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Abstract

Econometrics Modeling with Multilayer and Induced Network Data

By Alexandra Manta

Data abundance and complexity necessitate the identification of a system’s operations mech-

anisms. In an economy, one of the most important driving forces of its mechanisms is related

to economic entities interactions. The study of interactions can uncover multiple types of

relationships and complicated patterns. Multilayer networks literature offers the mathemat-

ical and topological bases to represent interactions in network structures and evaluate their

characteristics and diagnostics. On the other hand, Econometrics offers the flexibility to

construct models able to incorporate networks and provide insights for causal inference.

Network connections can be utilized for inference when incorporated in economic models

but they can also act as post-estimation instruments towards understanding estimated effects

across entities and over time. Economic interactions are also dynamic and their evolution can

be depicted in network formations. Network representations can reveal information such as

the centrality of entities in the entire system, the entities’ incoming and outgoing connections

ratio, the distance and clustering among entities and the strength of the connections.

Economic crisis periods can be better diagnosed and possibly prevented with systemic

risk monitoring. To evaluate risk transmission and study estimated spillover effects among

economic entities, one can employ a network framework which can report on the economic

situation. More specifically, on how shocks originating from the system’s entities affect others

and how these interactions have formulated the entire network.

The first chapter proposes the identification and estimation of social parameters, under

a Multilayered Linear-in-Means model, when there are more than one types of social ties

among economic agents. The second chapter replicates the code of an empirical paper and

provides new findings using an extended version of the original dataset. The third chapter

proposes the estimation of block specific spillover effects for credit risk monitoring.
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1

Chapter 1

Estimating Social Effects in a

Multilayered Linear-in-Means Model

with Network Data

Note: This chapter is the product of collaborative research and has been published, see

Manta, Ho, Huynh and Jacho-Chávez (2022), with title “Estimating social effects in a mul-

tilayered Linear-in-Means model with network data”, in Statistics & Probability letters. The

views expressed in this chapter are solely those of the authors and may differ from Transunion

and Bank of Canada views.

This paper studies the identification and estimation of social parameters in a general

version of the Linear-in-Means model commonly fitted in the Social Sciences with multilayered

network data. A Monte Carlo exercise showcases its good small-sample properties while an

empirical application to Canadian consumers’ credit usage demonstrates its applicability.
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Our estimates show that one’s credit-card balance increases by $0.31 for an extra $1 owed by

surrounding neighbors.

1.1 Introduction

Let the outcome variable of interest for observation i, yi, be determined by yi = α +∑L
ℓ=1 βℓ

∑
j ̸=iwℓ;i,jyj +

∑L
ℓ=1

∑
j ̸=iwℓ;i,jx

⊤
j δℓ + x⊤

i γ + ei, where i, j ∈ {1, . . . , n} are also

known as nodes, x is a vector of attributes that characterizes the observations i and j,

wℓ;i,j = w∗
ℓ;i,j/

∑n
j=1w

∗
ℓ;i,j with w

∗
ℓ;i,j equals 1 if j is connected with i through a type-ℓ social

tie (an edge), and 0 otherwise, ei represents an unobserved latent error, n is the number of

observations or nodes in the sample, and L is the total number of observed networks (layers).

The structure of these ℓ = 1, · · · , L social networks is fully characterized by the square n×n

matrices, Wℓ, the adjacency matrices, with each (i, j) entry given by wℓ;i,j. In matrix form,

this model can be written as

y = αι+
L∑
ℓ=1

βℓWℓy +Xγ +
L∑
ℓ=1

WℓXδℓ + e, EX,W1,W2,...,WL
[e] = 0, (1.1)

where α and βℓ are scalars, γ and δℓ are K × 1 vectors of direct and contextual effects,

respectively, ι is a n×1 vector of ones, y is an n×1 vector of outcomes, X is a n×K matrix

of exogenous covariates, and e is a n×1 vector of unobservables such that EX,W1,W2,...,WL
[e] ≡

E[e|X,W1,W2, . . . ,WL] = 0⃗, where 0⃗ represents a n × 1 vector of zeroes. I represents an

identity matrix of order n in what follows.

Setting L = 1 in (1.1) yields the so-called Linear-in-Means model (see Section 3.1 in

de Paula, 2017, pp. 275-289) which is the workhorse model to estimate social effects in the
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Social Sciences. The specific case when L = 2 and W2 being the row-normalized version

of W1 was studied in Liu et al. (2014), while the special case where δ1 = · · · = δL = 0⃗

(higher-order Spatial Autoregressive model) was presented by Badinger and Egger (2011).

The results here can be understood as a generalization of these, when the researcher observes

different types of social ties among observations, e.g., geographical neighbours (ℓ = 1), same

race (ℓ = 2), same age group (ℓ = 3), etc., instead.

1.2 Identification

Assumption 1. The parameters βℓ,γ, and δℓ in (1.1) are such that (a) β1 ̸= 0, (b)∑L
ℓ=1|βℓ|< 1, and (c) max (|γβ1 + δ1|, |γβ2 + δ2|, . . . , |γβL + δL|) ̸= 0 hold, for all ℓ ̸= ℓ′

where ℓ, ℓ′ ∈ {1, 2, . . . , L}.

Assumption 2. The matrices, Wℓ in (1.1), are n × n adjacency matrices such that the

sum of the elements in each row equals to 1 or 0, and Wℓ ̸= Wℓ′, for all ℓ ̸= ℓ′ where

ℓ, ℓ′ ∈ {1, 2, . . . , L}.

Assumption 1(a) is simply a normalization and is made without loss of generality, while

Assumption 1(b) ensures the invertibility of a matrix in the proof, and 1(c) guarantees that

social effects are not zero or cancelled each other out in the reduced form version of (1.1).

Assumption 2 rules out perfect collinearity in (1.1).

Theorem 1. Let Assumptions 1 and 2 hold in the structural model (1.1). If the matrices X,

WℓX, Wℓ′X, WℓWℓ′X, Wℓ′WℓX, W2
ℓX, and W2

ℓ′X are linearly independent for all ℓ ̸= ℓ′

where ℓ, ℓ′ ∈ {1, 2, . . . , L}, then the social parameters α, βℓ,γ, and δℓ in (1.1) are identified.
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This result guarantees that the social parameters can be uniquely recovered from the

estimating sample {yi,x⊤
i , {w1;i,j}nj=1,j ̸=i, . . . , {wL;i,j}nj=1,j ̸=i}ni=1. Notice that the required lin-

ear independence can be numerically verified, and it requires that at least one pair of nodes

shares more than one type of social ties among them.

1.3 Estimation

First, notice that (1.1) can be rewritten as

y = αι+
L∑
ℓ=1

WℓSθℓ +Xγ + e, EX,W1,W2,...,WL
[e] = 0, (1.2)

where S is a n× (K + 1) matrix defined as S ≡ [y X], and θℓ ≡ (βℓ, δ
⊤
ℓ )

⊤ is a (K + 1)× 1

vector of parameters such that Wℓyfiℓ + WℓXδℓ = WℓSθℓ, for all ℓ = 1, 2, . . . , L. Note

that (1.2) cannot be directly estimated by ordinary least squares because of the simultaneity

among the Wℓy terms. Therefore, following Kelejian and Prucha (1998), a Generalized

Two-Stage Least Squares (G2SLS) estimator of
(
α,γ,θ⊤1 ,θ

⊤
2 , . . . ,θ

⊤
L

)
is as follows:

Step One: Rewrite (1.2) as

y = Dψ + e, (1.3)

where D = [ι,X,W1y,W1X,W2y,W2X, . . . ,WLy,WLX] is a matrix of variables with

dimensions n× [(L+ 1)(K + 1)] and ψ =
(
α,γ,θ⊤1 ,θ

⊤
2 , . . . , θ

⊤
L

)⊤
is a [(L+ 1)(K + 1)]× 1

vector of parameters. From (1.3), the parameters ψ can be estimated by Two-Stage Least
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Squares (2SLS). Let

Z =
[
ι,X,W1X,W2X, . . . ,WLX,W

2
1X,W

2
2X, . . . ,W

2
LX,W1W2X,

W1W3X, . . . ,W1WLX,W2W1X,W2W3X, . . . ,W2WLX, . . . ,

WLW1X,WLW2X, . . . ,WLWL−1X]

be the n× {1 +K(L2 + L+ 1)} matrix of instruments (IV) for the variables in D. For the

general case where K > 1, the model is overidentified and the 2SLS estimator is

ψ̂2SLS =
[
D⊤Z(Z⊤Z)−1Z⊤D

]−1
D⊤Z(Z⊤Z)−1Z⊤y. (1.4)

Step Two: This step consists of constructing the optimal instruments for the regressors

Wℓy. The optimal instruments are given by EX,W1,W2,...,WL
[Wℓy], ∀ℓ. Note that from

y = α(I−∑L
ℓ=1 βℓWℓ)

−1ι+(I−∑L
ℓ=1 βℓWℓ)

−1(Xγ +
∑L

ℓ=1 WℓXδℓ)+ (I−∑L
ℓ=1 βℓWℓ)

−1e,

one has

EX,W1,W2,...,WL
[Wℓy] =Wℓα

(
I−

L∑
ℓ=1

βℓWℓ

)−1

ι

+Wℓ

(
I−

L∑
ℓ=1

βℓWℓ

)−1(
Xγ +

L∑
ℓ=1

WℓXδℓ

)
, (1.5)

for all ℓ = 1, . . . , L. Valid estimators of equation (1.5) are then given by EX,W1,W2,...,WL
[Wℓy]

(ψ̂2SLS), where ψ̂2SLS = (α̂2SLS, γ̂2SLS, θ̂
⊤
1;2SLS, θ̂

⊤
2;2SLS, . . . , θ̂

⊤
L;2SLS)

⊤ from the first step. Now,

rewriting (1.1) as (1.3), one has that the estimator of the n × [(L + 1)K + (L + 1)] matrix
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of optimal instruments is given by

Ẑ = [ι,X, EX,W1,W2,...,WL
[W1y](ψ̂), EX,W1,W2,...,WL

[W2y](ψ̂), . . . ,

EX,W1,W2,...,WL
[WLy](ψ̂),W1X,W2X, . . . ,WLX]. (1.6)

Therefore, the G2SLS estimator of ψ =
(
α,γ,θ⊤1 ,θ

⊤
2 , . . . ,θ

⊤
L

)⊤
, is

ψ̂G2SLS = (Ẑ⊤D)−1Ẑ⊤y. (1.7)

The supplemental materials points out how one can go about adapting Steps One and Two

above to incorporate the identifying restrictions in Assumption 1.

Assumption 3. The matrix Z is such that QZZ = limn−→∞ n−1
∑n

i=1 ziz
⊤
i is finite and

non-singular. In addition, QZD = limn−→∞ n−1
∑n

i=1 zid
⊤
i is finite and non-singular.

Assumption 4. The matrix Ω is positive definite and it is such that Ω = limn−→∞ n−1

∑n
i=1 ziz

⊤
i EZ[e

2
i ] .

Assumption 5. The structural innovations {ei} are independently jointly distributed with

expectations EX,W1,W2,...,WL
[ei] = 0 and EX,W1,W2,...,WL

[e2i ] = σ2
ei
< ∞,∀i = 1, . . . , n. In

addition, they are uniformly bounded in absolute value, and satisfy limn→∞ n−1
∑n

i=1 σ
2
ei
<

∞, lim infn→∞ n−1
∑n

i=1 σ
2
ei
> 0, and for some ξ > 0, supn,iE |ei|2+ξ <∞.

Assumption 6. The column sums of each Wℓ, ∀ℓ, and all elements in the matrix [X, e] are

uniformly bounded in absolute value, for all n.

Assumptions 3 and 4 use the notation z⊤i to represent the ith row of Z and ei to
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denote the ith element of the n× 1 vector of the structural error term. These assumptions

are standard in IV estimation as they guarantee the existence of the asymptotic variance-

covariance matrix, while Assumptions 5 and 6 requires summability conditions of conditional

variances and random variables.

Theorem 2. Let Assumptions 1 – 6 hold for model (1.1), then ψ̂G2SLS = ψ + op(1) and

n1/2(ψ̂G2SLS −ψ) d−→ N(0, Vψ), where Vψ = QZD
−1 ΩQDZ

−1 and QDZ = QZD
⊤.

Theorem 2 demonstrates that the resulting G2SLS estimator is asymptotically unbiased,

root-n consistent, and asymptotically normal. The corresponding standard errors can be cal-

culated as the square root of the main diagonal elements divided by n of the following consis-

tent estimator V̂ψ = (n−1Ẑ⊤D)−1(n−1
∑n

i=1 ẑiẑ
⊤
i ê

2
i )(n

−1D⊤Ẑ)−1 of Vψ, where ẑ
⊤
i is defined

as the ith row of the matrix Ẑ, êi is defined as êi = y−α̂G2SLSι−W1Sθ̂1;G2SLS−W2Sθ̂2;G2SLS−

· · ·−WLSθ̂L;G2SLS−Xγ̂G2SLS and ψ̂G2SLS = (α̂G2SLS, γ̂
⊤
G2SLS, θ̂

⊤
1;G2SLS, θ̂

⊤
2;G2SLS, . . . , θ̂

⊤
L;G2SLS)

⊤.

1.4 Monte Carlo Experiments

The small sample performance of the proposed G2SLS estimator in Section ?? is analyzed

here where L = 3 and K = 1 in (1.1), where {xi}ni=1 and {ei}ni=1 are drawn from independent

standard normal distributions. A total of 1,100 data sets, {yi, xi}ni=1 and {{wℓ;i,j}ni=1}nj=1,

with wℓ;i,j = w∗
ℓ;i,j/

∑n
j=1w

∗
ℓ;i,j, ∀ℓ ∈ {1, 2, 3}, for n ∈ {50, 100, 200} are generated from a

combination of a model specification and a network formation model as follows:

Model Specification: The parameter values of ψ are set to be all positive, i.e., α = 0.15,

γ = 0.8, βℓ =
ϕ
3
, where ϕ = 0.9 and δℓ =

1
3
.
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Networks Formation Model: The n × n adjacency matrices W∗
ℓ = [w∗

ℓ;i,j] are such that

W∗
1 is generated as an Erdős and Rényi’s (1959) random graph with density 0.01, while the

remaining adjacency matrices are defined as w∗
ℓ;i,j = w∗

ℓ−1;i,jc1,ℓ;i,j +
(
1− w∗

ℓ−1;i,j

)
c2,ℓ;i,j, for

i ̸= j, ℓ ∈ {2, 3}, where c1,ℓ;i,j, and c2,ℓ;i,j are drawn independently from an independent

Bernoulli distribution with parameters 0.5, and 0.99 respectively in each replication.

Figure 1.1 displays the Box and Q-Q plots. Overall, the small sample properties of

the proposed G2SLS estimator of all parameters of interest seem to be as expected, with

little to no bias as sample size increases and shrinking dispersion. The asymptotic normal

approximation in Theorem 2 seems adequate even with a sample size of 50 observations.

1.5 Empirical Application

Economics literature suggests that consumers are subject to the influence of conspicuous

consumption made by their network peers, see, e.g., Bertrand and Morse (2016) and con-

sequently adjust their debt-taking behaviors accordingly Agarwal et al. (2019). Existing

evidence is mainly based on the variation of neighbor’s income in a geographic network of

residential locations, i.e. the contextual effect in a mono-layered network.

Using anonymized Canadian consumer credit data from TransUnion®, the proposed

method here is applied to empirically estimate the effect of social influence on consumers’

use of credit. We focus on consumers residing in a remote urban service area where has a

single economic focus. Our analysis is based on cross-sectional data of 47,593 individuals

at the end of 2018. A detailed data description and summary statistics are provided in the

supplemental materials.
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The outcome of interest is the outstanding loan balance. We consider 2 common con-

sumer loan types – credit cards and auto loans. Network layers (L = 2) are constructed

conditional on individuals living in the same census dissemination area (DA), a small geo-

graphic unit bounded by roads or other natural boundaries and comprised of many smaller

neighborhoods. On average, a DA is about 0.2 km2 in size with 1,322 adults. Within a DA,

consumers are connected if they are in the same age group (W1) or if they live in the same

neighborhood (W2). In other words, w∗
1;i,j = 1 if individual i and j are in the same age group

within the same DA; 0 otherwise. Similarly, w∗
2;i,j = 1 if individual i and j live in the same

neighborhood within the same DA; 0 otherwise. Our setup follows a common assumption in

the urban economics literature that, while individuals can choose which DA to live in, the

actual residing neighborhood within the DA is exogenous and random depending on housing

availability.

Our contextual effects are based on consumer’s credit scores in the previous quarter,

normalized with zero mean and unit variance. It reflects one’s credit worthiness and cor-

relates with individual income levels. Direct effects considered in this model includes and

individual’s credit score, total non-residential debts in the previous quarter, and the total

credit-card limit. Fixed effects for age group × homeowner and DA × homeowner inter-

actions are also included in the model. Specifically, our estimation model for individual i’s

balance in loan type k ∈ {credit card, auto loan} is specified as

loanki = α +
2∑
ℓ=1

βℓ
∑
j ̸=i

wℓ;i,jloan
k
j +

2∑
ℓ=1

δℓ
∑
j ̸=i

wℓ;i,jcrscj +Xiγ + ei (1.8)

where wℓ;i,j = w∗
ℓ;i,j/

∑n
j=1w

∗
ℓ;i,j is the weight, crscj is the credit score of individual j, and

https://www12.statcan.gc.ca/census-recensement/2016/ref/dict/geo021-eng.cfm
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Xi ={crsci, total non-residential debt, total credit-card limit, age group × homeowner, DA

× homeowner} is a vector of regressors for the direct effects.

Estimation results are reported in Table 1.1. For credit-card balances, there is significant

peer effect in both network layers. When one’s age-group peers on average have $1 extra

dollar of credit-card balance, the individual has $0.38 more; when one’s neighbors on average

have $1 extra dollar in balance, the individual has $0.31 more, ceteris paribus. The age-group

contextual effect also shows that one’s credit-card balance is $992.7 higher when the peer’s

average credit score is a standard-deviation higher. Our results are consistent with the

explanation of status-maintaining in the presence of conspicuous consumption.

For auto loans, only the neighborhood peer effect is significant. An individual has $0.11

more auto loan when one’s neighbors on average have $1 more in auto loan. This is a

non-trivial amount, given that an average individual owes $15,091 in this category. The

neighborhood peer effect follows the intuition that car consumption is quite visible. We

do not observe significant age-group peer effect nor significant contextual effects as in the

case of credit cards, because cars are expensive durable goods that consumers do not adjust

frequently. Indeed, the data shows that less than 50% of consumers have auto loans.

The direct effects have the expected signs and give intuitive results. Credit-worthy

individuals with high credit scores have less in credit card balances. For each dollar of

consumer loan an individual owes, $0.05 is attributed to credit card. Also, the coefficient

for credit card limit is 0.265, meaning that the conditional average credit card utilization

is 26.5%. Results for auto loans are in similar direction, except the coefficient estimate for

credit card limit is of the opposite sign, suggesting that individuals with higher credit-card
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limits are those with higher income and smaller amount of auto loans after controlling for

peer and contextual effects.
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Table 1.1: Estimation Results

Variables Credit card Auto loan

Peer effects (βℓ)
Age group 0.384*** 0.067

(0.069) (0.059)
Neighbor 0.306** 0.107***

(0.124) (0.032)
Contextual effects (δℓ)
Credit scores (age group) 992.684*** 492.260

(274.950) (790.325)
Credit scores (neighbor) 311.816 -450.795

(201.002) (487.897)
Direct effects (γ)
Credit scores -2445.794*** -610.996***

(63.412) (134.909)
Consumer loans 0.054*** 0.313***

(0.002) (0.012)
Credit card limit 0.265*** -0.092***

(0.007) (0.009)

Adjusted R2 0.424 0.385

Note: ***, **, * denotes 10%, 5% and 1% significance, respectively. Interaction terms for age-group ×
home-ownership and DA × home-ownership, as well as a constant term are included. Estimation results for
the interaction terms are reported in the supplementary materials.
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Figure 1.1: Monte Carlo Plots
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1.6 Appendix: Constrained Estimation

Steps One and Two in the main text are performed without imposing restrictions on the

parameters in (1.1). However, they can easily be modified to accommodate inequality con-

straints instead. For example, take L = 3 and K = 1, then a set of sufficient restrictions for

Assumption 1 to hold takes the form Rψ < c, i.e.,



0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 1 0 1 0

0 0 1 0 1 0 −1 0

0 0 1 0 −1 0 1 0

0 0 1 0 −1 0 −1 0

0 0 −1 0 1 0 1 0

0 0 −1 0 1 0 −1 0

0 0 −1 0 −1 0 1 0

0 0 −1 0 −1 0 −1 0





α

γ

β1

δ1

β2

δ2

β3

δ3



<



0

0

0

1

1

1

1

1

1

1

1



,

when β1 > 0, γ > 0, and δ1 > 0 without loss of generality. Then one can replace the standard

least squares projection in Step One by the quadratic programming problem in Judge and

Takayama (1966) and Liew (1976). Similarly, the IV estimation in Step Two can also be

adapted to account for these inequality constraints as in Giles (1982a,b). Results in Theorem

2 can then be modified accordingly at the expense of more complicated derivations.
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1.7 Appendix: Proofs of Main Results

Proof of Theorem 1: First by Assumption 1 it follows by Lemma 1 in 1.8 that I −∑L
ℓ=1 βℓWℓ is invertible, so one can write (1.1) as

y = α

(
I−

L∑
ℓ=1

βℓWℓ

)−1

ι+

(
I−

L∑
ℓ=1

βℓWℓ

)−1(
Xγ +

L∑
ℓ=1

WℓXδℓ

)

+

(
I−

L∑
ℓ=1

βℓWℓ

)−1

e. (1.9)

Consider two sets of structural parameters (α, βℓ,γ, δℓ) and (α′, β′
ℓ,γ

′, δ′ℓ), ∀ℓ = 1, . . . , L,

leading to the same reduced form (1.9), where
∑L

ℓ=1|β′
ℓ|< 1 and I−∑L

ℓ=1 β
′
ℓWℓ is invertible

as well (see Lemma 1 in 1.8). Then, one has

α

(
I−

L∑
ℓ=1

βℓWℓ

)−1

ι = α′

(
I−

L∑
ℓ=1

β′
ℓWℓ

)−1

ι

(
I−

L∑
ℓ=1

βℓWℓ

)−1(
Xγ +

L∑
ℓ=1

WℓXδℓ

)
=

(
I−

L∑
ℓ=1

β′
ℓWℓ

)−1

(
Xγ ′ +

L∑
ℓ=1

WℓXδ
′
ℓ

)
.

