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Abstract

Quantifying the Impact of Local SUTVA Violations in Spatiotemporal

Causal Models

By

Samantha M. Noreen

Various causal frameworks have been built upon and extended to deal with the
complexities and intricacies that arise when quantifying causal relationships that may
exist in natural or quasi-experimental settings. Particular care is needed when data
are sensitive to or defined by spatial differences and dependencies, as fundamental
causal assumptions may be violated. Interaction and heterogeneity frequently wit-
nessed as part of spatial data settings, such as in health-related policy or program
evaluation and event point data, can often violate the Stable Unit Treatment Value
Assumption (SUTVA), a key assumption in the counterfactual causal framework.
With such a violation, it is difficult to assess treatment effects that are at the heart
of the problem of interest.

We propose a potential outcomes framework in the context of spatio-temporal
point processes, developing a theoretical spatial framework that extends existing
methods of causal inference with spatial point process theory. Specifically, we fo-
cus on bringing this viewpoint to event point data looking at conflict in Afghanistan,
used as the illustrative setting for the matched wake analysis (MWA) approach. We
reshape the causal hypothesis that indiscriminate insurgent violence using improvised
explosive devices (IEDs) increases civilian handover events of unexploded ordnances
to U.S. troops, compared to selective insurgent violence from a focus on counting
events to quantify a causal effect, to interpreting the intensity, representing the ex-
pected events per unit volume of space-time, to quantify a local causal effect. Framing
the effect of changing rates of an outcome event over time under treatment or control
intervention in a stochastic point process perspective allows us to take advantage of
convenient properties to inform the estimation and specification of spatio-temporal
areas of influence for each unit. This impacts the definition of the units themselves
in addition to estimation of an unbiased causal effect.

By bringing together two methological and computational approaches, we con-
sider the misspecification of the radius of spatial influence that is needed to define
the spatio-temporal wakes of each intervention event in the MWA approach. The
assignment mechanism is based on geography, where changes can occur in one place
and time but not another. As such, it is important to consider the local impact and
spatial definitions of the causal relationship that is being quantified. This approach
raises methodological challenges; however, we illustrate how a space-time point pro-
cess stochastic framework allows novel insight as well as a theoretical basis for heuristic
approaches for determining the local space-time scale of effects.

In order to address the violations of SUTVA that occur in this spatio-temporal



setting due to interference and the treatment definition based on geography, we pro-
pose a novel approach considering a space-time point process stochastic framework
combined with the structure of interference with geographic features. This solution
to the challenges posed by spatial interaction allows for a more in-depth examination
of the underlying causal relationships of intervention efficacy. This problem is of in-
terest due the spatial and temporal nature of the data and motivating questions of
interest in the conflict data set. Geographic impact analysis accounting for selection
bias, spatial dependence and spillovers, and spatial heterogeneity is becoming more
and more necessary in this age of increasingly available observational, natural, and
quasi-experimental data. This work contributes to an on-going conversation and area
of focus that continues to grow across multiple disciplines.
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Chapter 1

Introduction and Background



2

1.1 Literature Review

1.1.1 Observational studies

The gold standard in treatment comparison is a randomized clinical trial design.

This is not always feasible so many times we work with observational studies. In

observational studies, there is no randomization of treatment so one cannot guarantee

that the groups of treated and untreated are directly comparable. There may be

systematic differences between the groups, not necessarily related to the treatment

effect; thus, we cannot make conclusions about the cause of difference in outcomes due

to the treatment effect. This phenomenon is due to (1) confounding, and (2) selection

bias. Confounding manifests itself in characteristics that are correlated with both the

response and exposure or other covariates, clouding the actual effect of treatment.

Selection bias refers to the systematic differences that can occur in observational

studies when particular kinds of patients tend to receive or not receive the treatment.

The field of causal inference deals with these types of problems to allow us to make

direct comparisons and determine specific treatment effects or comparisons in effects

of particular covariates (Austin, 2011).

1.1.2 Causal Inference Framework

We follow the common causal inference framework, referred to as the Rubin Causal

Model (Rubin, 1974; Holland, 1986). Rubin’s Causal Model frames questions from

the field of causal inference in a way such that methods to find unbiased estimation of

treatment effects can be applied when we have non-randomized studies. This widely

used and important framework identifies a causal effect of treatment through the use

of potential outcomes.

Potential Outcomes

Each unit i is assumed to have a pair of potential outcomes; Yi(1) the outcome un-
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der active treatment and Yi(0) outcome under control treatment. These potential

outcomes are hypothetical responses, but are never observed simultaneously for an

individual. One potential outcome is observed Yi(Zi) for indicator of treatment re-

ceived Zi = 0, 1, where

Yi = ZiYi(1) + (1− Zi)Yi(0)

while the other is called the counterfactual outcome. While this framework is conve-

nient to define the precise statement of the questions of interest, it introduces us to

the fundamental problem of casual inference (Holland, 1986). Here, t represents units

in the treated group, c represents units in the control group, and u is the realized

value of treatment to which the unit is exposed.

“ It is impossible to observe the value of Yt(u) and Yc(u) on the same unit

and, therefore, it is impossible to observe the effect of t on u. ” (Holland,

1986)

We would like to be able to say that a noticeable effect is attributable to the

treatment; however, since it is impossible to observe these individual effects, we

instead compare the mean response if the entire population received treatment to

that if the entire population received control. This difference in means is known as

the average causal treatment effect, ACE = E [Y (1)− Y (0)]. Another often-used

population-level comparison, the average treatment effect for the treated, ATT =

E [Y (1)− Y (0)|Z = 1], considers the average effect of treatment if the entire popu-

lation receives treatment. These causal effects can be estimated following some as-

sumptions on the treatment assignment mechanism and how it relates to the outcome

of interest.

Assumptions

For observational studies in particular, treatment exposure may be confounded by

other factors. Subject characteristics may play a part in whether or not a subject
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receives treatment and these characteristics may also be associated with the way

the subject might respond under treatment or control. In order to account for the

non-randomness of the treatment assignment mechanism and appropriately adjust

for confounding, some untestable assumptions are still required to achieve the goal of

the desired causal interpretation of the ACE. Before diving into these assumptions,

a common rule of inference following from the counterfactual framework is employed

called consistency (Robins, 1987). This states that the potential response of some

patient, Yi(t) to a hypothetical treatment t must coincide with the patient’s observed

response Yi whenever the actual treatment T happens to be t. A more formal defini-

tion following similar notation to Galles and Pearl (1998),

T = t =⇒ Yi(t) = Yi (1.1)

Following the implications of this rule, other important and useful assumptions may

be made; the first of these is the stable-unit treatment value assumption (SUTVA) of

Rubin (1986).

Assumption 1 (Stable-Unit Treatment Value (SUTVA))

The a priori assumption that the value of outcome variable Yi for unit i when exposed

to treatment Zi will be the same no matter what mechanism is used to assign treatment

Zi to unit i and no matter what treatments the other units receive, this holds for all

i = 1, . . . , N and all Zi ∈ Ti.

This guarantees that there is no interference between the treatment received for one

unit i and the potential outcomes of another unit j, i 6= j, and is essentially implying

independence between all units in the study. Also by SUTVA, there is no variation in

the treatments so the treatment of all units is comparable. Rubin (1986) states that

”SUTVA is violated when, for example, there exist unrepresented versions of treat-

ments (Yt(u) depends on which version of treatment t was received) or interference
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between units (Yt(u) depends on whether unit u′ received treatment t or t′)”.

Strongly ignorable treatment assignment, or “or unmeasured confounders”, as-

sumes for observational studies that treatment assignment may be strongly ignorable

based on conditional independence; formally, following Rosenbaum and Rubin (1983),

Assumption 2 (Strongly Ignorable Treatment Assignment)

Treatment assignment is strongly ignorable given a vector of pre-treatment covariates,

Xi, considered to be confounders if

(Y (1), Y (0)) |= Z|X, 0 < Pr(Z = 1|X) < 1 ∀X (1.2)

This produces the result that, for X containing all confounders, the treatment as-

signment among individuals with a specific value ofX is random, such that individuals

that share the same value of X show no association between treatment received and

potential outcomes. Strongly ignorable treatment assignment assumes all variables

that affect the treatment assignment and outcome have been measured. This extends

the random assignment mechanism of randomized clinical trials, (Y (0), Y (1)) |= Z to

the observational study scenario (Y (0), Y (1)) |= Z|X. The concept of strongly ig-

norable treatment is similar to that of exchangeability, which Greenland and Robins

(1986) define as equivalence of response type, or “if the exposure states of the two

individuals had been exchanged, the same data distribution would have resulted”.

1.1.3 Controlling for Pre-Treatment Confounders

Covariate Adjustment

A number of different methods of adjustment for pre-treatment confounders are avail-

able. First, a largely used method involves a straightforward covariate adjustment.

For parametric covariate adjustment, pre-treatment confounders are controlled for

by including them as predictors in the regression model, or by performing matching.
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Both the traditional maximum likelihood or Bayesian inference framework can be

used, and the ACE can be directly estimated by fitting a regression model. An im-

portant caveat to using these covariate adjustment techniques is that the regression

model must be correctly specified. If it is not, the average difference and the coeffi-

cient representing this difference in the regression model will not necessarily estimate

the ACE correctly and some amount of bias will be introduced. Non-parametric

models can be used for covariate adjustment to alleviate such problems with model

misspecification; however, other issues arise in the form of the “curse of dimension-

ality” (which plagues many high-dimensional analyses, where there is a much larger

number of covariates to include in a model than the number of observations reason-

ably allows). With only a particular number of units or subjects in the study, these

units quickly become scattered and ill-equipped to cover the space of interest well. As

more covariates are considered as necessary to adjust for, it becomes exponentially

more problematic in obtaining statistically reliable results.

Propensity Scores

A solution to the problems encountered with covariate adjustment or a large number

of predictors is to use propensity score methods. These scores, representing the

propensity of an individual to receive treatment given all confounding factors are taken

into account, allow formulation of a separate model of the necessary covariates. This

scalar value can be used in a number of ways, including in a regression adjustment,

in place of the covariates themselves or in addition to the most important covariates.

Propensity scores are particularly useful for dimension reduction when a large number

of confounders and other covariates need to be taken into account for the analysis.

Matching

Another solution, either using the covariates themselves or propensity scores, is to

match treated and control units to create a “pseudo-population” of individuals that

are similar in characteristics. By choosing well-matched samples of the original treated



7

and control groups, bias due to covariates is reduced. Stuart (2010) provide a thor-

ough review of existing and new matching methods, providing details on matching

methods in practice. In the sections below, we use coarsened exact matching (CEM)

(Iacus et al., 2012). The benefits of this particular method for our proposed work

include better computational efficiency and avoiding the need to manually readjust

the model after post-estimation analysis.

1.1.4 Controlling for Post-Treatment Confounders

While these methods deal with confounding and selection bias via pre-treatment

covariates, separate methods consider post-treatment confounders, or intermediate

outcome variables. Conditioning on a post-treatment covariate or estimating a causal

effect based on a post-treatment covariate may result in additional bias. Frangakis and

Rubin (2002) developed the principal stratification framework as a cross-classification

of individuals by the joint potential values of the post-treatment variable of interest.

Since membership within a principal stratum is only reflective of a unit’s charac-

teristics, strongly ignorable treatment assignment (along with the other necessary

assumptions) still holds in a modified version. Thus, each principal strata is unaf-

fected by treatment assignment and principal effects, causal effects within principal

strata, can be found. Principal stratification has been shown to be the best approach

to causal inference with post-treatment covariates and provides useful insights; how-

ever, it is important to keep in mind that it does not always answer the question of

primary interest. VanderWeele (2011) can be referenced for a more in-depth review

of this approach.

1.1.5 Spatial Point Processes

Spatial point processes are used to detect patterns and to draw inferences about the

distribution of the locations of mapped point data. Each event is an occurrence of
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something of interest, with its own event location. Each of these events may occur at

a point, or location, within the area of interest; an event location is where an event

actually did occur within the area of interest. One of the three fundamental patterns

of events is complete spatial randomness, in which every event has an equal likeli-

hood of occurring at any location within the pre-specified area of interest, regardless

of where the other points are located. This situation allows two key properties to

occur: 1) events are uniformly distributed within the area of interest, and 2) events

are independent of one another. The two other fundamental pattens are clustering

patterns and regular patterns.

More specifically, probabilistic models can be defined to represent spatial patterns

and detect what the pattern of events may be. A spatial point process (SPP) is a

probabilistic model defined by a set of random variables, where each random variable

represents the location of an event in space (Waller and Gotway, 2004).

A particular set of spatial point processes include the stationary homogeneous

spatial Poisson point processes. Stationary in this sense means that the process is

invariant to translation within d-dimensional space (Waller and Gotway, 2004). Ho-

mogeneous implies that the nature of the point process is constant across the entire

area of interest. More specifically, Diggle (1983) (p.50) and Stoyan et al. (1995) (p.33)

define a stationary homogeneous spatial Poisson point process by:

1. The number of events in a finite region A is a random variable following a

Poisson distribution with mean λ|A| for some constant λ > 0 and |A| denoting

the area of A. This defines the notion of intensity, denoted λ, representing the

expected number of events per unit area.

2. Given N=total number of events occurring within an area A, the locations of

the N events represent an independent uniform sample of N locations, where

each point is equally likely to be chosen as an event. This is equivalent to

the concept of complete spatial randomness (CSR) where events are uniformly
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distributed across the area.

An advantage of assuming the Poisson distribution is that it allows the total

number of events to vary between realizations and at the same time, maintains a

fixed number of expected events per unit area. Thus, the estimate of intensity from

any given realization of the process is then λ̂ = N/|A|, the total number of events

observed divided by the total area. Cressie (1993) (p.634) provides an equivalent but

more foundational definition of both the intensity and the associated homogeneous

Poisson process as:

1. The numbers of events in non-overlapping regions are statistically independent.

2. For any region A ⊆ D,

lim
|A|→0

P (exactly one event in A)

|A|
= λ > 0

where |A| is the area of region A, D is the domain of interest, and

3.

lim
|A|→0

P (two or more events in A)

|A|
= 0

The primary goal for comparisons of intensity functions is to detect local differ-

ences between the spatial pattern in event incidence observed in the cases from the

spatial pattern observed in the controls. Further details and theory of spatial point

processes from numerous fields can be found in Diggle (1983), Cressie (1993) (Ch.1),

and Ripley (1991) (Ch.8).
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1.1.6 Motivating Problem: Conflict Analysis of Civilian Col-

laboration in the Afghanistan War

The motivation for a causal inference framework in a spatio-temporal setting in this

work is to provide a more robust theoretical foundation for the matched wake analysis

approach, in addition to adding a spatial theory perspective. The goal of the conflict

analysis in Schutte and Donnay (2014) is to better understand deterrence-based and

alienation-based approaches to population-centric warfare, and how a mix of these

approaches can provide a more complete picture of the conflict. Conflict literature

often seeks to separately estimate the coercive or alienating effects of indiscriminate

violence in (counter)insurgencies, typically falling under two main camps. The first is

deterrence-based, claiming that larger quantities of violence against insurgents disrupt

their ability to mobilize. This in turn creates fear in civilian witnesses, deterring their

alignment with the uprising, and the increased risk for individuals leads to a more

severe collective action problem in the existing rebel movement. The second and

contrasting claim is that indiscriminate violence leads to more rebel mobilization,

due to civilians joining the rebel forces out of revenge for innocent bystanders that

are harmed.

Kalyvas (2006) provides an excellent background on the how and why of violence

being applied against civilians in civil wars. Deterring defection and enforcing col-

laboration through violence is the main focus, and how civilian alienation feeds back

into the dynamics of conflict is not touched upon. The underlying assumptions are

on mobilization and civilian collaboration as endogenous to military control. On the

other side of this argument is reactive mobilization, which argues instead that vi-

olence, rather than weakening the military opponent, has an opposite effect. More

civilians are alienated from the attacker, and collaborate with the opponent. Sheehan

(1998) writes about this observation in the Vietnam War,
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“This is a political war and it calls for discrimination in killing. The best

weapon for killing would be a knife, but I’m afraid we can’t do it that way.

The worst is an airplane. The next worst is artillery. Barring a knife,

the best is a rifle - you know who you’re killing.” (p. 317)

This quote highlights an ordinal scale for the accuracy of applied tactics, in which

violence is more or less prone to harming innocent bystanders and not necessarily

classified as binary selective or indiscriminate.

To circle back and summarize, there are two dominant theoretical approaches

to reactive mobilization: deterrence- and alienation-based explanations. Deterrence-

based ideas suggest a negative effect of indiscriminate violence on mobilization for

the opponent (Lyall, 2009). There is a risk-reward consideration where survival is

the main goal that only works if non-participation actually entails a lower risk for

individuals than participation. The collective action problem is imposed on the op-

ponent. If we assume a null hypothesis of no change in civilian cooperation in the

presence of indiscriminate violence, the deterrence-based concept can be summarized

via the following alternative hypothesis:

HA1: Indiscriminate violent events lead to more civilian cooperation with

the perpetrator of this violence.

In contrast, alienation-based ideas assume that, in response to indiscriminate violence

in insurgency, there is a reactive collaboration with the military opponent (Ellsberg,

1970). The collective action problem can be solved through selective incentives, and

revenge is a strong utility that potentially outweighs the perceived risks. The hy-

pothesis summarizing this ideal is:

HA2: Indiscriminate violent events lead to more civilian cooperation with

the opponent.
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Numerous empirical studies have been conducted to solve the long-standing dis-

pute among advocates of deterrence and alienation reactive patterns in insurgencies

(Downes, 2007; Kalyvas and Kocher, 2009; Lyall, 2009; Linke et al., 2012; Braith-

waite and Johnson, 2012); however, support has been found in favor of both camps

of thinking and the discussion remains unsolved.

1.2 Outline

Following this introduction to relevant literature and concepts, this dissertation con-

tains three chapters. First, we discuss causal inference in spatial settings and present

the necessary preliminaries in Chapter 2. Chapter 3 introduces a spatial point process

theoretical framework for causal inference with geographically-defined treatment. In

addition, the focus of Chapter 3 also considers an analytical framework for deter-

mining the reach of spatial influence of the exposure event of interest. Next, the

framework is extended to include solutions to the possible violation of SUTVA, and

an interference effect for this context is proposed in Chapter 4. Then, the implica-

tions and current solutions in literature are compared and contrasted in Chapter 5

regarding geographically defined treatments and SUTVA violations. Future work and

potential avenues of next steps for this research are also discussed in Chapter 5.
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Chapter 2

Causal Inference and Spatial

Settings
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2.1 Introduction

2.1.1 Causal Effects of Spatial Events

The fundamental ideas of causal inference in the counterfactual framework rely on key

assumptions that can be hard to justify when applied to spatial data and geographic

questions. When treatments are defined by geographic features (e.g., via local policy

decisions), understanding the effects of these treatments through observational studies

can be challenging. The same can be said for disaggregated event data and the effects

of specific types of events on future events defined geographically. In such instances,

the research design and methods to account for the geographic proximity of events

are important to consider.

