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Abstract 
 

 
The Quantum McKay Correspondence: Classifying "Finite Subgroups" of a Quantum Group with 

Graphs 
 

By: Paul Vienhage 
 

The McKay Correspondence classifies finite subgroups of the rotation group of 3-space via graphs. 
In this paper we explore a quantum version of this correspondence. Specifically, we will cover 
the needed background on category theory, vertex operator algebras, and quantum groups to 
explain a powerful technique used by Kirillov and Ostrik to develop a quantum analog to the 
McKay correspondence. 
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1 Background

1.1 Lie groups and Lie Algebras

The following section is a quick introduction to Lie groups and Lie algebras. For a more
in depth and formal introduction see Kirillov [2008] or for a reference see [Knapp, 2013].
We start with definitions of Lie group and Lie algebra. A Lie group is a group that is
also a differential manifold such that the group multiplication and inversion of elements are
smooth operations, where smooth is defined as the function’s derivatives being continuous
everywhere in the domain for all orders of derivative. A simple example of a Lie group is
GL2(R) which is all two by two real matrices with nonzero determinant. The theory of Lie
groups is highly developed and encodes the information of continuous symmetry.

A Lie algebra is a vector space over a field with a bracket operator g× g→ g which has
the following properties.

1. Bilinearity: [ax+ by, z] = a[x, z] + b[y, z] and [z, ax+ by] = a[z, x] + b[z, y].

2. Alternativity: [x, x] = 0.

3. Jacobi Identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

The most immediate consequence of these conditions is that [x, y] = −[y, x]. With this
observation we get good intuition of a simple example of a Lie Algebra.

Lemma 1. R3 where [x, y] = x× y is the standard cross product is a Lie algebra.

Proof. We start with the proof of bilinearity (applying standard results from vector calculus):

(cu + v)×w =

∣∣∣∣∣∣
i j k

cui + vi cuj + vj cuk + vk
wi wj wk

∣∣∣∣∣∣ =

∣∣∣∣∣∣
i j k
cui cuj cuk
wi wj wk

∣∣∣∣∣∣+

∣∣∣∣∣∣
i j k
vi vj vk
wi wj wk

∣∣∣∣∣∣
= c

∣∣∣∣∣∣
i j k
ui uj uk
wi wj wk

∣∣∣∣∣∣+

∣∣∣∣∣∣
i j k
vi vj vk
wi wj wk

∣∣∣∣∣∣ = c (u×w) + v ×w

Next we conclude that alternativity holds because any vector in R3 is parallel to itself so
x× x = x · x sin(0) = 0. To show the Jacobi identity we use Lagrange’s formula:

a× (b× c) = (a · c)b− (a · b) c

Then it is clear that:

a×(b×c)+b×(c×a)+c×(a×b) = (a·c)b− (a·b)c+(b·a)c− (b·c)a+(c·b)a−(c·a)b = 0

We speak about many properties of Lie algebras in the same way as rings or associative
algebras, with subalgebra, ideal, homomorphism, factor algebra and others defined in a way
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which attempts to encode similar information as for rings. The dimension of a Lie algebra
is its dimension as a vector space. Lie groups are in correspondence with Lie algebras via a
functor that maps the category of Lie groups to the category of finite dimensional real Lie
algebras.

A simple Lie algebra is a non-abelian Lie algebra whose only ideals are 0 and itself.
Note this definition excludes a one dimensional Lie algebra from being simple as they are
necessarily abelian. A semisimple Lie algebra is a direct sum of simple Lie Algebras. The
Killing form is a symmetric bilinear form defined by B(x, y) = trace(ad(x)ad(y)) where
ad(x) is the matrix form of the adjoint endomorphism of g given by ad(x)y = [x, y]. A Lie
algebra is semisimple if and only if the Killing form is non-degenerate.

We can classify semisimple Lie algebras according to their root systems. To explain this
note that a Cartan subalgebra is a subalgebra of a Lie algebra which is nilpotent and self
normalizing. The roots of a semisimple Lie algebra g with Cartan subalgebra h are those
elements α ∈ h∗ (where h∗ is the vector space dual to h) such that there is an X ∈ G with
the property [H,X] = α(H)X for all H ∈ h. The roots are the non-zero weights of the
adjoint representation of g, a concept we will define in the next section. A root system is a
set of vectors Φ ∈ V = Rn with the following properties:

1. The roots span V.

2. The only scalar multiples of a root α ∈ Φ that belong to Φ are α itself and −α.

3. For every root α ∈ Φ, the set Φ is closed under reflection through the hyperplane
perpendicular to α .

4. If α and β are roots in Φ , then the projection of β onto the line through α is an integer
or half-integer multiple of α.

We define an inner product as a map 〈·, ·〉 : V → F with the following conditons:

1. 〈x, y〉 = 〈x, y〉

2. 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉

3. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

We can define ∆ ⊂ Φ to be a set of simple roots if its elements span V and cannot
be formed as the linear combination of other roots. Then it is clear that each root can
be expressed as the linear combination of simple roots with integer coefficients. For a root
system Φ and a choice of simple roots ∆ we can define a valuation map which makes Φ into
a poset. Define ht : Φ→ Z by:

ht(α) =
n∑
i=1

ki where α =
∑
αi∈∆

kiαi
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We define the maximal root (with respect to some set of simple roots ∆) as the max under
the ordering given by ht. For this max root we define the Coxeter number as:

h =
n∑
i=1

ki where αj is the max root and αj =
∑
αi∈∆

kiαi

We can define an “inverse” of the root system the dual roots by giving the dual of each
root by α∨ = 2

〈α,α〉α. We have a dual root system Φ∨, dual simple roots ∆∨, and a dual

Coxeter number h∨ given in nearly identical ways to the originals.
The roots defined by our Lie algebra g have inner product given by the Killing form.

This inner product makes them a root system. Since the root system definition is highly
restrictive all possible ones are well understood. Then it is a combinatorial exercise to classify
all possible root systems via Dynkin Diagrams. This is well covered in Bosshardt [2012].

The following are all possible simple Lie algebras over complex numbers. An : sln+1 the
special linear Lie algebra, the algebra given by n+ 1 by n+ 1 matrices with zero trace with
bracket the usual commutator [X, Y ] = XY − Y X. Bn : so2n−1 the special orthogonal Lie
algebra for odd dimensions, skew-symmetric n × n matrices with the bracket given by the
commutator. Cn : sp2n the symplectic Lie algebra, defined as the Lie algebra of matrices
of size 2n that satisfy MTΩM = Ω with Ω being the skew diagonal block matrix with In
in the first row and −In in the second. Dn : so2n the even dimensional special orthogonal
Lie algebra. Then there are five exceptional Lie Algebras: E6, E7, E8, F4, and G2. For
descriptions of these Lie algebras see Cartan [1894]. The root systems of these Lie algebras
are given by the Dynkin Diagrams in Figure 1.

Figure 1: The Classification of Semisimple Lie Algebras

These have Coxeter and dual Coxeter numbers given in table below:
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Dynkin Diagram Coxeter Number Dual Coxeter Number

An n+1 n+1
Bn 2n 2n-1
Cn 2n n+1
Dn 2n-2 2n-2
E6 12 12
E7 18 18
E8 30 30
F4 12 9
G2 6 4

For any root system we define the Dynkin diagram with a node at each root and a number
of edges depending on the angle between the edges. Namely, we have no edges if the roots
are perpendicular, a single undirected edge if they are 120 degrees, a double directed edge
if they are 135 degrees apart, and a triple directed edge if they are 150 degrees apart. Note
that we direct the edge from the longer to shorter root. In the case of semisimple Lie algebras
this means the nodes of the Dynkin diagram are the roots of the Lie algebra and the number
of edges is given by the value of the Killing form on the pairs of roots.

