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Abstract 
 

Dorsal anterior cingulate and anterior insula encode a novel subjective value prediction 
error signal during effort-based decision-making 

 
By Amanda Riana Arulpragasam 

 

Integrating cost and benefit information is crucial for optimal decision-making. The 
dorsal anterior cingulate cortex (dACC) and anterior insula (AI) have been implicated in 
effort-based decision-making, but it remains unknown whether computations performed 
by these regions are involved in the evaluation of effort, reward, or their integration. To 
this end, 28 healthy participants completed a novel sequential effort-based decision-
making task while undergoing functional magnetic resonance imaging (fMRI). This task 
presented trial-wise information about effort costs and reward magnitude separately 
throughout time, allowing us to model distinct effort-based choice computations. We 
observed a role for dACC in subjective value discounting and choice difficulty, but not 
for effort cost encoding. Notably, we observed a novel role for dACC in the generation of 
subjective value prediction error signals as choice-relevant information unfolded. We 
also observed co-activation of AI with dACC as part of a network unique to this 
prediction error. These data help elucidate multiple computations performed by dACC 
during effort-based decision-making as well as provide evidence for the recruitment of AI 
to aid in prediction error signaling .  
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Introduction 

Optimally weighing the benefits of potential rewards against the effort required to 

achieve them underlies successful decision-making and foraging behavior1-3. Across 

species, studies have demonstrated that cost/benefit options requiring greater effort are 

perceived as having lower subjective value compared to options requiring less effort4,5. It 

remains unclear, however, exactly how the brain performs effort-based decision 

computations through time.  

 

Two brain areas previously implicated in effort-based decision-making are the medial 

prefrontal cortex (mPFC), specifically the dorsal anterior cingulate cortex (dACC), and 

the anterior insula (AI).  Both these regions have been found to encode effort costs as 

well as the subjective value of decision options. Lesions to the mPFC have routinely been 

found to induce a shift in preference away from larger rewards requiring greater effort in 

favor of lower effort options in rodents6-10, with similar effects observed from dACC 

lesions in primates6,11,12. Electrophysiological recordings of single cell activity have also 

found dACC to be one of the only prefrontal areas to be sensitive to effort costs13-17. 

Similarly, in tasks requiring physical effort, AI has been shown to co-activate with dACC 

as effort costs increase, possibly suggesting a primary role for AI in encoding effort-

related costs18-21. Further, both animal and neuroimaging studies have demonstrated that 

subjective values are represented in distinct brain areas including the ACC and anterior 

insular cortices for physical effort11,19.  
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Importantly, these regions also play a role in learning and prediction updating. In 

neuroimaging studies of effort based decision-making in humans, dACC has been found 

to encode both signed and unsigned prediction errors22-24. AI has also been implicated in 

encoding negative prediction errors25 as well as cost prediction signals, that is, 

predictions about future cost requirements26.  

 

Consequently, it remains unclear what specific computations, such as effort cost 

encoding or updating, these regions perform in the context of effort-based decisions. The 

dACC is among the most commonly activated brain areas across tasks, leading to a 

variety of theoretical accounts regarding its general function27-34. These have included 

error detection35, conflict monitoring36, and value-based decision-making27,29,37. In the 

context of the latter,  the dACC has been shown to monitor the value of less favored 

and/or unchosen options38, provide a “boosting signal” to overcome those response 

costs39,  or reflect the difficulty of determining the best choice among two nearly-

equivalent options31,34. Similarly, the precise role of the insula in effort-related decisions 

remains unclear. Like dACC, the insula is associated with a variety of functions including 

encoding aversive outcomes, risk26, and processing pain.  

 

One challenge to evaluating the role of both dACC and AI computations during effort-

based decisions has been the use of task paradigms that provide information about costs 

and reward simultaneously40. To better isolate the role for these regions in computations 

of effort cost, subjective value, choice difficulty, and prediction error signaling, we used 

a sequential effort-based decision-making task where trial-wise information about effort 
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costs and reward were presented separately throughout time, allowing us to model 

distinct computations related to effort cost encoding, subjective value, choice difficulty, 

and prediction error. We observed a role for dACC across all modeled computations with 

the exception of effort cost encoding. Interestingly, we only observed a role for AI as part 

of a network for subjective value error signaling. These data help elucidate multiple, 

distinct computations performed by dACC during effort-based decision-making and well 

as evidence for the recruitment of AI to aid in prediction and prediction error-based 

processes.  

 

Results 

Behavioral Results 

Participants performed choices between options with varying rewards and physical 

efforts (rapid button pressing). In this task, participants decided whether to choose a “No 

Effort Option” for $1.00 or an “Effort Option” requiring some level of physical effort 

(rapid button pressing) in exchange for monetary rewards of varying magnitude. The 

higher effort option independently varied in required button press rate (effort) and reward 

magnitude. The reward magnitude was shown as a dollar amount (range: $1 – $5.73; 

based on 4 bins: $1.25- $2.39, $2.40 – $3.49, $3.50 - $4.60, > $4.60) and the required 

effort level was indicated as the height of a vertical bar (20%, 50%, 80% or 100% of the 

participant’s maximum button pressing rate). To examine neural correlates of effort and 

reward information separately, information about the effort and reward available for the 

“Effort Option” for each trial was presented sequentially. “Effort First” trials began with 

an initial presentation of effort required for the Effort Option, followed by the available 
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reward, while “Reward First” trials had the opposite presentation order.  Each trial was 

therefore comprised of an initial cue (“Cue 1”), followed by a second cue (“Cue 2”), 

which was then followed by a prompt to decide between the Effort Option and the No 

Effort Option (“Decision Prompt”) at which point subjects made a button press indicating 

their selection (“Choice Phase”) (Figure 1A).  

 

We first tested whether both the size of the reward and the required effort of each choice 

option had an impact on participant’s choice behavior. A 4 (Effort level) x 4 (reward 

magnitude, binned) repeated-measures ANOVA revealed that participants’ choices were 

strongly guided by both the required effort (F(1.45,39.10) = 64.27, p = 1.74 x 10-11, partial η2 

= 0.70; Figure 1B), as well as the reward magnitude of both options (F(2.02,54.47) = 106.03, 

p = 1.42 x 10-19, partial η2 = 0.80; Figure 1B). There was also an effort x reward 

interaction (F(4.40,118.76) = 8.88, p = 0.000001, partial η2 = 0.25). As expected, larger 

rewards and smaller effort costs attracted more effortful choices. Overall, participants 

chose the higher effort option on 66% ± 18% of trials. 

 

Computational Model 

To better estimate how effort and reward influenced individuals’ choices, we used a two-

parameter effort discounting model that had been previously shown to fit effort-based 

choices41 (see Methods for details). Consistent with prior results, this model showed a 

superior fit (determined by AIC values) when compared to linear, parabolic, and 

hyperbolic discounting models (Table 1). Individual and group subjective value model 

curves are shown in Figure 1C.  
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Neuroimaging Results 

We were interested in investigating neural signatures of effort cost encoding, subjective 

value, choice difficulty, and prediction error signaling, specifically in the dACC and AI. 

We first sought to determine which regions appeared to be tracking the integration of 

reward and effort information at Cue 2 (when the second piece of information was 

presented). Here we identified a network of regions including the insula, dACC, 

supplementary motor area (SMA), and striatum, regions commonly implicated in effort-

based choice, as well as a variety of other functions2,18-21 (Supplemental Figure S1).  In 

the analyses that follow, we examined associations with model-based regressors related 

to subjective value, choice difficulty, and prediction error during Cue 2.   

