
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory
University, I hereby grant to Emory University and its agents the non-exclusive license to
archive, make accessible, and display my thesis in whole or in part in all forms of media, now or
hereafter now, including display on the World Wide Web. I understand that I may select some
access restrictions as part of the online submission of this thesis. I retain all ownership rights to
the copyright of the thesis. I also retain the right to use in future works (such as articles or
books) all or part of this thesis.

Vidhi Mittal April 9, 2025

Defining, Measuring, and Investigating Creative Elaboration in Programming

by

Vidhi Mittal

Davide Fossati
Adviser

Computer Science

Davide Fossati

Adviser

Andreas Züfle

Committee Member

Brajesh Samarth

Committee Member

2025

Defining, Measuring, and Investigating Creative Elaboration in Programming

By

Vidhi Mittal

Davide Fossati
Adviser

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment
of the requirements of the degree of

Bachelor of Science with Honors

Computer Science

2025

Abstract

Defining, Measuring, and Investigating Creative Elaboration in Programming
By Vidhi Mittal

While programming assignments often yield functionally equivalent solutions, they differ
dramatically in creative expression. Creativity in programming has traditionally been theorized
along four dimensions: fluency (quantity of ideas), flexibility (diversity of ideas), originality
(novelty of ideas), and elaboration (depth and refinement of ideas). While prior work has
explored the first three, elaboration remains underexamined in code.

This thesis investigates creative elaboration in source code: the use of modular decomposition,
naming clarity, documentation, and whitespace as forms of creative structure. We formally
define a computational metric of elaboration based on five syntactic features and use it to
examine how elaborative expression relates to code comprehension, correctness, and
perceived quality.

In Phase 1, we conduct a controlled user study (n = 15) comparing programmer performance
across elaborated and minimal versions of the same Java codebase. Participants interacting
with elaborated code achieved significantly higher comprehension accuracy and reported
greater perceived clarity. Debugging performance and efficiency were also higher in the
elaborated group, though not always statistically significant. Feature addition outcomes
trended favorably but showed greater variability.

In Phase 2, we apply the elaboration metric to 6,132 real-world student programs from the
PROGpedia dataset. Elaboration scores were significantly higher in accepted submissions than
in incorrect ones, predictive of correctness in supervised models, and stable across Java and
Python. We further observed systematic variation in elaboration by problem domain, with
algorithmic concepts such as MST and Graph Traversal eliciting higher elaboration than string
processing or backtracking tasks.

Together, these findings demonstrate that elaborative design features might influence both
human and automated interpretations of code.

Defining, Measuring, and Investigating Creative Elaboration in Programming

By

Vidhi Mittal

Davide Fossati
Adviser

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements of the degree of
Bachelor of Science with Honors

Computer Science

2025

Acknowledgements

This thesis reflects many hours of learning, thinking, and revising. More importantly, it reflects
the support, insight, and encouragement I’ve received from so many people during my time at
Emory.

I am deeply grateful to my advisor, Dr. Davide Fossati, for his steady mentorship, generous
feedback, and faith in this project. I also sincerely thank my committee members, Dr. Andreas
Züfle and Dr. Brajesh Samarth, whose perspectives and thoughtful questions helped sharpen
this work. A special thanks to Dr. Arnon Hershkovitz from Tel Aviv University for his kind
guidance and expertise in the field.

To my family—thank you for your love, patience, and unwavering support. And to my friends,
thank you for the laughter, late-night pep talks, and belief in me that never wavered.

I couldn't have done this without you.

Table of Contents

1 Introduction .. 1

2 Background ... 3

2.0.1 Creativity in Programming Education .. 3

2.0.2 Theoretical Models of Creativity ... 3

2.0.3 Defining Elaboration in Programming ... 4

2.0.4 Methods for Assessing Elaboration ... 4

2.0.5 Process-Based Insights and Behavioral Data ... 5

2.0.6 Gaps in the Literature .. 6

3 Approach ... 7

3.1 Phase 1: Controlled User Study .. 7

3.1.1 Study Protocol and Participants .. 7

3.1.2 Stimulus Materials ... 8

3.1.3 Task Design .. 9

3.1.4 Hypotheses .. 11

3.2 Phase 2: Formalizing and Scaling the Elaboration Metric .. 12

3.2.1 Metric Definition ... 12

3.2.2 Feature Extraction via Static Analysis .. 13

3.2.3 Application to the PROGpedia Dataset ... 15

4 Experiments & Analysis ... 16

4.1 Phase 1 Results ... 16

4.1.1 Overview ... 16

4.1.2 Descriptive Statistics ... 16

4.1.3 Comprehension Task Performance ... 17

4.1.4 Debugging Task Performance .. 18

4.1.5 Feature Addition Performance .. 18

4.1.6 Efficiency Metrics .. 20

4.1.7 Subjective Perceptions .. 20

4.1.8 Summary of Findings ... 21

4.2 Phase 2 Results ... 22

4.2.1 Overview ... 22

4.2.2 Elaboration and Submission Correctness .. 23

4.2.3 Language-Agnostic Robustness ... 24

4.2.4 Predictive Modeling of Correctness .. 24

4.2.5 Feature-Level Discriminability ... 25

4.2.6 Per-Problem and Per-Concept Analysis ... 25

4.2.7 Summary of Findings ... 26

5 Conclusion ... 27

5.0.1 Limitations ... 28

5.0.2 Future Work .. 28

A Source Code .. 30

B Full Survey Instrument .. 31

B.1 Anonymous Participant ID ... 31

B.2 Background Information .. 31

B.3 Java Experience & Background .. 32

B.4 Java Knowledge Check ... 32

B.5 Self-Assessment ... 34

B.6 Code Comprehension ... 34

B.7 Debugging Task .. 35

B.8 Feature Addition Task .. 35

B.9 Post-Study Perception Survey .. 35

C Code Stimuli .. 37

C.1 Minimal Version (MinimalLibrary.java) .. 37

C.2 Elaborated Version (ElaboratedLibrary.java) ... 39

C.3 Minimal Bugged Version (MinimalLibraryBugged.java) ... 46

C.4 Elaborated Bugged Version (ElaboratedLibraryBugged.java) 48

Bibliography ... 57

List of Figures

4.1 Comprehension scores by code condition. Participants working with elaborated code
achieved uniformly high accuracy, whereas the minimal group exhibited lower and more
variable performance ... 18

4.2 Debugging scores by code condition. Elaborated code was associated with higher mean
scores and reduced variability across participants .. 19

4.3 Feature addition scores by code condition. While both groups spanned a wide range of
outcomes, the elaborated condition skewed toward higher correctness 19

List of Tables

4.1 Descriptive statistics for each programming task by code condition 17

4.2 Descriptive overview of the PROGpedia dataset (N = 6132) .. 23

Chapter 1

Introduction

Creativity has long been a hallmark of human problem-solving, driving innovation

across disciplines from the arts and literature to engineering and the sciences. In

the field of computer science, however, creativity has often been marginalized in

favor of correctness, e!ciency, and rigor. As the discipline evolves to encompass

not only algorithmic precision but also design thinking, user-centered development,

and computational media, the recognition of creativity as a core competency in

programming has gained momentum [10]. Yet despite growing interest, there remains

a significant gap in our understanding of how to define, measure, and cultivate

creativity within the context of code.

Existing models of creativity, particularly those drawn from psychology and ed-

ucation, o”er a useful starting point. Torrance [12] and Guilford [5] conceptualize

creativity as a multidimensional construct comprising fluency (the number of ideas

generated), flexibility (diversity of ideas), originality (novelty of ideas), and elaboration

(the depth, detail, and development of ideas). While these dimensions have been widely

applied in assessments of general creative thinking, their translation into programming

remains inconsistent. Most empirical research in computing education that addresses

creativity focuses disproportionately on originality while largely neglecting elaboration,

1

2

which may be critical in determining the completeness, coherence, and expressive

depth of a program.