1.2 Representation Theory

A representation φ is defined as a homomorphism from a group G into GLn(K), where K is
some field and n is called the dimension of the representation. An irreducible representation
φ is one such that the vector space that the representation acts on has no proper non-trivial
invariant subspaces. More specifically, given a representation ϕ : G→ GLn(K) if there does
not exist a non-trivial proper subspace W ⊂ V such that for all g ∈ G, ϕ(g)W ⊂ W then it
is irreducible. Irreducibility is closely related to the concept of simplicity of a representation.
We define the direct sum of two representations (ϕ, V ) and (ς,W ), denoted (ϕ⊕ ς, V ⊕W )
as ϕ(g)⊕ ς(g) for each element of G.

A representation is called decomposable it can be expressed as the direct sum of other
representations. A representation ϕ is called simple if it is irreducible and indecompos-
able. These definitions are a way of formally talking about how representations are built
from “smaller” representations. We should be careful though as there are indecomposable
reducible representations, which contain sub-representations (restrictions of the represen-
tation which are also representations) but are not a direct sum of them. However we do
know that these conditions are equivalent on finite or compact groups and semisimple Lie
groups. Specifically if G is a finite group or a connected compact Lie group over a field of
characteristic zero then its finite dimensional representations are the sum of irreducible rep-
resentations. Thus if G is indecomposable it is the sum of a single irreducible representation
and thus simple. Next we will define the tensor product of representations of a group G:
given a pair of representations of G (ϕ, V ) and (%,W ) we define (ϕ⊗%, V ⊗W ) element wise
on g ∈ G as ϕ⊗ %(g) = ϕ(g)⊗ %(g).

We next extend the previous definitions of representations to Lie algebras. Consider some
Lie algebra g and some vector space V . A representation of a Lie algebra is a homomorphism
φ : g → gln(K), where gln(K) is the algebra of n by n matrices over K with the bracket
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given by the commutator. In other words this is a mapping φ([X, Y ]) = φ(X)φ(Y ) −
φ(Y )φ(X). Note that the mapping and vector space are called a g-module. Given a pair
of representations of a Lie algebra (ϕ, V ) and (%,W ) we define their tensor product as
(ϕ⊗ %, V ⊗W ) with ϕ⊗ % given elementwise on X ∈ g by ϕ⊗ %(X) = ϕ(X)⊗ I + I ⊗ %(X)
. Most other properties of representations on groups hold for Lie algebras with some simple
alterations.

An important construction in the representation theory of Lie algebras is the universal
enveloping algebra, which is an associative algebra whose representations are the same as
those of the Lie algebra you used to construct it. It is denoted U(g) and its construction is
given in 1.6. For further information on representation theory see Fulton and Harris [2013].

1.3 The McKay Correspondence

The McKay Correspondence is a relationship between finite subgroups of SL(2,C) and a
family of Dynkin diagrams called the affine simply laced Dynkin diagrams. The affine Dynkin
diagrams are those classifying affine Lie algebras, they resemble standard Dynkin diagrams
with an additional node. The affine Lie algebras are infinite dimensional extensions of the
semisimple Lie Algebras, for a complete definition and introduction see Wray [2008]. Figure
2 demonstrates the classification of affine Lie algebras. Note that the green nodes are those
which are added to the standard Dynkin diagrams.

Figure 2: The Classification of Affine Lie Algebras

We define simply laced Dynkin diagrams as those which have no multiple edges. These
diagrams are important to the study of geometric representation theory which has produced
many powerful results about representation theory. Another important object in geometric
representation theory is the McKay quiver. A quiver is a directed graph which allows loops
and multiple edges. The McKay graph is a quiver whose properties are defined based on
the properties of a representation. We construct it for a representation of a group (φ, V )
by creating a node for each irreducible representation of G. Then we add ki,j edges from
node Vi to node Vj if Vj occurs ki,j times in the decomposition of Vi⊗V into irreducible sub-
representations. For each finite subgroup H of SL(2,C) we have a representation which is the
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canonical embedding H → SL(2,C), this will have some quiver. The McKay Correspondence
says that the McKay quivers arising from subgroups H ⊂ SL(2,C) in this way are the simply
laced affine Dynkin diagrams.

Theorem 2 (McKay 1980). : Let G be a non-trivial finite subgroup of SL(2,C) then the
McKay quiver of the canonical representation φ : G → SL(2,C) is a simply laced affine
Dynkin diagram. For explicit classification see the following table from Sun [2010].

Figure 3: The Explicit form of the McKay Correspondence

1.4 Category Theory

We now diverge into an entirely different topic: Category Theory. At the basic level Category
Theory is a study of composable mappings between objects. It is phrased in such generality
that given a category we can make into a meta-level category and in this meta-level category
we then can impose structure which allows us to make conclusions about the mappings in
lower level structures. This is the primary motivation of category theory, by studying the
natural ways that objects can map to other objects we can make conclusions about mappings
in many radically different fields.

A category C is a pair of classes (obj(C), hom(C)). The elements of obj(C) are called
objects. The elements of hom(C) are directed arrows from some object a ∈ C to b ∈ C,
the collection of all morphisms from a to b is hom(a, b). Finally a category has a binary
operation ◦ : hom(b, c) × hom(a, b) → hom(a, c) which is associative and has some identity
idx : x→ x for all x ∈ O.
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A functor is a mapping between categories that respects objects and morphisms. More
specifically, F : C → D is a functor if for all X ∈ C there is a F (X) ∈ D and for all
f : X → Y ∈ Mor(C) there is F (f) : F (X) → F (Y ) ∈ D where F (idX) = idF (X) and
F (fg) = F (f)F (g). An example of a category is V ec(k) whose objects are any vector space
over the field k, and whose morphisms are linear transformations of vector spaces. V ecf (k)
is the same limited to finite vector spaces. The categories used in this paper will be more
structured and will generally be braided monoidal abelian categories, which we will now
define and describe.

First we need to understand some abstractions of familiar concepts. Given two objects in
a category X1, X2 we define a product as a triple (X1×X2, π1, π2) where X1×X2 is an object
in our category which we denote by X and π1 : X → X1 π2 : X → X2 are morphisms which
satisfy the following universal property. Given a pair of morphisms f1 : Y → X1 f2 : Y → X2

there exists an f : Y → X such that π1 ◦ f = f1 and π2 ◦ f = f2. Note that f is called
the product of the morphisms f1 and f2. We can extend this definition to any set of objects
{Xi}i∈I in the natural way. This is a generalization of products of groups, sets and topological
spaces.

Next given two objects in a categoryX1, X2 we define a coproduct as a triple (X1

∐
X2, i1, i2)

where X1

∐
X2 is an object in our category which we denote by X and i1 : X1 → X i2 :

X2 → X are morphisms which satisfy the following universal property: Given a pair of
morphisms f1 : X → X1 f2 : X → X2 there exists an f : X → Y such that f ◦ i1 = f1

and f ◦ i2 = f2. Note that f is called the coproduct of the morphisms f1 and f2. We can
extend this definition to any set of objects {Xi}i∈I in the natural way. The coproduct is a
generalization of the disjoint union of sets and the free product of groups.

