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Abstract 

 

Transmission Bottleneck Size Estimation from De Novo Viral Genetic Variation 

By Yike Teresa Shi 

 

Sequencing of viral infections has become increasingly common over the last decade. Deep 

sequencing data in particular have proven useful in characterizing the roles that genetic drift and 

natural selection play in shaping within-host viral populations. They have also been used to 

estimate transmission bottleneck sizes from identified donor–recipient pairs. These bottleneck 

sizes quantify the number of viral particles that establish genetic lineages in the recipient host 

and are important to estimate due to their impact on viral evolution. Current approaches for 

estimating bottleneck sizes exclusively consider the subset of viral sites that are observed as 

polymorphic in the donor individual. However, these approaches have the potential to 

substantially underestimate true transmission bottleneck sizes. Here, we present a new statistical 

approach for instead estimating bottleneck sizes using patterns of viral genetic variation that 

arise de novo within a recipient individual. Specifically, our approach makes use of the number 

of clonal viral variants observed in a transmission pair, defined as the number of viral sites that 

are monomorphic in both the donor and the recipient but carry different alleles. We first test our 

approach on a simulated dataset and then apply it to both influenza A virus sequence data and 

SARS-CoV-2 sequence data from identified transmission pairs. Our results confirm the existence 

of extremely tight transmission bottlenecks for these 2 respiratory viruses. 
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Introduction 

In viral infections, transmission bottleneck sizes are defined as the number of viral 

particles transmitted from a donor to a recipient host that successfully establish genetic lineages 

within the recipient. Quantifying the magnitude of these bottlenecks is important for 

understanding the ecological and evolutionary dynamics of viruses at multiple scales, as these 

bottlenecks bridge processes occurring at within-host and between-host levels (Zwart and Elena 

2015; McCrone and Lauring 2018). At the level of the population, tight transmission bottlenecks 

can act to slow down the rate of viral adaptation, as beneficial mutations that arise within a donor 

host can be lost during transmission to a recipient host (Abel et al. 2015; Zaraket et al. 2015; 

Zwart and Elena 2015; Geoghegan et al. 2016). However, they may also be advantageous to a 

viral population, for example by enabling its path through a rugged fitness landscape and by 

purging cheaters from its population (Zwart and Elena 2015). At the within-host level, tight 

transmission bottlenecks lead to lower levels of viral genetic diversity in recipient hosts and 

genetic drift playing an important role in shaping the viral population during the early stages of a 

recipient’s infection (Gutiérrez et al. 2012; Abel et al. 2015; Zwart and Elena 2015; McCrone 

and Lauring 2018; McCrone et al. 2018). Finally, quantifying transmission bottleneck sizes is 

important for more applied reasons: having estimates of the bottleneck size may help determine 

whether it is possible to reconstruct who-infected-whom in an outbreak setting and will 

determine which inference methods might be the most suitable to use in a specific application 

(Hall et al. 2016; Campbell et al. 2018; Duault et al. 2022).  

Several statistical methods have recently been developed to estimate transmission 

bottleneck sizes from viral deep-sequencing data (Emmett et al. 2015; Zwart and Elena 2015; 

Sobel Leonard et al. 2017b; Ghafari et al. 2020). All of these approaches rely on patterns of 
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shared genetic variation by first characterizing the genetic variation that is present in both the 

donor and the recipient of an identified transmission pair. They then restrict their analyses to the 

subset of sites that are polymorphic in the donor. One approach (the presence/absence method) 

estimates bottleneck sizes by asking which of the variants identified in the donor are also 

detected in the recipient and which are not. A second approach (the binomial sampling method) 

instead makes use of variant frequencies quantified in the recipient, rather than just their 

presence or absence. However, it assumes that the observed differences in variant frequencies 

between a donor and a recipient arise from the process of viral sampling alone (Emmett et al. 

2015; Poon et al. 2016). A third approach (the betabinomial sampling method) similarly makes 

use of variant frequencies from the recipient but additionally accounts for deviations between 

donor and recipient variant frequencies that arise from demographic noise during the early period 

of exponential viral growth in the recipient (Sobel Leonard et al. 2017b). Finally, a haplotype-

based approach to transmission bottleneck size estimation has been developed (Ghafari et al. 

2020); it extends the betabinomial sampling method to account for genetic linkage between loci.  

Applications of these inference methods to viral sequence data have indicated that 

transmission bottlenecks are tight for many viral pathogens. Several studies have estimated 

bottleneck sizes of 1–3 viral particles for plant viruses (Moury et al. 2007; Betancourt et al. 

2008; Sacristán et al. 2011). Tight transmission bottlenecks of 1–5 viral particles have also been 

estimated for human viruses, including influenza viruses (McCrone et al. 2018; Valesano et al. 

2020), HIV-1 (Keele et al. 2008), and most recently SARS-CoV-2 (Braun et al. 2021a, 2021b; 

Lythgoe et al. 2021; Martin and Koelle 2021; Nicholson et al. 2021; Wang et al. 2021; Li et al. 

2022; Bendall et al. 2023). When bottlenecks are tight, as in these cases, there is little genetic 

diversity that is transferred from a donor to a recipient. For acute infections, with little time to 
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accrue new mutations, this often times leads to overall low levels of viral diversity in infected 

hosts. When there is no viral genetic diversity observed in a donor sample, estimation of 

transmission bottleneck size is not possible for that transmission pair. Studies that estimate 

bottleneck sizes (such as the ones cited above) therefore often rely on combining data from 

across a large number of transmission pairs to quantify an average bottleneck size. Within 

experimental settings, barcoded viruses can be used to increase host genetic diversity and thereby 

to improve resolution of transmission bottleneck sizes (Varble et al. 2014; Amato et al. 2022). 

However, natural settings do not afford us with this possibility.  

Three issues need to be considered when interpreting bottleneck size estimates derived 

from inference methods that rely on patterns of shared genetic variation. One issue is that the 

time of the infectious contact is not known in many cases, and the donor is unlikely to be 

sampled exactly at the point of transmission. Longitudinal studies of acute infections have 

indicated that variant frequencies can change rapidly over the course of infection, with many 

variants that are observed on one day not being observed on an adjacent day (McCrone et al. 

2018; Popa et al. 2020; Valesano et al. 2020). These rapid variant frequency changes in the 

donor will act to considerably depress inferred bottleneck size estimates, as the assumed allele 

frequencies at the time of transmission will deviate from the true ones. A second issue is that 

rapid variant frequency changes in the recipient will similarly act to depress inferred bottleneck 

size estimates, as transmitted genetic variation could be lost in the recipient even when viral 

titers are high. The extent of shared genetic variation between a donor and a recipient may 

therefore be more indicative of the extent of viral genetic drift within individual infections than 

the size of the transmission bottleneck. A third issue is that existing methods all assume that viral 

particles that initiate infection in the recipient are randomly sampled from the donor. However, it 
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could be the case that genetically similar virions are aggregated and transmit together, as would 

be the case with collective infectious units (Sanjuán 2017). If this is the case, one would again 

erroneously infer bottleneck sizes to be tight when they might in fact be loose.  

Here, we develop an approach for estimating transmission bottleneck sizes that instead 

makes use of de novo genetic variation that is observed in a recipient. Similar to some existing 

approaches, it assumes that all observed genetic variation is neutral and that the viral population 

in the recipient host undergoes stochastic exponential growth. It differs from existing 

approaches, however, in that it uses a different subset of sites for inference, namely sites that are 

monomorphic in both the donor and recipient but carry different alleles. Consideration of these 

sites, rather than sites that are polymorphic in the donor, circumvents the 3 issues described 

above. To introduce our approach, we first describe the stochastic model that we assume 

underlies the process of viral population expansion in a recipient. We then describe the inference 

framework and test our approach on simulated data, showing that it accurately recovers 

transmission bottleneck sizes. Finally, we apply our approach to data from influenza A virus 

(IAV) and SARS-CoV-2 transmission pairs, confirming previous findings of tight transmission 

bottlenecks for these respiratory viruses using an approach that is not prone to underestimating 

this quantity. 

Methods 

The Stochastic Within-Host Model 

We model the dynamics of the viral population within a recipient using a multitype 

branching process model. The types in this model correspond to different viral genotypes. 

Because we assume that all mutations are neutral, each type has the same overall offspring 
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distribution. More specifically, we assume a geometric offspring distribution, consistent with the 

offspring distribution under a stochastic birth–death model. The geometric distribution is 

parameterized with a success probability of 𝑝𝑔𝑒𝑜𝑚, where 𝑝𝑔𝑒𝑜𝑚 = 1/(𝑅0 + 1) and 𝑅0 is the 

within-host basic reproduction number. As such, the expected number of offspring a given viral 

particle leaves is given by 𝑅0. The number of mutations that occur during the production of a 

viral offspring is assumed to be Poisson-distributed with mean 𝜇. When one or more mutations 

occur during the production of an offspring, the resultant offspring becomes a new type. As such, 

we assume infinite sites. In addition to carrying any new mutations, offspring inherit the 

mutations of their parent. Because we model the virus population as asexually reproducing, 

genetic linkage across the virus genome is assumed to be complete. Because we are interested in 

characterizing transmission dynamics between infections, we consider only the supercritical case 

corresponding to a within-host basic reproduction number of 𝑅0 > 1. 

The virus population starts with an initial population size of 𝑁 viral particles, which stem 

from the donor’s virus population. 𝑁 is related, but not equivalent, to the transmission bottleneck 

size 𝑁𝑏. This is because 𝑁𝑏 quantifies the number of viral particles that succeed in establishing a 

genetic lineage in the recipient and some of the 𝑁 initial viral particles may have lineages that do 

not successfully establish but instead go stochastically extinct. As such 𝑁𝑏 ≤ 𝑁. All 𝑁 initial 

viral particles harbor 0 de novo mutations, where we define de novo mutations as mutations that 

occurred during viral replication in the recipient. These 𝑁 initial viral particles could in principle 

be genetically distinct from one another. Any genetic variation that is present in these particles 

stems from the donor. Hereafter, we refer to viral particles without de novo mutations (including 

these 𝑁 initial viral particles) as wild-type particles, while remaining cognizant that these could 

differ from one another genetically. We further define a wild-type lineage as a genetic lineage 
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that starts from an initial wild-type particle and includes the subset of offspring that are wild-

type. Finally, we define a mutant lineage as a lineage that starts from a viral particle that is an 

immediate descendant of a wild-type particle and carries one or more mutations relative to that 

wild-type parent.  

We can lay out all of the possible dynamic outcomes of this branching process model. The 

first possible outcome is that the virus population in the recipient goes stochastically extinct (Fig. 

