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Abstract

Semiparametric efficient and robust estimation of treatment effects from

observational data

By Li Li

This dissertation aims to solve two problems. One is to evaluate the effect of different

treatment switching strategies in HIV studies and the second is to evaluate the effect

of treatment duration in infusion studies.

The current goal of initial antiretroviral (ARV) therapy is suppression of plasma

HIV-1 RNA levels to below the detection limits of currently available assays. A sub-

stantial proportion HIV-infected patients who initiate antiretroviral therapy in clinical

practice or antiretroviral clinical trials either fail to suppress HIV RNA or have HIV

RNA levels rebound on therapy. In some clinical trials, such as the AIDS Clini-

cal Trials Group (ACTG) Study A5095, patients randomized to initial antiretroviral

treatment combinations but fail to suppress HIV RNA or have a rebound of HIV RNA

on therapy are allowed to switch to second-line regimen subject to provider-specific

and patient-specific information. The optimal timing of switching ARV therapy to

ensure sustained virologic suppression and prolonged clinical stability in patients who

have rebound in their HIV RNA is not known. Randomized clinical trials to compare

early versus delayed switching have been difficult to design and even more difficult

to enroll. Here, we provide a statistical framework to compare early versus late reg-

imen change using observed data from the ACTG A5095 study. Using efficient and

doubly-robust estimators for the average causal effect, we conclude that patients who

follow treatment strategies that switch within eight weeks of confirmed virologic fail-

ure have significantly better health outcomes, on average, than patients following

strategies that do not switch within eight weeks.

The second topic is motivated by a treatment duration-response study, ESPRIT

(Enhanced Suppression of the Platelet IIb/IIa receptor with Integrilin Therapy) trial.



The ESPRIT trial targeted patients with coronary artery disease scheduled to un-

dergo percutaneous coronary intervention (PCI) with stent implantation in a native

coronary artery. The experimental treatment regimen consisted of an eptifibatide

bolus and a continuous eptifibatide infusion for 18-24 hours, with a similar regimen

for the placebo group. The study protocol also required that patients experiencing

serious complications immediately discontinue the infusion process to receive appro-

priate medical attention; we define these protocol-defined adverse events as infusion-

terminating events. Once treatment is found to be effective, attention often focuses

on optimum treatment delivery. A treatment duration policy for t unites of time is de-

fined as a recommendation to treat for t units of time or until a treatment-terminating

event occurs, whichever comes first. Johnson and Tsiatis (2004) have shown how to

consistently estimate the population mean response for the treatment policy by con-

sidering propensity score weight, when treatment duration can take on only a finite

number of values, t1, · · · , tm. However, the estimator proposed by Johnson and Tsiatis

(2004) is consistent only when the model for propensity score is correctly specified.

We propose a doubly robust estimator to protect again model misspecification using

semiparametric theory by defining potential outcomes and regarding observed data

as the coarsened full data. In addition, the new estimator is locally efficient when all

the models in the estimator are correctly specified, so is more efficient than Johnson

and Tsiatis’ estimator.

In the end, we propose a nonparametric method to estimate the mean outcome

corresponding to Definition 1 for HIV-1 infected patients as an alternative method to

the semiparametric method proposed in the first topic when semiparametric method

does not perform very well at small sample size, having high dimensional confounding

and a highly skewed outcome. Simulation studies showed that nonparametric methods

had smaller MSE than semiparametric method for the cases mentioned above.



Semiparametric efficient and robust estimation of treatment

effects from observational data

By

Li Li

B.S., University of Science and Technology of China, 2002

M.S., University of Science and Technology of China, 2005

Advisor: Brent A. Johnson, Ph.D.

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Biostatistics

2011



Acknowledgement

I would like to thank and acknowledge several people who helped me along my

path to today. First, I’d specially thank my advisor, Professor Johnson, who always

encourages me to try challenging topics, inspires me with creative ideas and gives

me helpful advice over the past three years. I could not have the dissertation done

without his unconditional support. I’d like to thank Professor Hanfelt for providing

me many insightful suggestions since I started my study at Emory University. I am

also very grateful to Professor Long and Professor Sullivan for their prompt response

all the time and constructive comments. I also would like to thank Anita Chen, my

supervisor at Duke Clinical Research Institute, for her encouragement and support. In

addition, I wish to extend my sincere thanks to all those who helped me with my work

in the Department of Biostatistics and Bioinformatics. Next, I would like to thank all

of my dear friends for their warm friendship and continuous encouragement. Finally,

I would like to thank my parents for their selfless and endless caring and support.



Contents

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The ACTG A5095 Data . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 ESPRIT infusion trial . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Optimal Estimation of Mean Endpoint on Two-stage Sequential An-

tiretroviral Treatment Regimen Using Observational HIV Data 11

2.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Causal Model: Notation and Assumptions . . . . . . . . . . . 13

2.2.1.1 Potential outcome framework . . . . . . . . . . . . . 13

2.2.1.2 Identifiability and Consistency . . . . . . . . . . . . 13

2.2.1.3 Treatment assignment . . . . . . . . . . . . . . . . . 14

2.2.2 Estimation in the observational study . . . . . . . . . . . . . . 15

2.2.2.1 Hypothetical two-stage trial . . . . . . . . . . . . . . 15

2.2.2.2 The Radon-Nikodym derivative . . . . . . . . . . . . 16

2.2.3 Doubly-Robust, Locally Efficient, and Optimal Estimation . . 18

2.2.3.1 Semiparametric AIPW class of estimators . . . . . . 19

i



2.2.3.2 The regression estimator . . . . . . . . . . . . . . . . 20

2.2.4 Estimating Equations and Asymptotic Variance . . . . . . . . 22

2.2.5 Length-adjusted Area Under the Curve . . . . . . . . . . . . . 23

2.3 Analysis of the ACTG A5095 data . . . . . . . . . . . . . . . . . . . 24

2.3.1 The study sample . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Treatment and endpoint definitions . . . . . . . . . . . . . . . 25

2.3.3 Main Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.4 Sensitivity analyses . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Locally efficient and Double Robust Semiparametric Estimator for

the Treatment Duration, with Duration Possibly Right-censored 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Full Data and Observed Data . . . . . . . . . . . . . . . . . . 46

3.2.2 Coarsening Variable and Link Functions . . . . . . . . . . . . 49

3.2.3 Partially-monotone Coarsening . . . . . . . . . . . . . . . . . 50

3.2.4 Influence Functions of Full Data and Observed Data . . . . . . 54

3.2.5 Projection of h(Y, U,∆, X) on Λ2 . . . . . . . . . . . . . . . . 67

3.2.6 MLE Approach to Estimate the Parameters in the Cause-specific

Hazard Function λ̃ . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.7 Adaptive Estimation to Estimate Conditional Means and Dis-

tribution of Terminating Event . . . . . . . . . . . . . . . . . 77

3.2.8 Estimating the Asymptotic Variance . . . . . . . . . . . . . . 78

3.3 Properties of Proposed Estimator . . . . . . . . . . . . . . . . . . . . 79

3.3.1 Double Robustness of Proposed Estimator . . . . . . . . . . . 79

3.3.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

ii



3.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5 Analysis of the ESPRIT Infusion Trial . . . . . . . . . . . . . . . . . 91

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Nonparametric Method Using Boosting Algorithm To Estimate Mean

Potential Outcomes 95

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.1 Nonparametric Regression . . . . . . . . . . . . . . . . . . . . 96

4.1.2 Boosting Algorithms . . . . . . . . . . . . . . . . . . . . . . . 98

4.1.3 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1.4 Nonparametric Regression Analysis with Missing data . . . . . 109

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.1 Point Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.2 Variance Estimate . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 Application to ACTG A5095 Data . . . . . . . . . . . . . . . . . . . 118

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Summary and Future Work 123

iii



List of Figures

1.1 An Episode of SATR Procedure. . . . . . . . . . . . . . . . . . . . . . 2

2.1 Antiretroviral treatment strategy in ACTG A5095. . . . . . . . . . . 13

2.2 Two exemplary HIV trajectories. Patient 1 has smaller AUC and

longer time of suppression than Patient 2 in the left panel. Right

panel shows the opposite phenomenon. . . . . . . . . . . . . . . . . . 27

2.3 Effect of Coefficients on Power . . . . . . . . . . . . . . . . . . . . . . 39

4.1 A simple decision tree for making decision on going to college or finding

a job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Recursive Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . 106

iv



List of Tables

2.1 Descriptive statistics of auxiliary covariates . . . . . . . . . . . . . . . 28

2.2 Estimates in propensity score model for switching to second-line ARV

regimens on the combined Efavirenz arm . . . . . . . . . . . . . . . . 29

2.3 Estimates for conditional mean model on the combined Efavirenz arm 31

2.4 Estimates of mean outcomes, 758 patients, full model . . . . . . . . . 32

2.5 Analytic results after removing weak confounders . . . . . . . . . . . 34

2.6 Analytic results after excluding 50 patients who were not following

initial ARV regimen at first virologic failure . . . . . . . . . . . . . . 35

2.7 Analytic results when outcomes are length-adjusted AUC of logarithm

of original scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Simulation results based on 1000 Monte Carlo replications. . . . . . . 38

2.9 Power under different switching rates . . . . . . . . . . . . . . . . . . 40

3.1 Simulation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2 Analysis of the ESPRIT trial data . . . . . . . . . . . . . . . . . . . . 93

4.1 Simulation Scenarios List . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2 Simulation results based on 200 Monte Carlo replications. µ = E(Y ∗1 ).

True value=210. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3 Estimates of mean outcomes, 744 patients, full model . . . . . . . . . 122

v



1

Chapter 1

Introduction

1.1 Motivations

The methods proposed in this dissertation are motivated by two clinical trials. The

first one is to compare the effect of different treatments related to switching strategies

for HIV-1 infected patients and the second one is to evaluate the effect of different

treatment durations in infusion study.

1.1.1 The ACTG A5095 Data

One of the most threatening infectious diseases presently facing global public health

is the human immunodeficiency virus (HIV). By the end of the year of 2008, an

estimated 33.4 million people worldwide were living with HIV/AIDS (UNAIDS, 2009).

At this time, there is no cure for AIDS, but medications are effective in fighting HIV

and its complications. Treatments are designed to reduce HIV virus level in patients’

body, keep immune system as healthy as possible and decrease the complications.

Antiretroviral drug treatment is the most current treatment for HIV or AIDS. The

immediate goal of antiretroviral therapy is to reduce plasma HIV-1 RNA levels to

below detectable limits. Standard antiretroviral therapy consists of the use of at least
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three antiretroviral (ARV) drugs to maximally suppress the HIV virus and stop the

progression of HIV disease. A sequential antiretroviral treatment regime (SATR) is

the most current antiretroviral method for treating HIV-1 infected patients in clinical

practice and in many clinical studies. In general, a sequential antiretroviral treatment

regime (SATR) is defined by first-line ARV regime followed by a switch to second-line

ARV regime if virologic failure on the first; third-line ARV regime follows if failure

on the second-line regime and so on. Figure 1.1.1 described an episode of SATR.

Initial ARV regime

������9
XXXXXXz

Fail & Continue Did not fail

������9

?

XXXXXXXXXz

HH
HHH

HHHHj

Switch to Second-line ARV regime at t2

?

· · ·

?

Did not Switch Switch to Second-line ARV regimen at t1

?
· · ·

Switch to Second-line ARV regime at tm
���������9

XXXXXXXXXz

Fail & ContinueDid not fail
����9

?

XXXXz

Switch to Third-line ARV regime at a time point

Figure 1.1: An Episode of SATR Procedure.

A regime switch includes any and all drug augmentations and/or substitutions

if and only if a patient has failed on the previous regime. The current standard in

clinical practice and in many clinical studies is to allow for patient/provider-initiated
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treatment options or decisions after the initial treatment assignment. In antiretro-

viral studies, patients have historically been given treatment choices in an effort to

maintain high adherence levels and avoid opportunistic infections. Now, patients are

encouraged to switch regimes after (confirmed) virologic failure since increased viral

replication on the same regime may compromise therapy, increase the possibility of

cross resistance to other agents in the same class, and decrease the likelihood that

the patient responds to subsequent antiretroviral therapy. The negative aspects of

staying on a failing regime are counterbalanced by a patient who is clinically stable

and tolerating their initial regime despite virologic failure. Thus, some patients will

not switch ARV regimes within the course of the study while others may fail and

switch regimes repeatedly. The natural question then arises, when should patients or

their attending physicians switch ARVs after experienced the virologic failure on the

previous treatment in order to prolong the duration of HIV RNA suppression?

ACTG A5095 was a randomized, multi-center clinical trial designed to com-

pare three antiretroviral regimens Abacavir (ABC)/ Lamivudine (3TC)/ Zidovudine

(ZDV), 3TC/ZDV/ Efarirenz (EFV), and ABC/3TC/ZDV/EFV in HIV-infected,

antiretroviral therapy-naive patients with HIV-RNA levels ≤ 400 copies/mL. The

goal of the study was to suppress and maintain HIV-1 RNA levels < 200 copies/mL.

The primary efficacy endpoint was time to first virologic failure, defined as two sub-

sequent assays where HIV-1 RNA levels ≥ 200 copies/mL. The study was designed

to last 96 weeks. After 32 weeks of follow-up, 82 of 382 patients (21 percent) in the

triple NRTI group versus 85 of 765 patients (11 percent) in the combined efavirenz

group experienced virologic failure; hence, the triple nucleoside reverse-transciptase

inhibitor (NRTI) regimen (ABC/3TC/ZDV) appeared inferior when compared to the

combined efavirenz-containing regimens. Moreover, the time to virologic failure was

significantly shorter in the combined efavirenz arm. The data safety and monitoring

board recommended that the triple NRTI arm be discontinued but to follow the other
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two arms for the clinical endpoints for the remaining duration of the study. The ini-

tial study report (Gulick et al., 2004) details all differences between the triple NRTI

and combined efavirenz groups.

All study patients who failed on the initial antiretroviral treatment regimen had

the opportunity to switch ARV regimen in favor of another ARV regimen, subject to

standard pharmacological restrictions (i.e. all known adverse drug interactions were

disallowed). The second-line ARV regimens could include on- or off-study medica-

tions. Once virologic failure was confirmed, the decision to switch ARVs was left to

the discretion of the patient and his or her attending physician. A caveat to this open

invitation to switch ARV regimens post-virologic failure was that a patient was not

required to switch regimens even after failing on the initial ARV regimen. (ACTG)

study A5095 allows that the decision to switch initial ARV regimen after virologic

failure is left to the patient and his or her primary-care provider. Decisions to stop,

continue, or switch treatments, even in the face of incomplete suppression of HIV-

1 replication, often depend on multiple other factors including a patient’s medical

history of ARVs, immunologic and clinical response to those ARVs or alternatively

the desire to limit resistance emergence. Because the same factors that affect a pa-

tient’s treatment decision and assignment may subsequently affect response, we have

a classic case of confounding.

The issue when to switch antiretroviral therapy has been discussed by physi-

cians or clinicians. The weight of evidence(Cozzi-Lepri et al. (2007), Tozzi et al.

(2006), GoetzMB et al. (2006)) suggests that continued exposure to failing ARV

regimes will rapidly lead to the development of HIV strains that are resistant to

drugs in the failing regime and possibly to those that may be required in the fu-

ture. Consequently, most HIV treatment guidelines recommend that ARV regimes

are changed rapidly in patients experiencing virological failure (Gazzard et al., (2006),

Hammer et al.(2006)). However, Tenorio et al. (2009) argued that delaying a treat-



5

ment switch in antiretroviral-treatment HIV-1 infected patients with detectable drug-

resistant viremia does not have a profound effect on immune parameters using the

AIDS clinical trials group study A5115. Therefore, as Dr. Deeks (2003) mentioned,

the best approach remains unclear for patients who have failed multiple treatment

regimes. The management of such patients requires a careful understanding of the

pathogenesis of drug-resistant HIV-1, the clinical consequences of virological failure,

the potential benefits and limitations of diagnostic assays, and the likelihood that

agents in development will be effective. This project is to propose statistical methods

to address the scientific question in HIV/AIDS research where there is an abundance

of conjecture and speculation but only limited information: when to switch from a

failing ARV regime?

1.1.2 ESPRIT infusion trial

The ESPRIT (Enhanced Suppression of the Platelet IIb/IIa receptor with Integrilin

Therapy) trial targeted patients with coronary artery disease scheduled to undergo

percutaneous coronary intervention (PCI) with stent implantation in a native coro-

nary artery. The main objective of ESPRIT was to compare eptifibatide (Integrilin)

therapy to placebo on the basis of the composite binary endpoint of death, my-

ocardial infarction (MI), or urgent target vessel revascularization within 30 days.

The study enrolled 2064 eligible patients who were randomized to either study drug

(1040) or palcebo (1024) regimen. The experimental treatment regimen consisted of

an eptifibatide bolus and a continuous eptifibatide infusion for 18-24 hours, with a

similar regimen for the placebo group. The study protocol also required that patients

experiencing serious complications, such as abrupt closure, no reflow, or coronary

thrombosis immediately discontinue the infusion process to receive appropriate medi-

cal attention; we define these protocol-defined adverse events as infusion-terminating

events, or more generally as treatment-terminating events.
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Once treatment has been proven effective, study investigators are often inter-

ested in the best treatment duration which optimizes the response. As Johnson

and Tsiatis(2004) argued that because infusion can not continue after a treatment-

terminating event, a recommendation to infuse for t units of time necessarily implies

that treatment would be discontinued either after drug was administered for t units

of time or when a treatment-terminating event occurs. Thus, censoring is as an es-

sential part of treatment policy and a treatment duration policy for t unites of time

of interest is defined as “a recommendation to treat for t units of time or until a

treatment-terminating event occurs, whichever comes first”.

Johnson and Tsiatis (2004; subsequently referred to as JT) have shown how to

estimate consistently the population mean response for the treatment duration pol-

icy by incorporating propensity score in the estimator without modeling outcome

regression on covariates. However, the JT estimator is neither the most efficient nor

doubly robust; that is, it does not remain consistent and asymptotically normal if

either the propensity score model or the outcome regression model is correct. Con-

siderable recent interest has focused on doubly robust estimators for a population

mean response in the presence of incomplete data, which involve models for both the

propensity score and the regression of outcome on covariates. Given the protection

afforded by the property being doubly robust, these estimators have been advocated

for routine use (Bang and Robins, 2005). In this paper we will propose a double

robust estimator which is more efficient than the JT estimator to estimate the mean

outcome corresponding to the treatment duration policy defined above.

1.2 Outline

Throughout this method, we adopt the point of view proposed by Neyman (1923)

and Rubin (1974), where casual effects are defined through potential outcomes or
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counter-factual random variables. The organization of the dissertation is as follows:

In chapter 2, we simplify k-stage ARV regime in HIV treatment study to 2-stage

regime allowing patients switch to the second-line regime only once, after they ex-

perienced virologic failure, and we consider the case where patients either switched

to the second-line treatment within 8 weeks after they failed on the initial treatment

or switch after 8 weeks, as in Figure 1.2. We estimate the mean outcome for the

two strategies. We describe our methodology for extension of randomized two-stage

design to observational study to specifically compare two policies:

� “Switching Early” Policy . A patient had started an initial regimen, he would

switch early to next regimen, if virologic failure on the initial regimen

� “Switching Late” Policy . A patient had started an initial regimen, he would

switch late to next regimen, if virologic failure on the initial regimen

A through case study report on ACTG5095 data including sensitivity analysis by

applying the method proposed in chapter 2 is provided, alongside simulations that

highlight interesting features of the methods such as increased power, improved effi-

ciency, etc.

Initial ARV regime

������9
XXXXXXz

Fail & Continue Did not fail

������9

?

HHH
HHH

HHj

Switch to Second-line ARV regime within 8 weeks

Did not Switch

Switch to Second-line ARV regime beyond 8 weeks

In Chapter 3, we propose how to develop a doubly robust and efficient semipara-

metric estimator for mean outcome corresponding to the policy, which is “A treatment
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duration policy for t units of time as a recommendation to treat for t units of time

or until a treatment-terminating event occurs, which comes first”, in infusion study,

followed by the discussion on properties of proposed estimator and simulation studies

comparing double robustness and efficiency with the estimator proposed by Johnson

and Tsiatis (2004).

In Chapter 4, we propose a nonparametric method to estimate the mean outcome

corresponding to Definition 1 for HIV-1 infected patients as an alternative method

to the semiparametric method proposed in Chapter 2 when semiparametric method

does not perform very well at small sample size and high dimensional confounding.

Simulation studies to compare semiparametric and nonparametric methods are pro-

vided.

1.3 Contribution

Estimating the mean clinical endpoint on a given ARV treatment policy and com-

paring policy changes are significant and important practical problems in current

HIV/AIDS research. Our methods proposed in the dissertation specifically addressed

the following two policies related to the issue of when to modify treatment.

Definition 1 (Dual-stage ARV Regimen Policy). An initial ARV regimen “a” fol-

lowed by a switch at time “s” to any second-line ARV regimen, if virologic failure on

the initial regimen

Definition 2 (Duration Stopping Rule). A treatment duration policy for t units of

time as a recommendation to treat for t units of time or until a treatment-terminating

event occurs, which comes first.

The first method would estimate average causal effect for two regime policies: a

policy that switches to new ARV regime soon after confirmed virologic compared to

delayed ARV regime change. The final clause in Definition 2, if virologic failure on
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the initial regimen, is rather important because it underscores the practical relevance

of our policy by reflecting standard clinical practice. The clause in Definition 2 also

necessarily implies that patients assigned to second-line treatment are not a random

sample of the study population. We developed our estimator by augmenting IPW

estimator incorporating with outcome regression to improve efficiency and provide

double robustness under model misspecification for the average causal effect of the

policy change via Definition 2. Moreover, our method is an extension of Wahed and

Tsiatis (2004) to a two-stage design where treatment assignment at the second stage

is confounded.

Another contribution is we provide a thorough case study of the ACTG A5095

data. We proposed unusually different endpoints which can be computed even when

a mortality outcome is not available and we found that for patients on a efavirenz-

based ART , regimen changes made within 8 weeks of confirmed virologic failure on

initial ARV regimen were associated with lower cumulative HIV RNA level, higher

cumulative CD4 cell counts, and spent a larger proportion of the follow-up period

with suppressed HIV RNA levels, on average. To the best of our knowledge, this is

the first paper to report such findings.

We proposed an estimator having improved efficiency and double robustness for

the treatment duration policy in the infusion study, compared to the estimator pro-

posed by Johnson and Tsiatis (2004). The method can be applied to estimate con-

sistently the population mean response for policy in Definition 1 in any observational

duration-response studies with duration possibly right-censored.

Nonparametric analysis using boosting algorithm proposed in the third topic is to

alleviate the impact of assumption of wrong working model on the bad performance

of semiparametric estimators. When semiparametric estimator we proposed in the

previous chapters does not perform very well because of small sample size, the large

number of confounding, or incorrect assumption of working models, non-parametric
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methods provides an alternative choice to analyze data with those features by avoiding

the hypothesis that the regression function belongs to a certain finite-dimensional

parametric family (Gonzalez-Manteiga and Perez-Gpnzalez, 2004).
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Chapter 2

Optimal Estimation of Mean

Endpoint on Two-stage Sequential

Antiretroviral Treatment Regimen

Using Observational HIV Data

2.1 Introduction and Background

In HIV treatments, a sequential antiretroviral treatment regimen (STAR) is defined

by first-line initial ARV regimen followed by a switch to second-line ARV regimen if

virologic failure on the first-line regimen; third-line ARV regimen follows if failure on

the second-line regimen and so on. When to switch to the next line regimen after ex-

periencing virologic failure has caught clinicians and statisticians’ attention in HIV-1

studies recently. For the time being we focus on two-stage sequential antiretroviral

treatment regimen where patients are only allowed to switch once and we will extend

to k-stage sequential antiretroviral treatment regimen where multiple switches are al-

lowed during the whole clinical practice in the future. Because only those patients who
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failed on the initial treatment have chance to enter the second-line ARV regimen, most

of current methods addressed the issue of when to switch by retrospectively identify-

ing all subjects who experienced virologic failure on the initial treatment, such as the

application of history-adjusted marginal structural model(Petersen et al, 2008) and

the application of semiparametric method proposed by Johnson and Tsiatis (2004).

However, the endpoint is not only the result of the second-line regimen but also the

consequences of combination of initial treatment and second-line regimen. Therefore,

estimating mean endpoint as the consequence of combination of sequential treatment

regimens is more attractive and reasonable than merely focusing on the second-line

regimen, that is, only including patients who experienced virologic failure in the anal-

ysis. When randomization up to front is not available in reality due to the fact that

decision when to switch to the second-line regimen after virologic failure is left to pa-

tients themselves or physicians, two-stage randomized design which allowing patients

who meet the criteria at the end of first stage enter the second stage and randomly

receive treatments at the beginning of second stage becomes promising. Lunceford et

al.(2002) proposed inverse probability weighting (IPW) methods for 2-stage design.

In this chapter, we would extend his method to 2-stage SATR where at the beginning

of the second stage patients received one of two treatments not randomly using ob-

servational data and two treatments options are defined as switch to the second-line

treatment within or after a specific period. We propose a doubly robust estimator

which Lunceford’s estimator is not and the proposed estimator has an improved ef-

ficiency over IPW estimators whenever propensity score model is correctly specified

by borrowing Tan (2006)’s idea. In addition, we apply our method to ACTG5095

data and propose alternative endpoints which is computed when endpoints related to

mortality are not available.
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Figure 2.1: Antiretroviral treatment strategy in ACTG A5095.