Another abstraction we consider are the constant and coconstant mappings. Given a
morphism f : X → Y we call f a constant mapping if for all objects W in C and all pairs of
morphisms g, h : W → X we have that f ◦ g = f ◦ h. We call f coconstant if for all objects
Z and pairs of morphisms g, h : Y → Z we have that g ◦ f = h ◦ f . A mapping f which is
constant and coconstant is called a zero mapping. A category with zero morphisms is one
where, for every two objects A and B in C, there is a fixed morphism 0A,B : A→ B and for
all objects X, Y, Z ∈ C and all morphisms f : Y → Z, g : X → Y we have that Figure 4
commutes.

Figure 4: A commuting digram in a category with zero morphisms
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In a category with zero morphisms we can define generalizations of kernel and cokernel.
Given some morphism f : X → Y in our category we define the kernel as the pair (K, k)
where K is an object in our category and k : K → X is a morphism which satisfies that:

1. We have that f ◦ k = 0K,Y .

2. Given (K ′, k′) where K ′ is an object and k′ : K ′ → X is a morphism with f ◦k′ = 0K′,Y
then we have a morphism µ : K ′ → K where k ◦ µ = k′.

The kernel is a generalization of the kernel of group homomorphisms (canonical embedding
is our k and the subgroup is our K). Next we define the cokernel of a mapping f : X → Y
as the pair (Q, q) where Q is an object and q : Y → Q is a morphism with the following
properties:

1. We have that q ◦ f = 0K,Y .

2. Given (Q′, q′) where Q′ is an object and q′ : Y → Q′ is a morphism with q′ ◦ f = 0Q′,Y
then we have a morphism µ : Q′ → Q where q ◦ µ = q′.

The cokernel’s simplest form is in the category of abelian groups where for a group homomor-
phism φ : G → H the cokernel is the quotient group H/im(φ). Using these generalizations
we can define an abelian category C as one which has the following four properties:

1. There exists a 0 ∈ O, such that for all X ∈ C there exists exactly one morphism
f : X → 0 and exactly one morphism g : 0→ X.

2. C has all possible bi-products, ie that for any collection of objects Xi there is an
object X1 ⊕X2 . . . ⊕Xn and morphisms pk : X1 ⊕X2 . . . ⊕Xn → Xk and ik : Xk →
X1⊕X2 . . .⊕Xn such that (X1⊕X2 . . .⊕Xn, pk) is a product and (X1⊕X2 . . .⊕Xn, ik)
is a coproduct.

3. For every morphism f ∈ hom(C) there must exist a kernel and cokernal in C.

4. Every monomorphism (morphisms which left cancel under compositions) should be
the kernel of its cokernel, and every epimorphism (morphisms which right cancel under
compositions) is the cokernel of its kernel.

Monoidal Categories add a tensor product ⊗ which is a bifunctor C × C → C that has a
unit object I such that for all X ∈ C, I ⊗ X ∼= X ⊗ I ∼= X. Note that we often denote I
as 1 and we say a monoidal category C is over complex numbers if I = C. A braided tensor
category is one that has a tensor product as described above, and it has a collection of
morphisms σX1,X2 : X1⊗X2 → X2⊗X1 where X1, X2 are expressions formed from brackets,
the unit object, and any objects from O. Each σV,W is uniquely identified with an element
of the braid group, which we now explain.

The braid group has several realizations; one is the motion of a collection of points in a
disk over time, but it is perhaps easier to visualize as braids of strands of string where the
operation is concatenation and topologically equivalent strings are identified. Symbolically
the braid group on n-strands is given by the following generators and relations:

Bn
.
= 〈σ1, σ2, · · ·σn−1 | σi−1σiσi−1 = σiσi−1σi and σiσj = σjσi if |i− j| ≥ 2〉.
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We give an example of a pair of equivalent braids of B3 below which demonstrates the braid
relation. The equivalence of these braids gives the Yang-Baxter equation in braided tensor
categories.

=

Now we explain duality for categories. The notion of duality in a category is motivated
by the concept of duality in vector spaces. Let V ∈ O of some tensor category. A right dual
of V is an object V ∗ and morphisms eV : V ∗ ⊗ V → 1 and iV : 1→ V ⊗ V ∗ such that:

1. The mapping V → V ⊗ V ∗ ⊗ V → V by iv ⊗ idV ◦ idV ⊗ eV is the identity

2. The mapping V ∗ → V ∗ ⊗ V ⊗ V ∗ → V ∗ by iV ⊗ idV ∗ ◦ idV ∗ ⊗ eV is equal to idV

These two conditions are called the rigidity axioms. Also eV is called the called counit (or
evaluation map), and iV is called the unit (or coevaluation map). We define a left dual with
∗V and morphisms which place the dual on the left (reversing the above definitions). Given
a definition of dual object we can define the dual of a mapping. Given two objects V,W
which have right duals (V ∗, iV , eV ) and (W ∗, iW , eW ) and a morphism f : V → W we define
a mapping f ∗ : W ∗ → V ∗ as

f ∗ : W ∗ idW∗⊗ev−−−−−→ W ∗ ⊗ V ⊗ V ∗ idW∗⊗f⊗idV ∗−−−−−−−−→ W ∗ ⊗W ⊗ V ∗ iW−→ V ∗

A rigid monodial category is one which has all left and right duals.
A rigid braided tensor category is called a ribbon category if it has a functorial isomor-

phism δV : V → V ∗∗ which satisfies the following conditions.

1. δV⊗W = δV ⊗ δW

2. δ1 = id

3. δV ∗ = (δ∗V )−1

In other literature ribbon categories are sometimes called balanced rigid braided tensor
categories. The representation category of a quantum group at a root of unity is a ribbon
category.

In any rigid braided tensor category C we have a functorial isomorphism ψV : V ∗∗ → V

defined by V ∗∗
i⊗id−−→ V ⊗ V ∗ ⊗ V ∗∗

id⊗σ−1

−−−−→ V ⊗ V ∗∗ ⊗ V ∗
id⊗e−−→ V . This map allows the

construction of twists in a category. A twist is a functorial isomorphism θV = ψV δV : V → V .
These satisfy the balancing axioms:

1. θV⊗W = σV,WσW,V (θV ⊗ θW )

2. θ1 = id

3. θV ∗ = (θV )∗

We define the trace of an endomorphism f of an object V in a ribbon category C by 1
iv−→

V ⊗ V ∗ f⊗id−−−→ V ⊗ V ∗ δV ⊗id−−−→ V ∗∗ ⊗ V ∗ eV ∗−−→ 1. The trace is denoted tr(f) and the dimension
of some object V is tr(idV ). The name ribbon is partially inspired by the graphical calculus
detailed in Bakalov and Kirillov [2001] which we explain in the next section.
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1.5 Categorical Graphical Calculus

The following directly mirrors the introduction to this content in Bakalov and Kirillov [2001]
which is where the diagrams are sourced from. We denote the morphisms of objects from
bottom to top with the object on the bottom as the source and the top as the target. For
example f : V → W is written as:

We denote a composition of morphisms by stacking such diagrams.

