ0)]|

≤ sup
θ∈Θ

|Qn(θ) − E[Q(θ)]| + |E[Q(θ̂1n)] − E[Q(θ0)]|.

So that, by (5.13) and (5.14),

Qn(θ̂1n)
p
−→ E[Q(θ0)]. (5.15)

The uniform convergence (5.13) implies

Qn(θ0)
p
−→ E[Q(θ0)]. (5.16)
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Therefore,

Qn(θ0) − Qn(θ̂1n) = op(1). (5.17)

By (5.12)

Qn(θ̂2n) ≥ Qn(θ̂1n)

= Qn(θ0) − op(1). (5.18)

For every ε > 0, (5.11) implies that

sup
θ:‖θ−θ0‖>ε

E[Q(θ)] < E[Q(θ0)] (5.19)

Therefore, by (5.13), (5.18)and (5.19),

θ̂2n
p
−→ θ0,

according to Theorem 5.7 on page 45 (van der Vaart 1998) and subsequent comments

on page 46, taking Mn(θ) = Qn(θ) and M(θ) = E[Q(θ)].
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Chapter 6

Summary and future work

6.1 Summary

This dissertation research focused on resolving the multiple-roots problem of the condi-

tional score (Stefanski & Carroll 1987) for logistic regression with errors-in-covariates.

Even though the multiple-roots problem has been known in the literature for a long time,

limited research has been done to exam its seriousness in this particular problem of lo-

gistic regression with errors-in-covariates. Our finite-sample root behaviors study showed

that this issue of multiple roots could be serious, especially when the measurement error is

large. We also found that the conditional score may have a single but bad root (Figure 3.4)

in finite samples when the measurement is large enough. This research mainly focused on

the cases where the conditional score has multiple solutions.

In this dissertation research, we have proposed two methods to resolve the multiple-

roots problem of the conditional score. Each approach has its own advantages and limita-

tions.

The first approach is to combine the conditional score with an estimating function that

does not yield inconsistent roots. We developed a weighted-correction estimating function

for logistic regression with errors-in-covariates. This new estimating function, even though
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is typically less efficient than the asymptotically locally efficient conditional score, does not

yield inconsistent roots. We proposed to combine the conditional score with the weighted-

correction estimating function using empirical likelihood. By doing so, the inconsistent

roots of the conditional score are eliminated in large samples since those two estimating

functions only share consistent roots in large samples. The estimator of the combined esti-

mation procedure is the proposed maximum empirical likelihood estimator. This proposed

estimator is guaranteed to be asymptotically locally efficient. Simulation studies showed

that the proposed combined estimation procedure works well in finite samples with large

measurement errors. The results also showed that it outperforms existing consistent meth-

ods in many situations.

In summary, the first approach provides a new estimation procedure to resolve the

multiple-roots problem of the conditional score for logistic regression with errors-in-covariates.

The limitations of this approach are the following. First, the weighted-correction estimat-

ing function and the conditional score could have wrong roots that are close to each other in

finite samples. As a result, the empirical likelihood based on these two functions could be

maximized around their wrong roots in finite samples. Therefore, in finite samples, the cor-

rect empirical likelihood maximizers are usually local maximizers, not global maximizers.

Based on our experience, starting from the naive estimators, we typically found good local

maximizers around the truth. Second, by combining the asymptotically locally efficient

conditional score with the typically less efficient weighted-correction estimating function,

we may reduce the second-order efficiency that can offset the first-order efficiency gains.

Indeed, our simulations indicate that the proposed estimator is usually less efficient than

the conditional score estimator. Third, the proposed estimator has unsatisfied performance

on approximately normality when sample size is small. i.e., it may have outliers and large

skewness (Figure 4.3 and 4.4).

The second approach is to build an objective function to distinguish multiple roots

of the conditional score. Stefanski & Carroll (1987) suggested choosing the root clos-
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est to the naive estimator in the presence of multiple solutions. However, this heuristic

approach lacks theoretical support. Hanfelt & Liang (1997) developed the conditional

quasi-likelihood to choose from roots of the conditional score. However, their objective

function is based on a path-dependent line integral and therefore, is not unique in general.

In this research, we have developed two objective functions to the conditional score. One

is the corrected quasi-likelihood, which is based on the path-independent integral of the

weighted-correction estimating function. The other one is the corrected empirical likeli-

hood, which is based on the empirical likelihood ratio of the weighted-correction estimat-

ing function. The simulations show that the corrected empirical likelihood performs very

well and works better than the corrected quasi-likelihood in finite samples and therefore, is

regraded as our recommended objective function to the conditional score.

In summary, the second approach resolves the multiple-roots problem of the conditional

score by building an objective function: the corrected empirical likelihood. The corrected

empirical likelihood is a promising objective function to the conditional score. Its finite

sample performance is satisfied according to the simulation results. Compared to the first

approach, this approach does not suffer from the possible efficiency loss once it identifies

the correct root. The limitations of this approach are the following. First, it requires the

parameter space to be compact, which may limit its applications. Second, it requires that

a good conditional score root exist to apply the corrected empirical likelihood. However,

such good root might not be attainable if the measurement error is large enough (Figure

3.4). Third, it is time consuming to find all the possible roots of the conditional score. In

addition, it may be impossible to check whether or not all the roots have been found. Last,

according to the simulations, the corrected empirical likelihood did not identify the correct

roots 100% of the time. In other words, the proposed corrected empirical likelihood does

not outperform the heuristic procedure by Stefanski & Carroll (1987).

As summarized above, the two proposed approaches have their own advantages and

disadvantages. We suggest using the first approach: The combined estimation procedure,
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in practice. The reasons are: First, when the measurement is large enough, the conditional

score may not be able to generate a good root (Figure 3.4). However, the first approach still

apples and is typically able to yield good solutions. On the other hand, the second approach

is not applicable at this case. Second, the corrected empirical likelihood is not guaranteed

to identify the correct roots according to our simulations.

6.2 Future work

The proposed combined estimation procedure yields locally efficient estimators only in

large samples. Unfortunately, the weighted-correction estimating function may have wrong

roots that are close to the wrong roots of the conditional score in finite samples. In future

studies, we would like to explore the reason why this is the case, which might lead us to

understand the relationship between those two estimating functions. Such investigations

should help us to refine the combined estimation procedure to achieve better finite-sample

properties.

We would also like to perform more simulation studies to the corrected quasi-likelihood

and the corrected empirical likelihood in other situations. Such studies may help us to

understand more about their finite-sample properties. By doing that, we may be able to find

a way to combine the corrected quasi-likelihood and the corrected empirical likelihood to

develop a new objective function that has better finite-sample performances.
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