Elaboration, as a construct, captures the degree to which an idea is extended,

refined, or implemented with care and attention to detail. In the context of program-

ming, elaboration may manifest through additional functionality, user interface polish,

documentation, modular structure, or thoughtful narrative and aesthetic elements,

especially in open-ended or creative computing tasks. However, measuring elaboration

presents significant challenges. Traditional software engineering metrics, such as lines

of code or cyclomatic complexity, o”er limited insight into the quality or intentional-

ity of elaborative features. At the same time, rubric-based assessments and expert

judgments, while contextually rich, are labor-intensive, subjective, and di!cult to

scale.

The absence of robust and scalable methods for evaluating creative elaboration

in code creates a critical bottleneck in both research and practice. Without reliable

measures, educators cannot assess or support elaborative thinking; platforms can-

not provide actionable feedback; and researchers cannot compare creativity across

contexts or interventions. Moreover, neglecting elaboration distorts the broader pic-

ture of creativity in programming by privileging sparse novelty over richly developed

expression.

Chapter 2

Background

2.0.1 Creativity in Programming Education

The integration of creativity into computer science education has emerged as a core

pedagogical aim, especially in e”orts to broaden participation and cultivate design

thinking [10]. Programming, traditionally associated with logic and precision, is

increasingly framed as a medium for personal expression, exploration, and creative

problem-solving [2]. Educational standards reflect this priority: the K–12 Computer

Science Framework emphasizes creativity as a key theme in computing practices

[7], and the College Board’s AP Computer Science Principles course lists creative

development as one of its core “Big Ideas” [3]. However, these documents stop short

of defining how creativity should be assessed in the context of programming.

2.0.2 Theoretical Models of Creativity

Creativity research across psychology and education o”ers a foundational structure

for understanding and measuring creativity. A widely adopted framework comes from

Torrance [12], who extended Guilford’s [5] theory of divergent thinking into four core

dimensions: fluency, flexibility, originality, and elaboration.

In design and creativity studies, elaboration is seen as essential for transforming

3

4

raw ideas into fully realized products. O’Quin and Besemer [8] argue that purposeful

elaboration—detail that enhances clarity, completeness, or aesthetic value—is a hall-

mark of high-quality creative output. This perspective resonates with programming,

where a creative solution is not only unexpected but also well-developed, robust, and

expressive.

2.0.3 Defining Elaboration in Programming

In programming, elaboration may take many forms: expanding minimal solutions with

additional functionality, modularizing and documenting code, adding user interface

elements or storytelling, or refining performance through abstraction. However,

elaboration is frequently conflated with code complexity or verbosity, which can lead

to misclassification. For example, automated grading systems may favor concise code,

discouraging elaborative additions that do not directly impact correctness or runtime

e!ciency.

Existing literature o”ers multiple interpretations of elaboration. In block-based

environments like Scratch, elaboration may involve the number of sprites, scenes, and

interactions used [4]. In textual languages, it might involve use of advanced features,

architectural decisions, or stylistic enhancements. Yet these forms are not consistently

acknowledged or rewarded in instructional or evaluative settings.

2.0.4 Methods for Assessing Elaboration

Rubric-Based Evaluation

Rubric-based assessment is a widely used method to evaluate student programming

artifacts, particularly in project-based learning environments. Grover et al. [4]

incorporated “engagement” and “creativity” as rubric categories in their curriculum to

capture elaborative aspects of student-authored Scratch projects, such as interactive

5

features, narrative development, and aesthetic enhancements. These dimensions

encouraged students to go beyond functional correctness, fostering deeper, more

personalized expressions of computational thinking. However, while e”ective in

capturing rich, context-specific elaboration, such rubrics are time-intensive to apply,

challenging to scale, and often lack generalizability or validation across di”erent

programming environments and learner populations.

Expert Judgment (CAT)

The Consensual Assessment Technique (CAT) [1] has been employed to assess creativity

holistically. Studies using CAT in programming (e.g., [11]) suggest that elaboration is

rewarded implicitly—judges often prefer feature-rich, polished, or engaging programs.

However, CAT is inherently subjective and su”ers from limited inter-rater reliability

without rigorous calibration.

Quantitative and Automated Metrics

Automated systems attempt to proxy elaboration through measurable features. Israel-

Fishelson and Hershkovitz [6] define elaboration as the number of “baskets” (grouped

command types) in a correct solution string, reflecting the diversity of computational

steps. While this enables scalable measurement, the authors note that elaboration

may conflate meaningful complexity with task-driven verbosity, underscoring the need

for refined, context-aware modeling.

2.0.5 Process-Based Insights and Behavioral Data

Beyond static code, elaboration can be inferred from how students engage with

programming over time. Practices such as iterative development, exploratory debug-

ging, or enhancement beyond functional correctness may signal deeper engagement

with computational ideas. Brennan and Resnick [2] emphasize the importance of

6

studying students’ design processes—not just final artifacts—through methods like

artifact-based interviews and real-time observation. While they suggest that richer

insights could be gained from capturing process data, such as development histories

or in-project documentation, most platforms do not systematically collect or interpret

this data as evidence of creative or elaborative thinking.

2.0.6 Gaps in the Literature

Despite recent progress, several significant gaps persist in the literature on creative

elaboration in programming. First, there is a clear lack of standardization: defini-

tions of elaboration vary widely across studies, with no agreed-upon framework to guide

assessment or comparison. Second, there is an very little emphasis on elaboration,

as most creativity assessments focus primarily on novel solutions while neglecting

elaboration as a distinct and meaningful dimension. Third, current approaches ex-

hibit limited generalizability, with most research centered on block-based, K–12

environments rather than textual programming in higher education or professional

contexts. Finally, there is a widespread neglect of process: few frameworks cap-

ture elaboration as a dynamic behavior unfolding over time through iterative coding,

revision, or refinement.

These gaps motivate the development of scalable, valid, and multidimensional

approaches to measuring elaboration in programming creativity, which this research

aims to address.

Chapter 3

Approach

3.1 Phase 1: Controlled User Study

To examine the influence of elaboration on software comprehension and maintainability,

we conducted a between-subjects controlled experiment with 15 participants. The goal

was to determine whether elaborative code features—such as modular decomposition,

naming clarity, spacing, and inline documentation—enhance programmers’ task perfor-

mance and subjective experience when interacting with functionally equivalent source

code.

3.1.1 Study Protocol and Participants

The study followed a fixed-sequence protocol comprising five stages:

1. Pre-Study Programming Assessment

2. Code Comprehension Task

3. Debugging Task

4. Feature Addition Task

7

8

5. Post-Study Perception Survey

Participants (n = 15) were undergraduate students with programming experience,

recruited from computing-related majors. They were randomly assigned to one of two

treatment conditions: Minimal or Elaborated, corresponding to the structure and

elaboration level of the code they were asked to work with.

All tasks were completed on researcher-provided laptops configured with Visual

Studio Code (VS Code) as the development environment. The editor was preloaded

with the assigned codebase, and participants were instructed not to use external

resources or execute the code. Task timing and interaction flow were monitored by a

researcher present throughout the session.

3.1.2 Stimulus Materials

The code stimulus was a Java-based command-line library management system sup-

porting book addition, borrowing, returning, and listing. All functional behavior was

preserved across conditions; the only manipulated variable was the presence or absence

of elaborative features. Full code listings for all four versions—minimal, elaborated,

and their bugged counterparts—are provided in Appendix C.

