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Abstract 

Fitness Estimation for Viral Variants in the Context of Cellular Coinfection 
By Huisheng Zhu 

Animal models are frequently used to characterize the within-host dynamics of emerging 
zoonotic viruses. More recent studies have also deep-sequenced longitudinal viral samples 
originating from experimental challenges to gain a better understanding of how these viruses 
may evolve in vivo and between transmission events. These studies have often identified 
nucleotide variants that can replicate more efficiently within hosts and also transmit more 
effectively between hosts. Quantifying the degree to which a mutation impacts viral fitness 
within a host can improve identification of variants that are of particular epidemiological 
concern and our ability to anticipate viral adaptation at the population level. While methods 
have been developed to quantify the fitness effects of mutations using observed changes in 
allele frequencies over the course of a host’s infection, none of the existing methods account 
for the possibility of cellular coinfection. Here, we develop mathematical models to project 
variant allele frequency changes in the context of cellular coinfection and, further, integrate 
these models with statistical inference approaches to demonstrate how variant fitness can be 
estimated alongside cellular multiplicity of infection. We apply our approaches to empirical 
longitudinally sampled H5N1 sequence data from ferrets and SARS-CoV-2 sequence data from 
hamsters and ferrets. Our results indicate that previous studies may have significantly 
underestimated the within-host fitness advantage of viral variants. In addition, cellular 
coinfection could explain the leveling-off we observed in the advantageous variant’s increase. 
These findings underscore the importance of considering the process of cellular coinfection 
when studying within-host viral evolutionary dynamics.  
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Introduction

Zoonotic pathogens are often poorly adapted to their spillover hosts. Viral adaptation, however, can

occur during epidemiological spread following spillover, resulting in increases in viral transmission

potential as the pathogen establishes itself in the host population [1]. This has been observed

most notably in influenza viruses that have successfully established in humans (e.g., [2, 3]). The

pandemic coronavirus SARS-CoV-2 provides a more recent example, with variant lineages that are

better adapted to human hosts (such as D614G [4]) emerging and replacing earlier viral lineages.

Viral adaptations that improve transmission potential often arise from their effect on within-host

replication dynamics. For example, mutations that enable viruses to replicate more efficiently

within hosts (in particular, in transmission-relevant tissues) could enhance transmission potential,

as could mutations that allow for a more effective evasion of the host immune response.

In vivo studies could in principle be used to identify mutations that improve viral fitness in a

spillover host. For example, experiments using the ferret animal model identified a set of influenza

A subtype H5N1 mutations that increase viral replication within the nasal turbinate of hosts (a

transmission-relevant tissue) and also increase transmissibility [5, 6]. The fitness effects of mu-

tations such as these have been estimated by interfacing quantitative models with data on how

variants carrying these mutations change in frequency over the course of infection [7–9]. How-

ever, these approaches assume that fitness is an individual-level property of a variant. While this

may be the case when cells are only singly infected, many viral infections involve significant levels

of cellular coinfection. For example, due to incomplete viral genomes, influenza viruses heavily

rely on complementation to produce viral progeny [10–12]. High levels of cellular coinfection in

other viruses, such as HIV, is also likely, given the pervasiveness of recombinant genomes that are

identified during viral sequencing [13, 14].

Cellular coinfection can impede the ability of high-fitness variants to rise to high frequencies

within an infected host. This is because of the phenomenon of ‘phenotypic hiding’ [15, 16]. Pheno-

typic hiding comes about as a consequence of viral protein products being shared within coinfected
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cells. Delivery of a viral genome carrying a highly beneficial mutation results in the production of

a viral protein that can provide a replicative benefit to all of the viral genomes present in the coin-

fected cell. Similarly, a viral genome carrying a deleterious (and potentially even lethal) mutation

can be rescued by protein products derived from coinfecting viral genomes. Cellular coinfection

thus results in natural selection no longer acting on individual viral genomes, but instead on viral

collectives. This effectively reduces the strength of selection, such that deleterious mutations are

purged more slowly [17] and beneficial mutations are also fixed more slowly [18]. As a result, the

extent of cellular coinfection impacts the dynamics of allele frequency changes in an infection and

affects fitness inference.

Here, we first develop a set of mathematical models to project changes in the allele frequencies

of viral variants within infected hosts. Our models specifically allow for cellular coinfection and

the effect of phenotypic hiding on allele frequency changes. Using Bayesian inference approaches,

we then demonstrate how these mathematical models can be interfaced with longitudinally sampled

allele frequency data to jointly estimate the relative fitness of a variant and cellular multiplicity of

infection levels. Finally, we apply our developed methods to estimate the fitness effect of adaptive

mutations that was identified in an influenza H5N1 experimental challenge study performed using

the ferret animal model and in SARS-CoV-2 experimental in vivo competition study performed

using the hamster animal model. Our findings indicate that the fitness effect of this mutation is

considerably higher than previously estimated and that cellular coinfection precipitously slowed

down the rate of within-host influenza virus adaptation.
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Materials and Methods

Deterministic within-host evolution model

Several studies to date have used longitudinal allele frequency data to estimate the relative fitness

of a mutant allele over a wild-type allele within an infected host or from passage studies [9, 19,

20]. None of these models, however, account for the impact that cellular coinfection can have on

variant allele frequency changes over time. To accommodate cellular coinfection, we first start

with an evolutionary model that projects allele frequencies from one viral generation to the next in

the absence of coinfection:

qm (
tg+1

)
=

qm (tg)eσm

qm (tg)eσm +(1−qm (tg))eσw
(1)

where qm (tg) is the frequency of the variant (mutant) allele in viral generation g, σm (with range

−∞ to ∞) is the selective advantage/disadvantage of the focal mutation, and eσm (with range ≥ 0) is

the relative fitness of the variant allele over the wild-type allele. The fitness of the wild-type allele

(eσw) is defined as 1. This model is a simplification of a model first presented in [9]. That model

considers an arbitrary number of viral haplotypes and further incorporates de novo mutation in its

projection of allele frequencies. Here, we ignore de novo mutation over the course of infection

and limit our analysis to two viral haplotypes: a wild-type viral genotype and a variant genotype

carrying a mutant allele at a single locus. We adopt these simplifications to focus attention on the

effect of cellular coinfection in within-host evolution.