Matching is an intuitive and flexible form of statistical adjustment that can often

accommodate the combination of spatio-temporal methods and causal assumptions

to obtain an estimated effect of interest. Geographic proximity of events can be taken

into consideration in a causal framework by incorporating appropriate corresponding

measures into the matching algorithm chosen.

We introduce a spatial point process framework for a specific causal problem

of interest, namely, an investigation of local causal impacts within a given radius

of particular events occurring at specific point locations and at specific times. A

novel approach to this problem comes in the conceptual understanding, notation,

and subsequent estimand following from point process theory. We investigate the

effect of mis-specifying the sliding spatio-temporal windows used to define spatio-

temporal “wakes” of intervention events. We then examine how this may affect bias

in the estimation of of treatment and control intervention event intensities and bias

in the estimation of the overall causal effect in terms of intensities.
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2.1.1.1 Spatially Defined Treatment

How we define the treatment or intervention being investigated is an important deter-

mining factor in what methods may be appropriate in analysis. We limit the scope of

this chapter to the discussion of one treatment setting: treatment assignment for each

unit is determined by an event point and associated distance from the event point in

space and time. When considering geography in a causal context, local treatments

are of most interest - individuals here are considered treated, compared to individuals

there are not. Typically, this spatial definition of treatment manifests itself in one

of two ways - units themselves can be defined as treated or not-treated (control) by

a spatial measure, or by a fixed spatial boundary and membership to one side or

another of this boundary. In either scenario, leveraging the geographical nature of

treatment assignment to more appropriately compare units is the common goal of

interest. Here, we will focus on units being defined as treated or control in space and

time.

2.1.1.2 Motivating Problem: Conflict Data Analysis

In research exploring causes and effects of human conflict, the drivers of local levels

of violence can be thought of and described in three main parts. There are a priori

exposures of any location to violence that can be driven by exogenous geographic

conditions. Additionally, levels of violence tend to vary over time, which can be

described as the momentum of a conflict at a given time. It is imperative to be

able to tease apart the effects of the true exposure and the momentum in order to

understand and analyze the causal effect of specific interventions also contributing to

levels of violence.

Schutte and Donnay (2014) investigate causal relationships in a specific applica-

tion, namely, exploring whether civilians are more likely to deny insurgents access to

explosives in response to local occurrences of indiscriminate violence. To our knowl-
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edge, from an epidemiological or statistical perspective, little has been done in the

current literature in regards to this setting, considering both spatial and temporal

elements in a potential outcomes framework for causal inference.

2.2 Motivation: Adapting Causal Inference to a

Spatial Setting

2.2.1 Notation and Framework

Here we lay out the notation and framework necessary to discuss spatio-temporal

causal methods and develop a common framework with clarity and statistical rigor. To

begin, we do not use individual-level data but rather point process event data. Rather

than a set of individuals, we consider (dependent) outcome events with locations and

times for which the rate or probability are impacted by the location and time of

intervention events. One of the unique aspects of this spatio-temporal problem is

that the defining measure of the treatment impacts the resulting potential outcomes.

Below we outline notation following Rubin’s causal model (Holland, 1986) and tying

it to the problem of interest.

We refer to intervention events as the treatment or exposure in a traditional sense,

denoted by Zi, for i = 1, . . . , n units. A treatment intervention event is denoted Zi = 1

and control intervention event is denoted Zi = 0. In this context, consider each unit

i to represent a spatio-temporal cylinder, or wake, centered around its corresponding

experienced intervention event and having radius r. The potential outcomes are

defined as rates of change in the number of dependent events before and after receiving

a particular intervention event-type. Specifically, Yi(0) is the change over time in the

number of dependent events for unit i within the radius of influence, where unit i

experiences a control intervention event, and Yi(1) is the change in rate, over time, of
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dependent events for unit i experiencing treatment intervention event. The observed

outcome for unit i can be defined as a linear combination of the potential outcomes

and intervention event status, Yi = Zi · Yi(1) + (1 − Zi) · Yi(0). A vector of baseline

covariates, which can include geographic variables, is denoted Xi for each unit i. The

individual treatment effect for unit i is Yi(1)− Yi(0), which is the difference in rates

of dependent events over time given that unit i experiences treatment versus control

intervention event. The assumptions outlined below in Section 4.2.2 result in the

average causal effect (ACE),

ACE = E{Yi(1)− Yi(0)}, (2.1)

which can then be estimated from the data. The ACE can also be thought of as the

difference in the change in rate of dependent events over time if the wakes experienced

treatment versus control intervention events. We interpret the ACE in this way to

lend an easy transition between causal and spatial point process theory.

2.2.2 Assumptions

A major concern when estimating causal effects is the fulfillment of the assump-

tions that are required to identify estimand(s) of interest. Namely, the stable unit

treatment value assumption (SUTVA) (Rubin, 1980), a form of the “no unmeasured

confounders” assumption, and consistency of the potential outcomes (Robins, 1987).

These are stated more formally as follows:

Assumption 1 (Stable Unit Treatment Value Assumption (SUTVA))

For any unit i,

(a) neither Yi(1) nor Yi(0) is affected by the treatment any other unit j 6= i received

- that is, there is no interference between units (Holland, 1986); and

(b) no matter how unit i received treatment Ti = 1, the outcome that would be observed
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would be Yi(1) and similarly for treatment Ti = 0; i.e., there are no hidden versions

of treatments.

The strongly ignorable treatment assumption Rosenbaum and Rubin (1983), or

“no unmeasured confounders”, is given as,

Assumption 2 (Strongly Ignorable Treatment Assignment)

Treatment assignment is strongly ignorable given a vector of pre-treatment covariates,

Xi, considered to be confounders if

(Y (1), Y (0)) |= Z|X, 0 < Pr(Z = 1|X) < 1 ∀X (2.2)

Assumption 3 (Consistency of potential outcomes)

The consistency of potential outcomes holds if the potential response of some patient,

Yi(t) to a hypothetical treatment t must coincide with the patient’s observed response

Yi whenever the actual treatment T happens to be t.

A more formal definition following similar notation to Galles and Pearl (1998),

T = t =⇒ Yi(t) = Yi (2.3)

2.2.3 Our Goals

It is clear that while there has been some work done to understand causal impli-

cations in spatial settings, the setting discussed in Schutte and Donnay (2014) can

benefit from a structured statistical framework. As application-specific extensions of

causal inference methods to spatial and spatio-temporal settings emerge, it is impor-

tant to define common elements to identify a core basis for spatial-causal inference.

Here we connect the theory of spatial point processes with a causal problem in a

spatio-temporal setting. We also quantify the impact of estimating the size of spatio-
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temporal cylindrical radii, or the space and time influence of each intervention event,

on the bias of the results.

2.3 Current Methods

2.3.1 Matched Wake Analysis

The matched wake analysis (MWA) of Schutte and Donnay (2014) quantifies causal

relationships in point location spatio-temporal event data, specifically, when one is

interested in how different interventions affect subsequent levels of reactive events

in nearby areas. By combining spatial and causal methods, the authors address a

number of challenges that arise with spatio-temporal event data with a particular

emphasis on conflict research.

Many times, aggregate counts from artificial units of analysis (such as regions,

counties, etc.) are used in place of missing natural point-level spatial units of analysis,

such as villages. However, by using these aggregate units of analysis two problems

arise common to the geographic literature.

First, arbitrary sizes of cells for the units of analysis directly impact the number

of observations. The smaller the cell sizes, the more cell-level observations available

for analysis if the intensity per cell stays the same. This increases the overall sample

size for geographically smaller cells such that for any null hypothesis test, even the

smallest of signals can become statistically significant. In contrast, if the overall

intensity stays the same and you cut it into smaller and smaller cells, the power per

cell will decrease.

Second, there is the “modifiable areal unit problem” (MAUP) (Openshaw and

Taylor, 1979), which refers to the fact that the selection of artificial cell sizes drives

spatial inference. This can be tied to Simpson’s Paradox (Simpson, 1951) and the

ecological fallacy (Selvin, 1958). Simpson’s Paradox can occur when a result that
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appears in groups of the data disappears or is reversed when combining the groups of

data together. Similarly, an ecological fallacy can occur when an analysis on grouped

data leads to different results than those from an analysis on individual data. The

MAUP expresses the idea that an analysis on a neighborhood or region (or any

arbitrarily defined space) does not yield the same results on a different measure of

space, say ZIP code, or on the individuals in that area. In short, as stated by Waller

and Gotway (2004), the MAUP is a “geographic manifestation of the ecological fallacy

in which conclusions based on data aggregated to a particular set of districts may

change if one aggregates the same underlying data to a different set of districts”.

While there are a number of approaches that have been considered to remedy

these issues, a common method is to use a sliding spatial and temporal window

design similar to SaTScan (Kulldorff, 1997), a space-time scan statistic. SaTScan

was originally applied to epidemiological problems for testing whether there may be

an elevated risk of disease in a certain region but where the extent of the risk elevation

is unknown. In general, the method reveals whether a cluster of events is consistent

with chance allocation under the null hypothesis.

The MWA method proceeds in three steps.

1. Treatment and control (point) intervention events occur and are identified in

space and time.

2. A radius is defined for the spatio-temporal cylinders, or “wakes”, around each

of the intervention events (Figure 2.1). This defines a unit for which the change

in rate of dependent events before and after is of interest.

3. The coarsened exact matching (CEM) (Iacus et al., 2012) algorithm is used to

match treated intervention event wakes and control intervention event wakes,

accounting for appropriate covariates and confounding factors.

After matching is performed, Schutte and Donnay (2014) count the dependent
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events prior to the intervention event within each wake and determine the trend of

dependent events prior to and following the intervention event. This is then used

in the analysis of the outcome of interest, following a difference-in-differences (DD)

design (Angrist and Pischke, 2009) to estimate the causal effect of the treatment and

assess within-subject before and after change in local rates of dependent events.

Figure 2.1: An illustration of spatio-temporal wakes in a predefined neighborhood,
where ‘+’ represents treatment intervention events, ‘◦’ represents control intervention
events, and ‘∗’ represents dependent events. All wakes are of equal radii and time
periods before and after intervention events.

2.3.2 Spatial Complications in Definitions of Elements of Stan-

dard Causal Framework

While MWA provides a novel approach to evaluating and estimating causal relation-

ships of conflict events that could be used for other types of georeferenced event data,

there are some limitations to the approach. First, the spatio-temporal cylinders defin-

ing the units that experience treated or control intervention events can potentially

overlap with one another, violating SUTVA. Violating this assumption could lead to
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biased effect estimates. Two scenarios could result from MWA: (A) multiple units of

the same intervention event value overlap in space and time, biasing estimates upward

(assuming a positive treatment effect from each); or (B) a unit of each of a treatment

intervention and control intervention could overlap and bias the estimated treatment

effect downward. Second, spatial concerns relate to defining the wakes themselves,

and how to optimally choose the radii of the wakes to allow for unbiased estimation of

the causal effect. We address this second limitation and provide a heuristic approach

for determining the underlying radius in the sections below.

2.3.3 Spatio-temporal Point Processes

A spatial point process is a stochastic process in which the locations of some events

of interest are modeled via random variables and observed within a bounded region.

The intensity is a first order property of the random process, describing the expected

density of events in any location of the region (Waller and Gotway, 2004). In MWA,

we assume a causal effect of treatment intervention events results in the intensity

inside the cylinder being different than the intensity outside, providing a convenient

probabilistic infrastructure for the problem. This allows for local insights - i.e., where

do patterns appear to differ? - versus global insights - i.e., what are the general

patterns of clustering and/or regularity with respect to complete spatial randomness?

For a piecewise homogeneous Poisson process in space and time, the expected

number of dependent events within each cylinder is intensity times volume. This al-

lows us to take advantage of two properties of the Poisson point process: 1) locations

of events are uniform in space and time, and 2) the total number of events within a

polygon can be determined (Waller and Gotway, 2004). If the radius is known, we can

connect spatial point process theory using the intensity, λ, to the causal difference-

in-differences estimator for ACE. This can be framed by the following hypothesis:
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H0: The intensity of dependent events is constant before and after treat-

ment intervention event, i.e., the difference in intensity before and after

the intervention event is the same for treatment and control intervention

events.

HA : The intensity of dependent events is higher after treatment interven-

tion event, i.e., the difference in intensity before and after an intervention

event is larger for treatment intervention event than control intervention

event.

Using these definitions, we can frame the causal difference-in-differences estimator

in terms of the true, observed, and expected intensity functions, allowing us to derive

the potential bias that occurs in the estimation of the change in intensities of the

cylinders, as well as the bias in the estimation of the causal effect. We provide

explicit definitions and illustrations for independent treatment events in Chapter 3

and definitions of SUTVA violations and potential adjustments in Chapter 4.
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Chapter 3

Linking Spatial Point Process

Theory and Causal Inference
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3.1 Proposed Spatial Point Process Causal Frame-

work

In this chapter, we outline the necessary assumptions and framework for two scenarios

using our spatial point process framework and consider the choice of radius for the

spatio-temporal wakes. The scenarios posed below begin by assuming the näıve case in

which the radius of both treatment and control intervention event wakes are equivalent

and known. In practice, the radius of intervention event wakes is not known and

must be chosen by the analyst. We propose a stochastic model approach, in which

the dependent events within each cylinder follow a Poisson point process and which

allows heuristic estimation of the causal effect radius.

3.1.1 Scenario 1: Constant, Known Spatio-temporal Cylin-

der Radius.

Here we will draw parallels in notation under spatial point process theory similar to

that in Section 2.2.1 above. Let Zi represent the exposure for unit i, i = 1, . . . , n,

with Zi = 1 a treatment intervention event and Zi = 0 a control intervention event.

Let ∆i(0) = Yi(0) represent the change in intensity (rate of dependent events) before

and after an intervention event for unit i over time, given a control intervention

event occurs, λ1i(0) − λ0i(0). Similarly, ∆i(1) = Yi(1) is the change in intensity

over time for unit i corresponding to a treatment intervention event occurring, with

∆i(1) = λ1i(1)−λ0i(1). The observed outcome is then ∆i = Zi ·∆i(1)+(1−Zi)·∆i(0).

Each unit i has an associated vector of pre-intervention event covariates and risk

factors, Xi. We use spatial intensities λ and changes in spatial intensities ∆ in lieu

of the traditional outcome notation Y . Assume that consistency holds, in which a

unit assigned to treatment intervention event has an observed outcome that is the
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potential outcome under the treatment intervention event (and vice versa). Formally,

For i 6= j, Zi = Zj = 1⇒ ∆i = ∆i(1) and Zi = Zj = 0⇒ ∆i = ∆i(0).

We also assume positivity, that there is a positive, nonzero probability of receiving

every level of exposure for every combination of values of exposure and confounders

that occur among individuals in the population (Cole and Frangakis, 2009), and

SUTVA (Assumption 1), that there is no interference between units as well as no

hidden versions of intervention event types. In these scenarios, we initially assume

that there is no potential violation of SUTVA to consider. To identify the causal

estimand of interest and obtain unbiased estimates, an ignorability assumption is

necessary. Typically, the assumption states that treatment is ignorable conditional

on a set of observed covariates, meaning that there are no unmeasured confounders.

Below is a version of this statement that can be used when considering spatial settings

(Keele and Titiunik, 2017), modified to reflect the new notation:

Assumption 4 (Conditional Geographic Treatment Ignorability)

{∆i(0),∆i(1)} |= Zi|Xi.

However, as Keele et al. (2015) point out, there is no a priori reason to assume

that geographic variation of treatment in such a way is justified, or that it is justified

at every possible location and time. As such, instead assume that treatment assign-

ment can be considered as-if randomized as in Assumption 5. This can be seen as a

weaker version of Assumption 4, similar to Imbens (2000); Imai and Van Dyk (2004),

originally stemming from Rosenbaum and Rubin (1983).

Assumption 5 (Conditional Mean Independence in Local Neighborhood (Keele and

Titiunik, 2017))

For all units that reside in a narrow area for which the boundary of the spatio-temporal
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cylinder(s) does not encounter any heterogeneity,

E{∆i(1)|Xi, Zi = 1} = E{∆i(1)|Xi, Zi = 0}

E{∆i(0)|Xi, Zi = 1} = E{∆i(0)|Xi, Zi = 0}

That is, assume that there exists a small neighborhood around the set of wakes,

where the average potential outcomes are mean independent of intervention event

type, given the covariates. In this setting, the causal estimand of interest is identifi-

able:

τ = E{∆i(1)−∆i(0)}

= E [E{∆i(1)−∆i(0)|Xi}]

= E [E{∆i(1)|Xi} − E{∆i(0)|Xi}]

= E [E{∆i(1)|Xi, Zi = 1} − E{∆i(0)|Xi, Zi = 0}]

= E [E{∆i|Xi, Zi = 1} − E{∆i|Xi, Zi = 0}]

(3.1)

For the Difference-in-Differences (DD) design, the observed outcome can then be

modeled by

∆i = β0 + β1npre + τZi + εi

= XT
i β + τZi + εi

(3.2)

where ∆i is the observed change in intensity over time, τ represents the difference

between experiencing treatment or control intervention event in change in intensity

over time for unit i, npre is the number of dependent events prior to the intervention

event occurring, and
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εi =Zi [E{∆i(1)−∆i(0)|Xi} − E{∆i(1)−∆i(0)}]

+ (1− Zi) [∆i(0)− E{∆i(0)|Xi, Zi = 0}]

+ Zi [∆i(1)− E{∆i(1)|Xi, Zi = 1}] .

Under consistency and Assumptions 1 and 5, E (εi|Xi, Zi) = 0 and τ can be consis-

tently estimated.

3.1.2 Scenario 2: Constant, Unknown Spatio-temporal Cylin-

der Radius.

The ‘unknown’ element of this scenario refers to the radial size of the intervention

event wakes. Unlike Scenario 1, this must be defined by the analyst. We follow the

idea of Schutte and Donnay (2014) and use methods similar to SaTScan (Kulldorff,

1997) to define the optimal radius size, which we assume is the same for both treated

and control intervention events. A sliding window design is used to find the radius

corresponding to the greatest average difference in dependent event intensities.

The overall causal framework, including assumptions that are made, is the same

as in Scenario 1. In addition, we discuss the impact of estimating the size of the

spatio-temporal cylinders and potential biases in the context of spatial intensities of

these cylinders here.

Consider the background intensity of the area to be constant λ̃. The overall

temporal length of cylindrical wakes is denoted t, with intervention event i occurring

at t
2

so the length of time before and after the event is the same. The intensity prior

to the event for unit i is denoted λ0i(Zi), where Zi = 0 or 1 for a control or treatment

intervention event, respectively. Similarly, the intensity after a control or treatment

intervention event for unit i is denoted λ1i(Zi). The causal effect of a treatment
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intervention event versus a control intervention event for unit i, i = 1, . . . , n, is the

DD estimator as in Scenario 1, equation (3.2).