2.2 Methods

In this section, we describe the work in details that forms the basis of our proposed

research.

2.2.1 Causal Model: Notation and Assumptions

2.2.1.1 Potential outcome framework

As in previous chapter , throughout this chapter we adopt Rubin’s causal model

(1974) and the ideas of potential random variables (Neyman, 1923; Rubin, 1974).

We define Y a, s as potential outcomes for which a patient would have started initial

treatment a and then second-line treatment s if he experienced virologic failure on

the initial regimen. For simplicity, consider the two potential outcomes, Y (a, 0) and

Y (a, 1), where Y (a, s) is the outcome that one would observe if a patient were assigned

to policy (a, s), where a ∈ {0, 1} corresponds to combined efavirenz (0) or triple-

nucleoside (1) therapies and s ∈ {0, 1} corresponds to switch early (0) versus switch

late (1) after virologic failure. We also define the potential random variable R(a) as

the failure status indicator on the initial treatment a ∈ {0, 1}. Hence, the full set

of potential random variables for a randomly selected patient from the population is

{R(0), R(1), Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1)}.

2.2.1.2 Identifiability and Consistency

We assume that potential outcomes for patients who do not fail on initial ARV treat-

ment would be the same whether they were assigned to a policy s which switched

early or late after virologic failure. That is, we assume that the distribution of
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{R(a), Y (a, 0), Y (a, 1)} obeys the constraint

Y (a, 0) = Y (a, 1) if R(a) = 0 , a = 0, 1. (2.1)

In the observational study, one only observes the random variables {A,R,RS, Y,X}.

Here, A is the initial ARV assignment indicator (1 for a = 1), R is an indicator of viro-

logic failure (1 if failed virologically on initial regimen), S is an indicator of switching

early (0) versus late (1) and is only observed for those patients who failed on the initial

ARV regimen (i.e. R = 1), Y is the observed outcome, and X are patient character-

istics. We assume that the potential failure indicators, R(0) and R(1), are related to

the observed failure indicator R through R = (1−A)×R(0)+A×R(1). Furthermore,

using, we assume that potential outcomes {Y (a, 0), Y (a, 1)} and observed outcome Y

are related through

Y = (1−R)×Y (a, 0)+R(1−S)×Y (a, 0)+RS×Y (a, 1) on the event {A = a}. (2.2)

Incidentally, because we assume (2.1), then we also have that (2.2) = (1 − R) ×

Y (a, 1) +R(1− S)× Y (a, 0) +RS × Y (a, 1).

2.2.1.3 Treatment assignment

In ACTG A5095, subject to exclusion criteria, patients were randomly assigned to

initial ARV treatment independent of any patient characteristics. Hence, we have

that P (A = 1|Y (a, 0), Y (a, 1),X) = P (A = 1), because of randomization. Similarly,

it is necessary to consider how patients are assigned to switch ARVs early versus

late post-virologica failure. Let the random variable S denote whether a patient is

assigned to the switch early (0) group versus switch late (1) group. Here, patients were

not assigned to treatment independent of individuals characteristics; rather patients

and their attending physicians intentionally chose to switch early versus late based
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on individual cases. Hence, we have P (S = 1|R = 1, Y (a, 0), Y (a, 1),X) 6= P (S =

1|R = 1). However, we do assume

P (S = 1|R = 1, Y (a, 0), Y (a, 1),X) = P (S = 1|R = 1,X) on the event {A = a}.

(2.3)

Expression (2.3) is often referred to as the no unmeasured confounders assumption

or sequential randomization. We interpret (2.3) as the assumption that a decision to

switch early versus late depends on auxiliary variables X up to that point at which a

switch is made but not dictated by future events Y (a, 0) and Y (a, 1) .

2.2.2 Estimation in the observational study

Statistical methods for estimation and testing in two-stage randomization designs

(Corimer et al.; Stone et al., 1995; Lunceford et al., 2002) are now well developed

and are distinguished from standard two-sample problems by the failure indicator

R. Because not every patient fails on initial ARV treatment regimen, we only see a

sicker subpopulation on switching to second-line ARV regimens. In order to estimate

E{Y (a, s)} consistently, a proper adjustment for patients who fail and switch versus

those who do not fail is required.

2.2.2.1 Hypothetical two-stage trial

To motivate our estimator, consider the hypothetical two-stage randomization trial

where treatment assignment at the second-stage is randomized so P (S = 1|A =

a,R = 1, Y (a, 0), Y (a, 1),X) = P (S = 1|A = a,R = 1) for each a ∈ {0, 1}. This

hypothetical trial is exactly the scenario considered by Lunceford et al. (2002). Using

inverse weighting methods and standard conditioning arguments via (2.1) and (2.2),
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Lunceford et al. (2002) show that for each (a, s) combination, we have

µas = Ed̄2

[
Y 1(A = a)×

{
(1−R) +

R1(S = s)

Pd̄2(S = s|A = a,R = 1)

}]
(2.4)

where Ed̄2 and Pd̄2 are expectation and probability in the hypothetical two-stage

trial, respectively. A sample average of the random variables on the right-hand side

of (2.4) will be a consistent and asymptotically normal estimator for the estimand

µas under (2.1) and (2.2). The interpretation of the weighting scheme in (2.4) is as

follows: if a patient does not fail on the initial ARV regimen a, then that patient

represents him/herself and hence receives a weight of one; if a patient fails on initial

ARV regimen, however, then that patient represents {Pd̄2(S = s|A = a,R = 1)}−1

similar patients who could have potentially been assigned to combined first- and

second-line ARV regimens (a, s). In the following subsection, we show how to extend

the expression (2.4) for the analysis of the ACTG A5095 data.

2.2.2.2 The Radon-Nikodym derivative

Murphy, van der Laan, and Robins (2001) give an elegant result for estimating the

marginal means of potential random variables when treatment assignment is sequen-

tial and depends on patient characteristics. Under regularity conditions, including

P (S = s|A = a,R = 1,X) > 0, Lemma 4.1 of Murphy et al. (2001) asserts that

the distribution of (Y,A,R, S) under Pd̄2 is absolutely continuous with respect to the

distribution of (Y,A,R, S) under P , and a version of the Radon-Nikodym derivative

is E
{
Wd̄2(A,R, S,X)|Y = y, A = a,R = r, S = s

}
, where

Wd̄2(a, r, s,x) = 1(A = a)×
{

1(R = 0) + 1(R = 1, S = s)
Pd̄2(S = s|A = a,R = 1)

P (S = s|A = a,R = 1,X = x)

}
.
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The Radon-Nikodym derivative can be applied directly to the expression in (2.4) to

show that

Ed̄2

[
Y 1(A = a)×

{
(1−R) +

R1(S = s)

Pd̄2(S = s|A = a,R = 1)

}]
= E

[
Wd̄2(A,R, S,X)× Y 1(A = a)×

{
(1−R) +

R1(S = s)

Pd̄2(S = s|A = a,R = 1)

}]
= E

[
Y 1(A = a)×

{
(1−R) +

R1(S = s)

P (S = s|A = a,R = 1,X)

}]
. (2.5)

The last expression in (2.5) is a function of the observed data and a sample average

yields a consistent estimator for µas if the propensity score P (S = s|A = a,R = 1,X)

were known.

By definition, the propensity score P (S = s|A = a,R = 1,X) is identified by

those patients who failed on their initial ARV regimen (i.e. R = 1) and not by

the entire sample. Hence, in small samples, estimation and inference for the causal

estimand µas may be sensitive to the overall marginal probability of failing on initial

ARV regimen. Nevertheless, the propensity score may be modeled parametrically,

semiparametrically, or nonparametrically as a function of (A,X). The most common

approach is to model P (S = s|A = a,R = 1,X) using maximum likelihood via

generalized linear models (e.g. probit or logistic regression) and separately for each

initial ARV regimen (a = 0, 1). Substituting the fitted propensity score P̂ (S = s|A =

a,R = 1,X) in expression (2.5) and taking a sample average leads to the inverse-

probability weighted (IPW) estimator

µ̂as = En

[
Y 1(A = a)×

{
(1−R) +

R1(S = s)

P̂ (S = s|A = a,R = 1,X)

}]
,

where En denotes sample average (i.e. Enf(Z) =
∑n

i=1 f(Zi)/n). Assuming that

the propensity model is correctly specified and under standard regularity conditions,

√
n(µ̂as− µas) converges in distribution to a mean-zero normal random variable with
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asymptotic variance that can be derived using standard arguments (e.g. Tsiatis, 2006)

and consistently estimated from the data (e.g. Lunceford et al., 2002; Tsiatis, 2006).

A consistent estimator for the average causal effect (ACE) for switching ARV regimens

early versus late on the initial ARV regimen A = a on the combined efavirenz arm is

given by

ACE = µ̂01 − µ̂00,

and similarly for the triple nucleoside arm. Unfortunately, it is well-known that

IPW estimators are inefficient. In the following subsection, we show to improve the

precision and robustness of IPW estimators through adaptation, maximum likelihood

and the theory of control variates.

2.2.3 Doubly-Robust, Locally Efficient, and Optimal Estima-

tion

Semiparametric efficient estimation has received a significant amount of attention in

the statistical literature over the past two decades beginning with two comprehensive

accounts by Newey (1990) and (Bickel, Klassen, Ritov, and Weller, 1993). Newey’s

methods were applied to a general class of missing data problems by Robins, Rot-

nizky, and Zhao (1994). Because our two-stage estimation problem may be considered

as type of missing data problem, the Robins et al. (1994) theory applies here as well.

In fact, Wahed and Tsiatis (2004) have considered different efficient and optimal (in

the sense of Robins et al., 1995) estimators for the two-stage randomization design.

Through control variates and Monte Carlo integration, Tan (2006) recently offered

a novel estimator which offers some finite sample advantages over that proposed by

Robins et al. (1995). Our contribution is to extend Tan’s estimator to our estimation

problem and subsequently apply it to the ACTG A5095 data. When the decision

to switch to second-line ARV regimens is independent of patient characteristics X,
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our two-stage estimation problem reduces to the two-stage randomization design con-

sidered by Wahed and Tsiatis (2004). In this case, our estimator improves on the

estimator by Wahed and Tsiatis (2004) in the same way that Tan’s (2006) estimator

improves on the estimator by Robins et al. (1995) for the simple one- and two-sample

causal estimands.

For the purposes of robust and efficient estimation, we drop the indicator 1(A = a)

from our estimators with the understanding that estimators are calculated separately

for each initial ARV regimen a = 0, 1. Also, we will restrict our attention to the

estimator where patients “switch early” to second-line ARV regimens, i.e. {S = 1};

that is, we restrict our attention to the following estimand and IPW estimator

µ = E

[
Y

{
(1−R) +

RS

π(X)

}]
and µ̂IPW = En

[
Y

{
(1−R) +

RS

π̂(X)

}]
, (2.6)

with propensity score P (S = 1|R = 1,X) = π(X). The IPW estimator for “switch

late” to second-line ARV regimen is given by replacing S/π̂(X) in (2.6) with (1 −

S)/{1− π̂(X)}. We now show how to construct improved estimators by considering

their influence functions.

2.2.3.1 Semiparametric AIPW class of estimators

For regular and asymptotically linear (RAL) estimators, we know their influence

function satisfies (µ̂ − µ0) ∼= Enϕ(Z), where Z are the observed data (Y,R,RS,X)

and “∼=” denotes a difference of the order op(n
−1/2). A straightforward application

of the Robins et al. (1994) theory suggests that all RAL estimators µ̂ have influence

function belonging to the class

Φ =

{
ϕ

∣∣∣∣ ϕ =

[{
(1−R) +

RS

π(X)

}
Y − µ+R

(
S

π(X)
− 1

)
h(X)

]
, h ∈ H

}
, (2.7)

where H consists of all arbitrary functions of X. In the missing data literature,
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the last expression R{S/π(X,ψ) − 1}h(X) is called the augmentation term. The

IPW influence function ϕIPW is found when h ≡ 0; hence, ϕIPW ∈ Φ trivially. The

semiparametric efficient estimator (i.e. the one with smallest asymptotic variance in

the class Φ) is found when heff = E(Y |R = 1,X) and its influence function is denoted

by ϕeff. Because the true conditional mean model E(Y |R = 1,X) is unknown, we posit

a statistical model model for it, say E(Y |R = 1,X) = m(X). Then, replacing h(X)

with the posited model m(X) leads to the augmented inverse-probability weighted

(AIPW) class of estimators:

CAIPW =

{
µ̂

∣∣∣∣ µ̂ = µ̂IPW − En
[
R

{
S

π̂(X)
− 1

}
m̂(X)

]
,m ∈M

}
,

where M ⊆ H and defines a subset by modeling the first conditional moment

m(X) = E(Y |R = 1,X). Clearly, the influence function ϕAIPW belongs to the class Φ

with h(X) = m(X). In addition, we know that (a) the AIPW estimator is consistent

if either π(X) or m(X) is correctly specified (i.e. double robustness), and (b) the

AIPW estimator is semiparametric efficient if π(X) and m(X) are correctly specified

(i.e. local efficiency). Unfortunately, if the conditional mean model m(X) is incor-

rectly specified, there is no guarantee that the AIPW estimator is more efficient than

the IPW estimator. Hence, the estimator class CAIPW will not include the efficient

estimator if m(X) is misspecified even though it does include the efficient estimator

when m(X) is correctly specified. These considerations lead to other classes of es-

timators which may be motivated through maximum likelihood (Tan, 2006) or the

theory of control variates (Hammersley and Handscomb, 1964).

2.2.3.2 The regression estimator

Tan (2006, Theorem 2) proposed “regression” or “tilde” estimators and belong to

a larger family of optimal control variate (CV) estimators (Hammersley and Hand-
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scomb, 1964). Now, we describe this family of estimators and detail how they are

implemented in practice for our estimation problem. First, we model the propensity

score

logit π(X,ψ) = ψ0 + ψ1X1 + · · ·+ ψq−1Xq−1, (2.8)

where ψ = (ψ0, . . . , ψq−1)T is a q-vector of unknown parameters for predictors includ-

ing baseline CD4 and two nadir RNA covariables (See Section 2.3). Second, we model

the conditional mean of Y given X for patients who failed on initial ARV regimen

linearly as

E(Y |R = 1,X) = m(X, ξ) = ξ0 + ξ1X1 + · · ·+ ξr−1Xr−1, (2.9)

where ξ = (ξ0, ξ1, . . . , ξr−1)T is an r-vector of unknown parameters for covariables

including baseline CD4 and nadir RNA levels. Now, define the following class of

estimators

CCV =

{
µ̂

∣∣∣∣ µ̂ = µ̂IPW − κ× En

[
R

{
S

π(X, ψ̂)
− 1

}
m(X, ξ̂)

]
, κ ∈ <

}
.

A first-order approximation to µ̂CML leads to the following optimal CV estimator,

µ̂OPT = µ̂IPW − κ̃× En

[
R

{
S

π(X, ψ̂)
− 1

}
m(X, ξ̂)

]
,

where κ̃ is the first element of {En(VWT)}−1En(V U),

U =
RSY

π(X, ψ̂)
, V = R

(
S

π(X, ψ̂)
− 1

)
×G, W = R

(
S

π(X, ψ̂)

)
×G,

G =

 m(X, ξ̂){
(∂/∂ψ)π(X, ψ̂)

}
/
{

1− π(X, ψ̂)
}
 .
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Alternatively, Robins et al. (1995) defined κ̂ as the first element to the classic mul-

tiple linear regression {En(V V T)}−1En(V U). Such use of control variates lead to the

estimator ,

µ̂RRZ = µ̂IPW − κ̂× En

[
R

{
S

π(X, ψ̂)
− 1

}
m(X, ξ̂)

]
.

Note that both µ̂RRZ and µ̂OPT belong to the class CCV. A key difference between

µ̂OPT and µ̂RRZ is that the former is doubly robust while the latter is not (Tan, 2008,

Proposition 4). Standard errors may be estimated using usual sandwich formulae via

M -estimation theory (cf. van der Vaart, 1998, ch. 5).

2.2.4 Estimating Equations and Asymptotic Variance

Under standard regularity conditions, our estimator behaves asymptotically as if the

parameter κj, j = 0, 1 were known a priori and defined in 3.3.3. For completeness,

we define the whole system of estimating equations, 0 = Enφθ(Z,θ), where φθ =

(φµ1 , φµ0 ,φ
T
ψ,φ

T
ξ1
,φT

ξ0
)T, and,

φµ1 = Y

{
(1−R) +

RS

π(X,ψ)

}
− κ̃1 ×R

{
S

π(X,ψ)
− 1

}
(1,m(X, ξ1))T − µ1,

φµ0 = Y

{
(1−R) +

R(1− S)

1− π(X,ψ)

}
− κ̃0 ×R

{
1− S

1− π(X,ψ)
− 1

}
(1,m(X, ξ0))T − µ0,

φψ = R{S − π(X,ψ)}X,

φξ1 = RS{Y −m(X, ξ1)}X,

φξ0 = R(1− S){Y −m(X, ξ0)}X.

Standard arguments lead to the usual sandwich formula for the asymptotic covari-

ance of θ̂ and a consistent estimator given by Σ̂θ = Â−1B̂(Â−1)T , The asymptotic

covariance estimator for µ = (µ1, µ0)T, i.e. Σ̂µ = ĉov(µ̂), is the upper right 2 × 2

matrix of Σ̂θ. Our Wald test statistic for the difference between early vs. late switch

T = (Cµ)T(CΣµC
T)−1(Cµ), where C=(1, -1) is asymptotically distributed as χ2

1
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under the null hypothesis of no difference.

2.2.5 Length-adjusted Area Under the Curve

In two-stage analyses, the endpoint Y must be well-defined for all treatment combi-

nations. Perhaps the most natural endpoint is death or time-to-death. Fortunately,

mortality is no longer considered a primary endpoint in many HIV studies because

ARV regimens and our ability to treat HIV has significantly improved. Also, be-

cause some HIV studies do not extend beyond 2-3 years of follow-up, few HIV-related

deaths are actually recorded. In A5095, for example, only 24 patients died during 5

years of follow-up. In the sequel, we use length-adjusted area-under-the-curve (AUC)

endpoints.

Mean area-under-the-curve (AUC) of the outcome (or the outcome minus its base-

line value) over time are often compared among treatment groups in many clinical

trials where subjects are evaluated for a continuous outcome (e.g. drug concentration,

HIV-1 viral load, CD4 T-Cell count) at multiple fixed study time points (Spritzler,

2008). When the length of follow up varies by subject, this procedure is commonly

modified by defining time-averaged AUC as the area under the curve from the first to

the last observed evaluation, divided by the time from the first to the last observed

evaluation, which is called length-adjusted area under the curve. AUC analysis pro-

vide an obvious way to combine measurements across timepoints, even if data may

be missing at certain time points. For example in the briefing document produced by

Gilead for the NDA review of tenofovir, the mean AUC of HIV-1 RNA at 24 weeks

adjusted for baseline was compared between patients receiving tenofovir and those

receiving placebo within subgroups defined by baseline resistance mutations (FDA,

2001). The co-primary endpoint of the randomized placebo-controlled clinical trial

of a Merck therapeutic vaccine for HIV, A5197, in the AIDS Clinical Trial Group, is

the HIV-1 RNA AUC during a sixteen week analytical treatment interruption phase



24

(AACTG, 2007). In a clinical trial of colloids versus crystalloids for fluid resusci-

tation in critically ill patients a secondary endpoint was the AUC of mean arterial

pressure over 24 hours (NCT00318942, 2007). The secondary endpoints of the HEG-

POL randomized placebo-controlled trial of glycine in the postoperative phase of liver

transplantation included the AUCs of AST, ALT and bilirubin serum levels over the

first eight days after transplantation (HEGPOL, 2005). In ACTG A5095 analysis

where mortality related outcomes are not available we will use length-adjusted area-

under-the-curve related endpoints to evaluate the performance of different regimens.

2.3 Analysis of the ACTG A5095 data

2.3.1 The study sample

A total of 1147 subjects enrolled in the ACTG A5095 between March 2001 and

November 2002. Of the original 1147 patients, 12 patients never started their initial

treatments. These twelve patients were removed from our analysis.

As mentioned briefly in the previous section, the data safety and monitoring board

discontinued the triple-nucleoside arm at the second annual review in February 2003.

For ease of exposition, our analysis is restricted to the combined efavirenz arm. Thus,

our effective sample size is 758 patients in the combined efavirenz groups, where 146

(19.3% of 758) patients experienced virologic failure on their initial ARV treatment

regimens. An additional 50 (6.6% of 758) patients experienced virologic failure but

only after a protocol-approved substitution; hence, they were not following their initial

ARV at the time of failure. These 50 patients are assumed to not switch within 8

weeks after the first failure in the main analysis. The robustness and sensitivity of

our analytic results excluding these 50 patients is considered below.
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2.3.2 Treatment and endpoint definitions

The results of our analyses depend critically on the definitions of virologic failure (R),

switching off a failing regimen early versus late (S), and the endpoint (Y). Our defi-

nition of confirmed virologic failure follows one defined in the ACTG A5095 protocol:

lab readings from two consecutive visits where HIV-1 RNA ≥ 200 copies/mL. We

define “failure” as “confirmed virologic failure on the first-line treatment regimen”

and first-line regimen include initial ARV regimen plus any protocol-approved sub-

stitutions. Our definitions for “early” versus “late” ARV regimen switch and three

different outcomes are described in the paragraphs below.

Our preferred definition for switching ARV regimens “early” was switching regi-

mens less than eight weeks after confirmed virologic failure. In Figure 1, we see that

the proportion of patients switching ARV regimen less than eight weeks was 16.8%

(31 of 196) patients on the combined efavirenz arm.

Now we are defining our endpoints using length-adjusted area under the curve

as talked in section (2.2.5). Let H(t) be the HIV viral load or CD4 cell count at

time t and α(t) a non-negative weight function. A patient’s AUC is defined by the

Riemann-Stieltjes integral

AUC =

∫ L

0

H(t)α(t) dt,

where L is the patient’s length of follow-up and follow-up is defined as length from the

first drawing viral load(or CD4) date to the off study date. Our endpoints are defined

Y = AUC/L and interpreted as the length-adjusted AUC, introduced by Spritzler

et al. (2008). We adopt length-adjusted AUC instead of original AUC to adjust for

difference in follow-up time. For example, suppose patient 1 has HIV= 100 copies/mL

for 1-year follow-up while patient 2 has HIV=100 copies/mL for 2-years follow-up.

Apparently patient 2 has better performance on sustaining viral load below a limit
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copies than patient 1. Without adjusting follow-up length, AUC of viral load for

patient 2 is twice that of patient 1; however, length-adjusted AUC for patient 1 and

patient 2 are the same. In practice, the AUC is approximated through the Riemann

sum
∑J

j=1 Hj∆αj, where Hj = H(tj) for j = 1, . . . , J and ∆αj = α(tj)−α(tj−1). One

conventional definition uses a constant weight α(t) = 1 which implies ∆αj = (tj−tj−1)

while the modified definition ∆αj = [(tj+1 − tj) + (tj − tj−1)]/2 leads to the linear

trapezoidal rule (Yeh and Kwan, 1978); we report results using the latter definition.

Missing data was dealt with using the principle of “last value carry forward”. Here,

we present a simple example to show how we dealt with the missing value at certain

time point. If VL is 1000 at t1 and 6 month later is 2000 at t2, then AUC of VL for

this 6 month period is 1
2
× (1000 + 2000)× 6 = 9000. If a patient has VL 1000 at t1,

and goes off with no value after t1, AUC is 1
2
× (1000 + 1000) × 6 = 9000 for time

period from t1 and t2. We consider three specific endpoints: (i) H(t) is HIV-1 RNA

(copies/mL) at time t and α(t) = 1 for all t; (ii) H(t) = 1 and α(t) = 1{H(t) ≤ 200};

(iii) H(t) is CD4 cell count at time t with α(t) = 1. The first endpoint is interpreted

as cumulative HIV with large values suggesting sicker patients. We interpret the

second endpoint as proportion of time with non-detectable viral load or time below

a limit of detection adjusted for lengths of follow-up. The third endpoint is the same

as the first but with CD4 cell count replacing viral load. Length-adjusted AUC of

viral load and CD4 counts are transformed on a natural logarithmic scale(see also,

subsection 4.4). The mean and standard deviation of our endpoints are included as

part of our analytic results in Table 4.3.

Because both treatment policy and endpoint may depend on viral load levels,

we must ensure, for example, that an early switch to second-line regimen does not

necessarily imply a smaller endpoint. We explore and explain the concepts through

two exemplary HIV trajectories Figure 2 illustrates. Patient 1 and patient 2 have

the same trajectory of viral load over time before week 6 after confirmed failure.
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In the left panel, patient 1 switched to the second-line regimen within 8 weeks after

confirmed failure, and then viral load dropped below 200 copies/mL quickly. Patient 2

switched to the second-line regimen at week 10 and then viral load dropped below 200

copies/mL immediately. We assume they have the same follow-up length. Therefore,

cumulative viral load for patient 1 (AUC of purple line with squares Y1) is less than

cumulative viral load for patient 2 (AUC of blue line with dots Y2). On the other hand,

Y1 > Y2 is in the right panel because HIV for patient 1 does not drop significantly after

switching to second-line regimen. A similar phenomenon occurs for the rate of time of

suppression endpoint. Because both panels in Figure 2 are scientifically plausible, we

argue our endpoints are not determined necessarily by definition of treatment policy.
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Figure 2.2: Two exemplary HIV trajectories. Patient 1 has smaller AUC and longer
time of suppression than Patient 2 in the left panel. Right panel shows the opposite
phenomenon.