To extend this initial model to allow for the effect of cellular coinfection, we first assume

that viral genomes enter cells independently of other viral genomes. Under this assumption, viral

genomes are distributed across cells according to a Poisson distribution. Given a mean overall

cellular multiplicity of infection (MOI) of M, the variant’s mean MOI in viral generation tg is

simply given by Mm = qm (tg)M and the wild-type virus’s mean MOI is simply given by Mw =

(1−qm (tg))M. The probability that a cell is infected with k variant viral genomes and l wild-type
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viral genomes is then:

P(k, l) =
(

e−Mm(Mm)
k

k!

)(
e−Mw(Mw)

l

l!

)
(2)

Under the assumption that viral protein products within cells have additive effects, the fitness of

a viral genome present in a cell carrying k variant viral genomes and l wild-type viral genomes is

given by:

F(k, l) =
k

k+ l
eσm +

l
k+ l

eσw (3)

Note that this fitness does not depend on whether the focal genome is a variant viral genome or a

wild-type viral genomes, since all viral genomes within a cell share their protein products and thus

have the same fitness.

The realized mean fitness of a viral variant in the context of cellular coinfection is calculated by

taking a fitness average of the viral variant across its cellular contexts:

eσm =
∑

∞
k=0 ∑

∞
l=0 kP(k, l)F(k, l)

MOIm
(4)

Similarly, and the realized mean fitness of the wild-type virus in the context of cellular coinfection

is given by:

eσw =
∑

∞
k=0 ∑

∞
l=0 lP(k, l)F(k, l)

MOIw
(5)

Examination of these equations indicates that the realized mean fitness of the viral variant and

of the wild-type virus approach eσm and eσw , respectively, as cellular MOI becomes small, as

expected. As cellular MOI becomes large, eσm and eσw converge in their values, as expected.

Variant allele frequency changes in the context of cellular coinfection can then be projected

using a modified version of Eqn. 1, where realized mean fitnesses replace individual-level viral

fitnesses:
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qm (
tg+1

)
=

qm (tg)eσm

qm (tg)eσm +(1−qm (tg))eσw
(6)

Simulated data

We simulated the models described above to ascertain the effect of cellular coinfection on variant

allele frequency changes at various levels of coinfection. We also simulated mock datasets and

used them to test the statistical inference methods described in detail below. We simulated one

mock dataset using the deterministic within-host evolution model, with observed variant allele

frequencies that include measurement noise (noise that is due to an inaccurate measuring process,

rather than underlying noise in the viral dynamic process) . To implement measurement noise, we

let the observed variant allele frequency in generation tg, qm
o (tg), be drawn from a beta distribution

with shape parameter α = νqm(tg) and shape parameter β = ν(1−qm(tg)):

qm
o (tg)∼ Beta(νqm(tg),ν(1−qm(tg)))

where ν quantifies the degree of measurement noise. The parameter ν is constrained to be positive,

with higher values corresponding to less measurement noise. We simulated a second mock dataset

using the stochastic within-host model, similarly assuming beta-distributed measurement noise.

Empirical H5N1 data

As an application of the approaches developed here, we used longitudinal allele frequency data

from an influenza A subtype H5N1 experimental challenge study in ferrets [21]. We specifically

focused on inferring the relative fitness of a single nucleotide variant on the hemagglutinin gene

segment (G788A) in the VN1203-HA(4)-CA04 virus. This variant was present in the viral inocu-

lum stock at a frequency of 4.40% and increased in frequency over the course of infection in each

of the four ferrets that were challenged with this inoculum. Although G788A allele frequencies

were measured in [21] on days 1, 3, and 5 post-inoculation, we excluded the day 5 samples from
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our analyses. This is because up to (and including) day 3, the viral population in each of the

four ferrets exhibited low levels of genetic diversity, with G788A being the only variant present

at substantial frequencies. By day 5, additional variants on the hemagglutinin gene segment had

emerged, with some reaching high frequencies. Because there is genetic linkage between these

later variants and G788A, the G788A frequency changes between days 3 and 5 are likely due in

part to selection acting on these later variants. Because our model does not reconstruct viral hap-

lotypes or consider epistatic interactions between loci, we thus decided to exclude day 5 from our

analysis to be able to focus more specifically on estimating the fitness of G788A in the context of

cellular coinfection.