Now, pre-multiplying both sides of the last equality by
(
I−∑L

ℓ=1 βℓWℓ

)
·
(
I−∑L

ℓ=1 β
′
ℓ

Wℓ). By Assumptions 1(a) and 2(b), one has β1 ̸= 0 and βℓ = cℓβ1, for any |cℓ|< +∞,

∀ℓ ∈ {2, 3, . . . , L}, (see Lemma 2 in 1.8), and along with Assumption 2 one could further
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rewrite

X (γ − γ ′) +
L∑
ℓ=1

WℓX [(δℓ + γ
′βℓ)− (δ′ℓ + γβ

′
ℓ)] +

L∑
ℓ=1

W2
ℓX (βℓδ

′
ℓ − β′

ℓδℓ)

+
L∑
ℓ=1

L∑
ℓ′=1,ℓ′ ̸=ℓ

WℓWℓ′X (βℓδ
′
ℓ′ − β′

ℓδℓ′) = 0. (1.10)

Since X, WℓX, Wℓ′X, WℓWℓ′X, W2
ℓX, and W2

ℓ′X are linearly independent for all

ℓ ̸= ℓ′ ∈ {1, 2, . . . , L}, then it follows

γ = γ ′,

δℓ + γ
′βℓ = δ

′
ℓ + γβ

′
ℓ,

βℓδ
′
ℓ = β′

ℓδℓ, and

βℓδ
′
ℓ′ = β′

ℓδℓ′

for all ℓ, ℓ′ such that ℓ ̸= ℓ′ ∈ {1, 2, . . . , L}.

Assume first that βℓδ
′
ℓ ̸= 0⃗ for all ℓ = 1, 2, . . . , L. Then, there must exist a λ ̸= 0 such

that β′
ℓ = λβℓ, δ

′
ℓ = λδℓ. Substituting yields δ′ℓ+γβ

′
ℓ = λ(δℓ+γβℓ) = δℓ+γβℓ, which implies

that λ = 1. Hence, by Assumption 1, one has β′
ℓ = βℓ and δ

′
ℓ = δℓ, for all ℓ = 1, 2, . . . , L.

Second, suppose that βℓ′δ
′
ℓ′ = 0⃗ and βℓδ

′
ℓ ̸= 0⃗ for ℓ, ℓ′ such that ℓ ̸= ℓ′ = 1, 2, . . . , L. By

Assumption 1, this implies that it has to be the case that βℓ′ = β′
ℓ′ = 0, or δℓ′ = δ

′
ℓ′ = 0⃗, or

both. In case that βℓ′ = β′
ℓ′ = 0, then it comes that δℓ′ = δ′ℓ′ . In case that δℓ′ = δ′ℓ′ = 0⃗,

then it follows that βℓ′ = β′
ℓ′ . If both hold, then this means that βℓ′ = β′

ℓ′ = 0 and

δℓ′ = δ′ℓ′ = 0⃗. For the parameters βℓ, β
′
ℓ, δℓ, δ

′
ℓ one has that there must exist a λ ̸= 0 such
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that β′
ℓ = λβℓ, δ

′
ℓ = λδℓ. Substituting yields δ′ℓ+γβ

′
ℓ = λ(δℓ+γβℓ) = δℓ+γβℓ, which implies

that λ = 1. Hence, one has β′
ℓ = βℓ and δ

′
ℓ = δℓ.

Third, assume βℓδ
′
ℓ = 0⃗ for all ℓ = 1, 2, . . . , L. Then, by Assumption 1 one has δℓ =

δ′ℓ = 0⃗, ∀ℓ, or βℓ = β′
ℓ = 0, ∀ℓ, or both for some (but not all) ℓ. In the case where δℓ = δ

′
ℓ = 0⃗

∀ℓ, then by Assumption 1, one has βℓ = β′
ℓ, ∀ℓ. Next, in case where βℓ = β′

ℓ = 0 ∀ℓ,

then by Assumption 1, one has δℓ = δ′ℓ, ∀ℓ. Finally, in case where both βℓ′ = β′
ℓ′ = 0

and δℓ′ = δ′ℓ′ = 0⃗ for some ℓ′ (but not all layers 1, 2, . . . , L) and given Assumption 1,

one has that there must exist a λ ̸= 0 such that β′
ℓ = λβℓ, δ

′
ℓ = λδℓ. Substituting yields

δ′ℓ+γβ
′
ℓ = λ(δℓ+γβℓ) = δℓ+γβℓ ∀ℓ, which implies that λ = 1. Hence, one has β′

ℓ = βℓ and

δ′ℓ = δℓ, for all ℓ = 1, 2, . . . , L.

Therefore, from the above one gets that β′
ℓ = βℓ, γ

′ = γ and δ′ℓ = δℓ, ∀ℓ. Now, consider

that α(I −∑L
ℓ=1 βℓWℓ)

−1ι = α′(I −∑L
ℓ=1 βℓWℓ)

−1ι implies that α = α′. Hence, the social

effects α, βℓ,γ, and δℓ in (1.1) are identified for all ℓ ∈ {1, 2, ..., L}.

Proof of Theorem 2: Recall that by equation (1.7) in the main text, the Generalized

Two-Stage Least Squares (G2SLS) estimator of the structural parameters is ψ̂G2SLS =

(Ẑ⊤D)−1Ẑ⊤y. This can be rewritten as ψ̂G2SLS−ψ = (Ẑ⊤D)−1Ẑ⊤e, where D = [ι,X,W1y,

W1X,W2y,W2X, . . . ,WLy,WLX] and Ẑ is defined as in equation (1.6) in the main text.

Now, under the Assumptions 3–6 in the main text, Lemmas 4, 5, and 6 it follows that

n−1Ẑ⊤e
p−→0. Similarly, by Lemma 4 and the continuous mapping theorem one also has

n−1Ẑ⊤D = Op(1). Therefore ψ̂G2SLS
p−→ψ.
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Next, applying the same arguments as in the proof of Lemma 6, one has

n−1/2Z⊤e
d−→N(0,Ω) (1.11)

whereΩ = limn−→∞ n−1
∑n

i=1 ziz
⊤
i EZ[e

2
i ], which can be written equivalently asΩ = limn−→∞

n−1
∑n

i=1 ziz
⊤
i EX,W1,W2,...,WL

[e2i ], and consequently

n−1/2(ψ̂G2SLS −ψ) d−→QZD
−1 ×N(0,Ω)

N(0,QZD
−1ΩQDZ

−1).

1.8 Appendix: Auxiliary Results

Lemma 1. The n× n matrix, I−∑L
ℓ=1 βℓWℓ, is invertible for any scalar βℓ, ∀ℓ, such that∑L

ℓ=1|βℓ|< 1, where I represents an identity matrix of order n.

Proof of Lemma 1: First note that in the case where β1 = β2 = ... = βL = 0, one is left

with I which is invertible. Second, consider setting λ =
∑L

ℓ=1|βℓ|, where if λ = 0 one has∑L−1
ℓ=1 |βℓ|= −|βL| which implies β1 = β2 = ... = βL = 0, so clearly λ ̸= 0. Hence, one can

write

I−
L∑
ℓ=1

βℓWℓ = I− λ
L∑
ℓ=1

βℓ∑L
ℓ=1|βℓ|

Wℓ,

where one can show that W ≡∑L
ℓ=1

βℓ∑L
ℓ=1|βℓ|

Wℓ has
∑n

j=1,i ̸=j|ωij|≤ 1 of each row. Note that
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W is not necessarily a stochastic matrix, since it not guaranteed that it has non-negative

entries. Therefore, using Gerschgorin’s (1931) Circle Theorem for the eigenvalues of W, ej,

it holds that |ej|≤ 1. Also, it might be the case that some eigenvalues are complex numbers.

In that case, in order for I−∑L
ℓ=1 βℓWℓ to be invertible (regarding the complex eigenvalues)

one needs that 1 − αjλ ̸= 0, where αj is the real part of the complex ej. Therefore since

|ej|≤ 1 one has that |e′j|≤ 1, where e′j are the real eigenvalues or the real parts of the complex

eigenvalues. Now, given that

det(I− λW) ̸= 0 when
∏
j

(1− λe′j) ̸= 0. (1.12)

and since |e′j|≤ 1, one can conclude that |λ|< 1, i.e. |∑L
ℓ=1|βℓ||< 1 which can be written

equivalently as
∑L

ℓ=1|βℓ|< 1. Thus, in general I −∑L
ℓ=1 βℓWℓ is invertible, if Assumption

1(a), i.e.,
∑L

ℓ=1|βℓ|< 1 holds.

Lemma 2. Let Assumption 1 hold, then

(
I−

L∑
ℓ=1

βℓWℓ

)(
I−

L∑
ℓ=1

β′
ℓWℓ

)
=

(
I−

L∑
ℓ=1

β′
ℓWℓ

)(
I−

L∑
ℓ=1

βℓWℓ

)
.

Proof of Lemma 2. First, note that by Assumption 1 one has the following cases for all

ℓ = 1, 2, . . . , L: (1) βℓ ̸= 0, δℓ,γ ̸= 0⃗, ∀ℓ, (2) β1 ̸= 0, at least one βℓ = 0, ∀ℓ ̸= 1, and at

least one |γβℓ + δℓ|≠ 0⃗, ∀ℓ, (3) β1 ̸= 0, at least one δℓ = 0⃗, and at least one |γβℓ + δℓ|≠ 0⃗,

∀ℓ, (4) β1 ̸= 0, at least one βℓ = 0 and at least one δℓ = 0⃗, ∀ℓ ̸= 1, as well as at least one

|γβℓ + δℓ|≠ 0⃗, ∀ℓ.
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In case (1), the equation of interest can be written as follows,

L∑
ℓ=1

L∑
ℓ′=1,ℓ′>ℓ

(βℓβ
′
ℓ′ − β′

ℓβℓ′)WℓWℓ′ =
L∑
ℓ=1

L∑
ℓ′=1,ℓ′>ℓ

(βℓβ
′
ℓ′ − β′

ℓβℓ′)Wℓ′Wℓ,

where WℓWℓ′ ̸= Wℓ′Wℓ. So, in order for the above equation to hold, one can impose

Assumption 1(a) which implies that βℓ = cℓβ1, ∀ℓ ∈ {2, 3, . . . , L}, for any |cℓ|< +∞. Making

this assumption along with the fact that both parameter sets (α, βℓ,γ, δℓ) and (α′, β′
ℓ,γ

′, δ′ℓ)

lead to the same model imply cℓ = c′ℓ and cℓ′ = c′ℓ′ , ∀ℓ ̸= ℓ′, where ℓ, ℓ′ = 2, 3, . . . , L. That

said and given the above assumption, one has that the equation βℓβ
′
ℓ′ = β′

ℓβℓ′ holds, meaning

that (βℓ/β1)(β
′
ℓ′/β

′
1) = (β′

ℓ/β
′
1)(βℓ′/β1) holds, or, equivalently, that cℓc

′
ℓ′ = c′ℓcℓ′ holds, because

cℓ = c′ℓ and cℓ′ = c′ℓ′ .

Similarly, arguments apply to cases (2), (3), and (4) concluding the proof.

Lemma 3. (Series Expansion) Let Assumptions 1 and 2 hold, then a series expansion of

(1.9) can be written as

y = α
∞∑
r=0

βr1W
rι+Xγ +

L∑
ℓ=1

[
∞∑
r=0

βrℓW
r+1
ℓ

]
X(δℓ + γβℓ)

+
L∑
ℓ=1

L∑
ℓ′=1,ℓ′ ̸=ℓ

[
∞∑
r=0

∞∑
r′=0

βr+1
ℓ′ βr

′

ℓ W
r+1
ℓ′ Wr′+1

ℓ

]
X(δℓ + γβℓ) + . . .+

∞∑
r=0

βr1W
re,

where β1 ̸= 0, W ≡ W1 +
∑L

ℓ=1(βℓ/β1)Wℓ for all ℓ = 2, 3, . . . , L.
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Proof of Lemma 3. By equation (1.9) one has

y = α(I−
L∑
ℓ=1

βℓWℓ)
−1ι+ (I−

L∑
ℓ=1

βℓWℓ)
−1(Xγ +

L∑
ℓ=1

WℓXδℓ)+

+ (I−
L∑
ℓ=1

βℓWℓ)
−1e,

which, given Assumption 1(a), can be written as

y = α(I− β1W)−1ι+ (I− β1W)−1(Xγ +
L∑
ℓ=1

WℓXδℓ) + (I− β1W)−1e,

where β1 ̸= 0, W ≡ W1 +
∑L

ℓ=1
βℓ
β1
Wℓ for all ℓ = 2, 3, . . . , L. Given that (I − β1W)−1 =∑∞

r=0 β
r
1W

r, one has

y = α
∞∑
r=0

βr1W
rι+

∞∑
r=0

βr1W
r(Xγ +

L∑
ℓ=1

WℓXδℓ) +
∞∑
r=0

βr1W
re.

By opening the summations of the second term on the right hand side of the equa-

tion above and after expanding these terms, then the series expansion of equation (1.9) for

β1, β2, . . . , βL ̸= 0 can be expressed as follows

y = α
∞∑
r=0

βr1W
rι+ γX+

L∑
ℓ=1

[
∞∑
r=0

βrℓW
r+1
ℓ

]
X(δℓ + γβℓ)

+
L∑
ℓ=1

L∑
ℓ′=1,ℓ′ ̸=ℓ

[
∞∑
r=0

∞∑
r′=0

βr+1
ℓ′ βr

′

ℓ W
r+1
ℓ′ Wr′+1

ℓ

]
X(δℓ + γβℓ) + . . .+

∞∑
r=0

βr1W
re. (1.13)

This means that except for using Assumptions 1(a) and 1(b), the series expansion implies

that there must exist at least one |δℓ+γβℓ|≠ 0⃗. This is a restriction that can be equivalently
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expressed by Assumption 1(c). Thus, the restrictions for the structural parameters can be

fully characterized by Assumption 1.

Lemma 4. (Consistency of ψ̂2SLS) Let Assumptions 1–6 hold, then ψ̂2SLS
p−→ψ.

Proof of Lemma 4. From equation (1.4), the 2SLS estimator can be written as

ψ̂2SLS = ψ +
[
D⊤Z(Z⊤Z)−1Z⊤D

]−1
D⊤Z(Z⊤Z)−1Z⊤e. (1.14)

Recall that D = [ι,X,W1y,W1X,W2y,W2X, . . . ,WLy,WLX], ψ = (α,γ,θ⊤1 ,θ
⊤
2 ,

. . . ,θ⊤L )
⊤ and

Z =
[
ι,X,W1X,W2X, . . . ,WLX,W

2
1X,W

2
2X, . . . ,W

2
LX,W1W2X,

W1W3X, . . . ,W1WLX,W2W1X,W2W3X, . . . ,W2WLX,

. . . ,WLW1X,WLW2X, . . . ,WLWL−1X] .

By Assumption 3 and the continuous mapping theorem as n→ ∞,

[
n−1D⊤Z(n−1Z⊤Z)−1n−1Z⊤D

]−1
n−1D⊤Z(n−1Z⊤Z)−1 p−→

(Q⊤
ZDQ

−1
ZZQZD)

−1Q⊤
ZDQ

−1
ZZ,

which is finite by Assumption 3. Moreover, by Assumption 5 and the law of iterated expec-

tations E[Z⊤e] = 0, where



23

Z⊤e = [
n∑
i=1

ei,X
⊤e, (W1X)⊤ e, (W2X)⊤ e, . . . , (WLX)⊤ e,

(
W2

1X
)⊤

e,

(
W2

2X
)⊤

e, . . . ,
(
W2

LX
)⊤

e, (W1W2X)⊤ e, (W1W3X)⊤ e, . . . ,

(W1WLX)⊤ e, (W2W1X)⊤ e, (W2W3X)⊤ e, . . . , (W2WLX)⊤ e,

(WLW1X)⊤ e, (WLW2X)⊤ e, . . . , (WLWL−1X)⊤ e
]⊤
.

In order to show that n−1Z⊤e
p−→ E[Z⊤e], it suffices to show that all components of the vector

n−1Z⊤e converge in probability to E[Z⊤e]. For this purpose, one can find the variance of

the components of the vector

varX,W1,W2,...,WL

[
n−1

n∑
i=1

ei

]
= n−2EX,W1,W2,...,WL

(
n∑
i=1

ei

)2

=
1

n2

n∑
i=1

σ2
ei
,

where the second equality above follows by Assumption 5.

First, one has that n−1
∑n

i=1 σ
2
ei
= O(1) by Assumption 5, thus one has n−2

∑n
i=1 σ

2
ei
=

o(1). Next, consider that conditioning on the realizations of X, W1, W2, . . ., WL, one also

has

varX,W1,W2,...,WL

[
n−1X⊤e

]
=

1

n2

n∑
i=1

x2jiσ
2
ei
, (1.15)

varX,W1,W2,...,WL

[
n−1 (WℓX)⊤ e

]
=

1

n2

n∑
i=1

x̄2ℓ,j(i)σ
2
ei
, (1.16)
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varX,W1,W2,...,WL

[
n−1

(
W2

ℓX
)⊤

e
]
=

1

n2

n∑
i=1

x̄2ℓ2,j(i)σ
2
ei
, (1.17)

varX,W1,W2,...,WL

[
n−1 (WℓWℓ′X)⊤ e

]
=

1

n2

n∑
i=1

x̄2ℓℓ′,j(i)σ
2
ei
, (1.18)

for all ℓ = 1, 2, . . . , L and ℓ ̸= ℓ′ = 1, 2, . . . , L, where x̄ℓ,j(i) = wi,ℓxj represents the average of

individual’s i connections in the jth characteristic, x̄ℓ2,j(i) = w
2
i,ℓxj is the average of individ-

ual’s i indirect connections in the jth characteristic and x̄ℓℓ′,j(i) = wi,ℓwi,ℓ′xj is the average

of individual’s i indirect connections involving both layers ℓ, ℓ′ in the jth characteristic. The

regressors and the adjacency matrices are bounded given Assumptions 2 and 6. Therefore,

terms (1.15)–(1.18) are o(1).

Using the Chebychev’s inequality ∀ε > 0 along with 1.15–1.18, one has as n −→ ∞,

PrX,W1,W2,...,WL
{|n−1X⊤e|> ε} ≤ varX,W1,W2,...,WL

[
n−1X⊤e

]
ε2

−→ 0, (1.19)

PrX,W1,W2,...,WL
{|n−1 (WℓX)⊤ e|> ε} ≤

varX,W1,W2,...,WL

[
n−1 (WℓX)⊤ e

]
ε2

−→ 0, (1.20)

PrX,W1,W2,...,WL
{|n−1

(
W2

ℓX
)⊤

e|> ε} ≤

varX,W1,W2,...,WL

[
n−1 (W2

ℓX)
⊤
e
]

ε2
−→ 0, (1.21)
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PrX,W1,W2,...,WL
{|n−1 (WℓWℓ′X)⊤ e|> ε} ≤

varX,W1,W2,...,WL

[
n−1 (WℓWℓ′X)⊤ e

]
ε2

−→ 0. (1.22)

Therefore, 1.19–1.22 imply that n−1Z⊤e
p−→0 and ψ̂2SLS = ψ+ op(1) proving the result.

Lemma 5. (Consistency of θ̂) Let Assumptions 1–6 hold, then θ̂
p−→θ.

Proof of Lemma 5. The results follows from Lemma 4 and the continuous mapping

theorem.

Lemma 6. Let Assumptions 3–6 hold, then n−1/2Ẑ⊤e = n−1/2Z⊤e+ op(1).