 

Subjective Value Encoding 

To further understand how effort and reward information combined into an integrated 

value at Cue 2, a second GLM (GLM2) was used to examine neural regions that encoded 

the subjective value of the chosen option. We observed subjective value discounting in 

the dACC (x = -8, y = 20, z = 42, t = 4.69, cluster corrected pFWE = 0.001; Figure 3A). 

We also found that the subjective value of the chosen option positively correlated with 

activity in the vmPFC (x = 4, y = 32, z = -8, t = 5.02, cluster corrected pFWE < 0.001; 

Figure 3B), consistent with multiple prior studies29,37. We did not identify any activations 

in the ventral striatum, even at lenient statistical thresholds (p<0.05, uncorrected). 

Importantly, a significant debate has arisen as to whether SV encoding in the dACC may 

be wholly reducible to choice difficulty. Our study design was not optimized to address 



Arulpragasam  6 

this particular question, but we observed that SV and choice difficulty were highly 

collinear (mean r2 = 0.49) (Supplemental Figure S3C). As a result, the current study 

was unable to fully disambiguate between dACC involvement in SV and choice difficulty 

(for greater discussion of our choice difficulty model please reference Supplemental 

Methods). 

 

Subjective Value Prediction Error 

Recent work has sought to explain the various functions of ACC and AI under the 

unifying principle of prediction and prediction error. In this framework, ACC 

continuously formulates predictions linking stimuli, actions, and outcomes, and computes 

a prediction error which scales with the difference between the predicted and observed 

outcome22-24. Due to the involvement of both dACC and insula in learning updating as 

well as prediction signals, we modeled trial-based predictions and computed expectation 

differentials using a sliding window analysis (GLM3). For example, when subjects saw a 

large reward value at Cue 1, they would likely expect a high SV for the trial as a whole 

given the ultimate SV of past trials that began with a large reward. However, they could 

be “surprised” by a high effort requirement presented at Cue 2, resulting in a negative 

subjective value prediction error (SVPE). Our design allowed us to calculate unsigned 

prediction errors based on the absolute value of the difference between the observed 

subjective value and the predicted trial-wise subjective value after receiving only the first 

piece of information. We observed that this modeled prediction error was positively 

associated with dACC (x = 8, y = 24, z = 32, t = 4.52, cluster corrected pFWE < 0.001), 

caudate (x = 12, y = 2, z = 12, t = 4.18, cluster corrected pFWE = 0.006), and insula (x = 
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-36, y = 16, z = -10, t = 6.26, cluster corrected pFWE < 0.001) activity, suggesting a role 

for these regions in the encoding of unsigned prediction error signals during effort-based 

choice (Figure 3D).  These results remained even when controlling for regressors related 

to choice difficulty, subjective value, and choice outcome (Effort or No Effort), 

suggesting that the involvement of these regions could not be better explained by these 

other processes. Further, our subjective value prediction error regressor was not highly 

correlated with any of our other variables of interest (Supplemental Figure S3A and 

S3B). 

 

Spatial Specificity 

To better understand the spatial localization of SVPE and SV signals, we defined ROIs 

using previously defined parcellations of dACC, insula, and caudate 42-44 to compare 

activity in distinct subregions of these structures. Within dACC, we identified an 

anterior/posterior spatial gradient in the encoding of unsigned prediction error signals, 

where more anterior subregions of dACC encoded this signal more strongly (Figure 3D). 

We also observed that dorsal insula more strongly encoded prediction error than ventral 

or posterior insula, suggesting spatial specificity for this function (Figure 3B). Similarly, 

within the caudate, we observed an anterior/posterior spatial gradient, where most 

posterior subregions of caudate encoded the SVPE signal more strongly (Figure 3F). 

Interestingly, this posterior location has been found to encode more executive functions 

as opposed to an action or stimulus value44, which may explain why it is more active for 

evaluation expectation differences. 
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Expectation Formation 

The presence of a prediction error at Cue 2, based on the expected SV information 

presented at Cue 1 suggested that participants were forming expectations at Cue 1, when 

they only had one piece of information. An advantage of our design is that it allowed us 

to look neural responses to reward and effort information when presented in isolation 

(Cue 1). We were interested in exploring subjective responses to the presented options, 

with the idea that neural structures may be encoding expectations about future effort or 

reward. While we did not observe any regions that tracked expected effort at Cue 1, we 

did observe that expected reward at Cue 1 was positively associated with vmPFC activity 

(x=2, y = 48, z = -8, t = 6.27, cluster corrected pFWE <0.001; Figure 4), highlighting this 

region as essential in forming reward-based predictions. Consistent with the idea that this 

activity reflected expectations rather than simply encoding of the objective information 

presented at Cue 1 (i.e., reward magnitude or effort level), we did not identify any 

regions that significantly responded to the reward magnitude or effort cost of the 

presented option alone, even at lenient statistical thresholds (p<0.05, uncorrected). 

 

Discussion 

The goal of the current study was to investigate areas that were involved in the encoding 

of effort, reward, and their integration. Human imaging studies as well as animal lesion 

studies have strongly implicated dACC and AI as critical for effort related decisions, 

though their function remains unclear. We replicated prior effects relating to effort 

discounting and choice difficulty in the dACC, and also identified a novel subjective 

value prediction error signal in the context of effort related decisions.  
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Early imaging studies have shown a role for dACC in cost encoding, with evidence that 

activity in this region scales with increasing effort requirements19,40. However, the 

present study did not observe these phenomena. Even when looking at presented effort 

costs in isolation (i.e., at Cue 1) we did not find evidence that the dACC was encoding 

effort cost alone. Rather, the most novel finding in our results was the identification of 

dACC involvement in the generation of an unsigned prediction error as choice-relevant 

information became available. Our model for SVPE–the absolute value of the difference 

between SV of the chosen option and their predicted SV as determined by a sliding 

window analysis–is formally similar to a standard unsigned prediction error. While both 

signed and unsigned PE signals have previously been identified in dACC in a 

reinforcement learning context22-24, the current result extends this effect to intra-trial 

value updating. Interestingly, while dACC appeared to be involved in both SV and 

prediction error, AI and caudate were uniquely involved in prediction error signaling (see 

Figure 3A and 3E).  

 

In addition to its role in prediction error generation, we also found evidence that dACC 

encoded a subjective value such that lower subjective value was associated with elevated 

dACC activity, which is consistent with other reports45. Further, using a binned trial 

analysis (see Supplemental Methods), we observed that within a certain choice outcome, 

we still observe the SV effect in dACC. Additionally, consistent with previous reports46, 

we observed increasing dACC activity as SV decreases, eventually reaching its peak 

when participants must change their strategy and choose the No Effort option. This 

suggests that dACC may be implicated in the reevaluation of strategy and that it may, in 
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our experiment, signal a move away from a “default” preference for the more richly 

rewarded Effort Option.  

 

While intriguing, a significant caveat to this interpretation is the role of choice difficulty, 

which has been proposed an alternative explanation for dACC engagement30-34. Since our 

design was not intended to directly address this question, SV was heavily correlated with 

choice difficulty (proximity to indifference point). dACC activation in both SV and 

choice difficulty analyses revealed substantial overlap in activation clusters. Further, 

when both regressors were included, there was no significant activation in dACC for 

either. As a result, we cannot determine whether separate SV and choice difficulty signals 

exist in dACC, whether the signals represent similar features of a larger process, or 

whether one signal can completely account for another. Further research will be required 

to disentangle these processes and computations. 