Then we denote the tensor product by placing the arrows next to each other, for f1 : V1 → W2

and f2 : V2 → W2 then we denote f1 ⊗ f2 = V1 ⊗ V2 → W1 ⊗W2 by:

The empty diagram represents the identity morphism as we can remove or place an identity
arrow at any point. Next we turn to duals, the evaluation map eV : V ∗ ⊗ V → 1:
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The other dual map, coevaluation iV : 1→ V ⊗ V ∗ is denoted:

The braiding is very similar to the way braid groups are normally denoted. With σV,W :
V ⊗W → W ⊗ V as the following and the inverse with the strands crossed opposite to the
following:

We present two examples, the funtorality of twists presented visually:

And the rigidity axioms expressed visually:

We have seen these presented earlier in the background, so to demonstrate the usefulness of
this graphical calculus we present a proof via the graphical calculations and then one from
axioms.
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The graphical proof is:

Followed by an application of rigidity. The first step uses that:

This graphically expresses that idV ⊗ eW : V ⊗ (W ⊗ W ∗) → V ⊗ 1 is equivalent to
σV,W⊗W ∗ ◦eW ⊗ idV ◦σV,1 : V ⊗ (W ⊗W ∗)→ (W ⊗W ∗)⊗V → 1⊗V → V ⊗1. This follows
from the axioms of the ribbon category. Next we present the proof that (σV,W )∗ = σV ∗,W ∗
from axioms.

Proof. (σV,W )∗ = (eV ∗⊗eW ∗)◦(σV,W )◦(ϕV ⊗idW ⊗idV ∗⊗idW ∗)◦(idV ∗⊗eW ⊗idV ∗⊗idW ∗) =
(eV ⊗eW )◦ (σV ∗,W ∗⊗ idV ⊗ idW )◦ (φV ⊗ idW ∗⊗ idV ⊗ idW )◦ (σV ∗,W⊗W ∗)◦ (eW ⊗ idV ⊗σV ∗,1)◦
σV,W = σV ∗,W ∗ ◦(ηV ⊗idV )⊗(ηW⊗idW )◦αV ∗,V,V ∗n⊗αW ∗,W,W ∗ ◦(idV ∗⊗εV ∗)⊗(idW ∗⊗εW ∗) =
σV ∗,W ∗

This proof is nearly incomprehensible but can be seen by tracing each element of the
visual proof and they are morally identical. This example demonstrates how the graphical
calculus helps to understand morphisms.

A modular tensor category C is a semisimple ribbon category which has finitely many
isomorphism classes of simple objects and which has that the matrix s̃ = (si,j)i,j∈I is invertible
with si,j defined by the diagram below:
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1.6 Quantum Groups

We now introduce the topic of quantum groups. A quantum group in the context of this
paper will be defined as a Hopf algebra which is a deformation of a semi-simple Lie algebra.
The universal enveloping algebra of a semi-simple Lie algebra is an associative algebra whose
representation category is equivalent to that of the Lie algebra. Formally we define it as the
quotient of T (g) = k ⊕ g ⊕ (g ⊗ g) ⊕ · · · (the free tensor algebra on g) by the two sided
ideal of T (g) generated by elements of the form a⊗ b− b⊗ a− [a, b]. We denote this algebra
by U(g). This construction has the universal property that if we consider the canonical
embedding h : g → U(g) (defined by mapping h∗ into the tensor algebra and composing
with the quotient map) and a map to an algebra A, φ : g → A then there exists a unique
algebra homomorphism φ̂ : U(g) → A such that φ = φ̂ ◦ h. This universal property shows
that U(g) has a representation for every representation of g. The Poincaré–Birkhoff–Witt
theorem gives a basis for U(g) and also has a coordinate free form see Birkhoff [1937].

To motivate the idea of the deformation of a universal enveloping algebra we give an
example of the deformation of matrix groups. The matrix T =

(
A B
C D

)
over some K-algebra

(an algebra with left distributivity, right distributivity, and compatibility with scalars over
a field K) is called a quantum matrix if the following relationships hold.

BA = qAB, DC = qCD, CA = qAC, DB = qBD, BC = CB

DA− AD = (q − q−1)BC, AC − qBD = 1

These relations allow T to function as a non-commutative transformation of the coordinates
of a 2-d plane, which may be how coordinates behave in the quantum realm of physics. We
note that as q → 1 then these relationships approach the conditions on matrices over commu-
tative elements. If we letQ = {{A,B,C,D} | the equations above hold for q, A,B,C, and D}
then we can defined a comultiplication ∆ : Q → Q × Q, under which (Q,∆) is a pseudo-
matrix grou. Note that ⊗ is a product and has that (P ⊗Q)(R⊗ S) = PR⊗QS.

∆1,2(T ) = T1 ⊗ T2 =

[
A1 B1

C1 D1

]
⊗
[
A2 B2

C2 D2

]
=

[
A1 ⊗ A2 +B1 ⊗ C2 A1 ⊗B2 +B1 ⊗D2

C1 ⊗ A2 +D1 ⊗ C2 C1 ⊗B2 +D1 ⊗D2

]
This pseudo-matrix group is also called a quantum group, most notable in Takeuchi [2002]
our source of these definitions, and is denoted SLq(2) because in the limit q → 1 this algebra
is SL(2). To summarize how one could arrive at the motivation of the quantum group, a
person might think that in the description of super small systems (ie quantum systems)
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the transformations of the coordinates may not be commutative. By building matrices with
elements that don’t commute but have deformed commutative relationships and defining the
proper algebraic structure we get a deformed q-analogue of SL(2). Since we have SLq(2)
the natural question is: is there then an infinitesimal algebraic object related to SLq(2) in
the same way that SL(2) relates to sl(2)? The answer is yes and it is the quantum group
that will be used throughout this paper.

We define a q-number in the context of quantum groups as:

JnKq =
qn − q−n

q − q−1

This q-number has the nice property that JnKq ≈ n as q → 1. We define a generic T matrix

parameterized by α, β, and λ and the equation T = e
λX−
q−2 e

2αX0e
βX+

q2 , where our matrices
{X−,X0,X+} obey the algebra defined by:

[X0,X±] = ±X± and [X+,X−] =
q2X0 − q−2X0

q − q−1
= J2X0K

This algebra is equivalent to the structure of the “slq(2)” which is more formally the q
deformation of the universal enveloping algebra of sl(2) (see Takeuchi [2002] for a proof of
the equivalence). That is to say that the algebra Uq(sl(2)) is generated by polynomials over
{X−,X0,X+}. We note that the T parametrization above defines the elements of SLq(2)
giving a relationship similar to the relationship between SL(2) and sl(2). We can define
multpilcation, comultiplicaiton, unit, counit, and antipode which induce a Hopf algebra
structure on the algebra Uq(sl(2)). We will not define them explicitly as it will repeat the
general construction bellow.

The quantum group Uq(g) is defined for an arbitrary Lie algebra g, via the root system
and a set of unital associative algebra relationships. Let q ∈ C∗ and q 6= 1 and λ element of
the root lattice of g (where the root lattice is the lattice generated by the root system of g).
Then our algebra is generated by elements kλ, ei, and fi (where i is the index of the roots
αi) which have the following rules:

k0 = 1 kλkµ = kλ+µ kλeik
−1
λ = q(λαi)ei kλfik

−1
λ = q−(λαi)fi [ei, fj] = δi,j

ki − k−1
i

qi − q−1
i

ki = kαi qi = q
1
2

(αiαi)

Let A = (ai,j) be the Cartan matrix of the Lie algebra g. For all i 6= j we have the
q-Serre relations:

1−ai,j∑
n=0

(−1)n
J1− ai,jKqi !