Proof of Lemma 6. Consider the definition of Ẑ as in equation (1.6). It is sufficient to

show that

n−1/2(Ẑ− Z)⊤e = op(1) (1.23)

First, in order to show equation (1.23), note that

Ẑ− Z = [0,O, δEX,W1,W2,...,WL
[W1y](ψ̂), δEX,W1,W2,...,WL

[W2y](ψ̂), . . . ,

δEX,W1,W2,...,WL
[WLy](ψ̂),O,O, . . . ,O

]
,

where 0 represents a n×1 vector of zeroes,O is a n×K matrix of zeroes, and δEX,W1,W2,...,WL

[Wℓy] = EX,W1,W2,...,WL
[Wℓy](ψ̂) − EX,W1,W2,...,WL

[Wℓy](ψ), for all ℓ = 1, 2, . . . , L. From

equation (1.2) in the main text, one can write y
(
I−∑L

ℓ=1 βℓWℓ

)
= α´ +

∑L
ℓ=1WℓXδℓ +
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Xγ + e ≡ Dϕ + e, where D = [ι,X,W1y,W1X,W2y,W2X, . . . ,WLy,WLX] and ϕ =

(α, δ1, δ2, . . . , δL , γ)
⊤. Under Assumptions 1, 5, and using series expansion, for all ℓ =

1, 2, . . . , L, one can write

EX,W1,W2,...,WL
[Wℓy](ψ) = Wℓ

(
I−

L∑
ℓ=1

βℓWℓ

)−1

Dϕ = Wℓ

∞∑
q=0

λqWqDϕ,

where λ =
∑L

ℓ=1|βℓ| and W ≡∑L
ℓ=1

βℓ∑L
ℓ=1|βℓ|

Wℓ. Thus, this implies

EX,W1,W2,...,WL
[Wℓy](ψ) = WℓDϕ+WℓWDϕλ

+WℓW
2Dϕλ2 +WℓW

3Dϕλ3 + . . . .

Then, one can write

δEX,W1,W2,...,WL
[Wℓy]

⊤ = (ϕ̂2SLS − ϕ)⊤(WℓD)⊤

+ (ϕ̂2SLSλ̂2SLS − ϕλ)⊤(WℓWD)⊤ + . . . ,

where ϕ̂2SLS and λ̂2SLS are elements of ψ̂2SLS. From the last equation, one has

δEX,W1,W2,...,WL
[Wℓy]

⊤e = (ϕ̂2SLS − ϕ)⊤(WℓD)⊤e+ (ϕ̂2SLSλ̂2SLS − ϕλ)⊤

(WℓWD)⊤e+ . . . . (1.24)

By Lemma 4 and the continuous mapping theorem, one has (ϕ̂2SLSλ̂2SLS −ϕλ) = op(1),



27

∀q ≥ 1. Now, it is required to bound the elements of the term (WℓW
qD)⊤ e,∀q ≥ 1. More-

over, the model’s exogeneity assumption guarantees that EX,W1,W2,...,WL
[e] = 0. Therefore,

EX,W1,W2,...,WL

[
(WℓW

qD)⊤ e
]
= 0, q ≥ 1, which implies δEX,W1,W2,...,WL

[Wℓy]
⊤e = op(1),

for all ℓ = 1, 2, . . . , L. This result along with the fact that the rest elements of (Ẑ−Z)⊤e are

equal to zero, for all n, and therefore op(1), imply n−1/2
(
Ẑ− Z

)⊤
e = op(1), ∀ℓ = 1, 2, . . . , L,

∀q ≥ 1.

By Assumption 5, one has that the innovations ei are independent for each individ-

ual i with EX,W1,W2,...,WL
[ei] = 0, but they are not identically distributed. Note that for

some ξ > 0, one can write E |ei|2+ξ ≤ supn,iE |ei|2+ξ < ∞,∀i = 1, . . . , n, where the last

inequality comes from Assumption 5. Thus, supn,iE |ei|2+ξ <∞. By the same Assumption,

lim infn→∞ n−1
∑n

i=1 σ
2
ei
> 0 which implies that

lim inf
n→∞

n−1

n∑
i=1

EX,W1,W2,...,WL

[
e2i
]
> 0

holds. Therefore, Lyapunov’s condition holds and by the Lindeberg-Feller central limit

theorem one has n−1/2 (WℓW
qD)⊤ e = Op(1) and n

−1/2(Ẑ− Z)⊤e = op(1), ∀ℓ = 1, 2, . . . , L,

∀q ≥ 1.

1.9 Appendix: Monte Carlo Results

In this section one can find further Monte Carlo experiments, beyond what is discussed

in the main text, exploring the small sample properties of the proposed G2SLS estimator

described in Section ??. In particular, in what follows interest lies on how the estimator
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performs as the number of layers, L, increases in (1.1) with K = 1, i.e., Wℓ = [wℓ;i,j]

for ℓ = 1, . . . , L and L ∈ {2, 3, 4}, and the values and signs of the structural parameters,

ψ = (α, γ, β1, β2, . . . , βL, δ1, δ2, . . . , δL)
⊤, can take as permitted by Assumptions 1 and 2. A

total of 1,100 data sets, {yi, xi}ni=1 and {{wℓ;i,j}ni=1}nj=1, ∀ℓ ∈ {1, 2, 3, 4}, for n ∈ {50, 100, 200}

are generated from a combination of 2 different model specifications and network formation

models as follows:

Specification 1 (S1): The parameter values of ψ are set to be all positive, i.e., α = 0.15,

γ = 0.8, βℓ =
ϕ
L
, where ϕ ∈ {0.1, 0.9} and δℓ =

1
L
, ∀L ∈ {2, 3, 4}.

Specification 2 (S2): The parameter values of ψ are set to be α = 0.15, γ = 0.8, βℓ =∑L
ℓ=1(−1)ℓ+1 ϕ

L
, where ϕ ∈ {0.1, 0.9} and δℓ =

∑L
ℓ=1(−1)ℓ+1 1

L
, ∀L ∈ {2, 3, 4}.

Recall that wℓ;i,j = w∗
ℓ;i,j/

∑n
j=1w

∗
ℓ;i,j with w

∗
ℓ;i,j equals 1 if j is connected with i through

a type-ℓ social tie. Below we describe how W∗
ℓ = [w∗

ℓ;i,j] for ℓ = 1, . . . , L and L ∈ {2, 3, 4}

are constructed.

Networks Formation Model 1 (M1): The n×n adjacency matricesW∗
ℓ = [w∗

ℓ;i,j] are such

that W∗
1 is generated as an Erdős and Rényi’s (1959) random graph with density 0.01, while

the remaining adjacency matrices are defined as w∗
ℓ;i,j = w∗

ℓ−1;i,jc1,ℓ;i,j +
(
1− w∗

ℓ−1;i,j

)
c2,ℓ;i,j,

for i ̸= j, ℓ ∈ {2, 3, 4}, where c1,ℓ;i,j, and c2,ℓ;i,j are drawn independently from an independent

Bernoulli distribution with parameters 0.5, and 0.99 respectively in each replication.

Networks Formation Model 2 (M2): Each adjacency matrix W∗
ℓ = [w∗

ℓ;i,j(σ)] has el-

ements w∗
ℓ;i,j(σ) = I[(−1)ℓ−1zizj − vℓ;i,j ≥ 0], ∀ℓ ∈ {1, 2, 3, 4}, where I(·) is an indicator

function equal to one if its argument is true and zero otherwise. The variable z ∈ {−1, 1}

takes each value with probability 0.5, while vℓ;i,j is drawn from a logistic distribution with
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mean zero and scale parameter 1.

Finally, the sequences {xi}ni=1 and {ei}ni=1 in (1.1) are generated from independent stan-

dard normal distributions.

The results for specification S1 with both network formation models, M1 and M2, are

shown in Figures 1.2, 1.3, 1.4, and 1.5, while those for model specification S2 with both

network formation models, M1 and M2, are shown in Figures 1.6, 1.7, 1.8, and 1.9. Dashed

horizontal lines in each box plot represent the true parameter values. Similar results for

specification S1 can be found below. Overall, the small sample properties of the proposed

G2SLS estimator of all parameters of interest are good, with little to no bias as sample size

or the number of layers increases. The asymptotic normal approximation seems adequate

even with a sample size of 50 observations and across the number of multilayers.
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Figure 1.2: Monte Carlo Box Plots in S1 with M1
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Figure 1.3: Monte Carlo Q-Q Plots in S1 with M1
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Note: Q-Q plots for each sample size n = 50 (light gray), n = 100 (gray), and n = 200 (black) for
different number of layers L = {2, 3, 4} are based on 1, 100 replications using model specification
S1 with networks model formation M1. Dashed red line in each plot represents the 45-degree line.
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Figure 1.4: Monte Carlo Box Plots in S1 with M2
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Note: Box plots for each sample size n ∈ {50, 100, 200} for different number of layers L = {2, 3, 4}
are based on 1, 100 replications using model specification S1 with networks model formation M2.
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Figure 1.5: Monte Carlo Q-Q Plots in S1 with M2
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Note: Q-Q plots for each sample size n = 50 (light gray), n = 100 (gray), and n = 200 (black) for
different number of layers L = {2, 3, 4} are based on 1, 100 replications using model specification
S1 with networks model formation M2. Dashed red line in each plot represents the 45-degree line.
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Figure 1.6: Monte Carlo Box Plots in S2 with M1
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Note: Box plots for each sample size n ∈ {50, 100, 200} for different number of layers L = {2, 3, 4}
are based on 1, 100 replications using model specification S2 with networks model formation M1.
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Figure 1.7: Monte Carlo Q-Q Plots in S2 with M1
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Note: Q-Q plots for each sample size n = 50 (light gray), n = 100 (gray), and n = 200 (black) for
different number of layers L = {2, 3, 4} are based on 1, 100 replications using model specification
S2 with networks model formation M1. Dashed red line in each plot represents the 45-degree line.
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Figure 1.8: Monte Carlo Box Plots in S2 with M2
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Note: Box plots for each sample size n ∈ {50, 100, 200} for different number of layers L = {2, 3, 4}
are based on 1, 100 replications using model specification S2 with networks model formation M2.
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Figure 1.9: Monte Carlo Q-Q Plots in S2 with M2
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Note: Q-Q plots for each sample size n = 50 (light gray), n = 100 (gray), and n = 200 (black) for
different number of layers L = {2, 3, 4} are based on 1, 100 replications using model specification
S2 with networks model formation M2. Dashed red line in each plot represents the 45-degree line.
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1.9.1 Supplementary Monte Carlo

In this section we explore the performance of our proposed estimator (version 2 hereafter)

that utilizes a larger set of instruments than Lee’s (2003) and Badinger and Egger’s (2011)

version of the G2SLS, i.e., version 1 hereafter. A total of 1,100 data sets, {yi, xi}ni=1 and

{{wℓ;i,j}ni=1}nj=1, ∀ℓ ∈ {1, 2}, for n ∈ {50, 100, 200} are generated from Network Formation

Model 1 (M1) and the model Specification 1 (S1), defined above, with ϕ = 0.9, β2 = 0,

δ2 = 0 – we call this the Special Design 1 (SD1), and, ϕ = 0.9, δ1 = 0, δ2 = 0 – coined the

Special Design 2 (SD2) here.

Since SD1 corresponds to the traditional monolayered Linear-in-Means model, Lee’s

(2003) version of the G2SLS that uses instruments [ι,X,W2
1X,W1X] would suffice. Similarly

since SD2 corresponds to a bilayered Linear-in-Means model, Badinger and Egger’s (2011)

version of the G2SLS uses instruments [ι,X,W2
1X,W

2
2X,W1W2X,W2W1X]. On the other

hand, our proposed estimator uses instruments [ι,X,W2
1X,W

2
2X,W1X,W2X,W1W2 ×

X,W2W1X] instead.

The results are summarized in Tables 1.2 and 1.3 in terms of Monte Carlo bias (Bias),

standard deviation (Std. Dev.), and root mean squared error (RMSE). Overall our proposed

version displays uniformly better bias in SD1 and comparable RMSE for a sample size of

200 observations. On the other hand, our estimator is outperformed in all metrics for SD2.
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1.10 Appendix: Empirical Application

1.10.1 Data Description

Our data set comes from TransUnion®, a major credit bureau in Canada. It contains

anonymized account-level information on loan types, outstanding balances, consumer credit

scores, as well as their age and the encrypted postal code of their primary residence. For

privacy protection, postal codes are encrypted in a way that we only observe the first 3 digits,

known as the Forward Sortation Area (FSA). The last 3 digits, known as the local delivery

unit, is encrypted and replaced by a unique identifier. We are able to use this information

to construct the neighborhoods in our geographical network, by matching individuals living

in the same encrypted postal code without knowing their actual residential locations.

The data set covers major loan types including mortgages, credit cards, auto loans, lines

of credit, and installment loans. While home ownership is not reported in the data set, we

constructed a homeowner indicator following the method in Bhutta and Keys (2016). Total

non-residential debt includes all loan types in the data set, except mortgages and home-

equity lines of credit. Consumers are divided into age groups in 5-year increments except

the youngest and the oldest ones, there are: 18-25, 25-30, 30-35, 35-40, 40-45, 45-50, 50-55,

55-60, 60-65, and 65 or above.

For constructing our sample, accounts that have not been updated for 90 days (1 quar-

ter) or with missing information concerning outstanding balance are dropped. Outstanding

account balances are then aggregated to individual-level. We only include individuals aged

18 or above, who possess 1 or more credit cards and have resided in the urban service area

https://www.ic.gc.ca/eic/site/bsf-osb.nsf/eng/br03396.html
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for 6 or more months prior to the time of our analysis. Individuals with missing credit scores,

age, or neighborhood information are also excluded.

Descriptive statistics for the data set is reported in Table 1.4. It contains 47,593 individ-

uals, residing in 1,190 neighborhoods that are geographically divided into 36 dissemination

areas (DA). Each DA contains about 35 neighborhoods. On average, there are about 40

individuals living in a neighborhood and about 1322 people in a DA. When individuals are

divided into DA-specific age groups, there are on average about 132 people per age group.

Consumer characteristics and their outstanding loans contains substantial variation and

heavily skewed to the right, as exhibited in the top panel. When aggregated to consumer

groups, the distribution of neighborhoods and age-groups are similar in the mean and the

variation of outstanding credit card and auto loan balances, as reported in the middle and

the bottom panel. They also have similar distributions in terms of average credit scores and

its standard deviation within a group.

1.10.2 Supplementary Estimation Results

The estimated interactive terms for the linear-in-mean model on credit-card balances are

reported in Figure 1.10. The top panel shows the age group × homeowner fixed effects,

where we find older age groups have lower credit-card balances than those in age 18–25.

This finding is consistent with individuals’ credit card use reported in Henry et al. (2018)

that younger card holders have higher revolving balances. The bottom panel reports the DA

× homeowner fixed effects. We find that the average credit-card balance for renters have

smaller variations across neighborhoods, when compared to that for homeowners.
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Similarly, the estimated interactive terms for auto loans are shown in Figure 1.11. In-

terestingly, the top panel shows that homeowners below age 55 have higher values of auto

loans, mainly because homeowners are more likely to own cars. The average auto-loan bal-

ance for homeowners also have bigger variations across neighborhoods than that for renters,

as indicated in the bottom panel.
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Table 1.2: Monte Carlo Results of SD1

G2SLS Version 1 G2SLS Version 2
Parameters n Bias Std. Dev. RMSE Bias Std. Dev. RMSE

β1 50 -0.403 0.136 0.425 -0.401 0.235 0.464
100 -0.406 0.086 0.415 -0.404 0.112 0.420
200 -0.401 0.043 0.403 -0.401 0.052 0.404

β2 50 0.001 0.257 0.256
100 0.004 0.111 0.111
200 0.001 0.047 0.047

δ1 50 -0.012 0.151 0.152 -0.009 0.215 0.215
100 -0.000 0.098 0.098 0.001 0.113 0.112
200 -0.002 0.053 0.053 -0.001 0.058 0.058

δ2 50 -0.000 0.267 0.267
100 -0.005 0.117 0.117
200 0.001 0.055 0.055

γ 50 -0.008 0.167 0.167 -0.002 0.268 0.268
100 0.003 0.111 0.111 0.002 0.139 0.139
200 0.000 0.078 0.078 0.002 0.089 0.089

Note: Monte Carlo bias (Bias), standard deviation (Std. Dev.), and root mean squared error (RMSE).
Version 1 implements Lee’s (2003) G2SLS, while Version 2 implements our proposed G2SLS.

Table 1.3: Monte Carlo Results of SD2

G2SLS Version 1 G2SLS Version 2
Parameters n Bias Std. Dev. RMSE Bias Std. Dev. RMSE

β1 50 -0.442 0.286 0.526 -0.551 0.839 1.003
100 -0.422 0.164 0.453 -0.494 0.943 1.064
200 -0.407 0.082 0.415 -0.447 0.827 0.940

β2 50 -0.455 0.328 0.328 -0.758 0.830 0.885
100 -0.443 0.173 0.173 -0.682 0.738 0.773
200 -0.410 0.075 0.085 -0.515 0.640 0.643

δ1 50 0.089 0.603 0.729
100 0.047 0.710 0.842
200 0.031 0.629 0.784

δ2 50 0.250 0.610 0.658
100 0.196 0.551 0.584
200 0.083 0.470 0.477

γ 50 -0.072 0.278 0.287 -0.027 0.320 0.321
100 -0.045 0.161 0.167 -0.028 0.208 0.210
200 -0.014 0.091 0.092 0.002 0.137 0.137

Note: Monte Carlo bias (Bias), standard deviation (Std. Dev.), and root mean squared error (RMSE).
Version 1 implements Badinger and Egger’s (2011) G2SLS, while Version 2 implements our proposed G2SLS.
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Table 1.4: Descriptive Statistics

P25 P50 P75 Mean SD N

By individuals
Credit card 234 2057 7349 5979.41 10010.41 47593
Auto loan 0 0 25198 15091.79 24861.22 47593
Consumer debt 2016 17407 49418 34216.94 47761.20 47593
Credit scores 666 771 839 737.78 117.27 47593
Age 32.5 41.6 53.8 43.34 13.41 47593

By neighborhoods
Ni 12 30 59 39.95 40.48 1190
Credit card 4417.16 5706.22 7187.28 6158.01 3542.70 1190
Auto loan 9648.00 14167.10 19157.54 14669.76 7822.58 1190
Avg. credit scores 717.07 740.65 762.46 738.88 40.58 1190
Sd. credit scores 97.80 112.77 125.55 109.86 28.86 1190

By age groups
Ni 69.5 111 174 132.20 87.71 360
Credit card 4382.21 6081.21 7448.44 5865.26 2209.72 360
Auto loan 10229.82 14131.09 18405.66 14344.51 5620.80 360
Avg. credit scores 713.82 734.37 762.25 737.18 33.04 360
Sd. credit scores 106.31 114.52 121.20 113.62 13.10 360

Ni per DA 747.5 1313.5 1796.5 1322.03 693.31 36
Na per DA 23 32.5 44 34.58 18.47 36

Note: Credit card and auto loans refer to the outstanding balance in the respective categories. Consumer
debt and credit scores refers to the levels at the end of last quarter. Ni denotes the number of individuals,
and Na denotes the number of neighborhoods. Avg. and sd. credit scores refer to the average and the
standard deviation of credit scores within a specific group. P25, P50, and P75 denotes the 25th, 50th, and
75th percentiles, respectively. SD is standard deviation and N refers to the number of observations.
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Figure 1.10: Estimated Interactive Terms for Credit Card
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Note: The top panel reports the estimated interaction terms of age group × homeowner, benchmarked to
renters in age group 18–25. The bottom panel reports the estimated interaction terms of Dissemination Area
(DA) × homeowner, benchmarked to renters in DA displayed in the last column. The dot points are the
estimates for renters and the triangular points are the estimates for homeowners. The vertical line shows
the range of ±1.96 standard errors.
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Figure 1.11: Estimated Interactive Terms for Auto Loan
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Note: The top panel reports the estimated interaction terms of age group × homeowner, benchmarked to
renters in age group 18–25. The bottom panel reports the estimated interaction terms of Dissemination Area
(DA) × homeowner, benchmarked to renters in DA displayed in the last column. The dot points are the
estimates for renters and the triangular points are the estimates for homeowners. The vertical line shows
the range of ±1.96 standard errors.
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Chapter 2

Risk Transmission across European

entities using Networks: A Wide

Replication of Gross and Siklos (2020)

This paper replicates Gross and Siklos (2020) estimation results, figures and tables in a

wide sense, having extended their daily dataset from July 28, 2017 to May 19, 2022. Their

approach monitors credit risk transmission among European sovereigns, financial and non-

financial entities over time, from 2006 to 2017. This paper is completed using Python soft-

ware instead of using the original code, written in Matlab. Additionally, the extension of the

dataset provides new insights on the credit risk transmission behavior for the static and the

dynamic full-sample approaches. In particular, one of the findings suggests that during the

pandemic the main senders of risk belong to non-financial industries.
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2.1 Introduction

Gross and Siklos (2020) is an empirical application paper that evaluates credit risk transmis-

sion among European institutions using daily data on a panel of Credit Default Swaps (CDS)

spreads. Their analysis’ results uncover how a network of European sovereigns, non-financial

and financial sector institutions, depicting risk exchanges, evolves over time. The directed

network connections shared by couples of institutions represent the estimated spillover ef-

fects. In other words, their work estimates spillover effects among the aforementioned types

of institutions and depicts those estimated spillover effects using networks. Their analysis

is conducted for the full-sample, as well as for sub-sample periods where important events

took place, such as the Lehman Brother’s bankruptcy, and they approach risk interactions

both statically, and dynamically using rolling window estimation.

This paper replicates the authors’ code using Python. Additionally, in this work all

results come from an extended version of the original dataset, obtained using Datastream.