 

 
Our data also identified a clear role for vmPFC in the context of effort related decisions. 

A large number of studies have demonstrated that vmPFC signal scales with expected 

reward value across a variety range of reward types37,47,48. In the context of effort-

discounting, however, there has been some evidence suggesting a dissociation between 

vmPFC and dACC. Animal research has shown that ACC lesions in rats impaired effort 

discounting, whereas orbitofrontal cortical lesions only influenced delay discounting49. 

These findings and others suggested that vmPFC does not play a large role in effort-based 

decisions. In contrast, we observed that this region had very specific functions as it 

related to effort-based decisions. We noted that it encoded the subjective values of the 
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chosen option as well as the expected or predicted value of available rewards on future 

trials.  

 

Finally, we also observed engagement of the striatum. Animal studies have identified the 

striatum, particularly the ventral striatum (VS), as a key region for effort-based 

decisions7,25,50-53. However several recent neuroimaging studies have not observed 

significant striatal activity during effort-based decision making54. We did not detect any 

significant activation of the ventral striatum, though we did see involvement of the 

caudate in SVPE signaling. There are several explanations for this discrepancy. First, it 

should be noted that the vast majority of studies highlighting the ventral striatum in 

effort-based decision-making have relied on manipulations of dopamine, which was not 

manipulated here. Dopamine activity in ventral striatum may be necessary for effort-

related decisions, but may not necessarily drive striatal activity in this context. 

Additionally, past research has suggested the ventral striatum represents more of a 

stimulus value, whereas dorsal striatum more likely encodes action value. It is possible 

that prior studies allowed for the cognitive decoupling of the value of an option from the 

cost of obtaining that reward, resulting in greater ventral striatal activity.   

 

Limitations  

There are several limitations to the current study that warrant additional comment. First, 

our sliding window analysis, which underlies our key finding of these regions’ 

involvement in prediction error generation, was not tailored to individual learning rates. 

That is, our analysis weighted the previous 5 trials at any point for all subjects, but the 
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amount of weight given to prior trials may have fluctuated both across and within 

subjects.  

 

A second limitation is that our participants did not complete effort while they were in the 

scanner. Instead, they completed the effort they chose immediately following the scan. 

We did present the opportunity for participants to change their responses post-scan to 

investigate whether fatigue of performing the effort in real-time might influence 

willingness to make effortful choices. We observed near-identical choice patterns post-

scan as we observed during the scan (see Methods). While this may have addressed the 

question as to whether fatigue of effort completion influences choice, we cannot be sure 

that the act of completing effort in real-time does not change the way participants are 

evaluating and making their decisions.  

 

Further, our regressors were not optimally orthogonalized for all relevant questions, 

particularly related to subjective value and choice difficulty. While we observed a strong 

unsigned subjective value prediction error, our design was not optimized to evaluate a 

signed prediction error signal because this regressor would be too highly correlated with 

subjective value.  

 

Conclusion  

Taken together, our results have identified unique prediction error-based functions within 

the context of effort-based decision-making. Going forward, these data help reveal the 

precise functions of dACC and AI during effort-based decision-making, and may help 
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clarify the mechanisms underlying maladaptive decision-making behaviors that are 

commonly observed in clinical populations such as major depressive disorder55-57 and 

schizophrenia58. While we predict that these functions generalize to other cost domains 

outside of effort-based decisions, future studies will be needed to determine the 

generalizability of these computations to other forms of cost/benefit decision-making 

(e.g., probability or delay). 

 

Methods 

Participants.  

Thirty-one healthy volunteers (14 males, Mage = 20.8, SDage = 3.4; Supplemental Table 

S1) completed a sequential effort-based decision-making task while undergoing 

functional magnetic resonance imaging (fMRI). All were right handed, had normal or 

corrected-to-normal vision, no history of psychiatric or neurological diseases, and no 

structural brain abnormalities. Of these, three participants were excluded: one for 

excessive head movement, one for falling asleep, and one for behavioral evidence of 

inadequate task performance. This yielded datasets from twenty-eight participants (13 

males, Mage = 20.2, SDage = 2.1) for our final analysis. No statistical tests were used to 

predetermine sample sizes, but our sample size is within the standard range in the 

field2,33,34,38,40,51. All study procedures were reviewed and approved by the Emory 

University Institutional review board, and written informed consent was obtained for all 

participants.  

 

Procedure. 
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The experimental task was designed to measure independently the neural responses to 

two dimensions of a cost/benefit decision: the effort required and the magnitude of 

reward. In this task, participants decided whether to perform a no effort task for $1.00 or 

a higher effort task for a larger reward of varying magnitude. The higher effort option 

independently varied in required button press rate (effort) and reward magnitude. The 

reward magnitude was shown as a dollar amount (range: $1 – $5.73; based on 4 bins: 

$1.25- $2.39, $2.40 – $3.49, $3.50 - $4.60, > $4.60) and required effort level was 

indicated as the height of a vertical bar (20%, 50%, 80% or 100% of the participant’s 

maximum button pressing rate). Prior to entering the scanner, participants completed 

three practice trials where they were asked to press a key with their left pinky finger as 

quickly as possible for 20 seconds. Participant’s maximum effort was calculated based on 

the average press rate across the three trials. After establishing each participant’s 

maximum button press rate, participants practiced completing 20%, 50%, 80%, and 

100% of their maximum effort. As part of this practice, participants completed four trials 

of each effort level to become familiar with how effortful each value was for them. The 

practice trials lasted about 5 minutes. Participants were informed that they would not 

complete the physical effort component while in the scanner, but would have to complete 

it based on the choices they make immediately following the scan.  

 

Each trial was comprised of a Cue 1, Cue 2, Decision Prompt, and Choice phase. At cue 

1, participants were presented with only one piece of information from the higher effort 

option (either the associated effort level or reward magnitude). Then after a brief, jittered 

delay of between 2-6 seconds (mean = 2.98s), they saw cue 2, which revealed the other 
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piece of information. After another brief jittered delay of between 2-6 seconds (mean = 

3.23s), the participants were prompted to make their selection: either accept the effortful 

option that has been presented or reject that option in favor of the non-effortful option 

that pays $1. Then, the participant’s selection was shown in the Choice phase. The inter-

stimulus-jitter was drawn from a Poisson distribution, similar to that used in sequential 

foraging tasks38. Because the non-effortful option was fixed, it was not presented during 

the task. Order of information (effort first or reward first), as well as side of presentation 

for effort and reward information  (right or left) was counterbalanced across trials 

(Figure 1A). Trials were presented in the same fixed randomized order for all 

participants.  

 

While in the scanner, participants completed two runs total of this task. Each run lasted 

approximately 9 minutes, and consisted of 44 trials (11 per effort level and reward bin 

values). Stimulus presentation and response acquisition was performed using 

MatlabR2013b (MathWorks) with the Psychophysics Toolbox59. Participants responded 

with MR-compatible response keypads. 

 

Following the scan, participants were presented with the effortful options they selected 

while in the scanner. They were then asked to complete the effort required for the choices 

they had selected. Importantly, for each chosen trial, they were given the opportunity to 

change their responses. This option was given to investigate whether fatigue of 

performing the effort in real-time might influence willingness to make effortful choices. 
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We observed very consistent choice patterns post-scan as we observed during the scan, 

with participants choosing the same options on 97± 4% of trials.  

 

Image acquisition.  

