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Abstract 

Multi-task Multi-sensor Framework for Assessing Health Effects of Heat Exposure with Medical 

Sensors 

By Xuanyang Lin 

Medical sensors help to monitor and collect data that make early treatment deci- 

sions possible. Using the well-collected data from these sensors, recent studies have 

focused on the early predictions for some life-threatening conditions, such as dehydra- 

tion and kidney injuries, in order for early intervention and prevention. In previous 

studies, the use of multi-sensor fusion transformer models has been proved to be very 

effective in fusing multi-modal data and detecting signals for various classification 

tasks. Since many of these tasks are closely related, it is reasonable to incorporate 

them into a multi-task learning (MTL) framework, so that task-specific information 

can be shared across different tasks, and that the training and inference cost could 

be brought down significantly. In this study, we propose a multi-task multi-modal 

transformer framework that handles several medical predictions. We combine task- 

specific losses by a dynamic weighting strategy that balances individual losses. To 

better tackle the label noise problems of our dataset, we also incorporate a teacher- 

free regularization method (Tf-KD) into our framework. We evaluate the method on 

the classifications of acute kidney injury (AKI) and dehydration (USG) on Girasoles 

sensor dataset. We find that MTL benefits both tasks, while Tf-KD only helps the 

prediction of AKI, suggesting that further research needs to be done. 
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Chapter 1

Introduction

The health effects of environmental heat exposure are the most significant cause of

weather-related mortality in the U.S [15]. In the field of agriculture, over 750,000

workers are exposed to hot weather on a daily basis, leading to a very high mortal-

ity due to heat-related illnesses (HRI). However, HRI is entirely preventable and is

also treatable provided it is detected in a timely manner [13]. Recently, the applica-

tions of wearable monitors and electronic health records (EHR) enable us to collect

large quantities of high-frequency data with a variety of signals. In particular, multi-

sensor data collection in farmers gathers time-series data of various modalities. This

advancement of data availability triggered an effort to analyze the signal patterns in

order to predict possible diseases or conditions that are life-threatening, such as acute

kidney injury (AKI) and dehydration (USG) [16].

Each sensor collects features that are different from other sensors, so the features

are multi-modal. In the study of processing multi-modal sensor information, early

fusion and late fusion are most commonly used methods [8]. In early fusion, signals

from different modalities are pre-processed and concatenated in the early phrase. Fea-
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tures are extracted from such combined signals and feed into the downstream task like

classification. In late fusion, raw signals from each sensors are featurized separately

and then fused for downstream task [13]. Besides early and late fusions, intermediate

fusion is a data fusion method that is gaining traction recently. It start by extract-

ing features for individual modalities, and then combine modalities in cross-modality

layers.

1.1 Challenges

Despite previous efforts to model the complexity of multi-modal sensor data, there

are several challenges in modeling the medical sensor data and construct accurate

models.

Firstly, capturing both the intra- and inter- modality dependencies is still a chal-

lenge. Early fusion fails to process intra- and inter- modality relationships differently

because all the features are concatenated in a very early phase. Late fusion cannot

capture inter-modal information because extracted features from each modality are

not further processed in some common neural network architecture.

Secondly, in medical sensor data, prediction tasks can be highly related to each

other. In specific, since HRIs are triggered by heat, the occurrences of them are

inherently related to core body temperature. Such a task similarity presents an op-

portunity to improve the predictive power by doing multi-task learning (MTL) [5], a

modeling technique in which multiple tasks are trained in a single model architecture

to share task-specific domain knowledge. For example, the classifications of dehy-

dration and body temperature are highly correlated to each other. To incorporate

MTL into the predicative model, we need to find a great parameter-sharing strat-
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egy by properly designing the MTL model structure. Besides, the possibility of task

imbalances necessitates a method to combine task-specific losses.

Lastly, we find that certain prediction tasks are inflicted by label noise. Because

of the difficulty in data collection, some tasks have a very low sampling rate, while

others are sampled frequently. For instance, the collection of AKI labels needs blood

test, so they are usually collected only once a day, while the core body temperature

(Temp) is easy to measure and is measured per 30 sec. To fill in the gap of sampling

rate differences, we use closest measurements to impute on the missing values. This

imputation procedure imply some labeling error, so the task is inflicted by label noise,

which can cause the model to overfit.