The data in this work range from October 23, 2006 up to May 19, 2022. The sections of the

paper are organized as follows. In section 2.2, the resulting tables and figures for the static

full-sample analysis are provided and discussed. In section 2.3, I provide all the dynamic

results in tables and figures by estimating the Vector Autoregressive (VAR) model using

rolling window estimation with increment size 1 day and window sizes 150, 200, and 250

days. Finally, the last section offers some concluding remarks.
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2.2 Replication Static results

In this section, I am going to provide a discussion on the extended dataset used, the method-

ology and the replicated figures and tables comparing to those of the Gross and Siklos (2020)

paper.

Gross and Siklos (2020), henceforth GS, have a dataset of 152 entities on CDS spreads.

These entities are European sovereigns and institutions from the Automotive, Consumer,

Energy and Telecommunication industries as well as from the financial sector. Table 2.1

is a representative table of all the dataset’s entities including information regarding Entity

Names, Sector classification, Sub-Sector classification, Country of headquarters and the

respective three digit Name Code. The dataset used for the GS paper can be found at the

Journal of Applied Econometrics Data Archive. In this replication section, the exact same

entities are used in order to provide the replicated estimation results, figures and tables.

It is important to note that the replicated results of the GS paper presented below are

produced using solely Python software. The Python code is written in jupyter notebook, an

open-source web application which allows for code and output being coexistent in one script.

Specific Python modules such as statsmodels and sklearn, were of particular importance

for this replication as they are part of the Python code script and helped in providing the key

results of this work in an efficient way. Overall, the replicated results provided match closely

to the GS paper results. In what follows, I will comment on the outputs while describing

the empirical replication’s methodology using Python.

GS are interested in the pure contagion effect, so they first apply the Generalized dy-

namic factor model by Barigozzi and Hallin (2017), in order to remove the common com-

http://econ.queensu.ca/jae/
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ponent and focus on studying the idiosyncratic component of the logarithmic CDS spreads.

The number of factors is determined by the Hallin and Lǐska (2007) IC2 criterion and Figure

2.1 indicates one common factor for the full-sample. More specifically, the resulting Figure

2.1 provides a similar result as Figure A.1 of the original paper where one common factor

was also suggested.

The estimated common factor is represented in Figure 2.2 for the full-sample period

2006-2022. The corresponding figure in the original paper is Figure A.2 which looks very

similar to the replicated Figure 2.2. Around 2020, after the pandemic started the estimated

common factor is characterized by higher volatility. Next, properties of the common factor

can be found in Table 2.2, where results are in close match. More specifically, panel A shows

the explanatory power of the estimated common factor by sub-sector and overall. In panel B

of Table 2.2, the VIX dataset used matches the start and end dates of the CDS dataset, i.e.

it spans from October 23, 2006, up to May 19, 2022. However, the dates on the CDS dataset

and the VIX dataset are not exactly the same. In order to handle this, the intersection of

the two datasets dates is used and, therefore, only the matching data is used for Panel B.

The raw and the estimated idiosyncratic returns are illustrated in the summary statistics

at Table 2.3, equivalent to Table A.3 in the GS paper. The idiosyncratic returns presented

in this table are used to estimate the coefficient matrix and the variance covariance matrix

of the residuals in the context of a Vector Autoregressive (VAR) model.

However, the issue of high dimensionality makes it meaningful to use a penalized re-

gression method for estimation. Elastic Net shrinkage is found to be the most suitable

penalization method compared to others and it is the one chosen for estimation. Table 2.4
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provides illustrative results on why the Elastic Net penalization method is used relative to

others. The results slightly differ from GS’s Table 3 because of the higher tolerance chosen

for code efficiency and the randomness incorporated in the 10-fold cross validation.

The estimated coefficient matrix gives insights on Granger causality. Figure 2.3, the

analogous of the original Figure A.6, pictures Granger causality from sovereigns to non-

financial sub-sectors.

Post-estimation, GS compute the generalized variance decompositions (GVDs). Ac-

cording to Diebold and Yılmaz (2014) when represented in matrix form, the variance de-

composition matrix can be also considered to be a network’s adjacency matrix and thus,

estimated variance decompositions can be visually depicted in a network plot. In this case,

the variance decomposition’s network plot, consists of the 152 institutions as the network’s

nodes. The directed links, which represent the amount of risk being transmitted from one

node to another, the node location that represents how much risk a node holds - the more

central the bigger the risk, the more peripheral the lower the risk-, and the link thickness

which prints how strong the risk exchanges are between two nodes.

Figures 2.4, 2.5, 2.6, and 2.7 replicate versions1 of Figures 1, A.8, A.9, and A.10, re-

spectively. They are the network representation plots of the full sample period for forecast

horizon h = 10, h = 5, h = 15 and h = 20, respectively. The replicated figures match closely

to the original ones, however there are some differences such as the clustering in financial

institutions in two instead of one groups which makes the group of banks that is closer to

the center of the network holding more risk relatively to the other.

1In networks, the positioning of nodes, the so-called “layout”, can be user-specified or algorithm-based.
Here, the layout is based on the strength of the connections, creating appealing and repulsive forces. More
specifically, it is specified by the Fruchterman and Reingold (1991) force-directed algorithm.
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In addition, the case where two common factors are included in the model, under forecast

horizon h = 10, is considered and the resulting network representation can be visualized in

Figure 2.8 which corresponds to the original Figure A.11. To evaluate in which extent

the different model specifications are correlated with the basic model with one factor for

h = 10, GS provide Table A.4. Its replicated version is Table 2.5 which calculates the

respective rank correlation coefficients of the other specifications compared to the basic

model. The replication results are similar, although somewhat differ when the two factor

model is compared to the basic model. This may most likely happen due to the larger dataset

used in this work.

From the estimated variance decomposition matrix, the authors get connectedness

among the entities and produce Table 1 and Figures 2, 3. Using the full-sample data,

the corresponding tables can be viewed in Table 2.6 and Figures 2.9, 2.10. The findings are

in close match overall with the original ones, having only some differences. For instance, in

figure 2.10, where cross-sectoral connectedness in the Energy sub-sector is higher from the

financial sector than from the sovereigns. Geographical connectedness is depicted in Figure

2.11 which corresponds to original Figure 4 with different connectedness magnitudes and

color schemes. The resulting geographical connectedness gives insights on the magnitude of

nodes and on country colors depicting the full-sample (2006-2022) country and sector level

risk exchanges. The findings show that the non-financial sector in the UK, Portugal, Spain,

France, Netherlands, Germany, Switzerland is ranked in the top financial risk receiver for the

full-sample 2006-2022. On the other hand, Italy, Spain and Portugal’s non-financial sector

is the top receiver of sovereign risk.
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Geographical connectedness is evaluated using data from the consolidated banking sta-

tistical database of the Bank for International Settlements (BIS) for Table 2.7, the replicated

version of Table 2. Note that the results differ probably due to alternative data selection,

cleaning and merging. The BIS data used in this replication includes all available countries

in the countries in the database that are present in Table 2.1’s ‘Country’ column and for the

dates that the CDS dataset extends. The estimated values with three asterisks are the ones

with p-value less or equal to 0.01. The estimated regression coefficient that is significant

shows that the higher the directional connectedness from sovereign j to the non-financial

sector of country i, the higher the risk exposure of country i to all the sectors of j.

All the replicated figures and tables are presented below. The methodology followed

is identical to the one employed in the GS paper. Also, the connectedness measures used

in this wide replication are discussed in the GS paper. More intuition on the connection

between variance decompositions and networks can be found in Diebold and Yılmaz (2014).
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Figure 2.1: Hallin and Liska (2007) IC2 criterion
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Note: The Hallin and Liska (2007) IC2 criterion suggests the number of common factors to be used in

a dynamic factor model. This figure presents the qTc;n and Sc as functions of c, where qTc;n comes from

the penalty function p(n, T ) =
(
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log
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. Sc equals zero in

three intervals called “stability intervals”, for c ∈ {[0, 0.22], [1.04, 1.99], [2.72, 2.99]}. Hallin and Liska (2007)

suggest to use the indicated number of factors from the second stability interval, which in this case yields

qTc;n = 1, i.e. one common factor.
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Table 2.1: List of CDS entities in the panel dataset

Entity Name Sector Sub-Sector Country Name Code
Adecco Non-financial Autos & Industrials Switzerland ADE
Volvo Non-financial Autos & Industrials Sweden VOL
Akzo Nobel Non-financial Autos & Industrials Netherlands AKN
Alstom Non-financial Autos & Industrials France ALS
Anglo American Non-financial Autos & Industrials UK ANA
Astrazeneca Non-financial Autos & Industrials UK ASZ
Atlantia Non-financial Autos & Industrials Italy ATL
Bae Systems Non-financial Autos & Industrials UK BAE
BASF Non-financial Autos & Industrials Germany BAS
Bayer Non-financial Autos & Industrials Germany BAY
BMW Non-financial Autos & Industrials Germany BMW
Bouygues Non-financial Autos & Industrials France BOU
Clariant Non-financial Autos & Industrials Switzerland CLA
Saint-Gobain Non-financial Autos & Industrials France SAG
Michelin Non-financial Autos & Industrials Switzerland MIC
Continental Non-financial Autos & Industrials Germany CON
Daimler Non-financial Autos & Industrials Germany DAI
Deutsche Post Non-financial Autos & Industrials Germany DPO
Evonik Non-financial Autos & Industrials Germany EVO
Finmeccanica Non-financial Autos & Industrials Italy FME
GKN Holding Non-financial Autos & Industrials UK GKN
Glencore Non-financial Autos & Industrials Switzerland GLC
Koninklijke DSM Non-financial Autos & Industrials Netherlands DSM
Air Liquide Non-financial Autos & Industrials France AIR
Lanxess Non-financial Autos & Industrials Germany LAX
Linde Non-financial Autos & Industrials Germany LIN
Peugeot Non-financial Autos & Industrials France PEU
Renault Non-financial Autos & Industrials France REN
Rentokil Initial Non-financial Autos & Industrials UK REI
Rolls-Royce Non-financial Autos & Industrials UK ROR
Sanofi-Aventis Non-financial Autos & Industrials France SAA
Siemens Non-financial Autos & Industrials Germany SIE
Stora Enso Oyj Non-financial Autos & Industrials Finland SEO
Solvay Non-financial Autos & Industrials Belgium SOL
ThyssenKrupp Non-financial Autos & Industrials Germany THK
UPM-Kymmene Oyj Non-financial Autos & Industrials Finland UPM
Valeo Non-financial Autos & Industrials France VAL
Vinci Non-financial Autos & Industrials France VIN
Volkswagen Non-financial Autos & Industrials Germany VOL
Wendel Non-financial Autos & Industrials France WEN
Accor Non-financial Consumers France ACC
Electrolux Non-financial Consumers Sweden ELE
Auchan Non-financial Consumers France AUC
Alliance Boots Non-financial Consumers UK ALL
Carrefour Non-financial Consumers France CAR
Casino Guichard Non-financial Consumers France CAG
Compass Non-financial Consumers UK COM
Danone Non-financial Consumers France DAN
Lufthansa Non-financial Consumers Germany LUF
Diageo Non-financial Consumers UK DIA
Experian Finance Non-financial Consumers UK EXF
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(Table 2.1 continued)

Entity Name Sector Sub-Sector Country Name Code
Henkel Non-financial Consumers Germany HEN
Ladbrokes Non-financial Consumers UK LAD
Imperial Brands Non-financial Consumers UK IMB
ISS Global Non-financial Consumers Denmark ISS
J Sainsbury Non-financial Consumers UK JSA
Kering Non-financial Consumers France KER
Kingfisher Non-financial Consumers UK KIN
Koninklijke Ahold Delhaize Non-financial Consumers Netherlands AHO
Koninklijke Philips Non-financial Consumers Netherlands PHI
LVMH Non-financial Consumers France LVM
Marks & Spencer Non-financial Consumers UK M&S
Metro Non-financial Consumers Germany MET
Nestlé Non-financial Consumers Switzerland NES
Next Non-financial Consumers UK NEX
PernodRicard Non-financial Consumers France PER
Safeway Non-financial Consumers UK SAF
Svenska Cellulosa Non-financial Consumers Sweden SCE
Swedish Match Non-financial Consumers Sweden SWM
Tate & Lyle Non-financial Consumers UK T&L
Tesco Non-financial Consumers UK TES
Unilever Non-financial Consumers UK UNI
BP Non-financial Energy UK BP
Centrica Non-financial Energy UK CEN
EON Non-financial Energy Germany EON
Edison Non-financial Energy Italy EDI
Energias de Portugal Non-financial Energy Portugal EDP
Electricité de France Non-financial Energy France EDF
ENBW Non-financial Energy Germany ENB
ENEL Non-financial Energy Italy ENE
ENGIE Non-financial Energy France ENG
Fortum OYJ Non-financial Energy Finland FOY
Gas Natural SDG Non-financial Energy Spain SDG
Iberdrola Non-financial Energy Spain IBE
National Grid Non-financial Energy UK NGR
Royal Dutch Shell Non-financial Energy Netherlands RDS
RWE Non-financial Energy Germany RWE
Statoil Non-financial Energy Norway STA
Total Non-financial Energy France TOT
United Utilities Non-financial Energy UK UNU
British Telecom Non-financial TMT UK BTE
Deutsche Telekom Non-financial TMT Germany DTE
Hellenic Telecom Non-financial TMT Greece HTE
ITV Non-financial TMT UK ITV
Nokia Non-financial TMT Finland NOK
Orange Non-financial TMT France ORA
Pearson Non-financial TMT UK PEA
Publicis Non-financial TMT France PUB
Relx Non-financial TMT UK REL
St Microelectronics Non-financial TMT Switzerland STM
Ericsson Non-financial TMT Sweden ERI
Telefonica Non-financial TMT Spain TEF
Telekom Austria Non-financial TMT Austria TEA
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(Table 2.1 continued)

Entity Name Sector Sub-Sector Country Name Code
Telenor Non-financial TMT Norway TEL
Telia Non-financial TMT Sweden TEI
Vivendi Non-financial TMT France VIV
Vodafone Non-financial TMT UK VOD
Wolters Non-financial TMT Netherlands WOL
WPP Non-financial TMT UK WPP
Aegon Financial Netherlands AEG
Generali Financial Germany ALL
Aviva Financial Italy GEN
AXA Financial UK AVI
Hannover Rueck Financial France AXA
Munich RE Financial Germany HRE
Swiss RE Financial Germany MRE
Zurich Insurance Financial Switzerland SRE
Dexia Financial Switzerland ZIN
BNP Paribas Financial Belgium DEX
Crédit Agricole Financial France BNP
Société Générale Financial France CAG
Deutsche Bank Financial France SOG
Commerzbank Financial Germany DBA
Bank of Ireland Financial Germany COB
Intesa Sanpaolo Financial Ireland BOI
Banca Monte Di Paschi Financial Italy BMP
Banca Popolare Financial Italy BPO
Unicredit Financial Italy UNI
Mediobanca Financial Italy MED
ING Financial Netherlands ING
Rabobank Financial Netherlands RAB
Banco Comercial Port. Financial Portugal BCP
Santander Financial Spain SAN
BBVA Financial Spain BBV
Royal Bank of Scot. Financial UK RBS
HSBC Bank Financial UK HSB
Barclays Bank Financial UK BAB
Lloyds Bank Financial UK LLB
Standard Chartered Financial UK SCH
UBS Financial Switzerland UBS
Credit Suisse Financial Switzerland CSU
Austria Sovereign Austria AUT
Belgium Sovereign Belgium BEL
France Sovereign France FRA
Germany Sovereign Germany GER
Ireland Sovereign Ireland IRE
Italy Sovereign Italy ITA
Netherlands Sovereign Netherlands NED
Portugal Sovereign Portugal POR
Spain Sovereign Spain ESP
UK Sovereign UK UK
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Figure 2.2: Evolution of the common factor over the full-sample period ranging from October
23, 2006 up to May 19, 2022. The common factor is estimated using the Generalized dynamic
factor model of Barigozzi and Hallin (2016).
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Table 2.2: Properties of the estimated common factor

Panel A: CDS non-financial corporations
Sector Autos & In-

dustrials
Consumers Energy TMT Financial Sovereign All CDS

R2 0.465 0.431 0.439 0.473 0.433 0.110 0.332

Panel B: Correlation with global uncertainty (VIX)

ρ(Ft,∆V IX) ∆V IXt ∆V IXt−1 R2

0.526 0.347*** 0.029 0.279

Note: Panel A presents the coefficient of determination R2 of the common factor for the CDS spreads

averaged by sub-sector. Panel B shows how the common factor is related to global uncertainty as captured

by VIX for the full-sample data ranging from October 23, 2006 up to May 19, 2022. ρ(Ft,∆V IXt) is the

Pearson’s correlation coefficient. ∆V IXt, ∆V IXt−1 and R2 provided come from regressing the common

factor Ft on the contemporaneous and first lag VIX returns as follows: Ft = c +∆V IXt +∆V IXt−1 + εt.

∗ ∗ ∗ denotes 1% significance level based on Newey-West standard errors.
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Table 2.3: Summary statistics of CDS data by country and by sector

Panel A: CDS non-financial corporations

Raw returns Idiosyncratic returns

Countries Entities Mean Std.
dev.

Min Max Mean Std.
dev.

Min Max

Austria 1 -0.0 3.09 -24.78 25.16 -0.00 1.99 -15.56 18.79
Belgium 1 0.0 3.16 -25.04 27.41 0.00 2.03 -12.32 27.80
Denmark 1 0.0 3.10 -83.37 38.12 0.00 2.83 -83.19 33.99
Finland 4 -0.0 3.29 -83.88 37.76 -0.00 2.46 -83.99 36.76
France 24 -0.0 3.19 -58.92 60.03 -0.00 2.19 -59.64 57.33
Germany 19 -0.0 3.23 -33.53 103.18 0.00 2.25 -32.31 101.87
Greece 1 0.0 4.34 -33.16 54.41 -0.00 3.40 -26.46 44.23
Italy 4 -0.0 3.49 -53.71 71.65 -0.00 2.63 -52.52 71.37
Netherlands 6 -0.0 3.29 -77.99 80.75 -0.00 2.35 -80.01 77.87
Norway 2 -0.0 2.88 -25.64 32.04 0.00 2.21 -16.26 31.52
Portugal 1 -0.0 3.63 -39.06 29.29 0.00 2.47 -30.87 20.58
Spain 3 -0.0 3.64 -40.02 30.49 0.00 2.36 -22.07 30.92
Sweden 6 -0.0 2.75 -28.89 51.85 0.00 1.96 -23.44 52.26
Switzerland 6 0.0 3.27 -44.13 44.09 0.00 2.37 -36.28 38.14
UK 30 -0.0 3.14 -127.06 140.42 0.00 2.31 -130.71 139.93
Panel B: CDS financial institutions

Raw returns Idiosyncratic returns

Countries Entities Mean Std.
dev.

Min Max Mean Std.
dev.

Min Max

Belgium 1 0.0 4.21 -104.95 86.57 -0.00 4.08 -104.65 86.85
France 4 -0.0 4.52 -44.02 62.63 0.00 3.07 -22.93 42.46
Germany 5 0.0 4.64 -47.70 61.30 0.00 3.21 -38.62 40.51
Ireland 1 -0.0 4.89 -86.97 60.40 0.00 4.75 -86.62 59.11
Italy 6 0.0 4.40 -59.37 75.31 0.00 3.27 -57.52 54.90
Netherlands 3 -0.0 4.24 -39.06 67.60 -0.00 3.29 -38.14 62.27
Portugal 1 0.0 3.80 -35.50 40.60 -0.00 3.19 -32.76 47.94
Spain 2 0.0 4.74 -45.77 33.94 -0.00 3.44 -30.52 36.16
Switzerland 4 -0.0 4.25 -41.10 56.21 0.00 2.93 -32.86 31.83
UK 6 0.0 4.50 -70.75 65.74 -0.00 3.32 -61.30 57.12
Panel C: CDS sovereigns

Raw returns Idiosyncratic returns

Countries Entities Mean Std.
dev.

Min Max Mean Std.
dev.

Min Max

Austria 1 0.0 8.83 -200.19 153.10 0.01 8.61 -197.26 153.06
Belgium 1 -0.0 4.27 -28.81 69.79 -0.00 3.80 -27.29 59.69
France 1 0.0 8.69 -200.19 153.11 0.00 8.46 -197.44 153.06
Germany 1 0.0 8.13 -133.54 154.00 0.01 7.95 -133.29 153.97
Ireland 1 -0.0 13.62 -208.68 207.15 0.00 13.55 -207.35 207.51
Italy 1 0.0 4.00 -37.76 33.75 0.00 3.44 -37.21 34.77
Netherlands 1 -0.0 5.55 -65.97 65.88 0.00 5.43 -65.20 69.18
Portugal 1 0.0 4.28 -51.32 32.08 0.00 3.76 -34.03 25.61
Spain 1 0.0 5.10 -57.12 56.99 0.00 4.71 -58.54 56.68
UK 1 0.0 4.11 -62.82 93.58 0.00 3.87 -59.52 92.87

Note: The table shows the descriptive statistics of the demeaned raw panel of 152 CDS spreads and the

estimated idiosyncratic returns arranged by country and by sector.
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Table 2.4: Out-of-sample forecast results

Autos &
Industri-
als

Consumers Energy TMT Financial Sovereign Total

Optimal
Elastic Net

5.1431 5.7205 4.9571 5.0559 5.1358 7.9649 5.4158

Constant
mean

5.1804 5.5311 5.6314 5.0265 5.3575 9.4660 5.6088

AR(1) 4.7800 6.5543 5.4467 5.1840 5.4776 8.7328 5.6945

Ridge 5.9409 6.0039 6.3823 5.7661 6.1038 8.9663 6.2190

Constant
Elastic Net

4.9729 5.0968 5.3705 5.6586 5.5573 9.5917 5.5625

Note: The in-sample period is 10/23/2006 - 12/31/2019, the out-of-sample period corresponds to 01/01/2020-

05/19/2022. The table shows the mean squared error (MSE) of the chosen estimation penalization

method of optimal elastic net by sector and compares it to constant mean, AR(1), Ridge regression

and Constant elastic net models. The optimal elastic net model chooses the optimal mixing parameter

α ∈ {[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]} and the penalty tuning parameter λ jointly in the shrinkage

and selection process. The constant mean model uses the in-sample mean of each variable as forecasts. The

AR(1) model conducts forecasts based on the fitted values from a persistent process. Ridge regression applies

shrinkage in the VAR with α = 1 and constant elastic net uses α = 0.5 and chooses only the optimal λ in

the penalty function.