Minimal Condition Participants assigned to the Minimal group interacted with

MinimalLibrary.java (45 LOC), a single-method Java class that exhibited:

• No modular decomposition (all logic in main)

• Opaque variable names (b, t, c)

• Absence of inline or block comments

• Dense and repetitive branching logic

• No user-facing documentation

9

Elaborated Condition Participants in the Elaborated group were provided

ElaboratedLibrary.java (˜150 LOC), which included:

• Modular design (addBook, borrowBook, returnBook, listBooks, run)

• Descriptive identifiers (books, title, isAvailable)

• JavaDoc comments for each method

• Inline commentary for control logic

• Consistent structural formatting and whitespace

Bugged Variants For the debugging task, each group received a syntactically valid

but semantically incorrect variant of their assigned program. In both cases, a new

removeBook() feature had been introduced, which failed to remove the book from the

internal data structure (books.put(title, false) instead of books.remove(title)).

This bug preserved compilation correctness but resulted in silent logic errors, requiring

participants to trace and reason about program state changes.

3.1.3 Task Design

Pre-Study Programming Assessment Participants completed a Java proficiency

diagnostic via Qualtrics (see Appendix B). The assessment included:

• Five multiple-choice questions targeting language-specific behavior (e.g., integer

division, method declarations, loop control structures)

• Self-reported experience level (coursework, years of use)

• Confidence in code reading and debugging tasks (4-point Likert scale)

10

Code Comprehension Task Participants answered 7 timed multiple-choice ques-

tions referencing their assigned program. Items covered:

• Data structure semantics (HashMap<String, Boolean>)

• Behavioral response to user input

• Return values, state mutation, and output predictions

• Edge-case tracing and flow control

Debugging Task Participants were presented with the bugged variant of their code

and instructed:

“This version of the program contains an implementation bug in the removeBook
feature. Please identify the incorrect behavior and propose a fix.”

They were asked to:

• Describe the observed behavior and its deviation from expected functionality

• Identify the buggy line(s)

• Write corrected replacement code

Feature Addition Task Participants were instructed to add a Search for a Book

feature (new menu option). Functional requirements included:

• Prompting the user for a title

• Checking existence and availability

• Displaying one of three possible status messages

Submissions were scored based on:

• Functional correctness

11

• Integration with the existing codebase

• Task completion time

Post-Study Perception Survey Participants completed a 4-item post-task survey

assessing:

• Ease of debugging

• Ease of modification

• Overall clarity

• Confidence in correctness

All items used a 5-point Likert scale (1 = Strongly Disagree, 5 = Strongly Agree).

3.1.4 Hypotheses

We wanted to test the following hypotheses:

• H1: Participants in the Elaborated condition will achieve higher accuracy and

lower time on the comprehension task.

• H2: Participants in the Elaborated condition will be more likely to correctly

and quickly identify and fix the seeded bug.

• H3: Participants in the Elaborated condition will complete the feature addition

task more accurately and in less time.

• H4: Participants in the Elaborated condition will report significantly higher

subjective ratings of code clarity, structure, and perceived creativity.

12

3.2 Phase 2: Formalizing and Scaling the Elabora-

tion Metric

In Phase 2, we developed and validated a computational metric to estimate creative

elaboration in source code. The metric was explicitly designed to enable scalable

measurement of elaboration across large corpora of functionally equivalent programs.

We then applied this metric to the PROGpedia dataset [9] to characterize elaborative

practices in real-world student code, across both Python and Java.

3.2.1 Metric Definition

Let a program P be represented as a tuple of measurable syntactic features:

P = (f1, f2, f3, f4, f5)

Where:

• f1: Comment density

• f2: Number of methods

• f3: Average identifier length

• f4: Doc comment density

• f5: Blank line ratio

Each feature fi is normalized to a bounded domain [0, 1] via domain-specific

capping functions ωi : R → [0, 1] as follows:

13

ω1(f1) = min(f1, 1.0)

ω2(f2) = min(f2, 10)/10

ω3(f3) = min(f3, 15)/15

ω4(f4) = min(f4, 1.0)

ω5(f5) = min(f5, 0.3)/0.3

The elaboration score is then computed as a combination:

E(P) =
5∑

i=1

wi · ωi(fi)

With weights εw = (0.25, 0.20, 0.15, 0.25, 0.15) chosen via heuristic calibration based

on theoretical emphasis on communicative clarity (e.g., documentation, structure).

The function E : P → [0, 1] thus provides a bounded elaboration score interpretable

across languages and problem types.

3.2.2 Feature Extraction via Static Analysis

To compute the features f1 through f5, we implemented a dual-mode static analysis

pipeline tailored to the syntactic characteristics of Python and Java. For both

languages, feature vectors were computed using a combination of AST-based analysis

and regular expression–based parsing.

14

Python: AST-Based Semantic Feature Extraction

Python programs were parsed using the ast module from the standard library. AST

traversal was used to extract:

• f2: Number of FunctionDef and ClassDef nodes

• f4: Number of docstring-bearing definitions via ast.get docstring()

• f3: All identifier names from ast.Name, excluding built-ins

Line-level analysis computed:

• f1: Ratio of lines starting with #

• f5: Ratio of blank lines

Doc comment density was defined as:

f4 =
ndoc

nmethods + 1

Java: Structural Parsing via Regular Expressions

In the absence of a native Java AST interface, we used regular expressions to extract

semantic structure:

• Method detection: matched typical Java method signatures with access

modifiers, return types, and parameters.

• JavaDoc detection: recognized /** . . . */ blocks and mapped them to meth-

ods.

• Identifier extraction: all non-keyword tokens were matched using the pattern:

[a-zA-Z][a-zA-Z0-9]*

15

filtered to exclude Java reserved words and standard library types.

• Line statistics: // and /* */ comments were counted for f1, and blank lines

for f5.

3.2.3 Application to the PROGpedia Dataset

We applied the elaboration metric to student-submitted code from the PROGpedia

dataset [9], a curated repository of programming solutions collected between 2003

and 2020 from undergraduate students enrolled in introductory programming courses.

The dataset contains submissions to 16 programming problems, primarily in Java and

Python, captured via the Mooshak online judge platform.

Each solution in PROGpedia is annotated with its corresponding execution outcome,

that is, Accepted, Runtime Error, or Wrong Answer.

Each program was statically analyzed and transformed into a 5-dimensional elabora-

tion feature vector (f1, . . . , f5), from which the elaboration score E(P) was computed.

This large-scale application enabled us to conduct comparative analyses across:

• Functionally equivalent solutions with varying elaboration levels

• Correct versus incorrect submissions

• Language-specific elaboration tendencies in Python and Java

By applying the elaboration metric to a pedagogically grounded, multilingual

dataset, we aimed to observe stylistic and structural patterns in student code.

For implementation details, source code, and data processing scripts, please see

Appendix A.

Chapter 4

Experiments & Analysis

4.1 Phase 1 Results

4.1.1 Overview

We conducted a between-subjects experimental study (n = 15) to study whether our

self-defined elaborative features measurably enhance code comprehension, debugging

performance, and functional extension tasks among the group. Participants were

randomly assigned to interact with either a Minimal or Elaborated version of a

Java-based command-line library management system. Quantitative outcomes were

analyzed across three axes: task accuracy, e!ciency (accuracy per unit time), and

subjective perception. Statistical comparisons employed both parametric (t-test, linear

regression) and non-parametric (Mann–Whitney U) methods.

4.1.2 Descriptive Statistics

Before presenting inferential analyses, we report descriptive statistics for task per-

formance across conditions. Table 4.1 summarizes the mean and standard deviation

of accuracy, time-on-task, and e!ciency for each of the three programming tasks

(comprehension, debugging, and feature addition), separately for the Minimal and

16

17

Elaborated code conditions. These descriptive patterns suggest consistent perfor-

mance advantages associated with elaborated code, particularly in terms of e!ciency,

within the group.