1A). This would result in the recipient remaining uninfected and (necessarily, but trivially) 0 

mutant lineages successfully establishing in the recipient. The second possible outcome is that at 

least one of the 𝑁 initial viral particles seeds a wild-type lineage that successfully establishes 

(Fig. 1B). In this case, there will theoretically be an infinite number of mutant lineages that will 

successfully establish. This is because under a supercritical branching process the wild-type viral 

population will ultimately grow geometrically at a per generation rate of 𝑅0𝑒−𝜇, and each of the 

wild-type viral particles in this ever-growing population may give rise to a mutant lineage that 

will also establish in the viral population. In reality, viral population sizes will expand and then 

decline in an acute infection, such that there will be many, but not an infinite number of mutant 

viral lineages that establish initially, only to die out toward later stages of an infection. The third 

possible outcome is that no wild-type viral lineages establish but a single mutant lineage, seeded 

by a wild-type viral particle, establishes (Fig. 1C). Finally, the fourth possible outcome is that no 

wild-type viral lineages establish but 2 or more mutant lineages establish (Fig. 1D). In the case of 

a successful infection (Fig. 1B–D), the overall viral population will grow geometrically at rate 

𝑅0 once the population has reached a large size. Again, in reality, viral population sizes in an 

acute infection will increase and then decrease. Successful sequencing of a viral sample from a 

recipient, however, will occur when viral titers are still relatively high. 
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Fig. 1. Possible dynamic outcomes in the recipient. A) The viral population in the recipient may go 

stochastically extinct, leading to no infection in the recipient. B) One or more wild-type lineages may 

successfully establish. C) No wild-type lineages establish but a single mutant lineage successfully 

establishes. D) No wild-type lineages establish but 2 or more mutant lineages successfully establish. Here, 

we show a scenario of 2 mutant lineages successfully establishing. Outcomes (B–D) result in successful 

infection of the recipient. Wild-type particles are shown in white. Mutant lineages are shown in different 

colors. In (A–D), 𝑁 = 2 initial viral particles and 𝑆𝑙  denotes the number of mutant lineages 𝑙 that 

successfully establish under each scenario. E) Summary of possible dynamic outcomes, with 𝑆𝑙  again 

denoting the number of mutant lineages 𝑙 that establish. Outcomes are color-coded by the number of 

clonal variants 𝑘 that would be observed under the outcome. The portion of the outcome space labeled 𝑃𝑋 

denotes the probability that the viral population in the recipient goes extinct. The portion of the outcome 

space labeled 𝑃0 denotes the probability that 𝑘 = 0 clonal variants establish in the recipient’s viral 

population. The portion of the outcome space labeled 𝑃1+ denotes the probability that at least 1 clonal 

variant establishes in the recipient’s viral population. 

For a given outcome, we can quantify the number of variants that arose and fixed in the 

viral population of the recipient. We refer to these variants as clonal variants. In the case of the 

viral population going extinct (the first outcome; Fig. 1A), the infection in the recipient did not 

establish and we will not have observed this outcome in a transmission pair. We refer to the 

probability of this outcome as 𝑃𝑋. In the case of one or more of the wild-type viral lineages 

establishing (the second outcome; Fig. 1B), the number of clonal variants will be 0, because none 
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of the mutations that arose in any of the mutant lineages will fix. In the case of no wild-type viral 

lineages establishing but 2 or more mutant lineages successfully establishing (the fourth 

outcome; Fig. 1D), the number of clonal variants will similarly be 0, because none of the 

mutations that arose in any of the mutant lineages will fix under an infinite sites assumption. 

Finally, in the case of no wild-type viral lineages establishing but exactly one mutant lineage 

successfully establishing (the third outcome; Fig. 1C), the number of clonal variants will be at 

least one. It will be exactly one if only a single mutation occurred during the generation of the 

mutant lineage and no additional clonal variants arose in this mutant lineage. It will be greater 

than one if more than one mutation occurred during the generation of the mutant lineage and/or if 

additional mutations occurred in this mutant lineage that ultimately fixed. Figure 1E graphically 

summarizes all of these possible dynamic outcomes. 

Derivation of the Probability Distribution for the Number of Clonal Variants 

The multitype branching process model, resulting in the different possible outcomes shown 

in Fig. 1, contains 3 parameters: the initial wild-type viral population size 𝑁, the within-host 

basic reproduction number 𝑅0, and the per genome, per infection cycle mutation rate 𝜇. Here, we 

are specifically interested in estimating the initial viral population size 𝑁. Estimates of 𝑁 will be 

used to calculate the transmission bottleneck size 𝑁𝑏. To estimate 𝑁, we need to ask: for a given 

recipient harboring 𝑘 clonal variants, what is the likelihood that the initial viral population size 

was 𝑁 = 1,2,3, …? These likelihoods can be calculated if we can calculate the probability 

distribution for a recipient harboring 𝑘 = 0,1,2, … clonal variants, for given values of 𝑁, 𝑅0, and 

𝜇. In the Supplementary Material, we derive the expression for this probability distribution based 

on the different possible dynamic outcomes shown in Fig. 1E, with associated supplementary fig. 

S1 graphically depicting the steps involved in this derivation. 
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We can confirm the accuracy of our analytical results in 2 ways. First, previous work by 

Bozic et al. (2016), in the context of cancer cell dynamics, derived an equation for the number of 

clonal variants one would expect in a population undergoing birth–death dynamics, given an 

initial population size of 𝑁 = 1. This expected number is given by 𝛿𝑢/(1 − 𝛿), where their 

parameter 𝛿 corresponds to 1/𝑅0 and their mutation parameter 𝑢 corresponds to our 𝜇, under the 

assumption that 𝜇 is small (≪ 1). Figure 2A shows the expected number of clonal variants across 

a range of within-host 𝑅0 and across a range of mutation rates 𝜇, as calculated from their 

equation. In Fig. 2B, we plot the expected number of clonal variants as given by our analytical 

results under the assumption of 𝑁 = 1. The quantitative similarity of the plots shown in Fig. 2A 

and b demonstrates the accuracy of our clonal variant derivation. In the Supplementary Material, 

we further show how we can derive their equation using our analytical expressions, under the 

assumption of a low mutation rate.  

The second way we can check our analytical results is through extensive numerical 

simulation of the branching process model. For a given simulation, we can determine whether 

the viral population went stochastically extinct or whether infection was successful. For those 

simulations establishing successful infection, we can determine the number of clonal variants 

that evolved. To check our clonal variant derivation, we plot in Fig. 2C the fraction of 

simulations that resulted in 𝑘 = 0,1,2, … clonal variants from 4,000 simulations that were each 

parameterized with an initial viral population size of 𝑁 = 2, a within-host basic reproduction 

number of 𝑅0 = 1.2, and a per genome per infection cycle mutation rate of 𝜇 = 0.2. Alongside 

this empirical distribution, we plot the analytically derived clonal variant probabilities under this 

parameterization. The quantitative similarity of these distributions demonstrates the accuracy of 

our analytical derivations. 
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Fig. 2. Confirmation of our analytical results. A) The expected number of clonal mutations when 𝑁 =
1, as derived by Bozic et al. (2016) using a birth–death model. Mean numbers of clonal mutations are 

shown across a range of within-host 𝑅0and 𝜇 parameter values. B) The mean number of clonal mutations, 

as calculated from our analytical expressions, parameterized with 𝑁 = 1. C) Histogram showing the 

proportion of simulations that resulted in 𝑘 = 0,1,2, … clonal variants (dark green), alongside our 

analytical predictions (light green). Simulated proportions were calculated using 4,000 stochastic 

simulations that resulted in successful infection. Simulations and analytical results shown in panel C were 

parameterized with 𝑁 = 2, 𝑅0 = 1.2, and 𝜇 = 0.2. 

Results 

Application to Simulated Data 

Before applying our statistical method to sequence data from empirical transmission pair 

studies, we first applied our approach to simulated (mock) data. To this end, we forward 

simulated the branching process model until we obtained 100 successful recipient infections. 

Forward simulations were all performed with a within-host basic reproduction number of 𝑅0 =

1/6 and a per genome, per infection cycle mutation rate of 𝜇 = 0.4. Instead of assuming that the 

initial viral population size 𝑁 was the same across all recipients, we assumed that the initial 

number of viral particles was Poisson-distributed with mean 𝜆 = 2.1 (Fig. 3A). (Simulations 

with a higher 𝑁 had a lower chance of going stochastically extinct so higher 𝑁 simulations were 

overrepresented in the mock dataset, which we account for, as described in greater detail below.) 
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Fig. 3. Application of our inference method to a mock dataset of 100 transmission pairs. A) Poisson 

probability distribution showing the distribution of initial viral population sizes 𝑁 that seed potential 

recipient infections (dark green bars). Here, the mean of this Poisson distribution is 𝜆 = 2.1. The 

probability distribution of the initial viral population size being 𝑁, conditional on successful infection, is 

also shown (light green bars). B) Proportion of simulated infections that resulted in 𝑘 = 0,1,2, … clonal 
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variants (dark green bars). Of the 100 simulated infections, 78 recipients had no clonal variants, 12 

recipients had 1 clonal variant, 7 recipients had 2 clonal variants, 1 recipient had 3 clonal variants, 1 

recipient had 5 clonal variants and 1 recipient had 7 clonal variants. Alongside the simulated (observed) 

data, we show the proportion of infections with 𝑘 = 0,1,2, … clonal variants that we estimated using 

maximum likelihood values 𝜆 = 2.3 and 𝜇 = 0.39 (light green bars). C) Probabilities of observing 𝑘 = 0 

clonal variants across a range of 𝑁 and 𝜇 values. D) Probabilities of observing 𝑘 = 1 clonal variant across 

a range of 𝑁 and 𝜇 values. E) Probabilities of observing 𝑘 = 2 clonal variants across a range of 𝑁 and 𝜇 

values. F) Log-likelihood plot, showing the log(probability) of observing the mock dataset given 

parameters 𝜆 and 𝜇. Black lines show the true values of 𝜆 and 𝜇. Dashed red lines show the maximum 

likelihood values of 𝜆 and 𝜇. G) Log-likelihood plot, as in panel F, with the results plotted as a function 

of 𝑁 and 𝜇. H) Log-likelihood plot, as in panel F, with the results plotted as a function of 𝑁𝑏 and 𝜇. In F–

H), 𝑅0 was set to its true value of 1.6. I) Log-likelihood plot, showing the log(probability) of observing 

the mock dataset given parameters 𝜆 and 𝑅0. Black lines show the true values of 𝜆 and 𝑅0. Dashed red 

lines show the maximum likelihood values of 𝜆 and 𝑅0. J) Log-likelihood plot, as in panel I, with the 

results plotted as a function of 𝑁 and 𝑅0. K) Log-likelihood plot, as in panel I, with the results plotted as 

a function of 𝑁𝑏 and 𝑅0. In I–K), the mutation rate was set to its true value of 0.4 mutations per genome 

per infection cycle. In F–K), log-likelihood values are shown only for the parameter combinations that 

fall within the 95% confidence region. 

For each of these 100 simulated successful infections, we calculated the number of clonal 

variants present in the recipient viral population once large. Figure 3B shows the proportion of 

these 100 simulations that resulted in 𝑘 = 0,1,2, … clonal variants. We then set 𝑅0 to its true 

value of 1.6 and attempted to jointly estimate 𝜆 and 𝜇 from this observed mock dataset. To do 

this, we first calculated across combinations of 𝑁 and 𝜇 the probability of observing 𝑘 = 0 

clonal variants (Fig. 3C), 𝑘 = 1 clonal variant (Fig. 3D), 𝑘 = 2 clonal variants (Fig. 3E), 𝑘 = 3 

clonal variants (not shown), 𝑘 = 5 clonal variants (not shown), and 𝑘 = 7 clonal variants (not 

shown). We did not perform the calculation for other values of 𝑘 because there were no 

simulated infections that resulted in these other numbers of clonal variants. 