We included 11 covariates as auxiliary variables. Patients’ age ranges from 18 to

77 years old; height has a mean of 173cm with standard deviation of 9cm; weight has

a mean of 76kg with standard deviation of 16kg. Sex is an indicator variable, being

1 if male and 0 if female; race is a three-level variable, being 0 or 1 corresponding
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to white or black, respectively, and 2 otherwise; drug history indicates whether a

patient ever previously used IV drug, being 1 if ever using IV drug and 0 otherwise.

Baseline RNA and maximum viral load prior to treatment switch are presented on

the logarithmic scale; baseline CD4, baseline CD8, and time (in weeks) from baseline

to first virologic failure remain their original scales. The characteristics of auxiliary

covariates are presented in Table 2.1.

Table 2.1: Descriptive statistics of auxiliary covariates

Overall (758) Switch Early (31) Switch Late (165)
Covariates Mean (SD.) Mean (SD.) Mean (SD.)
Baseline RNA(log10) 4.86 (0.73) 5.29 (0.70) 4.84 (0.71)
Maximum RNA† (loge) 9.06 (2.23) 10.57 (2.03) 8.78 (2.16)
Baseline CD4 Counts 239.74 (191.95) 183.05 (165.21) 250.95 (208.02)
Baseline CD8 Counts 846.15 (505.91) 882.61 (598.55) 848.03 (582.74)
Time to first failure 57.88 (39.75) 57.08 (39.49) 58.03 (39.92)
Height 173.54 (9.04) 171.68 (9.38) 173.68 (9.87)
Body Weight 76.14 (16.20) 70.97 (14.15) 75.01 (14.71)
Age 37.52 (9.32) 38.16 (8.88) 37.64 (9.62)
Sex 80.00 80.65 83.03
Drug history 10.82 19.35 14.55
Race

Black 35.49 41.94 44.24
Hispanic or others 23.48 29.03 19.39

†Maximum RNA is calculated on the time interval from first failure up to the minimum of

switching time and 8 weeks after failure.

2.3.3 Main Analysis

The first step in our statistical analysis involves estimating auxiliary parameters in the

propensity score and conditional mean models. We first performed multiple univariate

logistic regression analyses using the binary switch indicator (1 if switched early within

8 weeks after failure and 0 otherwise) and covariables including age, weight, height,

race, sex, time from baseline to the first virologic failure, baseline CD4, baseline CD8,

baseline viral load, and maximum viral load prior to treatment switch, drug history.
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Maximum viral load prior to treatment switch as auxiliary variables is not present

when endpoint is adjusted cumulative viral load. Each of the variables (age, height,

weight, baseline CD4, baseline CD8 and time to first failure) are normalized before

entering models. We fit similar univariate models for each of our three endpoints

via simple linear regression. The estimated regression coefficients in the propensity

score model and the outcome regression model are described in Tables 2.2 and 2.3,

respectively.

Table 2.2: Estimates in propensity score model for switching to second-line ARV
regimens on the combined Efavirenz arm

Covariate Est. (SE)1 Est.(SE)2

Intercept -8.77 (2.18) -6.32 (1.93)
Baseline viral load 0.69 (0.36) 0.81(0.34)
Maximum viral load† 0.34 (0.10) -
Time to 1st failure 0.11 (0.22) -0.04(0.21)
Baseline CD4 -0.16 (0.32) -0.12(0.29)
Baseline CD8 0.01 (0.19) 0.10(0.17)
Height -0.13 (0.31) -0.16(0.29)
Body Weight -0.05 (0.28) -0.11(0.28)
Age -0.01 (0.22) -0.03(0.20)
Sex 0.04 (0.78) 0.21(0.74)
Drug History 0.48 (0.58) 0.41(0.55)
Race

Black 0.17 (0.64) 0.25(0.51)
Hispanic or other 0.37 (0.57) 0.55(0.60)

†Maximum viral load is calculated on the time interval from first failure up

to the minimum of switching time and 8 weeks after failure.
1 Model includes maximum viral load.
2 Model does not include maximum viral load.

Probability modeled is switch early.

In Table 2.2, we found that patients with high baseline Viral load levels were

more likely to switch earlier rather than later. Also, maximum HIV-viral load prior

to switching had a profound effect on the probability of switching early on the com-

bined efavirenz arm with higher maximum HIV-viral load values more likely to switch

early when it was included in the propensity model. The remaining covariates are not
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significantly associated with switching to second-line ARV among those who failed on

first-line regimen. The outcome regression model results are presented in Table 2.3.

First, controlled for other covariates, baseline viral load is highly correlated with

cumulative viral load. Time to virological failure on initial regimen is negatively as-

sociated with cumulative viral load. Second, maximum viral load prior to switching is

negatively associated with proportion of time with non-detectable viral load. Patients

with larger rate of suppression time who switched to second-line regimens at least 8

weeks after first failure had longer time to the first failure, less baseline CD4 counts.

Third, cumulative CD4 counts has a negative association with maximum viral load.

Time to failure and baseline CD4 counts are positively correlated with cumulative

CD4 counts among patients switching to the second-line regimen after 8 weeks.

Table 4.3 presents the analytic results for three primary endpoints length-adjusted

HIV-viral load AUC, length-adjusted time-of-viral load supression, and length-adjusted

CD4 AUC using auxiliary covariates in Table 1. Our tables include the optimal (OPT)

regression, inverse-probability weighted (IPW), and naive parameter estimates, the

last of which is defined as the empirical average of endpoints for the subset of patients

who failed on first-line ARV regimen. We conduct formal hypothesis tests that the

average causal effect equals zero, that is, no difference between early (s = 1) versus

late (s = 0) ARV regimen switch on the initial ARV regimen. In the case of naive es-

timates, we report the squared two-sample t-test statistic so that it is asymptotically

distributed χ2
1 under the null hypothesis. The Wald test statistics for OPT and IPW

estimates are described in Appendix A.

In Table 4.3, we note that naive estimators did not detect any significant dif-

ference for any endpoint and IPW estimators only showed significance for difference

in cumulative viral load. However, with the auxiliaries of covariates, our new re-

sults suggest there are significant differences in cumulative viral load, proportion of

time with non-detectable viral load and cumulative CD4 cell counts between patients
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switching early versus late to second-line ARV regimens on the combined efavirenz

arm. In particular, cumulative viral load is generally smaller while cumulative CD4

cell counts is larger for those patients switching earlier rather than later on the com-

bined efavirenz arm. Our findings also suggest that patients who switch within 8

weeks after confirmed virologic failure tend to have larger proportion of time with

non-detectable viral load, on average. For example, after 1 year follow-up, patients

following a treatment policy which switched to second-line regimen within 8 weeks

after virologic failure suppressed viral load levels below 200 copies/mL for an average

365× 0.80 ' 293(±4) days, compared to 365× 0.76 ' 277(±4) days for switching to

second-line regimen beyond 8 weeks after failure. Hence, on average, patients spend

about three more weeks with viral load levels below 200 copies/mL if they switched

prior to 8 weeks. In conclusion, when we define failure as “confirmed failure on the

first-line regimen which is initial ARV regimen plus any protocol-approved substitu-

tions”, we find some evidence to suggest a smaller cumulative viral load and higher

proportion of time with non-detectable viral load and cumulative CD4 counts for

patients that switch off a failing ARV regimen within 8 weeks.

Table 2.4: Estimates of mean outcomes, 758 patients, full model

OPT IPW Naive
Endpoint Switch Est.(SE) T Est.(SE) T Est.(SE) T
Virus 1 Early 7.93 (0.08) 7.91 (0.10) 9.56 (0.32)

Late 8.12 (0.07)
14.89

8.12 (0.07)
5.47

9.33 (0.12)
0.72

Rate 2 Early 0.80(0.01) 0.81 (0.03) 0.52 (0.05)
Late 0.76(0.01)

19.38
0.76 (0.01)

3.13
0.46 (0.02)

1.00

CD4 3 Early 5.96(0.02) 6.01 (0.21) 5.69(0.12)
Late 5.89(0.02)

16.65
5.89 (0.02)

0.33
5.74(0.06)

0.40

NOTE: The estimated endpoint is reported for combination of initial ARV treatment regimen

(A=Combined Efavirenz) and switching status (S);

Report the Wald test statistic for a test of the null hypothesis of no average causal effect (ACE);
1 Virus: Length-adjusted AUC of Virus Load, logarithm scale;
2 Rate: Rate of Time Suppression of Virus;
3 CD4: Length-adjusted AUC of CD4 Counts, logarithm scale
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2.3.4 Sensitivity analyses

The sensitivity our analytic results depend on many assumptions, some of which are

identified and others of which are not identified by the observable data. Because these

statistical assumptions play no small role in the analysis of observational data, many

authors have proposed a wide range of tools for model diagnostics and sensitivity anal-

yses (cf. Rosenbaum, 1983; Robins, 1999; Robins, Rotnizky, and Scharfstein, 1999;

Rotnizky, Scharfstein, Su, and Robins, 2001). Our sensitivity analyses included, but

not limited to, comparing the effect on our parameter estimates when weak observed

confounders were removed and when all the confounders were included in the models.

In addition, we will conduct analysis to look into the influence of those 50 patients

who experienced virologic failure but only after a protocol-approved substitution. In-

vestigating the sensitivity of our analytic results to nonidentifiable assumptions is

beyond the scope of the current paper. Hence, our results rest on the validity of the

“no unmeasured confounders” assumption. However, this assumption is ubiquitous

in the literature and a well-know limitation of causal inference.

In our main analysis, we include all potential confounders which were significantly

or mildly related to treatment switching, endpoints, or both, and used the same set of

variables throughout. Different endpoints have different important covariables sets.

Baseline viral load, baseline CD4 cell counts, time to viral failure on initial regimen,

race and body weight are found important for cumulative viral load. Baseline viral

load, maximum viral load before switching, baseline CD4 cell counts, baseline CD8 cell

counts, time to viral failure on initial regimen, sex and race have important effects on

proportion of time with non-detectable viral load. Baseline viral load, maximum viral

load before switching, baseline CD4 cell counts, baseline CD8 cell counts, time to viral

failure on initial regimen, body weight, sex and race are significantly associated with

cumulative viral load. In Table 1, we report the point estimates of mean outcomes

on treatment policies, their standard error estimates, and ACE. Compared to the
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main analysis, we found that point estimates and standard error estimates changed

little when unimportant covariates were removed from the models and the difference

of mean endpoints are still significant between patients who switch to a second-line

regimen within 8 weeks after failure on the first-line regimen than those patients who

switch late. The findings are summarized in Table 2.5.

Table 2.5: Analytic results after removing weak confounders

OPT IPW Naive
Endpoint Switch Est.(SE) T Est.(SE) T Est.(SE) T
Virus 1 Early 7.93 (0.08) 7.92 (0.10) 9.56 (0.32)

Late 8.12 (0.07)
11.79

8.11 (0.07)
5.61

9.33 (0.12)
0.72

Rate 2 Early 0.80 (0.01) 0.82 (0.03) 0.52 (0.05)
Late 0.76 (0.01)

18.59
0.76 (0.01)

3.98
0.46 (0.02)

1.00

CD4 3 Early 5.96 (0.02) 6.07 (0.23) 5.69 (0.12)
Late 5.89 (0.02)

16.17
5.89 (0.02)

0.63
5.74 (0.06)

0.40

NOTE: The estimated endpoint is reported for combination of initial ARV treatment regimen

(A=Combined Efavirenz) and switching status (S);

The Wald test statistic for a test of the null hypothesis of no average causal effect (ACE);
1 Virus: Length-adjusted AUC of Virus Load, logarithm scale;
2 Rate: Rate of Time Suppression of Virus;
3 CD4: Length-adjusted AUC of CD4 Counts, logarithm scale

We repeat the analysis for our three endpoints in Table 2.6, excluding 50 patients

from our analysis. This way accounts for defining “failure” as “confirmed failure on

the first-line regimen” and first-line regimen only includes initial treatment. As in

the main analysis, we use all potential confounders. Conclusion did not change from

main analysis( Table 2.6).

In the main analysis, length-adjusted AUC of viral load and CD4 cell counts are

computed on the original scale, then we transform to the natural logarithmic scale. In

this section, length-adjusted AUC is calculated on a natural logarithmic scale of viral

load and CD4 cell counts. Although point estimates for viral load are different from

main analysis, the conclusions are exactly the same. That is, patients that switch

off a failing ARV regimen within 8 weeks have a smaller cumulative viral load and
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Table 2.6: Analytic results after excluding 50 patients who were not following initial
ARV regimen at first virologic failure

OPT IPW Naive
Endpoint Switch Est.(SE) T Est.(SE) T Est.(SE) T
Virus 1 Early 7.91 (0.08) 7.90 (0.10) 9.56 (0.32)

Late 8.10 (0.07)
3.58

7.99 (0.08)
1.23

9.15 (0.15)
1.23

Rate 2 Early 0.82 (0.01) 0.82 (0.03) 0.52 (0.05)
Late 0.78 (0.01)

17.47
0.78 (0.01)

1.77
0.48 (0.03)

0.73

CD4 3 Early 5.96 (0.02) 5.98 (0.22) 5.67 (0.11)
Late 5.90 (0.03)

10.80
5.89 (0.03)

0.15
5.75 (0.07)

0.42

NOTE: The estimated endpoint is reported for combination of initial ARV treatment regimen

(A=Combined Efavirenz) and switching status (S);

Wald test statistic for a test of the null hypothesis of no average causal effect (ACE);
1 Virus: Length-adjusted AUC of Virus Load, logarithm scale;
2 Rate: Length-adjusted Time of Suppression of Virus;
3 CD4: Length-adjusted AUC of CD4 Counts, logarithm scale

higher cumulative CD4 cell counts. Point estimates and standard error estimates are

displayed in Table 2.7.

2.4 Simulation Study

In this section, we carry out simulation studies to investigate the performance of

proposed estimator and how unknown parameters affect the power of our test statistics

to detect significant differences between policies that switch early versus late.

We firstly conducted simulation studies to examine the operating characteristics of

several estimators. We consider a special case where all the patients experienced viro-

logic failure and switched to the second-line treatment either early or late. For the true

propensity score models and outcome regression models, we follow simulation scenar-

ios similar to those in Cao et al. (2009). For each i, Zi = (Zi1, Zi2, Zi3, Zi4)T was gen-

erated as standard multivariate normal, and the elements of Xi = (Xi1, Xi2, Xi3, Xi4)T

were defined as Xi1 = exp(Zi1/2), Xi2 = Zi2/(1 + exp(Zi1)) + 10, Xi3 = (Zi1Zi3/25 +

0.6)3 and Xi4 = (Zi1 + Zi2)2, so that Zi may be expressed in terms of Xi. The true
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Table 2.7: Analytic results when outcomes are length-adjusted AUC of logarithm of
original scale

OPT IPW Naive
Endpoint Switch Est.(SE) T Est.(SE) T Est.(SE) T
Virus 1 Early 4.23 (0.09) 4.22 (0.09) 5.98 (0.41)

Late 4.41 (0.07)
4.95

4.41 (0.07)
4.97

6.18 (0.16)
0.51

Rate 2 Early 0.80 (0.01) 0.81 (0.03) 0.52 (0.05)
Late 0.76 (0.01)

19.38
0.76 (0.01)

3.13
0.46 (0.02)

1.00

CD4 3 Early 5.91 (0.03) 5.96 (0.21) 5.60 (0.13)
Late 5.83 (0.03)

18.35
5.83 (0.03)

0.37
5.67 (0.06)

0.48

NOTE: The estimated endpoint is reported for combination of initial ARV treatment regimen

(A=Combined Efavirenz) and switching status (S);

Wald test statistic for a test of the null hypothesis of no average causal effect (ACE);
1 Virus: Length-adjusted AUC of Virus Load, logarithm scale;
2 Rate: Length-adjusted Time of Suppression of Virus;
3 CD4: Length-adjusted AUC of CD4 Counts, logarithm scale

propensity score model is π0 = expit(−Z1 + 0.5Z2 − 0.25Z3 − 0.1Z4). We consider

two types of true outcome regression models. The first type is an additive linear re-

gression of endpoint on Z. The second setting is partly motivated by our observation

that AUC outcomes have long right-tails; hence, we assume endpoints are exponen-

tially distributed. We carry out the following simulations: (1) true PS models and

normal distribution for endpoints, and correctly specified posited models; (2) true PS

models and normal distribution for endpoints, and correctly specified posited models

with more insignificant covariates; (3) true PS models and normal distribution for

endpoints, and true OR models are on X, but posited OR models are on Z; (4) true

PS models and exponential distribution for endpoints, but posited model are linear

regression of endpoints with normal standard errors. For each scenario of n=1000 and

n=100, we generate 1000 Monte Carlo data sets. For each estimator, sandwich stan-

dard errors are calculated as described in the Appendix. Results for all simulation

scenarios are presented in Table 2.4.

When sample size is as large as 1000 and PS model is correctly specified, IPW,

AIPW, RRZ and Tan estimators all showed negligible Monte Carlo bias. In addition,
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AIPW, RRZ and Tan estimator showed improved efficiencies than IPW estimators,

as expected. Moreover, Tan estimator exhibit the best performance in terms of ef-

ficiency. However, when sample size is 100 and OR model is misspecified, RRZ

estimator shows significant small sample bias. In most cases, Tan’s estimator was

competitive with other estimators in the scenarios we considered. However, based on

the simulation results, we see that even Tan’s optimal estimators can perform poorly

in small samples, even when the PS model is correctly specified.

The second set of simulations is used to evaluate the influence of coefficient

in the outcome regression model on the power. we are interested in the proba-

bility of T > 3.84 where T is statistics calculated according to the formula T =

(Cµ)T(CΣµC
T)−1(Cµ), where C=(1, -1) is asymptotically distributed as χ2

1 under

the null hypothesis of no difference, and we estimate it based on 1000 MCMC simu-

lations.

We consider combination of the following conditions:(a) switching rate ≈ (0.1, 0.5)

by adjusting intercept(β) in the propensity score, and (b) coefficients in the outcome

regression γ = (−0.1,−0.3,−0.5). Failure rate was fixed at 0.3, sample size n=700

and other parameters are chosen to be close to the values in the A5095.

The simulation results were presented in the Figures below. The power versus

rate of difference of mean over its standard deviation are plotted. First, an apparent

trend was found that power will increase with the increase of standardized differ-

ence of means in two groups given the effect of covariate on outcome in outcome

regressions. Second, we noticed that for given standardized difference of mean, power

increases with the increase of influence of covariate on outcome. The findings are

consistent no matter how much the switching rate is, 0.1 or 0.5. In short, the more

important covariates in the propensity score model or conditional mean models, the

more powerful the proposed estimator.

The last simulations is intended to show how the switching rate affects the power
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Table 2.8: Simulation results based on 1000 Monte Carlo replications.

n=1000 n=100
Method Bias MCSD AAVE MAVE Bias MCSD AAVE MAVE

PS correct OR correct
IPW 0.011 4.685 4.453 3.926 1.782 24.274 13.978 22.370
AIPW 0.029 1.149 1.147 1.147 0.127 3.658 3.605 3.596
RRZ -0.312 1.300 1.172 1.164 5.937 9.130 5.348 4.520
Tan -0.029 1.149 1.147 1.147 0.123 3.652 3.602 3.598

PS correct, OR incorrect 1

IPW 0.040 4.869 4.488 3.975 2.660 24.154 20.533 14.165
AIPW 0.029 1.150 1.149 1.148 0.128 3.664 3.612 3.609
RRZ -0.323 1.306 1.175 1.167 8.410 10.997 7.211 6.198
Tan 0.030 1.150 1.149 1.148 0.127 3.664 3.607 3.605

PS correct, OR incorrect 2

IPW -0.497 8.324 7.685 6.757 2.676 41.472 24.535 18.256
AIPW -0.496 2.617 2.381 2.176 0.500 7.813 6.263 5.506
RRZ 0.177 2.619 2.227 2.118 10.303 16.368 9.495 7.989
Tan -0.082 2.386 2.201 2.058 1.454 7.655 6.644 5.219

PS correct, OR incorrect 3

IPW 0.373 12.647 12.722 12.067 0.759 50.897 37.851 32.091
AIPW 0.464 12.080 12.113 11.592 3.064 42.294 35.611 32.585
RRZ 0.183 12.071 11.745 11.346 3.583 40.884 33.476 30.598
Tan 0.619 12.149 11.929 11.415 3.571 45.991 42.915 33.171

1 Posited OR models are linear, having more insignificant covariates than true models
2 Posited OR models are linear, having different significant covariates from true models
3 Posited OR models are linear, while true distribution of endpoint are exponential

Bias, Monte Carlo bias; MCSD, Monte Carlo standard deviation;

AAVE, average of sandwich standard errors; MAVE, median of sandwich standard errors
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Figure 1: Sample size=700, failure rate=0.3, switching probability among failed patients is 
about 0.1, coefficients for Cd4 in the linear regression are -0.1, -0.3, -0.5. 
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Figure 2: Sample size=700, failure rate=0.3, switching probability among failed patiets is 
about 0.5, coefficients for Cd4 in the linear regression are -0.1, -0.3, -0.5. 
 

Figure 2.3: Effect of Coefficients on Power
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of our estimators. In this simulation, we mange to set all the parameters close to the

values in the data of A5095, except the intercept in the propensity score which adjusts

the switching rate. In order to mimic the real data, we choose 6 covariates as in real

data analysis, 4 continuous covariates following standard normal distribution and 2

categorical covariates following binary distribution with probability of 0.35 and 0.23,

respectively. The propensity score and outcome regressions are assumed as follows:

(1) logit P (S = 1|X,R = 1) = β + 0.82X1 − 0.04X2 − 0.05X3 − 0.18X4 + 0.22X5 + 0.61X6

(2) E(Y1|R = 1, X) = −1.18 + 1.91X1 − 0.47X2 + 0.25X3 − 0.20X4 + 0.98X5 + 0.81X6

E(Y0|R = 1, X) = 2.61 + 1.33X1 − 0.26X2 + 0.23X3 − 0.17X4 + 0.41X5 + 0.43X6X

Except β, all the parameters in the models above are chosen to reflect aspects

of the dataset in A5095. In the simulation scenarios to follow, failing rate R = 0.26

and sample size n = 758. The simulation results are presented in the Table 2.9

below. The results in the Table 2.9 showed that Larger switching rate would result

in larger power, and if we simulate an environment which have the same parameters

with the dataset in A5095, our estimators would have a power of more than 80%

when switching rate reachs 16%.

Table 2.9: Power under different switching rates

Switching Rate 0.07 0.16 0.19 0.24 0.33 0.54
µ̂1(se.) 7.99 (0.62) 7.96 (0.09) 7.96 (0.09) 7.95 (0.08) 7.95 (0.08) 7.94 (0.07)
µ̂0(se.) 8.13 (0.07) 8.13 (0.07) 8.13 (0.07) 8.13 (0.07) 8.13 (0.07) 8.12 (0.07)
Power 0.425 0.837 0.894 0.945 0.994 0.999
True values: µ1=7.92; µ0=8.13
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2.5 Discussion

We extended LDT’s estimators proposed in the two-stage randomization setups to

observational data by introducing a hypothetical randomization design and applying

a result about Radon-Nikodym derivative presented by Murphy, van der Laan, and

Robins(2001). Moreover, by adopting the idea of Tan(2006), our new estimator gained

more efficiency and robustness.

The results gained by applying our method to ACTG A5095 data answered a sci-

entific question of interest of the physicians in ACTG team: Should a patient switched

to a second-line regimen within 8 weeks after he/she had been confirmed to be failed

on the first-line regimen? Specifically, our findings support the statement that pa-

tients would have smaller cumulative virus load, higher rate of time of suppressing

viral load below 200mL/copies and larger cumulative CD4 counts if they had failed

on the first-line regimen, then switched to second-line regimen within 8 weeks after

failure.

As in most observational studies, a key assumption to our estimator is no un-

measured confounding. This assumption is, unfortunately, also the most difficult to

verify. What we did was to include all the covariates that we can collect from the

existing datasets in our method to acquire some confidence that we had all the ob-

served important factors. In sensitivity analysis, we removed those covariates which

had no effect on the propensity score and endpoints. It turns out that results did

not change very much and the same conclusion remained. However, if we removed

strong covariates related to propensity score and endpoints, the significance lost or

decreased. Such findings justified the way we selected the auxiliary variables and sup-

port our conclusions that switching to 8 weeks within 8 weeks after failure is better

than switching late. Another special assumption for ACTG A5095 data is we assumed

50 patients who experienced virologic failure but only after a protocol-approved sub-

stitution did not switch to second-line regimen within 8 weeks and included them
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in the main analysis. Sensitivity analysis showed that including these 50 patients or

not did not affect our previous findings. This does not mean our method is robust

to drug-substitution happening to HIV patients. The findings about this are only

restricted to ACTG A5095 data.