Imaging data were acquired on a Siemens 3T Tim Trio using a 32-channel phased-array 

head coil. Trial presentations were synchronized to initial volume acquisition. Functional 

(T2* weighted) images were aquired using a multiband sequence with the following 

sequence parameters: 3-mm3 isotropic voxels, repetition time (TR) = 1.0 s, echo time 

(TE) = 30 ms, flip angle (FA) = 65°, 52 interleaved axial slices, with slice orientation 

tilted 18° relative to the AC/PC plane to improve coverage of ventromedial prefrontal 

cortex. At the start of the imaging session, a high-resolution structural volume was also 

collected, with the following sequence parameters: 2-mm × 1-mm × 1-mm voxels, TR = 

1.9 s, TE = 2.27 ms, FA = 9°. 

 

Behavioral analysis. 

Analyses were conducted using Matlab 2015B (Mathworks, Natick, MA) and SPSS v22 

(IBM, Armok, NY). To examine choice data across varying levels of effort and reward 

magnitude, repeated measures ANOVAs were used. For cases that violated the sphericity 

assumption, a Greenhouse-Geisser correction was used.  

  

Subjective Value Models 

To estimate participants’ subjective values for the offers presented on each trial, we used 

a two-parameter power function, which has been previously described in Klein-Flugge et 



Arulpragasam  17 

al. (2015) 41. This effort-discounting model has been shown to provide better fits than the 

hyperbolic model previously suggested for effort discounting19 both here and in other 

studies41. The two-parameter power function estimates subjective values on each trial 

using Equation 1, where SV is the subjective value, E is the amount of required effort 

(ranging from 0% to 100%), R is the reward magnitude, and k and p are free parameters 

that are fit for each participant. 

 

    𝑆𝑉 = 𝑅− 𝑘𝐸𝑝      Eq. 1 

 

The subjective value of the easy option, which does not require any effort to be exerted 

and was always worth $1, assumes a value of 1 on each trial. Importantly, the p 

parameter allows the two-parameter power function to take a concave or convex shape 

depending on the rate at which the participant devalues reward with additional effort. 

Hyperbolic discounting functions that have been traditionally used for delay discounting 

and previously suggested for effort discounting follow a convex function where the 

addition of effort has a larger devaluation effect on smaller effort costs and very small 

devaluation effects at higher levels of effort. Alternatively, recent work has suggested 

that it is both intuitive and biologically plausible for effort discounting to instead take a 

concave shape, where additional effort has small effects on subjective value at lower 

levels of required effort but increases steeply as effort reaches more demanding levels41. 

To verify that the two-parameter power function provided a better fit for our data, we 

compared it to discounting models that use hyperbolic, quadratic, and linear discounting 

functions previously used to describe effort discounting19,60,61. All models were each fit to 
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subject’s data individually using the MATLAB function fminsearch and parameters were 

selected for each participant that optimized the likelihood of the behavioral data.  

 

The Softmax function (Equation 2) was used to transform the subjective values of the two 

options offered on each trial into choice probabilities for selecting each option, a, on trial 

t. The Softmax function includes an inverse temperature parameter, β, which is fit as an 

additional free parameter for each participant for each of the discounting models. The 

inverse temperature parameter determines the degree to which the choice probabilities are 

affected by the estimated subjective value of each option, with lower values indicating 

random responding and higher values indicating a tendency to choose the option with the 

highest SV. The fits of the discounting models were also compared to a simple model that 

assumes a fixed probability of choosing each option. 

𝑃𝑡(𝑎) =  𝑒𝛽∙𝑆𝑉𝑎

𝑒𝛽∙𝑆𝑉𝑖!
𝑖!!

                                                     Eq. 2 

  

Similar to the two-parameter power model, the hyperbolic discounting model assumes 

that participants weigh subjective values of each option, where subjective values are 

calculated by devaluing the reward according to the amount of required effort (Equation 

3) and compared using the Softmax function. Hyperbolic discounting functions have been 

widely used in modeling temporal discounting of rewards62,63 and have also been 

suggested for effort discounting19,64.  

𝑆𝑉 =  𝑅
(!!𝑘!)

                                                           Eq. 3 
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The quadratic or parabolic discounting function (Equation 4) is similar to the two-

parameter power function but allows for less flexibility in the shape of the discounting 

function. The quadratic discounting function follows a concave shape where the 

devaluation of rewards increases with larger effort costs. Quadratic models of effort 

discounting have been used to be explain effort-based choice in recent work45,60. 

 

𝑆𝑉 = 𝑅− 𝑘𝐸!                                                          Eq. 4 

 

The final discounting model that we fit to our data assumes that effort discounting 

follows a linear trend—that rewards are discounted at the same rate per additional unit of 

effort (Equation 5). The k parameter represents the slope, or rate of discounting, for each 

additional unit of effort.  

 

𝑆𝑉 = 𝑅− 𝑘𝐸                                                            Eq. 5 

 

The additional model that we fit to our data is a fixed probability model. This model 

assumes that participants do not systematically integrate reward and effort information to 

guide their choices, but instead select each option with a fixed probability that is fit as a 

single free parameter. Despite their simplicity, fixed probability models capture base-

rates of responding and can provide a good fit when participants respond with a strong 

preference for either option. As such, fixed probability models provide a baseline to 

which more sophisticated models can be compared65.   
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All models were compared using Akiake’s Information Criterion66 (AIC). AIC provides a 

method of comparing the relative quality of models that differ in number of free 

parameters by incorporating goodness of fit (likelihood, 𝐿𝑖) and model complexity 

(number of free parameters, 𝑉𝑖) using the following equation: 

 

AIC𝑖 =  −2ln(𝐿𝑖)+ 2𝑉𝑖                                                Eq. 6 

Thus, the model with the lowest AIC is judged to provide the best fit for the given set of 

data. The AIC of each model was calculated individually for each participant. The 

average AIC and average best-fitting parameters for each model are included in Table 1.  

 

Subjective Value Prediction Error 

Estimates of expected subjective value at Cue 1 (SVpredicted) were calculated using a 

sliding window analysis of previously-experienced subjective values of the same trial 

type. The value of SVpredicted on each trial was derived from the Cue 1 stimulus value and 

recent subjective values of trials with the same stimulus value (i.e. either reward bin or 

effort level; see Supplemental Materials for more information).  Subjective values for 

previous trials were calculated using the two-parameter power function (Equation 1) and 

each participant’s best-fitting parameters. The subjective value prediction error (SVPE) 

regressor was calculated by subtracting SVpredicted from SVchosen, where SVchosen is 

calculated under the two-parameter power function using the pieces of information 

provided at both Cue 1 and Cue 2.  
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fMRI analysis. All neuroimaging data were preprocessed and analyzed in SPM12 

(Wellcome Department of Imaging Neuroscience, Institute of Neurology, London, UK). 

Preprocessing in SPM12 included realignment estimation and implementation, co-

registration to the individual’s high resolution structural scan, normalization to MNI 

space, and spatial smoothing using a Gaussian kernel (6mm FWHM). Across all GLMs, 

we used the SPM default orthogonalization. When controlling for other regressors, the 

regressor of interest was always entered second. 

 

To identify areas that encoded reward or effort signals, we implemented the first GLM 

(GLM1) which included 8 conditions: cue 1, cue 2, choice (the period after both pieces of 

information have been presented and participants may make a choice), and response (the 

time at which participant’s make a choice) divided by order of presentation (effort first or 

reward first). The first three phases were associated with two parametric modulators: the 

reward magnitude and effort of the chosen option. 

