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Bayesian Spatial Variable Selection with Nonlocal Priors

By Tianyu Ding

A common objective of Bayesian spatial variable selection for regression models is to

select important spatially distributed predictors that are strongly associated with the

outcome. Many Bayesian variable selection procedures use local priors which do not

have posterior variable selection consistency. We propose a novel spatial Bayesian

model selection procedure based on nonlocal prior with incorporating spatial depen-

dence of predictors. It show been shown that the Bayesian model selection procedure

with nonlocal prior enjoys good theoretical properties and achieves better perfor-

mance than existing methods. In this thesis, we show that incorporating the spatial

dependence between the predictors can improve the nonlocal prior based Bayesian

variable selection procedure in terms of both selection accuracy and prediction accu-

racy. We demonstrate the advantages of our method via simulation studies and an

analysis of the brain imaging data from an Autism study.
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1 Introduction

In most recent Bayesian model selection procedures, local prior densities which are

positive at null parameter values have been applied frequently. However, local priors

are not much competitive in many cases because sometimes a posterior probability

of true model is too low to support it as a true model. There are some Bayesian

model selection procedures local prior specifications based on the intrinsic Bayes

factor (Berger and Pericchi 1996), the fractional Bayes factor (O’Hagan 1995) and

g-priors (Liang et al. 2008) have this limitation.

Most Bayesian model selection methods with local priors usually do not report

the posterior probability assigned to the true models obtained by their algorithms

because sometimes, the probability is not strong enough to support the true models

they find, especially in some high-dimension settings. In order to eliminate this defi-

ciency, Johnson and Rossell (2012) proposed to use two nonlocal prior specifications

on model parameters. Compared with local priors, nonlocal prior densities are den-

sity functions that are identically zero whenever a model parameter is equal to its

null value, which is typically 0 in model selection settings. They also compare their

non-local Bayesian model selection procedures with some usual frequentist methods

including smoothly clipped absolute deviation(SCAD) algorithm (Fan and Li 2001),

adaptive LASSO (Zou 2006). The results have shown that their procedure is more

competitive: the posterior probability of true model is almost 1 and the proportion

of correct model selections is almost 1 either.

In this thesis, we proposed to extend the Bayesian variable selection method with

non local priors in high dimension settings by incorporating the spatial dependence to

improve the selection accuracy. In some high dimension settings, the spatial depen-

dence between predictors can facilitate the variable selection in the regression model.

In some studies, Bayesian variable selection procedure performs well for spatial data
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even with local priors (Lee et al. 2014).

Our goals of this paper are described as following aspects: first, we apply their

Bayesian model selection procedure to spatial dependent data in high dimension set-

tings. Second, we implement our model with consideration of spatial dependence

based on their non-local prior model which will be introduced later. Motivation of

our algorithm is the spatial distributions of the predictors in model. In their simula-

tion study, they generate simulation data without considering the spatial dependence,

if we take this factor into account, can we get the same good results? In order to

test the efficiency and accuracy of their model in different settings, we repeat their

algorithm and implement our new algorithm to do the comparison.

In general, our construction of model space is similar with their model: if we

restrict the models in linear format, and let Yn = (y1, . . . , yn)
′

denote a vector, Xn =

(x1, . . . , xn) denote a n × p matrix, where xi denote a 1 × p vector for 1 ≤ i ≤ n, β

denote a p× 1 regression coefficients vector with ith component denote as βi. Then,

we have the following linear model:

Yn ∼ N(Xnβ, σ
2In). (1)

Definitions of two types of nonlocal prior of β are formula (2): product momoent(pMOM)

densities and formula (3): product inverse moment (piMOM):

π(β|τ, σ2, r) = dp(2π)−p/2(τσ2)−rp−p/2|Ap|1/2 × exp[−
1

2τσ2
β′Apβ]

p∏
i=1

β2r (2)

piMOM : π(β|τ, σ2, r) =
(τσ2)rp/2

Γ(r/2)p

p∏
i=1

|β|−(r+1)exp(−τσ
2

β2
i

) (3)

These two densities are nonlocal densities at 0 because when any component of

β is 0, they are identically 0. We also describe this property by using a univariate

setting of this densities shown in Figure 1 (Johnson and Rossell 2012).
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Considering performance of these two types of prior settings, we will use pMOM

for our following analysis. The parameter settings will be specified in following sec-

tion. The innovative part of our study is the calculation of dp which is the spatial

dependence distance of data . dp is inverse of an central moment of multivariate

normal distribution: MVN(0, Ap) where Ap represent the positions’ relationships of

data. Because it is hard to calculate dp based on their demonstration, they set Ap as

identity matrix to calculate the normalizing constant distance dp. However, in many

spatial dependent data analysis, there will exist some errors of final model if we just

set Ap it as identity matrix. The primary innovation of this article is to calculate dp

without just setting Ap as identity matrix.