Empirical SARS-CoV-2 data

We also applied our model to longitudinal allele frequency data from SARS-CoV-2 D614G in vivo

competition experiments done in Syrian hamsters [22]. Six hamsters were inoculated with a 1:1

mixture of SARS-CoV-2D614 and SARS-CoV-2G614, and nasal wash samples were taken daily from

days 2 to 8, and day 12. The G variant quickly rose in frequencies at the beginning of the infection

but lingered around 95% afterward until day 12. This observation led us to hypothesize that while

there was little or no cellular coinfection at first, MOI increased as the infection proceeded and

reduced the with-in host realized mean fitness of the G variant. Through a comparison of SARS-

CoV-2D614 trajectories and cycle threshold (Ct) values, a Ct value of above 21 was chosen as an

indicator of little or no coinfection happening. All of the six ferrets in [22] had a Ct value of above

21 until day 3. We first fit the existing deterministic model without coinfection to data from days 2

and 3 to infer eσG , the relative fitness of SARS-CoV-2G614 to SARS-CoV-2D614. Using the inferred

eσG value, we then fitted our deterministic model to data from day 4 to estimate MOI.

Statistical inference

The deterministic within-host model contains four parameters: the relative fitness of the variant

virus (eσm) over the wild-type virus, the mean cellular multiplicity of infection (M), the initial
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frequency of the variant virus in a host (qm(t0)), and the magnitude of measurement noise (ν).

When interfacing this model with longitudinal allele frequency data, we estimate the first three

parameters but do not estimate ν . We do not estimate ν because it can be parameterized from

allele frequency measurements from replicate samples. To estimate eσm , M, and qm(t0), we rely on

Markov Chain Monte Carlo (MCMC) approaches.

Let P(qm
o (tg)) be the probability of observing a variant allele frequency of qm

o in generation tg.

This probability is given by the beta probability density function, with shape parameters νqm
sim(tg)

and ν(1−qm
sim(tg)), evaluated at qm

o (tg), where qm
sim(tg) is the model-simulated allele frequency in

generation tg. This simulated variant allele frequency depends on parameters eσm , M, and qm(t0),

and for the stochastic model also N. For the deterministic model, the likelihood of the model is

then given by:

∏
g

P(qm
o (tg)) (7)

where g indexes the generation times of all the measured variant allele frequency data points. For

the stochastic model, P(qm
o (tg)) is used to calculate the particle weights in the pMCMC algorithm.

Statistical inference code was implemented using Python 3.7.4 and is available from https:

//github.com/koellelab/withinhost_fitnessInference.

With-in host dynamics modeling for SARS-CoV-2 D614G (Ongoing work)

To examine how the with-in host dynamics of SARS-CoV-2D614 and SARS-CoV-2G614 differ and

whether the difference can provide an explanation for the replacement of SARS-CoV-2D614 by

SARS-CoV-2G614, we used the single strain basic within-host dynamics model presented in [23],

which is shown in Eqn. 8.
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dT
dt

=−βTVi

dI
dt

= βTVi −δ I

dVi

dt
= α pI − cVi

dVn

dt
= (1−α)pI − cVn

(8)

where T represents target cells, I represents infected cells, Vi represents infectious viruses, and Vn

represents non-infectious viruses. Vi infects T at a constant rate of β . Infected cells produce virions

at rate p and die at rate δ . A portion of α of the produced virions become infectious, leaving the

rest non-infectious. All of the viruses are cleared at rate c.

Assuming fast with-in host dynamics, Vi equilibrates very rapidly with respect to I within the

first few days when there is exponential viral growth. Thus approximately,

dVi

dt
≈ 0 Vi ≈

α p
c

I (9)

Plugging back into the second differential equation in the model, we get

dT
dt

= (
βT α p

c
−δ )I = rI (10)

where r, the intrinsic rate of increase, is defined as viral fitness during exponential growth phase.

The ratio of r between SARS-CoV-2D614 and SARS-CoV-2G614 should thus equal eσG . As the

study in [23] reported parameter estimates for ferrets inoculated with viruses collected from Wuhan

experimental and patient samples, which correspond to SARS-CoV-2D614, we can estimate β G

assuming all the other parameters in the model are shared between SARS-CoV-2D614 and SARS-

CoV-2G614:

rG = eσGrD
β

G = eσGβ
D − (1− eσG)

δ

T α p
(11)

where T can be approximated by T0 based on the fast dynamics assumption.
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We could also extent the single strain model in Eqn. 8 to two strains to recapitulate the with-in

host dynamics undergoing competition:

dT
dt

=−β
DTV D

i −β
GTV G

i

dID

dt
= β

DTV D
i −δ ID

dIG

dt
= β

GTV G
i −δ IG

dV D
i

dt
= α pID − cV D

i

dV G
i

dt
= α pIG − cV G

i

dV D
n

dt
= (1−α)pID − cV D

n

dV G
n

dt
= (1−α)pIG − cV G

n

(12)

where the initial V D
i and V G

i should be assigned in accordance with the inoculum mixture ratio.
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Results

The extent of cellular coinfection impacts variant frequency dynamics

The within-host models developed above differ from previous models focused on within-host viral

evolution by incorporating the possibility of cellular coinfection and its effects on variant frequency

dynamics. Simulations of our deterministic model show, as expected, that a beneficial mutation

does not increase in frequency as rapidly when cellular coinfection levels are high compared to

when they are low (Fig.1A). Our simulations also show that a deleterious mutation does not de-

crease in frequency as rapidly when cellular coinfection levels are high compared to when they are

low (Fig. 1B). Both of these effects are a direct consequence of phenotypic hiding that occurs in

cells that are infected by more than one viral genome.