 

To further investigate and identify areas that encoded subjective value as well as the 

integration of effort and reward information, we implemented a second GLM. The second 

GLM (GLM2) was identical to the first, except that parametric modulators were replaced 

by predicted reward and effort at Cue 1 (calculated with a sliding window analysis) and 

subjective value estimates of the chosen option at Cue 2.  

 

Lastly, a third GLM (GLM3) aimed to identify areas that encoded prediction as well as 

an unsigned prediction error. It was identical to the first except that the parametric 
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modulators were replaced by predicted subjective value as determined by our sliding 

window analysis at cue 1 as well as SVPE at cue 2.  

 

For whole-brain analyses, we used a FWE cluster-corrected threshold of p < 0.05 (using a 

cluster-defining threshold of p < 0.005 and a cluster threshold of 20 voxels). Beta values 

were extracted from ROIs as well as from various defined regions of the medial 

prefrontal cortex43 as well as the insula42.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Arulpragasam  23 

References 
 

1 Rangel, A., Camerer, C. & Montague, P. R. A framework for studying the 

neurobiology of value-based decision making. Nat Rev Neurosci 9, 545-556, 

doi:10.1038/nrn2357 (2008). 

2 Massar, S. A., Libedinsky, C., Weiyan, C., Huettel, S. A. & Chee, M. W. Separate 

and overlapping brain areas encode subjective value during delay and effort 

discounting. Neuroimage 120, 104-113, doi:10.1016/j.neuroimage.2015.06.080 

(2015). 

3 Kable, J. W. & Glimcher, P. W. The neurobiology of decision: consensus and 

controversy. Neuron 63, 733-745, doi:10.1016/j.neuron.2009.09.003 (2009). 

4 Treadway, M. T., Buckholtz, J. W., Schwartzman, A. N., Lambert, W. E. & Zald, 

D. H. Worth the 'EEfRT'? The effort expenditure for rewards task as an objective 

measure of motivation and anhedonia. PLoS One 4, e6598, 

doi:10.1371/journal.pone.0006598 (2009). 

5 Kool, W. & Botvinick, M. A labor/leisure tradeoff in cognitive control. J Exp 

Psychol Gen 143, 131-141, doi:10.1037/a0031048 (2014). 

6 Walton, M. E. & Mars, R. B. Probing human and monkey anterior cingulate 

cortex in variable environments. Cogn Affect Behav Neurosci 7, 413-422 (2007). 

7 Walton, M. E. et al. Comparing the role of the anterior cingulate cortex and 6-

hydroxydopamine nucleus accumbens lesions on operant effort-based decision 

making. Eur J Neurosci 29, 1678-1691, doi:10.1111/j.1460-9568.2009.06726.x 

(2009). 



Arulpragasam  24 

8 Walton, M. E., Croxson, P. L., Rushworth, M. F. & Bannerman, D. M. The 

mesocortical dopamine projection to anterior cingulate cortex plays no role in 

guiding effort-related decisions. Behav Neurosci 119, 323-328, doi:10.1037/0735-

7044.119.1.323 (2005). 

9 Walton, M. E., Croxson, P. L., Behrens, T. E., Kennerley, S. W. & Rushworth, M. 

F. Adaptive decision making and value in the anterior cingulate cortex. 

Neuroimage 36 Suppl 2, T142-154, doi:10.1016/j.neuroimage.2007.03.029 

(2007). 

10 Walton, M. E., Bannerman, D. M., Alterescu, K. & Rushworth, M. F. Functional 

specialization within medial frontal cortex of the anterior cingulate for evaluating 

effort-related decisions. J Neurosci 23, 6475-6479 (2003). 

11 Rudebeck, P. H., Buckley, M. J., Walton, M. E. & Rushworth, M. F. A role for 

the macaque anterior cingulate gyrus in social valuation. Science 313, 1310-1312, 

doi:10.1126/science.1128197 (2006). 

12 Rudebeck, P. H. et al. Frontal cortex subregions play distinct roles in choices 

between actions and stimuli. J Neurosci 28, 13775-13785, 

doi:10.1523/JNEUROSCI.3541-08.2008 (2008). 

13 Wallis, J. D. & Kennerley, S. W. Contrasting reward signals in the orbitofrontal 

cortex and anterior cingulate cortex. Ann N Y Acad Sci 1239, 33-42, 

doi:10.1111/j.1749-6632.2011.06277.x (2011). 

14 Kennerley, S. W., Walton, M. E., Behrens, T. E., Buckley, M. J. & Rushworth, 

M. F. Optimal decision making and the anterior cingulate cortex. Nat Neurosci 9, 

940-947, doi:10.1038/nn1724 (2006). 



Arulpragasam  25 

15 Kennerley, S. W. & Wallis, J. D. Evaluating choices by single neurons in the 

frontal lobe: outcome value encoded across multiple decision variables. Eur J 

Neurosci 29, 2061-2073, doi:10.1111/j.1460-9568.2009.06743.x (2009). 

16 Kennerley, S. W. & Wallis, J. D. Encoding of reward and space during a working 

memory task in the orbitofrontal cortex and anterior cingulate sulcus. J 

Neurophysiol 102, 3352-3364, doi:10.1152/jn.00273.2009 (2009). 

17 Kennerley, S. W., Behrens, T. E. & Wallis, J. D. Double dissociation of value 

computations in orbitofrontal and anterior cingulate neurons. Nat Neurosci 14, 

1581-1589, doi:10.1038/nn.2961 (2011). 

18 Schmidt, L., Lebreton, M., Clery-Melin, M. L., Daunizeau, J. & Pessiglione, M. 

Neural mechanisms underlying motivation of mental versus physical effort. PLoS 

Biol 10, e1001266, doi:10.1371/journal.pbio.1001266 (2012). 

19 Prevost, C., Pessiglione, M., Metereau, E., Clery-Melin, M. L. & Dreher, J. C. 

Separate valuation subsystems for delay and effort decision costs. J Neurosci 30, 

14080-14090, doi:10.1523/JNEUROSCI.2752-10.2010 (2010). 

20 McGuire, J. T. & Botvinick, M. M. Prefrontal cortex, cognitive control, and the 

registration of decision costs. Proc Natl Acad Sci U S A 107, 7922-7926, 

doi:10.1073/pnas.0910662107 (2010). 

21 Jansma, J. M., Ramsey, N. F., de Zwart, J. A., van Gelderen, P. & Duyn, J. H. 

fMRI study of effort and information processing in a working memory task. Hum 

Brain Mapp 28, 431-440, doi:10.1002/hbm.20297 (2007). 



Arulpragasam  26 

22 Vassena, E., Holroyd, C. B. & Alexander, W. H. Computational Models of 

Anterior Cingulate Cortex: At the Crossroads between Prediction and Effort. 

Front Neurosci 11, 316, doi:10.3389/fnins.2017.00316 (2017). 

23 Alexander, W. H. & Brown, J. W. A general role for medial prefrontal cortex in 

event prediction. Front Comput Neurosci 8, 69, doi:10.3389/fncom.2014.00069 

(2014). 

24 Alexander, W. H. & Brown, J. W. Medial prefrontal cortex as an action-outcome 

predictor. Nat Neurosci 14, 1338-1344, doi:10.1038/nn.2921 (2011). 

25 Palminteri, S. et al. Critical roles for anterior insula and dorsal striatum in 

punishment-based avoidance learning. Neuron 76, 998-1009, 

doi:10.1016/j.neuron.2012.10.017 (2012). 

26 Preuschoff, K., Quartz, S. R. & Bossaerts, P. Human insula activation reflects risk 

prediction errors as well as risk. J Neurosci 28, 2745-2752, 

doi:10.1523/JNEUROSCI.4286-07.2008 (2008). 