J1− ai,j − nKqi ! JnKqi !
eni eje

1−ai,j−n
i = 0

1−ai,j∑
n=0

(−1)n
J1− ai,jKqi !

J1− ai,j − nKqi ! JnKqi !
fni fjf

1−ai,j−n
i = 0
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With these relationships our algebra defined by the above relationships we have that
Uq(g) behaves more and more like U(g) as q → 1. We establish that Uq(g) is a Hopf algebra
by defining a coproduct, counit, and antipode (the other mapping are described in Majid
[2002]).

∆(kλ) = kλ ⊗ kλ ∆(ei) = 1⊗ ei + ei ⊗ ki ∆(fi) = k−1
i ⊗ fi + fi ⊗ 1

ε(kλ) = 1 ε(ei) = 0 ε(fi) = 0

S(kλ) = k−λ S(ei) = −eik−1
i S(fi) = −kifi

There are alternate definitions of these functions under which Uq(g) is also a Hopf algebra,
but we will work exclusively with this one in this paper.

We now turn to the representation theory of Uq(g) where q is a root of unity. This
representation theory has been well documented in Bakalov and Kirillov [2001] and Klimyk
and Schmüdgen [2012]. We will only present the representation theory in the case where our

quantum group is Uq(sl2) where q = e
πi
k . The Weyl module is defined via the weight lattice

which in the case of sl2 is identical to Z, for sl2 we have the Weyl module n is:

Vn =
n∑
i=0

Cvi n ∈ N

Where vi is the highest weight vector and vi = f (i)v0. Since q is a root of unity we can
denote it q = e

iπ
k . Then we have from Bakalov and Kirillov [2001] that the n Weyl module

of Uq(sl2) is irreducible if and only if n ≤ k or n = lk − 1 for some l ∈ N. The textbook
Bakalov and Kirillov [2001] gives the general form of the category of representations of the

quantum group of g at the root of unity q = e
iπ
k denoted C(g, k) and a proof of the following

theorem.

Theorem 3. C(g, k) is a ribbon category over C.

This paper works primarily with the category theory properties of C(sl2, k) so will not
go into more detail, instead turning to background on vertex operator algebras.

1.7 Vertex Operator Algebras

A vertex algebra is a structure defined on a vector space V with an identity 1 ∈ V , translation
endomorphism T : V → V , and a map Y : V ⊗ V → V ((z))) where V ((z)) denotes Laurent
series with coefficients in V . If the following axioms hold this collection of objects is a vertex
algebra.

1. For anyu ∈ V : Y (1, z)u = u = uz0

2. T (1) = 0 and for all u, v ∈ V : [T, Y (u, z)]v = TY (u, z)v − Y (u, z)Tv = d
dz
Y (u, z)v

3. For any u,v ∈ V there is anN ∈ Z such that (z−x)NY (u, z)Y (v, x) = (z−x)NY (v, x)Y (u, z)
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When we equip a vertex algebra with an element ω called the conformal element which
has that Y (ω, z) is a Virasoro field. We define the spanning L(z) via Y (ω, z) =

∑
n∈Z

ωnz
−n−1 =

L(z) =
∑
n∈Z

Lnz
−n−2. The structure of the Virasoro algebra is that [Lm, Ln] = (m−n)Lm+n+

(δm+n,0/12)(m3 −m)c idv where c is called the central charge of the vertex algebra. These
axioms induce a quantum field theory and describe the particle behavior of some system.
We often abbreviate vertex operator algebra as VOA. For example the monster VOA V \

describes the particle interactions on an orbifold of a 24 dimensional torus. This construction
of quantum field theory is equivalent to the conformal net one as there is a “dictionary” which
translates between conformal nets and VOAs Carpi et al. [2015].

2 Kirillov and Ostrick’s q-Analogue

The focus of this section will be the paper of Kirillov and Ostrick Ostrik [2001]. This paper

gives a classification of “finite subgroups” in Uq(sl2) (where q = e
πi
l ) via the properties of

the category of representations of Uq(sl2). The classification is not new (having appeared in
Michel et al. [1992]) but the method of classification is new. Specifically the paper proves
that these “finite subgroups” are classified by the Dynkin diagrams of types An, D2n, E6, E8

with Coxeter numbers equal to l (where l is the denominator of the exponential of our

deformation via q = e
πi
l ) the category theoretic properties of the representations of Uq(sl2).

The purpose of the following sections will be proving the following main theorem:

Theorem. There is a correspondence between rigid C-algebras with θA = id and Dynkin
diagrams of types An, D2n,E6, E8 with Coxeter numbers equal to l. Under this correspondence
the simple objects of Rep(A) are represented by the vertices of the Dynkin diagram. Finally
the matrix of multiplication by F (V1) in the Grothendieck ring of Rep(A) is 2− C where C
is the Cartan matrix of the Dynkin diagram.

To do this we will first outline some basic category theory results on the category of
representations of Uq(sl2), apply them to finite groups, then present a small review of vertex
operator algebra results, and tie all of this together in a main proof which will establish
the correspondence then check case by case which diagrams correspond to realizable unique
algebras. We finish by presenting the calculations which assign representations to the vertices
of the diagrams.

2.1 Preliminary results

As we have seen in the background the theory of q-deformations is built in parallel to the
questions one finds in traditional Lie Theory. Often the nice notions of Lie Theory do not
carry into its deformation, for example Uq(sl2) is not a group so does not have subgroups.
Kirillov and Ostrick utilize a way of defining a “finite subgroup” for Uq(sl2) which has parallel
properties to finite subgroups of sl2. Given a semi simple abelian rigid balanced braided
tensor category C over C, we define a C-Algebra A as an object A ∈ C with morphisms
µ : A⊗ A→ A and iA : 1→ A that satisfy the following conditions:
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1. µ ◦ (µ⊗ id) = µ ◦ (id⊗ µ)

2. µ ◦ σA,A : A⊗ A→ A is equal to µ.

3. µ ◦ (iA ⊗ A) : 1⊗ A→ A is equal to idA

4. dim(HomC(1, A) = 1

This definition of a C-Algebra was not new but rather the paper allows more general use
of it via properties of Rep0(A) and Rep(A), where Rep(A) = { (V, µV ) } with µV satisfying:

1. µV ◦ (µ⊗ µV ) = µV ◦ (id⊗ µV ) : A⊗ A⊗ A→ V

2. µV (iA ⊗ id) = id : 1⊗ V → V

We denote sets of morphisms in Rep(A) as HomA and define them as:

HomA((V, µV ), (W,µW )) = {ϕ ∈ HomC(V,W ) | µW ◦ (id⊗ ϕ) = ϕ ◦ µV }

One of the primary differences between the work of Kirillov and Ostrick and previous
work is that they do not assume that C has that σA,V σV,A = id. Rather they define a
a full subcategory of Rep(A) named Rep0(A) as those representations (V, µV ) which have
that µV ◦ σA,V σV,A = µV . Such objects have been referred to as transparent or dyslexic by
previous authors, such as in Bruguieres [2000]. Section One of Ostrik [2001] also establishes
that Rep(A) is monodial with unit object and the existence and properties of the following
functors in Rep(A).