In the next section, we will briefly go over the nonlocal prior model selection

procedures and give detailed description of calculation of Ap and impose it into the

model selection procedures. In section 3, we describe simulation algorithms to explore

the performance of the new algorithm with new definition of Ap. In section 4, we will

apply this new algorithm to real data analysis with brain imaging data.

2 The Model

2.1 Nonlocal Priors with Spatial Dependence

In this section, we review the nonlocal prior model selection procedure by Johnson

and Rossell (2012) and we follow their denotations if there is no ambiguity. As we

discussed in the introduction, we consider the linear model which is given by

Yn ∼ N(Xnβ, σ
2In). (4)

Now we define one component of β will be excluded from the true model if its value is

0. We define a model j = j1, . . . , jk(1 ≤ j1 < . . . < jk ≤ p) where βj1 6= 0, . . . , βjk 6= 0

and all other components of β are equal to 0. We define model k ⊂ j if all components

of β in k are included in components of j. We define t is true model. There are p
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components of β, leading to a total of 2p potential models. Denote by J the total

model combination. Denote by Xj the design matrix for model j which is formed

from columns of Xn. Then under each model k, the sampling density for the data is

defined as:

Yn|βk, σ2 ∼ N(Xkβk, σ
2In). (5)

The properties of posterior probabilities can be studied based on the specification of

σ2. If σ2 is known. The marginal density of the data with a pMOM prior density of

model k is given by:

mk(yn) = dk(2π)−n/2τ−k/2−rk(σ2)−n/2−rk[
|Ak|
|Ck|

]1/2 × exp[− Rk

2σ2
]Ek(

k∏
i=1

β2r
ki

) (6)

where

Ck = Xk
′Xk +

1

τ
Ak, β̃k = C−1k Xk

′yn, Rk = yn
′(In −XkC

−1
k Xk

′)yn,

and Ek represents the expectation of a multivariate normal distribution with mean

β̃k and covariance matrix σ2C−1k .

If σ2 is unknown, a common inverse gamma density with shape and scale param-

eters (α;ψ) is introduced for the value of σ2. The marginal density of the data under

model k is:

mk(yn) = dk(2π)−n/22v/2τ−k/2−rk[
|Ak|
|Ck|

]1/2 × ψα

Γ(α)
(vks

2
k)
−vk/2Γ(

vk
2

)ET
k (

k∏
i=1

β2r
ki

) (7)

where

vk = n+ 2rk + 2α, s2k =
2ψ +Rk

vk
,

dk = [

∫
Rk

(2π)−k/2|Ak|1/2exp(−
1

2
γ

′
Akγ)

k∏
i=1

γ2ri dγ]−1

In order to calculate the marginal likelihood function easily, the Laplace approxima-

tion to it under model k is:

Γ(vk
2

)ψα2
vk
2 (2ψ + y

′
y − β̃k

′

Ckβ̃k)
− vk

2

Γ(α)dk(2π)
n
2 τ

k
2
+rk

×
(
∏

i∈k(β
∗
i )

2r)exp{−vk−2
2vk

(β∗k − β̃k)
′ Ck

s2k
(β∗k − β̃k)}

|Ck + 2r
vks

2
k

vk−2
D(β∗k)|

1
2

,

(8)
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where D(β∗k) is the diagonal matrix with positions (i, i), i ∈ k is given by 1/(β∗k)
2 and

β∗k = argmaxβk{N(βk; β̃k,
vk

vk − 2
s2kC

−1
k )
∏
i∈k

β2r
i }. (9)

Based on the unknown σ2 situation, if we set Ak = Ik, then the normalization constant

dk is given by

dk = [(2r − 1)!!]−k (10)

However, our improvement of this method is to calculate dk without just setting

Ak = Ik. We will implement the calculation of dk in next section.

The posterior probability of model t is defined as:

p(t|yn) =
p(t)mt(yn)∑

k∈J p(k)mk(yn)
, (11)

where p(K) is defined as the prior probability assigned to model K. This prior

probability is defeined as:

p(k|γ) = γk(1− γ)n−k, γ ∼ Beta(ζ0, ζ1) (12)

where we also define ζ0 = ζ1 = 1.