1.2 Contributions

To tackle the difficulty in handling multi-modality data, a recent study [13] proposed

amulti-sensor fusion framework consist of modality-specific gated recurrent units

(GRUs) and multi-sensor transformer. This model is much more flexible and is ca-

pable of capturing both intra- and inter- modality correlations. It has been shown to

work well for classification tasks. In our study, we use this method as the basis for

modeling complex multi-modal sensor data.

Based on the multi-sensor fusion [13], we design a MTL framework that incorpo-

rates two or more classification tasks, in which we select similar tasks to be trained in

one model structure. As an example, we have core body temperature as an auxiliary

task to help the classification of AKI. We employ a hard-parameter-sharing strategy

in which the multi-sensor fusion architecture serves as the backbone. And we use a

dynamic weighting of task-specific losses to balance the training of tasks.

We also add a regularization method for certain noisy tasks to combat overfitting.

After comparing different regularization methods and experimenting on some of them,
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Figure 1.1: Multi-task Multi-Sensor Fusion Framework.

we find teacher-free knowledge distillation (Tf-KD) [20] as an optimal regularization

method. For noisy tasks, we add this regularization term to their original cross

entropy losses.

Combining multi-sensor fusion, MTL, and Tf-KD, we propose a multi-task multi-

sensor framework as shown in Figure 1.1. We conduct extensive experiments on the

Girasoles sensor dataset [16] that collects thousands of hours of sensor signals of

agricultural workers in Florida. In specific, we use heart rate, core body tempera-

ture, mobility as predictors to classify the occurrences of acute kidney injury (AKI)

and dehydration (USG), and core temperature (if the core body temperature will

exceed 38.0◦C in the next 10 minutes or not) . We evaluate the effectiveness of three

components individually and the effectiveness of the framework as a whole.
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Chapter 2

Background

2.1 Multi-modal fusion

In early fusion, different modalities, either raw or pre-processed, are combined into

single representation by concatenation, which is followed by feature extraction. For

example, early fusion was used to fuse audio and image data to produce common

representations [3]. But,early fusion does not handle the difference between intra-

and inter- modal dependencies, because modalities are combined at the first stage,

before any feature extraction. Besides, this method requires innovations in sensor

synchronization, buffering, denoising and data normalization.

Late fusion, on the other hand, extracts features by modality-specific feature ex-

tractors or classifiers. Outputs of each modality are combined and assembled at the

very last step to produce the final prediction. As an example, deep late fusion neural

network has been applied on image and audio representations for classifications [4].

This fusion method, however, cannot effectively extract inter-modality relationships,

since the fusion of modalities happens all feature extractions.

Recently, intermediate fusion, in which modalities are fused midway, is gaining

traction. Its use of modality-specific networks and cross-modal fusion network is more
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likely to capture more comprehensive information in multi-modal data. In the field

of visual question answering (VQA), for example, a study processes and fuses various

modalities (question words, object images, etc.) by first extracting intra-modality

features with appropriate models and then combining modalities in a few attention

layers [10]. In the field of disease prediction with medical data, MultiFusionNet [19]

combines two sources of knowledge, extracted features and raw data, by two separate

deep neural networks followed by cross-domain layers.

Intermediate fusion is generally a well-developed fusion method that could poten-

tially be a good fit for medical multi-sensor analysis, but the design of cross-modal

fusion network is very important. One of a commonly-used method, gated fusion,

uses gated attention to fuse multi-modal features, but the attention is only allocated

on modality-level, not on each individual feature [13]. In medical sensor, a study By

Rongmei Lin [13] uses intermediate fusion method with a two-step feature extraction

process to learn dependency within modalities and fuse features across modalities.

It applies gated recurrent units (GRUs) [6] for each modality, and a cross-modality

transformer to learn the complex inter-modality interactions [13]. This method can

be considered as an integration of early and late fusions, with both modality-specific

feature extraction and cross-modality layers, and it is more flexible and superior to

early and late fusions. It is also superior to gated fusion by more a flexible attention

mechanism in cross-modality transformer. In our study, we use this work as the basis

of our method.