From the mock dataset shown in Fig. 3B, our goal was then to estimate 𝜆 and 𝜇 given 

knowledge of the within-host basic reproduction number 𝑅0. To do this, we first adjusted the 

Poisson distribution shown in Fig. 3A (dark green bars) to reflect the distribution of initial viral 

population sizes we would expect across successful infections (Fig. 3A, light green bars). This 

adjustment involved multiplying the Poisson probability masses by the 𝑁-specific probabilities 
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of successful establishment (1 − (1/𝑅0)𝑁) and renormalizing. For a given transmission pair, the 

probability that a recipient’s viral population harbors 𝑘 clonal variants is then given by 

Prob(𝑘|𝜆, 𝜇, 𝑅0) = ∑ 𝑝𝑁(𝜆)𝜌𝑘(𝑁, 𝜇, 𝑅0)

∞

𝑁=0

, 

where 𝑝𝑁(𝜆) is the probability that 𝑁 viral particles started off a successful viral infection under 

an assumed Poisson distribution with mean 𝜆 (Fig. 3A, light green bars) and 𝜌𝑘(𝑁, 𝜇, 𝑅0) is the 

probability that the recipient’s viral population harbors 𝑘 clonal variants. We can calculate this 

probability for each of the 100 transmission pairs in our mock dataset, and then calculate the 

overall log-likelihood of observing the data shown in Fig. 3B (dark green bars) by summing the 

log of these probabilities. In Fig. 3F, we plot this log-likelihood surface over a broad range of 𝜆 

values and 𝜇 values, while setting the within-host basic reproduction number 𝑅0 to its true value 

of 1.6. The estimated values of 𝜇 and 𝜆 are very close to their true values and the 95% 

confidence intervals include the true value. As such, these results indicate that our inference 

approach performs well on this simulated dataset of 100 transmission pairs. 

In addition to plotting the log-likelihood landscape as a function of 𝜆 and 𝜇, we can plot 

the same results as a function of the mean realized initial viral population size 𝑁 and 𝜇 (Fig. 3G). 

The mean realized initial viral population size quantifies the mean number of initial viral 

particles across successful infections and as such corresponds to the mean of the adjusted 

Poisson distribution shown in Fig. 3A (light green bars). The mean initial viral population size is 

given by 

𝑁 = ∑ 𝑁𝑝𝑁(𝜆).

∞

𝑁=0
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Similarly, we can plot the log-likelihood landscape as a function of the mean transmission 

bottleneck size 𝑁𝑏 and 𝜇 (Fig. 3H). The expression for the mean transmission bottleneck size is 

provided in the Supplementary Material. The mean transmission bottleneck size quantifies the 

mean number of initial viral particles that successfully establish genetic lineages in the recipient 

host. 

Finally, we can use our maximum likelihood estimates of 𝜆 and 𝜇 to generate the predicted 

probability distribution for the number of clonal variants observed. We generate this estimated 

distribution using equation (1). Figure 3B shows this estimated distribution (light green bars) 

alongside the distribution from the simulated dataset (dark green bars). These distributions are 

quantitatively similar, indicating that our model, as parameterized, can recover the distribution of 

clonal variant outcomes observed in the mock dataset. 

In the above analysis, we fixed 𝑅0 at its true value of 1.6 and jointly estimated 𝜇 and 𝜆. In 

a specific application to data, it might be the case that a literature estimate exists for 𝜇 but not the 

within-host basic reproduction number. We therefore assessed whether we could accurately infer 

within-host 𝑅0 alongside 𝜆 while fixing 𝜇 at its true value of 0.4 mutations per genome per 

infection cycle. We found that our maximum likelihood estimates of 𝑅0 and 𝜆 were again very 

close to their true values and that the true values of 𝑅0 and 𝜆 again fell within our 95% 

confidence interval. However, the 95% confidence interval of 𝜆, our primary parameter of 

interest, was considerably broader than when we set 𝑅0 to its true value and jointly estimated 𝜇 

and 𝜆 (Fig. 3I). Figure 3J and K, respectively, show these results as a function of 𝑁 and 𝑁𝑏 

instead of 𝜆. 

Finally, we asked whether it would be possible to jointly estimate 𝜆, 𝜇, and 𝑅0 based on the 

number of observed clonal variants across the mock dataset of transmission pairs. Supplementary 
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figure S2A–C shows the profile likelihoods for 𝜆, 𝑅0, and 𝜇, respectively, over broad ranges. 

The profile likelihoods are remarkably flat, with the 95% confidence intervals on each of these 

parameters spanning across the shown ranges. These flat likelihood curves indicate that there are 

identifiability issues that arise when trying to jointly estimate all 3 of these parameters. To better 

understand why this is the case, we jointly estimated 𝜇 and 𝜆 while setting the within-host 𝑅0 to 

different values: 1.3 (supplementary fig. S2D), 1.6 (the true value; supplementary fig. S2E), and 

3 (supplementary fig. S2F). While the maximum likelihood values across these 3 panels are very 

similar, the maximum likelihood estimates for (𝜆, 𝜇) transition from a high λ, low μ combination 

at low 𝑅0 to a low λ, high 𝜇 combination at high 𝑅0. These results make sense in that a low 𝑅0 

results in a higher mean number of clonal variants (Fig. 2A and B). For a specific dataset, this 

leads to lower 𝜇 values and higher 𝜆 values, both of which tend to decrease the number of clonal 

variants observed. Analogously, a high 𝑅0 results in a lower mean number of clonal variants 

(Fig. 2A and B). For a specific dataset, this leads to higher 𝜇 values and lower 𝜆 values, both of 

which tend to increase the number of clonal variants observed. Taken together, the results in 

supplementary fig. S2 therefore indicate that either the mutation rate or the within-host 𝑅0 needs 

to be set to a reasonable value based on literature estimates to be able to make informative 

inferences about transmission bottleneck sizes using this approach. 

Application to Empirical Data 

We apply our inference approach to 2 acutely infecting respiratory viruses: seasonal IAV 

and SARS-CoV-2. Application of our approach to an empirical dataset works analogously to the 

application of our approach to a simulated dataset. The only additional step involves the 

identification of clonal variants using virus deep-sequencing data from donor–recipient 

transmission pairs. Below, we use transmission pairs that have been previously identified using a 
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combination of epidemiological, clinical, and viral genetic criteria. We identify clonal variants in 

these already-established transmission pairs by first setting a variant-calling threshold (e.g. 3%). 

We then call intrahost single nucleotide variants (iSNVs) for the donor sample and for the 

recipient sample based on this threshold. All sites that harbor an iSNV in either the donor or the 

recipient are then removed from consideration, as they are polymorphic in at least one of these 

individuals. At the remaining sites, we determine which allele is present in both the donor and 

the recipient. Any site that carries a different allele in the recipient compared to the donor is then 

called as a clonal variant. 

Application to IAV 

As the first empirical application of our inference approach, we considered a rich IAV 

dataset from a prospective community-based cohort study (McCrone et al. 2018). The relevant 

portion of this dataset are 52 transmission pairs that were identified as part of this study 

(Supplementary Material). For each of these transmission pairs, we calculated the number of 

clonal variants observed in the recipient using a variant-calling threshold of 3%. The data 

consisted of 42 transmission pairs with 0 clonal variants, 5 transmission pairs with 1 clonal 

variant, 2 transmission pairs with 2 clonal variants, 3 transmission pairs with 3 clonal variants, 

and 0 transmission pairs with 4 or more clonal variants (Fig. 4A). We set the within-host basic 

reproduction number 𝑅0 to 11.1, based on a quantitative analysis of IAV dynamics in 

longitudinally studied human IAV infections (Baccam et al. 2006). We considered 𝜆 values in 

the range of (0, 4] mean initial viral particles and 𝜇 values between 0 and 3.5 mutations per 

genome per infection cycle. In practice, we considered a range in 𝜆 from 0.01 to 4 mean initial 

viral particles and then also evaluated the limit as 𝜆 approached 0 by calculating the likelihood 

with 𝑁 = 1 initial viral particles. 
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Fig. 4. Application of our inference method to IAV and SARS-CoV-2 transmission pairs. Top row 

shows IAV results. Bottom row shows SARS-CoV-2 results. A) Distribution of the number of clonal 

variants observed across the 52 identified IAV transmission pairs (dark green bars). The expected 

distribution under the maximum likelihood estimates of 𝜆 and 𝜇 (light green bars) is shown alongside the 

empirical distribution. B) Log-likelihood plot, showing the log(probability) of observing the IAV dataset 

across a range of 𝜆 and 𝜇 values. Dashed red lines show the maximum likelihood values for 𝜆 and 𝜇. The 

value of 𝜆 → 0 was evaluated by assuming that 100% of successful transmissions started off with 𝑁 = 1 

initial viral particles. C) Log-likelihood plot, as in panel B, with the results plotted as a function of 𝑁 and 

𝜇 instead of 𝜆 and 𝜇. D) Log-likelihood plot, as in panel B, with the results plotted as a function of 𝑁𝑏 and 

𝜇 instead of 𝜆 and 𝜇. The 95% confidence region of 𝑁𝑏 spanned the range [1.00, 1.41]. E) Distribution of 

the number of clonal variants observed across the 39 identified SARS-CoV-2 transmission pairs (dark 

green bars). The expected distribution under the maximum likelihood estimates of 𝜆 and 𝜇 (light green 

bars) is shown alongside the empirical distribution. F) Log-likelihood plot, showing the log(probability) 

of observing the SARS-CoV-2 dataset across a range of 𝜆 and 𝜇 values. G) Log-likelihood plot, as in 

panel F, with the results plotted as a function of 𝑁 and 𝜇 instead of 𝜆 and 𝜇. H) Log-likelihood plot, as in 

panel F, with the results plotted as a function of 𝑁𝑏 and 𝜇 instead of 𝜆 and 𝜇. The 95% confidence region 

of 𝑁𝑏 spanned the range [1.00, 2.31]. In panels B–D and F–H, only the log-likelihood values that fall 

within the 95% confidence region are shown. 

Figure 4B shows the log-likelihood surface for 𝜆 and 𝜇. Figure 4C and D plots these same 

results as a function of 𝑁 and 𝑁𝑏, respectively. The log-likelihood surface shown in Fig. 4D 

corroborates previous results of very tight transmission bottlenecks for IAV (McCrone et al. 

2018). Indeed, the maximum likelihood estimate of 𝜆 → 0 indicates that almost all successful 

transmissions are predicted to have started with a single initial viral particle (𝑁 = 1). Our results 



 18 

further provide an estimate of the mutation rate that is consistent with an independent mutation 

rate estimate obtained using a twelve class fluctuation test (Pauly et al. 2017). Specifically, the 

fluctuation test estimated the occurrence of 2 to 3 mutations on average per replicated genome. 

With approximately 30% of IAV mutations estimated to be lethal deleterious (Visher et al. 

2016), we expect based on these results that 𝜇 be approximately (2 − 3) × 0.70 = 1.4 − 2.1 

mutations per replicated genome, consistent with our findings in Fig. 4B–D. Finally, we used our 

maximum likelihood estimates of 𝜆 and 𝜇 to generate the predicted probability distribution for 

the number of clonal variants observed. Figure 4A shows this predicted distribution alongside the 

distribution from the empirical IAV dataset. Although the predicted and empirical distributions 

are quantitatively similar, we note that our model, parameterized with maximum likelihood 

parameter values, appears to overestimate the proportion of clonal variants in the 𝑘 = 0 class and 

underestimate the proportion of clonal variants in higher-𝑘 classes. 