Based on the above results of Laplace approximation of marginal likelihoods of the

data, we can use the following Metropolis-Hastings MCMC algorithm for exploring

the model space.

1. Choose an initial model kcurr

2. For i = 1, . . . , p,

(a) Define model kcand by excluding or including βi from model kcurr, according

to whether βi is currently included or excluded from kcurr.

(b) Compute

r =
mkcand(y)p(kcand)

mkcand(y)p(kcand) +mkcurr(y)p(kcurr)
(13)

based on the approximation of marginal likelihoods.
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(c) Draw u ∼ U(0, 1). If r > u , define kcurr = kcand.

3. Repeat Step 2 until a suffciently long MCMC chain is obtained.

2.2 Normalizing Constant Computation

The distance dk of model k is given by

dk =

[∫
Rk

(2π)−k/2|Ak|1/2exp(−
1

2
γ

′
Akγ)

k∏
i=1

γ2ri dγ

]−1
(14)

where

γ ∼MVN(0, Ak) (15)

which means

d−1k = E[(γ1)
2r(γ2)

2r . . . (γk)
2r] (16)

where E[. . .] denotes the expected value.

To derive this central moment, we can consider the derivatives of the distribution’s

characteristic function. Because the derivation is complex to be fully described in

article, we just give central part of this derivation. The characteristic function of the

multivariate normal distribution is(Lukacs (1942)):

E[eit
TX ] = eit

Tµ− 1
2
tT

∑
t (17)

where t = (t1, t2, . . . , tn). Because we want to calculate the centrol moments, the

characteristic function has reduced as:

E[eit
TX ] = e−

1
2
tT

∑
t (18)

The moment is then, a k1, . . . , kn-order derivative of the characteristic function eval-

uated at t = 0 :

mk1,...,kn = i−
∑n

i=1 ki
d
∑n

i=1 ki

dk1t1dk2t2 . . . dkntn
E[eit

TX ]|t=0 (19)
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Because in our model, we just to calculate central moments with orders all equal to

2r, the derivative becomes:

m2r,...,2r = i2nr
d2nr

d2rt1d2rt2 . . . d2rtn
E[eit

TX ]|t=0 (20)

If we apply Taylor expansion on exponential item in (22), this formula becomes:

m2r,...,2r = i2nr
d2nr

d2rt1d2rt2 . . . d2rtn

inf∑
l=0

(−1

2
(tTΣt))l/l!|t=0 (21)

Because, 2nr is even, the item i2nr = (−1)−nr. Σ is covariance matrix of this multi-

variate normal distribution and in our model, it has been specifed as An, then the

expression in t specifed in our model is:

tTΣt =
∑
ij

aijtitj (22)

In order to calculate:

(tTΣt)l = (
∑
ij

aijtitj)
l =
∑
ij

aijtitj . . .
∑
ij

aijtitj (23)

we need to find the coefficient of tl11 t
l2
2 . . . t

ln
n in (23). Here lij is a certain number of

times of choosing aijtitj into a particular product item. Because one item aijtitj will

be chosen from each
∑

ij aijtitj, we have
∑

ij lij = l. For any lij there are(
l

lii . . . lnn

)
(24)

ways to choose the items. Then,

(
∑
ij

aijtitj)
l =

∑
(lij)|

∑
ij lij=l

(
l

lii . . . lnn

)∏
ij

(aijtitj)
lij

=
∑

(lij)|
∑

ij lij=l

(
l

lii . . . lnn

)∏
ij

a
lij
ij

∏
ij

(titj)
lij

(25)

because titj = tjti, each aij is combined with two t’s, the total exponent in t is 2l

which means an item tl11 t
l2
2 . . . t

ln
n has property:

∑
ij lij = 2l. For following derivation,

we also define l1, . . . ln: ∏
ij

(titj)
lij = tl11 . . . t

ln
n (26)
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Then for any tk, k = 1, . . . , n, the exponent of tk is:∑
i=k,j 6=k

lij +
∑

i 6=k,j=k

lij + 2lkk (27)

Then we have:

lk =
∑
i

lik +
∑
j

lkj =
∑
i

(lik + lki) (28)

Implement (28) into (25):

(
∑
ij

aijtitj)
l =

∑
(l1,...,ln)|

∑
i li=2l

∑
(l11,...,lnn)|

∑
i(lik+lki)=lk

(

(
l

l11 . . . lnn

)∏
ij

a
lij
ij )
∏
i

(ti)
li

(29)

Moreover, the deriviative terms in (21) can be expressed as:

d2nr

d2rt1d2rt2 . . . d2rtn
(
∑
ij

aijtitj)
l) =

∑
(l1,...,ln)|

∑
i li=2l

∑
(l11,...,lnn)|

∑
i(lih+lhi)=lh,h=1,...,n

(

(
l

l11 . . . lnn

)∏
ij

a
lij
ij )

∏
i

I{2r ≤ li}
li!