2.2 Multi-task learning

Multi-task learning (MTL) has been proved to be a great method to improve multiple

tasks simultaneously and save computation resources by using less parameters [18].

When we have two or more (predictive or generative) tasks that are similar to each
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Figure 2.1: Hard parameter sharing (left) and soft parameter sharing (right) [7].

other, MTL shares task-specific knowledge so that each task can access not only its

own information, but also information from other tasks. Besides, MTL can be consid-

ered as a form of regularization method [18]. While different task has different noise,

a MTL architecture filters out task-specific noise and extracts more generalizable

features.

MTL methods can be categorized into two classes: hard parameter sharing and

soft parameter sharing [18] (Figure 2.1). Hard parameter sharing MTL is the most

common method, in which a few common layers are shared by all tasks, followed by

some task-specific layers. The model learns a common representation for various tasks

and produce outputs for each task by task specific heads for classification, regression,

or generation. Soft parameter sharing MTL does not have any layers being shared

by multiple tasks. Instead, each task has its own set of layers, and the parameters

are regularized to encourage the parameters of different tasks to be similar. As MTL

has great success on many problems, this study applies a carefully-designed hard-

parameter-sharing [? ] MTL learning algorithm on medical sensor dataset with the

multi-sensor fusion method, with a dynamic weighting strategy of losses [14].
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2.3 Knowledge distillation as regularization

Model overfitting is a common issue posing serious challenges to an effective machine

learning algorithm. To combat model overfitting, common methods include data

augmentation, dropout, weight decay, and L1 and L2 regularization. However, a

recent study [17] tests the effects of many of these methods and found that they have

limited effect.

Knowledge distillation (KD) [9] is a very effective method to transfer the infor-

mation from a large strong network (teacher) to a smaller network (student model),

enabling the student to achieve similar predictive power as the teacher without bearing

a large number of parameters. During the training of the student, the KL-divergence

term between the model probability of the student and that of the pre-trained teacher

is added to the original loss, encouraging the student output imitate the teacher out-

put [9]. In order for the KD to work, this study on KD [9] implies that the teacher

model has to be more knowledgeable about the task. The loss function for a classifi-

cation can be expressed as

L = (1− α)H(q, p) + αDKL(p
t, p)

in which H is the original cross entropy, DKL is the KL-divergence, q, p, pt are ground

truth, student output, and teacher output, respectively [9].

While a typical KD assumes that the teacher needs to be stronger than the student,

a recent study [20] found that a weakly-trained teacher still significantly improves the

student. The study proposes that KD has a regularization effect by establishing a link

between KD and label smoothing (LS). For LS, Yuan et al. (2021) found that the loss

function can be split into the loss function using labels without smoothing (one-hot
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Figure 2.2: Knowledge Distillation [2].

labels) and a KL-divergence between the model output and an uniform distribution:

L = (1− α)H(q, p) + αDKL(u, p)

So, LS can be viewed as an ad-hoc KD with a random classifier as teacher. For KD, the

study found that KD is a special case of LS where the label smoothing distribution

is a learned distribution from the teacher. Since LS is effectively a regularization

method by preventing the overconfidence of model probability, Yuan et al. (2021)

establishes KD as a regularization, with potentially stronger effects due to the fact

that the smoothing distribution is a learned distribution [20].

As KD has been proved to be a regularization method, the study in [20] proposed

an innovative KD method (Tf-KD) that operates without a teacher. Without an

extra model to regularize, we can still apply KD regularization by building a “virtual

teacher” whose output distribution is manually designed [20]. Previous study has



10

been focusing on Tf-KD regularization on single-task learning models [20], so we

would like to adopt Tf-KD in our MTL framework to see if Tf-KD works well in MTL

context.
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Chapter 3

Proposed method

3.1 Multi-sensor fusion

We use the multi-sensor fusion framework [13] as the basis of our method, as shown

in Figure 3.1. In this framework, features of different modalities are first processed

in modality-specific networks that capture dependencies within each modality, while

demographic information is processed by a feed-forward network. In multi-sensor

fusion [16], the study chooses GRU over other recurrent neural networks (RNN), since

GRU’s reset and update gates help to capture temporal dependency more effectively

[6], while its training is much simpler than long short-term memory (LSTM). Then,

the extracted features are passed into a cross-modality transformer that learns inter-

modality relationships. By learning both intra-modality and inter-modality signals,

this multi-modal framework achieves high performance [13].