Because our findings depend on our assumption of 𝑅0, we reapplied our inference 

approach across a broader range of reasonable 𝑅0 values. Supplementary figure S3 provides a 

sensitivity analysis of our 𝜆 and 𝜇 estimates under a range of 𝑅0 = 4.4 to 37.7, corresponding to 

the minimum and maximum 𝑅0 estimates in Baccam et al. (2006). This analysis indicates that 

our estimates are relatively insensitive to the exact value of 𝑅0 assumed. Across the range of 𝑅0 

values considered, the maximum likelihood estimates of 𝜆 and associated mean transmission 

bottleneck sizes 𝑁𝑏 remained low. The maximum likelihood estimates of the mutation rate also 

remained at similar values, with a slightly lower mutation rate estimated when 𝑅0 was assumed 

to be low compared to when it was assumed to be high. Of note, the overestimation of the 

probability mass in the 𝑘 = 0 class (and the underestimation of the probability masses in the 𝑘 ≥
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1 classes) is less stark at lower 𝑅0 values, indicating that literature estimates of within-host 𝑅0 

values may be high. 

Because our sensitivity analyses indicate that the clonal variant data may support an 𝑅0 

value that is lower than current literature estimates, we decided to perform an additional analysis 

where we set the mutation rate and attempted to instead jointly estimate 𝜆 and the within-host 

basic reproduction number 𝑅0 (supplementary fig. S4A–D). With this analysis, we found that the 

maximum likelihood estimate for within-host IAV 𝑅0was 5.01, while the maximum likelihood 

estimate for 𝜆 remained at 𝜆 → 0, corresponding to all successful transmissions starting off with 

a single initial viral particle (𝑁 = 1). The maximum likelihood estimate of within-host 𝑅0 = 5.01 

is low compared to the range of individual estimates given in Baccam et al. (2006), although one 

of the 6 individuals studied in that analysis had an 𝑅0 estimate lower than 5.01. As an additional 

consideration, the within-host 𝑅0 we estimated in supplementary fig. S4 reflects the value of this 

parameter very early on during the infection process, while the within-host 𝑅0 estimated in 

Baccam et al. (2006) is based on the exponential growth rate of the viral population once viral 

titers are sufficiently high to be detected with nasal washes. Due to changes in cellular 

multiplicities of infection over this period, and the effect this would have on viral 

complementation and competition, it might be the case that these within-host 𝑅0 values are not 

immediately comparable. 

Application to SARS-CoV-2  

Next, we applied our inference approach to a previously published SARS-CoV-2 

transmission pair dataset from Austria (Popa et al. 2020). This dataset included 39 identified 

transmission pairs from early on in the SARS-CoV-2 pandemic (Supplementary Material). Based 

on shared genetic variation between donors and recipients, transmission bottlenecks sizes were 
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estimated to be tight (Martin and Koelle 2021; Nicholson et al. 2021), on the order of 1–3 viral 

particles. Here, we reanalyzed these same transmission pairs using our new inference approach, 

again using a variant-calling threshold of 3%. The data consisted of 35 transmission pairs with 0 

clonal variants, 4 transmission pairs with 1 clonal variant, and 0 transmission pairs with 2 or 

more clonal variants (Fig. 4E). We set the within-host basic reproduction number 𝑅0 to 7.4, 

based on a quantitative analysis of SARS-CoV-2 dynamics in longitudinally studied human 

SARS-CoV-2 infections (Ke et al. 2021). We again considered 𝜆 values in the range of (0, 4] 

initial viral particles and 𝜇 values between 0 and 3.5 mutations per genome per infection cycle. 

Figure 4F shows the log-likelihood surface for 𝜆 and 𝜇. Figure 4G and H plots these same 

results as a function of 𝑁 and 𝑁𝑏, respectively. The log-likelihood surface shown in Fig. 4H 

corroborates previous results of very tight transmission bottlenecks for SARS-CoV-2 (Braun et 

al. 2021b; Lythgoe et al. 2021; Martin and Koelle 2021; Nicholson et al. 2021; Bendall et al. 

2023). It further provides an estimate of the mutation rate that is largely consistent with an 

independent mutation rate estimate of 1 − 5 × 10−6 per site per infection cycle (Amicone et al. 

2022). This estimate translates to a mutation rate of approximately 0.03 to 0.15 mutations per 

genome per infection cycle. Again, with approximately 30% of these mutations likely being 

lethal deleterious, we expect 𝜇 to be approximately 0.02 to 0.10 mutations per infection cycle. 

While our maximum likelihood estimate of 𝜇 = 0.52 exceeds this estimated range, our 95% 

confidence interval on 𝜇 extends into this range. Finally, we used our maximum likelihood 

estimates of 𝜆 and 𝜇 to again generate the predicted probability distribution for the number of 

clonal variants observed. Figure 4E shows this predicted distribution alongside the distribution 

from the empirical SARS-CoV-2 dataset. We again note that while the predicted and estimated 

distributions are quantitatively similar, our maximum likelihood parameter estimates appear to 
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overestimate the proportion of clonal variants in the 𝑘 = 0 class, and underestimate the 

proportion of clonal variants in higher-𝑘 classes. 

To determine the sensitivity of our findings to our assumption of 𝑅0 = 7.4, we again 

reapplied our inference approach across a broader range of reasonable 𝑅0 values. Supplementary 

figure S5 shows our results under a range of 𝑅0 values that span 2.6 to 14.9, corresponding to the 

minimum and maximum 𝑅0 estimates in Ke et al. (2021). Our results again indicate that our 

estimates are relatively insensitive to the exact value of 𝑅0 assumed. As was the case with our 

IAV analysis, estimates of 𝜇 were slightly higher at higher within-host 𝑅0 values. Again, the 

overestimation of the probability mass in the 𝑘 = 0 class (and the underestimation of the 

probability masses in the 𝑘 ≥ 1 classes) is reduced at lower 𝑅0 values, again indicating that 

literature estimates of within-host 𝑅0 values may be high. 

As we did for the IAV dataset, we then again considered an alternative analysis where we 

set the mutation rate to an estimate from the literature and attempted to instead jointly estimate 𝜆 

and the within-host basic reproduction number 𝑅0 (supplementary fig. S4E–H). With this 

analysis, we found that the maximum likelihood estimate for within-host SARS-CoV-2 𝑅0 was 

1.21, while the maximum likelihood estimate for 𝜆 remained at 𝜆 → 0. 

Guarding Against the Erroneous Calling of Clonal Variants  

In our application to empirical data, our findings will depend not only on the assumed 

value of 𝑅0 but also on the variant-calling threshold used. In particular, a lower variant-calling 

threshold has the potential to reduce the number of clonal variants called. This would occur if a 

site (in either the donor, the recipient, or both) goes from being called a clonal variant at a higher 

variant-calling threshold to being excluded from consideration at a lower variant-calling 

threshold because this former clonal variant is now instead called as an iSNV in one or both 
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individuals. This brings us to the question of which variant-calling threshold should be used and 

how we can best guard against the erroneous calling of clonal variants when they might be 

transmitted from a donor instead of arising de novo in a recipient host. Here, we provide several 

approaches that can be used to address these concerns and to thereby assess the robustness of our 

conclusions. 

The first approach is simply to perform a sensitivity analysis that uses different variant-

calling thresholds to calculate the number of clonal variants in each of the identified transmission 

pairs. To provide an example of this approach, we recalled clonal variants for the IAV and 

SARS-CoV-2 datasets at variant-calling thresholds of 0.5% and 7% (supplementary figs. S6 and 

S7). As anticipated, the number of clonal variants observed was lower at the 0.5% variant-calling 

threshold than at the 3% threshold and the number of clonal variants observed was higher at the 

7% variant-calling threshold than at the 3% threshold. This was the case for both datasets. For 

the IAV dataset, neither the maximum likelihood estimate for 𝜇 nor the maximum likelihood 

estimate for 𝜆 was sensitive to the specific variant-calling threshold used. Furthermore, the 95% 

confidence interval did not change dramatically across the thresholds evaluated (supplementary 

fig. S6). For the SARS-CoV-2 dataset, neither the maximum likelihood estimate for 𝜇 nor the 

maximum likelihood estimate for 𝜆 was sensitive to the specific variant-calling threshold used. 

The 95% confidence interval, however, did broaden at the lower variant-calling threshold of 

0.5% (supplementary fig. S7). Overall, this sensitivity analysis provides reassurance that our 

findings are largely robust to changes in the variant-calling threshold used. 

The second approach is to examine the empirical frequencies of the clonal variants called 

at a given variant-calling threshold. If a clonal variant is present at 0% in a donor and present at 

100% in a recipient, then it is very likely that it arose de novo within the recipient and spread to 
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fixation within that individual (although we cannot exclude the possibility that this variant was 

present as an iSNV in the donor at the time of transmission but was present in 0% of donor reads 

at the time of sampling). If a clonal variant is present at 0% in a donor and close to 100% (but 

not fixed) in the recipient, it is likely that the clonal variant arose de novo in the recipient but had 

not quite yet fixed in the recipient by the time of sampling. In this case, we may want to keep on 

considering this variant as a clonal variant. Finally, if a clonal variant is observed at a frequency 

above 0% in the donor (regardless of whether it is fixed or close to fixation in the recipient), we 

may want to be more cautious about calling this variant a clonal variant. This is because the 

donor may have transmitted this iSNV to the recipient. Based on these considerations, we 

revisited both of the empirical datasets. In the IAV dataset, of the 18 clonal variants identified at 

the 3% variant-calling threshold, 12 were present at frequencies of 0% in the donor and 100% in 

the recipient. Five were present at frequencies of 0% in the donor and ≥ 99.1% in the recipient. 

The remaining variant was present at 2.3% frequency in the donor and fixed at 100% in the 

recipient. We therefore considered an additional analysis where we included only the 17 clonal 

variants that were present in the donor at 0% frequency. This analysis resulted in similar 

estimates of 𝜇 and 𝜆 as in our original analysis (supplementary fig. S8). In the SARS-CoV-2 

dataset, of the 4 clonal variants identified at the 3% variant-calling threshold, 3 were present at 

frequencies of 0% in the donor and ≥ 98.6% in the recipient. The remaining variant was present 

at 0.7% frequency in the donor and at 99.9% in the recipient. We therefore considered an 

additional analysis where we included only the 3 clonal variants that were present in the donor at 

0% frequency. Again, this analysis resulted in similar estimates of 𝜇 and 𝜆 as in our original 

analysis (supplementary fig. S9). 
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Finally, we would like to note that if an iSNV that was present at very low frequency in the 

donor was transmitted and observed as fixed in the recipient, this would itself point toward a 

very small transmission bottleneck. This is because the probability of a low-frequency iSNV 

being transmitted and fixing in the recipient is higher at low 𝑁 than at high 𝑁 (Supplementary 

Material; supplementary fig. S10). As such, even if a variant was erroneously called as a clonal 

variant when it was instead a low-frequency donor iSNV that was transmitted, its presence 

would consistently point toward a small transmission bottleneck size. 