Next, we assume that the intensities before and after a control intervention event

are equivalent (i.e., control events have no effect on the outcome). That is, E [∆i(0)] =

E [λ1i(0)− λ0i(0)] = E [λi(0)− λi(0)] = 0, for all i. Also assume a constant change

over time for treatment intervention event, E [∆i(1)] = E [λ1i(1)− λ0i(1)] = c. Thus

the ACE τ can be written under these simplifications and for these purposes as

τ = E{∆i(1)−∆i(0)}

= E [E{∆i(1)−∆i(0)|Xi}]

= E [E{∆i(1)|Xi} − E{∆i(0)|Xi}]

= E [E{∆i(1)|Xi, Zi = 1} − E{∆i(0)|Xi, Zi = 0}]

= E [E{λ1i(1)− λ0i(1)|Xi, Zi = 1} − E{λ1i(0)− λ0i(0)|Xi, Zi = 0}]

= c

(3.3)

There are then three cases when considering the radius of the cylindrical wake:

1) the radius is correctly specified, r̂ = rtrue, 2) the proposed radius is smaller than

the truth, r̂ < rtrue, and 3) the proposed radius is larger than the truth, r̂ > rtrue.

Figures 3.1 and 3.2 illustrate the implications of 2) and 3), respectively. Below are the

analytical derivations of the bias within the outcome measure under each intervention

event, ∆(0) and ∆(1), as well as the bias of the effect itself. In each case, this effect

can still be calculated as a difference-in-difference estimate.

When the proposed radius of the wake is equal to the truth, r, our estimate is

unbiased.
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Figure 3.1: Illustrating the concept of smaller-than-truth radius for cylindrical wakes.
The cylinder in red represents the true wake of a treatment intervention event, with
pre-intervention event intensity λ0(1) and post-intervention event intensity λ1(1). The
yellow cylindrical wake includes these pre- and post-intervention event intensities,
though for a smaller overall volume.

Figure 3.2: Illustrating the concept of larger-than-truth radius for cylindrical wakes.
The cylinder in red represents the true wake of a treatment intervention event, with
pre-intervention event intensity λ0(1) and post-intervention event intensity λ1(1). The
yellow cylindrical wake includes these pre- and post-intervention event intensities,
in addition to background intensity λ̃ in both the pre- and post-intervention event
sections. The inclusion of the background intensity for a portion of the wake is realized
as the decreasing slope after the true spatial radius in Figures 3.3 and 3.4.
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E
[
λ̂0i(Zi)

]
= E

[
# dependent events before intervention event for unit i

V olume

]
= πr2(t/2)λ0(Zi)

πr2(t/2)
= λ0i(Zi)

E
[
λ̂1i(Zi)

]
= E

[
# dependent events after intervention event for unit i

V olume

]
= πr2(t/2)λ1i(Zi)

πr2(t/2)
= λ1i(Zi)

E
[
∆̂i(0)

]
= E

[
λ̂1i(0)− λ̂0i(0)

]
= λ1i(0)− λ0i(0) = 0

E
[
∆̂i(1)

]
= E

[
λ̂1i(1)− λ̂0i(1)

]
= λ1i(1)− λ0i(1) = c

Bias = E
[

̂∆i(1)−∆i(0)
]
− E [∆i(1)−∆i(0)] = 0

When the proposed radius of the wake is smaller than the truth, r∗ < r (r =

r∗ + x), our estimate remains unbiased.

E
[
λ̂0i(Zi)

]
= E

[
# dependent events before intervention event

V olume

]
= πr∗2(t/2)λ0i(Zi)

πr∗2(t/2)
= λ0i(Zi)

E
[
λ̂1i(Zi)

]
= E

[
# dependent events after intervention event

V olume

]
= πr∗2(t/2)λ1i(Zi)

πr∗2(t/2)
= λ1i(Zi)

E
[
∆̂i(0)

]
= E

[
λ̂1i(0)− λ̂0i(0)

]
= λ1i(0)− λ0i(0) = 0

E
[
∆̂i(1)

]
= E

[
λ̂1i(1)− λ̂0i(1)

]
= λ1i(1)− λ0i(1) = c

Bias = E
[
∆̂i(1)− ∆̂i(0)

]
− E [∆i(1)−∆i(0)] = 0

When the proposed radius of the wake is larger than the truth, r̃ > r (r̃ =

r + (r̃ − r)), our estimate will include data from the true higher-intensity cylinder

and data from the background intensity, resulting in bias; specifically,
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E
[
λ̂0i(Zi)

]
= E

[
# dependent events before intervention event

V olume

]
= πr2(t/2)λ0i(Zi)+π(r̃−r)2(t/2)λ̃

πr̃2(t/2)

=
r2λ0i(Zi)+(r̃2−2r̃r+r2)λ̃

r̃2

=
r2(λ0i(Zi)+λ̃)+(r̃2−2r̃r)λ̃

r̃2

E
[
λ̂1i(Zi)

]
= E

[
# dependent events after intervention event

V olume

]
= πr2(t/2)λ1i(Zi)+π(r̃−r)2(t/2)λ̃

πr̃2(t/2)

=
r2λ1i(Zi)+(r̃2−2r̃r+r2)λ̃

r̃2

=
r2(λ1i(Zi)+λ̃)+(r̃2−2r̃r)λ̃

r̃2

E
[
∆̂i(0)

]
= E

[
λ̂1i(0)− λ̂0i(0)

]
=

{
r2(λ1i(0)+λ̃)+(r̃2−2r̃r)λ̃

r̃2

}
−
{
r2(λ0i(0)+λ̃)+(r̃2−2r̃r)λ̃

r̃2

}
=

r2(λi(0)+λ̃)−r2(λi(0)+λ̃)
r̃2

= 0

E
[
∆̂i(1)

]
= E

[
λ̂1i(1)− λ̂0i(1)

]
=

{
r2(λ1i(1)+λ̃)+(r̃2−2r̃r)λ̃

r̃2

}
−
{
r2(λ0i(1)+λ̃)+(r̃2−2r̃r)λ̃

r̃2

}
=

r2(λ1i(1)−λ̃)−r2(λ0(1)−λ̃)
r̃2

= r2(λ1i(1)−λ0i(1))
r̃2

= c · r2
r̃2

Bias = E
[
∆̂i(1)− ∆̂i(0)

]
− E [∆i(1)−∆i(0)] = c ·

(
r2

r̃2
− 1

)
< 0, a parabola in r.

We note that the background effect need not be the same as the control effect -

that is, the intensity observed within a control wake can be a different level than the

overall background intensity of the entire space. It is clear that overestimating the size
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of the cylindrical wakes that are used in the matching process and thus estimation

of the treatment effect introduces bias. Under the circumstances of no change in

intensity before and after a control intervention event, or ∆(0) = 0, the bias in the

treatment effect estimate comes from the estimation of the change in intensity before

and after a treatment intervention event. By assuming that λ̃ < λ0(Zi) ≤ λ1(Zi),

the estimated change in intensity for treatment wakes is smaller than the true causal

effect due to the inclusion of the moderating portion of the wake with intensity λ̃.

This carries over to the bias observed in the treatment effect.

3.2 Results

3.2.1 Simulations

Simulations were conducted mimicking the conflict data from Schutte and Donnay

(2014). A total of 100 treatment and 200 control intervention events were distributed

within an approximately 222 km by 222 km area occurring within one year. The

background intensity was specified to be 0.002, and dependent events were generated

following a Poisson distribution with mean intensity 0.002 times the volume of the

whole cube minus the summation of the volume of the cylindrical wakes to represent

the background events. Background dependent events were generated in this way so

as to avoid overlapping placement with dependent events occurring within wakes of

interest and avoid skewing estimation of intensities. A random Poisson distribution

with mean equal to intensity times volume of the cylinder was used to generate the

number of dependent events pre- and post- intervention event. We assume a pre-

intervention event intensity of 0.2, with an equivalent post-intervention event intensity

for controls and an increased post-intervention event intensity for treatment of 0.2 ×

1.75, or 0.35. The true causal effect is then 0.15, which represents an increase of 0.15

expected dependent events per unit volume following a treatment intervention event
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compared to control intervention event, on average.

The effect size of 1.75 represents the change in intensity of dependent events from

pre- to post- intervention event, given a unit experiences treatment versus control

intervention events. For both treatment and control intervention wakes, the true

size is set with a temporal window of 8 days informed by the results of Schutte and

Donnay (2014) and spatial windows ranging from approximately 1.11 km to 11.11

km. This represents the temporal lag before and after the intervention event, and the

spatial radius of associated influence for an intervention event. Ten iterations were

performed for each spatial window size, corresponding to the radius of the wakes,

ranging from 0.01 to 0.1 by 0.01 increments, which represents approximately 1.11 km

to 11.11 km increasing in size by 1.11 km steps, as the spatial influence of the wakes.

Our goal is to distinguish a signal at the true spatial radius for the wakes. The

average estimated change over time in intensity for each of control and treatment

intervention events, representing the change in rate of dependent events within the

volume of the wake before to after each intervention event wake is illustrated, in

addition to the difference in the changes in intensity over time, on average, given a

wake experiences a treatment intervention event in comparison to if it experienced

a control intervention event (ÂCE = E
[
∆̂(1)− ∆̂(0)

]
). Thus, we illustrate the

estimated average causal effect over all iterations.

Four of the simulation scenarios are given in Figures 3.3 and 3.4 for illustration

purposes. The rest of the scenarios can be found in Appendix A, showing similar

patterns as detailed here. There is a clear delineation in the pattern of the average

estimated λ̂·(1) and λ̂·(0) before and after the true radius size in each plot. The dotted

vertical line represents the true spatial window, and is marking a change between the

radius when smaller than and larger than the truth.

In Figures 3.3 (a) and (b) and 3.4 (c) and (d), the variation in the estimate

increases as the radius decreases as one would expect with decreasing sample size.
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This empirical unbiasedness when the proposed radius of the wake is smaller than the

truth follows the analytical derivation in Section 3.1.2. For larger spatial windows

than the truth, the steeply decreasing slope reflects the bias of a larger proposed wake

than the truth. Again, this empirical evidence supports the analytical derivation of

bias, equal to 0.35 × ( r
2

r̃2
− 1) < 0, where 0.35 is the true treatment effect, r is the

true radius and r̃ is the larger, proposed radius. When the spatial window is larger

than the truth, the background intensity is included in the wake intensity estimation,

essentially diluting the true, higher intensities seen within the wake. This is illustrated

in Figure 3.2 by the yellow cylinder, representing a treatment wake with a larger-than-

true radius, surrounding the red treatment wake with the correct radius.

The leftmost panel of each plot illustrates the estimated average change in inten-

sity of dependent events over time given units experience treatment intervention event

(∆̂(1) = λ̂1(1)− λ̂0(1)). This shows a large difference in average estimated intensities

before and after the intervention event, as was expected. The middle panel shows

this estimated change in intensity of dependent events over time for units, given they

experience a control intervention event (∆̂(0) = λ̂1(0) − λ̂0(0)). There is complete

overlap of the distribution of pre- and post-intervention event average estimated in-

tensities, indicating there is no change in intensity over time under control. Again,

this illustrates what was expected. The estimated average effect of treatment on

the change in intensity of dependent events over time is illustrated in the rightmost

panel of each plot. The vertical line at the true radius of the wakes marks the end of

unbiasedness in this estimated effect.

Figure 3.5 also confirms that the empirical bias follows the analytically derived

bias in each of these scenarios.
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(a)

(b)

Figure 3.3: Illustrations of the average λ̂1(1) and λ̂0(1) with 100 treatment interven-

tion events (left panels), average λ̂1(0) and λ̂0(0) with 200 control intervention events

(middle panels), and average difference in ∆̂(1) and ∆̂(0) (right panels). The dotted
gray lines represent the true spatial window size.
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(c)

(d)

Figure 3.4: Continued illustrations of the average λ̂1(1) and λ̂0(1) with 100 treatment

intervention events (left panels), average λ̂1(0) and λ̂0(0) with 200 control intervention

events (middle panels), and average difference in ∆̂(1) and ∆̂(0) (right panels). The
dotted gray lines represent the true spatial window size.
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Figure 3.5: Analytically derived bias for each true radius, denoted by the red vertical
dotted line, is shown by the black solid line. Empirical averages of the bias at each
spatial window included in the simulation are shown as green dots.

3.2.2 Conflict Data: Civilian Collaboration in Afghanistan

The spatial and temporal distribution of conflict events (O’Loughlin et al., 2010) as

well as the clustering of such events in space and time (Braithwaite and Johnson, 2012)

have been topics of interest recently when considering the conflicts in Afghanistan and

Iraq. In 2010, wikileaks.org released data coded by the U.S. military of temporally

and spatially referenced conflict events in Afghanistan and Iraq, known as SIGACT

(“Significant Activity”) (SIGACT, 2010). It is the largest, and arguably most com-

plete and unbiased data set about the Afghan War to date, providing information

on both insurgent and incumbent activity, encompassing 154 types of events, and

spanning from 2004 to 2009. However, it is not without its limitations. The four key

limitations of the dataset are (Schutte, 2017):

1. Soldiers in the field report civilian casualties without a second, independent

confirmation which may lead to lower counts
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2. Activities of other coalition troops, private contractors, and other U.S. service

branches are not systematically recorded in the data

3. Indirect fire or air strikes may harm civilians without ground troops’ knowledge

4. Insurgent-civilian relationships are not recorded in the data

Figure 3.6 illustrates the complex relationships that occur, and the capabilities of

the SIGACT data set in capturing these. We consider an analysis similar to those

completed in Schutte and Donnay (2014) and Schutte (2017). Events were analyzed

in the statistical aggregate and no marginal effects were estimated for geographic

covariates to protect individuals, institutions, and political actors involved in these

conflict events. The measure of civilian collaboration is the turning-in of unexploded

ordnances or other explosive remnants of war that could be used by insurgents against

U.S. forces, since these are largely what is used in attacks on both civilians and

military by insurgents in Afghanistan. Here, variation in the levels of civilian support

to the incumbent (U.S. forces) is used to analyze the effects of violence. In general,

civilians have three options when a violent event occurs that potentially harms fellow

civilians/bystanders:

1. Remain passive - do nothing, and unexploded ordnance would thus be obtained

by insurgents

2. Alert insurgents to the presence of the unexploded ordnance

3. Alert incumbents of the threat, sparing both lives and materials on the incum-

bent side (as well as potentially fellow civilians)

Choosing to act in options 2 or 3 would allow civilians to take sides in a civil war

without having to publicly declare loyalties, which can be risky. Table 3.1 details the

event types that are selected as indiscriminate and selective insurgent and incumbent

violence and civilian assistance, since events are not as densely clustered as during
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Figure 3.6: Adapted from Schutte (2017). A chart outlining the relationships and in-
tricacies of relationships in the Afghan War, and what the SIGACT data set includes.
The dotted arrow between civilians and insurgents signifies that these relationships
are unable to be captured in the data.

the most intense violence in earlier years and lend themselves well to the hypothesis

of interest. Treatment intervention events are instances of indiscriminate insurgent

violence using IEDs - those that led to civilian casualties, and control events are

instances of selective insurgent violence using IEDs - those that did not claim civilian

lives. Dependent events are instances of civilian assistance, which can occur before

and after treatment and control events.

Type of Event In our Analysis Event Category in SIGACT N
Civilian Assistance turn-in, evidence turn-in/received, ERW/turn-in 899
Insurgent Selective Violence direct fire 15,438
Insurgent Indiscriminate Violence mine strike, indirect fire 7,151
Incumbent Selective Violence direct fire 823
Incumbent Indiscriminate Violence indirect fire, close air support 471

Table 3.1: Summary of event category definitions from SIGACT for selective and
indiscriminate violence (intervention events), as well as civilian assistance (dependent
events) in Afghanistan. (Total number of events is 24,782.)
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Figure 3.7 shows a map of Afghanistan in relation to the data points in a 3-

dimensional cloud. In this analysis, we consider the effect of experiencing a nearby

indiscriminate intervention event on the change in intensity of civilian assistance,

in comparison to the change in intensity of civilian assistance before and after an

intervention event, given it had been a selective violent event. Spatial windows from

1 to 20 km and temporal windows from 5 to 75 days (every 5 days) were considered.

The hypothesis of interest is:

HA: Indiscriminate insurgent violence (treatment) using IEDs increases

civilian handover of unexploded ordnances to U.S. troops compared to

selective insurgent violence (control) using IEDs.

Figure 3.7: A comparison of a map of Afghanistan based on UN map no. 3958
Rev. 7 June 2011 to the 3-dimensional illustration of the data points in our data
set. Patterns of heavier events throughout time occur in the south and southeaster
portions of Afghanistan, following the border.

Treatment and control events are associated with geographic covariates through

nearest-neighbor mapping (Schutte and Donnay, 2014). We include geographic vari-

ables similarly considered in Schutte (2017), informed by theory and correlation with

insurgent and incumbent control. This is important so that comparisons of the treat-

ment and control interventions do not lead to false inferences and to take into con-

sideration potential vastly different conditions. Distance to Pakistan and Kabul are
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included to account for remoteness from the state’s power center and the ability to

seek refuge across international borders, along with spatially disaggregated wealth

(GECON) (Nordhaus et al., 2006) since wealthier regions may be better protected

by state power, population numbers for the year 2000 (CIESIN and CIAT, 2005) to

correlate with the number of conflict events in a region, spatially referenced data to

account for elevation and inaccessible terrain important for providing shelter (Gesch

et al., 1999), an indicator for the predominant ethnic groups in the region and Pash-

tun tribal areas where the heaviest fighting occurs, and a line-of-sight dataset (details

of its generation found in Schutte (2017)) to explain the use of indirect strikes or

air attacks. Pretreatment trends in civilian assistance and previous treatment and

control intervention are also matched on, the latter pattern included to mitigate any

issues overlapping wakes may cause (Schutte and Donnay, 2014). A summary of all

variables that are adjusted for is given in Table 3.2.

Mean (S.D.) or N (%) Minimum Maximum
Distance to Pakistan (km) 125.44 (103.85) 0.00 610.32
Distance to Kabul (km) 331.46 (184.34) 0.12 806.12
Elevation above sea level (km) 1382.05 (580.28) 290.36 4542.00
Population count in 2000 1300.90 (6558.65) 2.76 123730.24
GECON 0.35 (0.59) 0.01 3.12
Line of sight 165.85 (137.76) 9.00 925.00
Pashtun tribal areas 20398 (82.31) - -
Hazara tribal areas 343 (1.38) - -

Table 3.2: Summary statistics of covariates included in the matching algorithm for
estimating the causal effect (N=24,782).

3.2.2.1 Results

Evaluation of the estimated intensities in Figure 3.8 indicate that the most appropri-

ate spatial window would be within the first 3 km. Given that there is no constant

‘plateau’ as we saw in the simulated scenarios, the smallest radius seems to be the

most fitting choice for this data. As such, it further confirms that this analysis as-
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suming no interference is worthwhile as an initial given the rarity of turn-in events in

comparison to intervention events and the small spatial window of influence that is

identified.