Table 4.1: Descriptive statistics for each programming task by code condition.
Task Metric Minimal (M) Minimal (SD) Elaborated (M) Elaborated (SD)

Comprehension
Score 7.75 1.67 9.00 0.00
Time (min) 3.99 0.54 3.68 1.83
E!ciency 2.01 0.58 3.13 1.72

Debugging
Score 6.13 3.87 9.00 2.24
Time (min) 4.49 1.13 3.06 1.70
E!ciency 1.51 1.33 4.52 3.60

Feature Addition
Score 7.00 3.66 8.71 2.21
Time (min) 6.96 1.91 7.11 2.72
E!ciency 1.08 0.63 1.57 1.12

4.1.3 Comprehension Task Performance

Participants assigned to the elaborated condition achieved perfect comprehension

accuracy (M = 9.00, SD = 0.00), while those in the minimal condition demonstrated

lower and more variable performance (M = 7.75, SD = 1.67). A Welch’s t-test

indicated marginal significance (t(13) = ↑2.12, p = 0.072), while a non-parametric

Mann–Whitney U test identified a statistically significant di”erence (U = 10.5,

p = 0.019).

To assess whether task time or prior Java proficiency mediated this e”ect, we

fit a multiple linear regression model predicting comprehension accuracy from code

condition, Java pre-quiz score, and comprehension task time. The model accounted

for 37.4% of the variance (R2 = 0.374). Code condition was as a marginally signifi-

cant predictor (ϑ = 1.24, p = 0.074), while neither pre-quiz score nor time-on-task

reached statistical significance. This suggests elaboration had an independent e”ect

on comprehension beyond baseline skill or time spent.

Figure 4.1 shows a boxplot of comprehension scores across the two conditions.

18

Figure 4.1: Comprehension scores by code condition. Participants working with
elaborated code achieved uniformly high accuracy, whereas the minimal group exhibited
lower and more variable performance.

4.1.4 Debugging Task Performance

Mean debugging scores were higher in the elaborated group (M = 9.00, SD = 2.24)

than in the minimal group (M = 6.13, SD = 3.87). While the group di”erence did

not achieve statistical significance under a parametric test (t(13) = ↑1.79, p = 0.100),

a Mann–Whitney U test suggested marginal significance (U = 13.5, p = 0.087).

We constructed an OLS regression model incorporating code condition, Java

pre-quiz, and debugging task time. The model explained 30.3% of the variance

(R2 = 0.303). No individual predictor was statistically significant (p > 0.1), though

code condition (ϑ = 2.47) showed a positive trend. Notably, task duration did not

predict outcome, implying that higher scores in the elaborated group were not simply

a function of more time. Figure 4.2 shows a boxplot of debugging scores across the

two conditions.

4.1.5 Feature Addition Performance

Participants asked to implement a novel feature (searchBook()) scored higher in the

elaborated group (M = 8.71, SD = 2.21) relative to the minimal group (M = 7.00,

19

Figure 4.2: Debugging scores by code condition. Elaborated code was associated with
higher mean scores and reduced variability across participants.

SD = 3.66). The di”erence was not statistically significant (t(13) = ↑1.11, p = 0.289).

The non-parametric Mann–Whitney test similarly failed to detect significance (U =

21.5, p = 0.45).

An OLS model including code version, Java pre-quiz, and addition time explained

20.3% of the variance in addition scores (R2 = 0.203), though no predictors achieved

significance (p > 0.2). We note that feature addition, as an open-ended task, perhaps

introduced greater variance and coding style variability.

Figure 4.3 shows a boxplot of feature addition scores across the two conditions.

Figure 4.3: Feature addition scores by code condition. While both groups spanned a
wide range of outcomes, the elaborated condition skewed toward higher correctness.

20

4.1.6 E!ciency Metrics

We computed task-specific e!ciency as the ratio of accuracy to time (in minutes).

Results indicated higher e!ciency in the elaborated group across all tasks:

• Comprehension E!ciency: M = 3.13 (elaborated) vs. 2.01 (minimal)

• Debugging E!ciency: M = 4.52 vs. 1.51

• Addition E!ciency: M = 1.57 vs. 1.08

The di”erence in debugging e!ciency approached statistical significance (t(13) =

↑2.09, p = 0.073), reinforcing the idea that elaboration aids not only correctness but

also time-e”ective performance. Comprehension and addition e!ciency did not show

statisticially significant results.

4.1.7 Subjective Perceptions

Participants rated their experience on four 5-point Likert items assessing perceived

di!culty (debugging and addition), code clarity, and confidence in correctness. Ratings

ranged from 1 (extremely di!cult/unclear/unsure) to 5 (extremely easy/clear/confi-

dent).

The elaborated group rated the code as significantly clearer and more understand-

able than the minimal group (M = 4.57, SD = 1.13 vs. M = 3.50, SD = 0.76), with

a statistically significant di”erence (t(13) = ↑3.20, p = 0.0073). This aligns with our

hypothesis that elaborative structure improved perceived readability within the group.

Participants in the elaborated condition also reported greater confidence in the

correctness of their solutions (M = 3.86, SD = 1.07) compared to the minimal

group (M = 3.13, SD = 1.13), though the di”erence was not statistically significant

(t(13) = ↑1.29, p = 0.2195).

21

Perceived di!culty ratings for the debugging and addition tasks similarly favored

the elaborated condition:

• Debugging Di!culty: M = 4.14 vs. 3.38, t(13) = ↑1.34, p = 0.2038

• Addition Di!culty: M = 3.43 vs. 3.13, t(13) = ↑0.47, p = 0.6447

While not statistically significant, these trends consistently indicate a more favor-

able experience with the elaborated code within the group.

4.1.8 Summary of Findings

The results of our controlled user study provide directional support for all four

hypotheses, with varying degrees of statistical strength. Below, we revisit each

hypothesis:

• H1 (Comprehension) — Directionally supported with strong statistical and

practical evidence. Participants working with elaborated code achieved higher

comprehension scores (M = 9.00, SD = 0.00) compared to those in the minimal

condition (M = 7.75, SD = 1.67). A non-parametric Mann–Whitney U test

found a significant di”erence (p = 0.019). While the parametric t-test result was

marginal (p = 0.072), both accuracy and e!ciency were consistently higher in

the elaborated condition.

• H2 (Debugging) — Directionally supported with moderate statistical evidence.

The elaborated group outperformed the minimal group on debugging accuracy

(M = 9.00 vs. 6.13) and e!ciency. Group di”erences approached significance in

both t-test and Mann–Whitney U test (p = 0.100 and p = 0.087, respectively).

Regression analysis confirmed that this performance was not attributable to

longer task duration.

22

• H3 (Feature Addition) — Directionally supported but not statistically signifi-

cant. Participants in the elaborated condition exhibited higher mean accuracy

(M = 8.71 vs. 7.00) and e!ciency, but neither t-test nor regression analyses

found statistically significant di”erences. Greater task variability and open-

endedness may have contributed to this outcome.

• H4 (Perception) — Partially supported. Participants rated elaborated code as

significantly clearer (p = 0.0073), consistent with the hypothesis. However, other

perception metrics, including confidence and perceived di!culty of debugging

and addition, showed non-significant but directionally favorable di”erences.

These trends suggest perceived benefits of elaboration within the group.

In sum, we find converging evidence that elaborated software design improved

both objective and subjective programming outcomes within the group. Statistically

significant gains were observed for comprehension accuracy and perceived clarity, with

consistent directional trends for debugging and addition performance. These results

justify a broader investigation into elaboration practices in real-world programming

contexts, as undertaken in Phase 2.

4.2 Phase 2 Results

4.2.1 Overview

We applied our elaboration metric to 6,132 student-submitted programs from the

PROGpedia dataset [9], spanning 16 algorithmically distinct problems written in

Java and Python. Each program was statically analyzed to extract a five-dimensional

elaboration feature vector (f1, . . . , f5), from which a bounded elaboration score E(P)

was computed. We conducted comprehensive statistical and predictive analyses to

examine the relationship between elaboration, functional correctness, programming

23

language, and problem domain.