Considering Alternative Distributions for the Initial Number of Viral Particles That Start an 

Infection 

In our analysis of the mock dataset as well as in our analysis of the empirical IAV and 

SARS-CoV-2 datasets, we assumed that the initial number of viral particles 𝑁 was Poisson-

distributed. This assumption is consistent with an underlying process in which viral particles are 

transmitted from a donor at a constant rate during a contact event with fixed duration time. 

However, because of variation in the amount of virus a donor expels or because of differences in 

contact duration or transmission routes, a Poisson distribution for the number of initial viral 

particles might not be a good assumption. We therefore considered 2 alternative distributions for 

the initial number of viral particles. We first considered a highly over-dispersed negative 

binomial distribution for 𝑁, with a large proportion of recipients receiving only very few initial 

viral particles and a small proportion receiving many initial viral particles, such that the variance 

of the distribution greatly exceeds its mean. Assuming this distribution, we attempted to jointly 

estimated its mean (𝜆𝑁𝐵) and the mutation rate 𝜇 while setting the overdispersion parameter to a 

small value (𝑘 = 0.1). For both the IAV and SARS-CoV-2 datasets, we found that the mean of 

this negative binomial distribution was low, similar to our findings using the Poisson distribution 
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(Fig. 5B and E). We next considered a model in which a proportion 𝑝 of recipients received N = 

1 viral particles from their donors, while the remaining proportion (1 −  𝑝) received a large 

number of viral particles from their donors. We assumed that the number of initial viral particles 

in the latter recipients was so large that none of them would harbor a clonal variant. For both 

IAV and SARS-CoV-2 datasets, we found that the proportion of recipients receiving 𝑁 = 1 initial 

viral particles was very high (Fig. 5C and F). These additional analyses indicate that, while we 

do not know the underlying initial distribution of viral particles that recipients begin with, the 

pattern of clonal variants observed across transmission pairs points toward a large fraction of 

infected recipients starting their infection off with a very small number of initial viral particles. 

This does not exclude the possibility that a small fraction of infected recipients had their 

infections start off with a large number of initial viral particles, due to either contact with a donor 

that expelled a large amount of virus, a very long contact with a donor, or a contact of a specific 

type that could result in a large number of initial viral particles in the recipient. 
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Fig. 5. Consideration of alternative distributions for the number of initial viral particles 𝑵. Top row 

shows IAV results. Bottom row shows SARS-CoV-2 results. A) Distribution of the number of clonal 

variants observed across the 52 IAV transmission pairs considered (dark green bars). The expected 

distributions using the IAV maximum likelihood parameter estimates are shown in green, light green, and 

orange bars, respectively, for the Poisson distribution, negative binomial distribution, and bimodal (𝑁 = 1 

or 𝑁-large) distribution. B) Log-likelihood plot, showing the log(probability) of observing the IAV 

dataset across a range of 𝜆𝑁𝐵 and μ values. Dashed red lines show the maximum likelihood values for 

𝜆𝑁𝐵 and 𝜇. The parameter 𝜆𝑁𝐵 quantifies the mean of the negative binomial distribution. The 

overdispersion parameter of the negative binomial distribution was set to 𝑘 = 0.1. C) Log-likelihood plot, 

showing the log(probability) of observing the IAV dataset across a range of 𝑝 and 𝜇 values. Dashed red 

lines show the maximum likelihood values for 𝑝 and 𝜇. The parameter 𝑝 quantifies the proportion of 

recipients that start their infection off with 𝑁 = 1 initial viral particles. D) Distribution of the number of 

clonal variants observed across the 39 SARS-CoV-2 transmission pairs considered (dark green bars). The 

expected distributions using the SARS-CoV-2 maximum likelihood parameter estimates are shown in 

green, light green, and orange bars, respectively, for the Poisson distribution, negative binomial 

distribution, and bimodal distribution. E) Log-likelihood plot, showing the log(probability) of observing 

the SARS-CoV-2 dataset across a range of 𝜆𝑁𝐵 and 𝜇 values. Dashed red lines show the maximum 

likelihood values for 𝜆𝑁𝐵 and 𝜇. The overdispersion parameter of the negative binomial distribution was 

set to 𝑘 = 0.1. F) Log-likelihood plot, showing the log(probability) of observing the SARS-CoV-2 dataset 

across a range of 𝑝 and 𝜇 values. Dashed red lines show the maximum likelihood values for 𝑝 and 𝜇. For 

both datasets, a 3% variant-calling threshold was used to call clonal variants. 
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Discussion 

Here, we developed a new statistical approach for estimating transmission bottleneck sizes 

from viral deep-sequencing data from donor–recipient transmission pairs. This approach differs 

from previous approaches in that it does not use the subset of viral sites that are identified as 

polymorphic in the donor. Instead, our approach relies on the number of clonal variants observed 

in the recipient. Observed clonal variants arise de novo shortly after transmission and are 

particularly well suited for estimating bottleneck sizes when bottlenecks are likely to be tight. 

Our approach carries several advantages over existing approaches. First, transmission pairs 

where the donor does not show any genetic variation are still informative and can be included in 

our analysis. Second, a misspecification of donor versus recipient in a transmission pair does not 

impact results, as the number of clonal variants is the same with a correct donor/recipient 

assignment or the reverse. Third, existing studies that have looked at longitudinal viral samples 

have indicated that variant frequencies are highly dynamic over the course of an acute infection, 

consistent with a small within-host effective population size. As such, variant frequencies from a 

donor sample that are used to estimate bottleneck sizes may not reflect variant frequencies 

present in the donor at the time of transmission, and would lead to underestimates of 𝑁𝑏. Even if 

bottleneck sizes were large, changes in variant frequencies due to genetic drift in recipients 

would similarly bias 𝑁𝑏 estimates to be low. In contrast, our approach does not rely on variant 

frequencies in a donor, nor does it rely on variant frequencies in a recipient. As such, it is not 

subject to these same biases. Examination of our datasets also indicates that clonal variants 

remain clonal over the course of a recipient’s infection, such that the timing of the sampling 

event does not impact our dataset and thus does not impact our bottleneck size estimates. Finally, 
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if viral particles from a donor are not randomly sampled, this does not impact our inference, 

while it would again bias 𝑁𝑏 estimates to be low with existing inference approaches. 

Despite these advantages of our new inference approach, there are some limitations to it. 

First, estimation of transmission bottleneck sizes requires more than a single transmission pair. 

Second, our approach depends on a very limited subset of the donor and recipient deep-

sequencing data. However, for the reasons we described above, we do not believe that patterns of 

shared genetic variation between the donor and the recipient are particularly informative of 

transmission bottleneck sizes, at least for acute viral respiratory infections such as influenza and 

SARS-CoV-2. Our approach does ignore de novo genetic variation that is subclonal in the 

recipient, however (that is, de novo variants that are called in a recipient but are not fixed). Our 

approach could, in principle, be extended to accommodate these variants. However, based on 

longitudinal analyses of IAV infections (McCrone et al. 2018), we also think that many of these 

subclonal variants come and go over the course of an infection, such that they are not 

informative of the transmission bottleneck size, but instead are more informative of the extent of 

genetic drift that occurs over the course of an acute infection. We thus do not recommend 

extension of our approach to accommodate subclonal variants. Additional limitations of our 

approach include our assumption of infinite sites and our assumption that all genetic variation is 

neutral. We do not believe that the infinite sites assumption would substantially bias our results 

because the number of clonal variants is very small compared to the length of the viral genome. 

We also do not believe that the neutrality assumption would substantially bias our results in the 

case of small transmission bottleneck sizes because genetic drift dominates in this regime, such 

that small fitness differences between viral particles will not impact the viral population’s 
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evolutionary dynamics. Lethal deleterious mutations will simply act to lower the mutation rate 

estimate or decrease the effective within-host 𝑅0 of the viral population. 

Finally, our approach assumes complete genetic linkage across the viral genome. Again, 

we do not believe that this assumption would bias our results substantially, for several reasons. 

First, previous work has indicated that the effective rate of reassortment in human IAV infections 

is low even when viral titers are high (Sobel Leonard et al. 2017a), potentially due to spatial 

structure in the respiratory tract. As such, even if reassortment or recombination for viral 

respiratory pathogens is common, this genetic exchange likely occurs between genetically 

identical viral haplotypes and would therefore not bias our bottleneck size estimates that assume 

that linkage is complete. Second, if a mutation arises de novo in a recipient and fixes, this is very 

likely to occur within the first few viral replication cycles when the extent to which viral genetic 

diversification has occurred is limited and while viral population sizes in the recipient are still 

very small. Because of the small population sizes during this time period, the probability of high 

cellular multiplicity of infection may also be lower, and as such, the probability that 

recombination or reassortment occurs may be lower. If recombination or reassortment did occur 

early on during an infection, however, it could allow 2 mutations that arose de novo in different 

genetic backgrounds to come into the same background, allowing both to fix when in the absence 

of recombination/reassortment, neither would fix. By not considering this possibility, our 

estimate of 𝑁𝑏 would be biased low because we would ascribe the observation of 2 clonal 

variants in a recipient to be due to a small bottleneck rather than recombination/reassortment in 

the context of a larger bottleneck. Again, we think that the occurrence of this scenario is 

extremely rare, given that effective rates of recombination are likely to be low and that 
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recombination/reassortment would have to occur very early on during infection when viral 

population sizes were still very small. 

In our application to influenza A virus and to SARS-CoV-2, we found that transmission 

bottleneck sizes were very tight, consistent with previous findings of small 𝑁𝑏. This is an 

important finding, given that previous methods, as elaborated on above, are likely to 

underestimate bottleneck sizes due to within-host genetic drift and the potential for viral 

aggregation during the transmission process. That both this new approach and existing 

approaches arrive at the conclusion of very small bottleneck sizes does not lessen the advantage 

of using this new approach over existing approaches. If bottleneck sizes were large, and existing 

methods were considerably underestimating them, the IAV and SARS-CoV-2 datasets would not 

have contained any clonal variants. Our new approach would have indicated that for reasonable 

𝜇 and within-host 𝑅0 values, we would have anticipated observing clonal variants in a subset of 

the transmission pairs if bottleneck sizes were small. Their absence would therefore have argued 

against small bottleneck sizes and would have pointed toward previous methods indeed yielding 

biased estimates. That both sets of approaches (those based on shared genetic variation and the 

current one based on de novo clonal variants) infer very small transmission bottlenecks provides 

compelling evidence that these bottlenecks for acutely infecting respiratory viral pathogens are 

indeed incredibly small. This raises the question of what environmental and molecular 

mechanisms constrain transmission bottleneck sizes. Are the number of viral particles that reach 

the respiratory tract of a recipient limited? Or do many viral particles reach a recipient’s 

respiratory tract but host and/or viral factors limit the number of viral lineages that establish? 

Our results of tight transmission bottleneck sizes for IAV and SARS-CoV-2 also indicate that 

reductions in viral population sizes between transmission events will have a large impact on 
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shaping these viruses’ patterns of evolution and adaptation at the population level. Will these 

small bottlenecks ultimately act to impede viral adaptation or to facilitate it? And how will these 

tight bottlenecks impact population-level viral patterns, including patterns of antigenic change, 

genetic diversification, and deleterious mutation loads? Addressing these questions through 

theoretical and empirical studies will facilitate our understanding of viral transmission dynamics 

and ultimately guide our ability to curb the spread of these infectious diseases. 