In addition to additional analyses listed in Subsection 2.3.4, we also considered

different thresholds for an early versus delayed regimen change. The decision to define

switching early as switching within 8 weeks after failing on the first-line regimen

was made by investigators in the ACTG A5095 team and physicians who actually

participated the study. Nevertheless, we tried different thresholds including 90, 120

and 150 days. In general, we found that significance differences between early and late

regimen change disappeared as timing of the threshold increases. Robust methods

that do not require thresholds are desirable but we conjecture would not make a

significant impact in the current analysis due to limited numbers of patients who

actually changed regimens within several months of confirmed virlogic failure.

The ACTG A5095 study is an excellent example of a clinical trial that was designed

to test a particular hypothesis on the efficacy of initial regimens but we used it for

a particularly intriguing secondary analysis of regimen change. If ACTG A5115 is

any indication of the future, it will be difficult to design and enroll a completely

randomized study of regimen change. In this case, data like that from ACTG A5095

and the framework employed here will be germane for evaluating the effect of early

regimen change. As with many clinical studies, however, there are always twists

and caveats that make secondary analyses tricky. A limitation of our analysis is that

patients who switched to second-line regimen within 8 weeks of initial virologic failure

may have more follow-up data post-second-line treatment than do patients who delay

switching. We attempted to adjust for the discrepancy by adjusting for length of

follow-up but it would have been preferable to measure and analyze an endpoint that

was exogenous to the timing of the second-line ARV treatment decision. Our first
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response to this criticism is that it is not evident, based on the literature or the clinical

experience of the co-authors, whether more follow-up necessarily leads to better or

worse outcomes and such assumption was one of our working hypotheses when we

started this project. A second response to this criticism is consider other analyses

and other larger data sets. For example, augmenting the A5095 data with data from

other ACTG studies will allow us to better address the long-term effect of regimen

changes and is also the subject of ongoing research.

Although dissemination of our findings from ACTG A5095 data may not be avail-

able, our method is anticipated to prove useful in multiple fields of applied research.

Further developments will focus on the method to choose the optimal waiting time

to switch to the second-line regimen and waiting time will remain continuous instead

of dichotomy on a prefixed cutting point.

Finally, the findings about influence of coefficients in the conditional mean models

are interesting in the simulation. Whether it is a general phenomenon or a special

case depending on the data setting needs further exploration.
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Chapter 3

Locally efficient and Double

Robust Semiparametric Estimator

for the Treatment Duration, with

Duration Possibly Right-censored

3.1 Introduction

Once treatment has been proven effective, study investigators are often interested

in the best treatment duration which optimizes the response. As Johnson and Tsi-

atis(2004) argued that because infusion can not continue after a treatment-terminating

event, a recommendation to infuse for t units of time necessarily implies that treat-

ment would be discontinued either after drug was administered for t units of time or

when a treatment-terminating event occurs. Thus, censoring is as an essential part

of treatment policy and a treatment duration policy for t unites of time of interest

is defined as “a recommendation to treat for t units of time or until a treatment-

terminating event occurs, whichever comes first”.
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Johnson and Tsiatis (2004; subsequently referred to as JT) have shown how to

estimate consistently the population mean response for the treatment duration policy

by incorporating propensity score in the estimator without modeling outcome regres-

sion on covariates. However, the JT estimator is neither the most efficient nor doubly

robust; that is, it does not remain consistent and asymptotically normal if either the

propensity score model or the outcome regression model is correct. Considerable re-

cent interest has focused on doubly robust estimators for a population mean response

in the presence of incomplete data, which involves models for both the propensity

score and the regression of outcome on covariates. Given the protection afforded by

the property being doubly robust, these estimators have been advocated for routine

use (Bang and Robins, 2005). In this chapter we use Robins, Rotnitzky, and Zhao

(1994)’s theory to identify a class of augmented inverse probability weighted estima-

tors and show how to derive a doubly robust estimator which is more efficient than

the JT estimator.

3.2 Method

As in Johnson and Tsiatis (2004), throughout our analysis, we adopt the point of

view proposed by Neyman (1923) and Rubin (1974), where casual effects are defined

through potential outcomes or counter-factual random variables. Specially, for each

level of the treatment T having m discrete values: t1, · · · , tm, we assume that there

exists a potential outcome Y ∗t , where Y ∗t denotes the response of a randomly selected

individual had, possibly contrary to fact, been given treatment T = t. If a patient

experienced a treatment-terminating event at time C, he would have potential out-

come Y ∗C . The parameter of interest would be mean outcome, E(Y ∗t∧C), where t ∧ C

denotes the minimum of t and C and Y ∗t∧C is the response if a patient would have been

treated for t units of time or until a treatment-terminating event occurs, whichever



46

comes first. This may also be written as

µr = E(Y ∗tr∧C) = E{Y ∗trI(C > tr) + Y ∗CI(tr ≥ C)}.

The random variables defined above are referred to as potential random variables,

or counterfactuals, because, contrary to the fact, they may not actually be observed.

In contrast, for a randomly selected individual from our population, the observable

random variables are subsets of potential outcomes. We regard them as incomplete

data of potential outcomes. In this chapter, instead of talking about missing data, we

refer to a more general notion of “coarsening” of data. The concept of coarsened data

was first introduced by Heitjan and Rubin (1991) and studied more extensively by

Heitjan (1993) and Gill, van der Laan, and Robins (1996). In a number of common

situations, data are neither entirely missing nor perfectly present. Instead, we observe

only a subset of the complete-data sample space in which the true and unobservable

data lie (Heitjan and Rubin (1991)). This kind of incomplete data is referred to

coarse data. The purpose we introduce coarsening data is not to investigate its

feature or explore more perspectives about coarsening data, instead, we are more

interested in the application of coarsening data as a tool in our problem to derive

an efficiently doubly robust semiparametric estimator. There are several concepts

related to coarsened data, which are full data, coarsening variable and observed data,

and like function making connection between full data and observed data through

coarsening variables. We aim to make inference on the parameter of interest of full

data through observed data.

3.2.1 Full Data and Observed Data

Let T denote treatment duration, having m discrete values: t1, · · · , tm, and C is

the termination event time, and C∗ is the coarsened variable. {Y ∗1 , ..., Y ∗m, Y ∗C} are
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potential outcomes while Y is the observed outcome. Let XH(C) denote all the

history information collected up to treatment-terminating event time .

In an imaginarily ideal world, we are able to observe full data Z = {Y ∗1 , ..., Y ∗m, Y ∗C , C,XH(C)}.

Parameters of interest are

µr = E [Y ∗r I(C > tr) + Y ∗CI(C ≤ tr)] , r = 1, ...,m.

With full data we can make inference on µr(r = 1, · · · ,m) using standard statistical

theory.

However, in a real world, we can only observe {Y, U,∆, XH(U)}, where U =

min(T,C),∆ = I(T < C) and a key assumption is

Y = Y ∗1 I(T = t1, C > t1) + ...+ Y ∗mI(T = tm, C > tm) + Y ∗CI(T ≥ C)

= Y ∗1 I(U = t1,∆ = 1) + ...+ Y ∗mI(U = tk,∆ = 1) + Y ∗CI(∆ = 0).

Remark. The assumption above is referred as Stable Unit Treatment Value Assump-

tion (SUTVA) referred by Rubin(1978a). SUTVA implies that there must not be any

interference in the response from other subjects and the plausibility of this assumption

needs to be evaluated on a case-by-case basis (Tsiatis, 2006). Since the disease in our

study is not infectious through common contacts and patients were not collected by

families, we have reasons to believe the SUTVA assumption holds.

Remark. Full data, latent vectors and observed data: We assume that underlying

any problem related to potential outcomes there are unobservable latent variables

Z∗ = (Y ∗1 , ..., Y
∗
m, Y

∗
C , C,X

H(C), T ).
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The joint distribution of p(t, c, y∗1, ..., y
∗
m, y

∗
c , x) can be written as

p(t|c, y∗1, ..., y∗m, y∗c , x)p(c, y∗1, ...y
∗
m, y

∗
c , x),

where p(C, y∗1, ...y
∗
m, y

∗
c , x) denotes the density of the full data had we been able to

observe them. Therefore, full data which we need to make statistical inference for

parameter of interest is

Z = {Y ∗1 , ..., Y ∗m, Y ∗C , C,XH(C)}.

If we define C∗ is the coarsened variable, both (C∗, Z) and Z are referred to full data

in the coarsening problem (Tsiastis, P156, 2006). To avoid confusion, we call Z is

full data and (C∗, Z) are latent random vectors.

In survival analysis, death or failure, or other competing risk is considered an

“event”. Usually, survival time T is either recorded completely or censored by some

termination event. However, here we treat time to terminating event as being censored

by treatment T , instead of T being censored by C. The reason is due to the following

logic. Because potential outcomes Y ∗1 , · · · , Y ∗m have been assumed to be obtained in

the full data, so T does not play any role for the potential outcomes in the full data.

Plus, in full data each patient is assumed to be observed on his/her terminating

event time C and the corresponding potential outcome Y ∗C . However, T plays an

important role in deciding whether C could be observed in reality. Therefore, instead

of regarding T is censored by C, this problem could be viewed in this way that C is

censored by T and T plays role as coarsening variable or part of coarsening variable.

If we believe latent variables data is (C∗, Z) = (T, Y ∗1 , · · · , Y ∗m, Y ∗C , C,XH(C))(we

never observed latent variables (C∗, Z) or full data Z), the observed data are given

as the transformation of the latent variables, namely {Y, U,∆, XH(U)}, where U =

min (T,C),∆ = I(T < C) and Y = Y ∗1 I(U = t1,∆ = 1) + ... + Y ∗mI(U = tm,∆ =
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1) + Y ∗CI(∆ = 0) = Y ∗1 I(T = t1, C > t1) + ... + Y ∗mI(T = tm, C > tk) + Y ∗CI(T ≥ C),

and XH(U)is the history information collected up to observed time U .

3.2.2 Coarsening Variable and Link Functions

To make the connection between the full data and the observed data, we define

coarsening variable as below,

(C∗ = r) = (T = tr, C > tr), r = 1, 2, ...,m.

(C∗ =∞) = (C ≤ T ).

Thus, r+1 types of coarsening exist. Note there is no possibility to observe the full

data in reality. We need to point out that (C∗ =∞) does not mean we have observed

the full data, only denotes one type of coarsening where terminating event can be

observed. When C∗ = r, we observe Gr(Z) = [Y ∗r , CI(C ≤ tr)], X
H(min(tr, C))] for

r ≤ m and G∞(Z) = [Y ∗C , C,X
H(C)] for r =∞. {Gr(Z), r = 1, · · · ,m,∞} are called

link functions.

Obviously Gr(Z) is not a function of Gr+1(Z) if we do not put any assumption such

as monotone on the relationship for potential outcomes Y ∗r , r = 1, ...,m. However, we

would like to express Gr(Z) = [Y ∗r , CI(C ≤ tr), X(min(tr, C))] = [Y ∗r , G
1
r(C,X)] for

r ≤ m and G∞(Z) = [Y ∗C , C,X
H(C)] = [Y ∗C , G

1
∞(C,X)] for r = ∞. Thus, although

Gr(Z) is not a function of Gr+1(Z), G1
r(C,X) is a function of G1

r+1(C,X). Further-

more, we assume {(Y ∗1 , ..., Y ∗m, Y ∗C) ⊥ T |XH(C)}. This reminds us it is convenient

to consider coarsening models expressed by the discrete hazard function, and we will

discuss it later.

The observed data can be expressed as

(C∗, GC∗(Z)) = {C∗, GC∗(Y
∗

1 , · · · , Y ∗m, Y ∗C , C,XH(C))},



50

where

{C∗ = r,Gr(Y
∗

1 , ..., Y
∗
m, Y

∗
C , C,X

H(C))} = {T = tr, C > tr, Y
∗
r , X

H(tr)}, r = 1, · · · ,m,

{C∗ =∞, G∞(Y ∗1 , ...Y
∗
m, Y

∗
C , C,X

H(C))} = {T ≥ C,C, Y ∗C , X
H(C)}.

Important assumptions not only include SUTVA assumption but also include:

(1) Coarsening at random, i.e., P (C∗ = r|Z) = ω(r,Gr(Z)); (3.1)

(2) No unmeasured confounding, i.e., (Y ∗1 , ..., Y
∗
m, Y

∗
C) ⊥ T |X. (3.2)

Assumption (3.1) is a common assumption in the coarsening problem and Assump-

tion (3.2) is an important assumption on which inference on causal effect necessarily

relies. Assumption (3.2) implies that P (C∗ = r|Z) = ω(r,G1
r(C,X)), allowing to

model coarsening probability by borrowing idea when coarsening is monotone. We

will introduce “partially-monotone coarsening” in the next section. We simplify the

symbol of XH(U) as X from now on.

3.2.3 Partially-monotone Coarsening

When data are coarsening at random, we consider models for the coarsening proba-

bilities, which, in general, are denoted by

P (C∗ = r|Z = z, γ) = ω(r,Gr(Z), γ),

in terms of the unknown parameters γ. Tsiatis(2005) elaborated how to make infer-

ence when coarsening is monotone, when the link function Gr(Z) is a many-to-one

function of Gr+1(Z). Although the assumption of monotone coarsening does not hold

in our case, we can borrow the idea of dealing with monotone coarsening to handle



51

the coarsening mechanism in our case. Specifically, for the rth link function

Gr(Z) = {Y ∗r , CI(C ≤ tr), X(min(tr, C))}, r ≤ m;

G∞(Z) = {Y ∗C , C,XH(C)}, r =∞.

we define another set of functions as below:

G1
r(C,X) = [CI(C ≤ tr), X{min(tr, C)}], r ≤ m;

G1
∞(C,X) = [C,XH(C)], r =∞.

Thus, althoughGr(Z) is not a function ofGr+1(Z), G1
r(C,X) is a function ofG1

r+1(C,X),

and we call such type of coarsening “Partially-monotone Coarsening”.

With partially-monotone coarsening, it is convenient to consider models for the

discrete hazard function, defined as

λr(G
1
r(C,X)) =

 P (C∗ = r|C∗ ≥ r, Z) r = 1, 2, · · · ,m

1 r =∞.
(3.3)

That λr(·) is a function of G1
r(C,X) follows by noting that the right-hand side of

equation (3.3) equals

P (C∗ = r|C∗ ≥ r, Z) =
P (C = r|Z)

P (C∗ ≥ r|Z)

=
ω(r,G1

r(C,X))

1− P (C∗ < r|Z)
=

ω(r,G1
r(C,X))

1−
∑

r′≤r−1

ω(r′, G1(C,X))
,

and where G1
r′(C,X) is a function of G1

r(C,X) for all r′ < r.

We also define

Kr{G1
r(C,X)} = P (C∗ > r|Z) =

r∏
r′=1

[1− λ{G1
r′(C,X)}], r = 1, · · · ,m− 1.
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Consequently, we can equivalently express the coarsening probabilities in terms of

the discrete hazard functions; namely,

ω(r,G1
r(C,X), γ) =


λ1{G1

1(C,X)} r = 1,
r−1∏
r′=1

[1− λr′{G1
r′(C,X)}]λr{G1

r(C,X)} r = 2, · · · ,m,
m∏
r′=1

[1− λr′{G1
r′(C,X)}] r =∞.

In addition, we define rth discrete cause-specific hazard functions only specified

by observed data X as follows:

λ̃r(X) = P (U = tr,∆ = 1|U ≥ tr, X), r = 1, 2, · · · ,m.

Note one of the special features in ESPRIT study is if a patient has not expe-

rienced any terminating event before time tm which is maximum treatment length,

this patient would be forced to receive treatment with length tm. Consequently, when

r = m, λ̃r(X) = 1. This feature leads to the fact that

Km(Gm(Z)) = P (C∗ > m|Z) = 0, if C > tm.

We show relationship between discrete hazard function λ{G1
r(C,X)} and discrete

cause-specific hazard function λ̃(X) in the next Lemma.

Lemma 1. Under the CAR assumption (3.1) and no unmeasured confounding as-

sumption (3.2) ,

λr{G1
r(C,X)} = λ̃r(X)I(C > tr), r = 1, · · · ,m,

where λr{G1
r(C,X)} denotes discrete hazard function P (C∗ = r|C∗ ≥ r, Z) and λ̃r(X)

denotes discrete cause-specific hazard function P (U = tr,∆ = 1|U ≥ tr, X).
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Proof:

The event C∗ ≥ r, which includes C∗ =∞, is equal to

C∗ ≥ r = (T ≥ tr, C > T ) ∪ (C ≤ T ).

Therefore,

λr(G
1
r(C,X)) = P (C∗ = r|C∗ ≥ r, Z)

= P (T = tr, C > tr|(T ≥ tr, C > T ) ∪ (C ≤ T ), C,X).

If C ≤ tr, then λr(Gr(Z)) = 0, whereas if C > tr, then

(T ≥ tr, C > T ) ∪ (C ≤ T )} ∩ (C > tr)

= (T ≥ tr, C > T ) ∩ (C > tr)} ∪ {(C ≤ T ) ∩ (C > tr)}

= (T ≥ tr, C > T ) ∪ (C > tr, C ≤ T )

= (T ≥ tr, C > T,C > tr) ∪ (C > tr, C ≤ T, T ≥ tr)

= (T ≥ tr, C > tr).

λr(G
1
r(C,X)) = P (C∗ = r|C∗ ≥ r, Z)

= P (C∗ = r|(T ≥ tr, C > T ) ∪ (C ≤ T ), C,X)

= P (C∗ = r|(T ≥ tr, C > T ) ∪ (C ≤ T ), C,X)I(C > tr)

= P (T = tr, C > tr|T ≥ tr, C,X)I(C > tr)

= P (T = tr, C > tr|T ≥ tr, C ≥ tr, X)I(C > tr)

= P (U = tr,∆ = 1|U ≥ tr, X)I(C > tr)

= λ̃r(X)I(C > tr), r = 1, · · · ,m.
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Lemma 1 builds up the fact that ω(r,G1
r(C,X)) can be written as a function of

X and indicator of C > tr, specifically,

ω(r,G1
r(C,X)) =


λ̃1(X)I(C > t1) r = 1
r−1∏
r′=1

[
1− λ̃r′(X)

]
λ̃r(X)I(C > tr) r = 2, · · · ,m

m−1∏
r′=1

[
1− λ̃r′(X)I(C > t′r)

]
I(C ≤ tm) r =∞.

To simplify notation, we will use the following symbols from now on.

λr = λr(G
1
r(C,X)),

λ̃r = λ̃r(X), so λr = λ̃rI(C > tr);

Kr = Kr{G1
r(C,X)} =

r∏
r′=1

[1− λ{G1
r′(C,X)}],

K̃r =
r∏

r′=1

(1− λ̃r′);

ωr = ω(r,G1
r(C,X)),

ω̃r =


λ̃1 r = 1
r−1∏
r′=1

(1− λ̃r′)λ̃r r = 2, · · · ,m

Any symbol with a “∼ ” on it denotes a function with history information X

collected up to observed time only.

3.2.4 Influence Functions of Full Data and Observed Data

In order to derive the observed-data regular asymptotic linear (RAL) estimator for

µr = E[Y ∗r I(C > tr) + Y ∗CI(C ≤ tr)], r = 1, ...,m, we need to know the influence

function of full data then that of the observed data.

Influence Functions of Full Data

A full-data M-estimator µ̂r(r = 1, · · · ,m) can be derived by solving the estimating
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equations

n∑
i=1

{Y ∗riI(Ci > tr) + Y ∗CiI(Ci ≤ tr)} − µr = 0, r = 1, · · · ,m.

The influence function of µ̂r is given by (P.31, Tsiatis 2005)

−
[
E
∂mr(Z, µ0r)

∂µ0r

]−1

mr(Z, µ0r),

where µ0r is the true value and mr(Z, µ0r) = Y ∗r I(C > tr) +Y ∗CI(C ≤ tr)−µ0r. Since

−E{∂mr(Z,µ0r)
∂µ0r

} = 1, we immediately deduce that the influence function of µ̂r is

mr(Z, µ0r) = ϕFr (Z) = Y ∗r I(C > tr) + Y ∗CI(C ≤ tr)− µr, r = 1, ...,m.

General Form of Influence Function for Observed Data

Definition. A mapping, also sometimes referred to as an operator, K, is a function

that maps each element of some linear space to an element of another linear space.

In all of our applications, the linear spaces are well-defined Hilbert spaces. We define

the many-to-one mapping

K : H → HF

to be

K(h) = E[h{h(C∗, GC(Z))}|Z],

for h ∈ H. We define an inverse operator, for any element hF ∈ (H)F ,K−1(hF )

corresponds to the set of all elements h ∈ H such that K(h) = hF .

Parameter of interest is a vector with m dimensions, i.e., µ = (µ1, · · · , µm), so we

discuss estimating approach and make inference for a given µr, finally stack them up.

If ϕF (Z) is the full-data influence function for µr, then the observed-data influence

function corresponds to functions K−1(ϕF (Z)), (K : H → HF ) given by definition
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above, is a function belong to the class of

{ϕ(Z)} = h(Y, U,∆, X) + Λ2,

where

(Condition 1.) h(Y, U,∆, X) is any function that satisfies the relationship

E{h(Y, U,∆, X)|Y ∗1 , · · · , Y ∗m, Y ∗C , C,X} = ϕF (Z) = Y ∗r I(C > tr) + Y ∗CI(C ≤ tr)− µr;

(Condition 2.) Λ2 is the linear subspace in Hilbert spaceH consisting of elements

L2(Y, U,∆, X) such that

E{L2(Y, U,∆, X)|Y ∗1 , · · · , Y ∗m, Y ∗C , C,X} = 0.

Theorem 1. When the coarsening probability is known to us, say γ0, the class of

observed-data influence functions is denoted as:

{ϕ(Z)} = h(Y, U,∆, X, γ0) + L2,

where

h(Y, U,∆, X) = (Y − µr)
{
I(U = tr,∆ = 1)

ωk
+
I(U ≤ tr,∆ = 0)

ω∞

}
. (3.4)

L2 =
m−1∑
k=1

{
I(C∗ = k)− ωkI(C∗ = m)

ωm
− ωkI(C∗ =∞, tk < C ≤ tm)

ω∞

}
lk(X).(3.5)

lk(X)(k = 1, · · · ,m− 1) are any functions of X.

Before we prove Theorem 1, we first introduce two Lemmas, each of which shows

that Condition 1 and Condition 2 are satisfied by defining function h and L2 as in

(3.4) and (3.5).
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Lemma 2.

E{h(Y, U,∆, X)|Y ∗1 , · · · , Y ∗m, Y ∗C , C,X} = Y ∗r I(C > tr)+Y
∗
CI(C < tr)−µr, r = 1, · · · ,m.

where h(Y, U,∆, X) is defined in the (3.4).

Proof:

E{h(Y, U,∆, X)|Y ∗1 , · · · , Y ∗m, Y ∗C , C,X}

= E

{
Y I(U = tr,∆ = 1)

ωr
|Y ∗1 , · · · , Y ∗m, Y ∗C , C,X

}
+E

{
Y I(U ≤ tr,∆ = 0)

ω∞
|Y ∗1 , · · · , Y ∗m, Y ∗C , C,X

}
− µr

=
E {Y ∗r I(T = tr, C > tr)|Y ∗1 , · · · , Y ∗m, Y ∗C , C,X}

ωr

+
E {Y ∗CI(C ≤ tr, C ≤ T )|Y ∗1 , · · · , Y ∗m, Y ∗C , C,X}

ω∞
− µr.

Conditioning on full data, the last equation leads to the following equation:

=
Y ∗r I(C > tr)E {I(T = tr)|Y ∗1 , · · · , Y ∗m, Y ∗C , C,X}

ωr

+
Y ∗CI(C ≤ tr)E {I(C < T )|Y ∗1 , · · · , Y ∗m, Y ∗C , C,X}

ω∞
− µr

=
Y ∗r I(C > tr)P {(T = tr)|Y ∗1 , · · · , Y ∗m, Y ∗C , C,X}

ωr

+
Y ∗CI(C ≤ tr)P {I(C < T )|Y ∗1 , · · · , Y ∗m, Y ∗C , C,X}

ω∞
− µr

=
Y ∗r I(C > tr)P {T = tr, C > tr|C,X}

ωr
+
Y ∗CI(C ≤ tr)P {C < T |C,X}

ω∞
− µr

The last equation holds because of assumption (3.2) and P {T = tr, C > tr|C < tr, X} =
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0. Therefore,

E{h(Y, U,∆, X)|Y ∗1 , · · · , Y ∗m, Y ∗C , C,X}

=
Y ∗r I(C > tr)ωr

ωr
+
Y ∗CI(C < tr)ω∞

ω∞
− µr

= Y ∗r I(C > tr) + Y ∗CI(C < t1)− µr

= ϕF (Z).

�

Lemma 3.

E{L2(Y, U,∆, X)|Y ∗1 , · · · , Y ∗m, Y ∗C , C,X} = 0,

where

L2 =
m−1∑
k=1

{
I(C∗ = k)− ωkI(C∗ =∞, tk < C ≤ tm)

ω∞
− ωkI(C∗ = m)

ωm

}
lk(X),

lk(X) is any function of X only, k = 1, · · · ,m− 1.