Table 4.2 summarizes the distribution of submissions across correctness labels and

programming languages, as well as summary statistics for the five elaboration features

and the computed elaboration score.

Table 4.2: Descriptive overview of the PROGpedia dataset (N = 6132)

Elaboration Feature Distributions

Feature Mean SD Min 25% 75% Max

Elaboration Score 0.206 0.075 0.000 0.153 0.248 0.578
Comment Density 0.036 0.058 0.000 0.000 0.051 0.401
Number of Methods 3.958 4.237 0.000 2.000 4.000 30.000
Avg. Identifier Length 3.612 1.184 0.000 2.873 4.279 10.857
Doc Comment Density 0.023 0.226 0.000 0.000 0.000 6.000
Blank Line Ratio 0.177 0.092 0.000 0.109 0.232 1.000

Submission Outcome Distribution

Accepted 2264 submissions (36.9%)
Wrong Answer 1982 submissions (32.3%)
Runtime Error 1886 submissions (30.8%)

Programming Language Distribution

Java 4362 submissions (71.1%)
Python 1770 submissions (28.9%)

4.2.2 Elaboration and Submission Correctness

Each solution in the dataset was labeled as Accepted, Wrong Answer, or Runtime

Error. A Kruskal–Wallis H test revealed a statistically significant di”erence in

elaboration scores across these three outcome categories (H = 12.97, p = 0.0015),

which was corroborated by a one-way ANOVA (F (2, 6129) = 5.95, p = 0.0026).

Pairwise Mann–Whitney U tests showed that:

• Accepted submissions had significantly higher elaboration than Wrong Answer

submissions (p < 0.001),

24

• Accepted and Runtime Error submissions were not significantly di”erent (p =

0.13),

• Wrong Answer and Runtime Error submissions were marginally distinguishable

(p = 0.094).

Tukey’s HSD test further confirmed that the only statistically robust pairwise

di”erence was between Accepted and Wrong Answer programs (p = 0.0021). These

findings suggest that higher elaboration is meaningfully associated with functional

correctness in the dataset, particularly in avoiding incorrect but syntactically valid

solutions.

4.2.3 Language-Agnostic Robustness

Despite syntactic and stylistic di”erences between Java and Python, elaboration

scores were consistent across languages. A two-sample t-test comparing elaboration

scores by language showed no statistically significant di”erence (t = ↑0.18, p = 0.86).

This indicates that the metric might maintain cross-linguistic stability and can be

interpreted meaningfully in multilingual settings.

4.2.4 Predictive Modeling of Correctness

To assess whether elaboration features are predictive of functional correctness, we

trained a logistic regression model to classify submissions as either Accepted or Wrong

Answer using the five normalized elaboration features.

Initial models showed severe class imbalance, leading to poor recall on the minority

class. Applying class balancing improved performance substantially:

• Accuracy: 71%

• Macro F1 score: 0.67

25

• Confusion Matrix: 


655 119

235 218





While the model does not reach high precision on incorrect submissions, it nonethe-

less demonstrates that elaborative structure might contribute to correctness prediction

beyond chance.

4.2.5 Feature-Level Discriminability

We conducted Kruskal–Wallis tests to examine whether each individual elaboration

feature significantly di”ered across correctness labels. All five dimensions showed

significant variation:

• Comment density: H = 28.69, p < 0.0001

• Number of methods: H = 51.27, p < 0.0001

• Avg. identifier length: H = 51.09, p < 0.0001

• Doc comment density: H = 29.71, p < 0.0001

• Blank line ratio: H = 16.24, p = 0.0003

These results validate that each component feature contributes a discriminative

signal to the elaboration score, and that they jointly reflect meaningful variation in

code elaboration within the dataset.

4.2.6 Per-Problem and Per-Concept Analysis

We examined elaboration variation across the 16 problem IDs in PROGpedia, finding

substantial heterogeneity. A Kruskal–Wallis test confirmed significant di”erences in

elaboration scores by problem (H = 841.87, p < 0.0001). To interpret these trends,

26

we aggregated problems into broader conceptual categories (e.g., Greedy, MST, Graph

Traversal) and re-analyzed elaboration scores by concept.

Mean elaboration scores by concept revealed that:

• Highest elaboration: MST (0.235), Graph Traversal (0.232), Shortest Path

(0.230)

• Lowest elaboration: String Comparison (0.166), Backtracking (0.167), Con-

straint Satisfaction (0.176)

Kruskal–Wallis tests across concepts yielded H = 690.71, p < 0.0001, and post-hoc

pairwise comparisons showed significant di”erences between many concept pairs (e.g.,

MST vs. Backtracking, p < 10→40). This suggests that elaboration is shaped not

just by author preference but by underlying algorithmic domain and problem framing

within the dataset.

4.2.7 Summary of Findings

Through our large-scale application of the elaboration metric, we find that elaboration

within the dataset is:

• Statistically associated with correctness, particularly in distinguishing

accepted from incorrect solutions.

• Predictive of correctness when used as input to supervised models.

• Stable across languages, validating its use in multilingual corpora.

• Driven by problem semantics, with significant variation by algorithmic

concept.

Chapter 5

Conclusion

This thesis set out to define, measure, and investigate elaboration as a measurable

dimension of creativity in programming—specifically, how non-functional aspects of

code such as documentation, structure, and stylistic clarity may enhance a program’s

comprehensibility and communicative value. While elaboration has long been theorized

as a component of creative expression, it has received relatively limited attention

in programming education and assessment contexts. This work o”ers a two-phase

investigation aimed at bridging that gap.

In Phase 1, we designed a controlled user study to assess whether elaborative

features in source code—such as modular decomposition, naming clarity, and in-code

documentation—support tasks like comprehension, debugging, and feature addition.

The results, though based on a small sample, suggest that elaboration may meaningfully

improve both objective performance and perceived clarity. The study also provided

early empirical support for treating elaboration as a distinct and pedagogically relevant

dimension of code quality.

In Phase 2, we introduced a computational metric to approximate elaboration in

code through five structural and stylistic features. Applying this metric to over 6,000

student programs from the PROGpedia dataset revealed several important patterns:

27

28

elaboration scores varied significantly across correctness labels and problem domains;

were robust across Java and Python submissions; and contributed useful signal in

classifying accepted versus incorrect solutions. These findings suggest that elabora-

tion may be more than stylistic preference—it may hold functional and pedagogical

significance.

5.0.1 Limitations

As with any exploratory research, this work has important limitations. First, the

user study in Phase 1 involved only 15 participants, limiting statistical power and

generalizability. Second, the elaboration metric is based entirely on static features and

does not capture process-oriented elaboration (e.g., iterative refinement over time).

Third, the metric’s feature weights were selected heuristically based on theoretical

reasoning; alternative weightings may yield di”erent results. Finally, the dataset used

in Phase 2 consists entirely of student-written code from introductory programming

courses. Patterns observed here may not generalize to more advanced or professional

programming contexts.

It is also worth noting that the operational definition of elaboration used in

this thesis—focused on visibility and communicative clarity—represents just one

possible interpretation. Other valid framings may prioritize di”erent qualities, such as

expressiveness, novelty, or functionality. This work o”ers an initial framing that we

hope will support continued refinement in future research.

5.0.2 Future Work

Several extensions of this work are possible. On the technical side, future iterations

of the metric could incorporate additional features, such as exception handling, user

interaction, or code reuse patterns. Incorporating version control data could also

enable process-aware elaboration metrics that reflect how code evolves over time.

29

Expanding the analysis to multilingual, professional, or open-source datasets would

allow for broader validation across domains.