Supplemental Material 

Derivation of the probability distribution for the number of clonal variants  

Here, we derive the probabilities associated with the possible dynamic outcomes shown in 

Figure 1E and then show how these probabilities can then be used to obtain the probability 

distribution for the number of clonal variants. Consider first a contact between a donor and a 

recipient that results in the transfer of 𝑁 infectious viral particles. Following this transfer, the 

within-host dynamics of the viral population depend on the within-host basic reproduction 

number 𝑅0. 

Because the initial viral population size may be small, we consider the viral population 

dynamics to be subject to demographic stochasticity. More specifically, we assume that the viral 

population undergoes stochastic birth-death dynamics. This is dynamically equivalent to a 

branching process model with a geometric offspring distribution parameterized with a success 

probability of 𝑝𝑔𝑒𝑜𝑚 = 1/(𝑅0 + 1), where 𝑅0 is the mean number of offspring produced (Lloyd-

Smith et al., 2005). When 𝑅0 < 1, this corresponds to the subcritical case, and the viral 

population will die out with probability 1. In terms of the possible dynamic outcomes in Figure 

1E, this corresponds to 𝑃𝑋 = 1, regardless of the initial viral population size 𝑁. When 𝑅0 > 1, 
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this corresponds to the supercritical case. In this case, the viral population still has the possibility 

of going stochastically extinct. This occurs with probability: 

𝑃𝑋,𝑛=𝑁 = (
1

𝑅0
)

𝑁

 

The probability of the viral population dying out 𝑃𝑋 is the same as the probability of there being 

no mutant lineages that establish in the viral population (𝑆0), and corresponds to the scenario 

depicted in Figure 1A. 

Because 𝑃𝑋 = 1 in the subcritical case of 𝑅0 < 1, we consider the remaining dynamic 

outcomes shown in Figure 1E only in the supercritical case. We can next derive the probability 

that the wild-type viral lineage successfully establishes (labeled 𝑆∞), corresponding to the 

scenario depicted in Figure 1B. To calculate this probability, we have to consider the rate at 

which mutations occur during replication in the viral population. We assume a per genome, per 

infection cycle mutation rate 𝜇, with the number of mutations occurring during the production of 

a viral progeny being Poisson-distributed with this mean. Given this assumption, the probability 

that a mutation does not occur during the production of a viral progeny is given by 𝑒−𝜇 and the 

probability that one or more mutations occur during the production of a viral progeny is given by 

1 − 𝑒−𝜇. Given this set-up, we can decompose the overall geometric offspring distribution into 

two separate offspring distributions: that of offspring that are genetically identical to the parent 

and that of offspring that differ from the parent by at least one mutation (Figure S1A). We define 

the wild-type offspring distribution as the distribution of offspring from wild-type individuals 

that are themselves wild-type. We further define the mutant offspring distribution as the 

distribution of offspring from wild-type individuals that instead carry de novo mutations. The 

wild-type offspring distribution is given by a negative binomial distribution with parameters 

𝑟𝑤 = 𝑒−𝜇 and success probability 𝑝𝑔𝑒𝑜𝑚. The mutant offspring distribution is given by a negative 
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binomial distribution with parameters 𝑟𝑚 = 1 − 𝑒−𝜇 and success probability pgeom. If the 

number of wildtype offspring from a wild-type particle is 𝑋~𝑁𝐵(𝑟𝑤 , 𝑝𝑔𝑒𝑜𝑚) and the number of 

mutant offspring from a wild-type particle is 𝑌~𝑁𝐵(𝑟𝑚 , 𝑝𝑔𝑒𝑜𝑚), the overall offspring 

distribution from a wild-type particle is 𝑋 + 𝑌~𝑁𝐵(𝑟𝑤 + 𝑟𝑚 , 𝑝𝑔𝑒𝑜𝑚) = 𝑁𝐵(1, 𝑝𝑔𝑒𝑜𝑚) =

𝐺𝑒𝑜𝑚(𝑝𝑔𝑒𝑜𝑚), thereby recovering the assumed overall offspring distribution. 

Now that we have the wild-type offspring distribution defined, we can calculate the 

probability that the wild-type viral lineage establishes. This is given by: 

𝑆∞,𝑛=𝑁 = 1 − (𝑝𝑤𝑡𝑒𝑥𝑡,𝑛=1)
𝑁

 

where 𝑝𝑤𝑡𝑒𝑥𝑡,𝑛=1 is the probability that a wild-type viral lineage, starting with a single infectious 

viral particle goes extinct. If the mean number of wild-type offspring (given by 𝑅0𝑒−𝜇) exceeds 

one, this probability can be calculated numerically using equation (4) in Nishiura et al. (2012), 

using the parameters of the wild-type offspring distribution (𝑟𝑤 and 𝑝𝑔𝑒𝑜𝑚). If the mean number 

of wild-type offspring is less than one, 𝑝𝑤𝑡𝑒𝑥𝑡,𝑛=1 = 1, and 𝑆∞,𝑛=𝑁 = 0. 

Now that we have derived 𝑆∞,𝑛=𝑁 and 𝑆0,𝑛=𝑁 , we turn to deriving 𝑆1,𝑛=𝑁 , 𝑆2,𝑛=𝑁 , 𝑆3,𝑛=𝑁, 

etc. Deriving these probabilities is a bit more involved. Our general approach is to first calculate 

the final size distribution of wild-type particles, conditional on wild-type lineage extinction, and 

then to use this final size distribution to generate a probability mass function for the number of 

mutant lineages generated from the wild-type viral population. From this distribution, we 

calculate the probability mass function for the number of mutant lineages that establish. This 

probability mass function gives us 𝑆0,𝑛=𝑁 , 𝑆1,𝑛=𝑁, 𝑆2,𝑛=𝑁, etc., thus completing our analytical 

expressions for the possible dynamic outcomes shown in Figure 1E. 

To first calculate the final size distribution of wild-type particles, we use previous 

analytical results derived in Nishiura et al. (2012) and Blumberg and Lloyd-Smith (2013b). For 
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both the wild-type supercritical case (𝑅0𝑒−𝜇 > 1) and the wild-type subcritical case (𝑅0𝑒−𝜇 <

1), the final size distribution of the wild-type viral population, starting with one single infectious 

particle, is given by equation (1) in Blumberg and Lloyd-Smith (2013a) for a branching process 

model with a negative binomial offspring distribution (here, parameterized with 𝑟𝑤 and 𝑝𝑔𝑒𝑜𝑚). 

For the subcritical case, the probability masses of this distribution add up to 1. For the 

supercritical case, the probability masses of this distribution add up to 𝑝𝑤𝑡𝑒𝑥𝑡,𝑛=1. We can thus 

normalize this latter distribution such that its probability masses add up to 1 (thereby 

conditioning on wild-type viral lineage extinction). We define this normalized probability 

distribution as 𝑓𝑛=1. Making use of 𝑓𝑛=1, we can then calculate the final size distribution of wild-

type particles starting with N viral particles (𝑓𝑛=𝑁) through recursion: 

𝑓𝑗,𝑛=𝑁 = ∑(𝑓𝑖,𝑛=1 × 𝑓𝑗−𝑖,𝑛=𝑁−1)

𝑗−1

𝑖=1

 

with the terminal case being 𝑓𝑗,𝑛=1. Here, 𝑓𝑗,𝑛=𝑁 refers to the probability mass of the final size of 

wild-type particles being 𝑗, given an initial viral population size of 𝑁. Figure S1B shows the 

probability mass function 𝑓𝑛=𝑁. 

Once we have the wild-type final size distribution 𝑓𝑛=𝑁 (conditional on wild-type 

extinction), we can calculate the probability mass function for the number of mutant lineages that 

were generated directly from the wild-type population prior to its extinction. We can do this 

calculation using the mutant offspring distribution. Because the mutant offspring distribution is a 

negative binomial distribution with parameters 𝑟𝑚 and 𝑝𝑔𝑒𝑜𝑚, if the final size of the wild-type 

population was 𝑗, then the number of mutant offspring from this wild-type population itself 

follows a negative binomial distribution with parameters (𝑗 ×  𝑟𝑚) and 𝑝𝑔𝑒𝑜𝑚. We can thus 

iterate over all possible wild-type final population sizes to calculate an overall distribution for the 
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number of mutant viral lineages that are generated from this wild-type population that ultimately 

goes extinct. We define this overall distribution as 𝑔𝑛=𝑁 (Figure S1C). 

Finally, we can use 𝑔𝑛=𝑁 to calculate the distribution of the number of mutant lineages that 

establish, which we refer to as ℎ𝑛=𝑁 . Each mutant lineage has a probability of establishing of 

1 − 1/𝑅0, such that: 

ℎ𝑗,𝑛=𝑁 = ∑ [(𝑔𝑚,𝑛=𝑁) × 𝐵𝑖𝑛(𝑗, 𝑚, 1 − 1/𝑅0)]

∞

𝑚=0

 

for 𝑗 = 0, 1, 2, ... (Figure S1D). Here, 𝐵𝑖𝑛(𝑗, 𝑚, 1 − 1/𝑅0) is the binomial probability of 

observing 𝑗 successes, given m trials and a probability of success of 1 − 1/𝑅0. We can then 

calculate 𝑆0,𝑛=𝑁 , 𝑆1,𝑛=𝑁, 𝑆2,𝑛=𝑁, etc., from ℎ𝑛=𝑁 by: 

𝑆𝑘,𝑛=𝑁 = (ℎ𝑘,𝑛=𝑁) × (1 − 𝑆∞,𝑛=𝑁) 

where 𝑘 = 0, 1, 2, ... (but not ∞). This completes our analytical derivations for the outcomes 

depicted in Figure 1E. 