In this study, we use the multi-sensor fusion, with its modality-specific GRUs and

multi-sensor transformer, as the model backbone that is shared by all tasks.
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Figure 3.1: Multi-Sensor Fusion Framework [13].

3.2 Multi-task learning

In our multi-task multi-sensor framework, we apply a hard-parameter-sharing strategy

for learning multiple tasks simultaneously [5]. In particular, the modality-specific

GRUs and the multi-sensor transformer serve as the backbone of our framework

shared by all tasks. On top of the backbone, the extracted features would then be

used as inputs for independent task-specific heads consisting of fully-connected layers

that output model probabilities.

When we add up task-specific losses into one, it is imperative to balance the losses

so that every task can make progress in training. We apply a dynamic weighting

strategy in which the loss weights are negatively correlated with the progress of loss

reduction in the last training iteration, so that tasks with less progress will be of

higher focus in the current iteration [14]. Let λi be the weight for task i for current

iteration, Lt−1
i and Lt−2

i the values of loss at previous two steps, respectively. The

ratio between Lt−1
i and Lt−2

i represents the progress on this specific task at last step:

ri =
Lt−2
i

Lt−1
i

We use this ratio to weight task-specific losses (λi = ri). The smaller this ratio,



13

Figure 3.2: Multi-Sensor Fusion Framework with MTL [13].

the less progress that the task made on last step, and the more it needs to be focused

on on current step. So, the weighted loss for our MTL framework with n tasks is as

follow:

L =
n∑

i=0

λiLi

3.3 Teacher-free knowledge distillation

As described previously, knowledge distillation (KD) is a great regularization method

similar, but potentially superior, to label smoothing (LS). To apply KD regularization

(KDR) method without an additional teacher model, one can always design a “virtual

teacher” by manually designing a distribution, a method called teacher-free knowledge

distillation (Tf-KD) [20]. As we found that some of the tasks suffer from overfitting,

we believe that Tf-KD can improve the overall performance on evaluation.

We apply Tf-KD on noisy tasks as a regularization term. Following the design

of the study [20], we build a simple virtual teacher by manually designing its output
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distribution for classes as the following [20]:

pteacher(k) =


a if k = c

(1− a)/(K − 1) if k ̸= c

where K is the total number of classes (K=2), c is the correct label and a is the

probability for the correct class. As suggested by the study [20], we set a=0.99 (this

is a hyperparameter that should be tuned in our future work), so that the probability

for the correct class is much larger than that of the incorrect class, which means that

the virtual teacher will always make right predictions. We then add a KL-divergence

term to the original cross entropy loss function [20]:

L = (1− α)H(q, p) + αDKL(p
teacher, p)

where p is the model output, pteacher is the virtual teacher output, and q is the

ground truth. α is the hyperparameter that controls the weighting between cross

entropy and KL-divergence terms. We set it to be 0.5, as we find by experiments that

it generally gives good results.
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Chapter 4

Experiments

We use the multi-sensor fusion model [13] as our baseline, and evaluate it on the

classifications of AKI and USG. In this study, we conduct three groups of experiments

to evaluate the effectiveness of MTL, Tf-KD, and a combination of the two methods.

In our experiments, we first conduct MTL evaluations to test the effectiveness of MTL

with two questions in mind: 1) does MTL of AKI or USG with Temp improves AKI

or USG; 2) is there any differences among MTL strategies (e.g. are AKI & Temp

MTL and AKI & USG & Temp different). Then, we apply the Tf-KD regularization

on AKI and USG to test its effects on the tasks. Lastly, we incorporate both MTL

and Tf-KD into the multi-task multi-sensor framework to see if the combined model

further improves the performance. We compare the results against the multi-sensor

fusion model as baseline in the Girasoles Sensor dataset [16].

4.1 Experimental setup

Model Architecture. We use the multi-sensor fusion [13] as our baseline, and

the evaluation of it on evaluation metrics (marco and micro AUROC, accuracy) is

presented in Table 4.1. For the multi-task multi-sensor framework, the structure

of the backbone (GRUs and multi-sensor transformer) is in align with the work of
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multi-sensor fusion [13], with 4 stacks of transformer layers, 4 attention heads, and

an embedding space dimension of 256.