On the pedagogical and research side, future work could involve human-centered

evaluations, such as benchmarking the elaboration score against expert or peer judg-

ment. Experimental studies could also assess whether explicitly teaching elaborative

practices improves code quality and learner outcomes. Longitudinal studies might

further examine how elaboration evolves across a student’s academic trajectory—for

instance, comparing elaboration in freshman-level coursework versus senior capstone

projects.

Finally, embedding elaboration-aware feedback tools into instructional platforms

may o”er new opportunities to support expressiveness and clarity in student code at

scale.

Appendix A

Source Code

All source code for this thesis, including the elaboration metric implementation, feature

extraction pipeline, user study materials, and statistical analysis, is available at:

GitHub Repository:

https://github.com/vidhimittal13/creative-elaboration

30

https://github.com/vidhimittal13/creative-elaboration

Appendix B

Full Survey Instrument

This appendix contains the complete survey instrument administered to participants.

The survey was implemented using Qualtrics and delivered in five structured sections

corresponding to participant background, Java knowledge, comprehension, debugging,

feature implementation, and post-study reflections.

B.1 Anonymous Participant ID

Participants created an anonymous ID by concatenating the last four digits of their

phone number with a randomly selected word from the following list: Sky, Tree, Book,

Moon, Fire, Wave, Rock, Wind, Cloud, Echo.

Example: If the digits were 2764 and the word was Tree, the resulting ID would

be 2764Tree.

B.2 Background Information

• Academic major: (CS, Data Science, Engineering, Math/Stats, Business, Other)

• Year of study: (First-Year Undergraduate to PhD Student)

31

32

B.3 Java Experience & Background

• Prior experience with Java: (Yes/No)

• Highest level of Java experience:

– Introductory Java course (e.g., CS 170, AP CS)

– Advanced coursework (e.g., CS 253, CS 255)

– Personal/open-source projects

– Professional experience

– Self-taught, no formal coursework

• Years of Java experience: (↓ 1, 1–2, 3–5, ↔ 5)

B.4 Java Knowledge Check

Participants answered the following multiple-choice questions:

1. What is the output of the following code?

int x = 5;

int y = 2;

double z = x / y;

System.out.println(z);

• A) 2

• B) 2.5

• C) 2.0

• D) 3.0

2. Which Java data structure is best suited for key-value pairs?

33

• A) Array

• B) ArrayList

• C) HashMap

• D) TreeSet

3. What is the correct entry point for a Java application?

• A) public void main(String[] args)

• B) public static int main(String[] args)

• C) public static void main(String[] args)

• D) public static main(String args)

4. Which of the following loops prints numbers 1 to 5 (inclusive)?

• A) for (int i = 1; i <= 5; i++) { System.out.println(i); }

• B) for (int i = 1; i < 5; i++) { System.out.println(i); }

• C) while (true) { System.out.println(i); }

• D) for (int i = 1; i >= 5; i++) { System.out.println(i); }

5. What will System.out.println(RecordStore.get("Short n Sweet")) out-

put if the key does not exist?

• A) true

• B) false

• C) null

• D) an error

34

B.5 Self-Assessment

Participants rated their confidence on a 4-point Likert scale (Not at all confident –

Very confident):

• Reading and understanding Java code

• Debugging Java code

Participants also answered:

• Have you worked with code that required modifying existing functions instead

of writing from scratch? (Yes, frequently / Yes, occasionally / No)

B.6 Code Comprehension

After reviewing their assigned code for 5 minutes, participants answered the following:

1. What data structure is used to store the books?

2. What does the Boolean value represent?

3. What happens when a book is added that already exists?

4. What message is displayed when trying to borrow a checked-out book?

5. What message is shown when attempting to borrow/return a book not in the

system?

6. What best describes how the program handles user input?

7. Trace exercise:

• Choose 2, type “1984” → What is printed?

• Choose 2 again, type “1984” → What is printed?

• Choose 3, type “Gone Girl” → What is printed?

35

B.7 Debugging Task

Participants received a bugged program version and completed the following under a

7-minute time limit:

1. Explain what happens when a book is removed and why it is incorrect.

2. Copy/paste the exact buggy line(s).

3. Provide corrected code.

B.8 Feature Addition Task

Task: Add a new feature to allow users to search for a book.

Requirements:

• Add a new menu option: Option 6 – “Search for a Book”

• Prompt user for title

• Output:

– “Book found: [title] – Available”

– “Book found: [title] – Checked Out”

– “Book not found in catalog.”

Participants submitted the full modified code within a 10-minute time limit.

B.9 Post-Study Perception Survey

Participants rated the following using 5-point Likert scales:

• How di!cult was the debugging task?

36

• How di!cult was the feature addition task?

• How clearly were you able to understand the code before making changes?

• How confident are you that your solutions were correct?

Appendix C

Code Stimuli

C.1 Minimal Version (MinimalLibrary.java)

1 import java.util .*;

2

3 public class MinimalLibrary {

4 private HashMap <String , Boolean > b = new HashMap <>();

5

6 public static void main(String [] args) {

7 MinimalLibrary m = new MinimalLibrary ();

8 m.b.put("The Kite Runner", true);

9 m.b.put("1984", true);

10 m.b.put("The Hunger Games", false);

11

12 Scanner sc = new Scanner(System.in);

13 while(true){

14 System.out.println("1-Add 2-Borrow 3-Return 4-List

5-Exit");

15 int c = sc.nextInt ();

37

38

16 sc.nextLine ();

17 if(c==1){

18 String t = sc.nextLine ();

19 m.b.put(t,true);

20 } else if(c==2){

21 String t = sc.nextLine ();

22 if(m.b.containsKey(t) && m.b.get(t)){

23 m.b.put(t,false);

24 System.out.println("Borrowed.");

25 } else {

26 System.out.println("Not available.");

27 }

28 } else if(c==3){

29 String t = sc.nextLine ();

30 if(m.b.containsKey(t)){

31 m.b.put(t,true);

32 System.out.println("Returned.");

33 } else {

34 System.out.println("Not found.");

35 }

36 } else if(c==4){

37 for(String t : m.b.keySet ()){

38 System.out.println(t + " - " + (m.b.get(t)

? "Available" : "Checked Out"));

39 }

40 } else if(c==5){

41 break;

42 }

43 }

39

44 sc.close();

45 }

46 }

C.2 Elaborated Version (ElaboratedLibrary.java)

1 import java.util .*;

2 /**

3 * A Library Management System

4 *

5 * This class allows the user to:

6 *

7 * - Add a new book to the system

8 * - Borrow an available book

9 * - Return a previously borrowed book

10 * - List all books with their current status

11 *

12 *

13 * Implementation Details:

14 *

15 * We use a HashMap to store book titles (String) mapped to

a Boolean

16 * indicating availability (true = available , false =

checked out).

17 *

18 */

19 public class ElaboratedLibrary

20 {

40

21 /**

22 * A HashMap storing each book’s title as the key

23 * and a Boolean indicating availability as the value.

24 * True means available; false means checked out.

25 */

26 private HashMap <String , Boolean > books;

27

28 /**

29 * Constructs a new ElaboratedLibrary object with a few

default books.

30 */

31 public ElaboratedLibrary ()

32 {

33 books = new HashMap <>();

34 // Adding initial sample books

35 books.put("The Kite Runner", true);

36 books.put("1984", true);

37 books.put("The Hunger Games", false);

38 }

39

40 /**

41 * Adds a book to the system , making it immediately

available.

42 *

43 * @param title The exact title of the book to add.

44 * If this title already exists , it will

simply be marked as available.

45 */

46 public void addBook(String title)

41

47 {

48 books.put(title , true);

49 System.out.println("Book added (or updated): " + title

);

50 }

51

52 /**

53 * Attempts to borrow a book if it is currently available.