Our stochastic within-host evolution model recapitulates the general patterns observed in sim-

ulations of the deterministic model, with demographic stochasticity playing a more pronounced

role at lower effective viral population sizes, as expected (Figs 1C and D).
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Figure 1: Model simulations showing changes in variant frequencies over viral generations. (A) Frequency
changes of a beneficial mutation under the deterministic within-host model, parameterized at different mean
cellular multiplicities of infection M. For all simulations shown, the variant’s fitness is eσm = 1.1 and its
initial frequency is qm(t0) = 0.4. (B) Frequency changes of a deleterious mutation under the deterministic
within-host model, parameterized at different mean cellular multiplicities of infection M. For all simulations
shown, the variant’s fitness is eσm = 0.9 and its initial frequency is qm(t0) = 0.4. In (A) and (B), we consider
MOI values of 0.1, 1, 5, and 20. Labeled as ‘No coinfection’, we also plot simulations of the model
presented in Eqn. 1, which assumes that fitness is an individual-level property of a viral genome. (C)
Frequency changes of a beneficial mutation (red; eσm = 1.1) and of a deleterious mutation (blue; eσm = 0.9)
under the stochastic within-host model, parameterized with a mean cellular MOI of 5. Dashed lines show
10 stochastic realizations under each parameterization. Solid lines show simulations of the deterministic
model under the same parameterization. Stochastic simulations used an effective viral population size of
N = 1000. (D) Frequency changes of mutations, as in (C), only using an effective viral population size of
N = 100.
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Statistical estimation of variant fitness using the deterministic within-host model

Statistical inference with simulated data

We first aimed to determine if longitudinal allele frequency data could be used to infer variant

fitness in the context of cellular coinfection under the assumption of deterministic within-host

evolutionary dynamics. We therefore first generated a mock dataset by forward simulating the

deterministic model and adding measurement noise (Fig. 2A). Prior to applying the MCMC meth-

ods described above to this mock dataset, we assessed the identifiability of the two parameters of

greatest biological interest: variant fitness eσm and mean cellular mulitiplicity of infection M. We

did this by setting the magnitude of measurement noise ν and the initial mutant allele frequency

qm(tg = 0) to their true values and plotting the model likelihood over a range of MOIs and over

a range of variant fitnesses. Our results indicate that there is a likelihood ‘ridge’ from low MOI-

low fitness parameter combinations to high MOI-high fitness parameter combinations (Fig. 2B).

The presence of this likelihood ridge is expected, given that higher variant fitness in the context

of higher MOI compensates for the phenotypic hiding phenomenon that does not occur at lower

MOI.

Given this likelihood ridge, it would be difficult to use MCMC to obtain posterior distributions

of the model parameters without an informative prior on either variant fitness or MOI. We decided,

for the sake of illustration, to adopt a prior on MOI. Specifically, we assumed a lognormal prior

on MOI, with a mean of log(2) and a standard deviation of 0.5. We ran the MCMC chain for

20,000 iterations (Figure S1). Posterior distributions for the initial frequency of the variant, MOI,

and variant fitness are shown in Figures 2C-E. All true parameters fell within the 95% credible

intervals of the estimated parameter values. In Figure 2A, we further plot 10 forward simulations,

parameterized with draws from the posterior distributions, alongside the mock data. These results

indicate that the deterministic within-host evolution model can be successfully interfaced with

longitudinal variant allele frequency data to infer model parameters using MCMC.
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Figure 2: Variant fitness estimation under the assumption of deterministic evolutionary dynamics. (A)
Mock data (red dots) generated from a forward simulation of the deterministic within-host evolution model
with added measurement noise. The underlying deterministic dynamics are shown with a red line. The
model is parameterized with variant fitness of eσm = 1.5, a mean cellular MOI of M = 2.0, and an initial
frequency of the variant of qm(t0) = 0.10. Measurement (observation) noise is set to ν = 100. Grey lines
show 10 model simulations, with parameters drawn from the MCMC posterior distributions. (B) Log-
likelihood landscape, showing the log-likelihood of the model over a broad range of MOI and variant fitness
values. When calculating these likelihoods, the initial frequency of the variant and the measurement noise
were fixed at their true values. The red dot shows the true set of parameters used to simulate the mock data.
The yellow dot shows the parameter combination yielding the highest log-likelihood. White boundary lines
show the 95% confidence interval of parameter estimates. (C) Posterior distribution for the initial frequency
of the variant. (D) Posterior distribution for the mean cellular multiplicity of infection M. (E) Posterior
distribution for variant fitness. In (C)-(E), black solid lines show the median values of the posterior density,
black dashed lines show the 95% credible intervals, and red solid lines show the true values.

Statistical inference with experimental H5N1 challenge study

We now apply the same MCMC approaches to experimental data from an influenza A subtype

H5N1 challenge study performed in ferrets. Figure 3A shows the frequencies of the G788A vari-

ant that was present in the inoculum stock at a frequency of 4.40% and increased in all four of the
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experimentally infected ferrets. For the reasons provided above, we used only days 1 and 3 for es-

timation of variant fitness. We also used the measured stock frequency of 4.40% as the day 0 data

point for all ferrets. While technically the stock frequency and the ferrets’ day 0 data points con-

stitute very different samples, we felt comfortable with this assumption because of the likely very

large transmission bottleneck size between the inoculum and index ferrets. Although an estimate

of this transmission bottleneck size is not reported on in [21], a study using barcoded virus found

that three-quarters of viral barcodes present in the inoculum were transmitted to index (donor) fer-

rets in experimental challenges that used 104 plaque-forming units (p.f.u.) of virus inoculum [24],

which is two orders of magnitude less virus than used in [21]. In the barcoded virus study, some of

the barcodes that were transmitted had frequencies as low as 0.5% in the stock, indicating that the

transmission bottleneck size was likely hundreds to thousands of virions. Under the assumption

of random sampling of virions from the stock, this means that the frequency of G788A on day 0

of the ferrets was likely very close to 4.40%, with measurement noise significantly outweighing

any noise stemming from the wide transmission bottleneck. Indeed, calculations involving the

binomial distribution (for the transmission bottleneck) and the beta distribution (for measurement

noise) indicate that measurement noise dominates transmission bottleneck process noise when the

bottleneck size is larger than the measurement noise parameter ν . With a bottleneck size in the

hundreds to thousands and the value of ν we use for this dataset (see below), measurement noise is

much larger than transmission bottleneck size noise, thereby allowing us to make the assumption

that the day 0 allele frequencies of G788A in the ferrets is equal to the stock frequency of G788A.