62

Figure 2.3: Static Granger-causality cross-sectoral network connectedness
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Note: This figure shows the cross-sectoral share of Granger-causality connections using the ratio of non-zero

connections over the total number of possible connections originating from Non-financial subsectors to

Financial institutions (black bars) and to Sovereigns (grey bars).



63

Figure 2.4: CDS network plot for the full-sample period (2006-2022) under forecast horizon
h = 10

Note: The network’s nodes are the CDS individual institutions colored by sub-sector and named according

to the institutions’ corresponding Name Code in Table 2.1. Their size represents the number and strength

of outgoing connections they have, the bigger the size the more the risk they transmit to others. They are

positioned based on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes

close to each other according to how strongly they are connected. The connections are estimated using

h-step forecast error variance decompositions. The number of common factors used is equal to two here but

when applying the Hallin and Lǐska (2007) IC2 criterion, the suggested number of factors is equal to one.
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Figure 2.5: CDS network plot for the full-sample period (2006-2022) under forecast horizon
h = 5

Note: The network’s nodes are the CDS individual institutions colored by sub-sector and named according

to the institutions’ corresponding Name Code in Table 2.1. Their size represents the number and strength

of outgoing connections they have, the bigger the size the more the risk they transmit to others. They are

positioned based on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes

close to each other according to how strongly they are connected. The connections are estimated using

h-step forecast error variance decompositions. The number of common factors used is equal to two here but

when applying the Hallin and Lǐska (2007) IC2 criterion, the suggested number of factors is equal to one.
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Figure 2.6: CDS network plot for the full-sample period (2006-2022) under forecast horizon
h = 15

Note: The network’s nodes are the CDS individual institutions colored by sub-sector and named according

to the institutions’ corresponding Name Code in Table 2.1. Their size represents the number and strength

of outgoing connections they have, the bigger the size the more the risk they transmit to others. They are

positioned based on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes

close to each other according to how strongly they are connected. The connections are estimated using

h-step forecast error variance decompositions. The number of common factors used is equal to two here but

when applying the Hallin and Lǐska (2007) IC2 criterion, the suggested number of factors is equal to one.
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Figure 2.7: CDS network plot for the full-sample period (2006-2022) under forecast horizon
h = 20

Note: The network’s nodes are the CDS individual institutions colored by sub-sector and named according

to the institutions’ corresponding Name Code in Table 2.1. Their size represents the number and strength

of outgoing connections they have, the bigger the size the more the risk they transmit to others. They are

positioned based on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes

close to each other according to how strongly they are connected. The connections are estimated using

h-step forecast error variance decompositions. The number of common factors used is equal to two here but

when applying the Hallin and Lǐska (2007) IC2 criterion, the suggested number of factors is equal to one.
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Figure 2.8: CDS network plot for the full-sample period (2006-2022) under forecast horizon
h = 10 when imposing two common factors

Note: The network’s nodes are the CDS individual institutions colored by sub-sector and named according

to the institutions’ corresponding Name Code in Table 2.1. Their size represents the number and strength

of outgoing connections they have, the bigger the size the more the risk they transmit to others. They are

positioned based on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes

close to each other according to how strongly they are connected. The connections are estimated using

h-step forecast error variance decompositions. The number of common factors used is equal to two here but

when applying the Hallin and Lǐska (2007) IC2 criterion, the suggested number of factors is equal to one.
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Table 2.5: Rank correlation coefficients between the baseline model (1 factor, 10 days forecast
horizon) and alternative specifications

Ranking of Senders Ranking of Receivers

Financial to Non-Financial

Forecast Horizon

5 days 0.9991*** 0.9982***

15 days 0.9999*** 0.9997***

20 days 0.9999*** 0.9997***

2 common factors 0.8595*** 0.8871***

Sovereign to Non-Financial

5 days 0.9985*** 0.9934***

15 days 0.9999*** 0.9994***

20 days 0.9998*** 0.9994***

2 common factors 0.9173*** 0.8915***

Note: The table reports the Spearman rank correlation coefficient for rankings of senders and receivers

between the baseline VAR model with one common factor and h = 10 days forecast horizon and alternative

model specifications. Rank correlation coefficient equal to one means that ranking is exactly equal in the

models under comparison, while a positive rank correlation implies that rankings move to the same direction

(e.g. both increase) for both models under comparison. ∗ ∗ ∗ indicates that the associated p-value is equal

to or less than 1%.
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Table 2.6: Ranking of largest senders and receivers of credit risk

(a) Financial −→ Non-Financial

Sender

Rank Name Connectedness ”To”

1 Swiss RE 0.53

2 Credit Agricole 0.53

3 Hannover Rueck 0.52

4 Munich RE 0.51

5 Aviva 0.49

6 Barclays Bank 0.47

7 Allianz 0.46

8 BBVA 0.45

9 Lloyds Bank 0.45

10 Zurich Insurance 0.45

.

.

.

.

.

.

.

.

.

29 ING 0.18

30 Mediobanca 0.16

31 Bank of Ireland 0.09

32 Dexia 0.09

33 Standard Chartered 0.08

Receiver

Rank Name Connectedness ”From”

1 Air Liquide 0.85

2 Accor 0.72

3 Henkel 0.72

4 WPP 0.63

5 Kering 0.62

6 Imperial Brands 0.62

7 Compass 0.62

8 Continental 0.60

9 Experian Finance 0.60

10 LVMH 0.58

.

.

.

.

.

.

.

.

.

105 Atlantia 0.09

106 Stora Enso Oyj 0.08

107 Nokia 0.07

108 Iberdrola 0.07

109 Ladbrokes 0.06

(b) Sovereign −→ Non-Financial

Sender

Rank Name Connectedness ”To”

1 Italy 0.25

2 Spain 0.17

3 Portugal 0.16

4 Belgium 0.12

5 UK 0.08

6 Netherlands 0.06

7 France 0.06

8 Germany 0.05

9 Austria 0.05

10 Ireland 0.03

Receiver

Rank Name Connectedness ”From”

1 Electricité de France 0.28

2 Energias de Portugal 0.28

3 ENEL 0.26

4 Hellenic Telecom 0.26

5 EON 0.25

6 Compass 0.25

7 United Utilities 0.23

8 ENGIE 0.22

9 National Grid 0.21

10 ENBW 0.20

.

.

.

.

.

.

.

.

.

105 Michelin 0.03

106 ThyssenKrupp 0.02

107 Volvo 0.02

108 Telekom Austria 0.02

109 Metro 0.02

Note: The tables ranks senders and receivers according to the strength of their incoming or outgoing con-

nections relatively to others. The table represents connectedness by taking into account the total number of

entities, therefore the displayed connectedness is the average value per entity.
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Figure 2.9: Individual senders of financial risk for the full-sample period (2006-2022)
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Note: The figure shows the financial entities’ total connectedness to other financial institutions versus other

non-financial firms.
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Figure 2.10: Aggregate cross-sectoral connectedness
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Note: The figure shows the directional connectedness from financial entities (black bars) and sovereigns

(grey bars) respectively to non-financial firms by sub-sector and normalizing based on the number of

entities.



72

Figure 2.11: Geographical connectedness
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Note: The figures show directional connectedness by country for the full-sample period (2006-2022). Each

entity has its headquarters in a specific country listed in Table 2.1. The color of countries indicates the

magnitude of incoming connectedness in non-finacial institutions from (a) financial entities, and (b) sovereigns

(connectedness “from”). The black circles size shows the magnitude of outgoing connectedness from (a)

financial entities, and (b) sovereigns of the corresponding countries (connectedness “to”). The connections’

thickness shows the connections strength.
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Table 2.7: Geographical connectedness and financial linkages

(1) (2)

Financial −→ Non-financial Sovereign −→ Non-financial

Bilateral bank claims

(i) All sectors 0.044 0.075***

(0.032) (0.033)

(ii) Non-bank private sector 0.013 0.086

(0.012) (0.044)

Note: The table shows the results of regressing pairwise cross-country connectedness measures on bilateral

bank claims. The data for bilateral bank claims are available at the consilidated banking statistics database

of the Bank for International Settlements (BIS) and they measure a country’s risk exposure by capturing the

banks ultimate risk basis. Here, there is a distinction of bilateral bank claims of country i (a) to all sectors,

and (b) to non-bank private sector, of country j. The bilateral bank claims are divided by the country’s

GDP. The OLS regressions include a constant and country dummy variables. In parentheses the standard

errors can be found and ∗ ∗ ∗ show significance at 1% level.
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2.3 Replication Dynamic results

In addition, I provide dynamic connectedness results as GS do, using rolling window esti-

mation with window sizes 150, 200 and 250 days for the extended dataset. The baseline

dynamic model has a window size of 200 days. The dynamic rolling window estimation uses

increment size 1 and sklearn’s ElasticNetCV python class which sets the mixing parame-

ter α to get one value from [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] while performing 10-fold

cross validation. This estimation method which has similarities on the authors’ method is

not the most time efficient way to conduct the rolling window estimation because of very

low increment size and the selection of both the mixing parameter α and the penalty tuning

parameter λ. The fact that α in this work is not allowed to take possible values that extend

to the second decimal makes these results and the GS results to have some differences, see

the replicated Figure 2.12 and the corresponding GS Figure A.5.

Figure 2.13 and the original Figure 5 depicte the global financial crisis prior to and

after the Lehman Brothers bankruptcy. Also, Figure 2.14 replicates the original Figure 6

and shows credit risk concentration to European sovereigns. The figures look similar to the

original ones, given that this work’s findings use the extended version of the data. Figures

2.15 and 2.16 on the system-wide connectedness, Figures 2.17, 2.18 and 2.19 on the cross-

sectoral connectedness, and 2.20 on country groups connectedness replicate closely but with

some magnitude differences the respective Figures 7 and A.12, 8, A.3 and A.4, and 9 of

the GS paper. The findings seem to reveal that during the pandemic of 2020, (a) the main

senders of risk were from the non-financial sector, and, (b) the connectedness percentage

ratio of the estimated connections over all possible connections was higher rather than any
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other period. Also, Figure 2.21 on the Dynamic Granger-causality connectedness on window

size 200 well corresponds to the original Figure A.7.



76

Figure 2.12: Distribution of elastic net parameters for different window sizes
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Note: The figure shows how the mixing paramerer α in (a) and the penalty tuning parameter λ evolve

over time for the full-sample period (2006-2022) using dynamic rolling window estimation. Both parameters

presented are averaged for the panel of 152 VAR equations for each window. The window sizes are 150, 200,

and 250 days and their corresponding parameters are in red, green, and blue color, respectively.
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Figure 2.13: CDS network before and after Lehman Brother’s bankruptcy

(a) Before: September 1, 2008 (b) After: November 6, 2008

Note: The networks are produced using rolling window dynamic estimation of 200 days. Note: The network’s

nodes are the CDS individual institutions colored by sub-sector and named according to the institutions’

corresponding Name Code in Table 2.1. Their size represents the number and strength of outgoing connec-

tions they have, the bigger the size the more the risk they transmit to others. They are positioned based

on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes close to each other

according to how strongly they are connected. The connections are estimated using h-step forecast error

variance decompositions. The number of common factors used is equal to two here but when applying the

Hallin and Lǐska (2007) IC2 criterion, the suggested number of factors is equal to one.
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Figure 2.14: CDS network before and after the onset of the sovereign debt crisis

(a) Before: December 30, 2009 (b) After: May 5, 2010

Note: The networks are produced using rolling window dynamic estimation of 200 days.Note: The network’s

nodes are the CDS individual institutions colored by sub-sector and named according to the institutions’

corresponding Name Code in Table 2.1. Their size represents the number and strength of outgoing connec-

tions they have, the bigger the size the more the risk they transmit to others. They are positioned based

on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes close to each other

according to how strongly they are connected. The connections are estimated using h-step forecast error

variance decompositions. The number of common factors used is equal to two here but when applying the

Hallin and Lǐska (2007) IC2 criterion, the suggested number of factors is equal to one.
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Figure 2.15: Dynamic system-wide connectedness
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Note: This figure shows dynamic system wide connectedness which is calculated from h = 10-step forecast

eroor variance decompositions using a rolling window of 200 days.
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Figure 2.16: Dynamic system-wide connectedness for different window sizes
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Note: These figures show dynamic system wide connectedness which is calculated from h = 10-step forecast

error variance decompositions using rolling windows of 150, 200, and 250 days.
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Figure 2.17: Dynamic cross-sectoral connectedness
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Note: The figure shows dynamic cross-sectoral connectedness from Financial institutions (a) and from

Sovereigns (b) and Non-financial firms (c) to Non-financial firms. The estimated connectedness comes from

h = 10-step forecast error variance decompositions calculated from a dynamic rolling window estimation of

200 days. Each measure is averaged by the number of entities in each sector.
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Figure 2.18: Dynamic cross-sectoral connectedness, net distribution

2008
2010

2012
2014

2016
2018

2020
2022

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Financial  Non-Financial

2008
2010

2012
2014

2016
2018

2020
2022

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Sovereign  Non-Financial

Note: The figure shows dynamic net contribution of cross-sectoral connectedness from Financial institutions

(a) and from Sovereigns (b) to Non-financial firms. The estimated connectedness comes from h = 10-step

forecast error variance decompositions calculated from a dynamic rolling window estimation of 200 days.

The net contribution is the estimated connectedness from X entities to Y entities minus connectedness from

Y entities to X entities. Each measure is averaged by the number of entities in each sector.
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Figure 2.19: Dynamic cross-sectoral connectedness, sub-sectors
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Note: The figure shows dynamic cross-sectoral connectedness from financial institutions (a) and from

sovereigns (b) to non-financial sub-sectors. The estimated connectedness comes from h = 10-step fore-

cast error variance decompositions calculated from a dynamic rolling window estimation of 200 days. Each

measure is averaged by the number of entities in each sector and sub-sector.
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Figure 2.20: Dynamic network connectedness across country groups
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Note: These figures show dynamic network connectedness which is calculated from h = 10-step forecast

error variance decompositions using a rolling window of 200 days across two country groups: GIIPS and

non-GIIPS. GIIPS countries refers to Greece, Italy, Ireland, Portugal and Spain, but Greece is not included

in this analysis due to data unavailability. The non-GIIPS countries included in this analysis can be found

in Table 2.1. The measures are normalized by the number of entities in each group.
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Figure 2.21: Dynamic Granger-causality connectedness
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Note: This figure shows dynamic Granger causality connections among CDS entities by presenting the share

of non-zero links over the total number of possible links. The connections originate from the estimated

coefficient matrix of the estimated VAR with a rolling window estimation of 200 days.
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2.4 Conclusion

This paper provides a replication of the Gross and Siklos (2020) paper using data up to 2022

and Python instead of Matlab. It offers new python classes that can be directly used for

estimating the generalized dynamic factor model and for the calculation of the generalized

variance decomposition matrix. The results shed light onto the credit risk transmission

scheme when the pandemic crisis period that started in 2020 is included in the full sample

period. The findings are matching closely to the original ones and uncover risk interactions

among European entities when the full-sample spans from 2006 to 2022. The findings show

that risk transmission followed different schemes during the pandemic crisis affecting Europe

in an alternative way than the financial and the sovereign crisis of the late ’00s and early

’10s. In particular, risk exchanges are found to be more intense during the pandemic of 2020

versus 2008-2010, and risk senders do not seem to belong in the financial or the sovereign

sectors, but rather originating from the non-financial industries.
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Chapter 3

Estimated spillover effects of block

factors

This paper estimates spillover effects among sub-sector specific European economic entities

of the following types: a) institution-to-institution, see e.g. Gross and Siklos (2020), b)

institution-to-block, c) block-to-institution, d) block-to-block. The economic entities studied

belong to six sub-sectors: the Automobile, Consumer, Energy, Telecommunication industries,

Financial firms, and, Sovereigns and this analysis’ main contribution is that it evaluates the

spillover estimates from blocks of entities to others and vice versa. This sheds light onto

how credit risk is transmitted within a network of non-financial firms, sovereigns, banks and

their estimated block-specific common factors over time, taking into account the dependencies

within and between the factors. The sub-sample findings of the analysis show high spillover

effects (i) towards the block-specific common factors during and at the beginning of a financial

crisis period, (ii) among the block-specific common factors for the following periods.
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3.1 Introduction

Financial crisis periods can cause a series of shocks, and they have been associated with public

debt increases and economic activity declines. Notably, the most recent global financial crisis

of 2007-2008 emerged as a European sovereign debt crisis in 2010 which constitutes one of the

biggest post-millenium critical points. For financial stability purposes, and since there has

been evidence that systemic risk may have negative impact to other sectors of the economy,

see De Bandt et al. (2009), central banks have developed systemic risk monitoring procedures.

One aspect of systemic risk comes from disruption in financial services. Another aspect of

systemic risk is the so-called contagion (De Bandt and Hartmann (2000) and Constancio

et al. (2012)). Contagion can be referred as negative effects starting from an institution

or a group of institutions in distress and affecting others (Dornbusch et al. (2000), Forbes

and Rigobon (2002)). Estimating spillover effects across different types of economic entities

and across time can uncover network connections’ existence, transmission, and amplification

mechanisms, and, therefore, the existence or not of contagion. How will a shock starting

from the financial sector and having no short-run effects to others, emerge overtime and will

this vivify the contagion?

This project makes two main contributions: The first contribution is the two-step

methodology which proposes the inclusion of estimated block-specific common factors in

a Vector Autoregressive (VAR) model in order to estimate spillover effects among blocks

of industries and the rest of the variables in the VAR model. This analysis evaluates both

components of systemic risk, the common and the idiosyncratic. Financial institutions hold

government debt, so they are exposed to sovereign risk, and banking crises can have negative
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implications to economic activity, see, e.g., Dell’Ariccia, Ferreira, Jenkinson, Laeven, Mar-

tin, Minoiu and Popov (2018). Therefore, the proposed methodology provides full-sample

and sub-sample evidence of the existence of contagion and its evolution over time. Secondly,

the proposed methodology followed by a network analysis and its measures offer useful tools

for the evaluation of the primary senders and receivers of risk, the strength of links, the

distance among agents as well as the systemic importance of each agent in the network. The

implementation of networks allows for further exploration of systemic risk behavior across

large numbers of entities and their blocks providing visuals which are holding multiple types

of useful information.

Following Diebold and Yılmaz (2014), Gross and Siklos (2020), Demirer et al. (2018), I

estimate and graphically represent the monolayer network of European corporations, sovereigns

and banks both for the full-sample period (2006-2022) but also for three sub-samples de-

fined inside 2006-2022 panel dataset’s time period, each one covering: the financial crisis

of 2007-2008, the sovereign crisis of 2010 and the Covid-19 pandemic of 2020. In both

analyses, connectedness comes from the estimated variance decomposition of a VAR of the

idiosyncratic component and the block-specific factors initially extracted from the Dynamic

Hierarchical Factor model by Moench, Ng and Potter (2013) and modelled together in the

same VAR.

The findings show that the inclusion in the full and sub-sample analysis of the block

factors reveals the contagion effect and its implications during the onset of the global financial

crisis of 2008. More specifically, the findings of these three periods’ sub-sample analysis

suggest to further examine the periods of global financial crisis in 2008 and the European
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sovereign crisis in 2010. Thus, I further examine four narrower periods during around the

end of October, 2006 up to early August, 2010, where each period is covering before an

event of special importance took place such as a) the BNP Paribas freezing $2.2 billion of

funds due to the subprime mortgage sector, b) the Lehman Brothers’ bankruptcy, c) the

G20 decision to finance the financial sector, d) Eurozone’s decision provide bailout packages

to certain of its country members.

From a policy standpoint, the methodology proposed is of particular importance for the

monitoring and potential prevention of future risk oriented financial and sovereign crises.

More specifically, a policy maker is able to see signals of an upcoming economic crisis by

studying the behavior of the idiosyncratic and the block factors. When the block factors

are positioned close to the rest of the network, and if this is due to idiosyncratic entities

transmitting risk to the block factors, this would mean the contagion has been activated.