Proof:

Since the coarsening variable C∗ is discrete, we can express any function,

L2(C∗, GC∗(Y
∗

1 , · · · , Y ∗m, Y ∗C , C,X)) ∈ H,

as
∞∑
k=1

I(C∗ = k)L2k(Gk(Z)).

So, the space of functions L2 ∈ Λ2 ⊂ H must satisfy

E(
∞∑
k=1

I(C∗ = k)L2k(Gk(Z))|Z) = 0.
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Hence,

∞∑
k=1

E(I(C∗ = k)L2k(Gk(Z))|Z) =
∞∑
k=1

L2k(Gk(Z))ω(k,Gk(Z)) = 0. (3.6)

The form of ωk, k = 1, · · · ,m,∞, and their properties discussed in the previous

section are applied to (3.6), then we have the following results.

When C ≤ t1, ω1 = ω2 = ......ωm = 0 and ω∞ = 1. Plug them into equation (3.6),

equation (3.6) will be reduced to

L2∞(G∞(Z)) = 0,

Therefore, to make the equation above hold, it only requires that L2∞ = 0, but

L2k, k = 1, ...,m, can be any function when C ≤ t1.

When t1 < C ≤ t2, ωk = 0 for k = 2, ...,m, and ω1 = λ̃1, ω∞ = 1− λ̃1. Equation

(3.6) will be reduced to

ω1L21 + ω∞L2∞ = 0.

Because both ω1 and ω∞ are functions of X only, then the equation above can

only be true if both L21 and L2∞ are function of X when t1 < C ≤ t2. Thus,

⇒ L2∞ = − ω1

ω∞
L21,

and L2k, k = 2, ...,m can be any function.

Generally, when tr−1 < C ≤ tr(r = 2, · · · ,m), we have ω1 = λ̃1, ωk =
k−1∏
r′=1

[1 −

λ̃′r]λ̃kI(C > tk) for k = 2, · · · , r, ωk = 0 for k = r + 1, ...,m and ω∞ =
m∏
r′=1

[1 −

λ̃r′I(C > t′r)]. Thus, equation (3.6) is reduced to

ω∞L2∞ +
r∑

k=1

ωiL2k = 0⇒ L2∞ = −

r∑
k=1

ωkL2k

ω∞
,
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and L2k, k = r + 1, ...,m, can be any function.

Finally, when C > tm, ω∞ = 0. We have

m∑
k=1

ωkL2k = 0⇒ L2m = −

m−1∑
k=1

ωkL2k

ωm
,

and L2∞ can be any function.

Therefore, if we choose any m− 1 functions of X, l2k = l2k(X), k = 1, · · · ,m− 1,

and define

L2k = l2k, k = 1, · · · ,m− 1,

L2m =

−
m−1∑
k=1

ωkl2k

ωm
,

L2∞ = − 1

ω∞
{I(t1 < C ≤ t2)ω1l21 + I(t2 < C ≤ t3)(ω1l21 + ω2l22) + · · ·

+I(tm−1 < C ≤ tm)(ω1l21 + ω2l22 + ...+ ωm−1l2,m−1,

= − 1

ω∞

m−1∑
k=1

k∑
i=1

I(ti < C ≤ ti+1)ωil2i.

Rearrange the terms in the last line, we obtain that

L2∞ = −I(C ≤ tm)

ω∞

m−1∑
k=1

I(C > tk)ωkl2k.

The choice of l2k, k = 1, · · · ,m − 1, and definition for L2k, k = 1, · · · ,m,∞, satisfy
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the constraints we discussed previously. Therefore,

L2 =
∞∑
k=1

I(C∗ = k)L2k(Gk(Z))

=
m−1∑
k=1

I(C∗ = k)l2k − I(C∗ = tm)

m−1∑
k=1

ωkl2k

ωm
− I(C∗ =∞)

I(C ≤ tm)

ω(∞)

m−1∑
k=1

I(C > tk)ωkl2k

=
m−1∑
k=1

{
I(C∗ = k)− ωkI(C∗ = m)

ωm
− ωkI(C∗ =∞, tk < C ≤ tm)

ω(∞)

}
l2k.

The procedure to construct L2 ensures that E{L2(Y, U,∆)|Y ∗1 , · · · , Y ∗m, Y ∗C , C,X} = 0.

�

Lemma 2 and Lemma 3 together support the statement of Theorem 1.

The Augmentation Space Λ2 with Partially-monotone Coarsening

The advantage of defining partially-monotone coarsening is we can derive another

equivalent representation for L2, the element of space Λ2, which helps to derive the

most efficient influence function of µr. This representation takes advantage of cause-

specific hazards as we demonstrate in the following Lemma.

Lemma 4. Under partially-monotone coarsening and assumption λ̃m(X) = P (U =

tm,∆ = 1|U ≥ tm, X) = 1, a typical element of Λ2 can be expressed as

m−1∑
k=1

{
I(C∗ = r)− λrI(C∗ ≥ r)

Kk

}
lk(X) (3.7)

=
m−1∑
k=1

{
I(U = tk,∆ = 1)− λ̃rI(U ≥ tk)

K̃k

}
lk(X), (3.8)

Where Kk =
k∏
i=1

[1− λi] and K̃k(X) =
k∏
i=1

[1− λ̃i].

Let’s derive an equation needed for proving Lemma 4.
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Preposition 1. For a fixed i, i = 0, · · · ,m− 2,

m−1∑
j=i+1

{
I(C∗ = j)− λjI(C∗ ≥ j)

Kj

}
=
I(C∗ ≥ i+ 1)

Ki

−I(C∗ = m)

Km−1

−I(C∗ =∞, C ≤ tm)

Km−1

,

where Kj = P (C∗ = j|Z) =
∏
j′≤j

[1− λj′ ] and λj = P (C∗ = j|C∗ ≥ j, Z).

m−1∑
j=i+1

{
I(C∗ = j)− λjI(C∗ ≥ j)

Kj

}

=
m−1∑
j=i+1

{
I(C∗ = j)

Kj

− λjI(C∗ ≥ j)

Kj

}

=
m−1∑
j=i+1

{
I(C∗ ≥ j)

Kj

− I(C∗ ≥ j + 1)

Kj

− λjI(C∗ ≥ j)

Kj

}
.

The equation above holds because of the fact that I(C∗ = j) = I(C∗ ≥ j)− I(C∗ ≥

j + 1). The fact that Kj =
∏
j′≤j

[1 − λj′ ] = Kj−1(1 − λj) results in the following

procedure:

=
m−1∑
j=i+1

{
I(C∗ ≥ j)

Kj−1

− λjI(C∗ ≥ j + 1)

Kj

}
=

I(C∗ ≥ i+ 1)

Ki

− I(C∗ ≥ m)

Km−1

=
I(C∗ ≥ i+ 1)

Ki

− I(C∗ = m)

Km−1

− I(C∗ =∞)

Km−1

=
I(C∗ ≥ i+ 1)

Ki

− I(C∗ = m)

Km−1

− I(C∗ =∞, C ≤ tm)

Km−1

.

The last equation holds because the special mechanism in our case to assign the

treatment to a patient, which if a patient has not experience any termination event

at time tm, which is the last treatment length, the the patient would receive the
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treatment length of tm for sure. Therefore, event {C∗ = ∞} only happened when

C ≤ tm. �

Now, we start proving Lemma 4.

Proof for Lemma 4: In Lemma 3, we have defined a typical element of Λ2 as

m−1∑
k=1

{
I(C∗ = k)− I(C∗ = m)ωk

ωm
− ωkI(C∗ =∞, tk < C ≤ tm)

ω(∞)

}
l2k. (3.9)

We also have facts that (f1) Ki−1−ωi = Ki and (f2) I(C∗ = k) = I(C∗ ≥ k)−I(C∗ ≥

k + 1). As proved by Lemma 2,

L2 =
m−1∑
k=1

{
I(C∗ = k)− ωkI(C∗ =∞, tk < C ≤ tm)

ω(∞)
− I(C∗ = m)ωk

ωm

}
l2k(x)

=
m−1∑
k=1

{
I(C∗ = k)Ki−1

Ki

− I(C∗ = k)ωk
Kk

− ωkI(C∗ =∞, tk < C ≤ tm)

ω∞
− I(C∗ = m)ωk

ωm

}
l2k.

The last equation holds because of the fact (f1), and the fact (f2) leads to next

equation.

=
m−1∑
k=1

{
I(C∗ = k)Kk−1

Kk

− I(C∗ ≥ k)ωk
Kk

+
I(C∗ ≥ k + 1)ωk

Kk

− I(C∗ =∞, tk < C ≤ tm)ωk
ω∞

− I(C∗ = m)ωk
ωm

}
l2k(x).
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Applying the result in Lemma 3 here, we have

L2 =
m−1∑
k=1

{
I(C∗ = k)− I(C∗ ≥ k)λk

Kk

+ λk

m−1∑
j=k+1

I(C∗ ≥ j)− I(C∗ ≥ j)λj
Kj

+
I(C∗ =∞, C ≤ tm)λk

Km−1

− I(C∗ =∞, tk < C ≤ tm)λk
ω∞

}
l2k(x)Kk−1

=
m−1∑
k=1

{
I(C∗ = k)− I(C∗ ≥ k)λk

Kk

+ λk

m−1∑
j=k+1

I(C∗ ≥ j)− λjI(C∗ ≥ j)

Kj

+I(C∗ =∞, tk < C ≤ tm)λk

(
1

Km−1

− 1

ω∞

)
(3.10)

+
I(C∗ =∞, C ≤ tk)λk

Km−1

}
l2k(x)Kk−1. (3.11)

Note:

Km−1 =
m−1∏
i=1

(1− λi(x)I(C > ti)),

ω∞ =
m−1∏
i=1

(1− λi(x))I(C ≤ tm).

When C ≤ tm, Km−1 = ω∞,(3.10)=0. When C < tk, (3.11)=0. In addition, I(C ≤

ti)λi=0.
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So,

L2 =
m−1∑
k=1

{
I(C∗ = k)− I(C∗ ≥ k)λk

Kk

+ λk

m−1∑
j=k+1

I(C∗ = j)− I(C∗ ≥ j)

Kj

}
Kk−1l2k

=
m−1∑
k=1

I(C∗ = k)− I(C∗ ≥ k)λk
Kk

Kk−1l2k +
m−1∑
k=1

ωkl2k

m−1∑
j=k+1

I(C∗ = j)− λjI(C∗ ≥ j)

Kj

=
m−1∑
k=1

I(C∗ = k)− I(C∗ ≥ k)λk
Kk

Kk−1l2k +
m−1∑
j=2

I(C∗ = j)− λjI(C∗ ≥ j)

Kj

(

j−1∑
k=1

ωkl2k)

=
m−1∑
k=1

I(C∗ = k)− I(C∗ ≥ k)λk
Kk

Kk−1l2k +
m−1∑
k=2

I(C∗ = k)− λkI(C∗ ≥ k)

Kk

(
k−1∑
j=1

ωjl2j)

=
m−1∑
k=1

{
I(C∗ = k)− λkI(C∗ ≥ k)

Kk

}
lk.

wherel1 = l21 and lk = Kk−1l2k +
k−1∑
j=1

ωjl2j, k = 2, · · · ,m− 1, and it is a function of X

only. Equation (3.7) is proved. Plug λr = λ̃rI(C > tr) into (3.7), we have equation

(3.8). �

Optimal Influence Function

So far, we have demonstrated that a class of the influence functions of RAL esti-

mators for µr, when the parameters in the coarsening probability models are known

to us, is given by

{ϕ(Z)} = (Y − µr)
{
I(U = tr,∆ = 1)

ωk
+
I(U ≤ tr,∆ = 0)

ω∞

}
+ Λ2,

where Λ2 is the linear subspace consisting of elements L2 and L2 is defined by Lemma

4. The optimal influence function in the class of {ϕ(Z)} is the one with the smallest

variance or, equivalently, the element with the smallest norm. This is obtained by

choosing L2 as the projection of h(Y, U,∆, X, ψ0) onto Λ2,
∏

(h|Λ2), in which case
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the optimal influence function is given by

h(Y, U,∆, X, ψ0)−
∏

(h|Λ2),

for a fixed full-data influence function, where ψ0 is the nuisance parameter. Theoret-

ical proof can be found on P.223, Tsiatis (2006).

However, if the coarsening probability were not known and had to be modeled

using the unknown ψ, then Theorem 9.1 (Tsiatis, 2005) showed that if the coarsening

process follows a parametric model, and if the nuisance parameter is estimated using

the maximum likelihood method, or any other efficient method, then the solution to

the estimating equation

n∑
i=1

[h(Y, U,∆, X, ψ̂) + L0(ψ̂)] = 0, (3.12)

will be an estimator whose influence function is h(Y, U,∆, X) −
∏

(h|Λ2) and L0 =∏
({h}|Λ2) is defined as the projection of h(Y, U,∆, ψ0) on the space of Λ2.

Thus far, we defined partially-monotone coarsening and explored features under

this setting. We also described the class of observed-data influence functions when

data are partially-monotone coarsened at random by taking advantage of results ob-

tained for a full-data semiparametric model and showed the special form of influence

functions under this setting. We provided the tool to derive an efficient estimator

by solving the estimating equation defined in (3.12). Ultimately, the goal is to de-

rive as efficient an estimator for µr as is possible using partially monotone coarsened

data. In order to fulfill the task, all the work narrows down finding the projection of

h(Y, U,∆, X) on Λ2. Now, we show how to derive the projection of h(Y, U,∆, X) on

Λ2.
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3.2.5 Projection of h(Y, U,∆, X) on Λ2

In order to improve efficiency, we need to find the projection of h(Y, U,∆, X) on Λ2,

where

h(Y, U,∆, X) = h1(Y, U,∆, X) + h2(Y, U,∆, X)

= (Y − µr)
I(U = tr,∆ = 1)

ωr
+ (Y − µr)

I(U < tr,∆ = 0)

ω∞
, (3.13)

in which ωr = P (C∗ = r|Z) =
r∏

r′=1

(1− λr′)λr and λr = P (C∗ = r|C∗ ≥ r, Z).

By the linearity of projections,

∏
({h(Y, U,∆, X)}|Λ2) =

∏
({h1(Y, U,∆, X)}|Λ2) +

∏
({h2(Y, U,∆, X)}|Λ2),

so that we can derive the projections of h1 and h2 onto Λ2 separately.

Since
∏

(h1|Λ2) and
∏

(h2|Λ2) ∈ Λ2, with Lemma 4 they can be written as

m−1∑
k=1

{
I(C∗ = k)− λkI(C∗ ≥ k)

Kk

}
l0k,

where Kk = P (C∗ > k|Z) =
r∏

r′=1

(1− λr′), such that,

E

([
h1 −

m−1∑
k=1

{
I(C∗ = k)− λkI(C∗ ≥ k)

Kk

}
l0k

]

×
m−1∑
k=1

{
I(C∗ = k)− λkI(C∗ ≥ k)

Kk

}
lk

)
= 0, (3.14)
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and

E

([
h2 −

m−1∑
k=1

{
I(C∗ = k)− λkI(C∗ ≥ k)

Kk

}
l0k

]

×
m−1∑
k=1

{
I(C∗ = k)− λkI(C∗ ≥ k)

Kk

}
lk

)
= 0, (3.15)

for all lk, k = 1, · · · ,m− 1.

We demonstrate the specific form of projection of h1 and h2 in the next two

prepositions.

Theorem 2. Let r be given.

L01 =
∏

h1(Y, U,∆, X)|Λ2 =
r∑

k=1

{
I(C∗ = k)− λkI(C∗ ≥ k)

Kk

}
l0k, (3.16)

where

l0k =

 −prE(Y ∗r |X)
pk

k = 1, · · · , r − 1

(1−λ̃r)E(Y ∗r |X)

λ̃r
k = r

, and pk = Prob.(C > tk|X), and
∏
h1(Y, U,∆, X)|Λ2 denotes the projection of

h1(Y, U,∆, X) onto Λ2.

Theorem 3. Let r be given.

L02 =
∏

h2(Y, U,∆, X)|Λ2 =
r−1∑
k=1

{
I(C∗ = k)− λkI(C∗ ≥ k)

Kk

}
l0k, (3.17)

where

l0k = − 1

pk

r−1∑
j=k

pj,j+1E(Y ∗C |X, tj < C ≤ tj+1), k = 1, · · · , r − 1.

pj,j+1 = Prob.(tj < C ≤ tj+1|X) and pk = Prob.(C > tk|X).

We first derive some relationships that will simplify the calculations in two the-
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orems above in the following lemmas. The first two prepositions have been proved

Tsiatis (2006), so here we just listed them. We prove the remainings.

Lemma 5. For k 6= k′,

E

({
I(C∗ = k)− λkI(C∗ ≥ k)

Kk

}
l0k

)
×

({
I(C∗ = k′)− λk′I(C∗ ≥ k′)

Kk′

}
l0k′

)
= 0. (3.18)

Lemma 6. For k = k′,

E

({
I(C∗ = k)− λkI(C∗ ≥ k)

Kk

}
l0k

)
×

({
I(C∗ = k′)− λk′I(C∗ ≥ k′)

Kk′

}
l0k′

)
= E

[
λk
Kk

l0k

]
. (3.19)

Note λk = λ̃k(X)I(C > tk) and when C > tk Kk = K̃k, we continue (3.19) by

conditioning on X, then we can get the following result.

(3.19) = E

[
pkλ̃k

K̃k

l0k

]
. (3.20)

Lemma 7. Let r be given, for k < r,

E

(
Y
I(U = tr,∆ = 1)

ωr

)
×
({

I(C∗ = k)− λkI(C∗ ≥ k)

Kk

}
lk

)
= −E

[
λ̃kprE(Y ∗r |X)

K̃k

lk

]
. (3.21)

where pr = P (C > tr|X).
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Proof: Because of equivalence of event {U = tr,∆ = 1} and event {C∗ = r},

E

{
Y
I(U = tr,∆ = 1)

ωr

}
×
{[

I(C∗ = k)− λkI(C∗ ≥ k)

Kk

]
lk

}
= E

{
Y
I(C∗ = r)

ωr

}
×
{[

I(C∗ = k)− λkI(C∗ ≥ k)

Kk

]
lk

}
= E

[
−
{
Y
I(C∗ = r)λklkY

ωrKk

}]
.

When I(C > tk) = 1, ωk = ω̃k and Kk = K̃k. Therefore, combined with the SUTVA

assumption, the equation above is equal to

−E

{
Y ∗r

I(C∗ = r)λ̃kI(C > tk)lk

ω̃rK̃k

}

= −E

{
E

[
Y ∗r

I(C∗ = r)λ̃kI(C > tk)lkY
∗
r

ω̃rK̃k

|C∗, X

]}

= −E

{
I(C∗ = r)

λ̃kI(C > tk)lk

ω̃rK̃k

[EY ∗r |C∗ = r,X]

}

= −E

{
E

[
I(C∗ = r)

λ̃kI(C > tk)lk

ω̃rK̃k

[EY ∗r |C∗ = r,X]

]
|C,X

}

= −E

{
λ̃kI(C > tk)lk

ω̃rK̃k

[EY |C∗ = r,X]E [I(C∗ = r)|C,X]

}

= −E

{
λ̃kI(C > tk)lk

ω̃rK̃k

[EY |C∗ = r,X]ωr

}

= −E

{
λ̃kI(C > tk)lk

K̃k

[EY ∗r |C∗ = r,X]

}

= −E

{
E

{
λ̃kI(C > tk)lk

K̃k

[EY ∗r |C∗ = r,X]

}
|X

}

= −E

[
λ̃kprE(Y ∗r |X)

K̃k

lk

]
,

where pr = P (C > tr|X). �
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Lemma 8. Let r be given, if k = r,

E

{
Y
I(U = tr,∆ = 1)

ωr

}
×
{[

I(C∗ = k)− λkI(C∗ ≥ k)

Kk

]
lk

}
= E

{
(1− λ̃k) [EY ∗r |X] pr

K̃k

lk

}
, (3.22)

where pr = P (C > tr|X).

Proof:

Note that

E

{
Y
I(U = tr,∆ = 1)

ωr

}
×
{[

I(C∗ = r)− λrI(C∗ ≥ r)

Kr

]
lr

}
= E

{
Y
I(C∗ = r)

ωr

}
×
{[

I(C∗ = r)− λrI(C∗ ≥ k)

Kr

]
lr

}
= E

{
Y
I(C∗ = r)(1− λr)lr

ωr

}
.

The rest of proof is similar to the proof for the Lemma 7. �

Lemma 9. Let r be given, for k > r,

E

{
Y
I(U = tr,∆ = 1)

ωr

}
×
{[

I(C∗ = k)− λkI(C∗ ≥ k)

Kk

]
lk

}
= 0. (3.23)

The Proof is easily obtained by noticing that the fact I(C∗ = r)× I(C∗ ≥ k) = 0

if k > r.�

Lemma 10. Let r be given, for k < r,

E

{
Y
I(U ≤ tr,∆ = 0)

ω∞

}
×
{[

I(C∗ = k)− λkI(C∗ ≥ k)

Kk

]
lk

}
= −E

{
λ̃klk

K̃k

r−1∑
j=k

pj,j+1E(Y ∗C |C∗ =∞, tj < C ≤ tj+1, X)

}
, (3.24)
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where pj,j+1 = P (tj < C ≤ tj+1|X).

Proof:

E

{
Y
I(U ≤ tr,∆ = 0)

ω∞

}
×
{[

I(C∗ = k)− λkI(C∗ ≥ k)

Kk

]
lk

}
= E

{
Y
I(C∗ =∞, C ≤ tr)

ω∞

}
×
{[

I(C∗ = k)− λkI(C∗ ≥ k)

Kk

]
lk

}
= −E

{
Y

[
λkI(C∗ =∞, C ≤ tr)

Kkω∞

]
lk

}
= −E

{
Y

[
λ̃kI(C > tk)I(C∗ =∞, C ≤ tr)

Kkω∞

]
lk

}

= −E

{
λ̃klk

K̃k

r−1∑
j=k

I(C∗ =∞, tj < C ≤ tj+1)Y

K̃j

}
.

The last equation holds because when I(C∗ = ∞, tj < C ≤ tj+1)=1 at j > k,

ω∞ =
j∏
i=1

(1 − λ̃(X)) = K̃j and Kk = K̃k. Therefore, after conditioning on I(C∗ =

∞, tj < C ≤ tj+1) and X, we have

−E

{
λ̃klk

K̃k

r−1∑
j=k

I(C∗ =∞, tj < C ≤ tj+1)E(Y ∗C |C∗ =∞, tj < C ≤ tj+1, X)

K̃j

}
.

Continue conditioning on C and X, then conditioning on X, we get

= −E

{
λ̃klk

K̃k

r−1∑
j=k

I(tj < C ≤ tj+1)E(Y ∗C |C∗ =∞, tj < C ≤ tj+1, X)ω∞

K̃j

}

= −E

{
λ̃klk

K̃k

r−1∑
j=k

I(tj < C ≤ tj+1)E(Y ∗C |C∗ =∞, tj < C ≤ tj+1, X)

}

= −E

{
λ̃klk

K̃k

r−1∑
j=k

P (tj < C ≤ tj+1|X)E(Y ∗C |C∗ =∞, tj < C ≤ tj+1, X)

}

= −E

{
λ̃klk

K̃k

r−1∑
j=k

pj,j+1E(Y ∗C |C∗ =∞, tj < C ≤ tj+1, X)

}
. �
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Lemma 11. Let r be given, for k ≥ r

E

{
Y
I(U < tr,∆ = 0)

ω∞

}
×
{[

I(C∗ = k)− λkI(C∗ ≥ k)

Kk

]
lk

}
= 0. (3.25)

Lemma 11 is valid because of the fact that {C∗ = k} implies {U > tk} for

k = 1, · · · ,m. �

Using the results of Lemma 5 to Lemma 11, now we start proving Theorem 2 and

Theorem 3.

Proof for Theorem 2 and Theorem 3:

Plug results (3.21)-(3.23) into (3.14), we have

E

{[
Y
I(U = tr,∆ = 1)

ωr
−

m−1∑
k=1

{
I(C∗ = k)− λkI(C∗ ≥ k)

Kk

}
l0k

]

×
m−1∑
k=1

{
I(C∗ = k)− λkI(C∗ ≥ k)

Kk

}
lk

}

= E

{
r−1∑
k=1

[
λ̃k

K̃k

(pkl0k + prE(Y ∗r |X))lk

]
+
λ̃rl0r − (1− λ̃r)E(Y ∗r |X)

K̃r

prlr +
m−1∑
k=r+1

[
λ̃k

K̃k

l0klk

]}
= 0.

In order to make the equation above hold for any function lk, k = 1, · · · ,m− 1, if

and only if

l0k =


−prE(Y ∗r |X)

pk
k = 1, · · · , r − 1;

(1−λ̃r)E(Y ∗r |X)

λ̃r
k = r;

0 k > r,

where pk = P (C > tk|X).

Similarly, after plugging results of (3.24)-(3.25) into equation (3.23), we have
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E

{[
Y
I(U ≤ tr,∆ = 1)

ωr
−

m−1∑
k=1

{
I(C∗ = k)− λkI(C∗ ≥ k)

Kk

}
l0k

]

×
m−1∑
k=1

{
I(C∗ = k)− λkI(C∗ ≥ k)

Kk

}
lk

}

= E

{
r−1∑
k=1

− λ̃k
K̃k

[
r−1∑
j=k

pk,k+1E(Y ∗C |C∗ =∞, tj < C < tj+1, X) + pkl0k

]
lk +

m−1∑
k=r

λ̃k

K̃k

l0klk

}
= 0.