54 * If the book does not exist or is already checked out ,

55 * an appropriate message is displayed.

56 *

57 * @param title The title of the book the user wishes to

borrow.

58 */

59 public void borrowBook(String title)

60 {

61 // First , check if the book is in the system

62 if (books.containsKey(title))

63 {

64 // Retrieve availability

65 boolean isAvailable = books.get(title);

66 if (isAvailable)

67 {

68 books.put(title , false);

69 System.out.println("You borrowed: " + title);

70 }

71 else

72 {

42

73 System.out.println("Not available. The book is

already borrowed.");

74 }

75 }

76 else

77 {

78 System.out.println("Book not found in the catalog.

");

79 }

80 }

81

82 /**

83 * Returns a previously borrowed book , marking it as

available again.

84 * If the book doesn ’t exist in the system , a message is

displayed.

85 *

86 * @param title The title of the book being returned.

87 */

88 public void returnBook(String title)

89 {

90 if (books.containsKey(title))

91 {

92 books.put(title , true);

93 System.out.println("You returned: " + title);

94 }

95 else

96 {

43

97 System.out.println("Book not found in the catalog.

");

98 }

99 }

100

101 /**

102 * Prints out the entire book collection with each title ’s

availability status.

103 * The listing includes every known title in the system.

104 */

105 public void listBooks ()

106 {

107 System.out.println("\n========== Library Catalog

==========");

108 for (String title : books.keySet ())

109 {

110 boolean isAvailable = books.get(title);

111 String status = isAvailable ? "Available" : "

Checked Out";

112 System.out.println("- " + title + " - " + status);

113 }

114 System.out.println("

=====================================");

115 }

116

117 /**

118 * Runs a loop that presents menu options to the user for

119 * adding , borrowing , returning , or listing books.

120 * Entering ’5’ exits the program.

44

121 */

122 public void run()

123 {

124 Scanner sc = new Scanner(System.in);

125 while (true)

126 {

127 System.out.println(

128 "\nPlease select an action: \n" +

129 "1 - Add a Book\n" +

130 "2 - Borrow a Book\n" +

131 "3 - Return a Book\n" +

132 "4 - List All Books\n" +

133 "5 - Exit the Program"

134);

135 int choice = sc.nextInt ();

136 sc.nextLine ();

137

138 switch (choice)

139 {

140 case 1:

141 System.out.println("Enter the title of the

book to add:");

142 String addTitle = sc.nextLine ();

143 addBook(addTitle);

144 break;

145 case 2:

146 System.out.println("Enter the title of the

book to borrow:");

147 String borrowTitle = sc.nextLine ();

45

148 borrowBook(borrowTitle);

149 break;

150 case 3:

151 System.out.println("Enter the title of the

book to return:");

152 String returnTitle = sc.nextLine ();

153 returnBook(returnTitle);

154 break;

155 case 4:

156 listBooks ();

157 break;

158 case 5:

159 System.out.println("Exiting the Library

System. Goodbye!");

160 sc.close();

161 return;

162 default:

163 System.out.println("Invalid choice. Please

try again.");

164 }

165 }

166 }

167

168 /**

169 * The main entry point. Creates an instance of the

ElaboratedLibrary

170 * class and starts the interactive menu.

171 *

46

172 * @param args Command -line arguments (not used in this

application).

173 */

174 public static void main(String [] args)

175 {

176 ElaboratedLibrary library = new ElaboratedLibrary ();

177 library.run();

178 }

179 }

C.3 Minimal Bugged Version (MinimalLibraryBugged.java)

1 import java.util .*;

2

3 public class MinimalLibraryBugged {

4 private HashMap <String , Boolean > b = new HashMap <>();

5

6 public static void main(String [] args) {

7 MinimalLibraryBugged m = new MinimalLibraryBugged ();

8 m.b.put("The Kite Runner", true);

9 m.b.put("1984", true);

10 m.b.put("The Hunger Games", false);

11

12 Scanner sc = new Scanner(System.in);

13 while(true){

14 System.out.println("1-Add 2-Borrow 3-Return 4-List

5-Exit 6-Remove");

15 int c = sc.nextInt ();

47

16 sc.nextLine ();

17

18 if(c == 1){

19 String t = sc.nextLine ();

20 m.b.put(t, true);

21 } else if(c == 2){

22 String t = sc.nextLine ();

23 if(m.b.containsKey(t) && m.b.get(t)){

24 m.b.put(t, false);

25 System.out.println("Borrowed.");

26 } else {

27 System.out.println("Not available.");

28 }

29 } else if(c == 3){

30 String t = sc.nextLine ();

31 if(m.b.containsKey(t)){

32 m.b.put(t, true);

33 System.out.println("Returned.");

34 } else {

35 System.out.println("Not found.");

36 }

37 } else if(c == 4){

38 for(String t : m.b.keySet ()){

39 System.out.println(t + " - "

40 + (m.b.get(t) ? "Available" : "Checked

Out"));

41 }

42 } else if(c == 5){

43 break;

48

44 } else if(c == 6){

45 String t = sc.nextLine ();

46 if(m.b.containsKey(t)){

47 m.b.put(t, false);

48 System.out.println("Removed book.");

49 } else {

50 System.out.println("Not found.");

51 }

52 }

53 }

54 sc.close();

55 }

56 }

C.4 Elaborated Bugged Version (ElaboratedLibrary-

Bugged.java)

1 import java.util .*;

2

3 /**

4 * A Library Management System

5 *

6 * This class allows the user to:

7 *

8 * - Add a new book to the system

9 * - Borrow an available book

10 * - Return a previously borrowed book

11 * - List all books with their current status

49

12 * - Remove a book (Buggy)

13 *

14 * Implementation Details:

15 *

16 * We use a HashMap to store book titles (String) mapped to

a Boolean

17 * indicating availability (true = available , false =

checked out).

18 *

19 */

20 public class ElaboratedLibraryBugged

21 {

22 /**

23 * A HashMap storing each book’s title as the key

24 * and a Boolean indicating availability as the value.

25 * True means available; false means checked out.

26 */

27 private HashMap <String , Boolean > books;

28

29 /**

30 * Constructs a new ElaboratedLibraryBugged object

31 * with a few default books added.

32 */

33 public ElaboratedLibraryBugged ()

34 {

35 books = new HashMap <>();

36 // Adding initial sample books

37 books.put("The Kite Runner", true);

38 books.put("1984", true);

50

39 books.put("The Hunger Games", false);

40 }

41

42 /**

43 * Adds a book to the system , making it immediately

available.

44 *

45 * @param title The exact title of the book to add.

46 * If this title already exists , it will

simply be marked as available.

47 */

48 public void addBook(String title)

49 {

50 books.put(title , true);

51 System.out.println("Book added (or updated): " + title

);

52 }

53

54 /**

55 * Attempts to borrow a book if it is currently available.

56 * If the book does not exist or is already checked out ,

57 * an appropriate message is displayed.

58 *

59 * @param title The title of the book the user wishes to

borrow.

60 */

61 public void borrowBook(String title)

62 {

63 // First , check if the book is in the system

51

64 if (books.containsKey(title))

65 {

66 // Retrieve availability

67 boolean isAvailable = books.get(title);

68 if (isAvailable)

69 {

70 books.put(title , false);

71 System.out.println("You borrowed: " + title);

72 }

73 else

74 {

75 System.out.println("Not available. The book is

already borrowed.");

76 }

77 }

78 else

79 {

80 System.out.println("Book not found in the catalog.

");

81 }

82 }

83

84 /**

85 * Returns a previously borrowed book , marking it as

available again.

86 * If the book doesn ’t exist in the system , a message is

displayed.

87 *

88 * @param title The title of the book being returned.