(li − 2r)!
(ti)

li−2r

(30)

Considering t = 0, only items with li = 2r for all i will remain. Then, we get l = nr.

After reduction, we can get the central moments:

m2r,...,2r =
1

2

nr

((2r!)n)/(nr)!
∑

(l11,...,lnn)|
∑

i(lih+lhi)=2r,h=1,...,n

(
nr

l11 . . . lnn

)∏
ij

a
lij
ij (31)

Now, (31) is the calculation result of central moments of multrivariate normal distri-

bution. Then, we have:

dk = m−12r,...,2r (32)

with dimension k. Replace dk = [(2r1)!!]
−k in (8). The Laplace approximation used

in our model is:

Γ(vk
2

)ψα2
vk
2 (2ψ + y

′
y − β̃k

′

Ckβ̃k)
− vk

2

Γ(α)m−12r,...,2r(2π)
n
2 τ

k
2
+rk

×
(
∏

i∈k(β
∗
i )

2r)exp{−vk−2
2vk

(β∗k − β̃k)
′ Ck

s2k
(β∗k − β̃k)}

|Ck + 2r
vks

2
k

vk−2
D(β∗k)|

1
2

,

(33)
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We will use the same Metropolis-Hastings MCMC algorithm for exploring the model

space and compare our results with Johnson and Rossell’s results in simulation studies.

3 Simulation Studies

In this section, we proceeded the above algorithm in several simulation experiments,

and we compare the results of our algorithm with Johnson and Rossell’s algorithm.

Considering the complexity of the algorithm, for each simulated dataset, we performed

500 burn-in iterations and 5000 subsequent updates for posterior inference.

Based on the main results of simulation study in Johnson and Rossell’s article, we

use following settings to generate simulation data. We set sample size n = 200, size

of parameters p = 1000. We generate Xn×p from a multivaraite normal distribution:

X ∼MVN(0,Σ) (34)

where Σ is a p×p matrix with diagonal elements 1 and off-diagonal elements ρ = 0.25

which means the variance of each column of X is 1 and correlation between each two

columns of X is 0.25. Considering we will apply our algorithm in imaging areas,

we generate X in a 10 × 10 × 10 space. We set four components of the regression

coefficients to nonzero values and others are zero. The four points that we set non-

zero β are in the center of our data space which is (5, 5, 5), (5, 5, 6), (6, 5, 5), (5, 5, 6).

We have drawn a 3D scatter plot for how the nonzero β distribute in data space in

Figure 2. In each simulation dataset, we will set the values of non-zero β in following

fomula(Johnson (2014)):

βi = (−1)ui(cilog(n)/
√
n+ |zi|) (35)

where u was a Bernoulli random variable with success probability 0.4, z was a standard

normal deviate, and c will be set in 0.5,1.0,2.0,4.0 to do comparison. Y = X × β + ε,

where ε is a p × 1 vector and each component is generated from a standard normal
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distribution. Because we are considering the process of unknown σ2, we set a vague

IG(0.001, 0.001) prior for it in all procedures based on non local priors, i.e α =

0.001, ψ = 0.001. To calculate Ap, because in our model space, the distance between

each point is standard Eular distance, then the smallest distance is 1. We define each

element of matrix Ap is:e−ρ1×d, where ρ1 is a user defined parameter based on the

distance definition and d is the square of Eular distance between two points. We also

set the hyperparameter τ = 0.348. We repeat the simulation process 10 times with

the four different settings of c. The results are shown in Table 1.

The results in Table 1 has proved that our new algorithm has some improvements.

In Table 1, MSE is means square error of fitted value Ŷ and the true Y . Because

we already know the positions and numbers of non-zero β, TP in table 1 means true

postive cases i.e all the non-zero β are included in the final model, TN means true

negative case, FP is false positive, FN is false negative. 1 means results of our

algorithm and 2 means results of Johnson and Rossell’s algorithm.

The results have shown that in all the cases, the final models obtained by our

algorithm have competitive MSE compared with Johnson and Rossell’s algorithm.