Figure 3.8: Estimated intensities and average causal effect to determine spatial radius
that should be used.

Further examination of the contour plot (Figure 3.9) showing the before-and-

after average causal effect of the DD regression coincides with spatial windows in

the immediate vicinity (1-3 km) of violent events, indicating statistically significant

events for wakes of this size. The largest effect estimates occur in this interpretable

area, where p < 0.05 suggests substantial evidence in favor of the alternative. The

strongest effects occur across all temporal windows investigated within the immediate

vicinity as intensities of 2.6× 10−5 to 3.4× 10−4.

It is interesting that, when considering larger spatial window sizes, a robust

(though smaller) effect appears at 20-40 days and 17-19 km for wake sizes. This

second bubble of significant effects does not appear in Figure 3.8.

We also examine the matching metrics for the CEM algorithm (Tables 3.3, 3.4,

3.5), namely, common support (empirical overlap between treatment and control
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Figure 3.9: This contour plot shows the average causal effect estimates of the
difference-in-differences design for the outcome model. The outcome is the change in
intensity (expected number of dependent events per unit volume). Treatment inter-
vention events are instances of indiscriminate violence and control intervention events
are instances of selective violence. Areas with solid lines correspond to estimates with
p-values larger than 0.1, areas with dotted lines correspond to estimates with p-values
between 0.05 and 0.1, and clear areas correspond to estimates with p-values less than
0.05.
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units) and multivariate L1 distance (measured between 0 and 1). Larger values

for common support are better, while smaller values for the L1 distance are better.

Results and summary statistics are also given for each spatio-temporal window with

a significant estimated effect (p < 0.05). Quantifying the overlaps (same intervention

type as ‘SO’ and mixed intervention types as ‘MO’) is included to assess the fre-

quency of SUTVA violations. Again, smaller values are better. Overlap is defined as

the situation when two (or more) intervention events occur within a wake, meaning

that the distance between the intervention events at the center of each wake is less

than r. For all spatial windows 5 km or smaller, the percentage of common support

ranges from 7.1% to 36.9% after matching (in comparison to 7.8% to 20.4% before

matching). There is a similar range of L1 values pre- to post-matching, from (0.689,

0.877) to (0.608, 0.885). Lower percentages of common support and higher L1 values

occur for larger spatial windows within each temporal window. These two measures

highlight the effectiveness of CEM in balancing the treated and control intervention

event wakes through decreases in L1 distance and increases in the common support,

across all spatio-temporal windows.

While matching on previous interventions was performed to prevent the impact of

SUTVA violations from driving the results (Schutte and Donnay, 2014), there is still

a considerable amount of overlap that occurs, more so even for the same intervention

event wakes than for mixed, suggesting spatial clustering of treatment intervention

events and control intervention events. The amount of overlap (same and mixed)

increases as the temporal windows increase; however, the percentage of overlap tends

to decrease after matching. The percentage of same-intervention event overlap after

matching for spatial windows of 5 km and smaller ranges from 25.8% to 77.8% and

the percentage of mixed-intervention event overlap after matching for spatial windows

of 5 km or smaller ranges from 6.7% to 61.9%. The higher percentages of overlap

correspond to larger temporal windows with the spatial windows of 5 km or less.
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When considering spatio-temporal windows less than 25 days and 5 km and smaller,

the mixed-intervention event overlap ranges from 6.7% to 42.5% after matching.



47

Results Before Matching After Matching

Time Space Estimate P-value N(control) N(treat) L1 %CS %SO %MO N(control) N(treat) L1 %CS %SO %MO

5 1 0.0003370 0.005 15318 7130 0.69 20.4 29.2 7.4 11273 5950 0.61 36.9 25.8 6.7

10 1 0.0002983 < 0.001 15207 7098 0.71 18.7 36.4 10.6 11071 6014 0.64 31.1 33.6 9.9

15 1 0.0002992 < 0.001 15103 7070 0.73 17.5 40.6 13.1 10591 5785 0.64 30.2 38.2 12.5

1 0.0003104 < 0.001 15056 7042 0.74 16.1 43.3 15.2 10283 5630 0.65 28.1 41.0 14.6
2 0.0000617 0.004 15056 7042 0.79 13.1 53.2 23.0 9584 5870 0.71 22.0 51.0 22.3
7 0.0000077 0.012 15056 7042 0.86 9.0 70.3 46.5 8386 5743 0.83 11.2 68.4 45.7
18 0.0000017 0.031 15056 7042 0.88 6.5 82.4 69.2 7464 5193 0.88 6.7 81.4 68.5

20

19 0.0000018 0.014 15056 7042 0.88 6.3 83.0 70.3 7311 5162 0.88 6.6 82.2 69.5

1 0.0002792 < 0.001 14950 7017 0.75 15.5 45.3 17.0 10182 5706 0.67 26.6 43.2 16.4
2 0.0000588 0.002 14950 7017 0.79 13.1 55.4 25.6 9368 5699 0.72 20.6 53.3 25.0
3 0.0000255 0.015 14950 7017 0.82 10.6 61.3 32.5 8911 5683 0.77 16.5 59.3 32.0
4 0.0000168 0.013 14950 7017 0.85 9.0 65.4 38.9 8955 5808 0.80 13.5 63.5 38.2
5 0.0000101 0.034 14950 7017 0.85 9.5 68.4 43.3 8718 5692 0.83 11.1 66.7 42.5
7 0.0000087 0.001 14950 7017 0.87 7.7 72.8 50.6 8346 5659 0.85 9.5 71.3 50.2
9 0.0000047 0.021 14950 7017 0.89 6.3 76.1 56.9 8021 5549 0.87 8.4 74.8 56.3
10 0.0000036 0.04 14950 7017 0.88 6.2 77.6 59.4 7823 5487 0.88 7.7 76.3 58.9
11 0.0000031 0.04 14950 7017 0.86 7.9 78.8 61.6 7677 5465 0.88 7.3 77.6 61.3
16 0.0000021 0.015 14950 7017 0.89 6.2 83.2 70.1 7527 5234 0.89 6.4 82.3 69.7
17 0.0000022 0.006 14950 7017 0.89 5.8 84.0 71.6 7363 5208 0.89 6.0 83.1 71.2
18 0.0000026 < 0.001 14950 7017 0.89 5.7 84.7 72.7 7228 5110 0.90 5.8 83.8 72.3
19 0.0000023 < 0.001 14950 7017 0.90 5.5 85.2 73.8 7103 5052 0.90 5.7 84.5 73.3

25

20 0.0000019 0.002 14950 7017 0.90 5.2 85.8 74.9 6991 5047 0.90 5.5 85.1 74.3

Table 3.3: Results and summary statistics of the MWA with SPP method for the conflict analysis. All combinations of spatial
and temporal windows with significant effect estimates are included. Spatio-temporal wake sizes (time in days, space in km)
and corresponding estimates with p-values are listed first. The counts of treated and control intervention event type wakes,
along with L1 distance, percent of common support (CS), and percentages of same intervention event-type overlap (SO) and
mixed intervention event-type overlap (MO) are then listed before matching was used and after matching was used.
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Results Before Matching After Matching

Time Space Estimate P-value N(control) N(treat) L1 %CS %SO %MO N(control) N(treat) L1 %CS %SO %MO

1 0.0003071 < 0.001 14789 6964 0.76 14.6 46.8 18.4 9989 5579 0.68 25.0 45.0 18.0
2 0.0000592 0.002 14789 6964 0.80 12.2 57.0 27.7 9178 5731 0.74 19.1 55.3 27.4
3 0.0000296 0.004 14789 6964 0.84 9.8 63.0 35.2 8640 5647 0.79 15.0 61.3 34.7
4 0.0000167 0.013 14789 6964 0.85 9.9 67.0 42.1 8701 5769 0.82 11.7 65.5 41.3
18 0.0000018 0.009 14789 6964 0.89 5.9 86.2 75.4 7039 5034 0.89 5.8 85.6 75.2

30

19 0.0000017 0.01 14789 6964 0.89 5.8 86.7 76.5 6897 5025 0.89 5.6 86.2 76.1

1 0.0002968 < 0.001 14702 6921 0.77 14.2 48.2 19.5 9810 5555 0.68 24.3 46.6 19.5
2 0.0000577 0.002 14702 6921 0.81 11.6 58.4 29.6 8969 5580 0.75 18.4 56.9 29.6
3 0.0000279 0.006 14702 6921 0.85 9.1 64.5 37.6 8633 5631 0.80 13.8 63.1 37.1
4 0.0000157 0.013 14702 6921 0.86 9.2 68.5 44.4 8376 5627 0.83 11.2 67.2 44.0
17 0.0000016 0.025 14702 6921 0.90 5.6 86.7 76.3 6995 5032 0.90 5.3 86.3 76.3

35

18 0.0000019 0.006 14702 6921 0.90 5.4 87.3 77.4 6843 4908 0.90 5.2 87.0 77.3

1 0.0002896 < 0.001 14570 6861 0.76 14.4 49.3 20.8 9563 5442 0.69 23.4 47.8 20.8
2 0.0000648 < 0.001 14570 6861 0.82 10.9 59.6 31.4 8785 5483 0.76 17.2 58.2 31.6
3 0.0000298 < 0.001 14570 6861 0.84 10.8 65.7 39.6 8344 5494 0.81 12.7 64.4 39.5
17 0.0000016 0.019 14570 6861 0.90 5.2 87.7 78.0 6914 4958 0.91 4.6 87.4 78.2
18 0.0000016 0.012 14570 6861 0.91 4.9 88.3 79.0 6735 4859 0.91 4.5 88.0 79.1

40

19 0.0000012 0.031 14570 6861 0.91 4.7 88.9 79.9 6713 4822 0.92 4.2 88.5 79.9

1 0.0002781 < 0.001 14423 6823 0.76 14.0 50.3 22.0 9518 5462 0.69 22.8 48.9 22.1
2 0.0000725 < 0.001 14423 6823 0.82 10.5 60.6 33.2 8731 5435 0.77 16.4 59.4 33.445
3 0.0000276 0.002 14423 6823 0.85 10.4 66.8 41.5 8450 5482 0.82 11.9 65.6 41.5

1 0.0002793 < 0.001 14273 6781 0.77 13.2 51.1 22.9 9450 5397 0.70 21.2 49.9 23.2
2 0.0000667 < 0.001 14273 6781 0.83 9.8 61.6 34.4 8589 5358 0.78 15.4 60.4 34.9
3 0.0000286 < 0.001 14273 6781 0.85 9.6 67.7 43.0 8295 5423 0.83 11.1 66.8 43.2
4 0.0000120 0.027 14273 6781 0.88 7.8 71.8 50.1 8382 5497 0.87 8.7 71.0 50.4

50

8 -0.0000039 0.038 14273 6781 0.89 6.8 80.7 65.5 7607 5431 0.89 6.1 80.1 66.4

Table 3.4: Results and summary statistics of the MWA with SPP method continued.



49

Results Before Matching After Matching

Time Space Estimate P-value N(control) N(treat) L1 %CS %SO %MO N(control) N(treat) L1 %CS %SO %MO

1 0.0002234 < 0.001 14118 6741 0.77 12.9 51.9 23.7 9332 5356 0.71 20.6 50.8 24.2
2 0.0000540 < 0.001 14118 6741 0.82 11.8 62.4 35.6 8529 5328 0.79 14.6 61.4 36.3
3 0.0000260 < 0.001 14118 6741 0.86 9.2 68.5 44.4 8248 5405 0.84 10.6 67.7 44.7

55

4 0.0000141 0.003 14118 6741 0.86 8.5 72.5 51.4 8028 5459 0.87 8.3 71.9 52.0

1 0.0002681 < 0.001 13939 6698 0.78 12.7 52.5 24.5 9031 5288 0.71 20.5 51.5 25.2
2 0.0000669 < 0.001 13939 6698 0.82 11.6 63.0 36.8 8474 5333 0.80 14.0 62.2 37.5
3 0.0000302 < 0.001 13939 6698 0.86 9.0 69.2 45.7 8124 5316 0.85 10.1 68.6 46.0

60

4 0.0000171 < 0.001 13939 6698 0.86 8.2 73.3 52.7 7948 5437 0.88 7.8 72.8 53.2

1 0.0002591 < 0.001 13785 6658 0.78 12.5 53.1 25.2 9030 5294 0.72 19.7 52.3 26.0
2 0.0000634 < 0.001 13785 6658 0.83 11.1 63.6 37.7 8367 5308 0.81 13.3 63.0 38.6
3 0.0000334 < 0.001 13785 6658 0.84 9.6 69.7 46.8 7956 5301 0.85 9.8 69.3 47.2
4 0.0000176 < 0.001 13785 6658 0.87 8.0 73.9 53.8 7912 5384 0.86 8.8 73.5 54.6

65

8 -0.0000036 0.041 13785 6658 0.90 6.1 82.7 68.9 7526 5288 0.88 6.4 82.4 70.2

1 0.0002862 < 0.001 13655 6627 0.78 12.0 53.5 25.9 8921 5219 0.72 19.2 52.8 26.8
2 0.0000756 < 0.001 13655 6627 0.83 10.6 64.1 38.7 8231 5283 0.81 12.7 63.6 39.6
3 0.0000414 < 0.001 13655 6627 0.84 9.2 70.3 47.9 7862 5236 0.86 9.4 69.9 48.3
4 0.0000198 < 0.001 13655 6627 0.85 10.2 74.4 54.7 7679 5284 0.86 8.9 74.1 55.7
5 0.0000079 0.02 13655 6627 0.87 8.7 77.5 59.5 7413 5199 0.88 7.6 77.1 60.6

70

8 -0.0000040 0.022 13655 6627 0.88 7.2 83.1 69.7 7110 5177 0.89 6.0 83.1 71.1

1 0.0002821 < 0.001 13488 6585 0.79 11.6 53.9 26.5 8547 5056 0.72 19.3 53.5 27.5
2 0.0000782 < 0.001 13488 6585 0.83 10.5 64.6 39.5 8131 5198 0.81 12.4 64.3 40.7
3 0.0000413 < 0.001 13488 6585 0.85 9.2 70.8 48.9 7717 5183 0.86 9.2 70.7 49.6
4 0.0000196 < 0.001 13488 6585 0.85 10.2 75.0 55.6 7627 5235 0.86 8.4 74.9 57.0

75

5 0.0000089 0.007 13488 6585 0.87 8.4 78.1 60.5 7373 5145 0.88 7.1 77.8 61.9

Table 3.5: Results and summary statistics of the MWA with SPP method continued.
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3.2.2.2 Conclusions

These results suggest evidence in favor of HA2, that indiscriminate violence leads to

more collaboration with U.S. forces. The strongest effects occur across all temporal

windows investigated within the immediate vicinity as an intensity of 3.4 × 10−4

(maximum), meaning that there is an expected increase of 0.0003 dependent events

(civilian turn-ins) per unit volume of space-time (1 km by 1 km, per day), on average,

given the instance of a nearby intervention event is indiscriminate violence compared

to selective violence. This relatively weak signal is also noted in Schutte (2017),

and the small results may be due to civilians simply not having any information to

pass on, or not having the opportunity or means to turn-in unexploded ordnances and

information. With such low intensities and considering the smaller temporal windows,

there are less mixed overlapping intervention event wakes (< 30%) and thus assuming

no interference is appropriate as a beginning step for this particular problem and data

analysis.

Potential explanations of the second cluster illustrated in Figure 3.9 may include

administrative reasons, given that the data is recorded by individuals. When con-

sidering further distances from the point intervention event locations, patrols may

not be as frequent, and thus reports from civilians must coincide with opportunity

to report unexploded ordnances to U.S. troops. It may also be the case that these

are recorded on a monthly basis or there is an administrative deadline at that time.

It would be of interest to investigate further the dispersion of intervention events to

consider if the location and distance to more populated areas needs to be given even

greater attention in how it is incorporated the analysis design. Additionally, further

analysis of this problem would consider a more narrow focus in time rather than for

the full length of data availability (2004-2009), given that conflicts tend to experience

phases of intensity periods.
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3.3 Discussion

In this work, we are able to provide further analytical evidence in identifying the

radial influence of spatio-temporal wakes of intervention events. These results com-

plement those of Schutte and Donnay (2014). By considering the causal problem

in terms of spatial point process theory and utilizing the ideas of spatial intensity

of dependent events, we bring a novel perspective to causal methodology. In addi-

tion, we appropriately incorporate spatial characteristics in the assumptions needed

for valid causal inference. These two pieces work together to provide a solid frame-

work for spatio-temporal causal problems in the future. The SPP viewpoint allows

us to clearly delineate the spatial radius equal to or closest to the true value. This

translates into unbiased estimates of the treatment effect.

Through numerical studies, we clearly illustrate the value of this perspective;

however, we do note the limitations of the scenarios presented in this work. It is

important to keep in mind that wakes are considered independent with no SUTVA

violations; this is not practical to assume in the context of the conflict problem of

interest. Additionally, we assume that the radii of both treatment and control wakes

are equivalent, which may also not be the case in real life. Further study is needed

to incorporate these problems in the SPP context we have begun here.
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Chapter 4

Defining the Interference Effect

With Spatial Point Process Theory
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4.1 Introduction

4.1.1 Spatial-Causal Setting

The fundamental ideas of causal inference in the counterfactual framework rely on key

assumptions that can be hard to justify when applied to spatial data and geographic

questions. When treatments are defined by geographic features (e.g. via local policy

decisions), understanding the effects of these treatments through observational studies

can be challenging. The same can be said for disaggregated event data and the effects

of specific types of events on future events defined geographically. In such instances,

the research design and methods to account for the geographic proximity of events

are important to consider.

We carefully review the ideas behind interference in geographic designs (Keele and

Titiunik, 2017) under a geographic regression discontinuity (GRD) approach and the

matched wake analysis (MWA) approach of Schutte and Donnay (2014) to define a

clear, articulated framework for causal inference with spatio-temporal event data. We

propose to transform the geographic interference structure for the particular type of

data MWA is meant to deal with, incorporating ideas of spatial point process theory.

Expanding the methods of the previous chapter, we specifically investigate the impact

of overlapping “wakes” as a significant interference effect and separately defining this

effect. Additionally, we consider the requirements and limitations for obtaining unbi-

ased treatement effects under this analytic approach for spatio-temporally referenced

data.

4.1.2 Types of Questions of Interest

How one poses a causal question including a geographical element can determine

whether current methods are feasible to use. The spatio-temporal-causal method-

ology differs from traditional causal inference in quantifying the effect of treatment
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when units are likely to choose any location within a fixed band defining exposure

status, or a unit’s location choice defines exposure status and is not fixed to an area

defining this. Another, very different, question of interest is how to quantify and

test the likelihood of receiving spillover effects and considering a causal effect with

and without interference. However, all of these questions have important nuances

stemming from the geographical elements of the problem and the methods used to

obtain the estimated causal effects need to take this into consideration.

4.1.3 Spatially Defined Treatment

When considering geography in a causal context, local treatments are of most interest

- individuals here are considered treated, compared to individuals there that are not.