As shown in Figure 1E, the probability of an infection going stochastically extinct in a 

recipient is given by: 

𝑃𝑋,𝑛=𝑁 = 𝑆0,𝑛=𝑁 

The probability of there being zero clonal variants observed in a recipient is given by: 

𝑃0,𝑛=𝑁 = ∑ 𝑆𝑖,𝑛=𝑁

∞

𝑖=2

 

The probability of there being 1 or more clonal variants is given by: 

𝑃1+,𝑛=𝑁 = 𝑆1,𝑛=𝑁 

These three probabilities are shown in Figure S1E. We now turn to resolving 𝑃1+,𝑛=𝑁 into the 

probability of observing exactly 𝑘 = 1, 2, 3, ... clonal variants. 
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Given the mutation rate 𝜇, the probability that exactly 𝑘 mutations occurred during the 

production of the mutant lineage is given by: 

𝑃𝑜𝑖𝑠𝑠(𝑘, 𝜇)

1 − 𝑃𝑜𝑖𝑠𝑠(0, 𝜇)
 

where 𝑃𝑜𝑖𝑠𝑠(𝑘, 𝜇) is the Poisson probability of observing 𝑘 mutations given a mutation rate of 

𝜇. To a first approximation, we can therefore write: 

𝑃𝑘,𝑛=𝑁 ≈ 𝑃1+,𝑛=𝑁 × (
𝑃𝑜𝑖𝑠𝑠(𝑘, 𝜇)

1 − 𝑃𝑜𝑖𝑠𝑠(0, 𝜇)
) 

for 𝑘 ≥ 1. This expression captures the possibility that more than one clonal variant arises 

during the generation of a mutant lineage from a wild-type particle. However, this expression is 

an approximation because there is a possibility that additional clonal variants arise following the 

generation of this mutant lineage (that is, during its establishment). We can correct for this 

possibility by modifying the above expression by probabilities of these additional clonal variants 

arising. Specifically, we can write the probability of there being exactly one clonal variant as the 

product of there being one mutation that occurs during the generation of the first mutant lineage 

and there being no additional clonal variants arising in this lineage that starts off with one mutant 

viral particle: 

𝑃1,𝑛=𝑁 = 𝑃1+,𝑛=𝑁 × (
𝑃𝑜𝑖𝑠𝑠(1, 𝜇)

1 − 𝑃𝑜𝑖𝑠𝑠(0, 𝜇)
) × (

𝑃0,𝑛=1

1 − 𝑃𝑋,𝑛=1
) 

We can similarly calculate the probability of there being exactly two clonal variants as the 

probability that there are exactly two mutations that arise during the generation of the first 

mutant lineage and no clonal variants that arise thereafter, plus the probability that exactly one 

mutation arises during the generation of the first mutant lineage and exactly one clonal variant 

arising thereafter: 
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𝑃2,𝑛=𝑁 = 𝑃1+,𝑛=𝑁 × (
𝑃𝑜𝑖𝑠𝑠(2, 𝜇)

1 − 𝑃𝑜𝑖𝑠𝑠(0, 𝜇)
) × (

𝑃0,𝑛=1

1 − 𝑃𝑋,𝑛=1
) + 

             = 𝑃1+,𝑛=𝑁 × (
𝑃𝑜𝑖𝑠𝑠(1, 𝜇)

1 − 𝑃𝑜𝑖𝑠𝑠(0, 𝜇)
) × (

𝑃1,𝑛=1

1 − 𝑃𝑋,𝑛=1
) 

Luckily, we can directly calculate all of these terms, including 𝑃1,𝑛=1, which is given by: 

𝑃1,𝑛=1 = 𝑃1+,𝑛=1 × (
𝑃𝑜𝑖𝑠𝑠(1, 𝜇)

1 − 𝑃𝑜𝑖𝑠𝑠(0, 𝜇)
) × (

𝑃0,𝑛=1

1 − 𝑃𝑋,𝑛=1
) 

Next, the probability of observing exactly 𝑘 = 3 clonal variants is given by the sum of the 

probability of 3 clonal variants arising during the generation of the first mutant lineage (and none 

thereafter), the probability of 2 clonal variants arising during the generation of the first mutant 

lineage (and 1 therefore), and the probability of 1 clonal variant arising during the generation of 

the first mutant lineage (and 2 thereafter). More generally, therefore, the probability of observing 

exactly 𝑘 clonal variants is given by: 

𝑃𝑘,𝑛=𝑁 = 𝑃1+,𝑛=𝑁 ∑ (
𝑃𝑜𝑖𝑠𝑠(𝑖, 𝜇)

1 − 𝑃𝑜𝑖𝑠𝑠(0, 𝜇)
) (

𝑃𝑘−𝑖,𝑛=1

1 − 𝑃𝑋,𝑛=1
)

𝑘

𝑖=1

 

At this point, we now have 𝑃𝑋,𝑛=𝑁 and 𝑃𝑘,𝑛=𝑁, for 𝑘 ≥ 0. Because we would not observe 

infections in recipients in the case of 𝑃𝑋,𝑛=𝑁, the final probability mass distribution for the 

number of clonal variants observed in a recipient is given by: 

𝜌𝑘,𝑛=𝑁 =
𝑃𝑘,𝑛=𝑁

1 − 𝑃𝑋,𝑛=𝑁
 

for 𝑘 ≥ 0 (Figure S1F). 

Code for this inference approach (in both R and Matlab) is available from our GitHub site: 

https://github.com/koellelab/nbclonal. This site also includes an R package to calculate clonal 

variant probabilities. 
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Rederivation of the Bozic et al. (2016) equation for the mean number of clonal variants 

Bozic et al. (2016) derived an equation for the expected number of clonal variants under a 

scenario of a population size starting with a single individual (𝑁 = 1). In their work, the 

underlying model was a birth-death model with parameter 𝛿 defined as the ratio of death rate to 

birth rate (𝑑/𝑏) and parameter u defined as the probability of a mutation occurring during the 

production of an offspring. The equation they derived for the mean number of clonal variants is 

given by their equation (46): 𝛿𝑢/(1 −  𝛿). 

Our underlying model is a branching process model, parameterized with a geometric 

offspring distribution. This distribution corresponds to the offspring distribution realized in a 

birth-death model. Our branching process model has parameter 𝑅0 defined as the ratio of birth 

rate to death rate (such that 1/𝑅0 is the ratio of death rate to birth rate, 𝛿). Our model also has 

parameter 𝜇, defined as the mean number of mutations that occur at birth, with the distribution of 

mutations occurring at birth being Poisson distributed. The probability that zero mutations occur 

during the production of an offspring is thus given as 𝑒−𝜇. When 𝜇 is small, the probability that a 

(single) mutation occurs during the production of an offspring is 1 − 𝑒−𝜇, which is 

approximately 𝜇. As such, when 𝜇 is small, it is approximately equal to Bozic et al.’s 𝑢 

parameter. Finally, to correspond with the assumption in (Bozic et al., 2016) of the population 

starting with a single individual, we set the initial viral population size 𝑁 to 1. 

With a small mutation rate 𝜇, the possible outcomes shown in Figure 1E consist primarily 

of 𝑆∞, 𝑆0, and 𝑆1, and the probability that more than one clonal variant establishes within the 𝑆1 

outcome is negligibly small. As such, the mean number of clonal variants is given by 𝑆1 

conditional on infection, such that �̅�𝑐𝑙𝑜𝑛𝑎𝑙 =  𝑆1/(1 − 𝑆0) . This is equivalent to �̅�𝑐𝑙𝑜𝑛𝑎𝑙 =

 (1 − 𝑆∞ − 𝑆0)/(1 − 𝑆0). As detailed above, 𝑆0  =  1/𝑅0 when 𝑁 = 1. When 𝜇 is small, we can 



 39 

approximate 𝑆∞ as 1 −  1/(𝑅0𝑒−𝜇)  =  1 −  1/(𝑅0(1 −  𝜇)). Substituting, the numerator 

becomes: (1 − 𝑆∞ − 𝑆0)  =  𝜇/𝑅0 = 𝛿𝑢, and the denominator becomes (1 − 𝑆0) = 1 −

 1/𝑅0 = 1 − 𝛿. As such, the expected number of clonal variants from our analytical expressions, 

parameterized with 𝑁 = 1, agree with equation (46) provided in Bozic et al. (2016). 

Calculation of the mean transmission bottleneck size �̅�𝒃 

Then mean bottleneck size is given by: 

𝑁𝑏 = ∑ 𝑏𝑝𝑏(𝜆, 𝑅0)

∞

𝑏=1

 

where 𝑝𝑏(𝜆, 𝑅0) denotes the probability that the bottleneck size is b in a successful infection. In 

turn, 𝑝𝑏(𝜆, 𝑅0) is given by: 

 𝑝𝑏(𝜆, 𝑅0) = ∑
𝑝𝑁(𝜆) Pr(𝑏, 𝑁, 1 − 1/𝑅0)

1 − Pr (0, 𝑁, 1 − 1/𝑅0)

∞

𝑁=𝑏

 

where Pr(𝑏, 𝑁, 1 − 1/𝑅0) is given by the binomial probability that exactly 𝑏 out of the 𝑁 initial 

viral particles successfully leave genetic lineages in the recipient host. This binomial probability 

is calculated using a success probability of 1 − 1/𝑅0 for each initial viral particle. 

Quantification of the number of clonal variants for the influenza A virus data set 

We applied our inference approach to a previously published IAV transmission pair data 

set from Michigan, USA (McCrone et al., 2018). The raw sequencing data have previously been 

made available by the authors (SRA BioProject: PRJNA412631). Individuals in the same 

household were considered transmission pairs if they displayed symptoms within 7 days of one 

another, were both positive for the same IAV subtype, and were infected with viruses that were 

genetically more similar to one another than 95% of epidemiologically unlinked pairs based on 
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the L1-norm. Transmission pairs with multiple putative donors for a single recipient were 

discarded. Further, pairs in which both individuals had symptom onset on the same day were 

discarded unless those were the first two positive individuals in their household. In these cases 

(𝑁 = 6), both possible orderings of donor and recipient were evaluated. In total, our analysis 

included 46 unique transmission pairs and 52 possible orderings of donor-recipient 

transmissions. 

Table S1 provides a list of the clonal variants identified in these transmission pairs and the 

frequencies that these clonal variants were observed at prior to the variant-calling threshold 

being applied. We used the datafile no cut trans freq.csv from McCrone et al. (2018)’s GitHub to 

calculate the number of clonal variants provided in this supplemental table. 

Quantification of the number of clonal variants for the SARS-CoV-2 data set 

We applied our inference approach to a previously published SARS-CoV-2 transmission 

pair data set from Austria (Popa et al., 2020). The raw sequencing data have previously been 

made available by the authors (SRA BioProject: PRJEB39849). To establish transmission pairs, 

the authors combined information on intrafamily cases with information on epidemiological 

transmission chains. Additional telephone investigations were used to validate inferred 

transmission pairs. The data set consisted of 39 transmission pairs as reported in Data File S4 

from (Popa et al., 2020). Sequencing reads were downloaded from the SRA and variants were 

called relative to Wuhan/Hu-1 (NC 045512.2) as described in (Martin and Koelle, 2021). Table 

S2 provides a list of the clonal variants identified in these 39 transmission pairs and the 

frequencies that these clonal variants were observed at prior to the variant-calling threshold 

being applied. (Note that we have previously analyzed this data set using a 6% variant-calling 

threshold (Martin and Koelle, 2021). The reason we used this high threshold previously was to 
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remove spurious low frequency variants that were shared across many of the samples and 

therefore inflated transmission bottleneck size estimates based on shared genetic variation. Here, 

we use the variant-calling threshold to identify the sites that are monomorphic in both the donor 

and the recipient and therefore might be sites that harbor clonal variants in the recipient. As such, 

a lower variant-calling threshold yields a more conservative estimate on the number of clonal 

variants observed. In contrast, a higher variant-calling threshold yields a more conservative 

estimate of shared genetic variation.) 

Probability of a donor iSNV transmitting and fixing in a recipient 

We can calculate the probability that an iSNV that is observed at low frequency in the 

donor transmits and fixes in the recipient. This probability depends on the frequency of the iSNV 

in the donor (q), the initial number of viral particles N and the within-host basic reproduction 

number 𝑅0. The probability is given by: 

∑ [𝐵𝑖𝑛𝑜𝑚(𝑘, 𝑁, 𝑞)(1/𝑅0)𝑁−𝑘(1 − 𝐵𝑖𝑛𝑜𝑚(0, 𝑘, 1 − 1/𝑅0))]𝑁
𝑘=1

1 − 𝑃𝑋
 

Figure S10 shows this probability over a range of 𝑁 for IAV (𝑅0 = 11.1) and for SARS-

CoV-2 (𝑅0 = 7.4). In both cases, it is clear that the probability that a low-frequency iSNV 

transmits and fixes is higher at lower 𝑁. This indicates that, if present, these iSNVs (which have 

the potential to be misidentified as clonal variants) are themselves evidence of small 

transmission bottleneck sizes. Note that the probability expression above assumes random 

sampling of viral particles from the donor. 