27 Rushworth, M. F. & Behrens, T. E. Choice, uncertainty and value in prefrontal 

and cingulate cortex. Nat Neurosci 11, 389-397, doi:10.1038/nn2066 (2008). 

28 Rushworth, M. F., Behrens, T. E., Rudebeck, P. H. & Walton, M. E. Contrasting 

roles for cingulate and orbitofrontal cortex in decisions and social behaviour. 

Trends Cogn Sci 11, 168-176, doi:10.1016/j.tics.2007.01.004 (2007). 

29 Rushworth, M. F., Kolling, N., Sallet, J. & Mars, R. B. Valuation and decision-

making in frontal cortex: one or many serial or parallel systems? Curr Opin 

Neurobiol 22, 946-955, doi:10.1016/j.conb.2012.04.011 (2012). 



Arulpragasam  27 

30 Shenhav, A. & Botvinick, M. Uncovering a missing link in anterior cingulate 

research. Neuron 85, 455-457, doi:10.1016/j.neuron.2015.01.020 (2015). 

31 Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an 

integrative theory of anterior cingulate cortex function. Neuron 79, 217-240, 

doi:10.1016/j.neuron.2013.07.007 (2013). 

32 Shenhav, A., Cohen, J. D. & Botvinick, M. M. Dorsal anterior cingulate cortex 

and the value of control. Nat Neurosci 19, 1286-1291, doi:10.1038/nn.4384 

(2016). 

33 Shenhav, A., Straccia, M. A., Botvinick, M. M. & Cohen, J. D. Dorsal anterior 

cingulate and ventromedial prefrontal cortex have inverse roles in both foraging 

and economic choice. Cogn Affect Behav Neurosci 16, 1127-1139, 

doi:10.3758/s13415-016-0458-8 (2016). 

34 Shenhav, A., Straccia, M. A., Cohen, J. D. & Botvinick, M. M. Anterior cingulate 

engagement in a foraging context reflects choice difficulty, not foraging value. 

Nat Neurosci 17, 1249-1254, doi:10.1038/nn.3771 (2014). 

35 Holroyd, C. B. et al. Dorsal anterior cingulate cortex shows fMRI response to 

internal and external error signals. Nat Neurosci 7, 497-498, doi:10.1038/nn1238 

(2004). 

36 Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. 

Conflict monitoring and cognitive control. Psychol Rev 108, 624-652 (2001). 

37 Rangel, A. & Hare, T. Neural computations associated with goal-directed choice. 

Curr Opin Neurobiol 20, 262-270, doi:10.1016/j.conb.2010.03.001 (2010). 



Arulpragasam  28 

38 Kolling, N., Behrens, T. E., Mars, R. B. & Rushworth, M. F. Neural mechanisms 

of foraging. Science 336, 95-98, doi:10.1126/science.1216930 (2012). 

39 Verguts, T., Vassena, E. & Silvetti, M. Adaptive effort investment in cognitive 

and physical tasks: a neurocomputational model. Front Behav Neurosci 9, 57, 

doi:10.3389/fnbeh.2015.00057 (2015). 

40 Croxson, P. L., Walton, M. E., O'Reilly, J. X., Behrens, T. E. & Rushworth, M. F. 

Effort-based cost-benefit valuation and the human brain. J Neurosci 29, 4531-

4541, doi:10.1523/JNEUROSCI.4515-08.2009 (2009). 

41 Klein-Flugge, M. C., Kennerley, S. W., Saraiva, A. C., Penny, W. D. & 

Bestmann, S. Behavioral modeling of human choices reveals dissociable effects 

of physical effort and temporal delay on reward devaluation. PLoS Comput Biol 

11, e1004116, doi:10.1371/journal.pcbi.1004116 (2015). 

42 Chang, L. J., Yarkoni, T., Khaw, M. W. & Sanfey, A. G. Decoding the role of the 

insula in human cognition: functional parcellation and large-scale reverse 

inference. Cereb Cortex 23, 739-749, doi:10.1093/cercor/bhs065 (2013). 

43 de la Vega, A., Chang, L. J., Banich, M. T., Wager, T. D. & Yarkoni, T. Large-

Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite 

Functional Organization. J Neurosci 36, 6553-6562, 

doi:10.1523/JNEUROSCI.4402-15.2016 (2016). 

44 Pauli, W. M., O'Reilly, R. C., Yarkoni, T. & Wager, T. D. Regional specialization 

within the human striatum for diverse psychological functions. Proc Natl Acad 

Sci U S A 113, 1907-1912, doi:10.1073/pnas.1507610113 (2016). 



Arulpragasam  29 

45 Chong, T. T. et al. Neurocomputational mechanisms underlying subjective 

valuation of effort costs. PLoS Biol 15, e1002598, 

doi:10.1371/journal.pbio.1002598 (2017). 

46 Heilbronner, S. R. & Hayden, B. Y. Dorsal Anterior Cingulate Cortex: A Bottom-

Up View. Annu Rev Neurosci 39, 149-170, doi:10.1146/annurev-neuro-070815-

013952 (2016). 

47 Lebreton, M., Jorge, S., Michel, V., Thirion, B. & Pessiglione, M. An automatic 

valuation system in the human brain: evidence from functional neuroimaging. 

Neuron 64, 431-439, doi:10.1016/j.neuron.2009.09.040 (2009). 

48 Boorman, E. D. & Rushworth, M. F. Conceptual representation and the making of 

new decisions. Neuron 63, 721-723, doi:10.1016/j.neuron.2009.09.014 (2009). 

49 Rudebeck, P. H., Walton, M. E., Smyth, A. N., Bannerman, D. M. & Rushworth, 

M. F. Separate neural pathways process different decision costs. Nat Neurosci 9, 

1161-1168, doi:10.1038/nn1756 (2006). 

50 Kurniawan, I. T. et al. Choosing to make an effort: the role of striatum in 

signaling physical effort of a chosen action. J Neurophysiol 104, 313-321, 

doi:10.1152/jn.00027.2010 (2010). 

51 Schouppe, N., Demanet, J., Boehler, C. N., Ridderinkhof, K. R. & Notebaert, W. 

The role of the striatum in effort-based decision-making in the absence of reward. 

J Neurosci 34, 2148-2154, doi:10.1523/JNEUROSCI.1214-13.2014 (2014). 

52 Botvinick, M. M., Huffstetler, S. & McGuire, J. T. Effort discounting in human 

nucleus accumbens. Cogn Affect Behav Neurosci 9, 16-27, 

doi:10.3758/CABN.9.1.16 (2009). 



Arulpragasam  30 

53 Salamone, J. D., Correa, M., Mingote, S. & Weber, S. M. Nucleus accumbens 

dopamine and the regulation of effort in food-seeking behavior: implications for 

studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 

305, 1-8, doi:10.1124/jpet.102.035063 (2003). 

54 Klein-Flugge, M. C., Kennerley, S. W., Friston, K. & Bestmann, S. Neural 

Signatures of Value Comparison in Human Cingulate Cortex during Decisions 

Requiring an Effort-Reward Trade-off. J Neurosci 36, 10002-10015, 

doi:10.1523/JNEUROSCI.0292-16.2016 (2016). 

55 Bonnelle, V. et al. Characterization of reward and effort mechanisms in apathy. J 

Physiol Paris 109, 16-26, doi:10.1016/j.jphysparis.2014.04.002 (2015). 