This spatial definition of treatment typically manifests itself in one of two ways -

units can be defined as treated or not-treated (control) by a spatial measure, or by

falling inside or outside some spatial boundary. In either scenario, leveraging the

geographical nature of treatment assignment to more appropriately compare units is

the common goal of interest.

4.2 Causal Inference in a Spatio-temporal or Spa-

tial Setting

4.2.1 Notation and Framework

Here we lay out the notation and framework necessary to discuss current spatio-

causal and spatio-temporal-causal methods and develop a common framework with

clarity and statistical rigor. To begin, we do not use individual-level data but rather

point process event data. Rather than a set of individuals, we consider (dependent)

events with locations and times for which the rate or probability are impacted by
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the location and time of other (intervention) events. One of the unique aspects of

this spatio-temporal problem is that the defining measure of the treatment receipt

impacts the potential outcomes. Below we outline notation following Rubin’s causal

model (Holland, 1986) and dive into the issues revolving around violations of key

causal assumptions.

We refer to an intervention event that receives either treatment or non-treatment

(control), denoted by Zi, for i = 1, . . . , n units. A treatment intervention event is

denoted Zi = 1 and control intervention event is denoted Zi = 0. In this context,

consider each unit i to represent a spatio-temporal cylinder, or wake, centered around

its corresponding intervention event Zi. Rather than units representing individuals

that exist as their own entity and then may be assigned treatment or control, units

in this context are geographical areas defined by radius r from an intervention event

with its own time series. Thus, units are, in part, defined by the exposure itself. The

potential outcome ∆i(Zi), similar to the traditional Yi(Zi) notation, represents the

change in intensity of dependent events over time if the unit experienced the interven-

tion event Zi. Specifically, ∆i(0) = λ1i(0)−λ0i(0) is the change in intensity, over time,

of dependent events within radius r of the center intervention event for unit i, given

a control intervention event occured (Zi = 0). The change in intensity, over time, of

dependent events within radius r of the centered intervention event for unit i, given a

treatment intervention event occurred is ∆i(1) = λ1i(1)− λ0i(1). Both lambda1i(Zi)

and λ0i(Zi) are intensities of dependent events, for the space after intervention event

Zi occurs and the space preceding intervention event Zi, respectively. The observed

outcome can be defined as a linear combination of the potential outcomes and inter-

vention event status, ∆i = Zi ·∆i(1) + (1− Zi) ·∆i(0). A vector of pre-intervention

covariates, which can included geographic variables, is denoted Xi for each unit i.
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The causal estimand of interest is the average causal effect,

ACE = E{∆i(1)−∆i(0)}, (4.1)

which is the difference in change in intensity of dependent events over time, given a

unit experiences a treatment intervention event versus a control intervention event,

on average.

4.2.2 Definition of SUTVA, SUTVA Violations

A major concern when estimating causal effects is the fulfillment of the assumptions

that are required to identify estimand(s) of interest. Namely, we require a form of

the “no unmeasured confounders” assumption (introduced later in the chapter), and

the stable unit treatment value assumption (SUTVA) (Rubin, 1980). Particularly in

spatial settings, the violation of SUTVA needs to be addressed. A formal statement

of SUTVA is,

Assumption 1 (Stable Unit Treatment Value Assumption (SUTVA))

For any unit i,

(a) neither Yi(1) nor Yi(0) is affected by the treatment any other unit j 6= i received

- that is, there is no interference between units; and

(b) no matter how unit i received treatment Ti = 1, the outcome that would be observed

would be Yi(1) and similarly for treatment Ti = 0; i.e., there are no hidden versions

of treatments.

The manifestation of SUTVA violations differ depending on the context and prob-

lem at hand. Within spatial and spatio-temporal causal applications, two types of

violations are of particular interest, which we detail below.
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Interference Interference occurs when the potential outcomes of unit i are influ-

enced by the treatment received by another unit, violating SUTVA. This is a problem

when considering spatial proximity and the influence of social networks (Toulis and

Kao, 2013). An example illustration adapted from Kao (2017) is illustrated in Fig-

ure 4.1. In the applications of Keele and others (Keele and Titiunik, 2014, 2016,

2017; Keele et al., 2015), the proximity of units in the control area could potentially

influence the voting behavior of units located within a close distance in the treated

area. This SUTVA violation can result in biased estimates of the treatment effect.

The conflict example of Schutte and Donnay (2014) quantifies subsequent instances

of turning-in unexploded ordnances by civilians to U.S. troops following indiscrim-

inate insurgent violent events in comparison to selective insurgent violent events.

Units, defined as spatio-temporal wakes centered around an insurgent violent event,

may interfere with one another. Within this overlapping section of wakes, say wake

i experiences a indiscriminate violent event and wake j experiences a selective vio-

lent event, there is a potential for individuals to withhold evidence or information of

an IED (per the context of the specific problem) in parts of wake j that otherwise

wouldn’t (in the influence of an indiscriminate violent event). This close proximity

leads to potential influence of selective violent event wakes on indiscriminate violent

event wakes. While Schutte and Donnay (2014) show that overlap in small amounts

still leads to a sound estimation of the treatment effect, the consequences of even a

moderate amount of overlap are evident in their work.

Spillover Effect A spillover effect, or indirect exposure effect, occurs when the

effect of treatment carries over, or “spills” over, to the control area or control units

(or vice versa). An illustration of this is the crime-fighting program application

of Verbitsky-Savitz and Raudenbush (2012). An effective crime-lowering program

implemented in a certain neighborhood decreases crime due to a shift of this criminal
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Figure 4.1: Adapted from Kao (2017), an experiment in which interference occurs in
a social network. Not only does the treatment affect those that receive it, but it also
affects peers through word of mouth and interactions.

activity to contiguous neighborhoods without the program; thus, the implementation

of the intervention in one area increases the crime rate in contiguous areas. In general,

the spillover effect can be seen when individuals defined as receiving the control or

located in the control area actually receive the treatment, or may be located in the

treatment area, but the magnitude of the effect differs from the effect of isolated

treatment (or vice versa). This group of individuals does not receive the true effect

of treatment, but are located in such a way that they receive part of both the defined

treatment and control versions of exposure. This also violates SUTVA. The overlap

in the conflict data setting (Schutte and Donnay, 2014) could also be seen to fit this

type of SUTVA violation. If a wake centered around a treatment intervention event

occurs within close proximity to wakes centered around a control intervention event,

the control intervention event wakes could experience a spillover effect of the nearby

treatment intervention event wake. However, we do not consider this scenario going

forward.



59

4.2.3 Geographic Regression Discontinuity

The geographic regression discontinuity (GRD) design (Keele and Titiunik, 2014,

2016, 2017; Keele et al., 2015) gives rise to a matching framework that incorporates

geographic proximity and observed covariates in a flexible manner. The goal is to min-

imize spatial distance between treated and control pairs while still preserving balance

for observed covariates. This approach works best when the intended causal ques-

tion of interest pertains to inferences regarding the effects of geographically varying

treatments, where units in the treated area must be compared to units in the control

area. While one can condition on a set of observed pretreatment covariates, there is

still a potential for unmeasured confounders (Keele et al., 2015; Keele and Titiunik,

2017). GRD proposes to combine this conditioning on observed covariates with the

exploitation of geographic proximity, detailed in Keele and Titiunik (2014); Keele

et al. (2015). The idea behind this work is to use the regression discontinuity (RD)

framework, where counterfactuals are the treated and control groups near the bound-

ary, making local treatment effects identifiable. Units either sort around a boundary

between the treated and control areas with error, or the boundary is arbitrary between

the areas.

This GRD design deals with the issue of strong self-selection around some border of

interest. The proposed solution is to assume that after conditioning on pretreatment

covariates X, treatment assignment is as-if randomized (independent) for those who

live near the boundary. Geographic distance between treated and control observations

to the boundary is minimized while enforcing balance in pretreatment covariates.

The conditional geographic treatment ignorabilitity in local neighborhood assumption

(Keele and Titiunik, 2017) states that a small neighborhood exists where potential

outcomes and treatment assignment are conditionally independent given pretreatment

covariates,

Assumption 2 (Conditional Mean Independence in Local Neighborhood (Keele and
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Titiunik, 2017))

For all units that reside in a narrow area for which the boundary of the spatio-temporal

cylinder(s) does not encounter any heterogeneity,

E{∆i(1)|Xi, Zi = 1} = E{∆i(1)|Xi, Zi = 0}

E{∆i(0)|Xi, Zi = 1} = E{∆i(0)|Xi, Zi = 0}

The work of Keele and Titiunik (2017) generalizes and expands that of Lee (2008)

and Cattaneo et al. (2015) to consider a small geographic neighborhood around the

boundary separating treatment and control areas, such that the condition of as-if

randomization, or independence, holds after conditioning on pretreatment covariates.

Lee (2008) and Cattaneo et al. (2015) note that the emphasis on “after conditioning

on pretreatment covariates” is important, since this as-if randomization may not

hold unconditionally for the small geographic neighborhood around the boundary

separating treatment and control areas. This assumption allows for the identification

of a treatment effect at the boundary points and points included in the geographic

neighborhood where it holds. The form of this assumption makes sense to use when

treatment assignment is based on geography. Additionally, it is weaker than the

assumption when only conditioning on observables (Assumption 3), as it requires

conditional independence for a subset of the population.

Assumption 3 (Conditional Geographic Treatment Ignorability)

{∆i(0),∆i(1)} |= Zi|Xi.

4.2.4 Our Goals

It is clear that while there has been some work done to understand causal implications

in spatial settings, the setting discussed in Schutte and Donnay (2014) can benefit
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from a structured statistical framework. Additionally, there is some overlap between

the current ideas and problem structure of MWA and interference in a geographic

setting as has been explored by Keele and Titiunik (2017) and others. We work to

bring these together in Section 4.3. As application-specific extensions of causal infer-

ence methods to spatial and spatio-temporal settings emerge, it is important to define

common elements to identify a core basis for spatial-causal inference. The questions

we are interested in answering deal with the impact of overlapping spatio-temporal

cylinders on the treatment effects of interest. We will define the “interference effect”

and the “interference-free effect” in this particular setting. Interestingly, we note that

the implications of spatio-temporal SUTVA violations are themselves spatial; that is,

the violations are local in space and time, may be limited to particular observations

in particular locations, and as such, merit careful examination in this context.

4.3 Spatio-temporal Manifestations of SUTVA Vi-

olations

In this section, we outline the necessary assumptions and framework for scenarios in

which SUTVA may be violated due to the spatio-temporal nature of the data and

question of interest. Below is a chart of the problem from least complexity to most

complexity, to the extent that will be addressed in this paper (Table 4.1). We note

that this does not include all potential scenarios, but is merely a start to the vast

reaches of the depth of this problem. This table begins with the inclusion of both

treated and control intervention events rather than considering scenarios of only one

type of intervention event, given the nature of the problem and inference of interest.

Additionally, given our motivating application, we assume no compounded treatment

going forward in the rest of this work. That is, we do not attempt to address the

implications of compounded treatment in addition to the those of overlapping differing
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treatments. The focus will be on scenarios in which overlapping control and treatment

intervention wakes may potentially occur.

What is Estimated Radius Potential Overlap Assumptions Scenario

Differences in Intensities Constant, Known

No

rT = rC = r is known - no SaTScan elements necessary;

1A
Consistency is fulfilled;
SUTVA holds;
Conditional mean independence in local neighborhood

Yes

rT = rC = r is known - no SaTScan elements necessary;

1B
Consistency is fulfilled;
SUTVA does not hold-define interference and interference-free effect;
Conditional mean independence in local neighborhood

Differences in Intensities Constant, Unknown

No

rT = rC = r is found via SaTScan-esque technique;

2A
Consistency is fullfilled;
SUTVA holds;
Conditional mean independence in local neighborhood

Yes

rT = rC = r is found via SaTScan-esque technique;

2B
Consistency is fulfilled;
SUTVA does not hold-define interference and interference-free effect;
Conditional mean independence in local neighborhood

Table 4.1: An outline of the complexity of scenarios addressed in this chapter.

4.3.1 Complications of Spatial Setting for Definitions of Ele-

ments of Standard Causal Framework: SUTVA, Inter-

ference, and Spillover

While MWA provides a novel approach to evaluating and estimating causal relation-

ships of conflict events that could be used for other types of georeferenced event data,

there are some limitations to the approach. Namely, the spatio-temporal cylinders

defining the units that receive treated or control intervention events can potentially

overlap with one another, violating SUTVA. Violating this assumption could lead to

biased effect estimates. Two scenarios could result from MWA: 1) radii from multiple

units of the same intervention event type overlap in space and time, biasing estimates

upward (assuming a positive treatment effect); or 2) a unit of each of a treatment

intervention and control intervention could overlap and bias the estimated treatment

effect downward. The chances for overlap decrease as the intensity of intervention

events decreases and size of the wakes decreases.

In the context of their polling problem of interest, Keele and others consider
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the possibility for interference, resulting in a violation of SUTVA. However, for this

application there has been shown to be little evidence of treatment spillovers even

withinin households (Sinclair et al., 2012). Thus, SUTVA violation in the form of

voters in control area encouraging neighbors in treated area to vote, or the likelihood

of interference across voters even within adjacent households, is slim. Regardless, if

such a violation occured it would bias the effect towards 0, and positive effects would

be conservative estimates.

4.3.2 Scenario 1A: When the Spatio-temporal Wake Radius

is Known

We begin with similar notation as in Section 4.2.1 above. Let Zi represent a treat-

ment or control intervention event for unit i, i = 1, . . . , n with Zi = 1 a treat-

ment intervention event and Zi = 0 a control intervention event. The potential

outcomes ∆i(0),∆i(1) again represent the change in intensities of dependent events

over time given unit i experiences a control intervention event and unit i has a

treatment intervention event occur, respectively. The observed outcome is ∆i =

Zi ·∆i(1) + (1− Zi) ·∆i(0). Each unit i has an associated vector of pre-intervention

event covariates and risk factors, Xi. Assume that consistency (Cole and Frangakis,

2009) holds, in which a unit assigned to treatment intervention event has an observed

outcome that is the potential outcome under the treatment intervention event (and

vice versa). Formally,

∆i = ∆i(1) if Zi = 1 and ∆i = ∆i(0) if Zi = 0.

We also assume that SUTVA (Assumption 1) initially holds - that there is no

interference between units as well as no hidden versions of intervention event types.

In this scenario, there is no potential violation of SUTVA to consider. To identify the
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causal estimand of interest and obtain unbiased estimates, an ignorability assumption

is necessary. Typically, the assumption states that treatment is ignorable conditional

on a set of observed covariates, meaning that there are no unmeasured confounders.

We first consider the version of this assumption that is appropriate for spatial settings

(Keele and Titiunik, 2017) introduced earlier,

Assumption 3 (Conditional Geographic Treatment Ignorability)

(∆i(0),∆i(1)) |= Zi|Xi.

However, as Keele et al. (2015) point out, there is no a priori reason to assume that

geographic variation of treatment in such a way is justified, or that it is justified at

every possible location and time. As such, instead assume that treatment assignment

can be considered as-if randomized as in the following assumption, also previously

introduced.

Assumption 2 (Conditional Mean Independence in Local Neighborhood (Keele and

Titiunik, 2017))

For all units that reside in a narrow area for which the boundary of the spatio-temporal

cylinder(s) does not encounter any heterogeneity,

E{∆i(1)|Xi, Zi = 1} = E{∆i(1)|Xi, Zi = 0}

E{∆i(0)|Xi, Zi = 1} = E{∆i(0)|Xi, Zi = 0}

That is, assume that there exists a small neighborhood around the set of wakes,

where the average potential outcomes are mean independent of intervention event

type, given the covariates. In this setting, the causal estimand of interest is identifi-

able:
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τ = E{∆i(1)−∆i(0)}

= E [E{∆i(1)−∆i(0)|Xi}]

= E [E{∆i(1)|Xi} − E{∆i(0)|Xi}]

= E [E{∆i(1)|Xi, Zi = 1} − E{∆i(0)|Xi, Zi = 0}]

= E [E{∆i|Xi, Zi = 1} − E{∆i|Xi, Zi = 0}]

(4.2)

For the Difference-in-Differences (DD) design of Schutte and Donnay (2014), the

observed outcome is then modeled by

∆i = β0 + β1npre + τZi + εi

= XT
i β + τZi + εi

where ∆i is the observed intensity of dependent events after intervention event, npre

is the number of dependent events prior to the intervention event occuring, and

εi =Zi [E{∆i(1)−∆i(0)|Xi} − E{∆i(1)−∆i(0)}]

+ (1− Zi) [∆i(0)− E{∆i(0)|Xi, Zi = 0}]

+ Zi [∆i(1)− E{∆i(1)|Xi, Zi = 1}] .

Under consistency and Assumptions 1 and 2, E (εi|Xi, Zi) = 0 and τ can be consis-

tently estimated.
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4.3.3 Scenario 1B: Accounting for Potential Overlap as In-

terference

When intervention events occur close to one another in space, there is a potential

of spillovers or interference between units. Treated intervention event wakes may be

influenced by control intervention wakes and vice versa, due to geographic proximity.

Given the context of this problem, we assume that control intervention wakes influence

treatment intervention wakes. As such, begin by assuming that interference is one-

sided from control to treatment intervention wakes, similar to Verbitsky-Savitz and

Raudenbush (2012) and Keele and Titiunik (2017). It is advantageous to narrow

down the scope of potential outcomes that are truly possible and constructive for

defining a priori causal estimands of interest. Allowing for any interference pattern

means that an event’s potential outcomes must be expressed as the full vector ∆i(Z),

so that each event’s treatment status may be allowed to depend on the treatment

status of every other event. Such a large number of causal effects per event makes

this problem implausible.

Following Keele and Titiunik (2017), assume each intervention event’s potential

outcomes depend on its own treatment status, as well as any intervention event of

opposite treatment status located within a specified distance of the event i. We use

a modified functional indicator of interference (Keele and Titiunik, 2017), gi(Z; δ),

for fixed values of δ =distance, which defines the radius within which event i receives

interference.

gi(Z; δ) = I(Zi = 1)I(Niδ ≥ 1),

where

Niδ =
n∑
j=1

I(d(i, j) ≤ δ)I(Zi 6= Zj),

I(·) is the indicator function, d(i, j) is a measure of distance between intervention

event i and j’s locations, and δ ∈ R is a pre-specified distance (2 times the radius)



67

around i’s location. If i is a treatment intervention event, then gi(Z; δ) = 1 if there is

at least one control intervention event within a δ radius of the intervention event of

wake i’s location, and gi(Z; δ) = 0 if there are no control intervention events within

a δ radius around i’s location. Because we assume that interference is one-sided,

gi(Z; δ) = 0 for any control intervention event. This indicator function then allows

the potential outcomes for intervention event i to depend on other intervention events

treatment status only through the function gi(Z; δ), in addition to its own treatment

status Zi. The potential outcomes in this interference framework are defined by

∆i(Z) = ∆i;δ(Zi, gi(Z; δ)). For this geographic-based interference, there are now 3

potential outcomes:

∆i;δ(1, 1) =intervention event i is treated and experiences interference

(overlap is present) - the wake of a control intervention event is within

δ km of the wake of i’s location.