52

89 */

90 public void returnBook(String title)

91 {

92 if (books.containsKey(title))

93 {

94 books.put(title , true);

95 System.out.println("You returned: " + title);

96 }

97 else

98 {

99 System.out.println("Book not found in the catalog.

");

100 }

101 }

102

103 /**

104 * Prints out the entire book collection with each title ’s

availability status.

105 * The listing includes every known title in the system.

106 */

107 public void listBooks ()

108 {

109 System.out.println("\n========== Library Catalog

==========");

110 for (String title : books.keySet ())

111 {

112 boolean isAvailable = books.get(title);

113 String status = isAvailable ? "Available" : "

Checked Out";

53

114 System.out.println("- " + title + " - " + status);

115 }

116 System.out.println("

=====================================");

117 }

118

119 /**

120 * (Buggy) Removes a book from the system.

121 * @param title The exact title of the book to remove.

122 */

123 public void removeBook(String title)

124 {

125 if (books.containsKey(title))

126 {

127 books.put(title , false);

128 System.out.println("Removed book: " + title);

129 }

130 else

131 {

132 System.out.println("Book not found in the catalog.

");

133 }

134 }

135

136 /**

137 * Runs a loop that presents menu options to the user for

138 * adding , borrowing , returning , listing , or removing

books.

139 * Entering ’5’ exits the program.

54

140 */

141 public void run()

142 {

143 Scanner sc = new Scanner(System.in);

144 while (true)

145 {

146 System.out.println(

147 "\nPlease select an action: \n" +

148 "1 - Add a Book\n" +

149 "2 - Borrow a Book\n" +

150 "3 - Return a Book\n" +

151 "4 - List All Books\n" +

152 "5 - Exit the Program\n" +

153 "6 - Remove a Book (Buggy)"

154);

155 int choice = sc.nextInt ();

156 sc.nextLine ();

157

158 switch (choice)

159 {

160 case 1:

161 System.out.println("Enter the title of the

book to add:");

162 String addTitle = sc.nextLine ();

163 addBook(addTitle);

164 break;

165 case 2:

166 System.out.println("Enter the title of the

book to borrow:");

55

167 String borrowTitle = sc.nextLine ();

168 borrowBook(borrowTitle);

169 break;

170 case 3:

171 System.out.println("Enter the title of the

book to return:");

172 String returnTitle = sc.nextLine ();

173 returnBook(returnTitle);

174 break;

175 case 4:

176 listBooks ();

177 break;

178 case 5:

179 System.out.println("Exiting the Library

System. Goodbye!");

180 sc.close();

181 return;

182 case 6:

183 System.out.println("Enter the title of the

book to remove:");

184 String removeTitle = sc.nextLine ();

185 removeBook(removeTitle);

186 break;

187 default:

188 System.out.println("Invalid choice. Please

try again.");

189 }

190 }

191 }

56

192

193 /**

194 * The main entry point. Creates an instance of the

ElaboratedLibraryBugged

195 * class and starts the interactive menu.

196 *

197 * @param args Command -line arguments (not used in this

application).

198 */

199 public static void main(String [] args)

200 {

201 ElaboratedLibraryBugged library = new

ElaboratedLibraryBugged ();

202 library.run();

203 }

204 }

Bibliography

[1] Teresa M. Amabile. The social psychology of creativity: A componential concep-

tualization. Journal of Personality and Social Psychology, 45(2):357–376, 1983.

doi: 10.1037/0022-3514.45.2.357.

[2] Karen Brennan and Mitchel Resnick. New frameworks for studying and assessing

the development of computational thinking. MIT Media Lab, pages 1–25, 2012.

[3] College Board. Ap computer science principles, 2025. URL https://apstudents.

collegeboard.org/courses/ap-computer-science-principles. Accessed:

2025-04-02.

[4] Shuchi Grover, Roy Pea, and Stephen Cooper. Designing for deeper learning in a

blended computer science course for middle school students. Computer Science

Education, 25, 04 2015. doi: 10.1080/08993408.2015.1033142.

[5] J. P. Guilford. The structure of intellect. Psychological Bulletin, 53(4):267–293,

1956. doi: 10.1037/h0040755.

[6] Rotem Israel-Fishelson and Arnon Hershkovitz. Log-based analysis of creativity

in the context of computational thinking. Education Sciences, 15(1), 2025.

ISSN 2227-7102. doi: 10.3390/educsci15010003. URL https://www.mdpi.com/

2227-7102/15/1/3.

57

https://apstudents.collegeboard.org/courses/ap-computer-science-principles
https://apstudents.collegeboard.org/courses/ap-computer-science-principles
https://www.mdpi.com/2227-7102/15/1/3
https://www.mdpi.com/2227-7102/15/1/3

58

[7] K–12 Computer Science Framework Steering Committee. K–12 computer science

framework, 2016. URL https://k12cs.org/. Accessed: 2025-04-02.

[8] K. O’Quin and S. P. Besemer. The development, reliability, and validity of

the revised creative product semantic scale. Creativity Research Journal, 2(4):

267–278, 1989. doi: 10.1080/10400418909534323.

[9] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. Progpedia: Collection

of source-code submitted to introductory programming assignments. Data in

Brief, 46:108887, 2023. ISSN 2352-3409. doi: https://doi.org/10.1016/j.dib.

2023.108887. URL https://www.sciencedirect.com/science/article/pii/

S2352340923000057.

[10] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn

Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian

Silverman, and Yasmin Kafai. Scratch: programming for all. Commun. ACM,

52(11):60–67, November 2009. ISSN 0001-0782. doi: 10.1145/1592761.1592779.

URL https://doi.org/10.1145/1592761.1592779.

[11] Margarida Romero, Mireia Usart, and Michela Ott. Can serious games contribute

to developing and sustaining 21st century skills? Games and Culture, 10(2):

148–177, 2015. doi: 10.1177/1555412014548919. URL https://doi.org/10.

1177/1555412014548919.

[12] Ellis Paul Torrance. Torrance Tests of Creative Thinking. Personnel Press, 1974.

https://k12cs.org/
https://www.sciencedirect.com/science/article/pii/S2352340923000057
https://www.sciencedirect.com/science/article/pii/S2352340923000057
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1177/1555412014548919
https://doi.org/10.1177/1555412014548919

	Introduction
	Background
	Creativity in Programming Education
	Theoretical Models of Creativity
	Defining Elaboration in Programming
	Methods for Assessing Elaboration
	Process-Based Insights and Behavioral Data
	Gaps in the Literature

	Approach
	Phase 1: Controlled User Study
	Study Protocol and Participants
	Stimulus Materials
	Task Design
	Hypotheses

	Phase 2: Formalizing and Scaling the Elaboration Metric
	Metric Definition
	Feature Extraction via Static Analysis
	Application to the PROGpedia Dataset

	Experiments & Analysis
	Phase 1 Results
	Overview
	Descriptive Statistics
	Comprehension Task Performance
	Debugging Task Performance
	Feature Addition Performance
	Efficiency Metrics
	Subjective Perceptions
	Summary of Findings

	Phase 2 Results
	Overview
	Elaboration and Submission Correctness
	Language-Agnostic Robustness
	Predictive Modeling of Correctness
	Feature-Level Discriminability
	Per-Problem and Per-Concept Analysis
	Summary of Findings

	Conclusion
	Limitations
	Future Work

	Source Code
	Full Survey Instrument
	Anonymous Participant ID
	Background Information
	Java Experience & Background
	Java Knowledge Check
	Self-Assessment
	Code Comprehension
	Debugging Task
	Feature Addition Task
	Post-Study Perception Survey

	Code Stimuli
	Minimal Version (MinimalLibrary.java)
	Elaborated Version (ElaboratedLibrary.java)
	Minimal Bugged Version (MinimalLibraryBugged.java)
	Elaborated Bugged Version (ElaboratedLibraryBugged.java)

	Bibliography