Parameter setting. We use batch size of 64 during training. The model is

trained using the Adam optimizer with initial learning rate 0.0001 and early stopping.

For Tf-KD, we set the probability for correct class, a, to be 0.99, in align with the

experiment setting of the Tf-KD study [20], and we set the weighting between KL-

divergence and the cross entropy to be uniform, which we found to be most effective

by a experiments. Further hyperparameter tuning needs to be done, especially on the

correct class probability a.

Evaluation metrics. In this study, we consider three metrics: accuracy, micro

and macro AUROC. While accuracy is simply defined as the proportion of correct

classification, the definitions of micro and macro AUROC are more complicated and

require more description. The micro AUROC computes its true positive rate (TPR)

and false positive rate (FPR) by micro averaging aver classes as follows [1]:

TPR =

∑
c TPc∑

c(TPc + FNc)

FPR =

∑
c FPc∑

c(FPc + TNc)

While the macro AUROC requires computing TPR and FPR independently for

each class and then taking the average over them [1].

TPR =
∑
c

TPR

FPR =
∑
c

FPR

While accuracy gives a rough measure of the effectiveness of the classification
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model, AUROC evaluates the model under many different decision thresholds. The

macro AUROC uses a macro averaging to compute the metric by calculating for

individual classes and taking the average, so that the minority class has a larger

weighting on the final score. The macro AUROC is an ideal metric for datasets with

imbalanced classes, and as the Girasole sensor dataset is imbalanced, macro AUROC

is more reflective of model performance.

Table 4.1: Performance of Multi-Sensor Fusion Model (Baseline)
task macro AUROC micro AUROC accuracy
AKI 0.7227 0.9255 0.8626
USG 0.7033 0.9326 0.8745
Temp 0.9823 0.9937 0.9644

4.2 Girasoles sensor dataset

The Girasoles Sensor dataset captures 4,000 hours of core body temperature (per

30 sec, degree Celsius, two decimals precision), heart rate (per 30 sec, beats per

minute), motion activity (per 60 sec, including vector magnitude and number of

steps per minute), and occurrence of acute kidney injury (per day) and dehydration

(per 12 hr) among 254 agricultural workers [16]. A pseudo sample of the dataset is

shown in Table 4.2, where each row represents one record. The AKI is measured by

serum creatinine in blood sample and urine sample using KDIGO guideline [16]. The

occurrence of dehydration is measured by the urine sample if urine specific gravity

(USG) is greater than 1.030 [16].

We consider heart rate, core temperature, vector magnitude and steps as input

modalities. We also incorporate demographic information as a separate modality with

structured data [13].

Train/test split. We split workers for train/test purpose, where approximately

20 percent of them are placed in the test group, and then randomly sampled consec-
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Table 4.2: Pseudo sample of Girasoles sensor dataset.
time hr core temp vector magnitude step
7:00:00 101.9 36.98 1147.01 18
7:00:30 113.8 37.01 1147.01 18
7:01:00 117.4 38.19 1988.86 10
7:01:30 109.4 38.01 1988.86 10
7:02:00 117.0 37.99 1801.73 9
7:02:30 133.9 37.18 1801.73 9

utive windows of 50 minutes duration and generated 21,361 training data and 5,371

testing data [13].

Tasks. Our model aims to perform well on AKI and USG classifications, as

they bring serious health consequences and are sometimes life-threatening. Between

these tasks, AKI is generally more concerning, as it causes long-term damages to

kidney functions. In addition, in order to announce the high temperature warning

in a timely manner, we design an extra task to predict whether the individual’s core

body temperature will exceed 38.0◦C in the next 10 minutes [13]. The real-time

classification is applied in the last task. As previously mentioned, some of the tasks

are very noisy. Due to the complexity of measuring AKI and USG occurrences that

involves blood tests, the frequency of AKI and USG measurements are once a day

and twice a day, respectively [16]. because of the difference in sampling frequencies,

the vast majority of core body temperature data points are not matched by AKI or

USG measurements, so we have to fill up the gap by using the measurements closest

to them instead. Besides, labels for both tasks are imbalanced, with the AKI and

USG ratios being 9.7 percent and 9.8 percent, respectively.