Theorem 4. Define functors F : C → Rep(A), G : Rep(A)→ C via F (V ) = A⊗V, µF (V ) =
µ⊗ id and G(V, µV ) = V Then:

1. Both F and G are exact and injective on morphisms.

2. F and G are adjoint: one has canonical functorial isomorphisms:

HomA(F (V ), X) = HomC(V,G(X)), V ∈ C, X ∈ Rep(A)

3. F is a tensor functor: F (V ⊗W ) = F (X)⊗A F (W ), F (1) = A

4. There are canonical isomorphisms G(F (V )) = A⊗V and G(F (V )⊗AX) = V ⊗G(X).

Proof. (1) follows from the definition. We define the (2)’s maps using the following diagram
and appeal to graphical calculus for a proof of the requirements. Next we define:

f = idA ⊗ idV ⊗ ıA ⊗ idW : A⊗ V ⊗W → (A⊗ V )⊗A (A⊗W )

g : (A⊗ V )⊗A (A⊗W )
R−1
A,V−−−→ A⊗A A⊗ V ⊗ V

µ−→ A⊗ V ⊗W

These are inverses and well defined showing that our functors are tensor. (4) follows directly
from the defition of F , G and the previous properties.
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Theorem 5. Rep(A) has an an additive functor � : C × Rep(A) → Rep(A) and isomor-
phisms (V1 ⊗ V2) �X ∼= V1 � (V2 �X) and 1�X ∼= X.

Proof. We just take V �X ∼= F (V )⊗A X and apply the previous theorem.

Next we note that Rep(A) is not a braided category using the inherited commutativity
morphism because RV,W ◦ (µ1 − µ2) 6≡ 0. This prevents the commutativity morphism from
descending properly in Rep(A). We however do have:

Theorem 6 (Pareigis [1995]). : The category Rep0(A) is a braided tensor category with the
commutativity isomorphism inherited from C.

Proof. This is only a sketch of the proof. We show that X, Y ∈ Rep0(A) and X ⊗A Y ∈
Rep0(A). This is done by showing that the X ⊗ Y → X ⊗A Y is the canonical projection.
Next we show that RX,Y : X⊗Y → Y ⊗X descends to isomorphism RX,Y : X⊗AY → Y ⊗AX
in Rep0(A). This is equivalent to showing RX,Y (I) ⊂ (I) where I is the kernel of a canonical
isomorphism X⊗Y → X⊗AY . This is done via the graphical calculus, but we don’t include
it here.

Recalling the definition of rigidity from the background we give a definition of a rigid
C-Algebra as one which has that eA : A ⊗ A

µ−→ A
ηA−→ 1 is a non-degenerate pairing and

dimC(A) 6= 0.If that holds then there is a unique iA : 1→ A⊗ A such that eA, iA follow the
rigidity conditions. Independent of rigidity we also have eA, iA but also two maps ıA : 1→ A
and εA : A→ 1, with ıA ◦ εA = idA. We note that these maps are “compatible” with eA, iA
in the natural way.

Lemma 7. If A is a rigid C-algebra with θA = id then µ ◦ eA = dim(A) ıA.

Proof. These are both maps 1→ A then by the uniqueness of the unit map for the C-algebra
these must be proportional.

Theorem 8. Let C be a rigid balanced braided category and A, a rigid C-algebra, θA = id
then

1. Rep0(A) = {V ∈ Rep(A) | θA is an A-morphism}

2. Rep0(A) is a rigid balanced braided category with θ inherited from C

3. For any V ∈ RepA, the morphism δV : V → V ∗∗ is an A-morphism.
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Proof. First we note that θA⊗V = RA,VRV,A θV ⊗ θA which when θV = id implies that
Rep0(A) = {V ∈ Rep(A) | θA is an A-morphism}. Then applying the previous theorems
and part (1) gives (2). Then (3) is given by the graphical calculus.

Theorem 9. Let C be a rigid balanced braided category, and A a rigid C-algebra such that
θA = idA. Then for every X, Y ∈ Rep(A),

1. dimA(X ⊗A Y ) = dimA(X)dimA(Y )

2. dimA(X) = dimC(X)
dimC(A)

3. dimA(F (V )) = dimC(V )

Proof. The first inequality follows in any rigid monoidal category with a natural monoidal
transformation V → (V ∗)∗. We have that the dimension is defined by the following after an
application of the rigidity axioms.
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Both sides of this diagram are A-automorphisms, so we compose them with ıA, εA and we get
that 1

dim(A)
dim(C) = dimA(X). We apply this to F (v) = V ⊗A and get that dimA(F (V )) =

dimC(V ).

We turn the simplicity of our defined objects. Notably we define a C-algebra A as semi
simple if Rep(A) is semi simple and give a corollary to the previous theorem:

Corollary 10. Let C be rigid and A, a semisimple C-algebra with θA = id. Then,

1. If X ∈ Rep(A) is simple, then X ∈ Rep0(A) is simple if and only if, θX = c · id.

2. Rep0(A) is semisimple, with simple objects exactly those which are simple in Rep(A)
and satisfy 1

Proof. This immediately follows from the previous theorem, the fact that the dimension of
simple objects is 1, and that for simple objects X ∈ HomA(X,X) = C

A lemma from the literature will give us our final preliminary theorem.

Lemma 11 (Bruguieres [2000]). : If A is rigid then every X ∈ Rep(A) is a direct summand
in F (V ) for some V ∈ C

Proof. We only give a sketch of the proof here. We define a subjective map from A⊗A→ A
and its one sided inverse. Using these we can get A⊗AX ∼= X and thus that (A⊗A)⊗AX =
A⊗ (A⊗X) = A⊗X = F (G(X)). For the exact definitions of these we refer to Lemma 3.4
in Ostrik [2001].

Theorem 12. Let C be rigid and A, a C-algebra be rigid. Then A is semi simple.

Before the proof we state some properties of projective objects and the Ext1 functor.
An object in C is projective if it is universal to epimorphisms, ie the Hom(O,−) functor
preserves epimorphsims. Now the Ext1(O1, O2) functor describes the properties of sequence
of mappings O1 → V → O2. Without diving deeply into the theory we suffice to say that if
Ext1(O1, O2) = 0 then V = O1 ⊕K. Again glossing over details, if every Ext1(O1, O2) = 0
then the category is semisimple (a sketch of the proof is that all objects are related by
directed sums so the only possible decompositions are directed sums).

Proof. We know from the exactness and adjointness of the functors F and G that every
F (X) is projective. Thus applying the lemma we have that every object is the direct sum of
projective objects. Every sum of projective objects is projective. Now consider Ext1(O1, O2)
since both objects are projective this is 0. Thus we have that A is semi simple.

2.2 Sanity Check: Representations of Finite Groups

In this section we make sure that all of the “abstract nonsense” we have just defined and
delineated has recognizable forms in a simple case. Let G be a finite group and F(X) be
the set of complex valued functions on set X. Then what we will show is that each Rep(A)
for A a Rep(G)-Algebra corresponds to a category Rep(H) for H ⊂ G. Then we will show
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that each subgroup H ⊂ G of finite index we have that F(G/H) is a semi simple Rep(G)-
Algebra which is equivalent as a category to Rep(H). Together these results tell us that the
the A’s which are Rep(G)-Algebras precisely identify the finite subgroups of G, exactly our
original goal. In Ostrik [2001] they present this for any object G which has a finite complex
representation space, we present this proof in a limited form.