56 Treadway, M. T. & Zald, D. H. Parsing Anhedonia: Translational Models of 

Reward-Processing Deficits in Psychopathology. Curr Dir Psychol Sci 22, 244-

249, doi:10.1177/0963721412474460 (2013). 

57 Treadway, M. T., Bossaller, N. A., Shelton, R. C. & Zald, D. H. Effort-based 

decision-making in major depressive disorder: a translational model of 

motivational anhedonia. J Abnorm Psychol 121, 553-558, doi:10.1037/a0028813 

(2012). 

58 Fervaha, G. et al. Incentive motivation deficits in schizophrenia reflect effort 

computation impairments during cost-benefit decision-making. J Psychiatr Res 

47, 1590-1596, doi:10.1016/j.jpsychires.2013.08.003 (2013). 

59 Brainard, D. H. The Psychophysics Toolbox. Spat Vis 10, 433-436 (1997). 



Arulpragasam  31 

60 Hartmann, M. N., Hager, O. M., Tobler, P. N. & Kaiser, S. Parabolic discounting 

of monetary rewards by physical effort. Behav Processes 100, 192-196, 

doi:10.1016/j.beproc.2013.09.014 (2013). 

61 Phillips, P. E., Walton, M. E. & Jhou, T. C. Calculating utility: preclinical 

evidence for cost-benefit analysis by mesolimbic dopamine. Psychopharmacology 

(Berl) 191, 483-495, doi:10.1007/s00213-006-0626-6 (2007). 

62 Frederick, S., Loewenstein, G. & O’Donoghue, T. Time discounting and time 

preference: a critical review. Journal of Economic Literature 40, 351-401 (2002). 

63 Green, L., Fry, A. F. & Myerson, J. Discounting of delayed rewards: a life span 

comparison. Psychological Science 5, 33-36 (1994). 

64 Sugiwaka, H. & Okouchi, H. Reformative self-control and discounting of reward 

value by delay or effort. Japanese Psychological Research 46, 1-9 (2004). 

65 Gureckis, T. M. & Love, B. C. Short-term gains, long-term pains: how cues about 

state aid learning in dynamic environments. Cognition 113, 293-313, 

doi:10.1016/j.cognition.2009.03.013 (2009). 

66 Akaike, H. A new look at the statistical model identification. IEEE Transactions 

on Automatic Control 19, 716-723 (1974). 



Arulpragasam  32 

FIGURES  
 
 
 
FIGURE 1 
 
 

 
 
Figure 1.  
(A) Schematic of experimental task design. This image shows the timeline of a trial in 
which effort and reward information are presented sequentially. This is an example of an 
“Effort first” trial.  Each trial began with the presentation of a fixation cross, followed by 
the Cue 1 phase in which one piece of information was presented (either effort level or 
reward magnitude). After 2-6s, the second piece of information was presented (Cue 2). 
After an additional 2-6s, participants saw a Decision prompt which prompted them to 
make a choice between the Effort Option presented and the No Effort option that always 
paid $1.00. They were required to make their selection within 3s. Following their 
selection their choice would be presented to them during the Choice phase. (B) 
Proportion of effortful choices based upon effort level and reward magnitude. 
Participants chose more effortful options as reward increased and as effort decreased. 
Error bars are all S.E.M. (C) Individual and group average subjective value curves based 
on the results of our computational model. The group average is shown as the dark blue 
line with shading around it that represents the standard error. The remaining colored lines 
each reflect a single participant, demonstrating individual differences in discounting.  
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FIGURE 2 
 

 
 
 
 
 
Figure 2.  
(A) Increased BOLD signal in dACC in response to subjective value discounting. Effect 
size plot demonstrates the negative relationship between BOLD activity and subjective 
value magnitude in dACC. (B) Increased BOLD signal in vmPFC in response to 
subjective value magnitude. Effect size plot demonstrates the positive relationship 
between BOLD activity and subjective value magnitude in vmPFC. 
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FIGURE 3 
 

 
 
Figure 3. 
(A) Increased BOLD activity in bilateral anterior insula (AI) in response to unsigned 
subjective value prediction error (SVPE) generation. Effect size plot demonstrates this 
positive relationship between BOLD signal and SVPE. (B) BOLD activity in insula is 
significantly greater in response to SVPE than subjective value. Further, within 
prediction error, dorsal insula activity is significantly stronger than ventral insula. (C) 
Increased BOLD activity in dACC in response to unsigned SVPE. Effect size plot 
demonstrates this positive relationship between BOLD signal and prediction error 
encoding. (D) BOLD activity in anterior dACC is significantly stronger than posterior 
dACC for subjective value. In posterior dACC, greater BOLD activity was observed in 

-0.2

0

0.2

0.4

0.6

0.8

Ventral Dorsal

BO
LD

 a
ct

iv
ity

(B
et

aw
ei

gh
t)

Subjective Value Prediction Error

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Anterior Posterior

BO
LD

 A
ct

iv
ity

(B
et

aw
ei

gh
t)

Subjective Value Expectation UpdatingPrediction Error0 3 6 9 12 15

Time (s)
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Ef
fe

ct
 S

iz
e 

(a
.u

.)

0 3 6 9 12 15

Time (s)
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Ef
fe

ct
 S

iz
e 

(a
.u

.)

0 3 6 9 12 15

Time (s)
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Ef
fe

ct
 S

iz
e 

(a
.u

.)

y = 18

x = 4

y = 2

x = 14

A B

C

E

*

**

Decision Prompt

Cue 1

Decision Prompt

Cue 1

Decision Prompt

Cue 1

Cue 2

Cue 2

Cue 2

D

F

*

-0.2

0

0.2

0.4

0.6

0.8

Anterior Posterior

BO
LD

 A
ct

iv
ity

 
(B

et
aw

ei
gh

t)

Subjective Value Expectation Updating

***

*

*

*

*

Prediction Error



Arulpragasam  35 

response to SVPE than subjective value alone. (E) Increased BOLD activity in caudate in 
response to unsigned SVPE. Effect size plot demonstrates this positive relationship 
between BOLD signal and prediction error encoding. (F) BOLD activity in caudate is 
significantly greater in response to SVPE than subjective value. Further, posterior 
caudate is more active than anterior caudate for prediction error encoding.  
* p<0.05; ** p<0.005; ***p<0.001 
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FIGURE 4 
 
 
 

 
 
Figure 4. Increased BOLD activity at Cue 1 in response to predicted reward in vmPFC. Effect size 
plot illustrates positive relationship between BOLD signal and predicted reward magnitude. 
 