4.3 Multi-task learning

We first evaluate the effectiveness of multi-task learning AKI or USG with the aux-

iliary task (core temperature), as well as the differences among various task combi-
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nations. We perform experiments that involve 3 MTL task combinations: AKI &

Temp, USG & Temp, and AKI & USG & Temp. We compare all results to that of

the multi-sensor fusion model, which serves as our baseline. Tables 4.3 and 4.4 below

shows the accuracy and micro and macro AUROC on different task combinations,

showing that all MTL combinations are effective, but two-task MTL (AKI & Temp,

USG & Temp) performs better than 3-task MTL.

The performance on various MTL task combinations differ, showing Temp as the

most helpful task and AKI and USG less helpful and even detrimental to each other.

One possible explanation of 2-task over 3-task models is that both AKI and USG are

directly related to high body temperature and excessive heating, whereas AKI and

USG are less connected to each other. Besides, whereas AKI and USG labels involves

imputation of missing data, all Temp labels are from real measurements, containing

more valid information that may transfer to other tasks.

Besides main experiments, regarding the architecture of MTL models, we do a

comparative study to investigate the parameter sharing strategy and see if the amount

of shared model parameters may affect the model performance. The way in which our

prediction tasks share parameters matters, because it determines if tasks are sharing

low-level or high-level features. Apart from the current parameter sharing scheme

where all GRUs and the multi-sensor transformer are shared, we also experiment

on separating out the decoder as task-specific. However, by experiments, we did not

observe any significant differences performance-wise. Because separating out decoders

as task-specific increases the number of model parameters, we determine that the

original model is superior, so we do not adopt this method.

Table 4.3: Performance of AKI in Multi-Task Learning
task macro AUROC micro AUROC accuracy

AKI (baseline) 0.7227 0.9255 0.8626
AKI and Temp 0.8962 0.9885 0.9531

AKI, USG and Temp 0.8339 0.9700 0.9219
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Table 4.4: Performance of USG in Multi-Task Learning
task macro AUROC micro AUROC accuracy

USG (baseline) 0.7033 0.9326 0.8745
USG and Temp 0.9683 0.9856 0.9219

AKI, USG and Temp 0.8871 0.9922 0.9688

4.4 Teacher-free knowledge distillation (Tf-KD)

To test the effectiveness of Tf-KD, we evaluate single-task models with Tf-KD reg-

ularization. Tables 4.5, 4.6 and 4.7 shows the accuracy, micro and macro AUROC

scores for AKI and USG, under Tf-KD setting. The results on AKI, the task of

highest importance, show an almost 2 percent improvement in AUROC, although the

accuracy is one percent lower. As AUROC is a more robust metric that evaluates

the performance of the model under different threshold, we believe that Tf-KD is still

taking a step forward.

However, results on USG do not show any progress. This may be explained by the

fact that USG measurements are taken twice as frequent as measurements on AKI,

so the USG task may be much less noisy. As Tf-KD is a method that targets label

noise, we suspect that it only works well on high-noisy tasks. We also did Tf-KD

experiments on Temp task, and the metrics do not show any improvement either.

Table 4.5: Performance of AKI with Knowledge Distillation
task macro AUROC micro AUROC accuracy

AKI (baseline) 0.7227 0.9255 0.8626
AKI (Tf-KD) 0.7419 0.9275 0.8523

Table 4.6: Performance of USG with Knowledge Distillation
task macro AUROC micro AUROC accuracy

USG (baseline) 0.7033 0.9326 0.8745
USG (Tf-KD) 0.6902 0.9316 0.8767
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Table 4.7: Performance of Temp with Knowledge Distillation
task macro AUROC micro AUROC accuracy