Theorem 13. For H ⊂ G of finite index F(G/H) = A is a semisimple C-Algebra and
Rep(A) is equivalent as a category to Rep(H).

Proof. Each object of Rep(A) is a G module V with decomposition V =
⊕

x∈G/H Vx and

representation structure gVx = Vgx. The tensor in A is given by (V ⊗A W )x = Vx ⊗Wx.
Together these facts naturally induce the C-Algebra Structure. Define functor χ : Rep(A)→
Rep(H) by ⊕Vx → V1 and ϕ : Rep(H) → Rep(A) by E → IndGH(E). Then clearly
χ(V ⊗W ) = χ(V ) ⊗ χ(W ) and by the properties of Ind ϕ(E1 ⊗ E2) = IndGH(E1 ⊗ E2) =
IndGH(E1)⊗ IndGH(E2). Finally because V = Ind(E) =

⊕
x∈G/H Vx, we have that χ ◦ ϕ = id

so they are inverses. This tells us that the categories are equivalent.

Corollary 14. In the equivalence of the C-Algebra Rep(F(G/H)) and Rep(H) the C-Algebra
functors F and G are mapped to the functors Res and Ind respectively in Rep(H)

Theorem 15. For C = Rep(G) any rigid C-algebra is of the form F(G/H) for some H of
finite index.

Proof. By definition, a C−Algebra is a commutative associative algebra over C on which G
acts via automorphisms. So if A is rigid then it is semisimple as an algebra, meaning that the
largest nilpotent ideal is zero. We denote this as N then N is invariant under automorphism
by G and thus an C-Algebra ideal. The Lemma following this proof shows that N is zero.

Semisimple commutative associative algebras have a highly defined structure. Via the
structure and the fact that A is a subcategory of Rep(G) we can conclude that A is the
algebra of functions on some finite X where X is the set of primitive idempotents of A.
When we decompose A as a G-module (under the permutation action) C appears as a G-
module with multiplicity 1, from this we conclude that the action is transitive. This implies
that X = G/H.

Lemma 16. Let C be a rigid and A a C-algebra such that θA = id and dimC(A) 6= 0. Then
A is a rigid C-Algebra if and only if A is simple as an A-module.

2.3 Results on Vertex Operator Algebras

This section is a photo of a photo, in that it is an an overview of overviews of results on
VOAs described in Ostrik [2001] but proved elsewhere. This paper also gives the following
results via appeal to references. First we restrict our investigation to the friendliest vertex
operator algebras, those which have the following

1. For every simple V -module M , its conformal dimension (the lowest eigenvalue of the
transformation by L0) is real and non-negative. With it being zero if and only if
M = V in which case dim(V0) = 1. This is a technical condition to ensure the vacuum
vector is unique.
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2. The category of representations of V is semi-simple, with finitely many simple objects,
and all spaces of conformal blocks (i.e. intertwining operators between tensor products
of representations) are finite dimensional. Finally V is simple as a V -module

3. The category of C of V -modules is a rigid braided tensor category.

Next we introduce a sample construction and an important theorem. First however we must
define “level” in the context of affine Lie algebras. We can construct an Lie algebra as a
central extension of a loop algebra of the corresponding simple Lie algebra. We note that
the central extensions of the affine Lie groups induce a k which is the scalar that the central
element acts by in the representation and it parameterizes the representations of an affine
Lie algebra. We present the following construction of a VOA which has properties 1-3.

Construction 17. Let g be a simple Lie algebra, ĝ the corresponding affine Lie algebra and
k a level (with k 6= −h∨ where h∨ is the dual Coxeter number). Then let L0,k be the integrable
ĝ module of level k and highest weight 0 (corresponding to the vacuum vector). This is a
VOA canonically, denoted V (g, k)

As an abeliean category V (g, k) is just the integral ĝ-modules of level k. It has also
been shown to be modular Huang et al. [1999]. It was show in Finkelberg [1996] to be the
“semisimple part” of Uq(g) with q = eπi/m(k+h) where h is the Coxeter dual number and
m depends on the diagram of the algebra. We define an extension of V as V ⊂ Ve such
that Ve is finite length (where this is its length as a module, ie the maximum size of chains
of intermediary modules) and preserves the vertex algebra structure. Then we have this
theorem from Huang et al. [2015].

Theorem 18. Let V be a VOA satisfying 1-3 above, and let C be the category of V -modules.
The the following definitions describe the same collection of objects.

1. An extension V ⊂ Ve, where Ve is also a VOA satisfying conditions 1-3.

2. A rigid C-algebra with θA = 1.

Under this correspondence the category of Ve-modules is identified with Rep0(A).

Given V (g, k) we will define an example of conformal embedding given an embedding
g ⊂ g′ which is an embedding of Lie algebras. Then this induces an embedding ĝ ⊂ ĝ′

where ĝ′ has level k′. We naturally get an embedding of VOAs ĝ ⊂ V (g′, k′) which we call a
conformal embedding if it preserves the Virasoro element. Note that not all conformal VOA
embeddings are built in this way but we do get examples we will use later in this way.

First note that for C(sl2, 10) the category of integrable modules over ŝl2 of level 10,
that there is a conformal embedding into C(sp(4), 1). We can describe this embedding
by observing that that the four dimensional representation of sl2 has a an invariant non-
degenerate skew-symmetric form. This form induces the required embedding. We observe
that the decomposition of V (sp(4), 1) as a V (sl2, 10) module is given by V = L0,10 ⊕ L6,10.

Similarly when k = 28, V (sl2, 28) has a conformal embedding into V (G2, 1). Where
V (G2, 1) as a V (sl2, 28)-module is given by V = L0,28⊕L10,28⊕L18,28⊕L28,28. The textbook
“Conformal Field Theory” covers these results in detail Francesco et al. [2012].
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2.4 The Main Proof

The following proof is the main purpose of the paper. Since most of the results had been
previously shown it is the proof structure itself that is of interest. We consider the case where
C is the semisimple part of the representations of Uq(sl2) with q = eπi/l and l ≥ 2. We refer
to the background for an overview of the properties of C and to Bakalov and Kirillov [2001]
for the full details. By definition C is semisimple and it is well know that it has l − 2 = k
simple objects V1, · · · , Vk where each Vi is a standard i + 1 dimensional representation of
Uq(sl2). Its Grothendieck ring K is generated by V1 and quantum dimensions given by
dimC(Vn) = [n+ 1]q. This category is modular and in Finkelberg [1996] they prove that it is
equivalent to V (sl2, k). Given this setup we have:

Theorem 19. There is a correspondence between rigid C-algebras with θA = id and Dynkin
diagrams of types An, D2n, E6, E8 with Coxeter numbers equal to l. Under this correspondence
the simple objects of Rep(A) are represented by the vertices of the Dynkin diagram. Finally
the matrix of multiplication by F (V1) is the Grothendieck ring of Rep(A) is 2− C where C
is the Cartan matrix of the Dynkin diagram.

Let A be any rigid C-algebra with θA = id. Then by Theorem 4 we know that it is
a monoidal category and it is a module category over C. Thus the Grothendieck rings of
Rep(A) and A are equivalent and are modules over the Grothendieck ring K(C). We apply
Theorem 11 and conclude Rep(A) is semisimple. We then can apply semisimplicity to show
a number of technical properties of modules over K(C).