In fitting our model to these data, we first converted days post inoculation to viral generations

by assuming an 8 hour influenza virus generation time based on [25]. Replicate samples for this

experiment were not available, so we set the degree of measurement noise ν to 100, but consider

the sensitivity of our results to this value (see below). We used an informative prior on the mean

cellular MOI, specifically a lognormal prior with a mean of log(4) and a standard deviation of

0.4. We used this prior based on studies that indicate that 3-4 virions are generally required to

yield progeny virus from an infected cell [11]. However, we note that a wide range of estimates
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exist in the literature on the extent of viral complementation required for successful influenza

virus progeny production, with findings indicating that this depends on the host cell type and on

the viral strain considered [10, 12]. We ran the MCMC chain for 20,000 iterations (Figure S2).

Posterior distributions for mean cellular MOI and variant fitness are shown in Figures 3B and C,

respectively. The joint density plot of MOI and variant fitness (Fig. 3D) indicates that there is a

positive correlation between these two parameters, consistent with our findings on simulated data

(Fig. 2B). Posterior distributions for the initial frequencies of the variant in each ferret are shown

in Figure S3.

The results shown in Fig. 3B indicate that cellular MOI is relatively high, although the informa-

tive prior used played a large role in shaping this parameter’s posterior distribution. Our estimate

of variant fitness (relative to wild-type fitness) lies between 2.11 and 7.91, with a median value of

3.15. This stands in stark contrast to a previous fitness estimate for this variant of approximately

e0.35 = 1.42 [9]. However, this previous estimate was based on a model that did not consider cel-

lular coinfection. With high levels of coinfection thought to occur in within-host influenza virus

infections [11] and our inference of relatively high cellular MOI (Fig. 3B), higher fitness was

inferred for G788A to be able to account for its observed rapid rise in the context of phenotypic

hiding. Indeed, the joint density plot shown in Fig. 3D indicates that if we had constrained MOIs

to be lower(closer in line with the estimates from [10]), our variant fitness estimates would have

been considerably closer to those previously inferred for G788A.

Our inferred fitness estimate of ∼ 2− 8 for G788A may initially seem unreasonably large.

However, several studies that have estimated variant fitness using in vitro experiments have arrived

at estimates of similar magnitude. For example, a recent in vitro study of dengue virus evolution

performed at low MOI found that, of the beneficial mutations that were identified, some had relative

fitness effects exceeding 2 [26]. An in vitro study focused on HIV similarly found that beneficial

mutations could have pronounced effects on viral fitness, with the largest estimated relative fitness

of a single mutation being 6.6 [27]. These studies show that the fitness effects of viral mutations

can be quite high, particularly when under strong selection pressure. While our relative fitness



16

estimate of ∼ 2− 8 for G788A falls in the range of other estimates present in the viral literature,

there are also studies that have inferred lower fitness values for beneficial mutations. For example,

the highest relative fitness value estimated for an influenza B mutation that conferred resistance to

a neuraminidase inhibitor was 1.8 [28].

The results presented in Figure 3 assume measurement noise ν of 100 and a viral generation

time of 8 hours. To ascertain the effects of these assumptions on our results, we first re-estimated

MOI, variant fitness, and initial variant frequencies under the assumption of both higher (ν = 25)

and lower (ν = 400) levels of measurement noise (Figures S4 and S5). With higher levels of

measurement noise, 95% credible interval ranges for MOI and variant fitness were both wider

than when measurement noise was set to ν = 100. In contrast, with lower measurement noise,

95% credible interval ranges for MOI and variant fitness were both considerably more narrow than

when measurement noise was set to ν = 100, with variant fitness estimates falling in the range of

2.25-3.6. At both higher and lower levels of measurement noise, median estimates for MOI and

variant fitness were not considerably impacted. We also considered the sensitivity of our results

to the viral generation time assumed (Figures S6 and S7). With a shorter generation time of 6

hours, the posterior distribution for MOI remained similar to one inferred using a viral generation

time of 8 hours. However, variant fitness estimates were lower, with the 95% credible interval

range of 1.66 - 3.47 and a median value of 2.36. With a longer generation time of 12 hours,

the posterior distribution for MOI again remained similar to one inferred using a viral generation

time of 8 hours. Variant fitness estimates using a 12 hour viral generation time were considerably

higher, however, with the 95% credible interval range of 2.88 - 9.31 and a median value of 4.58.

These results underscore the importance of accurately parameterizing the viral generation time

when performing variant fitness estimation.
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Figure 3: Fitness estimation for variant G788A, assuming deterministic within-host dynamics. (A) Mea-
sured G778 allele frequencies over the course of infection for 4 experimentally infected ferrets. Days 0
(stock frequency), 1, and 3 are used in the estimation of variant fitness. (B) Posterior distribution for the
mean cellular multiplicity of infection. (C) Posterior distribution for variant fitness. In (B) and (C), black
solid lines show the median values of the posterior densities and black dashed lines show the 95% credible
intervals. (D) Joint density plot for MOI and variant fitness.