3.2 Motivation

Recent literature has studied network connectedness using variance decompositions esti-

mated from Vector Autoregressive (VAR) models. While some authors adopt generalized

variance decompositions (Diebold and Yılmaz (2014), Gross and Siklos (2020), Demirer

et al. (2018), Niţoi and Pochea (2021), Wang et al. (2021)), others, following full identifica-

tion, use the orthogonalized variance decompositions (Diebold and Yilmaz (2009), Barigozzi

and Hallin (2017), Yang et al. (2021), Galariotis et al. (2016)), the definitions of which are

in Pesaran and Shin (1998). On the one hand, the generalized VAR framework is not able

to provide economic interpretation of the VAR innovations, on the other hand, identification
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of structural shocks requires making assumptions that are hard to justify in high dimen-

sional VARs. Nevertheless, policy-relevant literature has employed variance decompositions

to evaluate interactions among individuals in the EU sovereign credit market (Claeys and

Vaš́ıček (2014)), interactions among the latter and EU financial institutions (Alter and Beyer

(2014)), spillovers among sovereigns and international banks in the US, Europe and Japan

(Gross and Kok (2013)), and, spillovers between US and Europe’s fixed income markets

(Nyholm (2016)).

The methodology to be followed is constructed for credit risk monitoring and can stand

as a valuable tool for policy-making institutions. For this purpose, and following Diebold and

Yılmaz (2014), Gross and Siklos (2020), Demirer et al. (2018), the goal is to estimate and

graphically represent the 2-D and monolayer network of European corporations, sovereigns

and banks both for the full-sample period (2006-2022) but also in sub-samples having three

successive periods covering the financial crisis of 2007-2008, the sovereign crisis of 2010 and

the Covid-19 pandemic of 2020. In addition, results are provided for four more periods,

succesive to each other, where all together cover from the end of 2006 up to around mid-

2010. The dynamic analysis is of particular importance for policy-related conclusions and

remarks. In all analyses, connectedness is based on the generalized variance decomposition

definition, as proposed by Pesaran and Shin (1998).

The following section describes the methodology which starts by applying a Hierarchical

Dynamic Factor Model (HDFM) in order to estimate the idiosyncratic component and the

block-specific common factors. Following this step, a high-dimensional VAR is constructed

which incorporates the block-specific common factors as well as the estimated idiosyncratic
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component of the previous step. The issue of dimensionality can be tackled by choosing the

data-appropriate penalized regression method, see Melkumova and Shatskikh (2017), Zou

and Hastie (2005), Zou (2006), Yuan and Lin (2006): Ridge, Lasso, Elastic net shrinkage,

Adaptive lasso, Group lasso. After comparing a handful of methods, the chosen penalization

method is the Elastic Net. Under this framework, the researcher can estimate network

connectedness as proposed by Diebold and Yılmaz (2014) and adapted by Barigozzi and

Hallin (2017), by estimating the variance decompositions (VDs) defined by Pesaran and

Shin (1998). Each entry ij of the VDs measures the proportion of how a shock in a block-

specific common factor or in variable j affects the h-step ahead forecast error variance (FEV)

of variable i, over the effect on the FEV of i because of shocks to all other variables and the

factors.

3.3 Methodology

The methodology I am following employs first the Dynamic Hierarchical Factor Model

(DHFM) proposed by Moench, Ng and Potter (2013) assuming data can be organized in

B blocks and each block can have a total of NFb
block-specific factors. First, the Dynamic

Hierarchical Factor Model is applied. This way the dependence of the block-specific factors

to the global common factor as wells as dependencies of variables within and across block

factors are taken into account. Secondly, a suitable penalized regression method can be

applied, especially on a high-dimensional Vector Autoregressive (VAR) model composed of

the idiosyncratic component and block factors estimated in the previous step. Finally, one

can calculate the generalized variance decompositions which can be represented as a square
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h-step forecast error variance decomposition (VD) matrix, which can also be viewed as a

network adjacency matrix, thus, it can be depicted as a network plot according to the net-

works literature. This two-step methodology enables the estimation of the spillover effects

among institutions and blocks of institutions and can provide more insights on the existence

of contagion and the process of its vivification.

3.3.1 The Dynamic Hierarchical Factor Model (DHFM)

Let N be the total number of variables in the panel dataset with a total of T observations

across time, for n = 1, . . . , N variables and time t = 1, . . . , T . Considering a stationary,

mean zero and unit variance panel dataset Y which can be organized into blocks, define b

to be the block-specific index, η to be the variable-specific index in a given block b and Nb

to be the total number of variables in block b, for b = 1, . . . , B, such that η = 1, . . . , Nb,

and N = N1 + . . . + NB. One can assume in this model there exists a total number of

NX global common factors Xt = (X1t, . . . , XNX t) and a total of NFb
block-specific factors

Fbt = (Fb1t, . . . , FbNFb
t) for block b, where ρ = 1, . . . , NX and r = 1, . . . , NFb

.

By Moench, Ng and Potter (2013), one can write a Dynamic Hierarchical Factor Model

(DHFM) with common, idiosyncratic and block-specific components for all b, η, ρ and r, as

follows,
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Ybηt = ληFb
(L)Fbt + eYbηt , (3.1)

Fbrt = λrXb
(L)Xt + eFbrt

, (3.2)

ψXρ(L)Xρt = εXρt, εXρt ∼ N(0, σ2
Xρ
), (3.3)

ψYbη(L)eYbηt = εYbηt , εYbηt ∼ N(0, σ2
Ybη

), (3.4)

ψFbr
(L)eFbrt

= εFbrt
, εFbrt

∼ N(0, σ2
Fbr

), (3.5)

where ληFb
(L) and λrXb

(L) are distributed lag of loadings on the NFb
× 1 vector of the

block-specific factors Fbt = (Fb1t, . . . , FbNFb
t) and on the NX×1 vector of the global common

factors Xt = (X1t, . . . , XNX t), respectively.

All the factors and the idiosyncratic components are assumed to be stationary autore-

gressive processes of order qXρ , qFbr
, qYbη , respectively.

In this setting, there exists correlation among the variables in the same block through

the global common factors Xt, or through eFbrt
. Correlation also exists across different blocks

but only through the global common factor Xt. Moench, Ng and Potter (2013) also provide

a more extended version introducing subblocks into their model.

For identification, it is assumed that the loadings λ are constant and lower triangular

matrices of order zero with diagonal elements of fixed sign and that the innovations to the

factors have fixed variances.1

1Moench, Ng and Potter (2013) make these identification assumptions too.
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Estimation of DHFM using Markov Chain Monte Carlo

One could choose to estimate the DHFM in a sequential fashion, which means one could first

estimate for the global common factors Xt and then for the block-specific factors Fbt, using

in both cases principal components. However, in this way any dependencies or correlations

of variables within or across blocks would not be taken into account.

I choose to estimate this model using MCMC and more specifically Gibbs Sampling, a

method that has also been employed by Kose, Otrok and Whiteman (2003), Moench, Ng

and Potter (2013), Goldstein and Browne (2014) and others. The algorithm’s steps can be

found below for Λ = (ΛX ,ΛF ), Ψ = (ΨX ,ΨF ,ΨY ) and Σ = (ΣX ,ΣF ,ΣY ).

1. Get the initial values for the factors by estimating sequentially and using principal

components. Based on these initial values estimate the initial values for Λ,Ψ,Σ.

2. Conditional on Λ,Ψ,Σ, the global common factor Xt and the data Yt, draw Fbt, ∀b.

3. Conditional on Λ,Ψ,Σ, the block-specific factors Ft, draw Xt.

4. Conditional on Xt and Ft, draw Λ,Ψ,Σ.

5. Return to step 2.

The Gibbs sampling one can run can have a total of nGibbs = 100, 000 draws, out of which

50,000 draws are set to belong to the burn-in samples and the draws after the first 50

thousand are kept.
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3.3.2 A Vector Autoregressive (VAR) model with block factors

In this section, a high-dimensional Vector Autoregressive (VAR) model will be constructed

using the estimated idiosyncratic component and the block factors of the previous section.

More specifically, the dependent variable will be composed of the N × 1 idiosyncratic com-

ponents Êt along with the block-specific factors F̂t =
(
F̂brt

)b=1,...B

r=1,...,NFb

. The idiosyncratic

components Êt are obtained from fitting Yt on the DHFM estimated global common factors

X̂t, i.e. Êt is equal to the residual of this regression. Rewriting equations (3.1) and (3.2) for

NFb
= 1 ∀b,

Ybηt = ληFb
(L)

(
λrXb

(L)X̂t + êFbrt

)
+ êYbηt ,

which implies that the idiosyncratic component Êt is a linear combination of êFbrt
and êYbηt ,

∀b. Then, the VAR representation can be written as follows,

Ĝt = AĜt−1 + vt, (3.6)

where Ĝt =
(
Êt, F̂11t, . . . , F̂1NF1

t, . . . , F̂B1t, . . . , F̂BNFB
t

)
is an (N+

∑B
b=1NFb

)×1 vector and

Êt is N×1. The vector moving average representation, see Lütkepohl (2005), can be written

as follows,

Gt =
∞∑
h=0

Θhvt−h. (3.7)

Estimation

For high-dimensional VAR models, one can use a penalized regression method. Assum-

ing that A the VAR coefficient matrix is sparse, one can calculate the generalized impulse
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response function and the generalized variance decomposition based on Pesaran and Shin

(1998). The basic idea here is to use a penalized regression method that has a good fit, and

get the estimated coefficient matrix Θ and the estimated variance-covariance matrix Σ of

the residuals. Then, having the estimated Θ and Σ, one can calculate the generalized vari-

ance decomposition matrix which uncovers the estimated spillover effects among the VAR

variables and can be also thought as an adjacency matrix in the network literature.

Generalized Variance Decomposition of the VAR process

As Diebold and Yılmaz (2014) explain, they use the infinite MA representation of the non-

orthogonalized (generalized) VAR. More specifically, he defines the H-step generalized vari-

ance decomposition matrix DgH =
[
dgHij

]
to have entries

dgHij =
σ−1
jj

∑H−1
h=0 (e′iΘhΣej)

2∑H−1
h=0 (e′iΘhΣΘ′

hei)

where ej is a selection vector with the jth element being unity and zeros elsewhere, Θh is

the coefficient matrix multiplying the h-lagged shock vector in the infinite moving-average

representation of the generalized VAR, Σ is the covariance matrix of the shock vector in the

generalized VAR, and σjj is the jth diagonal element of Σ. Because shocks are not necessarily

orthogonal in the GVD environment, sums of forecast error variance contributions are not

necessarily unity (that is, row sums of Dg are not necessarily unity). Hence, the generalized

connectedness measure will not be Dg, but rather D̃g =
[
d̃gij

]
, where d̃gij =

d′ij∑N
j=1 d

y
ij

. By

construction,
∑N

j=1 d̃
9
ij = 1 and

∑N
i,j=1 d̃

g
ij = N . Using D̃g we can immediately calculate the

generalized connectedness measures.
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By definition, the resulting generalized variance decomposition (GVD) matrix D̃g of the

model is square, thus, it can also represent the so called adjacency matrix in the network

literature. Each d̃gHij measures the proportion of the h-step forecast error variance (FEV) of

variable i accounted for by exogenous shocks to variable j.

3.4 Empirical Results

In this section, the aforementioned two-step methodology will be utilized in the context of

an empirical application. The purpose of this empirical application exercise is to apply the

proposed two-step methodology and at the same time get more intuition on the contagion

effect, how it is created and the stages of its evolution.

The panel dataset used is from October 23, 2006 up to May 19, 2022 on the 5-year daily

Credit Default Swaps (CDS) spreads2 of financial institutions, sovereigns and non-financial

institutions from the Automobile, Consumer, Energy, and Telecommunication industries.

The total number of institutions in the panel dataset is 152. More specifically, it consists

of 33 financial institutions, 10 sovereigns and 109 non-financial institutions: 40 Automobile,

32 Consumer, 18 Energy, 19 TMT (Technology, Media & Telecommunications) industry

companies, see Table 3.1. Essentially, the dataset used in this work is a Datastream-updated

version with respect to time of the dataset that Gross and Siklos (2020) have in their paper

(which was covering the period 2006-2017 in daily frequency). Note that the panel dataset

employed in this section includes the global financial crisis of 2008, the European sovereign

crisis of 2010 as well as the recent Covid-19 pandemic period of 2020.

2CDS spreads measure credit risk and can be seen by the policy maker as numerical evaluations of financial
vulnerability, investor fear and economic health.
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The methodology I am following applies first the Dynamic Hierarchical Factor Model

(DHFM) proposed by Moench, Ng and Potter (2013) assuming data can be organized in B

blocks and each block can have a total of NFb
block-specific factors. Under this context, I

assume that there are B = 6 block-specific factors to be estimated, as many as the sub-sector

blocks of institutions in my dataset3. Specifically, I am using 6 blocks based on the sub-

sector classification types of institutions I have available: Automobile, Consumer, Energy,

Telecommunication, Financial institutions, and Sovereigns. Also, I assume no subblocks

exist in this setting4.

Secondly, I combine the estimated idiosyncratic component and the block factors to be

the dependent variable of a Vector Autoregressive (VAR) model. Then, I choose a suitable

penalized regression method to be applied, especially on a high-dimensional Vector Autore-

gressive (VAR) model that we have in this case, since it is composed of the idiosyncratic

component of 152 time series and the block factors estimated in the previous step. Finally,

one can calculate the generalized variance decompositions, see section 3.3.1, which can be

represented as a square 158 × 158 (152 series of institutions and 6 estimated block factors)

h-step forecast error variance decomposition (VD) matrix, which can also be viewed as a net-

work adjacency matrix, see Diebold and Yılmaz (2014), Demirer et al. (2018) and Diebold

and Yilmaz (2009), thus, it can be depicted as a network plot according to the network

literature.

This two-step methodology enables the estimation of the spillover effects among insti-

3See Table 3.1.
4One could assume there are a total of 3 blocks based on the sector classification: non-financial, financial

and sovereign. Another assumption would be that there are 3 blocks and 6 subblocks, based on the sector and
sub-sector classifications, respectively. These cases are not studied in this work in order to see the evolution
of each of the 6 block factors without assuming further hierarchical patterns other than the assumption that
all depend on the global common factor (along with other identification assumptions of the DHFM).
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tutions and blocks of institutions. It provides more insights on the existence of contagion

and the process of its vivification, which is of particular importance to policy makers.

3.4.1 Full-sample Results

First, to estimate the global common factor and the six block-specific common factors I apply

the Dynamic Hierarchical Factor Model (DHFM). In the DHFM, the dependent variable is

the panel of the CDS spreads of the 152 institutions which are assumed to be classified in

B = 6 blocks where each block has a total of one factors in order for the model to return

6 series of estimated block-specific common factors, one for each block. Another input that

has to be set in the model is the number of global common factors.

The number of global common factors has been determined using the Hallin and Lǐska

(2007) criterion to be equal to one. Applying this criterion, I get Figure 3.1, which shows

that for c in the intervals [0, 0.217], [0.996, 2.046], and [2.509, 2.999], Sc equals zero and these

intervals are called “stability intervals” as the authors define them. For the stability interval

that is for values of c close to zero the number of common factors indicated is qTc,n = qmax.

Also, for the stability interval where c = [2.509, 2.999] the indicated number of factors is

zero. The authors propose to choose the number of common factors that is indicated by

the second stability interval. The second interval in which c = [0.996, 2.046], the criterion

proposes one common factor to be used, qTc,n = 1.

The estimation of the DHFM is completed using Markov Chain Monte Carlo (MCMC),

see section 3.3.1. The Gibbs sampling runs for a total of nGibbs = 100, 000 draws, out of

which 50,000 draws are set to belong to the burn-in samples and the draws after the first
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50 thousand are kept, while saving results per 50 draws. The advantage of this estimation

method is that the dependencies of the block-specific factors to the global common factor

as well as dependencies of variables within and across block factors are taken into account.

More details in the assumed correlations can be found in section 3.6.

The model’s outputs to be used for the next step are the global common factor and the

6 block-specific common factors. The estimated factors evolution over time can be found in

figures 3.2 and 3.3. In the global common factor plot, it is easy to see higher and persistent

volatility starting around mid-2007 up to 2009, next around mid-2010 and 2016 and finally

in 2020. It is not random at all that in these volatile periods important economic events took

place: the global financial crisis of 2008, the European sovereign crisis of 2010, in 2016 the

Chinese stock market fall, the cut of production in the Organization of Petroleum Exporting

Countries (OPEC) along with the Great Britain’s exit from the European Union (EU), and

lastly the pandemic crisis of 2020. The sovereign-specific factor appears to have the smallest

variance relatively to the rest factors over time. On the other hand, the Consumer, Energy,

TMT industry companies and the financial sector seem to be volatile enough depicting events

that characterize historically the European economy, some of which are mentioned above.

In addition, the explanatory power of the estimated factors is evaluated using OLS

regression. In Table 3.2, one can view the resulting table representing the explanatory power

of the global common factor and the block-specific factors. The coefficient of determination

R2 is higher for each block-specific common factor on their corresponding own block versus

other factors. Also, the global common factor’s R2 is equal to 0.339 for all 152 CDS series,

when at the same time it is greater than 0.429 in all series belonging to the first five blocks,
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while for the last one, the sovereign block it is equal to 0.115. The fact that the explanatory

power of the estimated block factors is relatively high makes it possible that the block factors

uncover post-estimation results that are valuable for evaluating risk exchanges able to create

the contagion.

After estimating the global common factor by the DHFM, one can get the estimated

idiosyncratic component too. Table 3.3 presents the summary statistics of the standardized

raw CDS spreads and the idiosyncratic ones organized based on country and sector.

The second step is to construct a Vector Autoregressive (VAR) model consisting of

the N = 152 time series of the estimated idiosyncratic components and the time series of∑B
b=1NFb

= B = 6 block-specific common factors see section 3.3.2. The constructed VAR is

a high-dimensional VAR, thus it seems necessary to employ a penalized regression method

to tackle high dimensionality. A handful of methods are being compared to each other based

on out-of-sample forecast results and the output is represented in Table 3.4 based on Mean

Squared Error (MSE).

Therefore, the Elastic Net penalization method is chosen to be applied for the estima-

tion of the VAR model. The Elastic Net chooses the mixing parameter α and the penalty

tuning parameter λ jointly using 10-fold cross validation. The code implementation of this

methodology uses python package sklearn and its ElasticNetCV python class which sets

the mixing parameter α to get one value from [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] when

performing the 10-fold cross validation5.

From the estimated VAR model, one can calculate the variance decompositions and

5This can be changed by setting the step for alpha’s values less than 0.1. but it would be computationally
very time inefficient using the same package.
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represent them in matrix form which in this case will be a 158× 158 matrix where 158 is the

sum of the 152 series plus the block-specific factors which are six (one for each of the B = 6

blocks). After calculating the variance decompositions based on section 3.3.2, it is clear that

this can be thought as a connectedness measure, also called directional connectedness, see

Gross and Siklos (2020) and Diebold and Yılmaz (2014).

For the full-sample analysis of 2006-2022 referred also as the static analysis of this work,

connectedness reveals interesting risk exchanges among the entities of the analysis. Table 3.5

shows the top and bottom senders and receivers of risk based on the connectedness measure

defined in section 3.3.2. The table studies the financial sector’s and the sovereign entities

as senders and the non-financial sector as the receiver. In addition, figure 3.4 represents the

risk transmission magnitude in terms of connectedness from financial sector’s entities towards

other financial institutions and non-financial firms. The line depicts the trend which shows

a monotonic relationship, i.e. the more a bank is connected to another bank the more it

affects the non-financial sector entities and vice versa.

The estimated connectedness is represented as a network graph in figure 3.5. The

depicted network presents the full-sample period in one figure which is very informative.

First, in the center of this network, lie the entities that hold the more risk, and, in the

periphery of it, the ones that hold the less risk. For exaple, Hellenic Telecom (HTE) which

is a pink colored node in the figure lies in the center of the network graph meaning that it

holds more risk relatively to other nodes for the full-sample period. Notice that this node

appears in Table 3.5 as being the first best out of 109 non-financial receiver of sovereign

risk. Secondly, the presence of the block-specific factors in the full-sample network reveals
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that the factors are strongly connected not only with each other but also with the entities of

the block they represent as well as they are positioned close to the entire idiosyncratic CDS

network. This means that as idiosyncratic disruptions had the ability to set in distress the

whole network during 2006-2022. More details on this conclusion will be discussed in the

sub-sample analysis that follows.

In order to visualize how different the network structure would be without the block

factors in the graph, figure 3.6 is provided. It represents the estimated network of the VAR

which dependent variable consists of just the 152 idiosyncratic CDS entities, see the details

of these entities at Table 3.1. In these two network plots, the only visible difference to figure

3.5 is the weaker connections certain sovereigns have to others (see Germany, France and

Austria), and their positioning to be closer to the periphery of the network.

The connectedness matrix used in the network plot of figure 3.5 is represented in the

form of a heatmap in figure 3.7. The connectedness matrix is among the 152 idiosyncratic

CDS entities and the 6 block factors. The order of the entities and the sub-sector specific

factors is the same as in Table 3.1. The bolder the color in the heatmap, the stronger the

connection between two entities. From this heatmap, one can make two main observations.