The exact nature of these technical conditions is excluded here. It suffices to note that in
Etingof and Khovanov [1994] they prove that any module which has these conditions must
correspond to the finite Dynkin diagrams with loops and Coxeter number equal to l, where
under this correspondence the vertices of the Dynkin diagram correspond to the elements of
the distinguished basis of the module and the multiplication matrix is in the required form.

This result restricts our classification to several cases but does not tell us exactly which
exist in this case. We note that the matrix of the tensor product is symmetric in the basis of
the module restricting our classification to ADET type diagrams. Note that the Tn diagram
is an An with a loop on one of the ends (these are called tadpole diagrams because of the
shape). Next the following Lemma allows us to determine the the structure of the potential
module.

Lemma 20. If A is a rigid C-algebra, then A corresponds to the end (vertex of degree 1) of
the longest leg of the corresponding Dynkin diagram.

Since this determines the vertex of A up to an automorphism of the Dynkin diagram, we
can actually use it to determine the decomposition of A in C. The determination of the A
vertex allows us to determine the class of F (V1). Since F is a tensor functor and V1 generates
our Grothendieck ring we can determine the mapping F as a mapping of Grothendieck rings.
Then using this determination we can calculate the inverse mapping G : K(A)→ K. Then
we apply the correspondence of Dynkin diagrams to elements of K(A) to map them to
elements of K. These mappings give a decomposition of A in C

Fortunately the authors of Ostrik [2001] worked these out by hand and presented them in
the following table from their paper. We now must check exactly which of these possibilities
are really C-Algebras
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2.4.1 Case: A

Since our algebra A must decompose into V0 it must be exactly 1. This obviously has the
structure of a commutative associative algebra and tells us that our Rep(A) = C.

2.4.2 Case: D

Theorem 21. The object A = 1 ⊕ Vk in C has a structure of a rigid C-algebra if and only
if 4|k. In this case, the structure of an algebra is unique up to isomorphism and this algebra
satisfies θA = id

Proof. Let µ be the multiplication µ : (1⊗ Vk)⊗ (1⊗ Vk)→ (1⊗ Vk). Each component of
this is uniquely determined by the unit axiom, except for µVkVk : Vk ⊗ Vk → 1. Now note
that Vk ⊗ Vn ∼= Vk−n then Vk ⊗ Vk ∼= 1. Then by rigidity is not only non zero but also fixed
up to a constant, which allows us to conclude that it is unique. Now if we fix some nonzero
µVkVk the associativity and commutativity are equivalent to:

µVkVk ◦ (id⊗ µVkVk) = (µVkVk ⊗ id) ◦ µVkVk

µVkVkRVk,Vk = µVkVk

These follow from Lemma 6.6 in Ostrik [2001]

Lemma 22. For generic values of q, let f : Va ⊗ Va → V2b be a non-zero homomorphism.
Then

f ◦RVa,Va = (−1)a−bθ−1
a (θ2b)

1/2f

Where by the definition of universal twist, θA = qa(a+2)/2 and θ
1/2
2b = q2b(2b+2)/4.

Finally to complete this section we appeal to a detailed and explicit construction of the
category of representations preformed above in Ostrik [2001], which is omitted here because
it contributes less to understanding and proof strategy than it does to length.

2.4.3 Case: T

There are no possible algebras with modules corresponding to Tn. All such A s must have a
simple object composition V0 ⊕ Vk and it was proved in Theorem 20 that there is a unique
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structure associated with this decomposition, namely the one associated with Dn. Thus if
there was an algebra corresponding to Tn we would violate the uniqueness of Dn a contra-
diction to our results in 2.4.2.

2.4.4 Case: E6

Applying the table we notice that V0 ⊕ V6 has a natural realization in the embedding of
V (sp(4), 1) in V (sl2, 10). Thus we only need to prove that this is unique up to isomorphism
is C-algebra. The only non-trivial components of our multiplication map µ are µ′ and µ′′.
By our preliminary results these are unique up to constant multiple in C. Then for any
other e : V6 ⊗ V6 → 1 and f : V6 ⊗ V6 → V6 we know that our algebras will be compatible
in the sense that: µ′ = αe and µ′′ = βf for complex α, β. Then we define an isomorphism
φ : V6 ⊕ 1 → V6 ⊕ V6 by φ|1 = id and φ|V6 = α1/2id. This is clearly an isomorphism and it
implies that α1/2 = α ie that α = 1. Then we note that µ|V6⊗V6 = e + βf . Since we only
consider associative algebras we have that

β2(f ◦ (id⊗ f)− f ◦ (f ⊗ id)) = e⊗ id− id⊗ e

e⊗ id− id⊗e is clearly not zero, thus we have that this quadratic form is non degenerate.
Thus it either has zero solutions which gives a contradiction, or two solutions ±β0. These
two solutions allow a natural isomorphism for any Vk which is that φ : Vk ⊗ 1 → 1 ⊗ Vk
given by φ|1 = 1 and φ|Vk = −1. This is an isomorphism of our distinct algebras thus there
is only one isomorphism class corresponding to E6

2.4.5 Case: E7

This diagram cannot appear corresponding to a K(A) for a commutative associative algebra
A. First we reference the table to conclude that it must break down as A = V0⊕ V8⊕ V16 =
(1⊕ Vk)⊕ V8. Which tells us that A′ = 1⊕ Vk is a subalgebra in A. The multiplication on
A defines a structure of A’-module on V8 and module morphism V8 ⊗ V8 → (1 ⊕ Vk) which
by rigidity cannot be trivial. By the Lemma 21 this cannot be symmetric.

2.4.6 Case: E8

Since we need an an A of the form A = V0⊕V10⊕V18⊕V28 we use the observation from the
end of the section on VOAs which gives a conformal embedding V (sl2, 28) into V (G2, 1).
This clearly gives the existence of such a C-algebra. We will not fully reproduce the proof of
uniqueness here, rather just give a sketch.

Consider the algebra generated V0 ⊕ V10 then take an extension of this as a VOA. This
is an extension of V (sl2, 28). By considering the conformal dimensions it has defined this
mapping sl2 ⊕ L10. Using the properties of VOAs, literature results and a Lemma, this
definition induces a mapping of sl2 into G2. Since the VOA extension is consistent along
central charge our embedding of sl2 into G2 induces a conformal mapping V (sl2, 28) into
V (G2, 1), which is know from the literature is unique.
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2.4.7 Diagram Representation Composition

Assigning representations to each node of the Dynkin diagrams is one of the unique strengths
of this method as compared to others. The calculations in the paper are done by using the
method described by the proof of Theorem 18 then by using Corollary 9 if they have θA = id.
The following three figures are the examples calculated in Ostrik [2001] using the notation
that a filled dot is in Rep0(A), an open one is in Rep(A), with Vi being given by i so i+m
represents Vi ⊕ Vm.

Figure 5: Dn with n even

Figure 6: E8

Figure 7: E6
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3 Conclusion

The previous proof is an efficient method of classifying the “finite subgroups” of a quantum
group, especially because the definition of Rep0(A) allowed the identification and description
of the representations corresponding to each vertex. The quantum McKay Correspondence
had been established using Von Neumann algebras but this method did not identify specific
representations with vertex operator algebras. Thus the method of Ostrik [2001] which uses
category theory and vertex operator algebras to establish it is a notable improvement. This
paper establishes the power of category theory to work with the representation theory of
deformational algebras, and the author believes that there may be future applications of this
to the deformational (“quantum”) versions of finite groups.
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