In order to make the equation above hold for any function lk, k = 1, · · · ,m− 1, if

and only if

l0k =


− 1
pk

r−1∑
j=k

pj,j+1E(Y ∗C |C∗ =∞, tj < C ≤ tj+1, X) k = 1, · · · , r − 1;

0 k ≥ r,

where pj,j+1 = P (tj < C ≤ tj+1|X). �

If the observed data were coarsened by design, we could use results above to

generate the following estimating equation for µr:

h1(Y, U,∆, X, γ0)−
∏

h1(Y, U,∆, X, γ0)|Λ2

+ h2(Y, U,∆, X, γ0))−
∏

h2(Y, U,∆, X, γ0)|Λ2 = 0,

Where h1 and h2 are defined as (3.13) and
∏

(h1|Λ2) and
∏

(h2|Λ2) are defined as in

Theorem 2 and Theorem 3.

If the coarsening probabilities were not known and had to be modeled through

the unknown parameter γ, then we would derive an estimator for µr by solving the
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estimating equation

h1(Y, U,∆, X, γ̂) +
∏

h1(Y, U,∆, X, γ̂)|Λ2

+ h2(Y, U,∆, X, γ̂) +
∏

h2(Y, U,∆, X, γ̂)|Λ2 = 0, (3.26)

where γ̂ is the MLE for the parameter γ in the model of cause-specific hazard and

h1, h2,
∏

(h1|Λ2) and
∏

(h2|Λ2) are defined as in Theorem 2 and Theorem 3.

In order to solve the estimating equation (3.26) successfully, we need to estimate

γ and compute conditional means E(Y ∗r |X), r = 1, · · · ,m, and E(Y ∗C |tj−1 < C ≤

tj), j = 1, · · · ,m− 1}, and P (C > c|X).

3.2.6 MLE Approach to Estimate the Parameters in the Cause-

specific Hazard Function λ̃

We posit a model for the cause-specific hazard functions λ̃r through parameter γ,

r = 1, · · · ,m− 1. (Note: λ̃m = 1). We have showed that the coarsening probability

can be deduced through the cause-specific discrete hazard leading to the model

ω(r,G1
r(Z)) =



λ̃1(X)I(C > t1) r = 1;
r−1∏
r′=1

[1− λ̃r′(X)I(C > t′r)]λ̃r(X)I(C > tr) r = 2, · · · ,m− 1;

m−1∏
r′=1

[1− λ̃r′(X)I(C > t′r)]I(C > tm) r = m;

m−1∏
r′=1

[1− λ̃r′(X)I(C > t′r)]I(C ≤ tm) r =∞.

We use maximum likelihood estimation (MLE) to estimate the parameters γ in the

models above based on observed data. Specifically, the maximum likelihood estimator

γ̂n for γ is obtained by maximizing

n∏
i=1

ω(r,G1
r(Z), γ). (3.27)
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Substituting the right-hand side ω(r,G1
r(Z)) into (3.27) and rearranging terms,

we obtain that the likelihood can be expressed as

m−1∏
r=1

∏
i:C∗≥r

[λr]
I(C∗=r) [1− λr]I(C

∗>r)

=
m−1∏
r=1

∏
i:C∗≥r

[
λ̃rI(C > tr)

]I(U=tr,∆=1) [
1− λ̃rI(C > tr)

]I(U>tr,∆=1) [
1− λ̃rI(C > tr)

]I(∆=0)

=
m−1∏
r=1

∏
i:C∗≥r

[
λ̃r

]I(U=tr,∆=1) [
1− λ̃rI(C > tr)

]I(U>tr,∆=1) [
1− λ̃rI(C > tr)

]I(U>tr,∆=0)

=
m−1∏
r=1

∏
i:U≥tr

[
λ̃r

]I(U=tr,∆=1) [
1− λ̃rI(C > tr)

]I(U>tr)

=
m−1∏
r=1

∏
i:U≥tr

{[
λ̃r

]I(U=tr,∆=1) [
1− λ̃rI(C > tr)

]I(U≥tr)

[
1− λ̃rI(C > tr)

]−I(U=tr,∆=1) [
1− λ̃rI(C > tr)

]−I(U=tr,∆=0)
}
.

Notice the fact that {U = tr,∆ = 0} implies {C ≤ T,C = tr}, so

[
1− λ̃rI(C > tr)

]−I(U=tr,∆=0)

= 1.

Therefore, likelihood is expressed as

m−1∏
r=1

∏
i:U≥tr

[
λ̃r

1− λ̃r

]I(U=tr,∆=1) [
1− λ̃r

]I(U≥tr)

.

We use the same generalized linear model for λ̃r, r = 1, · · · ,m − 1, as Johnson and

Tsiatis(2002) discussed, where

λ̃r = F (γTr X),

r = 1, · · · ,m − 1, and F (t) is the logistic function,i.e., et/(1 + et). This is similar

to the continuation ratio logit model(Agresti, 1990, p.319), in which case likelihood
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becomes

m−1∏
r=1

∏
i:U≥tr

exp(γTr Xi)I(Ui = tr,∆i = 1))

1 + exp(γTr Xi)
.

The parameterizations above allows for different parameters associated with each

time interval tk. For parsimony, when applicable, we may assume that some of these

parameters are the same across the different time intervals.

3.2.7 Adaptive Estimation to Estimate Conditional Means

and Distribution of Terminating Event

We adopt adaptive method proposed by Tsiatis (2006) to find improved estimators,

for the purpose of approximating the conditional expectations of potential outcomes

and conditional probability of terminating event. That is, We first posit models for

conditional probability P (C|X) in terms of the parameter ξ1 and conditional means

E(Y ∗r |X), r = 1, · · · ,m, and E(Y ∗C |X) in terms of the parameter ξ2. Substitute ξ̂1

and ξ̂2 to compute conditional means and conditional probabilities appearing in the

estimating equation (3.26). The estimator for µr obtained by the following estimating

equation is denoted as µ̂r.

n∑
i=1

[
(Y − µr)

{
I(U = tr,∆ = 1)

ωr(γ̂)
+
I(U ≤ tr,∆ = 0)

ω∞(γ̂)

}
− L0(U,∆, X, Y, γ̂, ξ̂1, ξ̂2, µr)

]
.

(3.28)

Remark: Under suitable regularity conditions, the estimator ξ̂ will converge in

probability to a constant ξ∗. If models are correctly specifically, ξ∗ is right ξ0 where

ξ0 is true value to describe the models. Even though the posited models may not be

correctly specified, n1/2(ξ̂ − ξ∗) is bounded in probability. Also, even if the posited

model is incorrect, the function L0(U,∆, X, Y, γ̂, ξ̂1, ξ̂2) and L0(U,∆, X, Y, γ̂, ξ∗) still
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belong to Λ2. We denote the solution to the estimating equation

n∑
i=1

[
(Y − µr)

{
I(U = tr,∆ = 1)

ωr(γ̂)
+
I(U ≤ tr,∆ = 0)

ω∞(γ̂)

}
− L0(U,∆, X, Y, γ̂, ξ∗1 , ξ

∗
2 , µ

0
r)

]
(3.29)

with µr set to the true value µ0
r and ξ∗1 , ξ

∗
2 fixed in L0(·), is an estimator for µr, denoted

as µ̂∗r.

3.2.8 Estimating the Asymptotic Variance

We denote the asymptotic variance of the RAL estimator µ̂r by Σ. An estimator

for the asymptotic variance, Σ̂, can be obtained using a sandwich variance estima-

tor(Tsiatis, 2005). Tsiatis(2005, p.207) described how to construct this estimator:

Σ̂ = Ê

[{
∂m(Z, µ̂)

∂µT

}]−1

×

[
n−1

n∑
i=1

g(C∗i , GC∗i
(Zi), γ̂, µ̂)gT (C∗i , GC∗i(Zi), γ̂, µ̂)

]

× Ê

[{
∂m(Z, µ̂)

∂µT

}]−T
,

where Ê denotes sample average,

∂m(Z, µ̂)

∂µT
=
∂q(C∗i , GC∗i(Zi), γ̂, µ̂)

∂µr

g(C∗i , GC∗i(Zi), γ̂, µ̂) = q(C∗i , GC∗i
(Zi), γ̂, µ̂r)− Ê(qSTγ ){Ê(SγS

T
γ )}−1Sγ,

q(C∗i , GC∗i(Zi), γ̂, µ̂) = (Y − ur)
{
I(U = tr,∆ = 1)

ωr(γ̂)
+
I(U ≤ tr,∆ = 0)

ω∞(γ̂)

}
−L0(C∗, GC∗(Z), µ̂r, γ̂, ξ̂1, ξ̂2),
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where,

Ê(qSTγ ) = n−1

n∑
i=1

q(C∗i , GC∗i(Zi), γ̂, µ̂)Sγ,

Ê(SγS
T
γ ) = n−1

n∑
i=1

SγS
T
γ ,

Sγ =
∂log[ω(C∗, GC∗(Z), γ)]

∂γ
|γ=γ̂ .

�

3.3 Properties of Proposed Estimator

3.3.1 Double Robustness of Proposed Estimator

The major advantages of the propose estimator, µ̂r, are that it is not only efficient

but also double robust. Double robustness means that it is a consistent estimator if

either the model for λ̃r, r = 1, · · · ,m− 1, or the posited models for both P (C > c|X)

and the set of conditional means, E(Y ∗r |X), r = 1, · · · ,m, and E(Y ∗C |tj−1 < C ≤

tj), j = 1, · · · ,m − 1, are correctly specified. We firstly show µ̂∗r is double robust ,

then show µ̂∗r is equivalent to µ̂r in probability. Therefore, µ̂r is double robust.

Using standard asymptotic arguments, the estimator µ̂∗r will be consistent and

asymptotically normal if we can show that

Preposition 2. At each true value of µr, γ and ξ,

E

{[
I(U = tr,∆ = 1)

ωr(γ∗)
+
I(U ≤ tr,∆ = 0)

ω∞(γ∗)

]
(Y − µ0

r)− L01 − L02

}
= 0, (3.30)
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where µ0
r is true value of µr and

L01 =
r−1∑
k=1

{
I(U = tr,∆ = 1)− λ̃r(γ∗)I(U ≥ tr)

K̃r(γ∗)

}
pr(ξ

∗
1r)E(Y ∗r − µ0

r|X, ξ∗2r),

− I(U = tr,∆ = 1)− λ̃r(γ∗)I(U ≥ tr)

ω̃r(γ∗)
E(Y ∗r − µ0

r|X, ξ∗1r),

L02 =
r−1∑
k=1

{
I(U = tr,∆ = 1)− λ̃(γ∗)rI(U ≥ tr)

K̃r(γ∗)

}
k−1∑
j=1

pj(ξ
∗
1r)E(Y ∗C − µ0

r|tj−1 < C ≤ tj, X, ξ
∗
2r).

if either λ̃r(r = 1, · · · ,m − 1) or the posited models for both P (C > c|X) and the

set of conditional mean {E(Y ∗r |X), r = 1, · · · ,m and E(Y ∗C |tj−1 < C ≤ tj), j =

1, · · · ,m− 1} are correctly specified.

Before showing Preposition 2 is true, we first derive two facts.

Lemma 12.

I(C∗ = r)

ω̃r
− 1 = −

r−1∑
k=1

{
I(C∗ = k)− λ̃kI(C∗ ≥ k)

K̃k

}
+
I(C∗ = r)− λ̃rI(C∗ ≥ r)

ω̃r
.

Proof:

We start proof with expressing the first term in the right hand as follows:

r−1∑
k=1

{
I(C∗ = k)− λ̃kI(C∗ ≥ k)

K̃k

}

=
r−1∑
k=1

{
I(C∗ = k)

K̃k

}
−

r−1∑
k=1

{
λ̃kI(C∗ ≥ k)

K̃k

}
. (3.31)

Because of the discreteness of C∗, we can write the second term

r−1∑
k=1

{
I(C∗ = k)

K̃k

}
=
I(C∗ ≤ r − 1)

K̃C∗
. (3.32)



81

By the definitions of λ̃r and K̃r, we obtain that

λ̃r

K̃r

=
1

K̃r

− 1

K̃r−1

and

j∑
k=1

λ̃k

K̃k

= 1− 1

K̃j

any j > k. (3.33)

Therefore, we can write the second term in (3.31) as follows,

r−1∑
k=1

{
λ̃kI(C∗ ≥ k)

K̃k

}
=

r−1∑
k=1

{
λ̃kI(C∗ ≥ r)

K̃k

}
+

r−1∑
k=1

{
λ̃kI(k ≤ C∗ ≤ r − 1)

K̃k

}

= −I(C∗ ≥ r)

(
1− 1

K̃r−1

)
+

r−1∑
k=1

r−1∑
j=1

{
λ̃kI(C∗ = j)

K̃k

}
.

Exchange summation order of the second term in the last line, we can have

= −I(C∗ ≥ r)

(
1− 1

K̃r−1

)
+

r−1∑
j=1

j∑
k=1

{
λ̃kI(C∗ = j)

K̃k

}

= −I(C∗ ≥ r)

(
1− 1

K̃r−1

)
+ I(C∗ ≤ r − 1)

C∗∑
k=1

λ̃k

K̃k

= −I(C∗ ≥ r)

(
1− 1

K̃r−1

)
− I(C∗ ≤ r − 1)

(
1− 1

K̃C∗

)
. (3.34)

The last equation holds because of (3.33). Then, plug (3.32) and (3.34) into (3.31),

we can obtain the following equation,

r−1∑
k=1

{
I(C∗ = k)− λ̃k(γ)I(C∗ ≥ k)

K̃k(γ)

}
− I(C∗ = r)− λ̃r(γ)I(C∗ ≥ r)

ω̃r(γ)

= 1− I(C∗ > r − 1)

K̃r−1

− I(C∗ = r)

ω̃r
+
I(C∗ > r − 1)

K̃r−1

= 1− I(C∗ = r)

ω̃r
.

�

Using similar procedure we can prove the Lemma below.
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Lemma 13.

I(C∗ =∞, C ≤ tm)

ω∞
− 1 = −

m−1∑
k=1

{
I(C∗ = r)− λ̃kI(U ≥ tk)

K̃k

}
− I(C∗ = m)

K̃m−1

.

�

Proof for Theorem 2:

(1) If models for λ̃r(X, γ)(r = 1, · · · ,m−1) are all correctly specified, i.e., γ∗r = γ0
r .

We have proved E(h) = E(E(h|Z)) = E(ϕF (Z) = 0 at the true value of µ0
r and

γ0
r . In addition, we have known E(L0) = E(E(L0)|Z) = 0, because L0(ξ∗) ∈ Λ2.

Thus, Equation (3.31) holds.

(2) If models for the conditional means {E(Y ∗r |X), r = 1, · · · ,m, E(Y ∗C |tj−1 <

C ≤ tj), j = 1, · · · ,m− 1} and P (C > c|X) are correctly specified.

By the SUTVA assumption,

I(U = tr,∆ = 1)

ωr(γ0
r )

(Y − µ0
r) =

I(C∗ = r)

ωr(γ0
r )

(Y ∗r − µ0
r)

Note that I(C∗ = r) = I(C∗ = r) ∗ I(C > tr)

= I(C > tr)(Y
∗
r − µ0

r) +

{
I(C∗ = r)

ωr
− 1

}
I(C > tr)(Y

∗
r − µ0

r), (3.35)

and

I(U ≤ tr,∆ = 0)

ωr(γ0
r )

(Y − µ0
r) =

I(C∗ =∞, C ≤ tr)

ωr(γ0
r )

(Y ∗c − µ0
r)

= I(C ≤ tr)(Y
∗
c − µ0

r) +

{
I(C∗ =∞, C ≤ tr)

ωr
− 1

}
I(C ≤ tr)(Y

∗
r − µ0

r).(3.36)

Take the summation of the two equations above, (3.31) becomes

EϕF (Z) + E

[{
I(C∗ = r)

ωr
− 1

}
I(C > tr)(Y

∗
r − µ0

r)− L01

]
(3.37)

+ E

[{
I(C∗ =∞, C ≤ tr)

ωr
− 1

}
I(C ≤ tr)(Y

∗
r − µ0

r)− L02

]
. (3.38)
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The first term is equal to 0. We would show the other two terms are equal to 0.

Plug result in Lemma 12 and specific forms of L01 and L02 into (3.37), (3.37) can be

written as

E

[
−

r−1∑
k=1

{
I(C∗ = r)− λ̃k(γ∗)I(C∗ ≥ k)

K̃k(γ∗)

}

×
(
−pr(ξ0

1r)E(Y ∗r − µ0
r|X, ξ0

2r)

pk(ξ0
1)

+ I(C > tr)(Y
∗
r − µ0

r)

)]
− E

[
I(C∗ = r)− λ̃r(γ∗)I(C∗ ≥ r)

ω̃r(γ∗)

{
E(Y ∗r − µ0

r|X, ξ0
2r)− (Y ∗r − µ0

r)
}]

.

Conditional on full data Z, then conditional on C and X, the last equation becomes

= E

[
−

r−1∑
k=1

{
P (C∗ = r|Z)− λ̃k(γ∗)P (C∗ ≥ k|Z)

K̃k(γ∗)

}

×
{
−pr(ξ0

1r)E(Y ∗r − µ0
r|X, ξ0

2r)

pk(ξ0
1)

+ I(C > tr)E(Y ∗r − µ0
r|Z)

}]
−E

[
P (C∗ = r|Z)− λ̃r(γ∗)P (C∗ ≥ r)|Z

ω̃r(γ∗)

(
E(Y ∗r − µ0

r|X, ξ0
2r)− E(Y ∗r − µ0

r|C,X)
)]
.

(3.39)

Because of assumption that {Y ∗r ⊥ C|X} and assumption of coarsening at random,

the second expectation in equation (3.39) is 0 and the first expectation is in equation
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(3.39) equal to

E

[
−

r−1∑
k=1

{
(ω̃r(γ

0)− λ̃k(γ∗)K̃k−1)I(C > tk)

K̃k(γ∗)

}
{
−pr(ξ0

1r)E(Y ∗r − µ0
r|X, ξ0

2r)

pk(ξ0
1)

+ I(C > tr)E(Y ∗r − µ0
r|X)

}]
= E

[
−

r−1∑
k=1

{
(ω̃r(γ

0)− λ̃k(γ∗)K̃k−1)I(C > tk)

K̃k(γ∗)

}
−pr(ξ0

1r)E(Y ∗r − µ0
r|X, ξ0

2r)

pk(ξ0
1)

]

+E

[
−

r−1∑
k=1

{
(ω̃r(γ

0)− λ̃k(γ∗)K̃k−1)

K̃k(γ∗)

}
I(C > tr)E(Y ∗r − µ0

r|X)

]
.

Conditional on X,

= E

[
−

r−1∑
k=1

{
(ω̃r(γ

0)− λ̃k(γ∗)K̃k−1)

K̃k(γ∗)

}
P (C > tk|X)

−pr(ξ0
1r)E(Y ∗r − µ0

r|X, ξ0
2r)

pk(ξ0
1)

]

+E

[
−

r−1∑
k=1

{
(ω̃r(γ

0)− λ̃k(γ∗)K̃k−1)

K̃k(γ∗)

}
P (C > tr|X)(E(Y ∗r − µ0

r|X)

]

= E

[
−

r−1∑
k=1

{
(ω̃r(γ

0)− λ̃k(γ∗)K̃k−1)

K̃k(γ∗)

}{
−pr(ξ0

1r)E(Y ∗r − µ0
r|X, ξ0

2r)
}]

+E

[
−

r−1∑
k=1

{
(ω̃r(γ

0)− λ̃k(γ∗)K̃k−1)

K̃k(γ∗)

}
{pr(ξ0

1r)E(Y ∗r − µ0
r|X)}

]
= 0.

Similar procedure can show (3.38) is 0. Therefore, Preposition 2 has been proved and

it provides the guarantee of double robustness of µ̂∗r. �

In the next preposition, we would like to prove µ̂r is equivalent to µ̂∗r in probability.

Preposition 3. Assuming coefficients in the propensity score models, γ̂, and param-

eters in the augmentation part, ξ̂, are estimated consistently. In addition, n1/2(ξ̂−ξ0
r )

are assumed to be bounded in probability. Under the CAR assumption (3.1) and no

unmeasured confounding assumption (3.2), if coarsening models are correctly speci-
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fied, that is γ∗ = γ0
r , then

n1/2(µ̂r − µ̂∗r)
P−→ 0. (3.40)

If coarsening models are not correctly specified, then

(µ̂r − µ̂∗r)
P−→ 0. (3.41)

Proof:

We note that the expansion of (3.29) about µr, but keeping γ̂ fixed, yields

n1/2(µ̂∗r − µ0
r) = −

[
E

{
∂g(µ0

r)

∂µr

}]−1

n−1/2

n∑
i=1

[
h(µ0

r, γ̂) + L0(u0
r, ξ
∗)
]

+ op(1).(3.42)

whereas, the expansion of (3.28) yields

n1/2(µ̂r − µ0
r) = −

[
E

{
∂g(µ0

r)

∂µr

}]−1

n−1/2

n∑
i=1

[
h(µ0

r, γ̂) + L0(µ0
r, ξ̂)

]
+ op(1), (3.43)

where

∂g(µ0
r)

∂µr
=

{[
I(U = tr,∆ = 1)

ωr(γ̂)
+
I(U ≤ tr,∆ = 0)

ω∞(γ̂)

]
− L′01 − L′02

}
,

L′01 =
r−1∑
k=1

{
I(U = tr,∆ = 1)− λ̃r(γ∗)I(U ≥ tr)

K̃r(γ∗)

}
pr(ξ

∗
1r)

−I(U = tr,∆ = 1)− λ̃r(γ∗)I(U ≥ tr)

ω̃r(γ∗)
,

L′02 =
r−1∑
k=1

{
I(U = tr,∆ = 1)− λ̃(γ∗)rI(U ≥ tr)

K̃r(γ∗)

}
P (C ≤ tk|X, ξ∗1r).

(1)Assume coarsening models are correctly specified, that is γ∗ = γ0. Thus,

−
[
E

{
∂g(µ0

r)

∂µr

}]
= 1.
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Equation (3.42) and (3.43) became(3.42) and (3.43) as follows,

n1/2(µ̂∗r − µr) = n−1/2

n∑
i=1

[
h(µ0

r, γ̂) + L2(µ0
r, ξ
∗)
]

+ op(1), (3.44)

n1/2(µ̂∗r − µr) = n−1/2

n∑
i=1

[
h(µ0

r, γ̂) + L2(µ0
r, ξ̂)

]
+ op(1). (3.45)

Taking difference between (3.44) and (3.45), we obtain that

n1/2(µ̂∗r − µ̂r) =

[
n−1/2

n∑
i=1

L2(µ0
r, γ̂, ξ

∗)− n−1/2

n∑
i=1

L2(µ0
r, γ̂, ξ̂)

]
+ op(1). (3.46)

The proof is complete if we can show the term in the square brackets above converges

in probability to zero.

Expand n−1/2
n∑
i=1

L2(µ0
r, γ̂, ξ̂) about ξ∗, we have

n−1/2

n∑
i=1

L2(µ0
r, γ̂, ξ

∗) + n−1

n∑
i=1

∂L2(µinr , γ̂, ξ
in)

∂ξ
n1/2(ξ̂ − ξ∗), (3.47)

where ξin are intermediate values between ξ∗ and ξ̂. Plug (3.46) into (3.47), we obtain

n1/2(µ̂∗r − µ̂r) = n−1

n∑
i=1

∂L2(µ0
r, γ̂, ξ

in)

∂ξ
n1/2(ξ̂ − ξ∗) + op(1). (3.48)

Since γ̂
P→ γ0, and ξ̂

P→ ξ∗, then under suitable regularity conditions, the sample

average in equation (3.48) is

n−1

n∑
i=1

∂L2(µ0
r, γ̂, ξ

in)

∂ξ
→ E

∂L2(µ0
r, γ

0, ξ0)

∂ξ
= 0. (3.49)

It is not difficult to show (3.49) is 0 with correct specification of coarsening models.

Since n1/2(ξ̂ − ξ0
r ) are bounded in probability, then a simple application of Slutsky’s

theorem can be applied to show that (3.48) converges in probability to zero. Thus,
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we proved (3.40) is correct.

(2)Coarsening models are not correctly specified, that is γ∗ 6= γ0. At this point,

−
[
E

{
∂g(µ0

r)

∂µr

}]
= a, a 6= 1.

Following the similar procedure to obtain equation (3.48), instead, we have,

(µ̂∗r − µ̂r) =
1

a
n−1

n∑
i=1

∂L2(µ0
r, γ̂, ξ

in)

∂ξ
(ξ̂ − ξ∗) + op(1). (3.50)

Hence, we still have

n−1

n∑
i=1

∂L2(µ0
r, γ̂, ξ

in)

∂ξ
→ E

∂L2(µ0
r, γ

0, ξ0)

∂ξ
. (3.51)

Although it is not equal to 0 any more, however, it is still bounded. Note that ξ̂ → ξ∗,

Slutsky’s theorem can be applied to show (3.50) converges in probability to zero. �

Preprosition2 and Preposition 3 together guarantee the double robustness of the

proposed estimator. The consistency of estimator proposed by Johnson and Tsiatis

(2004) relied on correct specification of cause-specific hazard model only. However,

our approach can provide a protection against misspecified models.