Moreover, our algorithm can include all the non-zero β in our final model. We can

find when c increases, their algorithm will choose a lot zero β into final model, even

the MSE is small.

4 Real Data Studies

In this section, we have proceeded these two algorithms with Autism Brain Imaging

Data Exchange data (ABIDE). The major goal of the ABIDE study is to explore

association of brain activity with the autism spectrum disorder (ASD) which is a

group of developmental disabilities characterized by atypical development in social-

ization, communication, and behavior (Rice 2009). There are 539 ASDs and 573
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age-matched typical controls in this data set, aggregated 20 resting-state functional

magnetic resonance imaging (R-fMRI) data sets from 17 different sites. In this work,

we analyze the voxel-wise fALLF values over 1 specific region: ParaHippocampal L,

which includes 978 voxels that is a similar size with our simulation studies.

For the real data, we set FIQ standard score as our outcome Y which is developed

from information gathered from patient reports, functional status instruments, and

clinical observations. This instrument measures physical functioning, work status

(missed days of work and job difficulty), depression, anxiety, morning tiredness, pain,

stiffness, fatigue, and well-being over the past week. We have proceeded these two

algorithms on both ASD group and control group. Due to the missing data of FIQ

score, the final dataset includes 438 controls and 403 ASDs. We set image data of

these subjects as X in our analysis. Because the image data are highly correlated,

we apply Fisher z transformation ie. log(fALLF/(1 − fALLF )) on them and we

center the outcome i.e. FIQ score for following analysis. All the parameters settings

are same as described in simulation section.

When we proceed these two algorithms with ABIDE data, our novel algorithm

can obtain a final model quickly with a stable MCMC chain and the MSE is pretty

small to support our final model is accurate, however, the performance of Johnson

and Rossell’s algorithm is poor: with the same data, the final model their algorithm

obtain is a model with all the coefficients are 0 which means we even can not calculate

the MSE from their final model. The results are shown in Table 2 and we also plot

a 3-dimension picture Figure 3 to show how the voxels we select distribute in the

region.
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5 Discussion

We have developed a spatial Bayesian model selection procedure with nonlocal prior

considering the spatial dependence of data. In the process we demonstrated how to

incorporate calculation of spatial distance to the nonlocal prior model. This work has

the potential to have a broad and immediate application in spatial dependence data

analysis in different areas like: brain imaging area (Lee et al. 2014), spatial lattice

data (Song and Oliveira 2012)). For broader goals it would be of interest to extend

the model to neighborhood selection (Assuncao and Krainski 2009)).

From simulation studies, we can find the algorithm we propose is quite competitive

with the old one. When we proceed the real data studies, our results have proved

that if the Bayesian model selection procedures ignore spatial dependence in spatial

data, the procedures perform poor. Our novel algorithm provide a appropriate way

to choose high post posterior probability model with spatial data.

However, such a solution presents numerous modeling and computational chal-

lenges. For example, the study of MCMC convergence in such high dimensional set-

tings remains unexplored (present study included). Hence the consequences of having

far more parameters than possible MCMC iterations remains unknown. Moreover,

there are few methods of calculation of central moment in software (Phillips 2010)

and the speed of calculation will decrease dramatically when the dimension of dk

increases which means the algorithm is appropriate for sparse spatial model recently.

Despite computational and modeling difficulties, we are confident that nonlocal

prior Bayesian approaches represent an important direction in spatial dependence

data due to its final will have high posterior probability and its competitive accuracy.

19



Reference

Assuncao, R. and Krainski, E. (2009), “Neighborhood Dependence in Bayesian Spatial

Models,” Biometrical Journal, 851-69, 10.1002.

Berger, J. O. and Pericchi, L. R. (1996), “The Intrinsic Bayes Factor for Model

Selection and Prediction,” JASA, 91, 109–122.

Fan, J. and Li, R. (2001), “Variable Selection via Nonconcave Penalized Likelihood

and its Oracle Properties,” JASA, 96, 1348–1360.

Johnson, V. E. (2014), “On Numerical Aspects of Bayesian Model Selection in High

and Ultrahigh-dimensional Settings,” Bayesian Analysis, 8, 741–758.

Johnson, V. E. and Rossell, D. (2012), “Bayesian Model Selection in High-

Dimensional Settings,” JASA, 107:498, 649–660.

Lee, K.-J., Jones, G. L., Caffo, B. S., and Bassett, S. (2014), “Spatial Bayesian vari-

able selection models on functional magnetic resonance imaging time-series data,”

Bayesian Analysis, 9, 699–732.