The first is that the connections of idiosyncratic CDS entities are stronger when they belong

in the same block (same sub-sector), similarly the block-specific factors representing 6 blocks

are also strongly connected. Secondly, a given block-specific common factor, let block β is

strongly connected to the idiosyncratic entities belonging in the same block β. This last

observation can be easily verified by looking at the bottom two lines of 3.7(b) and 3.7(c)

which seem to be bold enough to be visible.
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The heatmap represents a 158× 158 connectedness matrix, therefore each entry repre-

sents a connection, with the diagonal entries being normalized to equal zero. Focusing on

the estimated connectedness at the bottom right part of the heatmap, at 3.7(c), one can see

that this column represents the sovereign block factor and its connections towards others.

Specifically, in 3.7(c), because of the zooming in, the estimated connections are represented

numerically indicating the strength of the connection. To interpret the resulting connect-

edness in figure 3.7, one can refer first to its definition at section 3.3.2. For instance, in

the last column at 3.7(c), the entries are {2, 7, 3, 2, 1, 8, 4, 9, 8, 4, 6, 6, 6, 6, 5, 0}. This means

that an exogenous shock to the sovereign block factor Fsov affects the 10-step forecast error

variance (FEV) of Austria by 2 when all exogenous shocks to all variables indexed by j

affect Austria by 100 in total. In other words, 2% of Austria’s 10-step forecast error variance

(FEV) comes from an exogenous shock to the sovereign block factor. Similarly, from 3.7(c),

an exogenous shock to the sovereign block factor in the full-sample period 2006-2022, affects

the p% 10-step forecast error variance of c, where p ∈ {2, 7, 3, 2, 1, 8, 4, 9, 8, 4, 6, 6, 6, 6, 5, 0},

c ∈ {Austria, Belgium, France, Germany, Ireland, Italy, Netherlands, Portugal, Spain, UK,

Fauto, Fcons, Fenrg, Ftmt, Ffin, Fsov}, respectively. Note that all diagonal elements of the

connectedness measure have been set to zero prior its normalization.

Additional information extracted from the heatmap at figure 3.7 which represents con-

nectedness in the full sample period, will be discussed base on figures 3.7(b) and 3.7(c).

First, in figure 3.7(b), the first 10 banks of the financial sector (order matches Table 3.1):

Aegon (Netherlands), Generali (Germany), Aviva (Italy), AXA (UK), Hannover Rueck

(France), Munich RE (Germany), Swiss RE (Germany), Zurich Insurance (Switzerland),

Dexia (Switzerland), and BNP Paribas (Belgium), are estimated to be strongly connected
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to each other during the full-sample period. Second, the financial sector seems to have id-

iosyncratic components that are strongly connected to each other overall. Secondly, in figure

3.7(b), the estimated connectedness from and to the idiosyncratic components of financial/

sovereign entities and their corresponding financial/sovereign block factors is strong (see the

bottom two lines and the last two columns on the right hand side). Thirdly, in figure 3.7(c),

more than 16% of Austria’s, France’s and Germany’s 10-step forecast error variance (FEV) in

sovereign level comes from an exogenous shock to either of the following sovereigns, Austria,

France or Germany (assuming a shock of their own affects their own FEV variance by zero).

Fourthly, Italy, Portugal, Spain, Belgium and the UK affect each others FEV by significant

percentages. Finally, the block factors are strongly connected to each other especially those

belonging to the non-financial sector.

From figure 3.7(c), it is useful to keep the following spillover effects for the full-sample

period 2006-2022. For the non-financial sector, around 12.5%, 6% and 15% of its 10-step

forecast error variance (FEV) comes from an exogenous common shock to the financial

sector, the sovereign sector, and any of the following non-financial sub-sectors ( Automobile,

Consumers, Energy, Telecommunications), respectively. For the financial sector around 9%

and 5% of its 10-step forecast error variance (FEV) comes from an exogenous common shock

to the non-financial sector, and the sovereigns sector, respectively. For the sovereigns sector

around 7% and 8% of its 10-step forecast error variance (FEV) comes from an exogenous

common shock to the non-financial sector, and the financial sector, respectively.

In addition, based on the last block of the connectedness at figure 3.7(c), in the full

sample period, exogenous common shocks originating from the financial and the non-financial
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sector affect the respective 10-day FEV of the sovereign sector 1.6(= 8/5) and 1.16(= 7/6)

more proportionally. Also, exogenous common shocks originating from the financial sector

affect the 10-day FEV of the non-financial sector around 1.3 more proportionally. Both

findings uncover a higher directional connectedness and thus higher transmission of risk

from the financial sector towards the non-financial and the sovereign sectors in the full-

sample period. This makes sense to the extent that the economic distortions in 2007-2008

started from the financial sector which was in trouble and then spread to the rest economic

sectors.
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Figure 3.1: Hallin and Liska (2007) IC2 criterion

0.5 1 1.5 2 2.5 3
c

0

1

2

3

4

5

6

7

8

9

10

qT
c; n

Sc

q*T
c; n

Note: The Hallin and Liska (2007) IC2 criterion suggests the number of common factors to be used in

a dynamic factor model. This figure presents the qTc;n and Sc as functions of c, where qTc;n comes from

the penalty function p(n, T ) =
(
M−2

T +M0.5
T T−0.5+ n−1

)
log
(
min

[
n,M2

T ,M
−0.5
T T 0.5

])
. Sc equals zero in

three intervals called “stability intervals”, for c ∈ {[0, 0.21], [0.99, 2.12], [2.49, 2.99]}. Hallin and Liska (2007)

suggest to use the indicated number of factors from the second stability interval, which in this case yields

qTc;n = 1, i.e. one global common factor.
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Table 3.1: List of CDS entities in the panel dataset

Entity Name Sector Sub-Sector Country Name Code

Adecco Non-financial Autos & Industrials Switzerland ADE

Volvo Non-financial Autos & Industrials Sweden VOL

Akzo Nobel Non-financial Autos & Industrials Netherlands AKN

Alstom Non-financial Autos & Industrials France ALS

Anglo American Non-financial Autos & Industrials UK ANA

Astrazeneca Non-financial Autos & Industrials UK ASZ

Atlantia Non-financial Autos & Industrials Italy ATL

Bae Systems Non-financial Autos & Industrials UK BAE

BASF Non-financial Autos & Industrials Germany BAS

Bayer Non-financial Autos & Industrials Germany BAY

BMW Non-financial Autos & Industrials Germany BMW

Bouygues Non-financial Autos & Industrials France BOU

Clariant Non-financial Autos & Industrials Switzerland CLA

Saint-Gobain Non-financial Autos & Industrials France SAG

Michelin Non-financial Autos & Industrials Switzerland MIC

Continental Non-financial Autos & Industrials Germany CON

Daimler Non-financial Autos & Industrials Germany DAI

Deutsche Post Non-financial Autos & Industrials Germany DPO

Evonik Non-financial Autos & Industrials Germany EVO

Finmeccanica Non-financial Autos & Industrials Italy FME

GKN Holding Non-financial Autos & Industrials UK GKN

Glencore Non-financial Autos & Industrials Switzerland GLC

Koninklijke DSM Non-financial Autos & Industrials Netherlands DSM

Air Liquide Non-financial Autos & Industrials France AIR

Lanxess Non-financial Autos & Industrials Germany LAX

Linde Non-financial Autos & Industrials Germany LIN

Peugeot Non-financial Autos & Industrials France PEU

Renault Non-financial Autos & Industrials France REN

Rentokil Initial Non-financial Autos & Industrials UK REI

Rolls-Royce Non-financial Autos & Industrials UK ROR

Sanofi-Aventis Non-financial Autos & Industrials France SAA

Siemens Non-financial Autos & Industrials Germany SIE

Stora Enso Oyj Non-financial Autos & Industrials Finland SEO

Solvay Non-financial Autos & Industrials Belgium SOL

ThyssenKrupp Non-financial Autos & Industrials Germany THK

UPM-Kymmene Oyj Non-financial Autos & Industrials Finland UPM

Valeo Non-financial Autos & Industrials France VAL

Vinci Non-financial Autos & Industrials France VIN

Volkswagen Non-financial Autos & Industrials Germany VOL

Wendel Non-financial Autos & Industrials France WEN

Accor Non-financial Consumers France ACC

Electrolux Non-financial Consumers Sweden ELE

Auchan Non-financial Consumers France AUC

Alliance Boots Non-financial Consumers UK ALL

Carrefour Non-financial Consumers France CAR

Casino Guichard Non-financial Consumers France CAG

Compass Non-financial Consumers UK COM

Danone Non-financial Consumers France DAN

Lufthansa Non-financial Consumers Germany LUF

Diageo Non-financial Consumers UK DIA

Experian Finance Non-financial Consumers UK EXF
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(Table 3.1 continued)

Entity Name Sector Sub-Sector Country Name Code

Henkel Non-financial Consumers Germany HEN

Ladbrokes Non-financial Consumers UK LAD

Imperial Brands Non-financial Consumers UK IMB

ISS Global Non-financial Consumers Denmark ISS

J Sainsbury Non-financial Consumers UK JSA

Kering Non-financial Consumers France KER

Kingfisher Non-financial Consumers UK KIN

Koninklijke Ahold Delhaize Non-financial Consumers Netherlands AHO

Koninklijke Philips Non-financial Consumers Netherlands PHI

LVMH Non-financial Consumers France LVM

Marks & Spencer Non-financial Consumers UK M&S

Metro Non-financial Consumers Germany MET

Nestlé Non-financial Consumers Switzerland NES

Next Non-financial Consumers UK NEX

PernodRicard Non-financial Consumers France PER

Safeway Non-financial Consumers UK SAF

Svenska Cellulosa Non-financial Consumers Sweden SCE

Swedish Match Non-financial Consumers Sweden SWM

Tate & Lyle Non-financial Consumers UK T&L

Tesco Non-financial Consumers UK TES

Unilever Non-financial Consumers UK UNI

BP Non-financial Energy UK BP

Centrica Non-financial Energy UK CEN

EON Non-financial Energy Germany EON

Edison Non-financial Energy Italy EDI

Energias de Portugal Non-financial Energy Portugal EDP

Electricité de France Non-financial Energy France EDF

ENBW Non-financial Energy Germany ENB

ENEL Non-financial Energy Italy ENE

ENGIE Non-financial Energy France ENG

Fortum OYJ Non-financial Energy Finland FOY

Gas Natural SDG Non-financial Energy Spain SDG

Iberdrola Non-financial Energy Spain IBE

National Grid Non-financial Energy UK NGR

Royal Dutch Shell Non-financial Energy Netherlands RDS

RWE Non-financial Energy Germany RWE

Statoil Non-financial Energy Norway STA

Total Non-financial Energy France TOT

United Utilities Non-financial Energy UK UNU

British Telecom Non-financial TMT UK BTE

Deutsche Telekom Non-financial TMT Germany DTE

Hellenic Telecom Non-financial TMT Greece HTE

ITV Non-financial TMT UK ITV

Nokia Non-financial TMT Finland NOK

Orange Non-financial TMT France ORA

Pearson Non-financial TMT UK PEA

Publicis Non-financial TMT France PUB

Relx Non-financial TMT UK REL

St Microelectronics Non-financial TMT Switzerland STM

Ericsson Non-financial TMT Sweden ERI

Telefonica Non-financial TMT Spain TEF

Telekom Austria Non-financial TMT Austria TEA
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(Table 3.1 continued)

Entity Name Sector Sub-Sector Country Name Code

Telenor Non-financial TMT Norway TEL

Telia Non-financial TMT Sweden TEI

Vivendi Non-financial TMT France VIV

Vodafone Non-financial TMT UK VOD

Wolters Non-financial TMT Netherlands WOL

WPP Non-financial TMT UK WPP

Aegon Financial Netherlands AEG

Generali Financial Germany ALL

Aviva Financial Italy GEN

AXA Financial UK AVI

Hannover Rueck Financial France AXA

Munich RE Financial Germany HRE

Swiss RE Financial Germany MRE

Zurich Insurance Financial Switzerland SRE

Dexia Financial Switzerland ZIN

BNP Paribas Financial Belgium DEX

Crédit Agricole Financial France BNP

Société Générale Financial France CAG

Deutsche Bank Financial France SOG

Commerzbank Financial Germany DBA

Bank of Ireland Financial Germany COB

Intesa Sanpaolo Financial Ireland BOI

Banca Monte Di Paschi Financial Italy BMP

Banca Popolare Financial Italy BPO

Unicredit Financial Italy UNI

Mediobanca Financial Italy MED

ING Financial Netherlands ING

Rabobank Financial Netherlands RAB

Banco Comercial Port. Financial Portugal BCP

Santander Financial Spain SAN

BBVA Financial Spain BBV

Royal Bank of Scot. Financial UK RBS

HSBC Bank Financial UK HSB

Barclays Bank Financial UK BAB

Lloyds Bank Financial UK LLB

Standard Chartered Financial UK SCH

UBS Financial Switzerland UBS

Credit Suisse Financial Switzerland CSU

Austria Sovereign Austria AUT

Belgium Sovereign Belgium BEL

France Sovereign France FRA

Germany Sovereign Germany GER

Ireland Sovereign Ireland IRE

Italy Sovereign Italy ITA

Netherlands Sovereign Netherlands NED

Portugal Sovereign Portugal POR

Spain Sovereign Spain ESP

UK Sovereign UK UK
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Figure 3.2: Evolution of the global common factor over the full-sample period ranging from
October 23, 2006 up to May 19, 2022. The global common factor Xt is estimated using the
Dynamic Hierarchical Factor model by Moench, Ng and Potter (2013).
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Figure 3.3: Evolution of the block-specific common factors over the full-sample period ranging
from October 23, 2006 up to May 19, 2022. The block-specific common factors are estimated
using the Dynamic Hierarchical Factor model by Moench, Ng and Potter (2013).
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Table 3.2: Explanatory power R2 of the estimated common factors

Subsectors

R2 Autos & In-
dustrials

Consumers Energy TMT Financial Sovereign All CDS

R2 of FAUT,t 0.533 0.441 0.442 0.476 0.369 0.103 0.318

R2 of FCON,t 0.470 0.501 0.426 0.482 0.356 0.093 0.308

R2 of FNRG,t 0.429 0.387 0.555 0.440 0.379 0.096 0.305

R2 of FTMT,t 0.442 0.420 0.423 0.575 0.359 0.095 0.303

R2 of FFIN,t 0.357 0.313 0.371 0.360 0.573 0.115 0.345

R2 of FSOV,t 0.199 0.169 0.197 0.198 0.232 0.280 0.234

R2 of Xt 0.475 0.447 0.477 0.513 0.429 0.115 0.339

Note: This Table presents the expanatory power R2 of the global and the block-specific common factors for
individual CDS spreads averaged by sub-sector.
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Table 3.3: Summary statistics of CDS data by country and by sector

Panel A: CDS non-financial corporations

Raw returns Idiosyncratic returns

Countries Entities Mean Std.
dev.

Min Max Mean Std.
dev.

Min Max

Austria 1 0.0 1.0 -8.02 8.14 -0.0 0.64 -5.13 5.82

Belgium 1 -0.0 1.0 -7.92 8.67 -0.0 0.67 -4.30 8.82

Denmark 1 -0.0 1.0 -26.92 12.31 -0.0 0.91 -26.94 10.81

Finland 4 -0.0 1.0 -23.16 11.31 -0.0 0.75 -23.38 11.75

France 24 -0.0 1.0 -18.18 18.08 -0.0 0.70 -18.34 17.48

Germany 19 -0.0 1.0 -10.26 27.40 -0.0 0.71 -9.39 27.33

Greece 1 -0.0 1.0 -7.64 12.54 -0.0 0.79 -6.08 10.59

Italy 4 0.0 1.0 -15.42 20.33 -0.0 0.76 -15.10 20.16

Netherlands 6 -0.0 1.0 -21.43 22.19 -0.0 0.72 -22.36 21.88

Norway 2 0.0 1.0 -9.50 11.27 -0.0 0.77 -6.05 10.41

Portugal 1 -0.0 1.0 -10.77 8.08 -0.0 0.68 -8.30 5.63

Spain 3 0.0 1.0 -11.77 7.93 -0.0 0.65 -6.35 8.75

Sweden 6 -0.0 1.0 -10.06 17.50 -0.0 0.72 -8.76 17.55

Switzerland 6 0.0 1.0 -11.80 13.01 -0.0 0.74 -10.46 11.62

UK 30 0.0 1.0 -29.36 42.70 -0.0 0.73 -30.07 42.59

Panel B: CDS financial institutions

Raw returns Idiosyncratic returns

Countries Entities Mean Std.
dev.

Min Max Mean Std.
dev.

Min Max

Belgium 1 -0.0 1.0 -24.95 20.58 -0.0 0.97 -24.95 20.57

France 4 0.0 1.0 -9.60 15.00 -0.0 0.70 -4.87 9.50

Germany 5 -0.0 1.0 -10.83 13.01 -0.0 0.70 -8.76 9.06

Ireland 1 -0.0 1.0 -17.78 12.35 -0.0 0.97 -17.76 12.22

Italy 6 0.0 1.0 -12.99 14.99 -0.0 0.76 -12.57 12.03

Netherlands 3 0.0 1.0 -9.80 17.47 -0.0 0.79 -8.29 16.14

Portugal 1 0.0 1.0 -9.34 10.68 -0.0 0.84 -8.48 13.04

Spain 2 -0.0 1.0 -9.37 6.95 -0.0 0.74 -6.49 7.62

Switzerland 4 -0.0 1.0 -9.26 13.14 -0.0 0.70 -7.44 7.81

UK 6 0.0 1.0 -15.52 14.17 -0.0 0.75 -13.25 12.65

Panel C: CDS sovereigns

Raw returns Idiosyncratic returns

Countries Entities Mean Std.
dev.

Min Max Mean Std.
dev.

Min Max

Austria 1 0.0 1.0 -22.66 17.33 0.0 0.98 -22.34 17.41

Belgium 1 -0.0 1.0 -6.75 16.36 -0.0 0.90 -6.57 13.95

France 1 -0.0 1.0 -23.04 17.62 -0.0 0.98 -22.75 17.72

Germany 1 -0.0 1.0 -16.42 18.94 0.0 0.98 -16.39 18.99

Ireland 1 0.0 1.0 -15.32 15.20 -0.0 0.99 -15.27 15.28

Italy 1 -0.0 1.0 -9.45 8.44 -0.0 0.86 -9.17 8.41

Netherlands 1 0.0 1.0 -11.89 11.87 -0.0 0.98 -11.68 12.65

Portugal 1 0.0 1.0 -11.98 7.49 -0.0 0.88 -8.31 5.72

Spain 1 0.0 1.0 -11.20 11.18 -0.0 0.91 -11.56 11.12

UK 1 0.0 1.0 -15.27 22.75 -0.0 0.95 -14.55 22.58

Note: The table shows the descriptive statistics of the standardized raw panel of 152 CDS spreads and the

estimated idiosyncratic returns arranged by country and by sector.
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Table 3.4: Out-of-sample forecast results

Autos &
Industri-
als

Consumers Energy TMT Financial Sovereign
Block Fac-
tors

Total

Optimal
Elastic Net

5.380 5.222 5.211 4.698 5.517 8.268 4.617 5.429

Constant
mean

5.223 5.233 4.878 4.873 5.685 8.766 5.116 5.460

AR(1) 5.275 5.438 5.246 4.755 5.759 8.966 5.207 5.574

Ridge 6.248 6.137 6.111 5.982 6.132 10.526 5.210 6.385

Constant
Elastic Net

5.078 5.212 5.227 4.476 5.932 9.473 4.787 5.495

Note: The in-sample period is 10/23/2006 - 12/31/2019, the out-of-sample period corresponds to 01/01/2020-

05/19/2022. The table shows the mean squared error (MSE) of the chosen estimation penalization

method of optimal elastic net by sector and compares it to constant mean, AR(1), Ridge regression

and Constant elastic net models. The optimal elastic net model chooses the optimal mixing parameter

α ∈ {[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]} and the penalty tuning parameter λ jointly in the shrinkage

and selection process. The constant mean model uses the in-sample mean of each variable as forecasts. The

AR(1) model conducts forecasts based on the fitted values from a persistent process. Ridge regression applies

shrinkage in the VAR with α = 1 and constant elastic net uses α = 0.5 and chooses only the optimal λ in

the penalty function.
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Table 3.5: Ranking of largest senders and receivers of credit risk for the full-sample period
2006-2022

(a) Financial −→ Non-Financial

Sender

Rank Name Connectedness ”To”

1 Credit Agricole 0.16

2 Swiss RE 0.16

3 Banca Monte Di Paschi 0.16

4 Banca Popolare 0.16

5 Lloyds Bank 0.15

6 Aegon 0.15

7 BBVA 0.14

8 Munich RE 0.14

9 Aviva 0.14

10 Banco Commercial Port. 0.14

.

.

.

.

.

.

.

.

.

29 HSBC Bank 0.08

30 ING 0.07

31 Dexia 0.05

32 Bank of Ireland 0.05

33 Standard Chartered 0.03

Receiver

Rank Name Connectedness ”From”

1 Wendel 0.74

2 Royal Dutch Shell 0.32

3 Energias de Portugal 0.32

4 Relx 0.27

5 Edison 0.26

6 Henkel 0.25

7 ENEL 0.24

8 WPP 0.24

9 British Telecom 0.24

10 Hellenic Telecom 0.23

.

.

.

.

.

.

.

.

.