In Figure 4, we show 10 forward simulations of the deterministic model, parameterized using

draws from the posterior distributions. These indicate that the model, simulated using parameter

estimates inferred from MCMC, reproduces observed G788A allele frequency patterns on days 0,

1, and 3 (the days included in the statistical analyses). The model, however, significantly over-

predicts G788A frequencies on day 5 in ferret 15 and ferret 21 (Figs 4B and D). It is interesting to

note that in both ferrets 15 and 21, one additional variant (G738A) rose to high frequencies between

days 3 and 5. Previous work has inferred a large relative fitness value for this variant (e0.9 =

2.5) as well as (slightly negative) epistatic interactions between it and G788A [9]. Haplotype

reconstruction indicates that the ‘A’ allele at site 738 arose in the genetic background of the ‘G’

allele at site 788 [9, 21]. With the ‘A’ allele at site 738 conferring a large fitness advantage, and

its genetic linkage to the ‘G’ allele at site 788, we would anticipate that this mutation would slow

or even reverse the rise of variant G788A between days 3 and 5 in these ferrets due to this process

of clonal interference. Indeed, our model projections significantly overestimate the frequency of

G788A on day 5 in both of these ferrets, indicating that selection efficiently acted on G738A,

impeding the projected increase in the frequency of G788A between days 3 and 5. It is also

interesting to examine the dynamics of additional variants in ferrets 13 and 17, where the model

predicts G788A frequencies relatively well on day 5, although this data point was not used during

model fitting. Ferret 13 had one other variant arising between day 3 and day 5 (variant G496T).

A previous study using these data inferred a large relative fitness value for this variant (e0.7 = 2.0)
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[9]. Our model simulations, however, projected the allele frequency of G788A on day 5 well in

the absence of considering this variant. As such, we would predict that this G496T variant had

lower relative fitness than previously estimated. Ferret 17 also had one other variant rising to high

frequencies between day 3 and day 5 (variant C736A). It is unclear whether previous work inferred

this mutation to be strongly beneficial or strongly deleterious, since A736C (rather than C736A)

was the mutation identified as being under positive selection. Regardless, our model slightly over-

projects the frequency of G788A on day 5, such that we expect C736A to have contributed to some

extent to allele frequency changes of G788A through linkage effects.

Figure 4: Deterministic model simulations (grey lines) and observed data points (red dots) are shown for
(A) ferret 13, (B) ferret 15, (C) ferret 17, and (D) ferret 21. Only days 0, 1, and 3 were used in model
fitting. Parameters for the model simulations were drawn from the posterior distributions of the parameters.
Purple lines show model simulations under the same parameterizations of variant fitness and initial variant
frequencies as the grey lines, but simulated in the absence of cellular coinfection. These no-coinfection
projections were simulated using Eqn. 1.

In Figure 4, we further plot model simulations that assume no cellular coinfection. Specifically,

we simulate Equation 1 where the dynamics are driven by the variant’s individual-level fitness

eσm rather than by eσm . The frequency of G788A rises considerably faster in these simulations

compared to those that incorporate cellular coinfection. This indicates that the speed of within-

host viral adaptation is severely reduced by cellular coinfection.
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Statistical inference with SARS-CoV-2 competition experiment (Ongoing work)

Here we set the degree of measurement noise ν to 45 based on our analysis of the spread of data in

in vitro technical replicates done in the same study [22]. As shown in Figure 5A and B, after fitting

the deterministic model without coinfection in Eqn. 1 to data from days 2 and 3, the log likelihood

peaks when fitness, or eσG , is equal to 1.33 with a 95% confidence interval of [1.29,1.38]. We

then fit our model to data from day 4 to 12 using the inferred fitness value of 1.33. As expected, in

Figure 5C we observed an increase in log likelihood when we expanded the limit of MOI. However,

the marginal increase is diminishing as MOI increases. We thus picked a MOI of 5, which was

around the turning point, to simulate the trend in Figure 5D from days 4 to 12.
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(a) (b)

(c) (d)

Figure 5: Fitness and MOI estimation for D614G, assuming deterministic with-in host dynamics.
(A) Measured D614G allele frequencies over the course of infection from 6 experimentally infected
hamsters. (B) The log likelihood curve for variant fitness when fitting day 2 and 3 data to the
deterministic model without coinfection. (C) The log likelihood curve for cellular multiplicity of
coinfection when fitting day 4 to 12 data to our deterministic model considering coinfection. (D)
The black line shows that simulated trend with a fitness of 1.46 and an MOI of 5 between day 4
and 12. In (B,C), dashes lines show the 95% credible intervals on variant fitness inference.
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Figure 6: Trajectories of log total viral genome copies are shown by single strain modeling using
Eqn. 8. The blue line represents the dynamics of SARS-CoV-2D614 using the first set of parameters
(F13-E-1) in Table 1 of [23]. The red line the dynamics of SARS-CoV-2D614 under the exact same
setting except for β G calculated in Eqn. 11.

SARS-CoV-2 D614G With-in Host Dynamics (Ongoing work)

Through single strain modeling using β D and calculated β G, we observed in Figure 6 that the

SARS-CoV-2D614 and SARS-CoV-2G614 had similar with-in host dynamics except that it took a

shorter period of time for SARS-CoV-2G614 to reach the peak viral load.