Liang, F., Paulo, R., Molina, G., Clyde, M. A., and Berger, J. O. (2008), “Mixtures

of g Priors for Bayesian Variable Selection,” JASA, 103, 410–423.

Lukacs, E. (1942), “A Characterization of the Normal Distribution,” JASA, 13, 91–93.

O’Hagan, A. (1995), “Fractional Bayes Factors for Model Comparison,” JRSSB, 57,

99–138.

Phillips, K. (2010), “Neighborhood Dependence in Bayesian Spatial Models,” Journal

of Statistical Software, 33.

20



Rice, C. (2009), “Prevalence of Autism Spectrum Disorders: Autism and Developmen-

tal Disabilities Monitoring Network, United States, 2006. Morbidity and Mortality

Weekly Report.” Centers for Disease Control and Prevention, 58, 28.

Song, J. J. and Oliveira, V. D. (2012), “Bayesian model selection in spatial lattice

models,” Statistical Methodology, 9, 10.1016.

Zou, H. (2006), “The Adaptive Lasso and Its Oracle Properties,” JASA, 101, 1418–

1429.

Appendices

21



Figure 1: Nonlocal prior densities for a single regression coefficient.
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Figure 2: 3-dimension plot of simulation data with nonzero β
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Figure 3: Spatial distribution of selected voxels in both groups
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c MSE1 MSE2 TP1 TP1 TN1 TN2 FP1 FP2 FN1 FN2
0.5 1.032 1.089 4 2 996 996 0 0 0 2
1.0 0.982 0.980 4 4 996 996 0 0 0 0
2.0 0.885 0.871 4 4 996 996 0 0 0 0
4.0 0.973 0.964 4 4 996 996 0 0 0 0
0.5 0.905 0.933 4 3 996 996 0 0 0 1
1.0 0.835 0.962 4 3 996 996 0 0 0 1
2.0 0.921 0.913 4 4 996 996 0 0 0 0
4.0 1.020 1.085 4 2 996 920 0 76 0 2
0.5 1.080 1.060 4 4 996 996 0 0 0 0
1.0 0.926 0.912 4 4 996 996 0 0 0 0
2.0 0.925 0.894 4 4 996 996 0 0 0 0
4.0 0.854 0.870 4 4 996 965 0 31 0 0
0.5 1.118 1.214 4 3 996 996 0 0 0 1
1.0 0.920 0.877 4 4 996 996 0 0 0 0
2.0 0.945 0.931 4 4 996 996 0 0 0 0
4.0 1.094 1.093 4 4 996 996 0 0 0 0
0.5 0.929 0.890 4 4 996 996 0 0 0 0
1.0 0.993 0.975 4 4 996 996 0 0 0 0
2.0 1.126 1.107 4 4 996 996 0 0 0 0
4.0 0.919 0.927 4 2 996 912 0 84 0 2
0.5 1.049 1.226 4 1 996 996 0 0 0 3
1.0 0.769 0.768 4 4 996 996 0 0 0 0
2.0 0.910 0.861 4 4 996 996 0 0 0 0
4.0 0.996 0.974 4 4 996 996 0 0 0 0
0.5 1.066 1.147 4 3 996 996 0 0 0 1
1.0 1.064 1.060 4 4 996 996 0 0 0 0
2.0 1.003 0.975 4 4 996 996 0 0 0 0
4.0 0.960 0.952 4 4 996 996 0 0 0 0
0.5 1.045 1.022 4 4 996 996 0 0 0 0
1.0 0.952 0.911 4 4 996 996 0 0 0 0
2.0 1.237 1.176 4 4 996 996 0 0 0 0
4.0 1.036 0.773 4 4 996 947 0 49 0 0
0.5 1.136 1.109 4 4 996 996 0 0 0 0
1.0 0.930 0.915 4 4 996 996 0 0 0 0
2.0 0.865 0.846 4 4 996 996 0 0 0 0
4.0 0.884 0.567 4 4 996 923 0 73 0 0
0.5 0.864 0.849 4 4 996 996 0 0 0 0
1.0 0.923 0.898 4 4 996 996 0 0 0 0
2.0 1.012 1.000 4 4 996 996 0 0 0 0
4.0 1.107 1.065 4 4 996 996 0 0 0 0

Table 1: 10 times Simulation results of our model and Johnson and Rossell’s model
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Group Selected Voxels Position MSE
Control 1 3 539 741 935 0.931

ASD 1 7 410 0.956

Table 2: Final model and MSE of both groups in region: ParaHippocampal L
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