Temp (baseline) 0.9823 0.9937 0.9644
Temp (Tf-KD) 0.9815 0.9937 0.9650

4.5 Multi-task learning and Tf-KD regularization

Lastly, we experiment on a combination of MTL and Tf-KD, MTL with Tf-KD as

regularization, to see if it outperforms MTL-only and KD-only settings. Since we find

out in Tables 4.3 and 4.4 that Temp is helpful for AKI and USG and that AKI and

USG are not mutually beneficial, we only test for AKI Temp & and USG & Temp with

KD regularization. We test AKI-Temp and USG-Temp MTL, with Tf-KD applied

on AKI and USG tasks, respectively. Tables 4.8 and 4.9 shows the accuracy, micro

and macro AUROC for AKI-Temp (Tf-KD) and USG-Temp (Tf-KD), with results

on MTL-only and Tf-KD-only models on the side for comparison. Again, the metric

scores on AKI-Temp MTL show promising results, outperforming both MTL-only and

KD-only models. Results on USG show better performance than the baseline, but

the MTL-Tf-KD model does not outperform MTL-only one, implying ineffectiveness

of Tf-KD regularization in dealing with USG.

Table 4.8: Performance of AKI in MTL and Tf-KD regularization
task macro AUROC micro AUROC accuracy

AKI (baseline) 0.7227 0.9255 0.8626
AKI and Temp 0.8962 0.9885 0.9531
AKI (Tf-KD) 0.7419 0.9275 0.8523

AKI and Temp (Tf-KD) 0.9677 0.9971 0.9688

Table 4.9: Performance of USG in MTL and Tf-KD regularization
task macro AUROC micro AUROC accuracy

USG (baseline) 0.7033 0.9326 0.8745
USG and Temp 0.9683 0.9856 0.9219
USG (Tf-KD) 0.6902 0.9316 0.8767

USG and Temp (Tf-KD) 0.85 0.9248 0.9375
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Chapter 5

Conclusion

As a great attempt to assist the medical study with data-driven solutions, medical

sensor models are an important branch of artificial intelligence study. 1) In this

study, we handle the multi-modality of the data by applying multi-sensor fusion

strategies [13]. 2) Based on the multi-sensor framework, we build effective multi-

tasking strategies to take advantage of the commonality of various tasks. 3) The

Tf-KD regularization [20] is applied on noisy tasks, and is proved to be effective in

AKI, the most important task that we would like to secure. We combine all three

components above into an unified multi-task multi-sensor fusion framework. While

the classification of AKI is improved by both MTL and Tf-KD, the prediction on

USG is not effective on our KD regularization method. Further research on USG is

necessary.



23

Chapter 6

Future study

Although our method is generally effective in AKI, and partially effective in USG, we

believe that the methodology can be further improved in various ways. This suggests

some future study.

Firstly, we will explore more dynamic weighting strategy methods for weighting

losses. We have experimented on several dynamic weighting strategies, including

methods based on training loss reduction, absolute values of training losses or valida-

tion losses [14]. However, the currently best dynamic weighting, the one incorporated

in our framework, is only as good as uniform weighting. So, we plan to explore and

experiment on more strategies on loss weighting.

Secondly, we will research on new regularization methods, including KD and non-

KD, to address USG label noise. For example, the momentum KD is another KD

regularization that is widely used [12]. We have already experimented this method

on MIMIC-4 dataset [11] and have seen 5 percent improvement [? ]. In our future

study, we would like to achieve a significant improvement on USG task.

Lastly, to validate the effectiveness of our method, we will evaluate the model

on datasets and tasks in similar domains. For example, MIMIC-4 dataset provides

healthcare data for over 40,000 patients to intensive care units, including many poten-
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Table 6.1: Performance of in-hospital mortality with and without momentum knowl-
edge distillation in MIMIC-4 dataset

model AUROC
baseline 0.52

momentum KD 0.57

tial medical prediction tasks, such as mortality and hospital readmission, and dozens

of vital measurements with rich modalities [11]. We would use datasets like MIMIC-4

to validate our MTL and KD regularization methods.



25

Bibliography

[1] Multiclass receiver operating characteristic (roc). https://scikit-learn.org/

stable/auto_examples/model_selection/plot_roc.html. Accessed: 2023-

04-04.

[2] Knowledge distillation : Simplified. https://towardsdatascience.com/

knowledge-distillation-simplified-dd4973dbc764. Accessed: 2023-04-03.

[3] George Barnum, Sabera Talukder, and Yisong Yue. On the benefits of early

fusion in multimodal representation learning, 2020.

[4] Jordan J. Bird, Diego R. Faria, Cristiano Premebida, Anikó Ekárt, and George
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