∆i;δ(1, 0) =intervention event i is treated and does not experience interference

(no overlap) - there are no control intervention event wakes within

δ km of the wake of i’s location.

∆i;δ(0, 0) = ∆i(0), intervention event i is control and gi(Z; δ) = 0 for all control

intervention events.

The observed outcome for each wake can only take one of these values, and is repre-

sented as a combination of the assigned intervention event and interference indicator:

∆i =∆i;δ(1, 1) if Zi = 1 and gi(Z; δ) = 1

∆i =∆i;δ(1, 0) if Zi = 1 and gi(Z; δ) = 0

∆i =∆i(0) if Zi = 0
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This notation allows for a causal estimand that is comparable to the average

treatment effect (4.1) of the population as the average treatment effect in the absence

of interference, also known as the “interference-free effect”,

τT = E{∆i;δ(1, 0)−∆i(0)}

This comparison considers the two potential outcomes that would be observed under

treatment and control intervention events in the absence of interference, and captures

the average effect of treated intervention events when they are geographically separate

from control intervention events and thus do not receive spillover. The “interference

effect” capturing the average effect of interference or spillovers on treated units can

also be defined,

τS = E{∆i;δ(1, 1)−∆i;δ(1, 0)}

This comparison quantifies the effect of treated intervention events who are geograph-

ically close (wake overlap) to a control intervention event in relation to those treated

intervention events that are geographically separate from control intervention events.

One can test for the presence of interference (H0 : τS = 0), since in the absence of

interference ∆i;δ(1, 1) = ∆i;δ(1, 0) = ∆i(1) for all i, implying that τS = 0 (Keele and

Titiunik, 2017).

Neither τT nor τS are identifiable under the current set of assumptions that hold

for Scenario 1A. In order for both of these estimands to be identifiable, additional

assumptions must be made to address the geographic nature of the problem, and

deal with the consideration of one observed outcome for every i from three potential

outcomes. Consistency and Assumption 2 still hold in this scenario, but another

assumption must be made with regard to the interference areas, since SUTVA no

longer holds.

Assumption 4 (As-if Random Geographic Location within Interference Areas (Keele
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and Titiunik, 2017))

E{∆i;δ(1, 1)|X, Zi = 1, gi(Z; δ) = 1} = E{∆i;δ(1, 1)|X, Zi = 1, gi(Z; δ) = 0}

E{∆i;δ(1, 0)|X, Zi = 1, gi(Z; δ) = 1} = E{∆i;δ(1, 0)|X, Zi = 1, gi(Z; δ) = 0}

This requires that falling in the interference region in the treatment intervention

event wake is mean independent of potential outcomes, conditional on pretreatment

covariates. This is weaker than assuming that each unit is randomly assigned to a

geographic location in a treatment intervention event wake, so that whether or not

they fall in the interference region is unrelated to their potential outcomes. With

these assumptions established, both effects are identifiable,

τT (X) = E{∆i;δ(1, 0)−∆i(0)|X}

= E{∆i;δ(1, 0)|X, Zi = 1, gi(Z; δ) = 0} − E{∆i(0)|X, Zi = 0}

= E{∆i|X, Zi = 1, gi(Z; δ) = 0} − E{∆i|X, Zi = 0}

(4.3)

τS(X) = E{∆i;δ(1, 1)−∆i;δ(1, 0)|X}

= E∆i;δ(1, 1)|X, Zi = 1, gi(Z; δ) = 1} − E{∆i;δ(1, 0)|X, Zi = 1, gi(Z; δ) = 0}

= E{∆i|X, Zi = 1, gi(Z; δ) = 1} − E{∆i|X, Zi = 1, gi(Z; δ) = 0}

(4.4)

The estimators of these two parameters are now consistent for the DD design. Let

Gi ≡ gi(Z; δ). Then

∆i = γ0 + γ1npre + τTZi + τSGi · Zi + νi

= XT
i γ + τTZi + τSGi · Zi + νi

where ∆i is the change in intensity of dependent events before and after an inter-
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vention event, npre is the number of dependent events prior to the intervention event

occuring, and

νi = (1− Zi) [∆i(0)− E{∆i(0)|Xi, Zi = 0}] +

Zi · (1−Gi) [∆i;δ(1, 0)− E{∆i;δ(1, 0)|Xi, Zi = 1, Gi = 0}] +

Zi ·Gi [∆i;δ(1, 1)− E{∆i;δ(1, 1)|Xi, Zi = 1, Gi = 1}] +

Zi [E{∆i;δ(1, 0)−∆i(0)|X} − E{∆i;δ(1, 0)−∆i(0)}] +

Zi ·Gi [E{∆i;δ(1, 1)−∆i;δ(1, 0)|X} − E{∆i;δ(1, 1)−∆i;δ(1, 0)}] .

Under consistency and Assumptions 2 and 4, E (νi|X, Zi, Gi) = 0 and the parameters

can be consistently estimated.

4.3.3.1 Derivation of Spatio-temporal Overlap Where the Interference

Effect Lives

We can easily derive the corresponding volume of the overlapping cylinders that ex-

perience this interference effect by returning to some principles of geometry. Consider

overlapping cylinders with base circles A and B , both with radius r. The absolute

value of the total distance d between the centers of circles A and B must be less than

or equal to two times the radius r, |d| ≤ 2r. Figure 4.2 illustrates the two-dimensional

version of this problem.

To simplify ideas, we work in the two-dimensional case using the bases of the

cylinders, and then apply this to the overlapping volume of the cylinders as opposed

to area. Two isosceles triangles, 4ADE and 4BDE, are formed by the center of

each circle and the two points of intersection. Drawing a line b from DE creates

the shared base of the triangles. The distance from the center of each circle to b is

d/2, and the angles formed by the radii connecting the center of each circle to the

intersection points is represented by θ. The goal is to find the total area of the blue +
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green shaded areas, which in turn leads to the volume with this corresponding base.

This will allow us to represent the intensity of this overlapping region and calculate

the interference effect.

Figure 4.2: Area of overlapping circles A and B with equal radii r. Points D and
E represent the intersection points of the two cylinders. The dashed horizontal line,
length d, is the total distance between the centers of the two cylinders. The area of
the two circles shaded in blue/green represents the base of the overlapping cylindrical
area in which the interference effect lives.

First, the formula for the area of the sector (yellow+green+blue areas) is

Asector =
θ

2
r2

where the central angle θ, measured in radians, can be found using the yellow isosceles

triangle, 4ADE:
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such that the area of the sector is represented as:

Asector = θ
2
r2

=
2 cos−1( d

2r )
2

r2

= r2 cos−1
(
d
2r

)
Using trigonometry, the area of the yellow isosceles triangle, 4ADE, is then:
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Or by way of the Pythagorean theorem,

(
b
2

)2
+
(
d
2

)2
= r2

b2

4
+ d2

4
= r2

b2 + d2 = 4r2

b =
√
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4
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This leads to the area of the sector’s segment (blue area), and thus the total over-
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lapping section of the circles (green+blue areas), measured in radians (θ) or distance

(d):

Aoverlap = r2 (θ − sin θ) ≡ 2r2 cos−1
(
d

2r

)
− d

2

√
4r2 − d2

Finally, given the formula for the volume of a cylinder, V = πr2h, the area of the

overlapping segments Asegment is substituted for the area of a circle πr2 as the base

of the overlapping cylinders to obtain the volume:

V = r2h (θ − sin θ) ≡ 2r2h cos−1
(
d

2r

)
− d

2
h
√

4r2 − d2 (4.5)

Knowledge of the analytical form of the overlapping volume of the wakes is impor-

tant for the spatial point process theory that we consider, as it is a key element for

defining the intensity in this overlapping portion. Specifically, it allows us to define

the post-treatment intervention event intensity for unit i experiencing interference,

λ1i(1, 1), which differs from the post-treatment intervention event intensity for unit

i not experiencing interference λ1i(1, 0). The general scenario is illustrated in Figure

4.3.

(a) (b)

Figure 4.3: An illustration of the volume of overlapping wakes.

The pre-treatment intervention event intensity is the same for unit i regardless of

interference indicator, that is, λ0i(1, 1) = λ0i(1, 0). There are two situations that can

arise for the post-intervention event intensity (Figure 4.4).
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(a) (b)

Figure 4.4: An illustration of overlapping wakes that could occur for calculating the
interfered-with treatment wake intensities. Scenario (a) represents the overlap that
occurs if the control intervention wake occurs first in time, and scenario (b) represents
the overlap that occurs if the treatment intervention wake occurs first in time.

The intensity for unit i after experiencing a treatment intervention event and

interference is determined by which intervention event occurred first temporally. Ei-

ther a portion of the time post-treatment intervention event or the full length of time

post-intervention event is subjected to this interference and thus contributes differ-

ing portions to the intensity λ1i(1, 1). Thus, we can represent λ1i(1, 1) in terms of

λ1i(1, 0), λ1j(0), and λ0j(0) for i 6= j:

λ1(1, 1) =



[
(λ1(1, 0) · v) +

{
λ1(0) ·

(
2r2h3 cos

(
d
2r

)
−

d
2
h3
√

4r2 − d2
)}]

/v, if date(Control) < date(Treatment)[
(λ1(1, 0) · v) +

{
λ1(0) ·

(
2r2(h2 + h3) cos

(
d
2r

)
−

d
2
(h2 + h3)

√
4r2 − d2

)}]
/v, if date(Control) > date(Treatment)

4.3.4 Scenario 2A: Proposing the Spatio-temporal Wake Ra-

dius

This scenario is fleshed out in Chapter 3, focusing on the impact of mis-specifying

the radius of wakes and the potential bias that is introduced. We do not re-discuss

this scenario here, but refer the reader back to Chapter 3.
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4.3.5 Scenario 2B: How to Account for Potential Overlap

as Interference with a Proposed Spatio-temporal Wake

Radius

This scenario combines the challenges of misspecified wake radius with potentially

overlapping wakes. The underlying foundation mirrors that of Scenario 1B when con-

sidering the interference effect and interference-free effect. However, when applying

this method to a real-world problem, the true radius of influence for the wakes is

unknown and must be chosen. This scenario is a step towards a more realistic setup

to use for a data analysis, and is illustrated in the numerical studies below.

4.3.5.1 Further Considerations Regarding Wake Overlap

In theory, the configuration of wakes can be accounted for in 4 different schemes.

Figure 4.5 presents a visual representation of these 4 possibilities, where it is possible

for no overlap (a), overlap of two intervention events of the same treatment assignment

(Zi = Zj = 1 or Zi = Zj = 0) (b and c), or one intervention event of each treatment

assignment occurring (d). Taking the conflict data that is the underlying driver of

this method in the prior literature, we limit this work to no overlap (Figure 4.5 (a))

and the type of overlap pictured in Figure 4.5 (d). Both Figure 4.5 (b) and (c)

illustrate compounded treatment, which is outside the scope of what we consider here.

The overlapping area between wakes in Figure 4.5 (b) experiences an enhanced effect,

while the overlapping area between wakes in Figure 4.5 (d) experiences a diluted effect.
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(a) (b)

(c) (d)

Figure 4.5: The 4 intervention event wake configurations, where red represents a
treatment intervention event (indiscriminate insurgent violence with civilian casu-
alties) and blue represents a control intervention event (selective insurgent violence
with no civilian casualties).
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4.4 Numerical Studies

4.4.1 Simulations

Simulations were conducted mimicking the conflict data from Schutte and Donnay

(2014) and the underlying setup is similar to that of Chapter 3. A total of 150

treatment intervention events and 300 control intervention events were used in order

to facilitate large enough sample sizes for each of the interference and interference-

free effect estimates. The end date of treatment and control events, as well as their

associated dependent events, was shortened from one year to approximately 9 months.

The total area that is considered is reduced to facilitate increases of overlapping

wakes to illustrate this method (approximately 111 km by 111 km). We also consider

much larger wake radii, from about 11.11 km to 17.78 km, and a larger temporal

window of 10 days, again to more clearly illustrate the proposed method. Background

dependent events were generated following a Poisson distribution with mean intensity

0.0002 times the volume of the whole cube minus the summation of the volume of the

cylindrical wakes. The background dependent events were set to avoid overlapping

placement with dependent events occurring within wakes of interest and avoid skewing

estimation of intensities. A random Poisson distribution with mean equal to intensity

times volume of the cylinder was used to generate the number of dependent events

pre- and post- intervention event. We assume a pre-intervention event intensity of

0.1, with an equivalent post-intervention event intensity for controls and an increased

post-intervention event intensity for treatment of 0.1 × 1.75, or 0.175. Ten iterations

were performed for each spatial window size and compared against radii ranging from

10 to 20 km as the spatial influence of the wakes.

The goal of this preliminary simulation work is to quantify the amount of overlap

that occurs and how the intensity patterns differ from those in Chapter 3. Ultimately,

for a robust analysis of the interference and interference-free effects, one would need
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to simulate wakes that do not overlap in the same space and time as wakes that do

overlap. These wakes that do overlap would need to be placed in a way that the

volume of overlap is uniform. Thus, setting the true interference and interference-free

effects would be possible and the comparison of the estimates of these effects to the

truth would be quantifiable. We leave this piece for future work in this area.

Figures 4.6, 4.7, and 4.8 represent one scenario of this simulation, with the true

radius set at 15.56 km. The pieces of the interference effect are illustrated in Figure

4.6, where a noisier version of the patterns in Chapter 3 can be seen. There is a

plateau in the average estimated values - both for treatment intervention events that

experience interference and those that do not - up to the true radius, followed by a

decline in these values for larger spatial windows than the truth. The averages of

λ̂1(1, 1) and λ̂0(1, 1) seem to be moving closer to one another the larger the spatial

radius becomes, resulting in less clearly-defined curves pre- and post-intervention

event when there is interference. The middle plot of this figure indicates that there is

potentially some separation between estimated intensities before and after treatment

intervention events that do not experience interference, albeit on a much smaller scale

than for treatment intervention events that do experience interference. The pattern

within the average estimated interference effects is harder to determine given the

variability and smaller number of iterations.

The middle plot from Figure 4.6 is also seen as the left-hand plot in Figure 4.7, used

to calculate the interference-free effect. In comparison, the middle plot of Figure 4.7

illustrates the average λ̂1(0) and λ̂0(0) for each iteration overlapping for the entirety

of the curve, which is what we would expect for control intervention wakes. This

follows the pattern from the previous chapter. The average estimated interference-

free effects also show more noise; however, there seems to be a more-defined curved

lower bound to the estimates.

A larger disparity pre- to post-intervention event is seen within the total 150 treat-
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ment intervention events if one were to ignore the overlap and treat the problem as in

Chapter 3 (Figure 4.8). The converging of the pre- and post-treatment intervention

event curves near the tail for larger spatial windows is again seen here, most likely

influenced by the pattern in the left-hand plot of Figure 4.6. The middle figure for

control intervention wakes is the same as that from Figure 4.7. It is interesting to

note that the interference and interference-free effects tend to have similar makeups

in terms of the spread and magnitudes (righthand plot).

Figure 4.6: Illustrations of the average λ̂1(1, 1) and λ̂0(1, 1) (left panel), average

λ̂1(1, 0) and λ̂0(1, 0) (middle panel) with 150 total treatment intervention events, some

of which receive interference the others do not. The average difference in ∆̂(1, 1) and

∆̂(1, 0) is plotted in the right hand panel. The dotted grey line lines represent the
true spatial window size.

These results indicate that the interference effect may be more pronounced than

the interference-free effect by the more distinct separation of pre- to post- intervention

intensity estimates. While this could be an artifact of the setup of our simulation,

further study into this phenomenon is warranted. However, these preliminary results

show that our method is capable of separating out and estimating the interference

and interference-free effects when a large amount of overlap between units is present
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Figure 4.7: Illustrations of the average λ̂1(1, 0) and λ̂0(1, 0) (left panel) from the non-
interference treatment intervention events out of 150 total treatment intervention
events, and average λ̂1(0) and λ̂0(0) (middle panel) with 300 control intervention

events. The average difference in ∆̂(1, 0) and ∆̂(0) is plotted in the right hand panel.
The dotted grey line lines represent the true spatial window size.

in the data.

We were also interested in quantifying the amount of overlap that occurred be-

tween wakes used in estimating the interference and interference-free effects to deter-

mine the impact it may have. Summary measures of this, along with the estimates

themselves, for the preliminary simulation studies are given in Tables 4.2 and 4.3. In

comparing the average estimated interference (Table 4.2) and interference-free (Table

4.3) effects, the estimated interference-free effects tend to be significant more often

for smaller spatial windows in comparison to the associated estimated interference

effects. This leads one down the path of questioning whether the causal effects with-

out taking into account interference (effects under SPP framework from Chapter 3)

would still be found to be significant as well for the iterations that had non-significant

interference effects. This would be a natural next step in providing further evidence

of the benefits of this framework. Additionally, we see that there is a much larger
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Figure 4.8: Illustrations of the average λ̂1(1) (all λ̂1(1, 1) and λ̂1(1, 0)) and λ̂0(1) (all

λ̂0(1, 1) and λ̂0(1, 0)) (left panel) with 150 treatment intervention events, and average

λ̂1(0) and λ̂0(0) (middle panel) with 300 control intervention events. Both the average

difference in ∆̂(1, 1) and ∆̂(1, 0) and the average difference in ∆̂(1, 0) and ∆̂(0) are
plotted in the right hand panel, for comparison. The dotted grey line lines represent
the true spatial window size.
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percentage of wakes that experience interference (overlap) in Table 4.2 prior to match-

ing, and still a fair amount of overlap after matching. On the other hand, there is

absolutely no overlap between wakes used in estimating the interference-free effect

(by definition), and a small amount of overlapping wakes that are introduced after

matching. We would expect a larger percentage of wakes with overlap to be used in

the interference effect ‘bucket’, by definition. The percentages are all under 17%, in

which case one could potentially further adjust for previous control and/or treatment

events to further mitigate the effects of violating SUTVA. By identifying two causal

effects that consider slightly different groups of wakes, the issues of large percent-

ages of overlapping wakes are addressed appropriately. More extensive simulations

and measures to adequately and fully assess the full benefits and advantages of this

framework are needed in the future.
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Results % Overlap Before Matching % Overlap After Matching

Time Space Average Estimate S.D. Minimum Estimate Maximum Estimate N(p < 0.05) Average Minimum Maximum S.D. Average Minimum Maximum S.D.