 
 
 
TABLES 
 
 
Table 1. Model Fits 

  k 
	
β 

	

p Vi AIC 

Fixed Probability 0.34 - - 1 102.27 
Linear 2.32 3.67 - 2 44.39 

Quadratic 2.81 5 - 2 43.46 
Hyperbolic 2.35 7.33 - 2 45.06 

Two-Parameter Power 2.57 9.92 2.71 3 39.52 
k and p are free parameters; β is the inverse temperature parameter; Vi is the number of 
free parameters, which indicated overall model complexity; AIC is Akiake’s Information 
Criterion. 
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SUPPLEMENTAL METHODS 
 
Indifference Point Estimation and Choice Difficulty Model 

In addition to estimating subjective value, we modeled indifference points for each 

subject as a means of identifying choices that were likely easy to make (i.e., far above or 

below a subject’s indifference point) vs. relatively difficult to make (i.e., close to a 

subject’s indifference point). We determined points of subjective indifference (that is the 

points at which the choices were most difficult) at each stage of the task based on 

participants’ choices. The choices performed for each of the four levels of effort were 

plotted as a function of the magnitude of the alternative, non-effortful option. A simple 

sigmoid was fitted using equation S1 below, and the indifference point was defined as the 

reward magnitude (on x) at which the sigmoid crossed y = 0.5, which corresponds to α; β 

is the slope: 

1
1+  𝑒!𝛽(𝑥!𝛼)                                                                       𝐸𝑞. 𝑆1 

 

To identify areas the encoded choice difficulty, we implemented an additional GLM 

(GLMS1). This model divided trials based on the difference between the reward 

presented and participants’ indifference points for similar trial types. Trials where the 

reward required was close to the indifference point were determined to be more difficult 

trials whereas trials where the reward was further away from the indifference point (in 

either direction) were labeled as easier choice trials. This GLM included 8 conditions: 

low and high difficulty trials divided by order presentation at both the cue 1 and cue 2 

phases.  
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Subjective Value Prediction Error Additional Methods  

Estimates of expected subjective value at Cue 1 (SVpredicted) were calculated using a 

sliding window analysis of previously-experienced subjective values of the same trial 

type. The value of SVpredicted on each trial was derived from the Cue 1 stimulus (i.e. 

reward bin or level of effort) and recent subjective values of trials from the same reward 

bin or effort level shown at Cue 1.  Subjective values for previous trials were calculated 

using the two-parameter power function (Equation 1) and each participant’s best-fitting 

parameters. The sliding windows of subjective values for each reward bin ($1.25-2.39, 

$2.40-3.49, $3.50-4.60, >$4.60) and effort level (20%, 50%, 80%, 100%) were initiated 

at [4; 1] to begin each window with a realistic range of subjective values. After each trial, 

the sliding windows for the cue information in the current trial were updated with the 

model-derived SV. For example, on a trial with a reward of 4.20, required effort of 50%, 

and model-derived subjective value of $3.30, the sliding windows for the $3.50-4.60 

reward bin and 50% effort level would both be updated with the SV of $3.30 to be used 

in calculating the predicted SV on future trials with the same reward bin or effort level at 

Cue 1. The SVpredicted on a trial where the Cue 1 information was 50% was calculated by 

averaging the most five most recent values in the 50% effort level sliding window (or all 

existing values if five trials had not yet been encountered). 

 

Binned Trial Analysis: 

An additional GLM (GLMS2) sought to investigate how neural regions encoding 

subjective where influence by choice. This model was a binned analysis model, 

consisting of 4 bins. The first 3 bins were based on trials where the effortful option was 
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chosen, and were divided based on the magnitude of the subjective value of the chosen 

option for those trials. The fourth bin was for trials where the effortful option was not 

chosen. A linear contrast was used to investigate how neural regions were tracking 

subjective value across both choice conditions. 

 

SUPPLEMENTAL RESULTS 

Choice Difficulty 

Some studies have suggested that dACC engagement during value-based decision-

making is due to the relative ease or difficulty with which one arrives at a decision1-3. 

When the subjective value of two options is far apart, deciding between them is relatively 

easy; when two options have very similar subjective values (i.e., near a subject’s 

indifference point), choice difficulty may increase. Participants made significantly less 

effortful choices for trials that were close to their indifference point compared to those 

that were not (t(27)= -4.58  ; p = 9.34x10-5).  

 

We also confirmed that difficult choice trials as we defined them had slower reaction 

times than easier choice trials, a marker of choice difficulty3 (t(27) = 2.52; p = 0.018).  

Given the ongoing debate as to whether dACC activity tracks unchosen option values as 

opposed to choice difficulty1-9, we were next interested in investigating its role in choice 

computations and evaluation. We began our investigation by comparing difficult and easy 

choice trials (GLM3), expecting that if dACC encoded choice difficulty, we would see 

greater activation for trials where the value of the Effort Option approaches the 

individual’s indifference point. We observed greater dACC activity for more difficult 
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trials compared to easier choice trials (x = 4, y = 20, z = 44, t = 5.20, cluster corrected 

pFWE < 0.001). Additionally, during more difficult trials, dACC recruited dlPFC (x = 

46, y = 34, z = 32, t = 5.00, cluster corrected pFWE = 0.004), suggesting this circuit’s 

involvement in choice difficulty (Supplemental Figure S2). It is important to note that 

because we modeled choice difficulty pre-choice (at Cue 2), our BOLD signal findings 

were not influenced by our difference in reaction times between the two types of choice 

trials (i.e. easy vs. difficult). Notably, dACC response to both SV and choice difficulty 

has been previously reported, but more recently, debate has arisen as to whether SV 

encoding in the dACC may be wholly reducible to choice difficulty. Our study design 

was not optimized to address this particular question, but we observed that SV and choice 

difficulty were highly collinear (mean r2 = 0.49) (Supplemental Figure S3C). As a 

result, the current study was unable to fully disambiguate between dACC involvement in 

SV and choice difficulty.  

 

Subjective Value Extended  

An additional question was whether our subjective value findings were driven by 

subjective value itself, or by choice. To identify this, we additionally examined chosen 

SV within trials where the effortful option was selected and again observed vmPFC and 

dACC activity. To further understand how these regions were tracking subjective value, 

we implemented a binned trial analysis (GLMS2). Results of this analysis demonstrated a 

linear relationship between dACC and caudate and subjective value.  This analysis also 

helped us understand if this linear relationship held across chosen and unchosen options. 

We observed the greatest BOLD activity in dACC for trials with the lowest subjective 
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value, which also happened to be trials where participants chose the non-effortful option.  

In this way and consistent with previous findings, we see dACC track linearly with 

subjective value, but also encode and signal a behavioral set shift away from the Effort 

Option.  
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SUPPLEMENTAL FIGURES 

SUPPLEMENTAL FIGURE 1 
 

 
 
Figure S1. 
Increased BOLD signal in dACC, putamen, insula, and SMA at Cue 2. 
 
 
 
 
 
 
 
 
 
 

x = 4y = 18

y = 2



Arulpragasam  45 

SUPPLEMENTAL FIGURE 2 
 

 
 
 
 
Figure S2. 
(A) Increased BOLD signal in dACC in response to increasing choice difficulty. Effect 
size plot demonstrates the negative relationship between BOLD activity and easy choice 
trials in dACC. (B) Increased BOLD signal in dlPFC in response to increasing choice 
difficulty. Effect size plot demonstrates the negative relationship between BOLD activity 
and easy choice trials in dlPFC.  
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SUPPLEMENTAL FIGURE 3 
 
 

 
 
 
Figure S3. 
(A) Average correlation (R2) between model-based regressors of unsigned prediction 
error and subjective value per individual. Group average R2 (R2 = 0.08) is shown as black 
horizontal line. (B) Average correlation (R2) between model-based regressors of unsigned 
prediction error and choice difficulty per individual. Group average R2 (R2 = 0.04) is 
shown as black horizontal line. (C) Average correlation (R2) between model-based 
regressors of choice difficulty and subjective value per individual. Group average R2 (R2 
= 0.49) is shown as black horizontal line.  
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SUPPLEMENTAL TABLES 

Table S1. Demographics 
      
N  28 
     
Age (yrs)   

  Mean 20.18 

  S.D 2.06 

  Range 18-25 
     
Race    

  American Indian / Alaska Native 0 

  Asian 13 

  Black / African-American 1 

  White 14 
     
Ethnicity   
  Hispanic / Latino 3 

  Not Hispanic / Latino 25 
 
 
 
 
 
 
 
 
 
 