105 BMW 0.03

106 Daimler 0.02

107 Renault 0.02

108 Solvay 0.02

109 Volkswagen 0.02

(b) Sovereign −→ Non-Financial

Sender

Rank Name Connectedness ”To”

1 Italy 0.18

2 Spain 0.12

3 Portugal 0.10

4 Belgium 0.08

5 UK 0.07

6 Netherlands 0.05

7 Austria 0.04

8 France 0.03

9 Ireland 0.03

10 Germany 0.03

Rank Name Connectedness ”From”

1 Hellenic Telecom 0.35

2 ENEL 0.29

3 Energias de Portugal 0.27

4 Telefonica 0.20

5 Iberdrola 0.19

6 Orange 0.18

7 Wendel 0.17

8 EON 0.17

9 Anglo American 0.17

10 Gas Natural SDG 0.16

.

.

.

.

.

.

.

.

.

105 Solvay 0.02

106 Edison 0.01

107 Daimler 0.01

108 Continental 0.01

109 BMW 0.01

Note: The tables ranks senders and receivers according to the strength of their incoming or outgoing connec-

tions to others are. The table represents connectedness by taking into account the total number of entities,

therefore the displayed connectedness is the average value per entity.
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Figure 3.4: Individual senders of financial risk for the full-sample period (2006-2022)
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Note: The figure shows the financial entities’ total connectedness to other financial institutions versus other

non-financial firms. Total connectedness’ definition used here is borrowed from Gross and Siklos (2020).

The financial entities appear with their Name Code, see Table 3.1.
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Figure 3.5: CDS network graph for the full-sample period (2006-2022)

Note: The network’s nodes are the CDS individual institutions colored by sub-sector and named according

to the institutions’ corresponding Name Code in Table 3.1. Their size represents the number and strength

of outgoing connections they have, the bigger the size the more the risk they transmit to others. They are

positioned based on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes

close to each other according to how strongly they are connected. The connections are estimated using

h = 10-step forecast error variance decompositions. The number of common factors used is equal to one

and comes from applying the Hallin and Lǐska (2007) IC2 criterion.
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Figure 3.6: CDS network graph for the full-sample period (2006-2022) with only the idiosyn-
cratic component in the estimated VAR, i.e. no block-specific factors are included in the
panel VAR

Note: The network’s nodes are the CDS individual institutions colored by sub-sector and named according

to the institutions’ corresponding Name Code in Table 3.1. Their size represents the number and strength

of outgoing connections they have, the bigger the size the more the risk they transmit to others. They are

positioned based on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes

close to each other according to how strongly they are connected. The connections are estimated using

h = 10-step forecast error variance decompositions. The number of common factors used is equal to one

and comes from applying the Hallin and Lǐska (2007) IC2 criterion.
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Figure 3.7: CDS variance decomposition heatmap for the full-sample period (2006-2022)

(a) The whole heatmap including all 152 idiosyncratic CDS
and the 6 block-specific factors. Indices start from 0 up
to 157 for the 158 CDS ordered as in Tables 3.1 and 3.2,
respectively.
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(b) Bottom right corner of whole heatmap
zoomed in to the last 49 CDS: 33 financial en-
tities, 10 sovereigns and 6 block-specific factors
heatmap
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(c) Bottom right corner of whole heatmap
zoomed in to the last 16 CDS: 10 sovereigns
and 6 block-specific factors heatmap
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3.4.2 Sub-sample Results

In this sub-sample analysis, the same methodology steps followed for the full-sample analysis,

are repeated for as many as the periods considered. Initially, I consider three periods: period

1 from 10/23/2006 up to 12/31/2009 covering the financial crisis period of 2007-2008, period

2 from 01/01/2010 up to 12/31/2015 covering the sovereign crisis of 2010, and period 3 from

01/01/2016 up to 05/19/2022 covering both 2016 a year of challenges for the EU, such as

the Chinese stock market fall, OPEC’s production cut, and ‘Brexit’, and the 2020 pandemic

crisis.

In these three period analysis, I run the DHFM and get for each period, one global

common factor and the block-specific common factors which are 6 as many as the sub-

sectors. Increased volatility in the factors appears to be coinciding with major global and

european level events overtime. The DHFM model for each period is run very similarly as

the full-sample. The output factors can be found in figures 3.8, 3.9, 3.10 and 3.11.

Next, I estimate connectedness for each period, see also sections 3.3.2 and 3.4.1. I find

the connectedness measures for each period 1, 2, and 3 and I represent them in heatmap

form, see figures 3.12, 3.13, and 3.14. From the heatmaps, attention goes immediately to the

block factors connectedness to each other across the three periods. In period 1, one can see

very a low but significant connectedness around 3% across the non-financial and financial

block factors, while the sovereign factor seems to be a receiver of connecteness and therefore

risk at period 1. To verify that, one can see the last column at figure 3.12(c) versus the last

row. Also, in period 1, the strongest connections appear to be among idiosyncratic entities

and among idiosyncratic entities and block factors.
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In period 2 and figure 3.13, it seems that the formation of risk exchanges in the previous

period has increased the risk exchanges across the block factors from around 3% in previous

period to 16% in the current period. Also, idiosyncratic entity exchanges among each other

seem to be weaker in this period compared to the previous. Similarly, the connections from

the idiosyncratic entities to the block factors and vice versa, are weaker too. This behavior

verifies what authors have been discussing on pure contagion effect, a domino effect that

starts from a number of individual entities (period 1) spreading to the whole system (period

2).

In period 3 and figure 3.14, one can spot similarities to period 2’s heatmap. One

difference is that the risk from and to the sovereign block factor is around 2% less in period

3 comparing to the previous period.

The connectedness measures depicted as heatmaps in figures 3.12, 3.13, and 3.14 are

represented as network graphs in figures 3.15, 3.16 and 3.17. In network plot for period

1, figure 3.15, the major holders of risk being in the center of the network are the non-

financial and the financial sector, by noticing the block factors’ position. In the periphery

the sovereigns are connected closely with the sovereign factor which is connected weakly with

the rest factors. The size of the non-financial and financial factors is big indicating that in

the current period not only they are the major holders of risk based on their positions, but

they also transmit big amounts of risk to the rest network entities.

In periods 2 and 3, one can notice how far away from the idiosyncratic network the

block-specific factors have moved. This means that the big bubbles of factors of the previous

period have ‘exploded’ by transmitting risk to others and now they still hold risk sharing it
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mainly to each other, but barely to other idiosyncratic entities. Comparing periods 2 and 3,

one can notice the factors holding even weaker connections to the rest of the idiosyncratic

network.

To understand this network behavior from a policy standpoint, it would be useful to

create even smaller periods between periods 1 and 2. This would give a better intuition

on when the movement, size and role of block factors in the network structure. For this

purpose, periods I, II, III, and IV are studied. Period I is from 10/23/2006 up to 08/08/2007

right before the BNP Paribas announcement about freezing $2.2 billion of funds due to the

subprime mortgage sector. Period II is from 08/09/2007 up to 09/14/2008, right before

the Lehman Brothers bankruptcy. Period III is from 09/15/2008 up to 04/01/2009, before

the G20’s decision to finance the financial sector. Period IV is from 04/02/2009 up to

05/08/2010, the period just before the Eurozone’s decision to finance certain of its country

members.

In period I, one can see its estimated connectedness heatmap 3.18 and network plot 3.22.

In the network plot one can see how close to the rest entities the block factors lie having a

small size. This means that they are strongly connected to other idiosyncratic entities and

not necessary to each other as the orange block factor nodes are not all close to each other,

with the exception of the non-financial factor which all express one sector. This is also quite

clear in the connectedness heatmap where one can notice idiosyncratic connectedness mostly

sectoral but most importanly connectedness from idiosyncratic entities towards the common

factors, see the bottom of the heatmap at figure 3.18. In other words, an idiosyncratic shock

affecting one entity could potentially emerge to a common shock to entire sectors. Notice
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that in figure 3.18, more than 50% of the sovereigns’ common factor 10-day forecast error

variance comes from exogenous shocks to Austria and Germany combined.

In the next periods II, III and IV, one can see their estimated connectedness heatmaps

3.19, 3.20, 3.21 and network plots 3.23, 3.24, 3.25. In all these periods the block factors

have moved away from the rest idiosyncratic entities, holding stronger connections than in

period I. To illustrate the difference accross all periods consider the following: (a) exoge-

nous common shocks originating from the financial and the non-financial sector affect the

FEV of the sovereign sector {−, 5/2, 9/8, 14/10} and {−, 5/2, 10/7, 11/8} more proportion-

ally for each period I, II, III and IV, (b) exogenous common shocks originating from the

financial sector affect the FEV of the non-financial sector around {−, 16/17, 11/13, 15/15}

more proportionally for each period I, II, III and IV.

From the sub-sample analysis’ findings, the policy maker can identify an upcoming

economic crisis studying the behavior of the idiosyncratic and the block factors. When the

block factors are close topologically to the rest of the network the researcher could look into

the reason of this appealing force. If this force is due to idiosyncratic entities transmitting

risk to the block factors this signals the contagion effect’s onset.
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Figure 3.8: Global common factor evolution in periods 1, 2, and 3

(a) Period 1: 10/23/2006 - 12/31/2009
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Figure 3.9: Evolution of the block-specific common factors over period 1 ranging from Oc-
tober 23, 2006 up to December 31, 2009. The block-specific common factors are estimated
using the Dynamic Hierarchical Factor model by Moench, Ng and Potter (2013).
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Figure 3.10: Evolution of the block-specific common factors over period 2 ranging from
January 1, 2010 up to December 31, 2015. The block-specific common factors are estimated
using the Dynamic Hierarchical Factor model by Moench, Ng and Potter (2013).
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Figure 3.11: Evolution of the block-specific common factors over period 3 ranging from
January 1, 2016 up to May 19, 2022. The block-specific common factors are estimated using
the Dynamic Hierarchical Factor model by Moench, Ng and Potter (2013).
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Figure 3.12: CDS heatmap for the sample period 1: 10/23/2006 - 12/31/2009

(a) The whole heatmap including all 152 idiosyncratic CDS
and the 6 block-specific factors. Indices start from 0 up
to 157 for the 158 CDS ordered as in Tables 3.1 and 3.2,
respectively.
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(b) Bottom right corner of whole heatmap
zoomed in to the last 49 CDS: 33 financial en-
tities, 10 sovereigns and 6 block-specific factors
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(c) Bottom right corner of whole heatmap
zoomed in to the last 16 CDS: 10 sovereigns
and 6 block-specific factors heatmap
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Figure 3.13: CDS heatmap for the sample period 2: 01/01/2010 - 12/31/2015

(a) The whole heatmap including all 152 idiosyncratic CDS
and the 6 block-specific factors. Indices start from 0 up
to 157 for the 158 CDS ordered as in Tables 3.1 and 3.2,
respectively.
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Figure 3.14: CDS heatmap for the sample period 3: 01.01.2016 - 05.19.2022

(a) The whole heatmap including all 152 idiosyncratic CDS
and the 6 block-specific factors. Indices start from 0 up
to 157 for the 158 CDS ordered as in Tables 3.1 and 3.2,
respectively.
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Figure 3.15: CDS network graph for the sample period 1: 10/23/2006 - 12/31/2009

Note: The network’s nodes are the CDS individual institutions colored by sub-sector and named according

to the institutions’ corresponding Name Code in Table 3.1. Their size represents the number and strength

of outgoing connections they have, the bigger the size the more the risk they transmit to others. They are

positioned based on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes

close to each other according to how strongly they are connected. The connections are estimated using

h = 10-step forecast error variance decompositions. The number of common factors used is equal to one

and comes from applying the Hallin and Lǐska (2007) IC2 criterion.
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Figure 3.16: CDS network graph for the sample period 2: 01.01.2010 - 12.31.2015

Note: The network’s nodes are the CDS individual institutions colored by sub-sector and named according

to the institutions’ corresponding Name Code in Table 3.1. Their size represents the number and strength

of outgoing connections they have, the bigger the size the more the risk they transmit to others. They are

positioned based on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes

close to each other according to how strongly they are connected. The connections are estimated using

h = 10-step forecast error variance decompositions. The number of common factors used is equal to one

and comes from applying the Hallin and Lǐska (2007) IC2 criterion.
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Figure 3.17: CDS network graph for the sample period 3: 01.01.2016 - 05.19.2022

Note: The network’s nodes are the CDS individual institutions colored by sub-sector and named according

to the institutions’ corresponding Name Code in Table 3.1. Their size represents the number and strength

of outgoing connections they have, the bigger the size the more the risk they transmit to others. They are

positioned based on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes

close to each other according to how strongly they are connected. The connections are estimated using

h = 10-step forecast error variance decompositions. The number of common factors used is equal to one

and comes from applying the Hallin and Lǐska (2007) IC2 criterion.
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Figure 3.18: CDS heatmap for the sample period I: 10/23/2006 - 08/08/2007

(a) The whole heatmap including all 152 idiosyncratic CDS
and the 6 block-specific factors. Indices start from 0 up
to 157 for the 158 CDS ordered as in Tables 3.1 and 3.2,
respectively.
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(b) Bottom right corner of whole heatmap
zoomed in to the last 49 CDS: 33 financial en-
tities, 10 sovereigns and 6 block-specific factors
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Figure 3.19: CDS heatmap for the sample period II: 08/09/2007 - 09/14/2008

(a) The whole heatmap including all 152 idiosyncratic CDS
and the 6 block-specific factors. Indices start from 0 up
to 157 for the 158 CDS ordered as in Tables 3.1 and 3.2,
respectively.
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Figure 3.20: CDS heatmap for the sample period III: 09/15/2008 - 04/01/2009

(a) The whole heatmap including all 152 idiosyncratic CDS
and the 6 block-specific factors. Indices start from 0 up
to 157 for the 158 CDS ordered as in Tables 3.1 and 3.2,
respectively.
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(b) Bottom right corner of whole heatmap
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(c) Bottom right corner of whole heatmap
zoomed in to the last 16 CDS: 10 sovereigns
and 6 block-specific factors heatmap
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Figure 3.21: CDS heatmap for the sample period IV: 04/02/2009 - 05/08/2010

(a) The whole heatmap including all 152 idiosyncratic CDS
and the 6 block-specific factors. Indices start from 0 up
to 157 for the 158 CDS ordered as in Tables 3.1 and 3.2,
respectively.
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(b) Bottom right corner of whole heatmap
zoomed in to the last 49 CDS: 33 financial en-
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(c) Bottom right corner of whole heatmap
zoomed in to the last 16 CDS: 10 sovereigns
and 6 block-specific factors heatmap
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Figure 3.22: CDS network graph for the sample period I: 10/23/2006- 08/08/2007

Note: The network’s nodes are the CDS individual institutions colored by sub-sector and named according

to the institutions’ corresponding Name Code in Table 3.1. Their size represents the number and strength

of outgoing connections they have, the bigger the size the more the risk they transmit to others. They are

positioned based on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes

close to each other according to how strongly they are connected. The connections are estimated using

h = 10-step forecast error variance decompositions. The number of common factors used is equal to one

and comes from applying the Hallin and Lǐska (2007) IC2 criterion.
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Figure 3.23: CDS network graph for the sample period II: 08/09/2007 - 09/14/2008

Note: The network’s nodes are the CDS individual institutions colored by sub-sector and named according

to the institutions’ corresponding Name Code in Table 3.1. Their size represents the number and strength

of outgoing connections they have, the bigger the size the more the risk they transmit to others. They are

positioned based on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes

close to each other according to how strongly they are connected. The connections are estimated using

h = 10-step forecast error variance decompositions. The number of common factors used is equal to one

and comes from applying the Hallin and Lǐska (2007) IC2 criterion.
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Figure 3.24: CDS network graph for the sample period III: 09/15/2008 - 04/01/2009

Note: The network’s nodes are the CDS individual institutions colored by sub-sector and named according

to the institutions’ corresponding Name Code in Table 3.1. Their size represents the number and strength

of outgoing connections they have, the bigger the size the more the risk they transmit to others. They are

positioned based on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes

close to each other according to how strongly they are connected. The connections are estimated using

h = 10-step forecast error variance decompositions. The number of common factors used is equal to one

and comes from applying the Hallin and Lǐska (2007) IC2 criterion.
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Figure 3.25: CDS network graph for the sample period IV: 04/02/2009 - 05/08/2010

Note: The network’s nodes are the CDS individual institutions colored by sub-sector and named according

to the institutions’ corresponding Name Code in Table 3.1. Their size represents the number and strength

of outgoing connections they have, the bigger the size the more the risk they transmit to others. They are

positioned based on the force-directed algorithm of Fruchterman and Reingold (1991), which places nodes

close to each other according to how strongly they are connected. The connections are estimated using

h = 10-step forecast error variance decompositions. The number of common factors used is equal to one

and comes from applying the Hallin and Lǐska (2007) IC2 criterion.



144

3.5 Conclusion

This paper studies risk connectedness among European economic entities during 2006-2022.

The findings show that the inclusion in the full and sub-sample analysis of the block factors

reveals the contagion effect and its implications during the onset of the global financial crisis

of 2008. The methodology followed including the network graphical representations it allows

for, could be of particular utility for future analysis on the status of an economy consisting

of a large number of entities.

The full-sample 2006-2022 findings suggest that for the non-financial sector, around

12.5%, 6% and 15% of its 10-day forecast error variance (FEV) comes from an exogenous

common shock to the financial sector, the sovereign sector, and any of the following non-

financial sub-sectors ( Automobile, Consumers, Energy, Telecommunications), respectively.

For the financial sector around 9% and 5% of its 10-day forecast error variance (FEV)

comes from an exogenous common shock to the non-financial sector, and the sovereigns

sector, respectively. For the sovereigns sector around 7% and 8% of its 10-day forecast error

variance (FEV) comes from an exogenous common shock to the non-financial sector, and

the financial sector, respectively.

In addition, in the full-sample period, exogenous common shocks originating from the

financial and the non-financial sector affect the respective 10-day FEV of the sovereign sec-

tor 1.6 and 1.16 more proportionally. Also, exogenous common shocks originating from the

financial sector affect the 10-day FEV of the non-financial sector around 1.3 more propor-

tionally. Both these findings uncover a higher directional connectedness and thus higher

transmission of risk from the financial sector towards the non-financial and the sovereign
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sectors in the full-sample period. This makes sense to the extent that the economic distor-

tions in 2007-2008 started from the financial sector which was in trouble and then spread to

the rest economic sectors.

From the sub-sample analysis’ findings, a policy maker can identify an upcoming eco-

nomic crisis studying the behavior of the idiosyncratic and the block factors. When the

block factors are close topologically to the rest of the network the researcher could look into

the reason of this appealing force. If this force is due to idiosyncratic entities transmitting

risk to the block factors this signals the contagion effect’s onset.

3.6 Appendix: Assumed zero correlations under the

DHFM

From section 3.3.2 notice that the idiosyncratic component Et = {Ebηt,∀b, η} = f(eFbt
, eYbηt)

∀b, η and from section 3.3.1 see equations (3.1) and (3.2). For NFb
= 1,∀b, we have that

Ybηt = ληFb
(L)Fbt + eYbηt ,

Fbt = λXb
(L)Xt + eFbt

.

This implies,

Ybηt = ληFb
(L) (λXb

(L)Xt + eFbt
) + eYbηt

Ybηt = ληFb
(L)λXb

(L)Xt + ληFb
(L)eFbt

+ eYbηt︸ ︷︷ ︸
Ebηt

.
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Correlation between i and j variables of Et

Any two variables i and j of Et, i ̸= j, that belong to (a) the same block can be correlated

because of eFbt
or eYbηt , or both, (b) different blocks can be correlated because of eYbηt even

though b ̸= b′. This is because in the VAR part of the methodology, the variables are modeled

altogether, not in blocks. Observing higher within-block correlation does not necessarily

mean that we assume zero correlation between i and j of Et that belong to different blocks.

Correlation between variables of Fbt and Et

Since Fbt and Et both depend on eFbt
, any shock that starts from economic entity i of Et in

block b will affect Fbt and any shock that starts from the block-specific common factors Fbt

will affect block b of Et. For the same block b, any correlation between Et and Fbt comes via

eFbt
. Basically, eFbt

is the only source that makes Et and Fbt able to affect each other (not

orthogonal), for b = 1, . . . , B.

However, the correlation between variable i in block k of Et and block-specific factor

Fk′t (assuming each block has one block-specific factor), where blocks k ̸= k′, is assumed to

be zero by the construction of the estimated DHFM. For instance, let variable i of block 1 of

Ei1t = eF1t +eY1it and the block-specific factor F2t = Xt+eF2t . We have that Ei1t and F2t are

uncorrelated by construction in the DHFM. More specifically, block-specific factors (F1t, F2t)

can be correlated only through Xt by the DHFM, thus it is assumed that Corr(eF1t , eF2t) = 0.
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Correlation between block-specific factors Fbt

Block-specific factors F1t, . . . , FBt are correlated with each other because of the global com-

mon factors Xt.

Zero correlations Table

Below, a Table that describes exactly the assumed zero correlations is provided. For sim-

plicity, in the Table it is assumed that the number of blocks in the model is B = 3.

Table 3.6: Summarizing the assumed zero correlations of the DHFM model

E1t E2t E3t F1t F2t F3t

E1t x x x x 0 0

E2t x x x 0 x 0

E3t x x x 0 0 x

F1t x 0 0 x x x

F2t 0 x 0 x x x

F3t 0 0 x x x x

Note: Summarizing the assumed zero correlations when B = 3, where the zeros represent the assumed zero
correlations and the x’s the existence of correlation.
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