10 0.061 0.036 0.009 0.106 4 62.73 53.33 77.33 7.03 13.80 4.67 20.67 7.03
11 0.048 0.034 0.013 0.129 1 69.27 61.33 80.67 6.31 12.33 6.00 19.33 6.31
12 0.059 0.034 0.028 0.137 3 74.20 66.00 84.00 5.86 12.27 4.67 19.33 5.86
13 0.060 0.031 0.015 0.112 3 78.53 68.67 86.00 5.21 11.27 6.00 18.67 5.21
14 0.051 0.059 -0.027 0.163 3 82.13 73.33 86.67 4.62 9.40 4.00 15.33 4.62
15 0.051 0.070 -0.047 0.169 4 84.67 77.33 89.33 3.69 7.93 4.00 13.33 3.69
16 0.025 0.095 -0.167 0.164 3 86.93 82.00 90.67 3.10 6.53 2.67 12.67 3.10
17 0.052 0.052 -0.031 0.141 2 89.27 84.00 92.00 2.42 5.93 3.33 8.67 2.42
18 0.039 0.053 -0.047 0.118 2 90.53 86.00 92.67 2.17 5.27 3.33 8.00 2.17
19 0.020 0.078 -0.157 0.124 1 92.00 88.00 95.33 2.20 4.07 2.00 6.00 2.20

10

20 -0.001 0.068 -0.154 0.121 1 93.40 91.33 95.33 1.39 3.67 2.00 6.00 1.39

Table 4.2: Summary measures are given for preliminary simulations of interference effects. Averages as well as the minimum,
maximum, and standard deviation across iterations are given for the effect estimates. N(p < 0.05) is a count of the number of
iterations at that temporal and spatial window that had significant effects. The average, minimum, maximum, and standard
deviation of the percentage of overlapping wakes is also calculated, both pre- and post-matching. ’Overlap’ is defined as wakes
for which the center intervention events are two different types (one control and one treatment) and are located less than 2r
apart.
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Results % Overlap Before Matching % Overlap After Matching

Time Space Average Estimate S.D. Minimum Estimate Maximum Estimate N(p < 0.05) Average Minimum Maximum S.D. Average Minimum Maximum S.D.

10 0.070 0.027 0.026 0.106 8 0 0 0 0 11.20 4.00 16.67 3.99
11 0.063 0.032 -0.001 0.112 7 0 0 0 0 10.33 4.67 14.67 3.65
12 0.063 0.023 0.026 0.103 7 0 0 0 0 10.73 4.00 19.33 4.39
13 0.077 0.022 0.049 0.113 9 0 0 0 0 9.73 5.33 16.67 4.05
14 0.078 0.027 0.051 0.134 7 0 0 0 0 8.13 3.33 15.33 4.56
15 0.070 0.026 0.028 0.116 6 0 0 0 0 6.80 2.67 13.33 3.87
16 0.058 0.032 -0.016 0.099 4 0 0 0 0 5.33 2.00 10.67 2.90
17 0.052 0.039 -0.004 0.125 4 0 0 0 0 5.27 3.33 8.67 2.14
18 0.039 0.040 -0.034 0.078 3 0 0 0 0 4.60 1.33 8.00 1.87
19 0.035 0.039 -0.022 0.098 1 0 0 0 0 3.40 0.67 6.00 1.68

10

20 0.015 0.048 -0.047 0.096 1 0 0 0 0 3.00 0.67 6.00 1.76

Table 4.3: Summary measures are given for preliminary simulations of interference-free effects. Averages as well as the minimum,
maximum, and standard deviation across iterations are given for the effect estimates. N(p < 0.05) is a count of the number of
iterations at that temporal and spatial window that had significant effects. The average, minimum, maximum, and standard
deviation of the percentage of overlapping wakes is also calculated, both pre- and post-matching. ’Overlap’ is defined as wakes
for which the center intervention events are two different types (one control and one treatment) and are located less than 2r
apart.
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4.4.2 Conflict Data: Civilian Collaboration in Afghanistan

The data are described in detail in Chapter 3. Restated, the original hypothesis is:

HA: Indiscriminate insurgent violence (treatment) using IEDs increases

civilian handover of unexploded ordnances to U.S. troops compared to

selective insurgent violence (control) using IEDs.

The estimated average causal effect associated with this hypothesis is the change in

intensity of dependent events, represented as instances of civilian turn-in/assistance,

over time following an intervention event that experienced indiscriminate insurgent

violence (treatment) versus the change in intensity of civilian turn-ins if the interven-

tion event experienced selective insurgent violence (control). Here, we consider the

estimation of an interference effect and interference-free effect, assessing whether this

framework is more appropriate given the potential overlap of wakes. The hypothe-

sis above is then transformed into the following two hypotheses, for the interference

effect:

HA,S: Indiscriminate insurgent violence (treatment) using IEDs has a dif-

fering effect on civilian handover of unexploded ordnances to U.S. troops

when in close proximity to selective insurgent violence (control) using

IEDs than when further away.

and for the interference-free effect:

HA,τ : Indiscriminate insurgent violence (treatment) using IEDs increases

civilian handover of unexploded ordnances to U.S. troops when geograph-

ically far from any selective insurgent violence (control) using IEDs, and

thus do not receive any spillover influence.

Given the results of the analysis in Chapter 3, we do not test for a separate

interference and interference-free effect in this particular problem. This is due to the
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relatively weak signal and low intensities that were found. Particularly with strongest

signals in the near vicinity (1-3 km) of violent events, consideration would need to

be given to whether this interference setup brings further insights to this particular

problem. We set up the hypotheses for this problem merely for illustration of the

proposed approach and as an example for future applications.

4.5 Discussion

The work in this chapter continues to address the need for a spatially explicit causal

framework for determining how spatial effects impact treatment variation and treat-

ment effects. A major challenge in spatial and spatio-temporal casual relationships

is the underlying complicated processes that exist in these settings. In this chapter,

we focus on spatial interaction between units that can violate the Stable Unit Treat-

ment Value Assumption (SUTVA), a key assumption underlying the counterfactual

framework.

Continuing under the spatial point process framework in Chapter 3, connections

are made to geographically-defined effects that take interactions and spillover of units

into consideration. By allowing for an interference effect and interference-free effect,

rather than one overall causal effect, we are able to re-define the causal relationships

without violating SUTVA. That is, we are able change the question and goals to better

align with the problem setting at hand. Keele and Titiunik (2017) also provide that

the interference effect may be tested, allowing for the appropriate use of the original,

overall causal effect. This flexibility provides a more robust process in identifying

when the violation of SUTVA meaningfully changes results to a degree that it should

be accounted for. This builds upon the suggestions of Schutte and Donnay (2014) in

appropriately accounting for the overlap of spatio-temporal wakes when estimating

the causal effect.
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We begin to setup the simulation models necessary to understand the impact of the

interference and interference-free effects in the face of overlapping wakes, representing

a violation of SUTVA. These results show an indication in a positive direction of the

benefits and advantages this framework can provide when interference may be present

within a problem. Continued modeling to build up to a setting that reflects the full

complexities of this scenario is needed. To appropriately and accurately generate the

moving pieces involved with the spatial effects, interactions, and treatment effects

is complex. This work would greatly benefit from a larger-scale simulation study to

extend and further validate the framework laid out here. This work further confirms

that research in the area of causal inference can greatly benefit from this spatial

perspective, especially in multidisciplinary applications.
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Chapter 5

Conclusions
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5.1 Spatial-Causal Setting

While interest in causal inference continues to grow across multiple disciplines, there

are areas that still need major contributions and methodological advances, partic-

ularly when it comes to spatial data and geographical elements. The fundamental

ideas of causal inference in the counterfactual framework rely on key assumptions

that can be difficult to justify when applied to spatial data and geographic questions.

When treatments are defined by geographic features (e.g. via local policy decisions),

understanding the effects of these treatments through observational studies can be

challenging. The impact of spatial effects on aspects of the counterfactual framework

must be considered, falling into three broad categories: 1) how the treatment is as-

signed or chosen, 2) potential sources of variation in treatment variables, and 3) what

effects are being estimated (Kolak, 2017).

5.1.1 Spatially Defined Treatment

How the treatment or intervention being investigated is defined is an important de-

termining factor in what methods may be appropriate in analysis. We limit the scope

of this dissertation to the discussion of two treatment settings - treatments that are

defined by regions, and treatments that are defined by distance from an event point

in space and time. When considering geography in a causal context, local treatments

are of most interest - individuals here are considered treated, compared to individuals

there that are not. This spatial definition of treatment manifests itself in three ways

- assignment by some spatial pattern, proximity to intervention that affects likeli-

hood of being treated or not, and places with certain characteristics more likely to be

treated (Kolak, 2017). In any scenario, leveraging the geographical nature of treat-

ment assignment to more appropriately compare units is the common goal of interest.

Considering a spatially-defined treatment also leads to needing to correctly account
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for potential issues of selection bias (geographic and otherwise), spatial dependence

in the form of interference or spillover, and/or spatial heterogeneity.

5.1.2 Methods for Proposed Specific Questions

There have been a number of studies and methodological extensions from the tra-

ditional causal literature focusing on spatial extensions. These cover methods from

propensity scores and matching methods, to difference-in-difference frameworks, re-

gression discontinuity, and instrumental variables. Kolak (2017) provides a great

summary of these in Figure 1 (p.34). Specific extensions include spatial propensity

score matching (Chagas et al., 2012), distance-propensity score matching algorithm

(DAPSm) (Papadogeorgou et al., 2016), geographic regression discontinuity (GRD)

(Keele and Titiunik, 2014; Keele et al., 2015; Keele and Titiunik, 2016), and matched

wake analysis (MWA) (Schutte and Donnay, 2014), to name a few.

The spatial propensity score of Chagas et al. (2012) relaxes spatial effects and

considers the spatial dimension to be latent. This spatial propensity score is defined

as a spatial autocorrelation, spatial autoregression, or spatial error model, since a

logit/probit model cannot be used. It thus can confirm conditional likelihood or

spatial dependence. DAPSm (Papadogeorgou et al., 2016), while also following a

propensity score model for matching, differs in the model specification. The goal of

DAPSm is to unite spatially-indexed data with propensity score matching in order to

account for unmeasured spatial confounding by adjusting for observed confounders

in addition to unmeasured spatial confounders. A propensity score is produced as

the weighted average of the propensity score difference and a measure of the distance

between treated-control pairs as a measure of similarity.

The general idea of regression discontinuity is to determine whether a behavior

deviates from the norm at the point of discontinuity, assuming that the population

is similar on either side of the discontinuity or any differences can be controlled
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for. This deviation would suggest a direct impact resulting from the phenomenon

that is being studied. Imbens and Lemieux (2008) and Lee and Lemieux (2010)

both provide thorough reviews of regression discontinuity. This idea can be extended

spatially in various directions. Keele and Titiunik (2014); Keele et al. (2015) formalize

spatial effects through their geographic regression discontinuity design by specifying

geographic boundaries as regression discontinuities. This is explored in more depth

later (Section 5.3). Boundary-continuity design using a set of spatial weights to

account for observables and unobservables may be appropriate as a spatial regression

discontinuity design (Kolak, 2017).

Also explored in more detail in section 5.3 is MWA. This method uses statistical

matching with sliding spatio-temporal windows in an effort to address selection bias

and the modifiable areal unit problem. It incorporates a difference-in-differences

design to establish treatment effects for the matched sample (Schutte and Donnay,

2014). An interpretable causal approach that is computationally efficient for conflict

event studies is one of the goals of the MWA.

5.2 Example Applications

5.2.1 Voting

In the works of Keele and others, voter turnout is a topic of interest that is explored

from many different facets involving geographical components. One specific instance

is studying whether campaign ads increase voter turnout by using the exogenous varia-

tion in the volume of TV ads created by media market boundaries (Keele et al., 2015).

Here, the treated and control units are defined by the media market boundaries, which

tend to be identical to county boundaries. The specific element of geography intro-

duces some subtle, yet highly important, differences in this problem and its handling

within an adapted standard regression discontinuity design. First, it is possible for
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compound treatments to occur, where multiple treatments that affect the outcome of

interest occur simultaneously and individuals may receive different combinations of

exposures to treatments, depending on their location. Second, different measures of

distance from the defined boundary may require different identification assumptions.

Finally, spatial correlation must also be accounted for when making inferences on

such data.

Another voting problem discussed by Keele and Titiunik (2017) looks at the effect

of all-mail voting, the only convenience voting method that eliminates precinct-place

voting, on voter turnout. Here, the question is examined in the context of a geographic

natural experiment in Colorado, where a key element of the design in Keele and

Titiunik (2017) is fulfilled by focusing on a small geographic area around the boundary

separating two counties. While this ensures that individuals close to the county border

on either side are similar in terms of their pretreatment covariates, it also introduces

the issue of interference by the fact that treated and control voters live in close

proximity. This problem of interference is more likely to be an issue in designs that

exploit the geographic proximity, as compared to those that do not. By treating the

geographic locations of the voters in the sample as random and the boundary between

treated and control areas as fixed, Keele and Titiunik (2017) are able to investigate

interference for a geographical natural experiment that focuses on a narrow band

around a boundary by considering two estimands of interest.

The basic concepts of the work in Chapters 3 and 4 of this dissertation still apply

for this problem since the latent spatial point process underneath would give distri-

butional results for each aggregation of the data. As scan statistics (e.g., SaTScan

(Kulldorff, 1997)) do, the method would jump to the next area of aggregation if con-

sidering non-contiguous aggregations, such as administrative boundaries, that are not

a continuous space.
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5.2.2 Alcohol Sales

The laws regarding sales of alcohol and related establishments may differ from county

to county. Waller and Chang are currently studying the effects of bar closing times

and driving under the influence (DUI) arrests. If one county changes their law to

close bars and stop alcohol sales at 2:00am, compared to the previous cutoff time

of 3:00am that was shared with their neighboring counties, one could measure the

effect of this law-change and the amount of activity that is seen spilling over to the

neighboring counties. (This would be a very interesting area of future research!)

5.2.3 Air Pollution

The area of air pollution also brings up many hypotheses of a spatial-causal nature. In

particular, many of the applications that fall into this category also run into the issue

of interference. The effect of air quality regulation at a given location on air pollution

at other locations (Zigler et al., 2012) is one such example, i.e., increased regulation

here impacts ambient pollution downwind. Another example is in considering how

ambient ozone concentrations are effected by power plants with and without selective

catalytic or selective non-catalytic (SCR/SNCR) NOx technologies (Papadogeorgou

et al., 2016).

To set up a similar framework to what we propose in this dissertation with this

example of air pollution, we start by considering power plants with exposures 1 and

0 (present and not present). Each power plant would then have a corresponding

impact zone in space and over time. The idea would be to quantify the effect of

the power plant with exposure=1 compared to power plant with exposure=0 over

time. It would still be necessary to determine the correct radius of influence, as in

Chapter 3. The underlying spatial point process would be better represented by a

heterogeneous Poisson process in this context, which would introduce further potential

SUTVA violation issues; thus, expanding on the work in Chapter 4 would need to
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be explored. With this framework, one would expect to see some sort of continuous

drop off for the exposure effect, given the difficulty in choosing a ‘hard line’ space

of influence (air pollution travels, though is not as strong further from the point of

emission). Incorporating the concept of multiple points in time (some days power

plants emit a lot of pollution, other days not very much), either within the definition

of the effect of interest or as a covariate to adjust for, would also need to be considered.

5.2.4 Conflict Analysis

In research exploring causes and effects of human conflict, the drivers of local levels

of violence can be thought of and described in three main parts. There are a priori

exposures of any location to violence that can be driven by exogenous geographic

conditions. Additionally, levels of violence tend to vary over time, which can be

described as the momentum of a conflict at a given time. It is imperative to be

able to tease apart the effects of the true exposure and the momentum in order to

understand and analyze the causal effect of specific interventions also contributing to

levels of violence.

Schutte and Donnay (2014) investigate causal relationships exploring whether

civilians are more likely to deny insurgents access to explosives in response to local

occurrences of indiscriminate violence. To our knowledge, from an epidemiological

or statistical perspective, little has been done in the current literature in regards to

this setting, considering both spatial and temporal elements in a potential outcomes

framework for causal inference.
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5.3 Review of Current Methods for Spatial-Causal

Inference

In this section, we provide a brief but thorough review of the methods mentioned in

the preceding chapters and outline areas of future work in each.

5.3.1 Matched Wake Analysis

As detailed in the previous chapters, MWA (Schutte and Donnay, 2014) is a novel

method for quantifying causal relationships in spatio-temporal event data, specifically

when one is interested in how different interventions affect subsequent levels of reactive

events in nearby areas. By combining spatial and causal methods, the authors address

a number of challenges that arise with spatio-temporal event data with a particular

emphasis on conflict research. The process and details of the inner workings of the

method are discussed in detail in Chapter 3.

Advantages of MWA include its ability to find patterns in event data, the use

of coarsened exact matching (CEM) (Iacus et al., 2012) as an efficient, automated

approach to balanced matching, and the incorporation of sliding spatio-temporal win-

dows. The geographic relevance of events as treatments or interventions and quanti-

fying these causally in the social sciences has become increasingly popular, and this

method brings additional insights and challenges to the problem. The traditional def-

inition of a unit as an individual that receives or experiences some level of exposure

does not quite fit this setup. Instead, units are themselves defined by the intervention-

type of an event and are defined as an associated area (volume) of interest. Schutte

and Donnay (2014) define the associated volume in space and time as a cylindrical

wake centered around the intervention event, which is either treatment or control.

Both units and treatment receipt are geographically defined. The spatio-temporal

nature of units has potential consequences related to the modifiable areal unit prob-
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lem (MAUP) (Openshaw and Taylor, 1979) and spatial interference and/or spillover,

violating the stable unit treatment value assumption (SUTVA) (Rubin, 1980).

MAUP refers to the fact that the selection of artificial cell sizes drives spatial

inference, and expresses the idea that results of an analysis on a neighborhood or

region (or any arbitrarily defined space) does not yield the same results on a different

measure of space, say ZIP code, or on the individuals in that area. Conclusions based

on data aggregated in one way may change if the data are aggregated in another way.

The remedy in MWA to address this issue is to use a sliding spatial and temporal win-

dow design similar to SaTScan (Kulldorff, 1997). SaTScan was originally applied to

epidemiological problems for testing whether there may be an elevated risk of disease

in a certain region but that the extent of the risk elevation is unknown. In general,

the method reveals whether a cluster of events is consistent with chance allocation

under the null hypothesis. The impact of violating SUTVA with overlapping units

in space and time is assessed, and Schutte and Donnay (2014) determined that unbi-

ased estimation is still feasible if there is a mild to moderate (∼ 20% or less) amount

of overlap. They also provide three potential solutions to the violation of this key

assumption:

1. One could check the data for overlaps of treatment and control events since

these spatio-temporal overlaps are easily identified in empirical data. Selecting

a subset not affected by this problem would avoid drawing false inferences, but

limit the scope of the time period.

2. To retain interventions in the post-matching sample with similar histories, one

could match on the number of previous treatment and control events. This

would avoid the result where the causal effect attributed to the intervention is

actually due to the product of a mixture of interventions. This also accounts

for the scenario where different intervention types occur prior to the actual

intervention of interest, affecting subsequent levels of dependent events. This
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leads to a matched sample with fewer overlapping events, decreasing the overall

balance between treatment and control groups with regard to exposure.