Using Eqn. 12, we were able to model the in vivo competition between the two strains, SARS-

CoV-2D614 and SARS-CoV-2G614. As shown in Figure 7A, the trajectory of the G variant almost

superposed the trajectories of all of the viruses, indicating that the G variant predominates the

viral population since the beginning of the infection. The black line showing the calculated fre-

quency of G variant copies in 7B recapitulated the allele frequency dynamics of the hamster in vivo

competition experiment data in [22] that we used.
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(a) (b)

Figure 7: Two strain modeling for in vivo competition experiments using Eqn. 12. (A) Trajectories
of log total viral genome copies for SARS-CoV-2D614 (red), and their sum (green). The first set
of parameters (F13-E-1) in Table 1 of [23] were used. Vi0 was equally divided into V D

i0 and V G
i0 to

match the 1:1 inoculum mixture in [22]. (B) The black line shows the recovered SARS-CoV-2G614

variant frequencies as (Vi+Vn)
G divided by (Vi+Vn)

total . The rest of the colored lines are the same
data as in Figure 5A.

Discussion

Here, we have developed mathematical within-host models that can take into consideration cellu-

lar coinfection when projecting changes in viral allele frequencies over the course of an infection.

We have further described and demonstrated how these evolutionary models can be statistically

interfaced with viral sequence data to jointly estimate variant fitness relative to the wild-type al-

lele along with the mean cellular multiplicity of infection. Our results indicate that ignoring the

possibility of cellular coinfection can result in significant underestimation of a variant’s selec-

tive advantage. This is important because a variant with a much higher selective advantage, once

established monomorphically within a host, is expected to have a more precipitous impact on

within-host viral dynamics than a variant with a smaller selective advantage. We might, for ex-

ample, expect a variant with a higher selective advantage to result in higher peak viral loads and

potentially longer durations of infection. This would impact both symptom development as well

as onward transmission potential.
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Our models, like all models, make some simplifying assumptions. First, we assume low viral

diversity, with diversity comprising just one locus and two alleles (a wild-type and a variant allele).

We have chosen to model evolution at a single locus to highlight the important contribution that

cellular coinfection may play in the within-host evolution of viral pathogens. Our application to

the G788A mutation in the H5N1 experimental challenge study in ferrets satisfied this assumption

between days 0 through 3. Because other sites became polymorphic in each of the four studied

ferrets by day 5, we excluded this time point from our statistical analyses. To consider the effect

of cellular coinfection within a system with higher levels of genetic diversity, and the possibility

of new variants arising over the course of infection, the models developed here should be extended

using approaches developed already in [9]. These approaches include inference of viral haplo-

types and the incorporation of de novo mutations into the presented model structures. With these

additions, full genetic linkage between loci can be considered, and epistatic interactions between

loci can also be inferred. Our models, as presented here, however, could still be applied to higher

diversity viral systems if recombination occurred freely between loci, as may be the case between

influenza gene segments or some viruses with high recombination rates.

A second assumption present in the current formulation of our models is that viral fitness is

additive: if a coinfected cell harbors both variant and wild-type viral genomes, then the fitness

of each viral genome is not only assumed to be equal, but also equal to the arithmetic mean fit-

ness of the involved genomes. This may be a good assumption if the focal mutation impacts, for

example, polymerase activity, with the viral polymerase protein being used for the replication of

all viral genomes. However, it may also be the case that a mutation has a disproportionate effect

on intracellular viral fitness. Future work should therefore examine the impact of a mutation’s

‘dominance’ [29] on in vivo viral evolution.

A third assumption is one that is somewhat less transparent in the structure of our models,

namely that we assume that there is no intracellular viral competition for host cell machinery. This

assumption is reflected in the calculation of a variant allele’s mean fitness (eσm). A single viral

genome’s fitness in a cell depends on the genotypes of the other genomes present in the cell, but
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not on the cellular multiplicity of infection directly. If a variant genome is in a cell alone or with a

large number of other variant genomes, for example, its fitness will be the same. However, if host

cell machinery is limiting, one would expect the per genome fitness – which can be interpreted here

as per capita viral yield or reproductive success – to be lower in highly coinfected cells. Indeed,

empirical studies with influenza virus indicates that there is a saturating relationship between viral

input and viral output from a cell [30]: at low cellular MOI, doubling the viral input yields a

doubling of viral output, such that viral competition is not readily apparent; at high MOI, however,

doubling the viral input does not appreciably change the overall viral output, indicative of limiting

host cell machinery. Future work should therefore also examine the impact of intracellular viral

competition on within-host viral evolution and extend models such as the ones we presented here

to account for intracellular viral competition.

Finally, our model assumes that the mean cellular multiplicity of infection (MOI) is fixed across

viral generations and that virion entry into cells is governed by a Poisson process. In terms of

the former assumption, it is conceivable that MOI might change over the course of an infection.

For example, at the beginning of a viral infection, MOI may be low because a very small viral

population is initiating infection in a large environment of host cells. As viruses replicate within

their host, viral population sizes increase and the number of target cells decreases. This may result

in more individual-level selection at the beginning of the infection (due to low MOI), followed by a

greater degree of phenotypic hiding later on in the infection (due to higher MOI). To accommodate

these changes in MOI, the structures of the within-host models presented here would not need to

be significantly altered; MOI could simply be made into a time-varying parameter. For simplicity,

we here instead decided to assume that MOI is fixed over the course of infection, in part because of

the lack of empirical data to inform MOI at multiple time points over the course of an infection. A

further argument against incorporating dynamic changes in MOI is that spatially-structured within-

host viral dynamics, such as those characterized for influenza [31], may result in cellular MOIs that

are more uniform over time than expected from a spatially unstructured setting. In terms of the

latter assumption (Poisson-distributed virions), there are a number of reasons why this assumption
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may not be met. Virions could aggregate, such that virion entry into cells is not an independent

process. Cells could also be heterogeneous with respect to their susceptibility to infection, for

example due to their cell cycle state or due to antiviral states triggered by interferon. Both of these

factors would result in virions being overdispersed across cells, rather than Poisson-distributed.