 



 42 

Supplemental Tables 

Clonal 

variant 
Transmission pair 

Donor 

frequency 

(%) 

Recipient 

frequency 

(%) 

Used in 

0.5% 

analysis? 

Used in 

3.0% 

analysis? 

Used in 

7.0% 

analysis? 

C193T 321372->320645 2.3% 100% N Y Y 

C263A 321372->320645 0% 100% Y Y Y 

A699G 321372->320645 0% 100% Y Y Y 

C1641T UM41510->UM40095 0% 100% Y Y Y 

T1641C UM40093->UM41510 0% 100% Y Y Y 

A543G UM41554->UM41553 0% 100% Y Y Y 

C218T UM41554->UM41553 0% 100% Y Y Y 

A2041G UM41554->UM41553 0% 100% Y Y Y 

G543A UM40449->UM41554 0% 100% Y Y Y 

T218C UM40449->UM41554 0% 100% Y Y Y 

C1569T 50319->50316 0% 100% Y Y Y 

T1650G 50319->50316 0% 99.9% Y Y Y 

T487C 50319->50316 0% 99.9% Y Y Y 

A310G 50468->50466 0% 100% Y Y Y 

A1424G 50553->50552 0% 99.1% N Y Y 

A1701G 50618->50619 3.4% 96% N N Y 

G57A 51138->51137 0% 100% Y Y Y 

G517T 51220->51216 6.1% 100% N N Y 

C618T 51220->51216 0% 99.9% Y Y Y 

A1429G 51220->51216 0% 99.8% Y Y Y 

Table S1. Table of IAV clonal variants identified in the set of transmission pairs from McCrone et 

al. (2018). For each clonal variant, the transmission pair in which it was identified is provided as are the 

frequencies of the variant in the donor and in the recipient. 

Clonal 

variant 
Transmission pair 

Donor 

frequency (%) 

Recipient 

frequency (%) 

Used in 

0.5% 

analysis? 

Used in 

3.0% 

analysis? 

Used in 

7.0% 

analysis? 

C2509T CoV_273->CoV_271 0% 96.7% N N Y 

G9526T CoV_180->CoV_197 0% 96.6% N N Y 

C19255T CoV_1062->CoV_218 0% 98.9% N Y Y 

C20457T CoV_1057->CoV_177 3.6% 99.5% N N Y 

C20457T CoV_1057->CoV_1058 3.6% 99.7% N N Y 

C20457T CoV_1057->CoV_187 3.6% 99.6% N N Y 

T20458C CoV_187->CoV_1068 0% 98.6% N Y Y 

G24102C CoV_150->CoV_162 0.7% 99.9% N Y Y 

C26894T CoV_162->CoV_161 0% 99.6% Y Y Y 

Table S2. Table of SARS-CoV-2 clonal variants identified in the set of transmission pairs from 

Popa et al. (2020). For each clonal variant, the transmission pair in which it was identified is provided as 

are the frequencies of the variant in the donor and in the recipient. 
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Supplemental Figures  

 

Figure S1. Steps involved in the derivation of the probability mass function for the number of 

clonal variants. (A) The overall offspring distribution, shown alongside the wild-type offspring 

distribution and the mutant offspring distribution. Here, the overall offspring distribution is a geometric 

distribution with mean 𝑅0 = 1.2 (such that 𝑝𝑔𝑒𝑜𝑚 = 0.4545). The wild-type offspring distribution and the 

mutant offspring distribution are both negative binomial distribution with 𝑟𝑤 and 𝑟𝑚 calculated using a 

mutation rate of 𝜇 = 0.2. (B) The final size distribution of wild-type particles, conditional on wild-type 

lineage extinction. Here, the initial number of viral particles 𝑁 = 2. (C) The probability mass function for 

the number of mutant lineages generated by the wild-type viral population, conditional on wild-type 

lineage extinction. (D) The probability mass function for the number of mutant lineages that successfully 

establish, conditional on wild-type lineage extinction. (E) Calculated probabilities of the overall viral 

population going extinct (𝑃𝑋, as calculated by 𝑆0), of the viral population establishing with zero clonal 

variants (𝑃0), and of the viral population establishing with one or more clonal variants (𝑃1+). Dashed 

black line shows the analytical calculation of 𝑃𝑋 via the expression given by equation (3), indicating 

agreement with the calculated value of 𝑆0. (F) Probability mass function for the number of clonal variants 

that establish in a recipient who becomes successfully infected. 
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Figure S2. Attempt at joint estimation of 𝝀, 𝑹𝟎, and 𝝁. (A) Profile likelihood plot, showing the 

log(probability) of observing the mock data set across a range of 𝜆 values. (B) Profile likelihood plot, 

showing the log(probability) of observing the mock data set across a range of 𝑅0 values. (C) Profile 

likelihood plot, showing the log(probability) of observing the mock data set across a range of 𝜇 values. In 

A-C, black vertical lines show the true parameter values used in the generation of the mock data set. (D) 

Log-likelihood plot, showing the log(probability) of observing the mock data set given parameters 𝜆 and 

𝜇. Here, 𝑅0 was (erroneously) set to 1.3. (E) Log-likelihood plot, showing the log(probability) of 

observing the mock data set given parameters 𝜆 and 𝜇. Here, 𝑅0 was set to its true value of 1.6. (F) Log-

likelihood plot, showing the log(probability) of observing the mock data set given parameters 𝜆 and 𝜇. 

Here, 𝑅0 was (erroneously) set to 3.0. In D-F, black lines show the true values of 𝜆 and 𝜇 and red dashed 

lines show the maximum likelihood estimates of 𝜆 and 𝜇. 



 45 

 

Figure S3. Sensitivity analysis of IAV results across different assumptions of within-host 𝑹𝟎. Results 

are shown in three rows, with the first row showing results with an assumed 𝑅0 value of 4.4, the second 

row showing results with an assumed 𝑅0 value of 11.1, and the third row showing results with an 

assumed 𝑅0 value of 37.7. For each 𝑅0 value considered, we plot four panels, analogous to those shown 

in the top row of Figure 4. 
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Figure S4. Application of our inference method to influenza A virus (top row) and SARS-CoV-2 

(bottom row) transmission pairs. Here, we estimate 𝜆 and the within-host 𝑅0, while setting the mutation 

rate 𝜇 to estimates from the literature. (A) Distribution of the number of clonal variants observed across 

the 52 identified IAV transmission pairs (dark green bars). The expected distribution under the maximum 

likelihood estimates of 𝜆 and 𝑅0 (light green bars) is shown alongside the empirical distribution. (B) Log-

likelihood plot, showing the log(probability) of observing the IAV data set across a range of 𝜆 and within-

host 𝑅0 values. Dashed red lines show the maximum likelihood values for 𝜆 and 𝑅0. (C) Log-likelihood 

plot, as in panel B, with the results plotted as a function of 𝑁 and 𝑅0 instead of 𝜆 and 𝑅0. (D) Log-

likelihood plot, as in panel B, with the results plotted as a function of 𝑁𝑏 and 𝑅0 instead of 𝜆 and 𝑅0. (E) 

Distribution of the number of clonal variants observed across the 39 identified SARS-CoV-2 transmission 

pairs (dark green bars). The expected distribution under the maximum likelihood estimates of 𝜆 and 

within-host 𝑅0 (light green bars) is shown alongside the empirical distribution. (F) Log-likelihood plot, 

showing the log(probability) of observing the SARS-CoV-2 dataset across a range of 𝜆 and 𝑅0 values. 

(G) Log-likelihood plot, as in panel F, with the results plotted as a function of 𝑁 and 𝑅0 instead of 𝜆 and 

𝑅0. (H) Log-likelihood plot, as in panel F, with the results plotted as a function of 𝑁𝑏 and 𝑅0 instead of 𝜆 

and 𝑅0. In panels B-D and F-H, only the log-likelihood values that fall within the 95% confidence region 

are shown. For inference on the IAV data set, we set the mutation rate to 𝜇 = 1.75 mutations per genome 

per infection cycle, based on estimates from Pauly et al. (2017). For inference on the SARS-CoV-2 

dataset, we set the mutation rate to 𝜇 = 0.03 mutations per genome per infection cycle, based on estimates 

from Amicone et al. (2022). 
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Figure S5. Sensitivity analysis of SARS-CoV-2 results across different assumptions of within-host 

𝑹𝟎. Results are shown in three rows, with the first row showing results with an assumed 𝑅0 value of 2.6, 

the second row showing results with an assumed 𝑅0 value of 7.4, and the third row showing results with 

an assumed 𝑅0 value of 14.9. For each 𝑅0 value considered, we plot four panels, analogous to those 

shown in the bottom row of Figure 4. 
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Figure S6. Sensitivity analysis of IAV results across different variant-calling thresholds used. (A-D) 

Inference results, as in Figures 4A-D, applying a variant calling threshold of 0.5%. (E-H) Inference 

results, as in Figures 4A-D, applying a variant calling threshold of 3%. (Identical to Figures 4A-D.) (I-L) 

Inference results, as in Figures 4A-D, applying a variant calling threshold of 7%. Notice that the 

distribution of the number of clonal variants observed across the transmission pairs can and does change 

with a change in the variant calling threshold applied. 
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Figure S7. Sensitivity analysis of SARS-CoV-2 results across different variant-calling thresholds 

used. (A-D) Inference results, as in Figures 4E-H, applying a variant calling threshold of 0.5%. (E-H) 

Inference results, as in Figures 4E-H, applying a variant calling threshold of 3%. (Identical to Figures 4E-

H.) (I-L) Inference results, as in Figures 4E-H, applying a variant calling threshold of 7%. Notice that the 

distribution of the number of clonal variants observed across the transmission pairs can and does change 

with a change in the variant calling threshold applied. 
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Figure S8. Sensitivity analysis of IAV results when removing the potentially spurious clonal variant 

that is present in the donor at a frequency of 2.3%. Top row reproduces the results shown in Figure 4 

A-D. Bottom row shows inference results when this potentially spurious clonal variant was removed from 

the data set. Removal of this clonal variant resulted in a transmission pair previously classified as 

harboring three clonal variants being reclassified as harboring two clonal variants. 

 

Figure S9. Sensitivity analysis of SARS-CoV-2 results when removing the potentially spurious 

clonal variant that is present in the donor at a frequency of 0.7%. Top row reproduces the results 

shown in Figure 4 E-H. Bottom row shows inference results when this potentially spurious clonal variant 

was removed from the data set. Removal of this clonal variant resulted in a transmission pair previously 

classified as harboring one clonal variant being reclassified as harboring no clonal variants. 



 51 

 

Figure S10. Probability that a donor-derived iSNV transmits to the recipient and fixes, as a 

function of the initial number of viral particles that start off the infection in the donor. (A) 

Probabilities that an IAV iSNV present in a donor at 1%, 2%, 4%, 6%, and 10% transmits to the recipient 

and fixes. (B) Probabilities that a SARS-CoV-2 iSNV present in a donor at 1%, 2%, 4%, 6%, and 10% 

transmits to the recipient and fixes. In (A), the within-host 𝑅0 is set to 11.1. In (B), the within-host 𝑅0 is 

set to 7.4. 
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