3.3.2 Efficiency

The procedure described in the previous sections is aimed to obtain the optimal

estimator which has the smallest asymptotic variance among the class of all influence

functions of RAL estimators for µr given by

{ϕ(Z)} = (Y − µr)
{
I(U = tr,∆ = 1)

ωk
+
I(U ≤ tr,∆ = 0)

ω∞

}
+ Λ2, (3.52)
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by assuming we have specified all the models in Λ2. After identifying the influence

function on observed coarsening data, we posited working models for propensity score

and outcomes regressions, but these posited models may or may not be correct and

the parameters are estimated by MLE method. Therefore, if the posited models are

all correctly specified, then

P (C > c|X, ξ̂1), E(Y ∗r |X, ξ̂2) and E(Y ∗C |X, ξ̂2), r = 1, · · · ,m,

will be consistent estimators of

P (C > c|X, ξ10), E(Y ∗r |X, ξ20) and E(Y ∗C |X, ξ20), r = 1, · · · ,m.

In this case, L0(U,∆, X, Y, γ̂, ξ̂∗1 , ξ̂
∗
2 , µ

0
r) will converge to

∏[
(Y − ur)

{
I(U = tr,∆ = 1)

ωr(γ̂)
+
I(U ≤ tr,∆ = 0)

ω∞(γ̂)

}
|Λ2

]
,

the projection onto space Λ2. Thus, the corresponding influence function is

(Y − ur)
{
I(U = tr,∆ = 1)

ωr(γ)
+
I(U ≤ tr,∆ = 0)

ω∞(γ)

}
−
∏[

(Y − ur)
{
I(U = tr,∆ = 1)

ωr(γ)
+
I(U ≤ tr,∆ = 0)

ω∞(γ)

}
|Λ2

]
,

which is the most efficient one, that is, having the smallest asymptotic variance,

among the class of (3.52).

In practice, there is no guarantee for the correct specification of models desired

and it is very likely that we can not feasibly construct the most efficient estimator.

Nonetheless, the study of efficiency will aid us in constructing the more efficient

estimators even if we are not able to derive the most efficient one. Generally, the

attempt to estimate projection of h onto Λ2 by positing working models leads to
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more efficient estimators than the Inverse Probability Weighting (IPW) estimators

(Tsiatis, 2006).

The influence function of IPW estimator proposed by Johnson and Tsiatis (2004)

belongs to the class of all influence functions of RAL estimators for µr given by

{ϕ(Z)} = (Y − µr)
{
I(U = tr,∆ = 1)

ωk
+
I(U ≤ tr,∆ = 0)

ω∞

}
+ Λ2,

which is a special case by choosing L2 = 0. This implies that our estimator is

more efficient than Johnson and Tsiatis’s estimator. Therefore, we fulfill the task of

improving efficiency talked at the beginning of this chapter.

3.4 Simulation Study

In this section, we conduct several simulation studies to compare the performance of

the estimator we proposed with the estimator Johnson and Tsiatis proposed in 2004.

We focus on two properties: efficiency and double robustness.

We duplicate the scenarios in Johnson and Tsiatis (2004), but here we assume

that patients are assigned to one of a finite number of treatment duration policies at

value t = (t1, · · · , t3). For simplicity, we only consider time-independent covariates.

In the first simulation, let t = (15, 25, 30). We consider a single covariate, X,

following a standard normal distribution, for each individual. We then generate a

treatment-censoring random variable C as an exponential {p(X)} random variable,

where

p(X) = 0.01 exp(βX),

β = −2. We firstly generate potential outcomes Y ∗r , r = 1, · · · ,m for each patient if

the patient had completed treatment duration tr, r = 1, 2, 3, then potential outcomes
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Y ∗C . We assume the following models hold:

Y ∗r ∼ N(u1r, 1), where u1r = η1
or + η1

1rX,

and

For tr < C ≤ tr+1, Y
∗
C ∼ N(u2r, 1), where u2r = η2

or + η2
1rX.

With full data generated above, it is convenient to estimate true value of µr, r = 1, 2, 3,

and we approximate values by simulation.

The treatment duration data are simulated according to the following algorithm,

which is similar to the simulation scheme in Johnson and Tsiatis(2004): Start by

letting r = 1.

1. if C < tr, then define U = C and ∆ = 0.

2. For C ≥ tr, generate a Bernoulli random variable Qr, the indicator variable for

stopping treatment at time tr, with probability λ̃r(X) where

logit(λ̃r(X)) = γ0r + γ1X.

3. If Qr = 1, then assign U = tr and ∆ = 1; if Qr = 0 and r < m, then increment

r to r+1 and goto step 1.

Results for the simulation studies are presented in the Table 3.1. When propensity

score models, that is, cause-specific hazard function λ̃r(X) are correctly specified, our

AIPW estimator showed improved efficiency over IPW estimator, consistent with the-

oretical derivative, no matter whether the conditional mean models and conditional

distribution are correctly specified. If conditional mean models and conditional distri-

bution in augmentation part are correctly specified, more efficiency would be gained.

If propensity score models are not correctly specified, AIPW estimator is necessarily

more efficient than IPW estimator, although results in the Table 3.1 showed a slight
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improvement on asymptotic variance. However, when propensity score models are not

correctly specified, IPW estimators have a relatively large bias while AIPW estimator

showed double robustness, having a slight bias.

3.5 Analysis of the ESPRIT Infusion Trial

The ESPRIT (Enhanced Suppression of the Platelet IIb/IIa receptor with Integrilin

Therapy) trial, which motivated this article, targeted patients with coronary artery

disease scheduled to undergo percutaneous coronary intervention (PCI) with stent

implantation in a native coronary artery. The main objective of ESPRIT was to

compare eptifibatide (Integrilin) therapy to placebo on the basis of the composite

binary endpoint of death, myocardial infarction (MI), or urgent target vessel revas-

cularization within 30 days. The study enrolled 2064 eligible patients who were

randomized to either study drug (1040) or palcebo (1024) regimen. The experimental

treatment regimen consisted of an eptifibatide bolus and a continuous eptifibatide

infusion for 18-24 hours, with a similar regimen for the placebo group. This study

protocol required that patients experiencing serious complications, such as abrupt

closure, immediately discontinue the infusion process. We identified any complica-

tion as treatment-terminating events. The main study report suggested that drug

regimen in the study is superior to placebo.

We apply the methods developed for improving efficiency and robustness de-

scribed in the previous section to data from patients in the ESPRIT trial who

receive eptifibatide. The observed infusion length are discretized by taking tj to

be the midpoint of five intervals Ij, namely Ij = {(tj−1 + tj)/2, (tj + tj+1)/2} for

t = (t1, t2, t3, t4.t5) = (16, 18, 20, 22, 24), and we redefine the random variable Ui = tj

for any patient, where Ui ∈ Ij and ∆ = 1. We also included the following poten-

tial confounders in our analysis: diabetes(0/1), percutaneous transluminal coronary
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angioplgsty (0/1), angina (0/1), heparin (0/1) and weight, in kilograms, which are

identified in the earlier paper (Johnson and Tsiastis, 2004).

In Table 3.5, we present two estimators µ̂ and µ∗, obtained from the JT’s method

and the method proposed in this paper, respectively. Two estimators gave similar

results both in terms of the estimates and the standard errors, however, our estimator

gained more efficiency than the JT’s estimator.

Table 3.2: Analysis of the ESPRIT trial data

tr IPW (SE) New (SE)

16 0.040 (0.016) 0.042 (0.015)
18 0.066 (0.010) 0.067 (0.010)
20 0.078 (0.017) 0.077 (0.016)
22 0.071 (0.024) 0.074 (0.023)
24 0.121 (0.035) 0.131 (0.032)

3.6 Discussion

We have identified a class of augmented inverse probability weighted estimators and

derived the locally efficient and doubly robust estimator for the mean outcome for

a particular treatment policy, where treatment is censored by terminating events.

Simulation study showed that the proposed estimator is more efficient than the IPW

or JT estimator whenever propensity score is correctly specified and has smaller bias

than the IPW or JT estimator due to the protection provided by double robustness.

When all the models are correctly specified and parameters in the models are

estimated consistently, our estimator is the most efficient one among the class of aug-

mented inverse probability weighted estimators. In spite of this fact, it is always true

in practice. However, generally, as Tsiatis (2005) mentioned, the attempt to esti-

mate augmentation part by positing a working model to estimate unknown nuisance

parameters often leads to a more efficient estimators even if the model was incorrect.
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An interesting findings were found when we conducted the simulation studies,

which is more efficiency gained with more strong confounding in the propensity score

models. We have not found out that there are any literature specifically reporting

this phenomenon or discussing it in theory. Whether it is theoretically supported or

just a coincidence corresponding to a special setting is not known yet. Therefore,

theory and application behind this phenomenon is still open to discussion. This topic

can potentially be part of future research.

An limitation of this method is that it can only handle the case that duration can

take on only a finite number of values, t1, · · · , tm. In truth, treatment duration in

infusion studies is a continuous random variables. Hence, treating treatment duration

as a continuous variable is more realistic. This is one of future work.

In addition, Tan(2006) and Cao, et al.(2009) have developed estimators which is

more efficient than AIPW estimator when outcome regression are misspecified based

on large sample theory. Therefore, extension of their work to our setting is another

part of future work.
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Chapter 4

Nonparametric Method Using

Boosting Algorithm To Estimate

Mean Potential Outcomes

We proposed an efficient doubly robust semiparametric estimator for the mean of

potential outcome in the previous chapters and we also investigated their properties

in theory and simulations studies. We found that semiparametric estimators perform

poorly in small samples and working models of outcome regressions are not correctly

specified. In addition, when confounding covariates are more than observations, we

would fail to construct semiparametric estimators unless we limit the number of co-

variates in the model. However, modeling selection could exclude important con-

founding and decrease efficiency. Therefore, in this topic we propose a nonparametric

method to estimate mean potential outcomes as an alternative analysis in those cases

where semiparametric method did not perform very well.
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4.1 Introduction

Because “estimating the causal effects of treatments in a non-randomized observa-

tional study may be viewed as a missing data problem”(Rubin, 1983, p.41), estimating

mean outcome in the presence of missing values is the primary interest in this chapter.

Without loss of generalization, we assume that the complete data are realizations of

random variables

(X1, Y1), · · · , (Xn, Yn)

A random sample of incomplete data is

(X1, Y1, δ1), · · · , (Xn, Yn, δn),

where all the X are observed and δ = 0 if Y is missing, otherwise δ = 1. We will

estimate E(Y ) based on observational data by modeling E(Y |X) = f(x), where f(X)

is left unspecified.

4.1.1 Nonparametric Regression

We firstly briefly introduce the form, objective of nonparametric regression and com-

mon methods to estimate functions in the nonparametric regression. The general

nonparametric regression model fits the model

yi = f(xi) + εi,

where xi is a vector of predictors for the ith of n observations; the error εi are assumed

to be normally and independently distributed with mean 0 and constant variance σ2.

The function f is left unspecified. The object of nonparametric regression is to

estimate function f(·) directly, rather than to estimate parameters. Most methods of

nonparametric regression implicitly assume that f(·) is a smooth, continuous function.
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The advantage of nonparametric models is that they make fewer assumptions. We

typically made assumptions in parametric regression models, but not in nonparamet-

ric models, include normality, linearity, and homoscedasticity (constant variance). If

these parametric assumptions are, in fact, true (at least approximately), then esti-

mates from the parametric model are more precise that those from a nonparametric

model. If the assumptions are not true, the nonparametric model is demonstrably

better(Wright, 2010).

Another advantage of nonparametric regression is that it can handle the cases

where there are many predictors in a more flexible way. Several more restrictive

models have been developed. One such model is the additive regression model,

yi = a+ f1(xi1) + f2(xi2) + · · ·+ fk(xik) + εi.

Additive regression models are an alternative to unconstrained nonparametric regres-

sion with several predictors. It provides more flexibility to models especially when

there is high dimension curse.

There are three common estimating methods of nonparametric regression, which

are kernel estimation, local-polynomial regression (which is a generalization of kernel

estimation), and smoothing splines. There is a large literature on nonparametric

regression analysis, both in scientific journals and in texts. (For more extensive

introductions to this subject, see in particular, Bowman and Azzalini (1997), Fox

(2000), Hastie, Tibshirani and Hastie(2001), Tibshirani and Friedman(1990), and

Simonoff(1996)).

Recently, new algorithms have been proposed to improve the prediction ability of

nonparametric regression methods. Bagging and boosting, two well-known method

in the machine learning, have been considered to improve the performance of non-

parametric regression. Bagging and boosting are both ensemble methods (a weighted
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average of predictions of individual classifiers) for improving unstable estimation or

classification schemes. In this paper, we adopt boosting algorithm nonparametric

regression rather than bagging. There are two main reasons we prefer boosting over

bagging. To begin with, the main disadvantage of bagging is hard to interpret. More-

over, empirical studies have shown boosting method has appreciably smaller misclas-

sification rates than bagging (Borra and Ciaccio, 2002). Boosting algorithms have

been reconsider in terms of gradient descendent algorithms on several potential func-

tions and theoretical and empirical results about boosting for regression problem has

received focus and investigation. In the following section, we give an overview of

boosting algorithms.

4.1.2 Boosting Algorithms

Boosting, as ensemble methods, is one of the most successful and practical methods

in machine learning. Over the past few years, it has been connected to statistical

fields and proved to be a successful tool to improve prediction capability of classi-

fication and nonparametric regression methods. Much recent work has been on the

“AdaBoost” boosting algorithm and its extensions. We briefly overview about origin

of boosting, connection to statistics, general algorithm, basic elements in algorithm

and its application to improve performance in the nonparametric regression.

Boosting began within the field of machine learning during the 1990s. It rooted

from a theoretical framework called probably approximately correct (PAC) learning

model(Freund and Schapire, 1999). Kearns and Valiant (1994) were the first to pose

the question of whether a weak learning algorithm which performs just slightly better

than random guessing in the PAC model can be boosted into an arbitrarily accurate

strong learning algorithm.

Later, boosting has been applied to classification problem in statistics and its

practical aspects have been tried on substantial datasets empirically proved to im-
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pressively improve performance for statistical models. Early boosting algorithms have

some difficulties in practice. The AdaBoost algorithm, introduced in 1995 by Freund

and Schapire (1997), solved many difficulties of the earlier boosting algorithms. Var-

ious versions of AdaBoost have proven to be very competitive in terms of improving

prediction ability in many application. Practically, AdaBoost has many advantages.

First of all, it is fast, simple and easy to program. Second, it has no principle param-

eters to tune, except for the number of iteration. It does not requires prior knowledge

about the weak learner (we explain this concept in the next section) and so can be

flexibly combined with any method. Finally, there is a set of theoretical guarantees

given sufficient data and a weak learner that can reliably provide only moderately

accurate weak hypotheses. Thus, we can instead focus on finding weak learning algo-

rithms that only need to be better than random, instead of trying to design a learning

algorithm that is accurate over the entire space. In 1998 AdaBoost algorithm has been

observed that it can be viewed as a functional gradient descent algorithm in func-

tion space by Breiman (1998). Moreover, Friedman et al. (2000) linked AdaBoost

and other boosting algorithms to the framework of statistical estimation and additive

basis expansion. Here, additive does not mean a model fit which is additive in covari-

ates, but refer to the fact that boosting is an additive combination of simple function

estimators. Their work built a foundation of application of boosting to statistics in a

wider fields other than just classification.

Boosting methods have been originally recognized as ensemble methods. The

essence of ensemble scheme is multiple prediction and aggregation. Specifically, en-

semble schemes construct multiple function estimates or predictions from re-weighted

data and use a linear combination for producing the final, aggregated estimator or

prediction (Buhlmann and Hothorn, 2007). A general ensemble scheme is described

below:

(1) We specify a base procedure (also called as base learner, or weak learner)
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which constructs a function estimate, based on some data (X1, Y1), · · · , (Xn, Yn):

(X1, Y1), · · · , (Xn, Yn)
base procedure−→ ĝ(·).

(2) Generating an ensemble from the base procedures, i.e., an ensemble of function

estimates or predictions,

re-weighted data 1
base procedure−→ ĝ1(·)

re-weighted data 2
base procedure−→ ĝ2(·)

re-weighted data M
base procedure−→ ĝM(·)

aggregation : f̂A =
M∑
m=1

αmĝ
m(·)

where re-weighted data means that every of n sample points has been assigned indi-

vidual data weights. Different choice of weights {αm}Mm=1 results in different ensemble

schemes. When data weights in iteration m depend on the results from the previous

iteration m− 1, ensemble schemes are characterized as sequential ensemble schemes.

Most boosting methods are sequential ensemble schemes.

However, the scheme above is too general to be of any use. Every boosting al-

gorithm requires the specification of a base procedure, which conducts a function

estimate based on the data. Considering some structural properties of the boosting

algorithm, estimate usually is more interesting as it allows for “better interpretation

of the resulting model” (Buhlmann and Hothorn, 2007). Some important choices in-

clude componentwise linear least squares of linear models, componentwise smoothing

spline for additive models and regression tree. The principle of choosing base proce-

dure is low variance at the price of larger estimation bias (Buhlmann and Hothorn,

2007).
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As mentioned before, rather than being viewed as an ensemble methods, boosting

algorithms can also be seen as functional gradient descent(FGD) techniques. After

Breiman(1998) showed that the AdaBoost algorithm can be represented as a steepest

descent algorithm in function space, Friedman et al.(2000, 2001) then developed a

more general statistical framework and directly interpreted boosting as a method for

function estimation.

The goal of functional gradient descent method is to estimate a function by min-

imizing an expected loss

E[ρ(Y, f(X))],

where ρ(·, ·) is a loss function which is usually assumed to be differentiable and convex

with respect to the second argument, based on data (X1, Y1), · · · , (Xn, Yn). Fried-

man(2001) gave a generic FGD algorithm.

(1) Initialize f̂ 0(·) with an offset value. Common choices are

f̂ 0(·) = argmin
1

n

n∑
i=1

ρ(Yi, c).

Set m = 0.

(2) Increase m by 1. Compute the negative gradient ∂ρ(Y,f)
∂f

and evaluate at

f̂m−1(Xi):

Ui = −∂ρ(Yi, f)

∂f
|f=f̂m−1(Xi)

, i = 1, · · · , n.

(3) Fit the negative gradient vector U1, · · · , Un to X1, · · · , Xn by the real-valued

base procedure

(Xi, Ui)
n
i=1

base procedure−→ ĝm(·).

(4) Update f̂m(·) = f̂m−1(·) + υĝm(·), where υ is a steplength factor.

(5) Iterate steps 2 to 4 until m = mstop for some stopping iteration mstop.

We need to determine two parameters in the algorithm above, mstop and υ. The
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stopping iteration can be decided via cross-validation or some information criterion,

such as corrected AIC criterion. The choice of the step-length factor υ is of minor

importance, as long as it is “sufficiently small”(e.g., υ = 0.1).

Another key step to use the algorithm above is to define the form of loss function

ρ(y, f). Different loss functions result in different version of boosting algorithms. The

most popular loss functions include the following choices: (1) For binary response

Y ∈ {0, 1}, loss function ρ(y, f) is usually chosen as

exp(−(2y − 1)f),

or

log2(1 + exp(−(2y − 1)f));

(2) For continuous response Y ∈ R, loss function ρ(y, f) is usually chosen as

1

2
|y − f |2 (4.1)

The choice of the last loss function defines the L2Boosting, which is the simplest

and perhaps most instructive boosting algorithm. L2Boost algorithm is very useful

for regression, in particular in presence of many covariates. We describe the specific

L2Boosting as below:

Step 1 (Initialization). Given data {(Yi, Xi) : i = 1, · · · , n}. fit a real-valued

learner,

F̂0(x) = h(x; θ̂, x),

where θ = argmin
n∑
i=1

(Yi − h(Xi; θ)
2). Set m=0;
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Step 2 (Projection of gradient to learner). Compute the negative gradient vector,

Ui = −∂ρ(Yi, F )

∂F
|F=F̂m(Xi)

= Yi − F̂m(Xi), i = 1, · · · , n,

and fit the real-valued learner to the gradient vector,

f̂m+1(x) = h(x; θ̂U , X),

where θ̂U , X = arg min
n∑
i=1

(Ui − h(Xi; θ)
2). Update

F̂m+1(·) = F̂m(·) + f̂m+1(·).

Step 3 (iteration). Increase iteration index m by 1, and repeat step 2.

The algorithm above with different base learners results in different versions of

L2boosting algorithm. Using componentwise linear least squares results in Gam-

Boost algorithm. GamBoost is especially useful for high-dimensional data. Tutz and

Binder(2008) conducted extensive simulation to compare GamBoost algorithm with

other methods and showed it was favorably for fitting generalized additive models

when there were many predictors. Using regression tree as base learner results in an-

other popular boosting algorithm: BlackBoost algorithm. BlackBoost was developed

by Jerome Friedman of Stanford University. It has the advantage to be invariant

under monotone transformations of variables and we do not need to search for good

data transformations. Moreover, regression trees can handle continues or categorical

covariates in a unified way.

In this paper, we adopt blackBoost algorithm rather than Gamboost algorithm

due to the following reasons: (1) Although Gamboost is a popular algorithm to handle

high dimensional covariates in nonparametric regression, its assumption of additive

effects of covariates on outcomes may be not consistent of true model. Instead, black-
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Boost algorithm brings more freedom to the form of model. (2)As the most popular

boosting algorithm in the machine learning community, blackboost algorithm has the

advantage to be invariant under monotone transformations of predictor variables, i.e.,

we do not need to search for good data transformations. We introduce decision tree

in the next section.

4.1.3 Decision Tree

Decision tree is a common method used in machine learning community. The goal

is to create a binary tree to predict the value of a target variable based on several

input variables. Each interior node corresponds to one of the input variables; Each

leaf represents a value of the predicted target variable given the values of the input

variables represented by the path from the root to the leaf. If the target variable is

continuous, then a regression tree is generated. If the target variable is categorical,

then a classification tree is generated. The following Figure 4.1.3 will help understand

what a tree looks like.

How do we develop a decision tree from any given dataset? Recursive partitioning

(RP) was developed to address the problem of decision tree construction. There

are many different versions of recursive partitioning available and each has its own

unique details, such as unbiased RP and model-based RP, etc. However, the overall

methodology is consistently the same regardless of the exact implementation. Figure

4.1.3 illustrates the general methodology involved in Recursive Partitioning. There

are several basic elements related to recursive partitioning in the Figure 4.1.3, which

are partitioning the training set, deciding which question to ask(splitting criteria)

and selecting stopping criteria.

The first concept is partitioning the training set recursively, i.e., splitting the

dataset. Starting from the original entire sample space, we consider a question that we

ask in order to direct the user down the appropriate path. For simplicity, lets consider
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YES NO

Do you have enough funding to pay tuition?

YES NO

Find a jobDo you have enough  interest in the major?

YES NO

Find a jobGo to College

Figure 4.1: A simple decision tree for making decision on going to college or finding
a job
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Training 
SetSet

X< Y

Yes No

Splitting 
Criteria

Figure 4.2: Recursive Partitioning

that each potential question can have a true or false answer, thus, any particular node

will have at most two paths leading from it to the next nodes in the path. Every

possible value of every possible feature within the training set represents a potential

split that could be done. For example, for the data collected in the training set as

{Yi, i = 1, · · · , n} where all the Y range from 0 to 10, we can split the data according

to whether Y = 5. The result is that we will be able to go down the right path or the

left path based upon the data and we will effectively split the data at each node into

two independent groups − this is partitioning. Once we have two new nodes linked

to a previous node, we can repeat the process for each node independently using only

the observations present in that node − this is the recursive step.

The second concept is related to how we choose a question to ask, i.e., splitting

criteria. There are many criteria to decide how to split dataset. We could ask any

question of the above form for every possible value of every possible feature within our
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training set. In the previous example, the question whether Y = 5 can be replaced

by any other forms such as Y = 2, Y = 3, or Y < 5, etc. For the purpose of choosing

the most appropriate question, we have to develop a measure that we can use to

decide which split is the best possible split from our choices. For example, one of

the criterions for the splitting can be the minimum of within terminal node sum of

squared errors (RSSi) (Chu, Singfat (2001)). Breiman et al. (1984) and Shih (1999)

have established criteria for binary splitting, and multiple splitting is available by

utilizing the work of OBrien (2004). Hothorn et al. (2006) proposed a linear statistic

which induced a two-sample statistic measuring the discrepancy between the samples

{Yi|Xi ∈ A; i = 1, · · · , n} and {Yi|Xi∈A; i = 1, · · · , n}, where A are all possible

subsets of the sample space for unbiased recursive partitioning.

Finally, we must have a stopping criteria. If we were to allow the splitting pro-

cess to continue until each leaf only had 1 observation, we would have a perfect tree.