While considering different assumptions of how virions are distributed across cells is beyond the

scope of this study, future work should address the effect of viral overdispersion on variant fitness

estimation.

Despite these limiting assumptions, a general takeaway from the evolutionary models presented

here is that cellular coinfection will slow down the rate of viral adaptation within hosts when

adaptation occurs through selection acting on single point mutations (or insertions/deletions) as we

have considered here. (A caveat here is that cellular coinfection could accelerate viral adaptation if

it heavily relies on genetic exchange, that is, recombination or reassortment.) Slower rates of viral

adaptation is good news from the perspective of the host population, as this will also slow down

viral adaptation at the population-level. This finding has clear implications for emerging zoonotic

viruses that are adapting to a new host population. Analogously, cellular coinfection will result in

less effective purging of deleterious mutations. By making natural selection a weaker evolutionary

force, cellular coinfection may thus be one reason why stochastic processes appear to dominate

within-host viral dynamics and why selection does not seem to act efficiently over the course of an

acute infection for viruses such as seasonal influenza [32, 33]. There are other factors, however,

that may also limit the ability for positive selection to act efficiently within hosts. For example, the

temporal asynchrony between the timing of the immune response and when virus diversification

occurs may explain why antigenic immune escape variants do not readily arise in individuals with

some pre-existing immunity [34]. A second takeaway is that variants whose fitness levels (relative

to wild-type) have been quantified using models that do not include cellular coinfection may have

significantly underestimated variant fitness. Underestimation of variant fitness may underestimate

the effect of a mutation on viral replication dynamics once those dynamics involve only the variant

virus. Our results – that the fitness effect of certain mutations can be large – speak to the adaptive
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potential of these viruses to new or changing host populations, even if adaptation may occur more

slowly than might be expected.
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Supplementary materials

Figure 1: MCMC trace plots for parameters estimated by interfacing the deterministic within-host model
with the simulated data. (A) Trace plot for initial frequency of the variant. (B) Trace plot for mean cellular
multiplicity of infection. (C) Trace plot for variant fitness. 20,000 MCMC iterations were run. Following the
removal of the first 2,000 MCMC iterations as burn-in, the MCMC chain was sampled every 50 iterations.

Figure 2: MCMC trace plots for parameters estimated by interfacing the deterministic within-host model
with the influenza H5N1 experimental challenge study data. (A) Trace plot for initial frequency of the
G788A variant in ferret 13. (B) Trace plot for initial frequency of the G788A variant in ferret 15. (C)
Trace plot for initial frequency of the G788A variant in ferret 17. (D) Trace plot for initial frequency of
the G788A variant in ferret 21. (E) Trace plot for mean cellular multiplicity of infection. (F) Trace plot for
G788A variant fitness. 20,000 MCMC iterations were run. Following the removal of the first 2,000 MCMC
iterations as burn-in, the MCMC chain was sampled every 50 iterations.



31

Figure 3: Posterior distributions of initial G788A frequencies for (A) ferret 13, (B) ferret 15, (C) ferret 17,
and (D) ferret 21, from fitting the deterministic within-host model. In (A)-(D), black solid lines show the
median values of the posterior densities and black dashed lines show the 95% credible intervals.

Figure 4: Parameter estimation for variant G788A, assuming deterministic within-host dynamics and mea-
surement noise of ν = 25. (A) Posterior distribution for the mean cellular multiplicity of infection. (B)
Posterior distribution for variant fitness. In (A) and (B), black solid lines show the median values of the
posterior densities and black dashed lines show the 95% credible intervals. (C) Joint density plot for MOI
and variant fitness (blue). For comparison, we have superimposed the joint density plot shown in Figure 3D
(red).
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Figure 5: Parameter estimation for variant G788A, assuming deterministic within-host dynamics and mea-
surement noise of ν = 400. (A) Posterior distribution for the mean cellular multiplicity of infection. (B)
Posterior distribution for variant fitness. In (A) and (B), black solid lines show the median values of the
posterior densities and black dashed lines show the 95% credible intervals. (C) Joint density plot for MOI
and variant fitness (blue). For comparison, we have superimposed the joint density plot shown in Figure 3D
(red).

Figure 6: Parameter estimation for variant G788A, assuming deterministic within-host dynamics and a
viral generation time of 6 hours. (A) Posterior distribution for the mean cellular multiplicity of infection.
(B) Posterior distribution for variant fitness. In (A) and (B), black solid lines show the median values of the
posterior densities and black dashed lines show the 95% credible intervals. (C) Joint density plot for MOI
and variant fitness (blue). For comparison, we have superimposed the joint density plot shown in Figure 3D
(red).

Figure 7: Parameter estimation for variant G788A, assuming deterministic within-host dynamics and a
viral generation time of 12 hours. (A) Posterior distribution for the mean cellular multiplicity of infection.
(B) Posterior distribution for variant fitness. In (A) and (B), black solid lines show the median values of the
posterior densities and black dashed lines show the 95% credible intervals. (C) Joint density plot for MOI
and variant fitness (blue). For comparison, we have superimposed the joint density plot shown in Figure 3D
(red).