3. Remove overlapping observations from the sample, which biases estimates from

such non-random deletion.

5.3.2 Geographic Regression Discontinuity

The GRD design (Keele and Titiunik, 2014, 2016, 2017; Keele et al., 2015) gives rise to

a matching framework that incorporates geographic proximity and observed covariates

in a flexible manner. This approach is useful when units are sorted along some border,

receiving or not receiving treatment based on their location in space. While one

can condition on a set of observed pretreatment covariates, there is still a potential

for unmeasured confounders (Keele et al., 2015; Keele and Titiunik, 2017). GRD

proposes to combine this conditioning on observed covariates with the exploitation of

geographic proximity, detailed in Keele and Titiunik (2014); Keele et al. (2015). The

idea behind this work is to use the regression discontinuity (RD) framework, where

counterfactuals are the treated and control groups near the boundary, making local

treatment effects are identifiable.

This GRD design deals with the issue of strong self-selection around some border

of interest. The proposed solution is to assume that after conditioning on pretreat-

ment covariates X, treatment assignment is as-if randomized for those who live near

the boundary. Geographic distance between treated and control observations to the

boundary is minimized while enforcing balance in pretreatment covariates. The condi-

tional geographic treatment ignorability in local neighborhood assumption (Keele and

Titiunik, 2017) states that a small neighborhood exists where potential outcomes and

treatment assignment are conditionally independent given pretreatment covariates.

The work of Keele and Titiunik (2017) generalizes and expands that of Lee (2008)

and Cattaneo et al. (2015) to consider a small geographic neighborhood around the
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boundary separating treatment and control areas, such that the condition of as-if ran-

domization, or independence, holds after conditioning on pretreatment covariates. It

is noted that the emphasis on after conditioning on pretreatment covariates is impor-

tant, since this as-if randomization (independence) may not hold unconditionally for

the small geographic neighborhood around the boundary separating treatment and

control areas. This assumption allows for the identification of a treatment effect at

the boundary points and points included in the geographic neighborhood where it

holds. The form of this assumption makes sense to use when treatment assignment

is based on geography. Additionally, it is weaker than the assumption when only

conditioning on observables, as it requires conditional independence for a subset of

the population. Furthermore, the impact of interference is considered by defining an

estimand that specifically quantifies the interference effect.

This extension takes into consideration the nature of spatial data and provides

a solution to SUTVA violations. Keele and Titiunik (2017) modify identification

assumptions appropriately to account for this, and focus on spatially proximate units

that may introduce spillovers or interference. Given that the neighborhood around

the boundary separating treated and non-treated units is small enough and enough

pretreatment covariates are available, one can consider a treatment effect on the

treated as an interference-free effect, and the average effect of interference on treated

units as the interference effect.

5.4 Comparing and Contrasting Approaches to Spa-

tial Causal Inference

Both the MWA and GRD allow for the estimation of causal effects in a spatial setting.

Here, we compare the three recent papers that most embody these methods (Table

5.1 provides a summary). There are some notable threads that connect these two
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seemingly distinct approaches. First, we note that MWA is most appropriate for

treatment and control point-event data and the GRD design has been considered in

the context of area-level observations. While Keele et al. (2015) and Schutte and

Donnay (2014) focus on an average effect of treatment on an outcome of interest,

Keele and Titiunik (2017) focuses on quantifying and testing the hypothesis of an

interference effect, rather than just assuming an “interference-free” effect as in the

other two papers.

Both space and time are addressed in the causal question, definitions, and spatial

challenges considered in MWA, as opposed to space only in the GRD literature. A

substantial difference between MWA and GRD also lies in the definition of units

and defined treatment and control boundaries. MWA considers the units, defined as

treated or control wakes by the space and time local to the corresponding intervention

event, with created or user-defined boundaries; GRD, on the other hand, considers a

strictly contiguous boundary between the treated and control areas that is fixed.

When considering the underlying assumptions necessary for causal inference under

each method, there are a number of differences. Both MWA and GRD Keele and

Titiunik (2017) invoke SUTVA in order to estimate causal effects; however, that is

the only similarity to be found. Assumptions for MWA stem from CEM, where for

each observation, the potential outcome under treatment is always observed and the

potential outcome under control is always estimated, and analysis is restricted to

common empirical support for matches. Both GRD approaches rely on a geographic-

variation of the “no unmeasured confounders” assumption, or strong ignorability,

specifically within a local neighborhood. Keele et al. (2015) use a 2-dimensional score

to accomplish this, and Keele and Titiunik (2017) focuses on extending the local

neighborhood strong ignorability to within interference areas. The inherent unit of

study for each of these approaches also differs.
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MWA GRD (Keele and Titiunik (2017)) GRD (Keele et al. (2015))
Key Question

Effect of IED explosions with civilian casualties on rates
of information turn-in over time after intervention event

Effect of convenience voting - all-mail election- compared to
traditional in-person voting on election day on voter turnout -
Does interference alter inferences about the effect of all-mail
voting?

Effect of ballot initiatives on voter turnout

Key Steps
1. Define spatio-temporal wakes around intervention events 1. Define ”local” area for comparison 1. Define ”local” area for comparison
2. Count rates over time of dependent events before, after
intervention event

2. Define causal estimand under assumption of no interference,
then estimate

2. Optimal subset matching with integer programming

3. Match control and treatment wakes on risk factors/
covariates/confounders, including trend in the dependent
variable before interventions

3. Define causal estimands allowing for interference, estimate

4. DD regression to obtain estimate of causal effect
4. Compare - if τT ≈ τ , τS not significantly different from 0
=⇒ no interference

Data Format
Space and Time Space Space
Disaggregated point/count event data Areal individual-level data Areal individual-level data

Units
Treatment/Control wakes defined by treatment/
control intervention events

Treatment/control individuals defined by treatment/
control (fixed, contiguous) areas

Treatment/control individuals defined by treatment/
control (fixed, contiguous) areas

Assumptions Made
1. (From CEM) ’no omitted bias’, Ti |= {Yi(0), Yi(1)} |Xi

=⇒ implicitly, SUTVA
1. No interference 1. Conditional geographic treatment ignorability

2. (From CEM) For each observation, Yi(1) is always
observed, Yi(0) always estimated

2. Conditional mean independence in local neighborhood 2. Continuity in 2-dimensional score

3. (From CEM) Restriction to common emprical support
for matches

”Revoke” Assumption 1. to continue under assumption of
interference

”Revoke” Assumption 1

3. As-if random geographic location within interference areas
3. Conditional geographic treatment ignorability in local
neighborhood

Note: A1 + A2, or A2 + A3 made together
Note: A1+ A2, or A2+A3 made together;
A3 is weaker than A1

Causal Challenges Addressed
Interference Geography in ignorability assumption Geography in ignorability assumption

Interference
Division into treatment/control areas occur in as-if
random fashion (naturally or by assumptions)

Division into treatment/control areas occur in as-if
random fashion (naturally or by assumptions)

Spatial Challenges Addressed: Boundaries
Unit boundaries created/estimated Boundary naturally defined, fixed Boundary naturally defined, fixed

Table 5.1: Comparison of the methodology and problem of interest in Schutte and
Donnay (2014), Keele et al. (2015), and Keele and Titiunik (2017).
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5.4.1 Complications of Spatial Setting for Definitions of El-

ements of Standard Causal Framework

While MWA provides a novel approach to evaluating and estimating causal relation-

ships of conflict events that could be used for other types of georeferenced event data,

there are some limitations to the approach. Namely, the spatio-temporal cylinders

defining the units that receive treated or control intervention events can potentially

overlap with one another, violating SUTVA. Violating this assumption could lead to

biased effect estimates. Two scenarios could result from MWA - (1) multiple units

of the same intervention event value overlap in space and time, biasing estimates

upward (assuming a positive treatment effect); or (2) a unit of each of a treatment

intervention and control intervention could overlap and bias the estimated treatment

effect downward.

In the context of the polling problem of interest, Keele and others consider the

possibility for interference, resulting in a violation of SUTVA. However, for this appli-

cation there has been shown to be little evidence of treatment spillovers even within

households (Sinclair et al., 2012). Thus, SUTVA violation in the form of voters in

control area encouraging neighbors in treated area to vote, or the likelihood of in-

terference across voters even with adjacent households, is slim. Regardless, if such a

violation occurred it would bias the effect towards 0, and positive effects would be

conservative estimates.

The necessity of SUTVA is twofold: first, it ensures that there exists as many

potential outcomes as the number of values the treatment can take; and second,

it says that we observe one of the potential outcomes for each unit unaffected by

the treatment assignment of other units. For any given question, SUTVA violations

will differ depending on the context. If exposure is considered to be an area, then

interference deals with units close to the boundary of the treated and non-treated units

interacting with one another and how to chose the appropriate boundary between
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the treated and non-treated units. If exposure is considered to be events, then the

violation comes in the form of multiple units overlapping within a spatial or spatio-

temporal cluster. This spillover effect, or indirect exposure effect, characterizes what

occurs when the effect of an intervention carries over to the defined control area or

control units (or vice versa).

5.5 Future Work

It is of interest to consider more complex scenarios for which this spatial point process

view may be beneficial and additional challenges that may be addressed. A number of

reasonable extensions of this framework can be considered, from the underlying spatial

point process to the assumptions regarding the types of interference and overlap that

occur. Below we give details regarding the following areas of extensions to this spatial

point process causal framework: (1) underlying spatial point process, (2) shape of the

impact zone, (3) alternative adjustment methods for confounding and outcome model

designs for generalizability, (4) addressing multiple comparisons, and (5) alternative

overlap assumptions and interference types.

First, we use a piecewise homogeneous Poisson point process to characterize the

underlying spatial point process. It may be of interest to consider a heterogeneous

Poisson point process, or a continuous exponential or Gaussian spatial point process

to define the intensity within wakes and/or outside of the wakes. The implications

of choosing a heterogeneous spatial point process and properties of another type of

spatial point process on causal assumptions such as SUTVA and consistency would

need to be thoroughly studied. Along these lines, considering the problem on a plane

that takes population density into consideration may be a potential extension, given

the kind of problem one is interested in addressing. Transforming space through the

use of a cartogram (Inoue and Shimizu, 2006) rather than a standard spatial plane
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may allow adjustment for population density without it being a necessary factor in

the causal adjustment steps. However, one must give careful consideration to how

this changes the question that is being answered.

Second, it is reasonable to consider expansions to the shape of the impact zone.

For example, assuming that the span of influence from an intervention event follows

a cone-shape rather than a cylindrical shape. This may be a more accurate depic-

tion of the patterns following an intervention event in the particular case of Schutte

and Donnay (2014), given the spatio-temporal lag seen in the intensity of civilians

reporting events. There is also the situation where treatment and control interven-

tion events differ in the shape of the wakes; say, treatment intervention event wakes

follow a cone-shape, while control intervention event wakes have a cylindrical shape.

This could help characterize either a ramping up or dispersion of the effect, again

considering the temporal behavior of dependent events leading up to or following an

intervention event. It would also account for the consistency in intensity over time

for control intervention wakes.

Third, broadening the use of this framework could also include incorporating

other adjustment methods. Here, coarsened exact matching (CEM) is used to esti-

mate causal effects. Other matching algorithms and the use of propensity scores in

matching or inverse weighting may also work well in this setting, with recent meth-

ods such as entropy weighting (Hainmueller et al., 2012) and the covariate balancing

propensity score (CBPS) (Imai and Ratkovic, 2014). This framework is not limited

to a difference-in-differences design, and lends itself to intuitive extensions in regards

to specific causal mechanisms for controlling pre-treatment confounders and effect

estimation. These may lend themselves to broadening the impact to other public

health applications.

Fourth, there is the issue of multiple comparisons when performing multiple tests

over the sliding spatio-temporal windows. By being able to determine the correct
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window size, we are able to mitigate this issue in some respect. However, the in-

terpretation of secondary or further clusters can still be complicated by multiple

comparisons as seen in the data analysis in Chapter 3. How to deal with multiple

comparisons and the effect on false discovery rate, considering all distance and time

lags is still a concern. Spatial scan statistics, in particular SaTScan (Kulldorff, 1997),

are able to circumvent this issue by testing the maximum score of ‘unusualness’ of

a potential cluster. That is, data are simulated under the null hypothesis to obtain

a distribution of the maximum statistic, so that the test statistic value from the

actual data can then be compared to this null distribution and one can determine

the unusualness of the cluster that is seen in the data. While the matched wake

analysis approach is similar to SaTScan, it does not result in an overall p-value for

all spatio-temporal windows in comparison to a null distribution. Taking the sliding

spatio-temporal windows and SatScan-like approach a step further would be able to

incorporate the issue of multiple comparisons in a clever way; however, it would not

necessarily address the issue at hand in our motivating example.

Fifth, the incorporation of different types of interference in defining the alterna-

tive hypothesis is an area of potential extension. In Chapter 4 one-sided interference

with controls influencing treated is assumed. However, this work could be extended

to a four-level overlap structure. Distinguishing between the idea that interference

between multiple treated intervention event wakes has a different effect than inter-

ference between a treatment and control intervention wake with 2-sided interference

has a different effect than no overlap (or overlap between control intervention event

wakes) is an important step in considering the types of effects one is estimating with

the substantive problem at hand. What makes sense in one context, may not in

another. We do not assume that compounded treatment can occur in our scenarios;

however, in the context of the conflict problem we have considered, this may provide

more insight than controlling for this overlapping event.
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Applying MWA with this spatial point process perspective could benefit many

other fields beyond conflict analysis when incorporating spatial features into causal

problems. Many times it is expensive and impractical to implement an intervention

in public health, health-policy, and disease surveillance modeling, and measure the

effect over time. Being able to use already-available data and shedding light on results

across time and space with a principled framework is appealing. This work would

also be able to incorporate SUTVA violations that occur frequently when answering

causal questions with geographic data. Overall, the contribution of a solid theoretical

framework behind MWA in combination with spatial point process theory presents

an important step forward in considering causal frameworks in spatial and spatio-

temporal settings.
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Appendix A

Appendix A: Linking Spatial Point

Process Theory and Causal

Inference

Below are the additional simulation scenarios for all spatial windows examined that

were not included in Chapter 3. We also give other viewpoints of the point event

data from the data analysis in both Chapters 3 and 4. Figures A.4, A.5, A.6, and

A.7 show patterns of point event locations over time within Afghanistan.
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(a)

(b)

Figure A.1: Illustrations of the average λ̂1(1) and λ̂0(1) with 100 treatment interven-

tion events (left panels), average λ̂1(0) and λ̂0(0) with 200 control intervention events

(middle panels), and average ∆̂(1) and ∆̂(0) (right panels). The vertical black lines
represent the true spatial window size.
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(c)

(d)

Figure A.2: Illustrations of the average λ̂1(1) and λ̂0(1) with 100 treatment interven-

tion events (left panels), average λ̂1(0) and λ̂0(0) with 200 control intervention events

(middle panels), and average ∆̂(1) and ∆̂(0) (right panels). The vertical black lines
represent the true spatial window size.
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(e)

(f)

Figure A.3: Illustrations of the average λ̂1(1) and λ̂0(1) with 100 treatment interven-

tion events (left panels), average λ̂1(0) and λ̂0(0) with 200 control intervention events

(middle panels), and average ∆̂(1) and ∆̂(0) (right panels). The vertical black lines
represent the true spatial window size.
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Figure A.4: A 3-dimensional rendering of all data points - treatment and control
intervention events and dependent events - from the data set. Points in blue are the
dependent events (instances of civilian assistance), points in orange are control inter-
vention events (selective insurgent violent events), and points in gray are treatment
intervention events (indiscriminate insurgent violent events).
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Figure A.5: Illustration of where all dependent events occur in space and time.
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Figure A.6: Comparison of locations in space and time of dependent events and
treatment intervention events. The dependent events are more sparse than treatment
intervention events. Heavier areas of events over the entirety of the time period are
located around larger cities in Afghanistan.
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Figure A.7: Comparison of locations in space and time of dependent events and
control intervention events. The dependent events are more sparse than control in-
tervention events. Heavier areas of events over the entirety of the time period are
located around larger cities in Afghanistan.
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Appendix B

Appendix B: Defining the

Interference Effect With Spatial

Point Process Theory

Below are the additional simulation scenarios for all spatial windows examined that

were not included in Chapter 4.
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Figure B.1: The top panel includes the average λ̂1(1, 1) and λ̂0(1, 1) on the left, average λ̂1(1, 0)

and λ̂0(1, 0) in the middle, and average ∆̂(1, 1) - ∆̂(1, 0) on the right. The 100 treatment intervention

events make up those with and without interference to illustrate the interference effect. The middle

panel illustrates components of the interference-free effect, with average λ̂1(1, 0) and λ̂0(1, 0) on

the left, average λ̂1(0) and λ̂0(0) in the middle, and average ∆̂(1, 0) − ∆̂(0) on the right, with

200 control intervention events and the non-interference treatment intervention events.The overall

average λ̂1(1), λ̂0(1), λ̂1(0), and λ̂0(0) are shown in the bottom left and middle, respectively. Both

effects are plotted in the bottom right. The dotted gray lines represent the true spatial window size

in all panels and plots.
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Figure B.2: The top panel includes the average λ̂1(1, 1) and λ̂0(1, 1) on the left, average λ̂1(1, 0)

and λ̂0(1, 0) in the middle, and average ∆̂(1, 1) - ∆̂(1, 0) on the right. The 100 treatment intervention

events make up those with and without interference to illustrate the interference effect. The middle

panel illustrates components of the interference-free effect, with average λ̂1(1, 0) and λ̂0(1, 0) on

the left, average λ̂1(0) and λ̂0(0) in the middle, and average ∆̂(1, 0) − ∆̂(0) on the right, with

200 control intervention events and the non-interference treatment intervention events. The overall

average λ̂1(1), λ̂0(1), λ̂1(0), and λ̂0(0) are shown in the bottom left and middle, respectively. Both

effects are plotted in the bottom right. The dotted gray lines represent the true spatial window size

in all panels and plots.
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Figure B.3: The top panel includes the average λ̂1(1, 1) and λ̂0(1, 1) on the left, average λ̂1(1, 0)

and λ̂0(1, 0) in the middle, and average ∆̂(1, 1) - ∆̂(1, 0) on the right. The 100 treatment intervention

events make up those with and without interference to illustrate the interference effect. The middle

panel illustrates components of the interference-free effect, with average λ̂1(1, 0) and λ̂0(1, 0) on

the left, average λ̂1(0) and λ̂0(0) in the middle, and average ∆̂(1, 0) − ∆̂(0) on the right, with

200 control intervention events and the non-interference treatment intervention events. Lastly, the

overall average λ̂1(1), λ̂0(1), λ̂1(0), and λ̂0(0) are shown in the bottom left and middle, respectively.

Both the interference and interference-free effects are plotted in the bottom right. The dotted gray

lines represent the true spatial window size in all panels and plots.
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