However, such resulting decision tree is no much meaning for the purpose of predic-

tion, because this sort of tree is over fit for the training data and will not perform

well on new data. To avoid this situation, we need to determine a stopping criteria

to halt the recursive partitioning process. stopping criteria can have many different

forms, including: (1)A maximum number of nodes in the tree. Once this maximum is

reached, the process is halted. (2) A minimum number of observations in a particular

node. Once the number of observations in a node is less than or equal to a minimum

value, we will not continue partitioning of that node, and that node becomes a leaf.

(3)A threshold of a fit statistics, such as the sum of squared errors of all terminal

node RSSi, i = 1, · · · ,m where m is the number of total nodes or predictive deviance.

An original tree may be too big to use, so pruning a tree is necessary in order to find

a good tree. Cross-validation method is a more successful and widely-used approach.

We randomly divide our data into a training set and a testing set, for example, 50 %

training and 50 % testing. We first apply the basic tree-growing algorithm described
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previously to the training data only. We then use cross-validation to prune the tree.

At each pair of leaf nodes with a common parent, we evaluate the error on the testing

data, and see whether the testing sum of squares would shrink if we removed those

two nodes and made their parent a leaf. If so, we prune. We can prune the tree

by minimizing the sum of (1) the output variable variance in the validation data,

taken a terminal node at a time, or (2) the product of the cost complexity factor and

the number of terminal nodes. Larger values of the cost complexity factor result in

smaller trees, or other meaningful self-defined measurement. This is repeated until

pruning no longer improves the error on the testing data.

There are lots of other cross-validation tricks for trees. One trick that has been

commonly is to alternate growing and pruning. We divide the data into two parts,

as before, and first grow and then prune the tree. We then exchange the role of the

training and testing sets, and try to grow our pruned tree to find the second half. We

then prune again, on the first half. We keep alternating in this manner until the size

of the tree doesn’t change.

Tree-based method has its advantages in the application of non-parametric regres-

sion. Firstly, both regression trees and classification trees are two approaches in a

class of nonparametric predictive model. That means no assumption made on data,

compared to generalized parametric model assuming dependent variable follows a cer-

tain distribution such as normal distribution or poisson distribution. Another reason

we would like to grow a tree model to predict dependent outcomes is that tree model

can easily deal with the cases where effect of covariates on dependent variable has

a complicated features, such as nonlinear and interactions, compared to traditional

linear regression which usually has a nice and neat form.

However, using decision trees has several major drawbacks, especially in large and

complex trees. First of all, it is relatively easy to understand when there are few

decisions and outcomes included in the tree. Large trees usually include dozens of
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decision leaves and may be too complex to read. Second, while one of the decision

tree advantages is its listing comprehensive information and all possible solutions to

an issue. However, such comprehensiveness may be unnecessary sometimes. It could

bring excessive information which distracts the decision makers’s primary interest

and slows down decision-making capacity. Moreover, large tree needs more advanced

computing capability to determine the best split of each node, which could be time

consuming.

A decision tree with only two terminal nodes (i.e., a tree with only one split)

is called a tree stump. A tree stump is very simple but work surprisingly well in

boosting (Schonlau, 2005).

4.1.4 Nonparametric Regression Analysis with Missing data

Statistical inference with missing data has a long historical background. The regres-

sion analysis of missing data has been developed since Yates (1933) formulates the

idea of substituting least square estimates for the missing values. While parametric

regression analysis with missing data has been developed for years, non-parametric

literature in the case of the response variable having missing observations gained

little attention. Titterington and Mill (1983) has discussed issues of density estima-

tion. Chu and Cheng (1995) investigated the local behavior of the nonparametric

regression estimation. Cheng and Wei (1986) and Cheng(1994) studied the estima-

tion of the mean of the response variable, which built a fundamental basis for our

topic. Gonzalez-Manteiga and Perez-Gonzalez (2004) studied the effect of missing

observations on the response variable in the estimation of a multivariate regression

function.

Observing the shared nature of these literature, imputation has become essential

when missing value is present. The imputation of values where data are missing is

an area of statistics which has developed much since the 1980s. Simple regression
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method imputation may be used for data by using non-missing data to predict the

values of missing data. Note that this may “over-correct”, introducing unrealisti-

cally low levels of noise in the data (Penne, 2009). The regression method has the

problem that all cases with the same values on the independent variables will be

imputed with the same value on the missing variable, causing a portion of the same

problems as mean substitution, which creates a spiked distribution at the mean in

frequency distributions and causes attenuation in correlation of the item with oth-

ers, and underestimates variance (Penne, 2009). The simple imputation method also

assumes that the same model explains the data for the non-missing cases as for the

missing cases, which is not necessarily true. Another possible method to estimate

the regression function with missing observation is multiple imputation. Multiple

imputation is a simulation-based approach to the statistical analysis of incomplete

data. Rubin (1987) is a pioneer in this technique. Over the last decades multiple

imputation has been widely used and recently it has come up in a few nonparamet-

ric studies. The procedure consists of replacing each missing observation by various

observations from a probability distribution, giving rise to various complete data sets

which are analyzed through statistical procedures, finally combining those results for

the final result. However, the choice of imputation method is not the focus of this

topic. We demonstrate our method by using the simple imputation and we welcome

any application of our method to multiple imputation in the future.

4.2 Method

In this section, we extend Cheng’s estimator (1994) for a mean of potential out-

come with incomplete data to the two-stage design. We apply boosting algorithm to

estimate nonparametric regression function.
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4.2.1 Point Estimate

Without loss of generalization, we only present the case where potential outcome has

two levels, Y ∗1 and Y ∗0 , corresponding to the consequence that if a patents received

one of two different second-line treatments (R = 1 or R = 0) after he failed on the

initial treatment, respectively. Observed data {Y,∆, R,X} have been described in

the previous chapters, where Y is observed outcome and ∆ is the indicator of failing

on the initial treatment. Our method to estimate the mean of potential outcome

EY ∗1 for a two-stage HIV data (the same procedure to estimate EY ∗0 ) is outlined as

follows: (1) For those patients who did not fail on the initial treatment (∆ = 0),

we assume they have the same potential outcomes as their observed outcomes, i.e.,

I(∆ = 0)Y ∗1 = I(∆ = 0)Y ∗0 = I(∆ = 0)Y ; (2) For those patient who have failed on the

initial treatment (∆ = 1), we assume that potential outcome Y ∗1 fits nonparametric

regression model which is Y ∗1 = f1(X)+ε, and function f1 is left unspecified. Complete

cases of {∆ = 1, R = 1} are used to estimate function f1 using boosting algorithm

which specifies regression tree as base learner and minimizes L2 Loss defined as (4.1)

; (3) Potential outcome Y ∗1 on the other treatment group (R=0) will be predicted and

imputed based on the nonparametric regression established in step(2); (4) Mean of

potential outcome Y ∗1 will be sample average of all patients’ predicted outcome, which

is n−1
∑
{(1−∆i)Yi+∆iRiYi+∆i(1−Ri)f̂(Xi)}; (5) Standard error of estimated mean

potential outcome Y ∗1 will be estimated using bootstrap method. In the following

paragraphs, we provide a detailed description of our method.

Assume we have full data {Y ∗1 , Y ∗0 , X,∆}, where Y ∗1 is the potential outcome if

he/she had received the treatment, and Y ∗0 is potential outcome if he/she had received

placebo. ∆ is failure indicator and X = {X1, · · · , Xp} are covariates. Potential

outcome Y ∗j follows the following model:

E(Yj) = fj(X1, · · · , Xp), j = 1, 0,
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where fi are unspecified and unknown functions and p is the number of covariates.

Furthermore, we assume that effect of the covariates on potential outcomes is different

between patients who failed on the initial treatment and those who did not. Full

data implies that no matter whether failure happened to the patient, he/she would

have two potential outcomes corresponding to two treatments. With full data, once

a suitable method has been developed well, it is easy to make statistical inference

based on full data, including estimating the parameter of interest which is mean of

potential outcomes.

µj = E(Y ∗j ), j = 1, 0.

However, we are not able to observe full data. We can only observe {Y,∆,∆R,X},

where R is a two-level variable (1 if treatment group, 0 if control group). Only those

patients who failed on the initial treatments have chance to receive one of the second-

line treatments. Because each individual receives only one treatment, either Y ∗1 or

Y ∗0 is missing. More specifically, since the objective is to estimate mean of Y ∗1 and

only those patients who actually received treatment can be observed to have outcome

Y ∗1 . For those patients who received placebo, their potential outcome Y ∗1 is missing.

Therefore, treatment R plays the role of indicating missing of potential outcome Y1,

which implied the fact that

∆Y = ∆RY ∗1 + ∆(1−R)Y ∗0 . (4.2)

We have to consider those patients who did not fail on the initial treatment

(∆ = 0). In the previous two chapters, we have established an assumption about

these patients’ potential outcomes and observed outcomes, and LTD justified this

assumption in their paper in 2002, which is

(1−∆)Y = (1−∆)Y ∗1 = (1−∆)Y ∗0 . (4.3)
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Combine (4.2) and (4.3), we identify the connection between full data and observed

data:

Y = (1−∆)Y ∗1 + ∆RY ∗1 + ∆(1−R)Y ∗0 ,

or

Y = (1−∆)Y ∗0 + ∆RY ∗1 + ∆(1−R)Y ∗0 .

Thus, when the specific objective of estimating E(Y ∗1 ), we actually need to focus

on how to deal with those patient with missing potential outcome. I describe the

nonparametric estimation scheme for the parameter of interest µ1 = E(Y ∗1 ) below.

The same procedure can be applied to estimate µ0 = E(Y ∗0 ). Let f1(x) = E(Y ∗1 |X =

x). As a consequence, µ1 = E(Y ∗1 ) = E(E(Y ∗1 |X)) = Ef1(X). A natural estimator

of µ1 is

µ̂1 = 1/n
n∑
i=1

[(1−∆)Yi + ∆(RYi + (1−R)f̂(Xi))] (4.4)

The estimator above implies that each missing potential outcome Y ∗1 for patients in

the control group are imputed by f̂(X). This estimator is an extension of Cheng’s

estimator (1994) to a two-stage HIV design.

Therefore, in order to obtain µ̂1 the essential procedure is to accurately estimate

fi(X), i = 1, 0. with complete case and efficiently predict missing potential outcomes

for incomplete case. As we have discussed before, we adopt boosting algorithm using

regression tree as base procedures to estimate fi(X), i = 1, 0. The stopping iteration

is decided via 5-fold cross-validation by minimizing the L2 loss function.

4.2.2 Variance Estimate

We use bootstrap method to estimate variance. A possible application of boot-

strap method to estimate variance of µ̂ discussed by Gonzalez-manteiga and Perez-

Gonzalez(2004). In the case of no missing data, the ordinary bootstrap method can

be applied as described by Efron and Tibshirani(1986). When there are imputed
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missing data, naive bootstrap estimators are obtained by treating imputed data as

original data. However, Shao and Sitter (1996) argued that naive bootstrap method

lead to serious underestimation of the variance, because it ignores the imputation

process. Instead, “ the bootstrap data set should also be imputed in the same way as

the original data set was imputed”. In addition, Shao and Sitter (1996) proved that

this is the only method that works without any restriction on the sampling design,

the imputation method, or the type of statistics. Therefore, we proceed the bootstrap

process to estimate variance as follows:

(1) Draw a simple random sample with replacement with size n from the original

data set.

(2) Partition the drawn random sample into two parts: A = {i, Ri = 1} and

B = {j, Rj = 0}, where A and B denotes the set of no missing and with missing in

the bootstrap sample. Estimate the nonparametric regression using the set A with

the same procedure used in the original data set, then impute missing respondent in

B using the model obtained from A, which results in the same imputation procedure

used in constructing the imputation of missing values in the original data set.

(3) Obtain the bootstrap estimator µ̂b.

(4) Repeat procedure (1)-(3) B times.

(5) Apply Monte Carlo approximations V̂ar(µ1) = 1/(B−1)
B∑
b=1

(µ̂b− ¯̂µ)2 to obtain

bootstrap variance, where µ̂b is the Bootstrap estimate and ¯̂µ is the average of B

Bootstrap estimates.

4.3 Simulation

In this section, we conduct simulation studies to compare the performance of non-

parametric regression estimators using boosting algorithm with semiparametric es-

timator proposed in the first topic. For the convenience of presenting methods,
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we assume all the patients have failed on the initial treatment. To construct true

propensity score models and outcome regression models, we follow simulation pro-

cedures similar to those in the first topic, which are also from Cao (2009). For

each i, Zi = (Zi1, Zi2, Zi3, Zi4)T was generated as standard multivariate normal, and

the elements of Xi = (Xi1, Xi2, Xi3, Xi4)T were defined as Xi1 = exp(Zi1/2), Xi2 =

Zi2/(1 + exp(Zi1)) + 10, Xi3 = (Zi1Zi3/25 + 0.6)3 and Xi4 = (Zi1 + Zi2)2, so that

Zi may be expressed in terms of Xi. The true propensity score model is π0 =

expit(−Z1 + 0.5Z2 − 0.25Z3 − 0.1Z4). We examine the performances of these es-

timators in the scenarios listed in the following Table 4.1. These scenarios focuses

on the issues either misidentification of PS or OR models or high dimension of co-

variates, in small sample size. we conducte simulation for each scenario, where 200

Monte Carlo datasets were generated. The similar procedure to generate data has

been described in the previous chapter. Estimators using IPW, AIPW, Tan, CTD

methods and non-parametric method are presented with their bias and Monte Carlo

standard deviation.

Specifically we consider four scenarios. In the first scenario, the propensity score

model is specified correctly and potential outcome Y ∗1 ( and Y ∗0 ) is generated from

normal distribution with mean being a linear combination of covariates Z1 − Z4.

For the working models, PS model and OR model are correctly specified as the

true models. In the second scenarios, while working propensity score models have

been specified correctly as true models, working outcome regression models are not.

Outcomes are generated from a highly skewed distribution, however, working outcome

regression models neglect the high skewness by positing a normal distribution on

the outcomes. Scenario 3 misspecified both PS model and OR model by replacing

Z1 − Z4 by X1 −X4. Scenario 4 considers the case where there are many covariates

and number of covariates is larger than the number of observations. This is a case

which semiparametric method could not handle unless dropping important covariates
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from the models.

The purposes to conduct simulations for the scenarios above are: (1)In the pre-

vious topics, we found that semiparametric estimators we proposed did perform very

well, in efficiency and double robustness, when sample size is large. However, perfor-

mance of semiparametric estimators highly depends on whether models are correctly

specified in small sample size. Therefore, we mainly intend to examine the small

sample size performances here. (2) When all the models are correctly specified, ef-

ficient semiparametric estimators we proposed have similar estimation, we do not

expect nonparametric methods give a very different estimators and draw opposite

conclusion in the first scenario. (3)Some proposed semiparametric estimators gave

a considerably large variance estimation, and we believe this is because of influence

of both misspecification of models and small sample size. Therefore, we hope that

nonparametric method which does not rely on specification of model and can work

in small sample size has a better performance than semiparmetric estimator in sce-

nario 2 and scenario 3. (4) when number of covariates is no smaller than number of

observations, semiparametric methods fails to construct a valid estimator because in

this case, because estimates in logistic regression and linear regression may be ques-

tionable. Hence, nonparametric estimator is an alternative method for this case as

presented in scenario 4.

Results for all the scenarios are presented in the Table 4.2 below. For the first

scenario where both models are correct specified, we can see that AIPW, Tan and

CTD estimates and nonparametric estimator with regression tree as base learner per-

form similarly, and they all showed improved efficiencies than IPW estimators. For

the second and third scenario where outcomes regression models are incorrectly spec-

ified badly, proposed semiparametric estimators did not show much improvement in

efficiency compare to IPW estimator, especially CTD estimator which has the largest

Monte Carlo standard deviation compared to other semiparametric estimators. How-
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ever, nonparametric estimators perform better than any semiparametric estimators in

efficiency. The flip side of nonparametric estimator is that it has larger bias. “Badly”

incorrectly specifying outcome regression means a highly skewed distributed outcome

is assumed to follow the normal distribution in the working models. In the last sce-

nario, when we force 50 important covariates in the model, it is difficult to construct

semiparametric estimators. However, containing 50 or even more covariates in the

model is not an problem for non-parametric estimator.

4.4 Application to ACTG A5095 Data

We apply nonparametric methods to ACTG A5095 Data. Background, treatment and

outcomes definition have been described in detail in the Chapter 2. Different from

the method used in the chapter 2, we do not need to build propensity score model

and outcome regression model; instead, we estimate the parameters of interest, E(Y ∗1 )

and E(Y ∗0 ), by directly modeling relationship between potential outcomes Y ∗1 and Y ∗0

and auxiliary covariates.

We include the following potential confounders in our analysis: age, height, weight,

baseline CD4 cell counts, baseline CD8 and time to first failure, which is consistent

with analysis in the Chapter 2.

We present naive estimators, semiparametric estimators and nonparametric esti-

mator in the Table 4.3 below. The findings are summarized as follows: semiparamet-

ric estimators proposed in the Chapter 2 such as Tan estimator suggest there are sig-

nificant differences in cumulative HIV RNA, proportion of time with suppressed HIV

RNA and cumulative CD4 cell counts between patients switching early versus late to

second-line ARV regimens on the the combined efavirenz-containing arm. However,

CTD estimators did not detect any difference for any endpoint. On the other hand,

nonparametric method showed that patients switching early had higher proportion of
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time with suppressed HIV RNA and cumulative CD4 cell counts than patients who

are late to second-line ARV regimens on the the combined efavirenz-containing arm

(p-values < 0.05).

4.5 Discussion

In this chapter, we attempted to find an alternative estimating method for semi-

parametric method we proposed in the second chapter when the semiparametric

estimator has large bias and excessively large standard error in those cases where

outcome regression models have been “badly” incorrectly specified in small sample

size or semiparametric estimators are failed to be constructed due to high dimen-

sion of covariates. We extended Cheng’s estimator (1994) to two-stage HIV data

by applying boosting algorithm to estimate nonparametric regression function. The

nonparametric method does not require assuming any form of working models for the

data, and it is not difficult to implement. In addition, our simulation results showed

that in those cases where semiparametric estimators did not perform very well, non-

parametric method displayed its advantages. We also found that in those cases where

semiparametric estimators have good performance, non-parametric would not draw

an opposite conclusion. In the application of non-parametric estimator to ACTG5095

data, nonparametric method detected patients switching early had higher proportion

of time with suppressed HIV RNA and cumulative CD4 cell counts than patients who

are late to second-line ARV regimens on the the combined efavirenz-containing arm.

The nonparametric method has its shortcomings. First of all, the key component

of our nonparametric estimator is the application of boosting algorithm. Ability of

variance reduction of boosting algorithm is based on the trade off large bias. An-

other disadvantage existing in the nonparametric method we proposed is that we

chose simple implementation to predict missing values, which might underestimate
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the standard error. Moreover, it has difficulty in calculating standard error, although

bootstrap method can be used to estimate standard error. Last, although our method

is easy to implement, its involvement with cross-validation to estimate the tuning pa-

rameter took considerable long time to implement this method. These issues form

the basis of future study.

We proposing non-parametric method to resolve our scientific problem does not

mean we are not in favor of semiparametric estimators. When we have confidence in

the degree of correct form of working models, we are still in favor of semiparametric

method, because semiparametric method is not only producing smaller bias but also

efficiency. In those special cases we have identified before, non-parametric method

has better performance than semiparametric method in improving efficiency; however,

the price is to introduce large bias. Therefore, in practice applying semiparametric

method or nonparametric method depends on the specific data and scientific purpose.
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Table 4.3: Estimates of mean outcomes, 744 patients, full model

RNA 1 Suppression 2 CD4 3

Method Switch Est. (SE) T Est. (SE) T Est. (SE) T
Early 2.600 (0.181) 0.592 (0.054) 2.436 (0.055)

Naive
Late 2.685 (0.068)

0.513
0.546 (0.023)

0.800
2.466 (0.026)

0.458

Early 1.835 (0.041) 0.837 (0.030) 2.621 (0.093)
IPW

Late 1.914 (0.032)
4.970

0.787 (0.011)
2.720

2.564 (0.015)
0.369

Early 1.848 (0.048) 0.829 (0.033) 2.593 (0.035)
AIPW

Late 1.915 (0.033)
2.325

0.787 (0.011)
1.614

2.563 (0.015)
0.764

Early 1.833 (0.043) 0.828 (0.01) 2.600 (0.015)
RRZ

Late 1.914 (0.033)
4.218

0.787 (0.011)
19.860

2.561 (0.015)
9.800

Early 1.835 (0.040) 0.830 (0.011) 2.599 (0.014)
Tan

Late 1.914 (0.033)
4.948

0.788 (0.011)
21.235

2.563 (0.015)
18.326

Early 1.849 (0.048) 0.808 (0.012) 2.593 (0.017)
Non

Late 1.899 (0.030)
1.192

0.788 (0.010)
7.087

2.567 (0.015)
5.364

NOTE: The estimated endpoint is reported for combination of initial ARV treatment regimen

(A=the combined efavirenz-containing) and switching status (S);

We report the Wald test statistic for a test of the null hypothesis that the average causal effect (ACE) is zero;
1 HIV RNA level: Length-adjusted AUC of Virus Load, logarithm scale;
2 Virologic Suppression: Rate of Time Suppression of HIV RNA;
3 CD4 cell counts: Length-adjusted AUC of CD4 cell counts, logarithm scale
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Chapter 5

Summary and Future Work

This dissertation aims to solve two problems. One is to evaluate the effect of different

treatment switching strategies in HIV studies and the second is to evaluate the effect of

different treatment durations in infusion studies. There are several common features

shared by these two problems. First of all, they are both more interested in one

treatment policy than a single treatment assignment. Second, direct comparison by

randomization experiments is not available. Inference is based on observational data.

However, the problem in the infusion studies is more complex than the first problem

in HIV studies, because in infusion study we have to consider the terminating event

which censored the treatment duration. Through the dissertation, we made causal

inference on the effect of treatment policy by applying semiparametric theory to

missing data problem, and we proposed double robust and locally efficient estimators

for the population mean response on the basis of censored observational data.

The first primary goal of this dissertation was to address a scientific question in

HIV/AIDS research where there is an abundance of conjecture and speculation but

limited evidence: is it better to switch early or late from a failing ARV regimen?

Where an ordinary randomized trial could easily answer this question, the clinical

literature suggests that such a randomized trial is difficult to enroll. Alternatively,
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one can use data from other studies where assignment to switch ARV regimen early or

late depends on patient-specific characteristics. Although standard sample averages

and two-sample tests cannot be used to analyze such data, methods of causal inference

may be utilized and have become a staple of modern statistical inference. To answer

the above scientific question using data from ACTG A5095, we adopt methods based

on potential outcomes (Rubin, 1974), an extension of two-stage designs (Lunceford

et al., 2002) via Murphy et al. (2001), and Tan’s (2006, 2007) adaptive doubly-

robust estimator. Using this combination of techniques, we found that patients who

started a standard combination antiretroviral regimen of nucleoside analogues and

efavirenz, then made regimen changes within eight weeks of confirmed virologic failure

on initial ARV regimen were associated with lower cumulative viral load level, higher

cumulative CD4 cell counts, and spent a larger proportion of the follow-up period

with suppressed viral load levels, on average. Although other authors have recently

reported similar results for switching off of HAART, the endpoints used here are very

different and can be computed even when a mortality outcome is not available. The

ACTG A5095 study is an example of a clinical trial that whose primary objective was

to test the efficacy of initial regimens but we used it in a secondary analysis of regimen

change. When it is difficult to design and enroll a completely randomized study of

regimen change, data like that from ACTG A5095 and the framework employed here

will be germane for evaluating the effect of early regimen change.

The second primary goal of this dissertation was to address a scientific question

in infusion research when treatment infusion is informatively right-censored. This

scientific question looks similar to the first one, because they both compare the ef-

fect of timing of an event (treatment) and treatment assignment is not randomized,

instead observational. However, the second question is more complex than the treat-

ment switch problem in the first topic. Firstly, treatment duration is not binary, at

least it is ordinary, having some sort of ordering. Secondly, treatment-termination
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events exists and censor the treatment duration. We must consider the terminating

event, because it is specified in the protocol and it is part of treatment plan. In addi-

tion, different from survival analysis where treatment duration only is of interest and

treatment duration is censored by terminating event, we regard terminating event as

a possible consequence related to treatment duration, instead of outcome. In this

case, we identified a class of augmented inverse probability weighted estimators and

derived the locally efficient and doubly robust estimator for the mean outcome for the

particular treatment policy. Simulation study showed that the proposed estimator is

more efficient than the IPW estimator whenever propensity score is correctly speci-

fied and has smaller bias than the IPW estimator due to the protection provided by

double robustness. In addition, our efforts in identifying augmentation part in double

robust estimator built a fundamental ground work for future efficiency improvement

using techniques in Tan(2006) or Cao et al(2009).

An limitation of semiparametric method to deal with the case where treatment

is informatively censored is that it can only handle the situation that duration can

take on a finite number of values, t1, · · · , tm. In truth, treatment duration in infusion

studies is a continuous random variables. Hence, treating treatment duration as

a continuous variable is more realistic. This is one of future work. In addition,

Tan(2006) and Cao, et al.(2009) have developed estimators which is more efficient

than AIPW estimator when outcome regression are misspecified based on large sample

theory. Therefore, extension of their work to our setting is another part of future work.

Nonparametric method we proposed in the first topic needs more investigation on the

reason why it has relatively large bias.
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